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ABSTRACT OF DISSERTATION

A NOVEL NONPARAMETRIC TEST FOR HETEROGENEITY DETECTION

AND ASSESSMENT OF FLUID REMOVAL AMONG CRRT PATIENTS IN ICU

Over the past decade acute kidney injury (AKI) has been occurring among 20%-50%
of patients admitted to the intensive care unit (ICU) in United States. Continuous
renal replacement therapy (CRRT) has become a popular treatment method among
these critically ill patients. But there are multiple complications in implementing this
treatment, including discrepancies in practiced and prescribed fluid removal, possibly
related to the heterogeneity among these patients. With mixture modeling there have
been several techniques in detecting heterogeneity with their specific limitations. In
this dissertation a novel nonparametric ‘d test’ will be used to detect heterogeneity
among CRRT patients in ICU. Along with heterogeneity detection, this dissertation
will also seek to understand ongoing issues with fluid removal and discrepancy in
treatment implementations.
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Shaowli Kabir

April 25, 2022



A NOVEL NONPARAMETRIC TEST FOR HETEROGENEITY DETECTION

AND ASSESSMENT OF FLUID REMOVAL AMONG CRRT PATIENTS IN ICU

By

Shaowli Kabir

Dr. Richard J. Charnigo

Director of Dissertation

Dr. Heather Bush

Director of Graduate Studies

April 25, 2022

Date



To my parents Maksuda and Rezaul, my sister Nadia, my husband Mobasshir and

our beloved Mohi and Chotu.



ACKNOWLEDGMENTS

I am thankful to the Almighty for all the experiences I have had through this

journey.

Thank you to my family, who have made countless sacrifices that have provided me

with this life. Ammu and Abbu I know how hard it was for you to let me go and

study abroad, but you have been strong and always kept me going. To my sister for

being there for me every time I needed her and for taking care of our parents when I

couldn’t. To my Mohi, having you was one of the best things in my life. Thank you

for bringing so much joy in our life. To my friends in Lexington, I have enjoyed every

bit of time spent with you. Your support, mentorship, guidance, and tolerating my

antics boosted me through this journey.

Thank you to all my teachers and mentors who provided valuable guidance and

support. To Dr. Richard Charnigo, thank you for being my mentor and advisor.

Without you, I would not have imagined surviving this journey. Dr. Erin Abner,

Dr. Derek Young and Dr. Mary Lacy-Leigh, this dissertation would not be possible

without your guidance and support. Dr. Javier Neyra without your clinical judgement

and support for my research, this would not have been possible. I’m thankful for all

the years that I’ve got to work with you. I thank all of my committee members

for their support and feedback. To Dr. Heather Bush and Dr. Arnold Stromberg,

I cannot thank you enough for helping me decide to do a PhD and for all of the

support you have provided from time to time. To my colleagues: thank you for

always helping me in need and listening to my complaints. Thank you, Lauren E.

Robinson, for helping me within the short amount of time for the literature review.

This dissertation would not be possible without you all.

iii



To my husband, Nayan, thank you for being the consistent support, guidance, and for

your patience. You have always motivated me and pushed me to keep going through

the hard times. Thank you for all the sacrifices you have made so that we can be

together. You have always been there for me at every step of this journey, and I

would never have imagined being here without your support. I love you so much.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Application and Example . . . . . . . . . . . . . . . . . . . . 1

1.2 Implementation of Mixture Model . . . . . . . . . . . . . . . . . . . . 2

1.2.1 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 D Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 D-Test in Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Real Data Heterogeneity Detection . . . . . . . . . . . . . . . 7

1.3.2 Contamination Detection . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Gene Filtration: . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Nonparametric Approach in Mixture Model . . . . . . . . . . . . . . 11

1.5 Future Direction with Heterogeneity Detection . . . . . . . . . . . . . 13

1.6 Acute Kidney Injury and Continuous Renal Replacement Therapy . . 14

1.6.1 Fluid overload . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.2 NUF rate and Mortality . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Nonparametric D test . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Nonparametric D test (NpD test) . . . . . . . . . . . . . . . . . . . . 20

v



2.2.1 Definition of non-parametric d test . . . . . . . . . . . . . . . 20

2.2.2 Critical Values and relationship with sample size . . . . . . . . 22

2.2.3 Power of the test: . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Weighted nonparametric d test: . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Definition and motivation: . . . . . . . . . . . . . . . . . . . . 27

2.4 Proof of Concept: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Discussion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 3 A systematic literature search: Effect of Net Ultrafiltration (NUF)

on Mortality among ICU admitted adults . . . . . . . . . . . . . . 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Scope of the Study and Search Strategy . . . . . . . . . . . . 35

3.2.2 Eligibility criteria . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Parameters of interest . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Baseline and clinical characteristics . . . . . . . . . . . . . . . 37

3.3.2 Methodological diversity . . . . . . . . . . . . . . . . . . . . . 40

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 4 Assessment of Fluid Removal among CRRT Patients in ICU . . . 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Study design and population . . . . . . . . . . . . . . . . . . . 49

4.2.2 Data Collection and Management . . . . . . . . . . . . . . . . 50

4.2.3 Variables of Interest: . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Primary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



4.3.2 Secondary Analysis . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Study Population & Clinical Characteristics . . . . . . . . . . 55

4.4.2 Unadjusted Association with Primary Outcome . . . . . . . . 58

4.4.3 Adjusted Discrepancy and Hospital Mortality . . . . . . . . . 60

4.4.4 Hospital Mortality Prediction . . . . . . . . . . . . . . . . . . 62

4.4.5 Prediction Performance on Test Data . . . . . . . . . . . . . . 65

4.4.6 Secondary Outcome . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 5 Final Thoughts & Conclusion . . . . . . . . . . . . . . . . . . . . 71

5.1 Heterogeneity Detection & Nonparametric D test . . . . . . . . . . . 71

5.2 Fluid Assessment among CRRT ICU Patients . . . . . . . . . . . . . 72

5.3 Collaborative Approach . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Appendix A: Theoretical details . . . . . . . . . . . . . . . . . . . . . . . . 75

1. Illustration of nonparametric d-statistic . . . . . . . . . . . . . . . 75

Illustration of nonparametric weighted d statistic . . . . . . . . . . . 78

Appendix B: Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendix C: Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



LIST OF TABLES

2.1 Critical values for nonparametric d test . . . . . . . . . . . . . . . . . . . 22

2.2 Coefficients to obtain Critical values . . . . . . . . . . . . . . . . . . . . 23

2.3 NpD test result on eruption distribution . . . . . . . . . . . . . . . . . . 29

2.4 NpD test result on Adjusted discrepancy (%ml/Kg h) during CRRT . . . 31

2.5 Model comparison of Grouped vs Numeric Adjusted Discrepancy . . . . 32

3.1 Study participant baseline and clinical characteristics . . . . . . . . . . . 39

3.2 Statistical method and adjusted risk factors . . . . . . . . . . . . . . . . 41

3.3 Evaluation of bias assessment and sensitivity analysis . . . . . . . . . . . 43

3.4 NUF and mortality association among studies . . . . . . . . . . . . . . . 45

4.1 Patient’s Characteristics Across Train and Test Data Throughout Hospi-

talization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Patient’s Characteristics in Train Data by Hospital Mortality . . . . . . 59

4.3 Unadjusted Odds Ratio and 95% Confidence Interval . . . . . . . . . . . 62

4.4 Multivariate Logistic Regression Model . . . . . . . . . . . . . . . . . . . 64

4.5 Prediction Performance Comparison . . . . . . . . . . . . . . . . . . . . 66

4.6 Daily Adjusted Discrepancy Association . . . . . . . . . . . . . . . . . . 68

1 Modelling Critical values vs Sample size . . . . . . . . . . . . . . . . . . 81

2 Key terms for database search . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Adjusted Discrepancy Continuous vs Categorical . . . . . . . . . . . . . 81

4 No. Patient’s Information Available for Each Day . . . . . . . . . . . . . 82

5 Logistic Regression Estimates for Hospital Mortality Prediction . . . . . 82

viii



LIST OF FIGURES

2.1 Nonparametric d test procedure . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Linear relationship between Log Critical value and Log Sample size . . . 23

2.3 Power curves of 0.5 N(0,1)+ 0.5 N(3,1)for different bandwidths . . . . . 24

2.4 Power curves of different 2-component mixing distributions with different

distance in mean among the component . . . . . . . . . . . . . . . . . . 25

2.5 Power curves of 0.5 N(0,1)+ 0.5 N(2,1)for different mixing proportions . 26

2.6 Weighted NpD test Linear relationship between Log Critical value and

Log Sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Nonparametric d test power comparision with and without weight . . . . 28

2.8 Fluid Removal Data Derivation Process . . . . . . . . . . . . . . . . . . . 30

2.9 Distribution of Adjusted Discrepancy % (ml/ Kg h) . . . . . . . . . . . . 30

2.10 3-Components fit on Adjusted Discrepancy % (ml/ Kg h) . . . . . . . . . 31

3.1 PRISMA flowchart of study selection & search strategy . . . . . . . . . . 38

4.1 Adjusted discrepancy at day 1 . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Cohort Derivation Based on Inclusion-Exclusion Criteria . . . . . . . . . 56

4.3 Distribution of Dead and Alive Patients for Different Categorical Adjusted

Discrepancy at Day 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Prediction Accuracy Comparison: 3-fold CV . . . . . . . . . . . . . . . . 63

4.5 ROC Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1 Critical Values Bootstrap vs. Fixed . . . . . . . . . . . . . . . . . . . . . 83

2 Model fit on Critical values vs Sample size . . . . . . . . . . . . . . . . . 83

3 Skewness effect on NpD test . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Distribution of eruption duration in minutes . . . . . . . . . . . . . . . . 84

ix



5 ROC comparison for Adjusted Discrepancy . . . . . . . . . . . . . . . . . 85

6 Summary of Gray’s survival model result in Murugan et.al. 2018 and 2019 85

7 Missing value percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 MI performance with CART . . . . . . . . . . . . . . . . . . . . . . . . . 86

9 Variable Importance Based on Different Methods . . . . . . . . . . . . . 87

10 K-means Clusters on Adjusted Discrepancy at Day 1 . . . . . . . . . . . 87

11 Distribution of clusters based on EM algorithm for Adjusted Discrepancy

at Day 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

12 Timeline and Information of Interest . . . . . . . . . . . . . . . . . . . . 88

13 Daily Adjusted Discrepancy Throughout CRRT . . . . . . . . . . . . . . 89

x



Chapter 1 Introduction

1.1 Mixture Model

A Mixture model is a probabilistic model that represents the distributions of the sub-

populations in an overall population [1]. A distribution f is a mixture of K component

distributions f1, f2, ..., fK if,

f(x) =
K∑
i=1

pifi(x)

where, pi are the mixing weights with 0 ≤ pi ≤ 1 and
∑k

i=1 pi = 1. A finite Gaussian

or normal mixture model is where the ith components are N(µi, σi). That is,

f(x) =
K∑
i=1

piN(x|µi, σi) (1.1)

1.1.1 Application and Example

Mixture models are famous for heterogeneity detection. Normal mixture models have

been used in gene filtration in microarray analysis, neuroimaging pattern recognition,

disease mapping and numerous other issues in public health [2–7].

For example, birthweight is one of the prognostic factors for fetal-infant mortality.

With low and extremely low weights at birth, the mortality risk increases and thus

need special attention to these groups. Charnigo et. al. [8] applied a normal mixture

model to birthweight and fetal-infant mortality data to build a realistic and flexible

framework for birthweight age distribution. The number of components in the mix-

ture model is determined from data using Flexible Information Criterion(FLIC) [9].

The authors used the EM algorithm [10] to apply FLIC by using maximum likelihood
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estimate of proportions, mean and standard deviation. They also investigated the

relationship between sample size and the number of components selection, where 4

components were chosen for their 50,000 random samples from 202,849 of white sin-

gletons. With the comparison of the 4 components model to the contaminated normal

model and 2-components model, the 4 components model averted the weaknesses of

the other two models [8]. The authors also compared how each component fits the

tails of the distributions to the clinical groups of birthweight distribution. That is,

they checked how the components model fits the MLBW (medium-low birthweight)

range. By comparing the criteria preferences, the authors concluded that, a multiple

components (> 2) normal mixture model detects the heterogeneity and reasonably

describes the birthweight distribution when compared to a contaminated normal or

a 2-components normal mixture model.

1.2 Implementation of Mixture Model

Numerous methods for estimating the parameters of a mixture model (pi, θi), where

θϵΘ(parameter space), have been proposed. Some suffer from theoretical complica-

tions, some suffer from computational challenges. Moreover, the log-likelihood func-

tion of a mixture distribution does not have a closed form solution and regarded as

incomplete without prior knowledge [10,11]. Below are some of the popular methods

used in implementing the mixture model.

1.2.1 EM algorithm

The EM (Expectation-Maximization) algorithm is a popular approach for finding

maximum likelihood estimates with missing or incomplete data. The EM algorithm

approaches to find the value of the parameter using sampling density depending on

the parameter and the data, which maximizes the sampling density given the observed

response. With the popularity of the maximum likelihood method [12], Dempster et
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al. (1977) [10] explored the EM algorithm’s properties in detail. They showed that,

along with the maximum likelihood framework, the EM algorithm can be applied in

a Bayesian setting. They also investigated different approaches of the EM algorithm

in different scenarios (different types of exponential families and non-exponential

families), which can be simplified as follows-

E-step (Expectation): After choosing appropriate initial values, find the appropriate

expected value (e.g., likelihood, quasi-likelihood, etc.) given the current estimate of

the parameter.

M-step (Maximization): Find the parameter estimate that maximizes the above-

mentioned expected value.

Convergence (with the increase of iterations) to maximum likelihood is ensured with

the assumption of continuity and differentiability conditions. Also, differentiation

and expectation operations are assumed to be interchangeable.

Redner & Walker (1984) [12] investigated the theoretical and iterative properties of

the EM algorithm for mixture densities. They used exponential families as the point

of interest due to the majority of literature involving mixture densities, including

component densities, being members of exponential families. The performance of

the EM algorithm was satisfactory as the authors mentioned that process has “good

global convergence characteristics” (p-231).

Although the EM algorithm is thought to obtain global maxima with carefully chosen

initial values, this might not be the case always. Some initial values might lead the

EM algorithm to get stuck at local maxima. Thus, careful consideration should be

given in choosing initial values. The EM algorithm can be used initially, and later,

Newton-Raphson’s iterative approach can be used for rapid local convergence. [12]

3



1.2.2 Likelihood Ratio Test

G. J. McLachlan (1987) [13] proposed using LRT (Likelihood Ratio Test) to find the

smallest number of components in a normal mixture model when there is no prior

knowledge. He used bootstrapping of the log-likelihood ratio statistic and performed

simulations to test the simplest situation- one component vs two components. Be-

cause there is no way to be sure that the largest of the local maxima will be found

in the log-likelihood for mixtures, the likelihood ratio statistic (−2loglambda) may

be biased downard, where λ is the likelihood ratio under the null and alternative

hypotheses. The EM algorithm [10] was used to limit this bias through a systematic

search for all local maxima using multiple sets of initial values. Also, to avoid the sit-

uation of having two local maxima because of the components belonging to the same

parametric family, it was conditioned that the mean of the first component should

be less than the mean of the second component. The simulation results showed that,

if the distances between the components were larger then the test would be more

powerful. The author also tested 2 components vs 3 components with the condition

of a consecutive increase in the means of the components and found similar results

supported by bootstrap simulations.

Hanfeng Chen and Jiahua Chen (2001) [11] studied the large sample behavior of

LRT for testing homogeneity under a two-components mixture model. To have a

limiting distribution for LRT, the parameter space needs to be bounded, otherwise,

the LRT goes to infinity with probability 1 [14]. After describing the regularity

conditions, the authors stated that the asymptotic null distribution of the LRT for

the two-component mixture model is the squared supremum of a truncated gaussian

process. They mentioned that this asymptotic distribution is complex because the

null asymptotic distribution depends on how large the parameter space is, thus the

bounded condition was implied. They also did bootstrap simulation [McLachlan, G.

4



1987] for testing homogeneity with different kernel functions (Normal, Binomial, and

Poisson). The result concluded that at a 5% level of significance, the approximation

improves with the increase of sample size, and the simulation study agreed with the

consistent performance of LRT.

Since the likelihood ratio test (LRT) for homogeneity in finite mixture models has

complicated asymptotic properties [11] Chen et al. [15] proposed a modified likelihood

ratio test (MLRT) with similar power and easier asymptotic properties. They showed

that the asymptotic null distribution is a weighted mixture of central χ2
1 and χ2

0 dis-

tribution. χ2
0 is the degenerate distribution with all of it’s values are at 0. The MLRT

has a penalty term that affects the maximized likelihood only under the alternative

hypothesis. The estimated weights of the mixture components in the heterogeneous

model are forced to be away from 0 by the penalty term, which helps estimate the

parameters of the different components.

1.2.3 D Test

Richard Charnigo and Jiayang Sun (2004) [16] presented a new method, the D test,

for testing the homogeneity of the finite mixture distribution. The D-test statistic has

a closed-form expression for mixture components from standard parametric families

in terms of parameter estimators, whereas likelihood ratio type test statistics do

not. The D test employs an “L2” distance between a fitted homogeneous model and

a fitted heterogeneous model, based on Scott’s (1998) [17] L2E method for model

selection. The reason for choosing L2 distance is that it puts more emphasis on

the larger separations between the homogeneous and heterogeneous density curves

and also leads to a simple closed-form expression so that the test is sensitive to the

separation between the null and the specific alternative under consideration.
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The D test statistic is defined as,

d(k, n) :=

∫ [ k∑
i=1

p̂if(x|θ̂i)− f(x|θ̂0)
]2
dx (1.2)

where k is the number of distinct components under the alternative hypothesis and

n is the sample size. The authors found that the D-test has more power to detect

homogeneity compared to the MLRT in simulation study when the mixture com-

ponents come from a normal location family, but the generalization of MLRT to a

two-parameter family tends to perform better than D test when mixture components

come from a normal location/scale family. Because L2 distance increases the smallest

distance between shapes, it is easy to detect subtle changes when there is heterogene-

ity. Moreover, with a small sample size, it becomes difficult to detect heterogeneity in

exponential mixture densities. To overcome this weakness, the authors also proposed

a weighted D test [16] where the L2 distance is changed to accentuate the disparities.

They also found another equivalent way by changing the measure or transforming

the data before conducting the D test. To check the D test’s feasibility, the authors

applied it to the bankruptcy data from Johnson and Wichern (2002) [18] and found

satisfactory results.

Later, the authors [19] investigated the asymptotic equivalences between the D-

test and three other likelihood ratio type tests (LR test, MLRT [Chen, Chen and

Kalbfleisch 2001] [15] and EM test [Li, Chen and Marriott 2009] [20] ). With the

same mixture from a regular exponential family using Chen, Chen and Kalbfleich’s

(2001) [15] penalized likelihood bayesian framework, the authors showed an asymp-

totic critical value related to the upper 2α quantile of the chi-square distribution on

one degree of freedom. Thus, under contiguous local alternatives, the power should

stabilize to some larger amount close to 100% and this simple limiting null distribution

makes the D test asymptotically locally most powerful. To investigate finite-sample
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accuracy of critical values, the authors used MLRT as a benchmark for simulation

studies on the mixture from the one-dimensional exponential family and the EM test

as a benchmark for normal location mixtures with unknown structural parameters,

i.e. variance in this case. Compared to LRT and MLRT, which need both full dataset

and parameter estimates, the D test depends on the data only through the applicable

framework of parameter estimation.

1.3 D-Test in Application

1.3.1 Real Data Heterogeneity Detection

Charnigo and Sun [19] applied the empirical Bayesian framework D-test to the SLC

dataset (Roeder 1994) [21] and found that both EM test and empirical Bayesian

framework D test suggest heterogeneity in the form of what the authors called “a high-

low probability mixture”, where the first component gets much higher probability and

second components get much lower probability.

1.3.2 Contamination Detection

In a mixture model when one component’s parameters are known, then it is defined

as a contaminated density model [22]. In a regression model to test for contamination

to describe a subpopulation, Dai and Charnigo explored the asymptotic and finite

sample performance of the MLRT (Modified Likelihood Ratio Test) and the D test.

The authors are interested in testing zero contamination vs. non-zero contamination

and have developed easily applicable inferential methods for contaminated density and

regression models. For the contaminated density model, the authors considered using

a weighted D-test, and for the contaminated regression model, when the probability

density function for the explanatory variable is unknown, the authors considered using

an empirical D test. Their empirical assessment showed that the tests distinguish

contamination easily when the contamination fraction is large, even if the component
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means are not separated enough. Power can be retained with a small contamination

fraction if the sample size is large or the component means differ greatly. For the

contaminated density model, the authors concluded that using an appropriate weight

function improves the power to detect contamination. The authors pointed out that

MLRT and D tests can be used to check whether apparent outliers are a part of

subpopulation, which is a paramount aspect of the data analysis.

1.3.3 Gene Filtration:

To detect gene expression alterations, Dai and Charnigo (2008) [2] used the Modified

Likelihood Ratio Test (MLRT) and the D test to adjust for the large number of

simultaneous tests corresponding to the number of genes. Because, when we try to

control the false positive rate in large scale multiple testing, the false-negative rates

become extremely large. Thus, in large-scale testing, traditional methods have low

power to detect differential gene expression, failing to compare groups efficiently.

From previous work of Allison et al.(2002) [23], in large scale hypothesis testing, P-

values for genes without expression alterations are distributed as iid U(0,1)= β(1, 1)

and differentially expressed genes’ P-values are assumed to be distributed as a Beta

distribution with different parameter values. Thus, Dai and Charnigo proposed a

beta contamination model to define the marginal distribution of the P-values obtained

from large scale gene studies. Because of the abundance of less important genes in

such studies, the authors suggested omnibus homogeneity testing as part of a gene

filtration process which separates the genes by their differential expression rates using

the following hypotheses:

H0 : Pi ∼iid Beta(α0, β0)

H1 : Pi ∼iid (1− π)Beta(α0, β0) + πBeta(α, β) ̸= Beta(α0, β0)

where α0 and β0 are known and π ∈ [0, 1], α > 0, β > 0.
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To test for goodness of fit for the null model, i.e. Beta(1,1) model MLRT and D

test were used. A maximum modified likelihood estimate (MMLE) was used to test

the hypothesis of whether a uniform model was appropriate or not. To test the

performance of the D test and MLRT, two empirical studies were conducted where

one was concerned with the actual rejection rates under the null hypothesis that the

distribution is from a beta(1, 1) model and the other was concentrated on the power

under the alternative hypothesis when critical points from asymptotic theory were

used. The simulation study confirmed that the D test and MLRT have advantages in

both scenarios. The authors assumed independence of P-values and concluded that

contaminating beta distribution helps to detect substantial differential expressions

under certain assumptions of the parameters.

The contaminated beta (CB) model is useful for describing the distribution of P-

values resulting from a microarray experiment. Dai and Charnigo (2010) proposed

using the contaminated normal (CN) model instead of the CB model to describe the

distribution using Z-statistics instead of P-values. Balancing type I and type II error

rates with a large number of hypothesis tests is challenging. The authors suggested

that if unnecessary genes can be filtered out through omnibus testing, with fewer

genes under consideration, greater power can be achieved in hypothesis testing while

maintaining the type I error rate. Thus, they investigated the asymptotic behavior

of MLRT (Modified Likelihood Ratio Test) and D test for omnibus testing using the

following hypothesis tests:

H0 : γµ = 0

vsH1 : γµ ̸= 0

where γ is the proportion of genes that are differentially expressed and µ is the mean

Z-statistic of genes that are differentially expressed. Maximum modified likelihood

reduces the non-identifiability problem by pushing γ away from 0 using a penalty term
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(Chen, Chen and Kalbfleisch 2001) [15]. Dai & Charnigo also used Kolmogorov-

Smirnov for simulation study to compare CN and CB [24]. The simulation result

showed CN to be more powerful in detecting differential expression than the CB

model for some specific cases: when either overexpression or underexpression of genes

is more prevalent than the other (that is, asymmetric), when the ratio of |µ| and σ

is moderate, and when two-sided tests are preferred to one-sided tests. That is when

there is no assumption on the sign of µ given that µ > 0 corresponds to overexpression

and µ < 0 corresponds to underexpression, CN is preferable. But if there is prior

knowledge about the direction of µ then a right-sided test for detecting overexpression

and a left-sided test for detecting underexpression is preferred. In these cases, CB is

superior to CN. CN and CB can also be used to estimate the fraction of differentially

expressed genes.

To understand real-life applicability, the authors used real microarray data of 10

SARS patients and 4 healthy controls from a study on expression levels of immune

response genes [25]. The data is also available at the Gene Expression Omnibus of

the National Center for Biotechnology Information. Charnigo and Dai compared the

performances of CN and CB. They found that γ̂ is much larger in CB than in CN

because, unlike CN, CB does not assume differential expression to lie in mainly one

direction. They compared the performances of CB and CN by computing maximized

modified log-likelihoods and concluded that the CB model performs better for this

data set. One advantage in comparing CB and CN is that these two models have

the same number of parameters and thus, can be compared based on a BIC-type

criterion. The authors pondered the limitations of CN in the case of a symmetrical

distribution of Z-statistics and concluded that it can be overcome by using extended

two contaminated components in the CN model.
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1.4 Nonparametric Approach in Mixture Model

Nonparametric methods are becoming quite popular now in identifying clusters. With

all the parametric, semi-parametric approaches discussed in the previous sections, we

explored some ideas in the field of nonparametric clustering and classification tech-

niques (where one is an unsupervised learning method and the other is a supervised

learning method) for detecting heterogeneity without applying mixture modeling. We

will discuss both

Hastie et. al. described a kernel or weight function technique that provides flexi-

bility in estimating a regression function with multiple inputs in chapter 6 “Kernel

Smoothing Method” [26]. The technique fits different simple models at each target

point separately, along with assigning weights to chosen points based on their dis-

tance from the corresponding target points. This method is dependent on training

data only and requires only determining the neighborhood distance indexed by λ.

For example, Epanechnikov quadratic kernel is given as follows:

Kλ(x0, x) = d(
|x− x0|

λ
)

with d(t) = 3
4
(1− t2) if |t| < 1 else, 0 otherwise.

For one-dimensional kernel smoothers, the authors suggested local linear regression

and local polynomial regression. Local linear regression is a nonparametric approach

in which the f(x) in a regular fitted regression model (y = f(x) + ϵ) is nonlinear but

behaves linearly when divided into small regions. For local linear regression, locally

weighted averaging has a bias problem at or near the boundaries of the domain, but

with less variance. On the other hand, local polynomial regression reduces bias at

boundaries but has increased variance. Also, there is a bias-variance trade-off with

the change of the width of the averaging window. This is very important as the
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choice of width, either as fixed or variable, has a big impact on kernel smoothing.

The authors suggested that if extrapolation is of interest then, local linear fits are

probably more trustworthy than local polynomial fits of higher order.

This local regression technique comes with its own characteristic limitations. When

the dimension is more than 2 or 3, the difficulty in visualization and the choice

of kernel make local regression less useful. The authors suggested that when the

dimension to sample size ratio is very large, structural assumptions about the kernel or

the regression function make local regression helpful. For structured kernel, when we

have multiple inputs, we have the option of choosing multiple bandwidths (we could

also choose one tuning parameter instead of two, in this case we could standardize

each input variable to unit standard deviation). For structured regression function,

we can use one-dimensional local regression to estimate analysis of variance (ANOVA)

decompositions.

With the broad concept of local regression, the authors suggest that if a parametric

model is fitted by accommodating observation weights, then it will be called local.

The local likelihood estimation technique is a smoothing technique based on local

polynomials in non-gaussian regression models. This is useful because, the local

likelihood does not restrict the data analyst to a parametric model, which is a globally

linear or generalized linear model, which may be unreasonable versus a locally linear

or generalized linear model. The authors also suggested avoiding the dimensionality

problem by assuming an additive structure of the regression function, as generalized

additive models using kernel smoothing methods are closely related to multiclass

linear logistic regression models.

The authors also talked about kernel density estimation, which is an unsupervised

learning procedure with an application for nonparametric classification. They dis-

cussed how a discontinuous histogram estimate can be smoothed by using the Parzen
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estimate from Loader (1999) [27]. They suggested using nonparametric estimated

densities for classification, using Bayes’ theorem. Also, when classification is the ul-

timate goal, we only need to estimate close to the decision boundary. They have

discussed a näıve Bayes classifier where a näıve Bayes model assumes features are

independent given a class. It becomes easy to estimate class-conditional marginal

densities. Even though the estimated marginal class densities are biased, it doesn’t

affect the posterior probabilities near the decision boundaries. When we are not sure

about integrating the estimated density function to 1, the radial basis function uses a

kernel type argument for localization. A basis function by itself is not flexible enough

to show local behavior. That is, we can use the basis function without positivity

constraints.

The authors discussed how all this information can be used to create a mixture model

for density estimation and classification. Even though the Gaussian mixture model

is very popular, the authors popularized the concept of the mixture model: “mix-

ture models can use any component densities in place of the Gaussian” (page-214).

They also mentioned two special cases when the covariance matrices are restricted

to a scalar multiple of the diagonal than the gaussian mixture model is related to

a radial basis function. Also, when component variances are equal and the number

of components increases with the sample size, the maximum likelihood estimates for

the Gaussian mixture model approach Kernel density estimate.

1.5 Future Direction with Heterogeneity Detection

In this chapter, we have explored the wide applicability of mixture modeling and

its limitations in implementations and nonparametric approaches. Keeping in mind

the limitations of both parametric and nonparametric approaches, we aim to find a

feasible test for heterogeneity detection that improves the limitations of parametric

tests.
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As discussed in the previous section, when the number of mixture components is

large with a large sample size, the maximum likelihood estimates approach the kernel

density estimate. This encouraged us to use kernel density as a alternative fit for

detecting heterogeneity. Thus, we would explore how a nonparamteric density esti-

mate can be used to obtain a heterogeneity detection test without worrying about

the actual number of components that exist.

1.6 Acute Kidney Injury and Continuous Renal Replacement Therapy

Over the past decade, one of the most frequent complications among patients who are

admitted to the intensive care unit (ICU) acute kidney disease (AKI) [28–30]. With

injured kidney the human body cannot filter out enough waste and toxic substances

and as a result, the body starts to accumulate excessive fluids [31]. Continuous renal

replacement therapy (CRRT) has become popular among critically ill patients as an

efficient treatment for removing excess fluid from the body [32,33].

Since the health condition among ICU patients are not always stable, the application

of CRRT is always challenging, from finding an optimal fluid removal rate to imple-

menting the treatment [34–36]. With several complications in the ICU, it may be

beneficial for clinicians to identify clusters of patients to provide specific treatments

and obtain optimal results. Also, identifying other problems and consequences, will

be beneficial to finding better healthcare solutions.

1.6.1 Fluid overload

Fluid overload (FO) is the medical term for the condition when the blood contains

a higher liquid portion (plasma) [37, 38]. A healthy body contains a certain amount

of fluid based on age and weight, because their kidney removes excess fluid from

the body. But with a dysfunctional kidney body can not remove excess fluid and

causes FO. It can also be caused by heart or liver failure, hormonal imbalance, or
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excessive intravenous (IV) fluid transfer [38]. The majority of the cases are associated

with kidney disease [39]. Most of the AKI patients in the ICU suffer from end stage

kidney failure or injured kidney. Thus, FO is a common problem among people with

acute [40,41] or chronic kidney disease [42].

To quantify FO, Goldstein et. al. [43] proposed the following formula adjusted for

the body weight,

FO = (fluid intake− fluid output)/admission weight× 100%

1.6.2 NUF rate and Mortality

The net ultrafiltration (NUF) is used to measure the amount of fluid needed to be

removed to attain fluid balance (FB). It is defined as the volume of fluid removed per

hour adjusted for patients body weight. NUF rate or intensity is measured [44] as

follows:

NUF rate (ml/kg/h) =
Total NUF volume (ml)

weight(kg)× treatment duration (h)

In general NUF has been categorized in three groups.

• Low: <1.01 ml/kg/h

• Moderate: 1.01 to 1.75 mL/kg/h

• High: >1.75 ml/kg/h

It has been more than 70 years since NUF has been used in controlling FO [45], but

the optimum rate has still not been determined. Some studies [46,47] suggested that

less intensive (slower rate or smaller volume) NUF may be associated with tissue

and organ swelling and increased morbidity and mortality, whereas some studies
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suggested [48,49] faster rate or larger volume causes hemodynamic and cardiovascular

stress, which also leads to increased morbidity and mortality.

Given the inability of patients to tolerate therapy and contradicting findings in mul-

tiple articles on the association between greater NUF rates and mortality, it appears

that there may be a discrepancy in recommended and implemented NUF rates. Mu-

rugan, Ostermann et. al. conducted a multinational internet-assisted survey in 80

countries to understand the attitudes and practices of practitioners with respect to

NUF prescription [50].

They have pointed out major issues that are causing the discrepancy summarized

below.

• Patient intolerance (hypotension, diabetes, health condition etc.)

• Frequent interruption (visit for lab tests, machine malfunction etc.)

• Undertrained Nursing staff.

• Unavailability of the machines and cost associated with treatment.

There are various challenges in assessing human error in the implementation of CRRT.

However, we may investigate if the treatment’s execution is also influenced by other,

controllable phenomena. It’s probable that the patient’s intolerance is the great-

est obstacle to achieving the prescribed fluid removal. Identification of some other

modifiable factors that play even a small role in creating a discrepancy in treatment

implementation, is also crucial in improving patient healthcare. We propose to iden-

tify groups of patients by applying heterogeneity detection techniques and how they

can be utilized to understand the treatment discrepancy.

More investigation is required to understand the disparities in previous literature

findings. We proposed a systematic literature review to explore the key findings and
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identify reasons for variation in results. We will also explore fluid removal issues

among CRRT patients to identify key patient characteristics that lead to increased

mortality risk, as well as how the CRRT discrepancy relates to other ICU parameters.

Copyright© Shaowli Kabir, 2022.
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Chapter 2 Nonparametric D test

2.1 Introduction

Mixture modeling is a scientific tool for clustering observed data based on some

unobserved characteristics. From public health to astronomy, finite mixture models

have been widely used to detect heterogeneity [51–53]. Image segmentation [54],

disease mapping [55], genetics trait mapping [56, 57] and so many other fields of

study have been applying mixture modeling. With the versatile applicability, mixture

models are also used in large scale hypothesis testing to adjust for increased numbers

of false positives. In large scale hypothesis testing each test results becomes a data

point for mixture modeling to cluster: those of scientific interest vs those not [58].

When increased number of false positives makes the multiplicity adjustments difficult

to apply, mixture models can discard numerous results through a so called omnibus

test [2].

Likelihood ratio test (LRT) [11] [59] has been initially proposed to test for homogene-

ity in mixture models. Considering complicated asymptotic properties and critical

value bootstrap issues, several other methods have been proposed for heterogeneity

detection [13,15]. For example, Charnigo and Sun used a L2 distance based technique

called d-test in mixture distribution [16]. They compared the null hypothesis to an

alternative hypothesis with specified number of components. But this comes with the

challenge of being confident on the number of components that need to be tested.

With the uncertainty of the number of components in alternative hypothesis, multiple

testing and adjusting for type I error in sequential testing becomes difficult and time

consuming. Also, d test as originally proposed may not have the flexibility to detect

variety of departures from homogeneity. Thus we propose a nonparametric version
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of the d test which accounts for the various possible departures from homogeneity

based on Kernel smoothing and empirical null hypothesis [58]. In particular our test

is intended to capture departures from homogeneity that can occur with model mis-

specification. That is, our robust test will help to reject the incorrect null hypothesis

and detect heterogeneity not only without specifying the number of components but

also without requiring a finite number of components from same parametric family.

The nonparametric d test (NpD test) compares a parametric distribution to a non-

parametric distribution,

H0 : X ∼ f(x|θ0) vs. H1 : X ∼ fh(x)

Where, θ0 is a scaler or vector belonging to a parameter space, Θ and f(x|θ0) is

corresponding probability density function. Also, fh(x) is a kernel density function

with h being the bandwidth.

To visualize this method, we simulated data from two component contaminated dis-

tribution 0.8N(0, 1) + 0.2T (4) with different mixing proportions showed in figure

2.1. The original d test computes the L2 distance between the upper two red(one

component fit) and blue(two-components fit) curves, where the two-component fit

is not representing the data well. The NpD test computes the L2 distance between

the bottom two red(Empirical fit) and blue(Nonparametric fit) curves fitted on the

data [60]. The empirical fit emphasized on the 80% data coming from one single com-

ponent (N(0,1)) which helps in understanding the data better, and the nonparametric

fit represents a smooth fit of the data. Thus, it is evident from our method that the

distance between empirical and kernel fit is more prominent compared to the distance

computed in regular d test. Thus, we get better chance at detecting departures from

homogeneity when data is coming from a contaminated distribution with huge dif-

ference in mixing proportion, and do not need to worry about misspecification of the
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hypotheses.

Figure 2.1: Nonparametric d test procedure

The L2 distance puts more emphasis on the larger separations between the homo-

geneous and heterogeneous density curve. It also leads to a simple closed form ex-

pression so that, the test is sensitive to the separation between the null and specific

alternative under consideration. The bigger the distance the more evidence of data

coming from a mixture distribution. For cases where the component mixtures are

equal and the distance between the components are small, we proposed weighted

NpD test in section 2.3. The weight function emphasizes the discrepancies and helps

the L2 distance to detect heterogeneity.

2.2 Nonparametric D test (NpD test)

2.2.1 Definition of non-parametric d test

NpD test measures the L2 distance between fitted Gaussian kernel density and fitted

empirical null density [58]. The empirical null distribution is estimated by obtaining

the center and half-width of the central peak of the standardized data distribution.
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That is, empirical null uses the data to define homogeneity. It protects a user if there

is homogeneity but not the one in expecting (misspecification of the null). Also,

Efron established that, empirical null is better at identifying smaller percentages of

interesting cases compared to theoretical null [58]. Thus we are testing,

H0 : Z ∼ f(z|µ0, σ
2
0) vs. H1 : Z ∼ f(z)

Where Z is the standardized score of the data. µ0 is defined as the center of the z

score distribution and σ0 is defined as the half width of the central peak or curvature

of the center.

µ0 =argmax(f(z)); σ0 =
[
− d2

dz2
log f(z)

]− 1
2

f(z) is defined as 1
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) with, n as the sample size, h as the bandwidth.

The NpD statistic is defined as follows1:
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In our test, the user can choose their prefered bandwidth. For our further analysis,

we chose an optimal data-based bandwidth by Sheather et.al [61], beacuse of better

theoretical performance and computational advantage [62]. We also explored the

power of the test with some other options of bandwidth selection which is discussed

1Detailed derivation of the NpD statistic in appendix 5.3.
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in section 2.2.3. All the analyses are preformed in R version 4.1 [63].

2.2.2 Critical Values and relationship with sample size

To understand the asymptotic characteristics of the test, we approached with boot-

strap method. We simulated data from N(0,1), N(3,5) and N(7,3)2 distribution.

Sample sizes in between 50 to 1000 were checked for 1%, 5% and 10% levels of signif-

icance (α). The critical values for the respective significance levels and sample sizes

were all very similar for all three distribution and fairly linear in logarithmic scale

relationship(Appendix Figure 1). Since obtaining critical values from bootstrap was

time consuming and they were similar regardless of the different means and standard-

deviations, we used the average of the critical values with respect to their sample size

and α. Table2.1 shows the fixed critical values obtained from the average bootstrap

simulations to use it for evaluating out NpD test.

Table 2.1: Critical values for nonparametric d test

Sample Size
Level of Significance (α)
10% 5% 1%

50 0.148 0.176 0.238
100 0.093 0.112 0.152
200 0.058 0.071 0.097
400 0.039 0.047 0.066
600 0.031 0.038 0.052
800 0.027 0.033 0.045
1000 0.025 0.030 0.040

The linear declining trend in Appendix figure 1 shows us the relationship of critical

values and sample size. Theoretically for large number of sample size the null density

and alternative density will be similar and the critical value will go to 0 to keep the

same area under the curve. We further investigated the relationship between sample

size and critical values (Appendix table 1 & figure 2) and found significant linear

relationship depicted in figure 2.2.
2Standard-deviation
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Figure 2.2: Linear relationship between Log Critical value and Log Sample size

Based on the linear relationship between the log values, linear regression is applied

(Appendix table 2.1) to calculate critical values for any sample sizes based on their

significance level. Table 2.2 shows the necessary coefficients needed to calculate criti-

cal values for any sample size.For example, a sample size of n=272, the critical value

at 10% significance level is exp(−0.59702 × log(272) + 0.3639) = 0.051, which is in

between the critical values of n=200 and n=400 from table 2.1.

Table 2.2: Coefficients to obtain Critical values

Significance
Level

Intercept Slope

10% 0.3639 -0.59702
5% 0.53482 -0.59290
1% 0.844563 -0.592534

The theoretical evidence of the critical values is still under investigations.
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2.2.3 Power of the test:

To analyze the power (probability of not making type-II error), data were gener-

ated from normal mixture distributions with different mean and standard deviations

for 10%, 5% and 1% level of significance. Different bandwidth options for example,

‘bw.SJ’, ‘bw.bcv’, ‘bw.ucv’, ‘bw.nrd’, ‘bw.nrd0’ and default ‘0.7’ available in R ‘stats’

package, were explored to see how power fluctuates which is represented in the fol-

lowing figure 2.3 [62, 64–66]. Figure 2.3 shows no severe fluctuations in power when

Figure 2.3: Power curves of 0.5 N(0,1)+ 0.5 N(3,1)for different bandwidths

different bandwidth is used in data simulated from 0.5N(0,1)+ 0.5N(3,1). In fact

they are really close to each other which gives the flexibility to the user to choose

any bandwidth without worrying about fluctuations in results. Thus, the NpD test

is robust to bandwidth selection.

Similar to all other heterogeneity detection tests, NpD test shows increase in power

with the increase in distance among the means of the mixture components. From

figure 2.4, it is evident that the power is higher when the distance among the com-

ponents mean are 3 and 4 standard deviations respectively, compared to first plot
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where the distance among the components are 2 standard deviation. With different

variance the power did not change much, as we are using z score in our test which

reduces the overall effect of variance.

Figure 2.4: Power curves of different 2-component mixing distributions with different
distance in mean among the component

In regard to using the empirical null which is based on the data, we also investigated

how the mixing proportion affect power in detecting heterogeneity. Figure 3 shows

that, NpD test’s power is higher for mixing proportion in between 0.2 and 0.8, but

not when the mixing proportions are extremely different or extremely similar.

NpD test uses maximum of the density values of z scores as the empirical mean(µ0 =

argmax(f(z))), which largely depends on the skewness of the data. For a 2-component

mixture model, when the mixing proportion is 0.5-0.5, it technically represents a uni-

modal situation. Similarly when the mixing proportion is 0.1-0.9 there are fewer

values from one component making it harder to detect. When the mixing propor-

tions are different, for example 0.3 and 0.7, the empirical mean will shift toward the

second component with 0.7 mixing proportion and fit a nonparametric curve which
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Figure 2.5: Power curves of 0.5 N(0,1)+ 0.5 N(2,1)for different mixing proportions

will be more skewed compared to a 0.5 mixing proportion (Appendix figure 3).

Thus, the NpD test not only depends on the distance of the means but also the mixing

proportions of the components. To improve the test for extremely similar or drastic

mixing proportions, we proposed a weighted version of the NpD test in section 2.3.

The NpD test was also compared with bootstrap LRT heterogeneity detection method

in different type of mixture or contaminated data. Nonparamteric d test performed

was faster at detecting heterogenetity compared to bootstrap LRT. Power calculation

was attempted but was not completed due to coding issue and time limitation.
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2.3 Weighted nonparametric d test:

2.3.1 Definition and motivation:

Charnigo and Sun [16] used a weight function for normal location/scale case. However

the mean and the standard deviation defined is not similar to our empirical null and

standard deviation. Since we are using z score for our NpD test it is reasonable to

use the weight function, w(x) = exp[− c(x−µ̂0)2

σ̂0
2 ]. This weight function places more

weights in the central region around µ̂0 when c > 0.

Based on the chosen weight function and our z score of interest, the weighted NpD

test statistic is defined as3:

dNW =
n∑

i=1

n∑
j=1

σ̂0

2hn2

√
π(σ̂0

2 + ch2)
e

[
(σ̂0

2zi+σ̂0
2zj+2ch2µ̂0)

2

4h2σ̂0
2(σ̂0

2+ch2)
−

σ̂0
2z2i +σ̂0

2z2j+2ch2µ̂0
2

2h2σ̂0
2

]

− 2
n∑

i=1

1

n
√

2π(σ̂0
2 + h2 + 2ch2)

e

[
(σ̂0

2zi+h2µ̂0+2ch2µ̂0)
2

2h2σ̂0
2(σ̂0

2+h2+2ch2)
− σ̂0

2z2i +h2µ̂0
2+2ch2µ̂0

2

2h2σ̂0
2

]

+
1

σ̂0
2
√

π(1 + c)

Similar investigations were run and the critical values were obtained using Bootstrap.

For the nature of the weighted nonparametric test statistic, various weight values were

observed and found to have similar relationship compared to NpD test.

Figure 2.6 depicts the linear relationship between Log Critical value and Log sample

size for regardless of the weight values. Thus, the critical values performs similarly

to unweighted NpD test. Performance for detecting heterogeneity was also compared

and represented in the following figure 2.7.

The above figure 2.7 shows increase in power when the c is higher compared to the

3Detailed derivation discussed in appendix 5.3
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Figure 2.6: Weighted NpD test Linear relationship between Log Critical value and
Log Sample size

Figure 2.7: Nonparametric d test power comparision with and without weight

unweighted nonparametric d test(c=0). Thus there is a scope to have better power

using higher c values to successfully detect heterogeneity.
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2.4 Proof of Concept:

To understand the application of nonparametric d test on heterogeneity detection we

first used volcanic eruption duration information from faithful data from R [67]. The

duration of eruptions were coded as minutes and contain heterogeneity (Appendix

figure 4). After applying the NpD test the heterogeneity was confirmed and the

results are depicted in table 2.3.

Table 2.3: NpD test result on eruption distribution

Significance
Level

Critical
values

NpD test
Statistic

Decision

10% 0.051 0.239 Heterogeneity detected
5% 0.061 Heterogeneity detected
1% 0.084 Heterogeneity detected

The NpD test was also applied on real data to detect heterogeneity in the discrepancy

among prescribed and practiced fluid removal in the ICU among CRRT (Continuous

Renal Replacement Therapy) patients. The data was obtained from University of

Kentucky clinic from August 2017- April 2021. Initially 1539 adult patients’ electronic

health record were collected. The data derivation is depicted in figure 2.8

The fluid removal data has cumulative fluid removal information on 793 patients

throughout their CRRT duration. There are multiple factors in ICU that disrupts the

fluid removal process and this creates a discrepancy among prescribed and practiced

fluid removal rate. Thus we wanted to see if it is possible to identify subgroup of

patients based on the discrepancy adjusted percentage for CRRT duration (hours)

and weight (Kg) depicted in figure 2.9).

To avoid bias from wrong entry on EHR health record, 1% and 99% exclusions were

applied as there were still some extreme and unrealistic values in the fluid data.

The analysis data have complete information on 777 patients regarding adjusted

discrepancy, whether extra fluid was removed from the body and in hospital mortality.
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Figure 2.8: Fluid Removal Data Derivation Process

Figure 2.9: Distribution of Adjusted Discrepancy % (ml/ Kg h)

Among 777 patient 464 patients died during their hospitalization period. We applied

the NpD test to detect heterogeneity in the adjusted discrepancy among patients.

Table 2.4 shows that there exits heterogeneity in the adjusted discrepancy throughout

CRRT duration but failed to obtain evidence at 1% level of significance. First we
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Table 2.4: NpD test result on Adjusted discrepancy (%ml/Kg h) during CRRT

Significance
Level

Critical
values

NpD test
Statistic

Decision

10% 0.027 0.041 Heterogeneity detected
5% 0.033 Heterogeneity detected
1% 0.045 Not detected

applied bootstrap likelihood ratio test and estimated there may be 3 or 4 components

present in the data. Then using K means clustering, we applied 3 components model

and checked how they behave with mortality adjusting with the under or over fluid

removal information in figure 2.10 [68].

Figure 2.10: 3-Components fit on Adjusted Discrepancy % (ml/ Kg h)

We applied logistic regression to compare the performance of predicting death when

using categorical vs continuous adjusted discrepancy. Table 2.5 shows that, using

grouped adjusted discrepancy obtained from fitting 3 components performs similarly

at predicting hospitalization mortality compared to using numeric values (ROC curve

Appendix 5). With lower AIC (Akaike’s Information Criteria) and higher Sensitivity

value, adjusted discrepancy when analyzed as grouped variable predicts the hospital-
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ization with the additional advantage of risk grouping.

Table 2.5: Model comparison of Grouped vs Numeric Adjusted Discrepancy

Adjusted
discrepancy
%ml/ Kg h

Categorical Continuous

Level 1 2 3
No. of Patients 325 317 135 777
Actual death 140 205 119 464
Predicted death 0 254 135 367
AIC 948.78 950.43
Specificity 0.703 0.741
Sensitivity 0.640 0.616
Optimal predicted
probability cut off
based on accuracy

0.452 0.681

The results from table 2.5 shows that the adjusting for under or over fluid achievement

the patients in the component 1 are predicted to be healthy or less risk of mortality

(predicted death 0%, actual death 43%), component 3 is at high risk of mortality

(predicted death 100% actual death 88%) and component 2 (predicted death 80%

actual death 65%). Thus using components or categorical version of the information

the clinicians will be able to quickly risk stratify the patients and intervene to adjust

the treatment. Also, this gives an advantage over not worrying about extreme values

when grouped adjusted discrepancy is used.

This is a exploratory investigation to understand how identifying groups will be ben-

eficial compared to just using the continuous information. For future research, we

need to investigate how these groups are related to hospital mortality when adjusted

for other important clinical factors that affects patients health.
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2.5 Discussion:

The nonparametric d test is flexible at detecting heterogeneity compared to other

available parametric heterogeneity detection methods. Although the limitation does

not detect heterogeneity in data with a small distance in mean components and with

an equal mixture, there are still room for improvement using the weighted version of

the test. We propose to further investigate appropriate weight function to adapt to

the unimodal situation.

We showed how identifying components can improve model prediction. This encour-

ages us to apply mixture modeling while adjusting for other covariates’ effects in

improving prediction. In the next chapter, we will identify important risk factors

by doing a systematic literature search on the fluid removal issues in ICU admitted

CRRT patients. After the identifications we will investigate more on the discrepancy

between prescribed and practiced fluid removal rate and how it affects in hospital

mortality.

Copyright© Shaowli Kabir, 2022.
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Chapter 3 A systematic literature search: Effect of Net Ultrafiltration

(NUF) on Mortality among ICU admitted adults

3.1 Introduction

Over the past decade, one of the frequent complications in the intensive care unit(ICU)

admitted patients or critically ill patients is acute kidney injury (AKI) [28–30]. About

20-50% of ICU patients suffer from AKI and more than half of them are associated

with a greater risk of mortality (50-70%) [69–71]. Overall 5-6% of ICU patients un-

dergo renal replacement therapy or dialysis to reduce mortality [72]. Within a few

hours of ICU admission, the kidney suffers from structural damage and loss of function

which results in complications in administering treatments among ICU admitted pa-

tients [73]. As injured kidney cannot filter out enough waste and toxic substances, the

body starts to accumulate excessive fluids, causing fluid overload (FO) [31,40–42,74].

Recent studies have shown that FO>10% of body weight is associated with a higher

risk of mortality and lower renal recovery [44,75]

To balance body fluid, continuous renal replacement therapy (CRRT) is a popular

treatment, that conducts ultrafiltration 24 hours a day without putting much stress

on the heart [76,77]. Ultrafiltration rate is the suggested volume of fluid removed per

hour according to body weight. Even though ultrafiltration rate is used to reduce FO,

it did not produce sufficient evidence on how to adjust the rate based on patients’

illness severity to mitigate mortality risk [78,79]. A recent proposed net ultrafiltration

(NUF) rate (3.2.3) has become popular to understand the effect on mortality, which is

calculated over the treatment duration, but there are some variability in results [80–

82]. Some studies suggest that less intensive (slower rate or smaller volume) NUF may

be associated with tissue and organ swelling and increased morbidity and mortality
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[46] [47]. Some others suggest a faster rate or larger volume causes hemodynamic and

cardiovascular stress, which also leads to increased morbidity and mortality [48] [49].

Unfortunately, no optimum rate has yet been found.

With inconsistent conclusions among different studies, we systematically examined

the results from randomized controlled trials (RCT) and observational studies con-

ducted on ICU admitted AKI patients undergoing CRRT with the focus on under-

standing the effect of NUF on mortality and what factors are causing these inconsis-

tencies. If we can identify and control these effective factors, the relationship between

NUF rate and mortality will show a p potential path to obtain an optimum NUF rate

based on the patient’s severity of illness.

3.2 Method

3.2.1 Scope of the Study and Search Strategy

This systematic literature search selected observational and RCT studies that inves-

tigated mortality or survival outcomes using NUF among patients who were under-

going CRRT and treated with ultrafiltration. This study was conducted in adherence

with the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) with PubMed, CINHAL and Google Scholar employed as the

primary search databases [83].

There were no restrictions on language, country, or study design, but publication year.

Since the standard definition of FO was proposed in the year 2001, we restricted our

publication search starting from the year 2001 [43]. Key search terms for searching

all databases are presented in Appendix Table 2.
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3.2.2 Eligibility criteria

All studies that investigated the effect of NUF on mortality among ICU admitted

adults undergoing CRRT were eligible for review. To ensure homogeneity, we limited

our study to which followed certain eligibility criteria. Publications excluded in the

study were (1) age ≤ 18 years, (2) review, commentary or editorial article, (3) ESRD

patient, (4) investigated ultrafiltration rate, (5) includes COVID-19 cases, (6) Kidney

transplant patient, and (7) Unavailability of full text or translated text. Based on

the title and abstract, 325 articles were identified, and after removal of duplication

and application of eligibility criteria ,37 articles were assessed for full-text review.

3.2.3 Parameters of interest

NUF is defined as the volume of fluid removed per hour adjusted for patient body

weight over the treatment duration. That is NUF is the treatment performance mea-

surement of CRRT. Due to many other issues impeding the prescribed fluid removal

rate, NUF may account for the gap with the delivered fluid removal rate. The NUF

rate or intensity is measured as follows [44]:

NUF rate (ml/kg/h) =
Total NUF volume (ml)

weight(kg)× treatment duration (h)

Some researchers used days instead of hours based on their research of interest [80].

In many researches NUF has been categorized in three groups (Low: <1.01 ml/kg/h

Moderate: 1.01 to 1.75 ml/kg/h High: >1.75 ml/kg/h) [81, 84, 85]. Apart from

categorized NUF, continuous NUF has also been tested in many researches [80,82].

The primary objective of this study was to evaluate the effect of different NUF rates on

mortality. We also want to identify how other factors such as sepsis, hypertension, and

illness severity change with NUF. Thus, we compared the clinical characteristics of
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the study patients among these publications. We investigated the statistical analysis

conducted in these studies and performed an appraisal of their appropriateness based

on the presence of indication bias.

3.3 Results

3.3.1 Baseline and clinical characteristics

From 37 full-text assessments, eligibility criteria for study inclusion were applied, and

34 articles were excluded, leaving 3 articles for review. The PRISMA flowchart in

Figure 3.1 portrays the study selection procedure.

The baseline and clinical characteristics of patients studied in the 3 selected literatures

are represented in Table 3.1. Murugan et.al. 2018 [80] was a secondary analysis of

a randomized trial [86] and Murugan et.al. 2019 [81] and Tehranian et.al. 2020 [82]

were observational retrospective. The selected studies took place in Australia, New

Zealand, and the USA. There were a total of 3907 patients with an approximate mean

age of 62 years, and 61.1% of the patients were male. During the studies, 51.2% of

the patients died.

All the selected studies observed mortality at different follow-up times and NUF with

different treatment duration units (Table 3.1). While Murugan et.al. 2018 were in-

terested in one-year survival, Murugan et.al. 2019 and Tehranian et.al. 2020 were

interested in 90 days and 30 days mortality respectively. Tehranian et.al. 2020 also ex-

plored 90-day mortality as a secondary outcome. Both Murugan et.al. 2018 and 2019

found nonlinear association of continuous NUF rate with their respective mortality

outcome and selected categorized NUF rate (Murugan et.al. 2018: ≤ 20, 20−25,≥ 25

ml/kg/day, Murugan et.al. 2019: ≤ 1.01, 1.01 − 1.75,≥ 1.75 ml/kg/hour) based on

tertiles with lowest Akaike Information Criterion (AIC) value. Tehranian et.al. 2020

selected a categorized NUF rate (≤ 35,≥ 35 ml/kg/day) based on median value after
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Figure 3.1: PRISMA flowchart of study selection & search strategy

exploring the relationship between continuous NUF and 30-day mortality.

Thus, with different exposure and outcome measurements, we could not apply meta-

analysis for quantitative assessment of the studies. But to assess the information, we

dove into the clinical and methodological diversity of the studies for further quality

assessments.
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In both Murugan et.al. 2019 and Tehranian et.al. 2020 the median or mean APACHE

III score was higher and the median or mean cohort age was also older compared to

Murugan et.al. 2018. Unlike the other two studies, Tehranian et.al. 2020 did not have

any information regarding sepsis incidence. In Murugan et.al 2019, approximately

50% of patients in each exposure group had sepsis, but Murugan et.al 2018 had a

lower sepsis percentage in each exposure group. Mechanical ventilation was observed

and present in more than half of the study cohort among all three publications.

All of the studies applied some similar exclusion criteria to provide valid comparison

of the results and reduce confounding effects. Murugan et.al. 2019 excluded patients

with missing treatment duration or NUF<0.01 ml/kg/hour. Murugan et.al. 2018

excluded patients with missing baseline weight, NUF, and fluid balance (missing or

<5% of body weight). They also excluded patients if the ICU duration was ≤48

hours and they died within 72 hours of ICU admission. Tehranian et.al. 2020 also

excluded patients with FO<5% of their body weight and patients who died within

24 hours of CRRT initiation.

3.3.2 Methodological diversity

To understand the relationship between NUF and mortality, the studies explored

factors that were significant in both unadjusted and adjusted settings. In table 3.2,

we summarized the potential risk factors and statistical methods applied to investigate

the NUF and mortality relationship.
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Murugan et.al. 2018 and 2019 used Gray’s piecewise time-varying survival model

to evaluate one-year and 90-day mortality respectively. The Gray’s survival model

allows of violation of proportional hazard assumption by using time varying covari-

ates in subdistributional hazard model in the presence of competing risk [87, 88].

Tehranian et.al. 2020 used Logistic regression for 30-day mortality due to assump-

tion violation for Cox’s PH model. In Murugan et.al. 2018, high-intensity NUF (≥25

ml/kg/day) was significantly associated with lower mortality risk until 39 days after

ICU admission compared to low-intensity NUF (≤20 ml/kg/day). When compared

to moderate-intensity NUF (20-25 ml/kg/day) high NUF was associated with lower

mortality until 15 days after ICU admission. In Murugan et.al. 2019, high NUF

(>1.75 ml/kg/h) was significantly associated with higher mortality but only after 6

days of ICU admission. Appendix figure 6 shows the significant results obtained from

these two studies using Gray’s survival model.

To find associated risk factors, all three publications adjusted age, sex, APACHE III

score, mechanical ventilation, cumulative fluid balance, and ICU to CRRT duration

for the association between NUF and mortality. Both Murugan et.al. 2018 and

Tehranian et.al. 2020 adjusted for BMI, fluid balance, or cumulative fluid balance,

and both Murugan et.al. 2018 and 2019 adjusted for baseline eGFR, ICU type,

admission source, and cumulative fluid balance. They have also adjusted some other

variables and missed some potential risk factors to investigate, as shown in table 3.2.
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To understand the appropriateness of statistical application in the robustness of the

results, we evaluated the assessment of bias and sensitivity analysis. Table 3.3 sum-

marizes the bias assessment among the studies. Since all of them are observational

studies, selection bias and indication bias are inevitable, along with unmeasured con-

founding bias. For example, the patients are receiving high fluid removal rate based

on their sickness and the high fluid removal may in term cause patients intolerance

and harm other organs and increase the mortality risk. The selected patients are very

sick and thus there already exists a high mortality risk. Also, it is not possible to mea-

sure all clinical factors and treatment interruptions. But the studies used appropriate

schemes to reduce the effect of bias in results by doing sensitivity analyses.

The studies still suffer from unmeasured confounding effects due to their observa-

tional nature, but regardless of their limitations, all of the studies emphasized the

importance of randomized clinical trials and investigation for optimal NUF rate.

The relationship between NUF and mortality from the studies is not consistent. Table

3.4 shows the conclusions and other findings among the studies. Murugan et.al. 2019

showed that higher NUF (≥1.75 ml/kg/hour) is associated with higher mortality,

which is contradictory compared to the other two studies. Moreover, longer ICU

duration, oliguria, liver disease, and other comorbid conditions are associated with

NUF and mortality.
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3.4 Discussion

This systematic literature search suggests that NUF is associated with mortality but

cannot identify the nature of the relationship due to conflicting conclusions. More

information and research is needed to characterize the relationship. The cohort of

interest in various studies is different in terms of age, illness severity, exposure mea-

surement, and follow-up time. Even though sensitivity analysis has been performed,

the NUF categories are specific to the individual studies. To reduce inter-study varia-

tion and increase agreement in future research, it is helpful to identify a general high,

medium, and low category for the NUF rates.

However, the choice of NUF categories could also be investigated with other related

variables. For example, none of the 37 papers extracted for full-text evaluation ex-

plored the relationship of NUF categories with prescribed dose, a limitation acknowl-

edged by, e.g. Murugan et.al. 2018 [80]. Low NUF can be related to low fluid removal

prescriptions, which can be due to the patient’s being less ill compared to patients

who received higher fluid removal prescriptions. Thus, future research should ana-

lyze whether the prescribed dose is a potential confounder in the relationship between

NUF and mortality.

Our study is not without limitations. With very little research conducted on NUF

with patients not with ESRD, it is not possible to reach a clear conclusion at this time.

Also, there is a possibility that our study may suffer from positive result bias from

publication (only positive results’ preference for publication), and some studies were

not evaluated due to the unavailability of translated texts. Even though the study

populations are quite different in terms of age and illness severity, we emphasize

multiple inclusion-exclusion criteria to mitigate inter-study variation. Our study

could not identify the actual relationship between NUF and mortality but explored

the advantages and shortcomings of the selected studies. For future research, we want
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to highlight the importance of including clinical information like sepsis, diabetes and

searching for possible interactions between them. Because the effect of the NUF rate

can be different based on different group of patients who may have different clinical

characteristics. Also, the prescription dose might be informative in explaining the

conflicting results.

All the selected studies investigated and confirmed the nonlinear ‘J-shaped’ associa-

tion between NUF and mortality under the respective follow-up period [80–82]. This

indicates that the effects of NUF can be positive or negative based on a specific

group of patients. Identification of factors causing the nonlinear association would be

imperative in calculating the optimum NUF rate based on patients’ illness severity.

In conclusion, there is a pressing need for a clinical trial to find optimal NUF rates

and understand the nature of the effect of NUF on mortality. With the complications

in implementing clinical trials, more observational studies can also be helpful by

investigating the relationship between prescribed dose and potential interaction effects

to portray the relationship nature of NUF on mortality.

Copyright© Shaowli Kabir, 2022.

47



Chapter 4 Assessment of Fluid Removal among CRRT Patients in ICU

4.1 Introduction

Continuous renal replacement therapy (CRRT) is a popular treatment among crit-

ically ill patients admitted to the ICU [89–91]. It helps patients in the removal of

excess fluid from their bodies and the maintenance of fluid balance. When the kid-

neys fail to work effectively, the body stores excess fluid, resulting in fluid overload

(FO). The presence of FO in the ICU raises the risk of adverse outcomes and mor-

tality. [42, 92–94]. During CRRT, patients are given a fluid removal objective (daily

CRRT goal) for each day to maintain bodily fluid balance. While it is ideal to achieve

the prescribed amount of fluid removal, most of the time it is not possible due to the

severity of the disease and other technical challenges in administering treatment. As

a result, there is a difference between the fluid removal rate that is practiced and the

rate that is prescribed.

Theoretically, the less variation in therapy execution, the more fluid equilibrium in

the body, which will assist patients to avoid the adverse effects of FO issues. The

discrepancy could be caused by the patient’s incapacity to tolerate treatment or by

variations in treatment evaluation and management in the ICU [50]. In this study,

we investigated whether the rise in treatment discrepancy is linked to characteristics

that can be measured during CRRT administration in the ICU, and whether they

can be managed or improved to give better healthcare.
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4.2 Methods

4.2.1 Study design and population

Using data from the ICU to 48 hours following the start of CRRT, we investigated

the relationship between fluid removal discrepancy and hospital mortality in CRRT

patients, as well as the characteristics that are associated to changes in the discrep-

ancy. We want to use a prediction model to evaluate the role of disparity in predicting

hospital mortality after 48 hours of CRRT initiation. We ran a longitudinal analysis

using daily fluid data to see how the patient’s sickness and therapy implementation

are linked to the daily change in disparity.

We used electronic health records (EHR) collected from a single-center, retrospective

cohort study of ICU admitted critically ill patients at the University of Kentucky from

August 2014 to April 2021 (from IRB approved study). In the primary analysis of the

hospital mortality prediction, all adult patients who received CRRT and remained

alive for at least 48 hours after the beginning of CRRT were included. Day 0 is the

first day of the CRRT (first 24 hours) determined from midnight, day 1 is the second

24 hours, and so on. To identify the association of daily discrepancy, we focused on a

week’s worth of data on patients who survived at least a week of their CRRT length.

The timeframes and information used for the analysis are depicted in Appendix figure

12 .

Implementation of CRRT does not always begin at day 0 onset for certain patients.

As a result, the intended aim of fluid removal on day 0 is frequently not fulfilled due

to admission at a later time of the day or the suggestion of not enough fluid to be

removed in a short period of time. Since we did not have the whole day’s information

on day 0, we used the CRRT goal from day 1 to correctly identify the discrepancy.

Day 1 fluid information also carries the influence of the treatment at day 0, therefore

omitting day 0 in the analysis will not result in a much loss of information due to the
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information instability.

4.2.2 Data Collection and Management

To adjust for confounding and selection bias and ensure reproducible results, inclusion

and exclusion criteria were applied. Patients with average CRRT goal < 500 ml were

excluded from the study. Also only patients who had both clinical and daily fluid

information available were included in the study. Due to human error there were

patients with incorrect admission date or CRRT start date. Since there is no other

way to know the correct date we had to exclude those patients as well. To understand

the fluid discrepancy effect and ensure we have patients information for at least 48

hours of CRRT initiation all patients who died within 48 hours of onset of CRRT were

excluded from the study. Patients were also excluded if they had received peritoneal

dialysis (PD) or had undergone kidney transplant. Since we could not use day 0

information we included patients based on available information on day 1.

After the application of inclusion-exclusion criteria, 690 patients were selected for the

study. After evaluating extreme observations, to adjust for wrong entry on EHR,

percentile exclusion on patients (< 1% and > 99%) were implemented based on daily

CRRT goal. The choice of percentile exclusion was based on clinical rational and

descriptive analysis. The percentile exclusion for EHR bias resulted in 680 patients,

removing 10 patients from the study (Appendix figure 4.2).

Missing values in the daily fluid data were imputed using successive value imputation

after percentile exclusion. In general, the daily CRRT goal should be prescribed quite

similarly for two days in a row. Thus we imputed missing values on day 0 with day 1

and day 1 with day 2, while missing value 2 was imputed with day 1 and so on. After

manual imputation, on day 1, there were still 8 patients with missing information on

their daily CRRT goal. There were several other variables in the data set that had
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missing values, depicted in appendix figure 7.

The missing values among the clinical and fluid data provided were not more than

25% (Appendix figure 7). To impute other missing values, we relied on multiple

imputation (MI) [95–97]. MI with classification and regression tree is a good solution

since it is robust against outliers, multicollinearity, and also well suited for skewed

data [98, 99]. As there were no missing outcome values and the missing percentage

among the variables was less than 40%, we used MI with CART. To show missing

values are missing completely at random, we applied the ‘mcar test’ in R ‘naniar’

package and obtained a P value of < 0.001. This indicated that the missing values

are not completely at random [100]. That is the data is either missing at random

or non-ignorable. With this limitation we used both the potential variables related

to mortality and other auxiliary variable that may or may not be associated with

mortality to imeplement CART imputation [101].

CART imputation was applied using ‘mice’ package in R [102]. The method gener-

ates five (default) sets of data with imputed values and then randomly selects one

value from each imputed set to replace the missing value in the original data. The

distribution comparison of imputed data set and original data is presented in Ap-

pendix figure 8 (original data: blue, imputed data: red). The distribution curves for

the majority of missing variables are similar. For some of them the shapes are quite

different but those variables did not have missing values for more than 5%. Thus,

with the limited resources and time constraint, we used CART imputation with the

advantage of random imputation selection.
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4.2.3 Variables of Interest:

Based on clinical perspective, the discrepancy between the prescription and the prac-

ticed fluid removal rate measured in percent milliliters is computed as follows:

Discrepancy(%ml) =
Prescribed goal fluid in the body− Net fluid in the body

Prescribed goal fluid in the body

× 100

Since the discrepancy also depends on the treatment duration and body weight, we

selected adjusted discrepancy as the variable of interest to evaluate the discrepancy.

The adjusted discrepancy (%ml/Kgh) is more useful for assessing discrepancy over

weight and treatment hours.

Adjusted daily discrepancy (%ml/Kgh) =
Daily Disrcrepancy

Weight× Treatement hours

The adjusted discrepancy will be interpreted as follows: A negative adjusted dis-

crepancy of 16 ml/Kgh would be defined as the fluid being removed but it was 16%

more than the prescribed goal per kg per hour. A positive adjusted discrepancy of

20 ml/kgh would be defined as enough fluid was not removed and it was 20% less

than the prescribed goal per Kg per hour. There were still some patients with a

high (> ±100%ml/Kgh) daily discrepancy on day 1, as depicted in figure 4.1. We

investigated whether various categorized versions of adjusted discrepancy are better

at identifying patient clusters and predicting hospital mortality.

The primary outcome of interest is hospital mortality after 48 hours of CRRT ini-

tiation. We are interested in hospital mortality from day 2 (Appendix figure 12).

Our secondary outcome of interest is daily discrepancy analysis among patients who

survived up to a week from their CRRT initiation. We analyzed patients who had
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Figure 4.1: Adjusted discrepancy at day 1

daily fluid information from day 1 to day 6 (6 days). We explored how actual fluid re-

moved from the machine, other clinical parameters related to sickness of the patients

(end stage renal disease (ESRD), Sequential Organ Failure Assessment (SOFA) Score,

Charlson score, FO%) and demographic information, are related to daily discrepancy

change.

4.3 Statistical Analysis

4.3.1 Primary Analysis

To avoid overfitting the hospital mortality prediction model, 70% of the study pa-

tients’ (476 patients) information was selected at random as the train data for building

the model, while the remaining 30% patients (204 patients) information were used to

test prediction performance. Other splitting percentages (40%-60% and 20%-80%)

were also explored, but the initial variable selection did not show much variation.

Some clinical characteristics (e.g. race, ESRD) were similar in more than 80% of the

study patients. Thus, we proceeded with a 30:70 split based on a rule of thumb in
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order to have adequate information on the test data prediction [103,104].

To check for unadjusted association, Fisher’s exact, Chi-square & t-test (based on the

variable type and distribution) were used. To investigate the categorical version of

the adjusted discrepancy at day 1, manual selection and different statistical clustering

algorithms (K means clustering, EM algorithm from R ‘stat’ and ‘mixtools’ package)

were utilized [64, 105–107]. The K-means and EM algorithm clustering techniques

are sensitive to data with high kurtosis (highly peaked data). Thus, we truncated the

adjusted discrepancy within ± 50% on day 1 to apply these clustering techniques.

Due to the truncation, there were 24 patients omitted from the cluster analysis. These

patients were eventually included in the extreme groups based on their signs of change

(Appendix figure 4.1).

Important variables were investigated utilizing random forest, single regression tree,

logistic regression and gradient boosting for prediction model. R ‘vip’ package was

used to identify first top 10 important variables based on their prediction score for

each methods are shown in appendix figure 9 [108, 109]. Based on the all important

variables identified from various approaches, we fitted a logistic regression (R ‘stat’

package) and conducted stepwise selection to determine the factors that contributed

the most [64]. Other clinically relevant variables (e.g. ICU to CRRT duration,

Charlson Score) were also investigated in the model with the likelihood ratio test

(LRT).

Potential interaction effects were investigated based on the feasible solution algorithm

and prior literature suggestions [44,110]. The feasible solution algorithm was applied

with both with and without fixed main effects. Single regression tree was also used

to identify interaction effects based on their odds of mortality from defined cutoff

points [111]. For initial interaction identification we limited the model to have one

interaction term. After selecting multiple potential interaction effects, we used LRT
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and Akaike information criterion (AIC) values to determine which and how many

interaction term best fits the model.

For final model selection was based on AIC and accuracy from 3-fold cross validation

(CV). We also performed a 10-fold CV but received warnings due to some charac-

teristics separation (race is same among 89% of the patients). To evaluate the fit of

the model and prediction performance, the Hosmer-Lemeshow goodness of fit test,

sensitivity, specificity, and ROC curve were explored among test and train data.

4.3.2 Secondary Analysis

To identify associations with daily discrepancy and clinical factors, a linear mixed

effect model with subject specific random intercept and slope was used. We used SAS

9.4 version for this longitudinal analysis [112]. Initially we explored daily actual fluid

removed, fluid overload at ICU admission, SOFA score at ICU admission and CRRT

initiation, Charlson score at ICU admission, ESRD status, demographic information:

age, race, sex, duration from ICU to CRRT initiation and ICU type.

Several covariance structures: unstructured, topelitz, gaussian errors and exponential

decay were explored. We also explored random group effect based on ESRD, race

and sex. Both quadratic and spline models were compared, and the model selection

was based on AIC, Bayesian information criterion (BIC) and LRT. We used empirical

estimates, as it gives a consistent estimates of covariance structure (robust covariance

estimator) whether or not the fitted covariance structure is true structure.

4.4 Results

4.4.1 Study Population & Clinical Characteristics

There were 680 patients selected to analyze hospital mortality. The cohort derivation

process is represented in detail in figure 4.2.
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Figure 4.2: Cohort Derivation Based on Inclusion-Exclusion Criteria

During hospitalization, patients’ demographic and clinical characteristics from both

test and train data are represented in table 4.1. Because the data came from a

single center research, there isn’t much demographic variation; 90% of the patients

are white. Patients from ‘Asian’ , ‘African/American’ and other races were combined

into ”Non-white” group beacause they were very small in proportion. There were

slightly more male patients than females. No severe differences among the train and

test data were observed. Overall, among 680 patients, 374 (55%) died after 48 hours

of CRRT initiation. That is, more than half of the study patients experience the

event of interest (hospital mortality) according to the descriptive statistics.
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Patients are admitted to the ICU with a higher median FO% compared to the me-

dian FO% at CRRT initiation. This was anticipated as patients receive necessary

treatments to remove excess fluid from the body, thus lowering FO at the beginning

of CRRT. The median duration of CRRT initiation from ICU admission is more than

2 days for both train (2.07 days) and test (2.46 days) data. The median adjusted

discrepancy at day 1 is positive in both train (0.03) and test (0.03) data. That is,

we have more patients in our data who did not meet the prescribed fluid removal

goal than those who attained the goal fluid removal. When comparing the median

SOFA score at both ICU admission and CRRT initiation, there appears to be a slight

increase, which indicates that the patients got more sick and thus had to start CRRT.

In both train and test data, almost 83% have a history of end stage renal disease.

Mechanical ventilation was used by 93 percent of patients during their hospital stay,

but the majority of them started it after 48 hours of starting CRRT.

Among 680 patients, only 289 patients survived for at least a week (up to day 6) from

the onset of CRRT. Thus, the analysis data for the secondary outcome included 289

patients’ daily fluid and demographic information for a week (figure 4.2). We did not

have complete 7-day information for all patients (Appendix table 4). That is, the

data was not balanced. Among 289 patients, 156 (54%) died during hospitalization

after receiving CRRT for at least a week. The median patients was 57 years (IQR:

46-65). There were 62.3% male and 90% of the patients were white.

4.4.2 Unadjusted Association with Primary Outcome

During hospitalization, 56% of patients (268) died in the train data. Based on the

train data, table 4.2 demonstrates an unadjusted relationship between hospital mor-

tality and clinical and demographic factors. We applied t-test and found no evidence

of association between continuous adjusted discrepancy at day 1 and hospital mortal-

ity. Similarly, there were no significant relationship with mortality based on baseline
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SCr and eGFR, FO% at ICU admission, Charlson score and SOFA score at ICU

admission (P-value > 0.05).

Table 4.2: Patient’s Characteristics in Train Data by Hospital Mortality

Variable Alive: N=208 Dead: N=268 P-value
Age 56 ( 47 - 62 ) 59 ( 48 - 66 ) 0.06
Weight (Kg) 94.35 ( 80.35 - 110 ) 96.05 ( 76.25 - 117.15 ) 0.64
Sex (Male) 121 ( 58 %) 168 ( 63 %) 0.37
Race (White) 193 ( 93 %) 233 ( 87 %) 0.06
Baseline Serum
Creatinine, SCr (mg/dL)

1.68 ( 1.09 - 3.47 ) 1.45 ( 0.97 - 3.12 ) 0.67

Baseline eGFR
(ml/min/1.73m2)

41.41 ( 15.82 - 70.57 ) 53.99 ( 17.08 - 83.51 ) 0.27

ICU FO% (L) 2.97 ( 0.41 - 7.89 ) 3.08 ( 0.16 - 9.68 ) 0.35
Charlson Score 5 ( 2 - 7 ) 5 ( 3 - 8 ) 0.32
SOFA Score at
ICU Start

11.5 ( 9 - 13 ) 11 ( 9 - 14.75 ) 0.74

SOFA Score at
CRRT Start

13 ( 10 - 15 ) 14 ( 12 - 16 ) 0.01

ICU Type (Cardio) 68 ( 33 %) 85 ( 32 %)
0.07ICU Type (MICU) 107 ( 51 %) 160 ( 60 %)

ICU Type (Surgery) 29 ( 14 %) 19 ( 7 %)
ESRD 164 ( 79 %) 232 ( 87 %) 0.04
FO% at CRRT
Day 1 (L)

-1.23 ( -2.32 - 0.23 ) 0.42 ( -1.15 - 2.1 ) <0.01

Adjusted Discrepancy
at Day 1

0.01 ( -0.01 - 0.05 ) 0.05 ( 0.01 - 0.1 ) 0.24

*Categorical variable: N(%), Continuous variable: Median (IQR)

Even though SOFA score and FO at ICU admission did not show a significant rela-

tionship, their values at the beginning of CRRT showed evidence of an unadjusted

association with mortality. Compared to ICU admission, fluid overload declines by

CRRT initiation. The median FO% at CRRT initiation was -1.23. This indicates

less fluid in the body. On the other hand, patients who died during hospitalization,

had a positive (0.42) median FO%, which suggests they had excess fluid in the body.

ESRD status was also associated with mortality and was present in the majority of

the patients who died.
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4.4.3 Adjusted Discrepancy and Hospital Mortality

We decided to examine the adjusted discrepancy as a categorical variable since there

was no indication of a link between continuous adjusted daily discrepancy and mortal-

ity. Also based on figure 4.1 it seems reasonable to explore the adjusted discrepancy

as a categorical variable.

Initially, we looked for heterogeneity using data from 656 patients’ adjusting discrep-

ancies on day 1 by applying the nonparametric d test proposed in Chapter 2. The

non parametric d test calculated a test statistic value of 0.26, which is much higher

than the critical values for sample size 600 (5% level of significance: 0.038) and 800

(5% level of significance: 0.033) represented in table 2.1). Thus, we can reject the null

hypothesis and conclude that there exists heterogeneity in the adjusted discrepancy

at day 1. We also applied bootstrap LRT and obtained evidence for the presence of

either 3 or 4 components in the data [13]

At first we used K-means clustering with three components, but the K-means plot

prompted us to utilize four components [105]. We implemented the 4 components

K-means algorithm, which identified 4-clusters among 656 patients (appendix figure

10). We generated and compared 95% and 68.3% confidence interval for the mean

adjusted discrepancy based on each cluster and identified criteria for four groups:

< −8.5%, > −8.5%− 5.5%, > 5.5%− 20% & > 20%.

The EM algorithm was then used to identify another group of clusters using the k-

mean values as initial values [10]. We identified another 4 groups in the adjusted

discrepancy at day 1, and the distribution of each group is represented in appendix

figure 11. After exploring 95% and 68.3% confidence interval for the mean adjusted

discrepancy based on the identified groups, we developed another criteria to categorize

adjusted discrepancy on day 1: < −6%, > −6%− 3%, > 3%− 40% & > 40%.
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Manual identification of groups (3 groups: < −5%, > −5% − 5%, > 5%; 4 groups:

< −10%, > −10% − 0%, > 0% − 10%, > 10%) was also explored based on the

adjusted discrepancy at day 1 in order to find an association with mortality. After

identifying different categorical versions of the adjusted discrepancy, we investigated

the relationship with hospital mortality. Figure 4.3 depicts the distribution of dead

and alive patients during hospitalization for each selected categorical version of ad-

justed discrepancy at day 1.

Figure 4.3: Distribution of Dead and Alive Patients for Different Categorical Adjusted
Discrepancy at Day 1

Overall, different levels based on different categorical versions of adjusted discrepancy

have a higher number of dead patients than alive patients. We then applied Chi-

square test based on train data to check for an unadjusted association with hospital
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mortality, but no significant results were found for any of the categorical versions

of adjusted disrcrepancy. The unadjusted oddsratio are presented in table ?? which

does not show any evidence (p-value > 0.05; 95% CI includes 1) of association with

mortality. In fact it is noticeable that the 95% CIs are too wide and away from 1

for any version of the adjusted discrepancy variable. This gives us a hint about the

uncertainty of the variable information.

Table 4.3: Unadjusted Odds Ratio and 95% Confidence Interval

Adjusted Discrepancy at Day 1 Level OR (95% CI) P-value

K means (Ref: >-8.55-5.5%)
<-8.5% 1.25 (0.551-2.97) 0.60
>5.5%-20% 1.21 (0.797-1.84) 0.38
>20% 1.18 (0.55-2.62) 0.67

EM (Ref: >-6%-3%)
<-6% 1.03 (0.48-2.23) 0.94
>3%-40% 1.19 (0.81-1.75) 0.37
>40% 1.2 (0.45-3.45) 0.71

Manual (Ref: >-5%-5%)
<-5% 0.99 (0.49-2.03) 0.98
>5% 1.22 (0.83-1.8) 0.31

Manual (Ref: >-10%-0%)
<-10% 1.11 (0.45-2.84) 0.82
>0%-10% 0.96 (0.59-1.56) 0.88
>10% 1.28 (0.70-2.38) 0.43

4.4.4 Hospital Mortality Prediction

We used a logistic regression to predict hospital mortality after 48 hours of CRRT

initiation with main effect of adjusted discrepancy at day 1, age, race, SOFA score

at CRRT start, actual fluid removed at day 1, FO% at day 1, ESRD status and an

interaction effect of ICU type and time between ICU admission to CRRT initiation.

Adjusted discrepancy was explored both as a continuous and categorical variable.

All versions of categorical and continuous adjusted discrepancy yielded similar AIC

values (Continuous: 607.21, 3 groups: 608.83, 4 groups:609.03, K-means: 609.02, EM:

609.68)) in the model. Multiple levels of categorical variables contribute to the slight

increase in AIC values, so we can assume that the AICs are not much different among

the models (95% CIs are overlapping). Since we are interested in hospital mortality
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prediction, we performed 3-fold cross validation to compare the accuracy of hospital

mortality prediction presented in figure 4.4. Based on the highest prediction accuracy

and clinical relevance, we selected the categorical adjusted discrepancy based on K-

means clustering to include in the final model.

Figure 4.4: Prediction Accuracy Comparison: 3-fold CV

The variance inflation factors (VIFs) were calculated to check for multicollinearity,

and none of the main effects had a VIF value more than 3.5. The interaction effect

and related main effect’s VIF value were close to 17, which is safe to disregard for

testing multicollinearity because of its association [113,114]. Hence, we can say that

the final model showed no effect of multicollinearity and the estimated coefficients

are reliable (appendix table 5).

The final regression model yielded significant evidence of association among mortality

and some important predictors showed in table 4.4. The odds ratio with 95% CI

indicates that actual fluid (L) removed by the machine, FO% (L), age, SOFA score

at CRRT start, having end stage renal disease (ESRD) and interaction effect between

ICU to CRRT duration and MICU showed significant (p-value< 0.05) contribution
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in predicting hospital mortality.

Table 4.4: Multivariate Logistic Regression Model

Variables Level OR (95% CI) P-value
Adjusted discrepancy
%ml/Kg h
(Ref: -8.55-5.5%)

<-8.5% 1.34 (0.54- 3.46) 0.54
>5.5%-20% 0.81 (0.43-1.53) 0.52
>20% 0.44 (0.15-1.27) 0.13

Day 1 actual fluid removed (l) 1.19 (1.03-1.39) 0.02
Day 1 FO%(l) 1.26 (1.09-1.46) <0.01
Age 1.03 (1.02-1.05) <0.01
Race (Ref:Non-white) White 0.48 (0.23-0.96) 0.04
SOFA at CRRT initiation 1.14 (1.07-1.22) <0.01

ICU type (Ref: Cardio)
MICU 0.77 (0.44-1.33) 0.35
Surgery 0.27 (0.09-0.74) 0.01
Other 2.83 (0.13-310.4) 0.56

ICU to CRRT duration(day) 1.00 (0.96-1.03) 0.73
ESRD (Ref: No) Yes 2.11 (1.23-3.63) <0.01

ICU start to CRRT duration (Ref: Cardio)
MICU 1.15 (1.05-1.28) <0.01
Surgery 1.07 (0.97-1.22) 0.27
Other 0.87 (0.55-1.18) 0.43

Even with the regression model, adjusted discrepancy at day 1 did not appear to

make a significant contribution in predicting hospital mortality after 48 hours. Table

4.4 shows that the 95% CIs are too wide and still far away from 1. However, the

odds ratio changed for positive discrepancy groups (> 5.5% − 20%: 0.81, > 20%:

0.44). This indicates that, there might be some variable in the model which has

a confounding effect on the adjusted discrepancy. We investigated this by fitting

a linear mixed effect model to the daily adjusted discrepancy using daily fluid and

demographic information.

Table 4.4 demonstrates that patients with ESRD history has 111%(2.11-1) higher

odds of dying during hospitalization compared to patients who do not have ESRD

history holding other information fixed at a certain value. Similarly, with an year

increase in age, the odds of dying during hospitalization increases by 3%. White

patients have lower odds of dying by 52% (1-0.48) compared to non-white patients.
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With the one point increase of SOFA score at CRRT onset, the odds of dying increases

by 14%. With the increase of 1 L in FO%, the odds of dying increases by 26%. With

1 L change in actual fluid removed odds of dying increases by 19%.

We identified a significant interaction effect between time from ICU admission to

CRRT duration (days) and ICU type MICU (appendix table 5). Among MICU

patients, with one day increase in ICU to CRRT duration the odds of dying is 12.2%

(1-exp(0.14-0.01-0.26)) lower compared to patients who are in Cardio ICU. Similarly

with 1 day increase in ICU admission to CRRT initiation, patients in Surgery have

71.6%(1-exp(0.07-0.01-1.32)) lower odds of dying compared to patients in Cardio. But

the interaction effect failed to prove significant among surgery ICU patients(appendix

table 5). This information indicates patients in the Cardio ICU may be very sick

compared to patients in Surgery or MICU, and are at higher risk of hospital mortality

or implementation of earlier CRRT is more effective among the other ICU types

compared to Cardio.

4.4.5 Prediction Performance on Test Data

After the selection of the final model based on train data, we investigated the pre-

diction performance by applying the model to test data. An optimal predicted prob-

ability cutoff of 0.513 was identified based on maximum Youden’s index (function of

sensitivity and specificity) [115, 116]. Using the optimal predicted probability cut-

off, we compared the prediction performance in both train and test data for model

validation.

From table 4.5, the model obtained a 68% prediction accuracy on train data and

a 62% accuracy on test data. The sensitivity in the test data was 62% and the

specificity was 63%. Positive predictive value on the test data was 73%. Although

the negative predictive value were somewhat lower in both the test and train data,
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Table 4.5: Prediction Performance Comparison

Metrics Train Data Test Data
Accuracy (95% CI) 0.68 (0.63-0.72) 0.62 (0.55-0.69)
Kappa 0.34 0.24
Sensitivity 0.70 0.62
Specificity 0.65 0.63
Positive Predictive
Value

0.75 0.73

Negative Predictive
Value

0.58 0.51

higher positive predictive value indicates a good sign, because we are interested in

correctly predicting hospital mortality to provide more attention to this high-risk

patients. Hosmer-Lemeshow goodness of fit test was performed to check for the

logistic regression fit and did not show any evidence of lack of fit for the train data

(P-value 0.883), but it was marginally significant when the model was fitted on test

data (P-value 0.0501). That means, for test data, the model may not be a good fit,

but we do not have much evidence. This can also arise from the re-estimation of the

odds ratio from the test data.

Figure 4.5: ROC Comparison
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We generated the receiver operating curve (ROC) and area under the curve (AUC)

depicted in figure 4.5 to examine the model further. The AUC values for both train

and test data are slightly higher than 0.7, indicating that the model is capable of

discriminating the categorical outcome variable [117]. That is, both in test and train

data, the model is capable of differentiating between dead and alive prediction to an

acceptable degree.

4.4.6 Secondary Outcome

Daily adjusted discrepancy (%ml/kg h) from day 1 to day 6 were used to fit a linear

mixed effect model. In figure 13, we initially investigated the relationship between

time and adjusted discrepancy by fitting a lowess smooth curve using R package

‘ggplot2’ [118,119]. Based on the initial investigation, we fitted a linear mixed effect

model with day as quadratic effect. We also compared the initial model with piecewise

linear at day (4) but the quadratic effect model produced lower AIC, BIC and higher

log-likelihood value. Thus, we fitted a linear mixed effect model with both fixed

and random effect for quadratic time effect and random slope and intercept for each

patient to see if the adjusted discrepancy was confounded with any other predictors

obtained in the prediction model and to account for subject-specific variations. We

also explored random effect for the quadratic term in day.

For main effects, we explored ESRD, SOFA score at CRRT, FO%(L) at ICU admission

to account for patients’ sickness, actual removed fluid(L) by machine and time from

ICU to CRRT initiation for treatment effect, and age, sex, race, ICU type to quantify

for demographic information. Model selection was based on AIC, BIC and LRT. We

also checked for interaction over time with actual fluid removed but did not find any

significant evidence. For the final model, we selected the main effects of day, actual

fluid removed, sex, race, esrd and FO% at ICU admission and random group effect

of ESRD. That is different unstructured covariance structure will be fitted based
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on whether the patients have ESRD or not. Table 4.6 shows that only actual fluid

removed from the machine is significantly associated with adjusted fluid discrepancy

over time.

Several covariance stuctures like toeplitz, gaussian error, exponential decay were ex-

plored, but based on AIC, BIC and loglikehilood value, unstructred covariance struc-

ture with group effect of ESRD produce optimal result within given information.

We also used empirical standard error. Because empirical standard errors are robust

and will produce consistent results even thought the covariance structures are not

correctly identified.

Table 4.6: Daily Adjusted Discrepancy Association

Effect Level Estimate(95% CI)
Standard
Error

P-value

Intercept 15.97 (11.83-20.12) 2.06 <0.001
Day -0.72 (-1.99-0.55) 0.65 0.26
Day2 0.08 (-0.10-0.26) 0.10 0.37
Actual fluid removed (L) -2.58 (-3.02–2.15) 0.22 <0.001
Sex (Ref: Male) Female 0.52 (-0.69-1.73) 0.62 0.40
Race (Ref: Non-White) White -1.70 (-4.09-0.70) 1.22 0.16
ESRD (Ref: No) Yes -0.41 (-2.23-1.40) 0.92 0.65
FO% at ICU admission (L) -0.03 (-0.09-0.03) 0.03 0.32

Table4.6 shows that, daily discrpancy is significantly related to actual fluid removed

adjusted for FO% at ICU admission, ESRD, race and sex. The estimated coefficents

say that, with 1L increase in actual fluid removed the change in daily adjusted dis-

crepancy over one day increase will be -2.58%ml/kgh, fixing other factors at a certain

value. Even though we did not find evidence of the association of other factors with

adjusted discrepancy, we used this model to understand the effect of treatment im-

plementation adjusting for patients’ sickness. Also, while looking back at the hospital

mortality prediction model results in table 4.4, the odds ratio for adjusted discrepancy

changed for the positive discrepancy group compared to the odds ratio in unadjusted
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association with mortality depicted in table 4.3. Thus, it is safe to conclude that ac-

tual fluid removed has a confounding effect on the adjusted discrepancy in association

with hospital mortality.

4.5 Discussion

In this study, we were unable to obtain evidence of a significant contribution of the

discrepancy in treatment towards increased hospital mortality risk among patients

requiring CRRT. The wide 95% confidence interval indicates that the variability in the

discrepancy is very high. We had a lot of patients in both dead and alive group at any

discrepancy level. The exploratory linear mixed effect model was fitted to understand

whether any factor in the mortality prediction model is confounded with the adjusted

discrepancy in predicting mortality. We found that the actual fluid removed from the

machine is significantly associated with the daily discrepancy changes. We did not

have enough patients on the ‘Other’ ICU type, thus the the 95% CI of the odds ratio

represented in table 4.4 is not meaningful.

Our study is not without limitations. Because the data came from observational

research, there might be other confounding factors that weren’t taken into account.

We were not able to use the first 24 hours of CRRT information due to the CRRT goal

not being informative. Future research can overcome this by using an adjusted daily

CRRT goal and calculating the discrepancy accordingly. This study was also a single

center study with very low geographical diversity. Mechanical ventilation, ecmo, vad,

and iabp, which have been relevant in other studies, were not able to be used since for

majority of the patients the period of interest did not overlap. Future research can

focus on the CRRT duration and predict mortality after the completion of CRRT.

Also, because the discrepancy variable is a modified variable of fluid overload, we

couldn’t utilize it in our secondary analysis. We used ICU FO% as a fixed value but

did not find any evidence of association with daily discrepancy change during CRRT.
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In this study it is evident that using adjusted discrepancy on day 1 is not enough

to predict mortality, and future work should focus on adjusted discrepancy during

the whole period of CRRT to understand how they are associated with mortality.

Along with whole CRRT duration information, it will be more informative to obtain

the clinical factors that caused the discrepancy. This also presses the need for a

multicenter study. We did not have enough geographical diversity in our data. Thus,

we cannot generalize the results to a broader population.

It is evident from this single-center study that we need to use more days of data to

account for all factors influencing their treatment in order to have a clearer picture of

the connection to hospital mortality. We did obtain the importance of fluid overload

in relation to hospital mortality. We have also found that fluid overload is corre-

lated with discrepancy (correlation coefficient: 0.49). It is clear that, more expertise

is needed to understand whether fluid overload and discrepancy should be studied

together or separately.

In the future, we’ll concentrate on data collected throughout the CRRT duration and

how it relates to post-CRRT mortality. We will also explore how daily prescribed

goal is related to daily fluid overload, which might provide a clearer picture of the

treatment’s impact on patients’ hospital mortality risk.

Fluid discrepancy is a novel variable in measuring treatment performance and is

definitely related to fluid removal. The fact that patients in the ICU are frequently

unable to remove fluid as directed is alarming. It may not be solely due to treatment

intolerance. Other factors like the different drug use, other therapies may contribute

also. Thus, more exploration is needed to determine how this disparity relates to

mortality risk in ICU-admitted CRRT patients.

Copyright© Shaowli Kabir, 2022.
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Chapter 5 Final Thoughts & Conclusion

5.1 Heterogeneity Detection & Nonparametric D test

While parametric tests for heterogeneity has been developed based on mixture models,

choice of the null hypothesis has always been a recent issue. The nonparametric D

test overcomes this limitation by using an empirical null distribution based on the

data [58]. Even though the theoretical evidence for the asymptotic properties are still

under construction, by using bootstrap and power calculation, the test has proven to

be successful in detecting heterogeneity in a lot of cases.

Although in some circumstances, the parametric test will have greater power than

the nonparametric test, specially when the null and alternative hypothesis are defined

accurately. But the unique feature of detecting different types of heterogeneity is

sometimes preferable. Also the choice of wrong null hypothesis will lead to wrong

decision making. In large scale hypothesis testing this will increase the type II error.

With the original d-test we risk the possibility of choosing a wrong null hypothesis

but not with non parametric d test [16]. While the nonparametric version has less

power hypothetically, it has a greater probability of avoiding the consequences of a

false null hypothesis.

With the limitation of failing to detect heterogeneity in a small sample size, we

overcome the problem by proposing a weighted version of the test. We have also

provided the option of choosing one’s own bandwidth without worrying about the

change. Other weight functions will be investigated in future studies to test for

power improvement.

We compared our test findings to bootstrap LRT regarding time to detect hetero-
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geneity and power analysis for two component contaminated mixture only and were

pleased with the results. While the bootstrap LRT takes longer to compute than

the nonparametric d-test, it gives an idea of how many components to test. We will

try to include the notion of determining the number of components in data with

heterogeneity as another future path of nonparamteric d test improvement.

5.2 Fluid Assessment among CRRT ICU Patients

Identifying clinical parameters associated with an increased mortality risk has been

a common issue among CRRT patients admitted to the ICU [120–122]. The sys-

tematic literature search concluded that more information is needed in regards to

understanding how the prescribed dose is associated with mortality risk. This disser-

tation provided more knowledge not explored in the previous literature by examining

if treatment implementation discrepancy is also a predictor of increased mortality

risk.

To understand the discrepancy, we limited our analysis to 48 hours of CRRT data in

order to predict hospital mortality after 48 hours. We kept the time window similar

to ongoing AKI research [123–125]. Using only 48 hours of data, our research failed

to find evidence of a link between disparity in therapy application and mortality.

This suggests that we should concentrate our efforts on a broader time frame in order

to fully comprehend the relationship for future research keeping in ming that the

findings might also be affected by the sample size and power of the tests. We also

identified other risk factors that has not been explored before such as, the actual fluid

removed by the machine. Although failing to establish a rationale for prescription

disagreement with an ambitious time-frame window, we uncovered that fluid removal

within 48 hours does contribute in hospital mortality after 48 hours.

Fluid overload has been studied as one of the most important characteristics among
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patients at the risk of mortality undergoing CRRT [44,126]. Our research also showed

similar findings. We also found fluid overload, ICU type age race to have significant

association with mortality as mentioned from the previous literature reviews in chap-

ter 3. The relationship between the prescribed goal and fluid overload should be a

future direction in understanding how they are related to mortality risk using more

than 48 hours of data. We were unable to obtain evidence for some other valuable

pieces of information like mechanical ventilation, use of ECMO, VAD or IABP, be-

cause vast majority of patients recorded these information after our study period

of interest. For 28 patients, these information was available after the end of the

CRRT duration. Thus, increasing the timeline window will allow the researchers to

incorporate more relevant information in their mortality prediction.

Due to the severity of their illness, it is desirable to have a prediction model that

will assist ICU patients with CRRT in making necessary modifications in a short

period of time. However, due to the nature of their illness, utilizing a limited time

window forecast is ineffective. Rather, we should focus on discovering major risk

factors that are associated with increased mortality risk and altering the patient’s

treatment accordingly.

While conducting this research, we also faced a time constraint due to data avail-

ability, which limited our capacity to explore additional choices to have a better

knowledge of the fluid removal assessment. We did not have data on patients’ crit-

ical information regarding sepsis, diabetes, hypertension, and so on. However, with

limited information, we were able to gather several critical findings and future direc-

tions that will help us better understand fluid evaluation and contribute to patient

healthcare improvement.
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5.3 Collaborative Approach

In order to gain relevant insights and progress in science, collaborative effort is a

crucial instrument in research [127–129]. Chapters 2, 3, and 4 of this dissertation

rely on the multi-domain knowledge of clinical nephrologists, epidemiologists, and

statisticians. Clinical and epidemiological experts offered domain-specific expertise

about the heterogeneity detection method’s application in Chapter 2. The inclusion

and exclusion criteria for publication selection in Chapter 3 were based on clinical

competence in the field of nephrology and librarian search strategies. Clinical exper-

tise was used to determine disagreement in chapter 4, which was then examined using

epidemiological and statistical insights.

This research would not have been possible without the collaboration of domain ex-

perts. In the world of medical science, better healthcare cannot be provided just on

the basis of clinician skill without proof of therapy. A statistician cannot provide

reasoning without first having clinical and epidemiological understanding of the dis-

ease. As a result, the researchers can only deliver better and more precise healthcare

solutions if they use a team scientific strategy.

Copyright© Shaowli Kabir, 2022.
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Appendices

Appendix A: Theoretical details

1. Illustration of nonparametric d-statistic

D test statistic proof:

d =

∫ [
f̂h(z)− f(z|µ̂0, σ̂0)

]2
dz

=

∫ [ 1

nh

n∑
i=1

1√
2π

e−
1
2
(
z−zi
h

)2 − 1√
2πσ̂0

2
e
− 1

2σ̂0
2 (z−µ̂0)2]2

dz

Let,

mi =
1

nh
; m0 = − 1

σ̂0

; hi = h

h0 =σ̂0; zi = zi and z0 = µ̂0
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Then,

d =

∫ [ n∑
i=1

mi
1√
2π

e
− 1

2h2
i

(z−zi)
2

+
m0√
2π

e
− 1

2h20
(z−z0)2]2

dz

=

∫ [ n∑
i=0

mi√
2π

e
− 1

2h2
i

(z−zi)
2]2

dz

=

∫ n∑
i=0

n∑
j=0

mimj
1

2π
e
− 1

2h2
i

(z−zi)
2− 1

2h2
j

(z−zj)
2

dz

=
n∑

i=0

n∑
j=0

mimj
1

2π

∫
e
− 1

2h2
i

(z−zi)
2− 1

2h2
j

(z−zj)
2

dz

=
n∑

i=0

n∑
j=0

mimj
1

2π

∫
e
− 1

2h2
i
h2
j

[
h2
j (z−zi)

2+h2
i (z−zj)

2
]
dz

=
n∑

i=0

n∑
j=0

mimj
1

2π

∫
e
− 1

2h2
i
h2
j

[
z2(h2

j+h2
i )−2z(h2

jzi+h2
i zj)+h2

jz
2
i +h2

i z
2
j

]
dz

=
n∑

i=0

n∑
j=0

mimj
1

2π

∫
e
−

(h2j+h2i )

2h2
i
h2
j

[
z2−2z

(h2j zi+h2i zj)

(h2
j
+h2

i
)

+
h2j z

2
i +h2i z

2
j

(h2
j
+h2

i
)

]
dz

=
n∑

i=0

n∑
j=0

mimj

2π

∫
e
−

(h2j+h2i )

2h2
i
h2
j

[
z2−2z

(h2j zi+h2i zj)

(h2
j
+h2

i
)

+
h2j z

2
i +h2i z

2
j

(h2
j
+h2

i
)

+
(h2j zi+h2i zj)

2

(h2
j
+h2

i
)2

−
(h2j zi+h2i zj)

2

(h2
j
+h2

i
)2

]
dz

=
n∑

i=0

n∑
j=0

mimj

2π

√
2π

h2
i h

2
j

h2
i+h2

j√
2π

h2
i h

2
j

h2
i+h2

j

× e
−

(h2i+h2j )

2h2
i
h2
j

1

(h2
i
+h2

j
)

[
(h2

jz
2
i +h2

i z
2
j )−

(h2j zi+h2i zj)
2

(h2
i
+h2

j
)

]

×
∫

e

− 1

2
h2
i
h2
j

h2
i
+h2

j

(z−
h2j zi+h2i zj

h2
j
+h2

i

)2
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=
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i=0

n∑
j=0

mimj√
2π

√
h2
ih

2
j

h2
i + h2

j

e
− 1

2h2
i
h2
j

[
(h2

jz
2
i +h2

i z
2
j )−

(h2i zi+h2i zj)
2

h2
i
+h2

j

]
× 1

=
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i=0

n∑
j=0

mimj√
2π

√
h2
ih

2
j

h2
i + h2

j

e
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2h2
i
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2
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2
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i
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j
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n∑
j=0

mimj√
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√
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∑
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√
h2
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2
0

h2
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i
h20
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0z
2
i +h2
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2
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h2
i
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∑
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m0mj

√
h2
0h

2
j

h2
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e
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2h20h
2
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(h2
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2
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0z
2
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h20+h2
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]

+
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0√
2π

√
h2
0

2
e
− 1

2h40

[
2h2

0z
2
0−2h2

0z
2
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]
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Substituting the values,

A =
n∑

i=1

n∑
j=1

1
n2h2√
2π

√
h4

2h2
e−

1
2h4

[
h2(z2i +z2j )−

h4(zi+zj)
2

2h2

]
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1

2n2h
√
π
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1
2h2

[
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√
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4h2
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)
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h2+σ̂0
2
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∑
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1

n
√
2π(h2 + σ̂0

2)
e
− h2σ̂0

2

2h2σ̂0
2
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z2i +µ̂0
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2

]
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∑
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1

n
√
2π(h2 + σ̂0

2)
e
− 1

2(h2+σ̂0
2)

(zi−µ̂0)2

=C [By the nature of symmetricity]

D =
1√

2πσ̂0
2

√
σ̂0

2

2
e
− 0

2σ̂0
4

=
1

2σ̂0

√
π
× 1 =

1

2σ̂0

√
π

Thus,

d =
n∑

i=1

n∑
j=1

1

2n2h
√
π
e−

1
4h2

(zi−zj)
2

−2
∑
i=1

1

n
√
2π(h2 + σ̂0

2)
e
− 1

2(h2+σ̂0
2)

(zi−µ̂0)2

+
1

2σ̂0

√
π
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Illustration of nonparametric weighted d statistic

Weighted nonparametric D test statistic proof:

dw =

∫ [
f̂h(z)− f(z|µ̂0, σ̂0)

]2
w(z)dz

=

∫ [ 1

nh

n∑
i=1

1√
2π

e−
1
2
(
z−zi
h

)2 − 1√
2πσ̂0

2
e
− 1

2σ̂0
2 (z−µ̂0)2]2

w(z)dz

Let,

mi =
1

nh
; m0 = − 1

σ̂0

; hi = h

h0 =σ̂0; zi = zi and z0 = µ̂0

Then,

d =

∫ [ n∑
i=1

mi
1√
2π

e
− 1

2h2
i

(z−zi)
2

+
m0√
2π

e
− 1

2h20
(z−z0)2]2

w(z)dz

=

∫ [ n∑
i=0
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2π

e
− 1

2h2
i

(z−zi)
2]2

w(z)dz
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w(z) = e
− c(z−z0)

2

h20
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Then,

dw =

∫ n∑
i=0

n∑
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Substituting the values,
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Appendix B: Tables

Table 1: Modelling Critical values vs Sample size

Model type Model AIC values
Linear model Log cv= a + Log N -77.43
Linear model Log cv = a+ N -44.52
Exponential decay
model

Log (y-θ)=a +bx 3.79

Table 2: Key terms for database search

Population Exposure Outcome
Acute kidney failure, Acute renal
failure, Acute kidney insufficienc,
Acute renal insufficienc, Acute kidney
injur, Continuous Renal Replacement
Therapy, Hemofi ltration,
Hemodiafi ltration,
Renal Replacement Therapy,
Critical Illness, Critically Ill,
Critical Care, ICU, Intensive
Care Units, Kidney replacement
therapy, Continuous

Ultra filtration, NUF,
Fluid Overload, FO,
Fluid Management,
Fluid Balance,
Fluid Removal

Mortality,
Hospital
Mortality,
Survival rate

Table 3: Adjusted Discrepancy Continuous vs Categorical

Adjusted Discrepancy Comparison AIC LR Test P-value
With Continuous Adjusted Discrepancy 607.21

<0.01
With Categorical Adjusted Discrepancy
(over or under)

606.36
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Table 4: No. Patient’s Information Available for Each Day

Day No. of Patients
1 277
2 274
3 269
4 262
5 254
6 258

Table 5: Logistic Regression Estimates for Hospital Mortality Prediction

Variables Levels Estimate Std. Error P-value
Intercept -3.45 0.82 <0.001
Adjusted discrepancy
at day 1
(%ml/kg h)

<-8.5% 0.29 0.47 0.54
>5.5%-20% -0.21 0.32 0.52
>20% -0.83 0.54 0.13

Actual fluid removed(L) 0.18 0.08 0.02
FO% at day 1 (L) 0.23 0.08 <0.001
Age 0.03 0.01 <0.001
Race (Ref: Non-white) White -0.73 0.36 0.04
SOFA at CRRT start 0.13 0.03 <0.001
ESRD status (Red: No) Yes 0.74 0.28 0.01

ICU type (Ref: Cardio )
MICU -0.26 0.28 0.35
Other 1.04 1.77 0.56
Surgery -1.32 0.53 0.01

Time from ICU admission
to CRRT initiation

-0.01 0.02 0.73

ICU type \times Time
from ICU admission to
CRRT initiation (Ref: Cardio)

MICU 0.14 0.05 <0.001
Other -0.14 0.18 0.43
Surgery 0.07 0.06 0.27

Appendix C: Figures

82



Figure 1: Critical Values Bootstrap vs. Fixed

Figure 2: Model fit on Critical values vs Sample size
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Figure 3: Skewness effect on NpD test

Figure 4: Distribution of eruption duration in minutes

84



Figure 5: ROC comparison for Adjusted Discrepancy

Figure 6: Summary of Gray’s survival model result in Murugan et.al. 2018 and 2019
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Figure 7: Missing value percentage

Figure 8: MI performance with CART
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Figure 9: Variable Importance Based on Different Methods

Figure 10: K-means Clusters on Adjusted Discrepancy at Day 1
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Figure 11: Distribution of clusters based on EM algorithm for Adjusted Discrepancy
at Day 1

Figure 12: Timeline and Information of Interest

88



Figure 13: Daily Adjusted Discrepancy Throughout CRRT
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