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ABSTRACT OF DISSERTATION 

 

 

IN-SITU CHARACTERIZATION OF SURFACE QUALITY IN γ-TiAl AEROSPACE 

ALLOY MACHINING 

 

The functional performance of critical aerospace components such as low-pressure 

turbine blades is highly dependent on both the material property and machining induced 

surface integrity. Many resources have been invested in developing novel metallic, 

ceramic, and composite materials, such as gamma-titanium aluminide (γ-TiAl), capable of 

improved product and process performance. However, while γ-TiAl is known for its 

excellent performance in high-temperature operating environments, it lacks the 

manufacturing science necessary to process them efficiently under manufacturing-specific 

thermomechanical regimes. Current finish machining efforts have resulted in poor surface 

integrity of the machined component with defects such as surface cracks, deformed 

lamellae, and strain hardening. 

This study adopted a novel in-situ high-speed characterization testbed to investigate 

the finish machining of titanium aluminide alloys under a dry cutting condition to address 

these challenges. The research findings provided insight into material response, good 

cutting parameter boundaries, process physics, crack initiation, and crack propagation 

mechanism. The workpiece sub-surface deformations were observed using a high-speed 

camera and optical microscope setup, providing insights into chip formation and surface 

morphology. Post-mortem analysis of the surface cracking modes and fracture depths 

estimation were recorded with the use of an upright microscope and scanning white light 

interferometry,  



In addition, a non-destructive evaluation (NDE) quality monitoring technique based 

on acoustic emission (AE) signals, wavelet transform, and deep neural networks (DNN) 

was developed to achieve a real-time total volume crack monitoring capability. This 

approach showed good classification accuracy of 80.83% using scalogram images, in-situ 

experimental data, and a VGG-19 pre-trained neural network, thereby establishing the 

significant potential for real-time quality monitoring in manufacturing processes. 

The findings from this present study set the tone for creating a digital process twin 

(DPT) framework capable of obtaining more aggressive yet reliable manufacturing 

parameters and monitoring techniques for processing turbine alloys and improving industry 

manufacturing performance and energy efficiency. 

KEYWORDS: Machining, Characterization, In-situ, Titanium Aluminide, Surface 

Integrity, NDE 
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CHAPTER 1.  
INTRODUCTION 

 MOTIVATION AND SIGNIFICANCE 

Turbines are widely used in the energy and transportation sectors, accounting for 

15.7 quadrillion BTUs of annual energy consumption, which is approximately $370 billion 

in fuel cost alone. According to the U.S. Energy Information Administration, this figure 

represents 16.1% of the total energy consumed in the U.S., which is 43% larger than all 

renewable energy within the current energy portfolio (Ghosh et al., 1998). As a result, there 

is significant interest in realizing even slight improvements in the efficiency of turbines, 

including platforms for power generation and jet engines for transportation. OEMs invest 

significant resources to improve turbine performance with new metallic, ceramic, and 

composite turbine materials. These novel materials, such as advanced nickel-based 

superalloys and gamma-titanium-aluminide (γ-TiAl), are capable of operating at 

increasingly higher temperatures, which allows for more efficient turbine operation. 

However, while there have been tremendous advances in the Materials Science of turbine 

materials that operate at elevated temperatures and extreme loading conditions, the 

Manufacturing Science necessary to process them efficiently under manufacturing-specific 

thermomechanical regimes has been lacking (credit: Prof. J. Schoop, 2019). 

A significant percentage of aerospace components are manufactured using at least 

one conventional metal machining operation. Reports showed that 5% of annual gross 

domestic product across developing nations is due to machining expenditure, resulting in 

a global financial impact of more than 250 billion USD (Arrazola et al., 2013). Machining 

operations are expected to manufacture products at a reduced cost, required tolerance, 

surface finish, and quality standards across different industrial sectors, especially in a 

critical space such as the aerospace industry. Machining is typically done in two steps with 

varied cutting parameters, yielding varying outcomes. Roughing, typically the first step is 

followed by a second step known as finishing or precision machining. Roughing operations 

in machining are primarily used to remove bulk material and roughly shape the workpiece 

to the desired shape, making subsequent processing more convenient and efficient. The 
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objective of rough machining is to remove the blank allowance as rapidly as possible. A 

high feed rate and cutting depth are usually chosen to remove as many chips as feasible in 

a short period. As a result, rough machined components frequently have low precision, a 

rough surface, and high productivity. This work is focused on finishing passes or precision 

machining since this step is responsible for the final surface integrity of the machined 

component. 

Much research has gone into machining process predictive models; however, 

industrial practices remain empirical and anecdotal due to the lack of efficient and reliable 

analytical or numerical models. Current industry practice for improving turbine component 

manufacturing processes is fundamentally empirical, primarily due to a lack of efficient 

and reliable models to predict the complex interactions between process parameters (feeds, 

speeds, tool condition) and process-induced structure (surface integrity, e.g., residual 

stresses and near-surface microstructure), and the resultant process performance (energy 

efficiency, productivity/profitability). While significant advances have been made to 

promote model-based Integrated Computational Materials Engineering (ICME) in alloy 

design, as well as in primary and secondary processing, there are currently no industrially-

viable models for predicting the process-induced surface integrity, which significantly 

affects overall functional performance and life-cycle embodied energy of components 

operating in harsh service conditions (e.g., turbine components). Also, considering the 

complex nature of machining processes and the critical dependence of reliable predictive 

models on realistic inputs, the development of accurate and robust models would 

undoubtedly hinge on a proper understanding of process physics and a realistic 

characterization of model inputs. 

Accurate characterization of the process physics and mechanics governing 

machining processes is a fundamental topic many researchers have investigated. 

Characterizing chip formation processes, surface integrity evolution, and 

tool/chip/workpiece interactions is crucial to developing, calibrating, and validating robust 

process models and implementing effective process control measures. Moreover, a closer 

interweaving of advanced experimental techniques, such as high-speed in-situ microscopy 

and digital image correlation analysis, with advanced analytical and numerical process 

simulations is envisioned as a significant steppingstone towards faster, more reliable, and 
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more industrially-applicable process models. Early efforts toward so-called in-situ 

characterization of machining processes can be dated to Schwerd (1935), who was among 

the first to study the process of chip formation during cutting. Subsequently, Stevenson and 

Oxley (1969)  adopted more advanced characterization techniques, such as explosive quick 

stop device setup. The deformation to the square grids printed on the workpiece was 

observed after an abrupt process stop. However, most of these approaches did rely on 

significant post-processing and an oversimplified assumption of instantaneous ‘freezing’ 

of a steady-state deformation, as Childs (1971) later established. Since achieving an 

efficient and realistic process or material, characterization is critical for developing (and 

calibrating) robust and accurate process models; several publications have been on this 

topic, including  (2015; 2018; Lee et al.). Most efforts in the in-situ study of machining 

processes have been constrained to a low cutting speed range (~5 mm/s) and high chip 

thickness (~0.5mm) due to imaging and experimental setup limitations however, this is not 

representative of a typical machining process and industrially-relevant finish machining 

parameters (~2 m/s speed, ~microns uncut chip thickness).  

More recently, (Schoop et al., 2019) developed a state-of-the-art high-speed in-situ 

characterization testbed consisting of a custom video microscope with coaxial illumination 

and a custom-built LED liquid light guide-fed light source (patents: (Schoop, 2020a; 

Schoop, 2020b)). This setup is capable of sub-surface material deformation 

characterization at a high cutting speed of up to 250 m/min cutting speed, micron-level 

chip thickness, and camera frame rate of about 2,000,000 fps. As highlighted by (Schoop 

et al., 2019) and several authors (Arriola et al., 2011; Efe et al., 2012; Guo et al., 2015; 

Guo et al., 2012; Lee et al., 2006) the development of such a novel characterization testbed 

would help better understand process physics, drive the development of robust and 

computationally efficient predictive models and ultimately help in establishing a digital 

twin for machining processes. 

 CASE STUDY FOR TITANIUM ALUMINIDE TURBINE ALLOYS AND PROJECT SCOPE  

Titanium intermetallic alloys are currently gaining ground in the aerospace and 

automotive industry due to their lightweight, suitability for high-temperature applications, 

good oxidation, and creep resistance (Lapin, 2009). For instance, 𝛾𝛾 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 alloys feature a 
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highly ordered structure which is responsible for their unique physical and mechanical 

properties: high melting point, low density, high strength, resistance to oxidation, and 

corrosion. Compared to other aerospace alloys such as conventional titanium, steel, and 

nickel, γ-TiAl’s low density offers an improved strength-to-weight ratio in high-

temperature applications. These unique properties have made γ-TiAl  an ideal material for 

manufacturing low-pressure turbine blades.  However, γ-TiAl is also a brittle material with 

low fracture toughness (damage tolerance) at room temperature. This downside makes 

machining of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  extremely difficult. While γ-TiAl material research has been active over 

the last 30 years, its application in commercial aerospace engines is still limited to low-

pressure turbine blades in GE’s latest generation “GEnx” engine (Bewlay et al., 2016).  

According to Zhang et al. (2001), γ-TiAl has lower thermal expansion and specific heat 

than comparable turbine materials. The orientation and lamellae boundary micro-cracks 

along grain boundaries also contribute to the machining fracture mode. Aspinwall et al. 

(2005) conducted a comprehensive review of γ-TiAl intermetallic alloy performance during 

machining operations such as grinding, drilling, milling, and turning. While a grinding 

operation produced a crack-free workpiece surface, they reported poor surface integrity 

such as deformed lamellae, strain hardening, grain pull-outs/cracking, and poor tool-life in 

milling and turning operations. However, all of the research published has been confined 

to post-mortem defect analysis, making them of little use in real-time process monitoring 

and optimization. Subsequently, industrial attempts to develop machining methods for TiAl 

alloys have been restricted to empirical studies which have yet to resolve the problem of 

machining-induced surface and surb-surface deformation during production.  

The low-pressure turbine blade's manufacturing process can be abstracted into five 

steps, as shown in Figure 1-1. Material extraction, casting, and electrochemical machining 

are the first three (3) phases, representing diverse pre-machining activities. Finish 

machining and a non-destructive evaluation/quality inspection of the machined product are 

the final two phases. If the product fails the quality inspections, the next step is to send it 

for rework, and if that is not feasible, it is discarded as scrap. The product is returned to the 

manufacturing line for re-checking after rework; however, depending on the production 

status, it may have to wait before rejoining the line (referred to as ‘queuing’). Depending 

on the second quality check outcome, the product is re-checked against quality standards 
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and might be reworked or disposed of as scrap. Industry experts identified the finish 

machining step as the significant bottleneck since all reported surface finish challenges 

occur after this process. 

 

Figure 1-1. Process flow for low pressure turbine blade production 

This research focused on improving the manufacturing/finish machining of 

titanium aluminide alloys due to their unique and desirable properties, especially in 

aerospace applications. It further explored the real-time investigation of titanium aluminide 

alloy machining to understand the crack initiation and propagation mechanism. With the 

possibility of creating a digital process twin framework, the ultimate goal is to achieve in-

situ process monitoring and control for turbine alloy manufacturing. Insufficient digital 

manufacturing tools have forced turbine manufacturers to adopt conservative empirically 

(i.e., low productivity) and inefficient (i.e., high energy consumption) processing strategies 

to limit manufacturing scrap and expensive rework; this work, however, focused on 

elements needed for obtaining more aggressive, yet reliable, manufacturing parameters and 

monitoring techniques for processing γ-TiAl alloys via a digital process twin framework. 

A future implementation of a comprehensive DPT framework would help improve 

manufacturing performance and energy efficiency by offering more efficient and reliable 

processing strategies for the industry.  
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 NOVELTY OF THE PROPOSED DIGITAL PROCESS TWIN PARADIGM 

A digital twin framework, as identified by Ritto and Rochinha (2020), is created 

from the integration of three components (i) computational models, (ii) model calibration 

and validation using past and current process data, (iii) process uncertainty quantification. 

Successful integration of these components provides a much-improved process planning, 

monitoring, and adjustment capability. While much work has been done in cyber-physical 

manufacturing systems and establishing a digital twin of manufactured components, much 

of these efforts fail to address the impact of unit manufacturing processes on a given 

component's physical properties (Leng et al., 2019; Uhlemann et al., 2017).  In this context, 

the authors propose a new definition for a Digital Process Twin (DPT) as an accurate, fast, 

and efficient virtual process representation that considers the impact of a unit 

manufacturing process on the physical characteristics of a workpiece, fusing physically 

informed models and measured data to optimize a given process. This approach is intended 

to symbiotically augment the popular digital twin (DT) concept, which acts on a higher 

‘systems’ level to digitally integrate the entire product life cycle. Thus, a DPT would be 

housed within the DT of a component and ultimately serve to inform design-stage 

optimization efforts, ultimately the key to improving the product, process, and system 

sustainability (Badurdeen et al.).  

The pioneering concept of a digital twin can be attributed to the collaborative work 

between Michael Grieves and John Vickers; in their 2003 presentation on product life-

cycle management (Grieves, 2014), they shared the idea of managing the product life cycle 

from its virtual model. Grieves lecture highlighted the concept of a flow of information and 

data from the physical entity to the virtual representation of the product and vice versa, as 

shown in Figure 1-2, a concept referred to as mirroring or twinning. Twinning between the 

virtual and physical assets enables measurement and prediction of the physical state and 

real-time process optimization if necessary. The frequency in which this loop occurs is 

known as the twinning rate and should occur in real-time to accommodate rapid changes 

(Jones et al., 2020).   



7 
 

 
Figure 1-2. Twinning of virtual and physical spaces (Source: Jones et al. (2020) with 

permission of CC BY 2.0) 

Recent advancements in physics, data science, and artificial intelligence have 

engendered the evolution of Industry 4.0 and smart manufacturing. A NASA integrated 

technology roadmap (Technology Area 11: Modeling, Simulation, Information 

Technology & Processing Roadmap; 2010) gave the following definition of a DT; “A 

digital twin is an integrated multiphysics, multiscale, probabilistic simulation of an as-built 

vehicle or system that uses the best available physical models, sensor updates, fleet history, 

etc., to mirror the life of its corresponding flying twin (GlaessgenandStargel, 2012)” (as 

shown in Figure 1-3).  

 

Figure 1-3. Digital twin framework across the product lifecycle and focus of present work 

on DPT and process physics (adapted from Schleich et al. (2017) with permission of 

Elsevier Inc., license number 5297310659697) 
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The product design phase in the lifecycle framework in Figure 1-3 is a virtualized, 

networked and visual process that has given rise to data-driven product design and cloud 

manufacturing. According to Tao et al. (2018), the data-driven product design process 

focuses primarily on physical data study rather than data generation with virtual models, 

resulting in a lack of convergence between the product’s physical and virtual space. Due 

to the absence of interaction and iteration between big data analysis and diverse operations, 

the cloud manufacturing-based process cannot respond quickly to real-time changes. A 

new product design approach was proposed based on digital twins (DT) to address this 

limitation (Tao et al., 2018). A DT can accurately map all physical data from a product to 

a virtual environment. The dynamic manufacturing of the product is monitored and 

controlled throughout the manufacturing stage. Production elements such as cutting 

parameters and process conditions are gathered and recorded using sensors to monitor the 

manufacturing process. While extensive research has been conducted in cyber-physical 

manufacturing systems and the creation of a digital twin of the manufactured components, 

many of these efforts have failed to address the influence of unit manufacturing methods 

on the physical attributes of the specific component. This research investigates the 

development of a digital process twin capable of monitoring and controlling the 

manufacturing process by leveraging process characterization, sensor technology, and 

machine learning techniques to address these limitations.  

Figure 1-4 illustrates the proposed approach toward calibrating the DPT with in-

situ process characterization and leveraging AI to optimize process parameters across a 

wide range of process and resource efficiency metrics. As shown in Figure 1-4, the sensor 

selection would be driven by the multi-domain modeling, which helps avoid the common 

practice of having several sensors on the machine with few valuable data. This approach 

helps extract needful data while saving costs and resources.  
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Figure 1-4. Framework of Digital Process Twin 

The multi-domain modeling approach helps set the initial process parameter and 

gives the capability for a modular understanding of the process physics. The modeling 

efforts are integrated with data analytics tools such as machine learning for improved 

monitoring and prediction results. However, the multi-domain modeling efforts are not 

discussed extensively in this present study. 

 OVERVIEW OF DISSERTATION STRUCTURE 

To address the current challenges with the machining of turbine alloys, especially 

in a component such as γ-TiAl low-pressure turbine blade, this work focused on the real-

time characterization of γ-TiAl machining and process monitoring with the goal of future 

development of a comprehensive digital process twin capable of integrating real-time 

process characterization for model parameter determination, multi-domain modeling, 

sensor technology, and artificial intelligence to provide improved process control and 

productivity. The structure of this dissertation is as follows: Chapter 2 provides a 

background and literature review of the choice alloy, machinability, surface integrity, 
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modeling, in-situ process characterization, sensor selection, digital twin, and digital 

process twin. The primary experimental techniques and approaches used to achieve in-situ 

observation of cutting action and discuss technical challenges will be discussed. Chapter 3 

provides an extensive account of the material and methodology with details on the custom 

in-situ testbed developed at the University of Kentucky for force, acoustic emission, and 

strain characterization. The sensor-based in-situ characterization results (high-speed 

imaging, digital image correlation, surface images) are reported in Chapter 4. In Chapter 

5, the acoustic emission signal data collected were converted into two-dimensional 

scalograms and integrated with a machine learning technique for real-time quality 

monitoring. The process improvement impact on production metrics such as time, energy, 

and cost are reported in Chapter 6. Finally, in Chapter 7, a summary and outlook for the 

future is provided. 
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CHAPTER 2.  
BACKGROUND AND LITERATURE REVIEW 

 APPLICATION AND PROPERTIES OF TITANIUM ALUMINIDE ALLOYS 

Titanium intermetallic alloys such as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇3𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇3𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇2𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴  are currently 

gaining ground in the aerospace and automotive industry due to its suitability for high-

temperature applications, good oxidation, and creep resistance. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, for instance, has a 

highly ordered structure responsible for its unique physical and mechanical properties: high 

melting point, low density (4.5 g/cm3 for conventional Ti alloys and 3.7–4.7 g/cm3 for 

TiAl alloys), high Young's modulus (96–117 GPa for regular Ti alloys and 100–176 GPa 

for TiAl alloys), high strength, resistance to oxidation, and corrosion. Compared to 

conventional titanium, steel, and nickel alloys, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 low density offers improved strength 

in high-temperature performance, as shown in Figure 2-1.  

TiAl alloys are well suited for low-pressure turbine blades and high-pressure 

compressor blades, usually manufactured of nickel-based superalloys (nearly twice as 

heavy as TiAl-based alloys). However, since high strength adversely affects ductility, 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is also a very brittle material with low fracture toughness at room temperature. This 

downside makes TiAl machining a complicated process and limits its industrial application. 

General Electric recently reported that Precision Castparts Corp.'s -TiAl low-pressure 

turbine blades were employed in GEnx engines which powered Boeing 787 and Boeing 

747-8 aircraft (Bewlay et al., 2016). This occasion was the first time TiAl-based alloys have 

been used on a wide scale in a commercial aircraft engine. Commercial applications of 

TiAl-based alloys in the vehicle industry include high-performance turbochargers and 

exhaust valves for Formula One and other sports cars (Dimiduk et al., 2003; 

SommerandKeijzers, 2003). Additionally, alloys based on TiAl have also found limited use 

in military aircraft and the nuclear sector (BartolottaandKrause, 1999). 

While 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 material research has been active over the last 20 years, its application 

in aerospace engines is limited to mainly GE applications as a low-pressure turbine blade 

in its latest generation “GEnx” engine. According to Zhang et al. (2001) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 has lower 

thermal expansion and specific heat compared to existing materials. The poor ductility in 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is due to its low dislocation density and propensity for cleavage fracture. The 

orientation and lamellae boundary micro-cracks along grain boundaries also contribute to 

the machining fracture mode. 

 

Figure 2-1. Comparison of thermal conductivity of CTI-8 with (a) other TiAl alloys and 

(b) with currently used materials  (Source: Zhang et al. (2001) with permission of 

Elsevier Inc., license number 5297311041099). 

 MICROSTRUCTURE OF TITANIUM ALUMINIDE ALLOYS 

Titanium aluminide (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) alloys are ordered intermetallic materials formed from 

the strong affinity between titanium, a high percentage of aluminum (about 22 – 56%), and 

elements such as niobium, chromium, silicon, and boron. Over the years, the 

microstructures of TiAl alloys have been grouped under three categories, namely alpha-2 

(𝛼𝛼2 − 𝑇𝑇𝑇𝑇3𝑇𝑇𝑇𝑇), gamma (𝛾𝛾 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇). And alpha-2/gamma (𝛼𝛼2/𝛾𝛾) phases. Among these, γ-

TiAl features unique physical and mechanical properties: high melting point, low density, 

high strength, resistance to oxidation, and corrosion. It is an intermetallic compound with 

a high elasticity modulus, strength, oxidation resistance, and density of 3.76 g/cm3. These 

desirable and unique properties have made it an alloy of interest across several industries, 

especially aerospace applications. 𝛾𝛾 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 have an L1o ordered face-centered structure 

which includes a broad range of homogeneity dependent on temperature. Figure 2-2 shows 
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the representation of the central region of a 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  system, which depicts the variety of 

microstructure obtainable from the two-phase composition.  

 

Figure 2-2. The central part of the equilibrium Ti-Al phase diagram with the 

following phases: disordered β-Ti, high-temperature disordered α-Ti, ordered hexagonal 

α2-Ti3Al, and ordered face-centered tetragonal γ-TiAl. (Source: Kim (1989) with 

permission of Elsevier Inc., license number 5297311237517) 

The microstructure of titanium aluminide alloys can be grouped under three 

categories, namely alpha-2 (𝛼𝛼2 − 𝑇𝑇𝑇𝑇3𝑇𝑇𝑇𝑇), gamma (𝛾𝛾 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇), and alpha-2/gamma (𝛼𝛼2/𝛾𝛾) 

phases. These alloys comprise a long-range molecular arrangement at ambient and high 

temperatures ranging up to 1000°C. The properties of titanium aluminide alloys are highly 

dependent on the percentage concentration of aluminum and the microstructure type and 

order; thereby, it is important to appropriately identify or distinguish between the 

microstructures. Figure 2-3 shows the mid-section of the binary 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 phase diagram and 

representative microstructure derived by mean heat treatments. The shaded region 

represents the titanium aluminides of the highest commercial interest.  
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Figure 2-3. Mid-section of the binary 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 phase diagram and representative 

microstructure derived using heat treatments (Source: Clemens and Mayer (2013) with 

permission of WILEY - V C H VERLAG GMB, order number: 1216983).  

The alpha-2 (α2-Ti3 Al) microstructure is made up of about 22-35% aluminum, 12-

17 % Nb, 3% V composition and an 𝛼𝛼2  stability zone kept in an orderly state at a 

temperature of 1180°C and above. They are made up of hexagonal structures and, in 

contrast to 𝛾𝛾 alloys, 𝛼𝛼2 − 𝑇𝑇𝑇𝑇3𝑇𝑇𝑇𝑇 have a higher specific strength, lower elastic modulus, and 

ductility.  The 𝛼𝛼2/𝛾𝛾 microstructural phase consists of 35-49 % of aluminum located in a 

duplex phase zone. This microstructure comprises two constituents: one in a single 𝛾𝛾 phase 

and the other with colonies of eutectoid lamellar structure, typically formed due to the 

alpha structure transformation during the cooling transition. Typically, the most frequent 

phase is the 𝛾𝛾 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑟𝑟 and 𝜶𝜶𝟐𝟐 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑟𝑟 exists as a complementary phase. The mechanical 

properties of the complementary phase microstructure are more balanced when contrasted 

to single-phase alloys. This is evident in its ability to maintain strength, ductility, and 

toughness at high temperatures. The gamma phase of titanium aluminide consists of about 

49-57% of aluminum, and 1-10% of elements such as Ta, Mo, Nb, Mn, or Cr. It has a 

tetragonal face-centered microstructure, and it is uniquely known for its fragile behavior 

caused by restrained dislocation mobility. 𝛾𝛾 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 has an elastic modulus of 175 GPa, 

lower density, 3.9 g/cm3, which is relatively higher than that of 𝛼𝛼2 − 𝑇𝑇𝑇𝑇3𝑇𝑇𝑇𝑇  and other 

titanium alloys. As established across literature (Bentley et al., 1999; 
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BeranoagirreandLopez De Lacalle, 2010; Castellanos et al., 2019; Haidar et al., 2009; Kim, 

1989), 𝛾𝛾 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  has proven to be a valuable and attractive material in engineering 

applications. 

 MACHINABILITY OF TIAL  ALLOYS 

As defined by the American Society for Engineering Education, "machinability" is 

a measure of the material response to be machined under a given set of machining 

parameters such as cutting speed, feed rate, and depth of cut, with a given tool type (tool 

material and geometry), which should result in a workpiece with adequate functional 

characteristics, surface integrity, and acceptable tool life. Titanium aluminides are difficult 

to machine, posing problems for cutting tool makers and materials researchers. An 

extensive literature review on milling, turning, drilling, electro-discharge machining 

(EDM), and other operations on titanium aluminides has shown that these alloys are much 

more difficult to machine than titanium-based alloys (Appel et al., 2011; Clemens and 

Mayer, 2014).  

For instance, the heat conductivity of a workpiece's material is critical to its 

machinability. In general, the capacity to swiftly disperse machining generated heat via the 

material is helpful, especially in reducing the cutting temperature. Due to limited heat 

conductivity, Ti-based alloys are more difficult to machine than most other materials. The 

thermal conductivity of TiAl is about 22 W/mK, which is greater than that of typical 

titanium alloys and nickel superalloys (7.3 W/mK and 11.3 W/mK, respectively), but its 

effects are just as severe. Small and fine chips are commonly formed during machining. 

Due to these chips' restricted contact area, quick flow, and poor thermal conductivity, very 

high cutting temperatures are focused on the tool's cutting edge. As a result, the cutting 

tools wear out more quickly, compromising the workpiece's surface integrity. Low heat 

conductivity combined with high strength at high temperatures limits identifying 

appropriate machining parameter ranges and tool selection, particularly in continuous 

cutting operations like turning and drilling. The combination of low thermal conductivity 

and high strength at elevated temperatures produces other problems related to increased 

cutting forces, energy consumption, and vibrations. 
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Titanium is notable for its high affinity for many chemical elements. Because of 

this property, all cutting tool materials tend to chemically react with Ti alloys, especially 

at cutting temperatures above 500°C (AbbasiandPingfa, 2015; ClemensandMayer, 2016; 

Sun et al., 2015). High reactivity causes chips to weld at the tool's tip and cutting edge 

(BUE), leading to increased wear, catastrophic failures, and severe edge chipping. Several 

investigations show that γ-TiAl and cutting tools have a high chemical affinity and a solid 

adhesive binding (Ezugwu, 2005; Pervaiz et al., 2014).  Furthermore, the combination of 

this attraction and high thermal stresses causes tool wear by dissolution or diffusion via an 

increase in the temperature of the cutting zone (AbbasiandPingfa, 2015; Shokrani et al., 

2012; Su et al., 2012).  

Also, the ductility of an alloy is one of the most desired alloy properties during 

machining, as it enhances chip formation, chip breakage, and cutting tool life. However, 

titanium aluminide has an extremely low ductility ranging between 1 and 4% at room 

temperature due to its intermetallic characteristic. This brittle tendency makes the 

machining of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 a challenging process. Ductility studies carried out by George et al. 

(1994) on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 with 𝛼𝛼2/𝛾𝛾 structure showed that the angle between the lamellar boundaries 

along with the load axis significantly contribute to the yield stress of the lamellar structure. 

The fragile state at the lamellar boundaries significantly influences titanium aluminide 

alloys' low ductility. 

Another essential material characteristic is work-hardening. It is the rise in the 

hardness of a surface layer and is caused by plastic deformation. This significant increase 

in the surface layer hardness and thickness causes residual stresses, compromises the part's 

surface integrity, and adversely affects the components' performance. This phenomenon 

reduces the cutting tool life due to the increased cutting load of the hardened layers, which 

causes rapid wear of the tool cutting edge. Surface hardening also impacts the amount of 

energy needed to cut metal. According to Mantle and Aspinwall (1997), a rise in hardness 

in γ-TiAl machining implies a high sensitivity to strain hardening, further decreasing the 

material's already weak surface ductility and reducing fatigue life. Furthermore, they claim 

that surface hardness levels can be up to twice as high as nominal hardness and that cutting 

parameters have no impact on this occurrence. The material's cutting contact temperature 

influences surface hardening, primarily at the layer's depth. Due to the cooling effect that 
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decreases the temperature and the ductility of the workpiece in the cutting region, high-

pressure lubrication systems have been proven to induce an increase in maximum hardness 

of up to 10%. Subsequent sub-sections further highlight the surface integrity challenges 

faced during the machining of titanium aluminide alloys. 

A prevalent challenge in the machinability of titanium aluminide is the occurrence 

of surface cracking. Existing studies on this issue have shown a significant correlation 

between the surface cracks and factors such as material microstructure (grain size and 

type), mechanical properties (strength, ductility, or hardness), selected machining process 

(milling, drilling, and grinding), and cutting conditions (machining parameters, cutting 

tools, and environment). Among the material-related factors, the low ductility of γ-TiAl has 

been identified as the leading cause of surface cracking in titanium aluminide machining. 

Also, the microstructure of γ-TiAl was established to influence the surface crack formation, 

as cracks were seen to be initiated at the γ-γ lamellae interface in α2/γ alloys. As shown in 

Figure 2-4, the interlamellar plate failure around the lamellae colonies, due to the applied 

load's angle, affected the crack formation in TiAl alloy turning and milling. 

 
Figure 2-4. Fractography of; (a) turning sample in Ti-45Al-2Nb-2Mn - 0.8 vol% 

TiB2, and (b) milling sample in Ti -48Al -2Nb -0,7Cr -0,3Si (Source: Mantle and 

Aspinwall (1997) with permission of Elsevier Inc., license number 5297320115366) 

Studies into the cutting condition influence showed that the cutting environment 

has no significant effect on the crack intensity. The depth of cut significantly impacts the 

crack size and density by approximately 67% when adopting a low cutting speed and depth 

of cut between 0.05 and 0.1 mm  (Sharman et al., 2001a). A crack geometry of 50 µm width 

and 5 µm depth was observed in the smallest depth of cut (0.05mm), while a 0.1 mm depth 
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of cut had a crack geometry of 150 µm width and 15 µm depth. Further studies by 

Aspinwall et al. (2005) also correlated the surface cracks to the cutting tool flank wear and 

cutting time in gamma XDTM titanium aluminide (Ti-45Al-2Nb-2Mn-0.8% TiB2) turning at 

low cutting speed. Considering the cutting tool selection influence on surface quality in γ-

TiAl machining, existing studies have cut across the use of coated and uncoated tungsten 

carbide, poly-crystalline cubic boron nitride (PCBN), poly-crystalline diamond (PCD), and 

cubic boron nitride (CBN). It has been established that using tungsten carbide cutting tools 

has a great propensity for surface cracking compared to other tool types. This tendency is 

because cutting tools such as PCBN and PCD can maintain their sharp cutting edge longer 

than WC tools. This observation established a strong correlation between surface integrity 

and tool wear. 

Thus far, the commonly adopted technique to avoid surface cracks formation in 

machining is to increase the cutting speed for a rise in cutting temperature and ductility at 

the tool-workpiece interface, which helps reduce the chance of crack initiation and 

propagation. However, the downside is the concurrent increase in thermal load and 

accumulation at the cutting edge resulting in rapid tool wear or low tool life. Also, this 

approach is challenging to adopt in titanium aluminide machining since the cutting 

temperature must exceed the brittle-to-ductile transition temperature of 600°C - 700°C. 

The estimated cutting temperature at the cutting tool-workpiece interface is around 420°C 

which is below the brittle-to-ductile transition temperature. To overcome this limitation in 

TiAl machining, Uhlmann et al. (2009) proposed a workpiece pre-heating approach. They 

established that pre-heating the workpiece to about 300°C significantly reduced the size 

and density of surface cracks as to room temperature machining. Increasing the pre-heat 

temperature to 700°C reduced the macro-cracks to micro-cracks, and >800°C preheat 

temperature eliminated the surface cracks after machining. As discussed in reported 

literature, the driving force behind surface finish research in γ-TiAl machining is the need 

for fatigue life improvement during application. The adoption of cracked surfaces in crucial 

applications is strongly discouraged due to fatigue failure during use (Bewlay et al., 2016).  

Surface roughness is one of the principal terms used to describe machined 

components' quality and measure machining accuracy.  A good surface finish is essentially 
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and often desired for improving the machined component's tribological properties, 

corrosion resistance, fatigue strength, and aesthetic look. 

However, machining parameters such as cutting tool edge geometry, feed rate, 

cutting speed, and depth of cut have the most influence on the final surface roughness 

(Shokrani et al., 2012; Su et al., 2012; Sun et al., 2015). Khorasani, Yazdi, and Safizadeh 

(2012) came up with six influencing categories in several attempts to categorize parameters 

that influence the surface roughness (namely, tool properties, workpiece properties, cutting 

parameters, machine tool properties, thermal parameters and dynamic parameters). The 

primary sub-surface defect in titanium aluminide machining, namely, residual stresses and 

hardness, results from lamellar deformation during the applied machining steps (roughing, 

semi-finishing, and finishing operations). This phenomenon is due to the low ductility and 

the ability of titanium aluminide alloys to maintain their strength at high temperatures. The 

thickness of the deformed microstructure can assess the effect of cutting parameters on 

lamellar deformation. However, it has been observed that the distorted microstructure's 

depth can be reduced by employing additional techniques such as laser-assisted machining 

(LAM), ultrasound-assisted machining (UAC), or cryogenic cooling strategies. 

 

Figure 2-5. Machined surface cross-section showing lamellae deformation in the cutting 

direction (Source: (Priarone et al., 2012b) with permission of Elsevier Inc., license 

number 5297320416117) 
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 CUTTING PARAMETERS INFLUENCE ON TITANIUM ALUMINIDE MACHINING 

 Cutting Tools Performance 

Cutting tools are subjected to heat and mechanical stresses during machining. These 

stresses are substantially higher for titanium aluminides, resulting in fast cutting-edge wear 

(Priarone et al., 2012b). As a result, cutting tools must have a balanced set of properties, 

including temperature resistance, mechanical strength, toughness, and hardness. Various 

types of high hardness cutting tool materials, such as cemented tungsten carbide (WC), 

cubic boron nitride (CBN), and polycrystalline diamond, have been used to investigate the 

machinability of titanium aluminides (PCD) (Bentley et al., 1999; Castellanos et al., 2019; 

Priarone et al., 2012b; Sharman et al., 2001b). Tungsten carbide tools (WC) are the most 

popular among these materials in research. These tools can be coated with single or 

multiple layers of aluminum oxide (Al2O3) to increase their performance. The most 

extensively used industrially are cemented carbide tools. High fatigue strength, 

compressive strength, stiffness, and hardness are all characteristics of this material. Hard 

carbide particles, mostly tungsten carbides (WC) bound with metallic cobalt (Co) binder, 

are compacted and sintered to make these tools. The carbide particle size and binder 

concentration determine the relative balance of hardness and toughness. 

Cemented carbides are grouped into six grades, P, M, K, N, S, and H. P grades are 

used to machine various types of steel or long chip material and are rated from 01 to 50. In 

contrast, M grades are recommended for stainless steel and heat resistant alloys, and K 

grades are used for short chipping materials such as cast iron. They are rated from 01 to 

40, N grades are suitable for non-ferrous metals and alloys, S is for heat-resistance 

superalloys and titanium-based alloys, and H grades are for hard and hardened steel and 

alloys (Adaskina et al., 2013). It is also worth noting that carbide quality varies 

significantly from one producer to the next because classification methods do not always 

define the criteria for classifying carbide grades. Abrasive wear is the most common type 

of damage caused by WC tools. This deterioration is particularly noticeable in alloys 

containing more boride (TiB2). According to experimental tests in turning and milling 

operations, abrasion wear generated by TiB2 lowers tool life by up to 10 times and 

accelerates fracture initiation on the surface (Chen et al., 2021; Venugopal et al., 2003; 
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Xiong et al., 2016). Comparative investigations of the performance of coated WC tools in 

the machining of titanium aluminides demonstrate that coatings do not give substantial 

benefits to the tool. Multiple studies (Celik et al., 2018; Ozer and Bahceci, 2009; Sharif 

and Rahim, 2007) found that for turning and drilling operations, uncoated WC tools with 

a higher straight grade, fine grain, and roughly 6wt% Co performed better than coated W. 

When machining TiAl with coated or uncoated surfaces, cutting parameters are essential.  

In milling experiments, uncoated carbide tools with cutting speeds of 35, 50, and 

71 m/min demonstrated that tool life declines dramatically from 70 minutes to 15 minutes 

in the 35 to 50 m/min range, but beyond 50 m/min, the tool life pattern changes and 

becomes practically constant. Furthermore, it was shown that using minimum quantity 

lubrication (MQL) can prolong tool life by up to 6 times (AbbasiandPingfa, 2015; Zhang 

et al., 2012). Wet lubrication can extend tool life by up to 24 times under cutting 

circumstances. Polycrystalline diamond tools and cubic boron nitride (CBN) have been 

demonstrated to outperform tungsten carbide in TiAl machining due to superior abrasion 

resilience, but only in continuous cutting processes (turning and drilling). However, these 

materials perform poorly in operations like milling, which is a discontinuous cutting 

process. For instance, CBN tools show diffusion, flank wear, craters, and built-up edge on 

the cutting edge when machining titanium. Unfortunately, little information about the tools' 

service life or cutting time is available. In several investigations in boring operations, CBN 

has been observed to have more flank wear and a shorter cutting length than cemented 

carbide tools. This difference is due to the CBN particles' higher binder concentration and 

greater grain size. 

Cutting at a speed of 300 m/min with cutting tools comprising 80 percent CBN and 

20 percent TiC/WC produced excellent results in terms of surface integrity(Uhlmann et al., 

2004). Due to the heat impact of the high cutting speed at the tool/chip contact, almost 

crack-free surfaces and chips with very smooth undersides are seen. Certain publications 

(Arif et al.; Dhananchezian et al.; Doetz et al.; LiuandLi; Mcgee) claim that cubic boron 

nitride tools have a minor advantage over WC tools regarding workpiece surface integrity 

and process productivity. Furthermore, polycrystalline diamonds for TiAl machining 

appear to be more promising. However, process parameters and workpiece surface 

integrity, among other things, remain substantially unknown. Commercial cutting 
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geometries for typical titanium alloys are used in most TiAl research projects. However, 

specific geometries have been less successful in terms of tool life, surface integrity, and 

productivity.  

 

Figure 2-6. Tool wear observation for coated and uncoated ISO K10-grade carbide tools 

(Source: Priarone et al. (2012a) with permission of Springer Nature, license number 

5297320563230) 

 Tool Wear Effect on Surface Integrity 

The cutting tool edge geometry has significantly impacted the cutting process and 

machined product’s functional performance. This edge geometry does not remain constant 

during a cutting process due to necessary metal-to-metal contact between the tool and the 

workpiece leading to wear/degradation of the tool edges. The tool edge geometry changes 

affect the thermo-mechanical properties, influencing the surface integrity factors. The tool 

wear rate and pattern hugely depend on the machinability of the workpiece and cutting tool 

material. For instance, Akhtar et al. (2014) noted that the ability of Nickel alloys to 

maintain their mechanical strength even at high temperatures exposes the cutting tool to 

both thermal and mechanical shock during cutting. While the tool wear mechanism 

experienced in different machining conditions varies, adhesion, abrasion, oxidation, and 

diffusion wear are often limited. The abrasion wear mechanism involves a chip-off in the 

tool due to the hardness of the workpiece.  

In contrast, adhesion involves the clinging of workpiece material to the cutting tool 

due to high temperature and stress. In difficult to machine materials such as Titanium and 
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Inconel alloys, the high process temperature and tool-workpiece adhesion result in rapid 

tool wear. Diffusion wear is similar; however, the tool material diffuses due to high heat 

and is most common at the tool-chip interface. The oxidation wear mechanism involves 

the reaction of the tool material with its surrounding elements (either the workpiece or 

environment) at elevated temperatures, leaving a smoothly worn surface.  

Studies have shown that the speed and feed at which the cutting tool moves on the 

workpiece influence the wear rate on the tool due to the generated temperature. An increase 

in process temperature softens the tool material, making it prone to wear. These wear 

challenges have led to solutions such as using coolants to reduce the process temperature. 

However, this solution might be undesirable if a dry machining condition is preferred. Tool 

coatings, however, as reported by Ucun et al. (2013), are highly effective due to their ability 

to reduce process friction coefficients, temperature, and a tool-built edge formation. 

Devillez et al. (2007) investigated the impact of tool coating in reducing tool wear and 

cutting forces in dry cutting of Inconel 718 superalloy while using a cemented carbide tool. 

They derived and compared the force ratio for all the coatings to establish the best 

performing coating and condition. The prominent tool wear observed was due to adhesion 

and welding of the machined material on the cutting tool edges. The AlTiN coating was 

found to give the best coating performance, and a relationship between the tool wear and 

expended power was also noticed. Wanigarathne et al. (2005) studied the relationship 

between the tool wear progression of a grooved insert and the cutting temperature and 

discovered a strong relationship between the two. Caprino et al. (1996) investigated the 

tool wear effect on process forces in orthogonal cutting of fiber-reinforced plastics; they 

noted a strong correlation between the flank wear and the cutting force variations. Zhang 

et al. (2010) did similar work in an end-milling operation of Ti-6Al-4V alloy, slight 

variation in cutting forces were observed for the first cutting pass due to the initial finite 

sharpness of the tool, however as the cut progresses and tool wear occurs, the cutting forces 

increase mainly in the 𝐹𝐹𝑦𝑦  direction due to a change in tool edge geometry and contact 

length. Besides, they observed that both adhesion and diffusion are the main tool wear that 

occurs in the process.  
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The significant impact of tool wear on thermo-mechanical loading makes it critical 

to study effective surface integrity control and achieve premium product 

quality/performance. Dogra et al. (2011) reviewed existing literature to establish the 

influence of the tool micro-geometry on tool wear, surface integrity, chip formation, cutting 

force, and temperature. The cutting speed has been shown to influence the tool wear due 

to a directly proportional relationship between the cutting speed and generated temperature. 

However, high process temperature affects the tool life and impacts the surface integrity of 

the machined product due to induced tensile stress and might lead to a short-term 

operational failure of such product.  Among the surface integrity factors, most studies have 

been carried out on the tool wear effect on machining-induced residual stress because of 

incomplete removal of the thermo-mechanical stresses generated during machining.  

Machining-induced residual stresses are difficult to predict due to the complicated 

interactions between chip formation, ploughing, transient stresses distributions, 

temperature gradients, and material responses during cutting. An extensive study has been 

carried out to investigate the role of tool wear on induced stresses (Denkena and Meyer, 

2009). Denkena and Meyer (2009) proposed managing the impact of tool wear on residual 

stress formation in hard turning operations. They argued that since the cutting-edge 

geometry substantially affects the stress and temperature distributions in the deformation 

zone, it would be best to modify the edge geometry to reduce the tool wear impact. The 

cutting tool is modified such that the flank contact length remains nearly constant over the 

cutting time, thereby producing a more steady and efficient process. Results showed 

improvement in tool life and a shift in compressive and tensile stress maximum due to 

lower contact length and cutting forces. 

Denkena et al. (2008) investigated the influence of edge geometry and tool wear on 

induced residual stress in forged aluminum alloy machining and showed a strong 

relationship between the edge radius and induced residual stresses. Rao et al. (2011) carried 

out experimental and numerical studies of Ti-6Al-4V machining and developed a tool wear 

model illustrated in Eqn. 1 from the FE model's estimation of temperature and stress, and 

speed. The influence of the wear on surface integrity in terms of residual stress was 

observed, and results confirmed good residual stress performance within a limited wear 

range. 
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Muñoz-Sánchez et al. (2011) used a Finite Element Analysis approach to simulate 

the influence of different cutting parameters on the residual stress generated in orthogonal 

cutting of AISI 316L steel. The tool wear was generated and controlled using electrical 

discharge machining, and results showed a corresponding increase in residual stresses as 

tool wear increased. Liu et al. (2011) studied the influence of the tool nose radius and wear 

on the residual stress distribution in steel hard-turning. Their conclusion drawn from X-ray 

diffraction measurements showed an increase in thrust force as nose radius increases; also 

an increase in surface residual stress and residual compressive stress as tool wear 

progresses. 

Abusive machining of the workpiece can sometimes lead to the formation of a white 

layer on the machined surface, and these layers are either softer or harder than the base 

material. Attanasio et al. (2012) investigated the impact of tool wear on the formation of a 

white and dark layer in AISI 52100 steel turning. Their results showed that the white and 

dark layer formation increases due to the amount of wear on the cutting tool, and the wear 

increase is due to the cutting speed increase. Grzesik (2008) studied the role tool wear plays 

in the resulting surface roughness during hard turning operations with ceramic tools. The 

author used wiper geometry and standard ceramic cutting tools; Figure 2-7 below shows 

that the surface roughness increased as the tool wore over the cutting period.  

 
Figure 2-7. Surface Roughness as a function of time for different machining conditions. 

(Source: Grzesik (2008) with permission of Elsevier Inc., license number 

5297320754628) 
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Li et al. (2014) investigated tool wear effects on surface integrity and fatigue life; 

they reported lower surface roughness, negligible fatigue life, and higher work-

hardening/micro-hardness with an increase in tool wear. A white layer formation was also 

not observed due to the cooling effect as a result of intermittent cooling in the milling 

operation; however, in a turning operation, Che-Haron (2001) studied the tool-life effect 

on surface integrity in titanium at 2mm depth of cut and cutting speeds between 45 −

100𝑚𝑚/𝑚𝑚𝑇𝑇𝑚𝑚, and microstructural changes along with white layer formation were observed. 

The cutting tool wear has been shown to increase work hardening, due to plastic 

deformation and frictional contact between the cutting tool flank and the workpiece 

surface. A larger contact area caused by the wear increases the plastic deformation and 

temperature, thereby increasing work -hardening. Zhou et al. (2011) explored the influence 

of tool wear on subsurface deformation of machined surfaces, using a backscattered 

electron microscope and EBSD to observe the subsurface features (shown in Figure 2-8). 

They reported a strong influence of tool wear on the changes in the microstructure, with 

recrystallization layers formed in grain sizes between 200-300nm.  

 
Figure 2-8. EBSD maps depicting the subsurface layer plastic deformation depth (a) new 

tool, (b) semi-worn, (c) worn tool, and (d) microstructure recrystallization. (Source: Zhou 

et al. (2011) with permission of Elsevier Inc., license number 5297320940560) 
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Kishawy and Elbestawi (2001) studied the tool wear effect on surface integrity in 

the high-speed turning of hardened steel; they showed that varying cutting conditions 

influence the machined surface's surface and subsurface layer properties. They observed 

that the surface defects generated on the workpiece surface depend on the tool's amount of 

wear and cutting speed. They concluded that it is possible to control the machining-induced 

residual stress based on the optimal adjustment of the cutting conditions. Tool wear effect 

on surface integrity factors such as microhardness and microstructure changes have also 

been investigated, El-Wardany et al. (2000) confirmed that the amount of wear on the 

cutting tool significantly influences both the surface microhardness and subsurface residual 

stress distribution, showing an increase in hardening depth at higher tool wear. Their finite 

element analysis results confirmed that experimental results were within a 12% deviation. 

Houchuan et al. (2015) showed variation in microhardness, microstructure, and surface 

roughness, due to the tool wear. They observed that the severe plastic deformation caused 

by excessive tool wear could significantly alter the workpiece microstructure.  

 SURFACE INTEGRITY IN MACHINING 

 Surface Integrity Background 

A typical machining process consists of the operating equipment, cutting tool, 

workpiece, and the machine operator; of these connected entities, the workpiece can be 

deemed most important as other factors ensure its premium quality and enhanced 

functional performance. Over time, significant efforts have been directed towards 

achieving durable and functional products by leveraging continual advancements in 

technology to better understand and control machining processes. The aerospace sector, 

for instance, places the utmost importance on product quality due to the dire consequences 

attached to product failure. The surface condition of the workpiece after machining 

operation is commonly referred to as Surface Integrity. Early publications on this subject 

include Field (1971) detailed review on surface integrity. They highlighted surface 

alterations common to machined products, such as surface cracks, induced residual 

stresses, microhardness microstructure alterations, and built-up edge formation. The 

adverse effects of these alterations on product performance were noted. In another work, 
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Field et al. (1972) reviewed pertinent measurement techniques for surface integrity 

inspection by considering the varying level of surface integrity datasets. In the same 

publication, they defined surface integrity from a technical perspective as “the unimpaired 

or enhanced surface conditions or properties of a material resulting from a controlled 

manufacturing process,” and the culmination of their efforts in surface integrity study led 

to the creation of an American National Standard for surface integrity.  

Extensive research works ranging from characterization to measurement techniques 

of different surface integrity parameters such as residual stress and microhardness were 

reported between 1970 & 1990. Further studies were done by Tönshoff and Brinksmeier 

(1980) using experimental methods that investigated the influence of thermo-mechanical 

properties generated during machining on residual stress distribution and microhardness. 

At the same time, Brinksmeier et al. (1982) gave a comprehensive overview of the causes 

and measurement of machining-induced residual stresses. Measurement techniques for 

surface integrity can be categorized under destructive and non-destructive methods. 

Destructive testing methods such as metallographic inspection and x-ray diffraction, while 

widely accepted, are usually time-consuming, limited to crystalline materials, and lack 

real-time capability. In Brinksmeier et al. (1984) overview of nondestructive testing 

methods (NDT), they cited the capability of a non-destructive testing ultrasonic method to 

measure bulk properties of both metal and ceramic materials. At the same time, the 

ferromagnetic NDT approach is constrained to electrically conductive materials.  

In a more recent publication, Thakur and Gangopadhyay (2016) defined surface 

integrity as the “combination of mechanical, metallurgical, topographical, thermal and 

chemical features of the surface of a component obtained from a particular manufacturing 

process, which can be related to the performance during the intended application of the 

same component.” Alterations in induced residual stress can distort the product’s 

mechanical and corrosion properties, while changes in microhardness can adversely affect 

the wear resistance and load capacity, especially in aircraft components. Early works on 

these two parameters include Liu and Barash (1976) two-part publication, which studied 

the effect of both sharp and worn tools on the sub-layer surface properties of the workpiece. 

They reported a change in residual stress distribution due to increased thermal effect from 

worn tool face and speed increase. In recent works, Sharman et al. (2006) studied the effect 
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of varying process parameters such as tool wear, geometry, and materials on surface 

integrity in the Inconel 718 turning operation. In a similar but more recent work, Sharman 

et al. (2015) focused on the effect of tool nose radius on surface quality and residual stresses 

in Inconel 718 material. They established that a tool nose radius increase would increase 

the radial cutting forces, deformation depth in the microstructure, and deepen compressive 

and tensile residual stresses. To achieve improved surface quality and product 

performance, Pu et al. (2012) investigated the effect of cryogenic machining on product 

properties and discovered that applying liquid nitrogen on the clearance side of a tool with 

a large edge radius yielded an improved surface and refined grains in AZ31BMg alloy 

machining. For various materials such as titanium, inconel 718, the effect of cryogenic 

cooling on machining performance measures such as tool wear, cutting temperature, force 

components, and friction was extensively studied (AxinteandDewes, 2002; Pusavec et al., 

2014; Rotella and Umbrello, 2014; Sadeghifar et al., 2018; Schoop et al., 2019). However, 

this present study will be constrained to dry machining approach due to setup limitation. 

The correlation of the surface properties with product functional performance, along with 

substantial evidence of control, led to the development of models tailored to prediction and 

control of final surface quality on machined surfaces (Axinte and Dewes, 2002; Pusavec et 

al., 2014; RotellaandUmbrello, 2014; Sadeghifar et al., 2018; Schoop et al., 2019).  

 Surface Integrity Modeling 

The emergence of newer material alloys, machining processes (such as 

micromachining), and higher quality standards have further propelled research on surface 

integrity. Also, the growing need for improved and predictable product functional 

performance in industries such as the biomedical, automotive, and aerospace sectors have 

led to the development of predictive models for surface integrity parameters over the past 

decade. Modeling machining and finishing procedures like grinding, burnishing, and 

polishing is critical for developing more efficient and sustainable products and processes. 

Machining is a highly complex process that involves phenomena that have historically been 

investigated in mechanics, thermodynamics, tribology, industrial engineering, and, more 

recently, materials and surface engineering. Over the past several decades, developing 

predictive models for machining performance indicators such as tool-wear/tool-life, 
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surface roughness, cutting forces/power/torque, part precision, and chip-form/chip 

breakability has been a significant research focus (Arif et al., 2013b; Ee et al., 2006; Fang 

and Jawahir, 2002; Jawahir et al., 2020; Jawahir and Wang, 2007; Jawahir et al., 2011; Li 

and Liang, 2005; Wang et al., 2007).  

Much work has been given to modeling cutting pressures, tool wear, and tool life; 

Frederick Taylor's early models and research focused on this problem. Given the high cost 

of cutting tools and the need for better productivity and process security, tool-life is a 

prominent issue to study and anticipate. With the introduction of near-net-shape production 

methods such as precision casting and additive manufacturing in recent years, a trend 

toward finishing operations has emerged. Machining operations have become the most 

adaptable approach for precision finishing because of their unrivaled capacity to achieve 

exceptional dimensional tolerances, surface finishes at industrial sizes, and reasonable cost. 

Jawahir et al. (2020) provided a comprehensive overview of the recent development in 

sustainable machining, focusing on modeling and optimization needs for the future. 

M'saoubi et al. (2008) noted that while significant efforts have gone into developing 

empirical, numerical, and analytical models primarily for residual stress distribution, and 

results show useful predictions, there remain limitations regarding accurate material 

property characterization, cutting process depiction, and computation speed.  

Also, there is an existing predictive relationship disconnect between induced 

residual stress and fatigue life of the machined product due to complex variables and 

geometric attributes involved. The need for improved process productivity and product 

quality has led to the development of predictive models aimed at near exact process 

simulation that would ultimately end in adaptive control of machining processes. This 

approach is strongly backed to reduce or eliminate expensive experimental trials and errors. 

A successful process modeling starts with identifying pertinent process inputs such as the 

workpiece material properties, cutting parameters, cutting tool geometry, etc. However, 

since these variables do not directly depict the desired industry quality metrics (surface 

integrity, roughness, or tool life), the preliminary inputs are first passed through physics-

based models to predict the intermediate variables (process Forces, Temperature, Stress, 

Strain-rate, etc.), which are subsequently used to predict the industry-relevant output 

(Arrazola et al., 2013; Jawahir et al., 2011; Priarone et al., 2016; ThakurandGangopadhyay, 
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2016).  Figure 2-9 shows a stepwise connection between preliminary process inputs and 

desired industry quality metrics.  

 
Figure 2-9. Machining process modeling approach (Source: Arrazola et al. (2013) 

with permission of Elsevier Inc., license number 5263770024758) 

Existing predictive modeling techniques have different capabilities and limitations. 

Numerical models leverage continuum mechanics to predict fundamental variables such as 

the process forces, temperature, stress, and strain rates. In contrast, analytical models use 

the slip-line theory principles, though limited to a 2-dimensional setup. Empirical models, 

however, involve running several experiments and observing trends through data curve 

fitting, but this approach is quite expensive and time-consuming. Other approaches include 

AI-based models and hybrid models that leverage different models.  
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2.5.2.1 Numerical Modeling 

Numerical models are built on continuum mechanics formulations such as finite 

element modeling (FEM), finite difference method (FDM), and boundary element method 

(BEM). FEM, the most common technique, requires a constitutive material model to 

establish a relationship between the flow stress and fundamental variables such as strain, 

strain rate, and cutting temperature. The model coefficients are critical for accuracy and 

are often acquired from a split-Hopkinson pressure bar (SHPB) test. FEM is subdivided 

into either an Eulerian or Lagrangian Mesh Formulation. A Lagrangian mesh changes as a 

function of time and the workpiece material, while an Eulerian mesh assumes a steady 

state. This fundamental difference makes a Lagrangian mesh approach much preferable 

across existing studies; however, combining these two approaches births the Arbitrary 

Lagrangian-Eulerian (ALE) technique, which leverages the strength of both methods for 

fast solution convergence.  

Typical applications of numerical modeling over the years include the prediction 

of 2D strain distribution, temperature, chip formation, residual stresses, and white layer 

formation. The application of FEM for residual stress prediction is perhaps, the most 

common study across existing literature. Some of such works include Özel and Zeren 

(2007) Arbitrary Lagrangian-Eulerian FE model for the simulation of stress and surface 

properties induced by a round edge cutting tool during high-speed machining of AISI 4340 

steel. Salio et al. (2006) used a nonlinear finite element software to estimate the residual 

stress distribution in AISI 316L turbine disk turning. Results and measurement trends 

agreed with experimental data from orthogonal cutting. Figure 2-11 shows residual stress 

prediction results from Hua et al. (2006) numerical modeling efforts on DEFORM 2D FE 

software. The authors varied different cutting parameters and studied the corresponding 

effect on induced stress. Figure 2-11a shows a substantial increase in circumferential stress 

and slight axial stress increase as both feed rate and cutting-edge radius are increased. 

Strain fields and strain rates can also be predicted with FE models, Özel et al. (2010) used 

3D finite element modeling to obtain the strain distribution for Ti-6Al-4V alloy turning 

(shown in Figure 2-10a), and Özel and Zeren (2006) simulation result showed the strain-

rate distribution at the shear zone of AISI 1045 orthogonal cutting (shown in Figure 2-10b). 
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Figure 2-10. (a) Predicted strain fields with FE simulations during Ti6Al4 alloy (b) FE 

simulation of chip formation during AISI P20 steel and carbide tool (Source: Özel et al. 

(2010) with permission of Elsevier Inc., license number 5263770505901) 

 
Figure 2-11. Effect of (a) feed rate on the maximum compressive residual stress for 

different hardness (chamfer and hone: 1 mm × 20◦ × 0.1 mm, cutting speed = 120 

m/min). (b) Cutting edge preparation on maximum residual stresses and penetration depth 

(HRc = 62, cutting speed = 120 m/min, feed rate = 0.1 mm/rev) on maximum residual 

stress (Source: Umbrello et al. (2011) with permission of Elsevier Inc., license number 

5263770370170) 
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FE models have also seen application in chip morphology prediction, Umbrello et 

al. (2004) developed a numerical model which integrated both the Johnson-Cook flow 

model and Brozzo fracture criteria to capture the hydrostatic stress effect on-chip 

separation; the model was formulated on a Lagrangian mesh approach and implemented in 

DEFORM-2D FE software. Figure 2-12a and b. compares the observed chip morphology 

with the simulation outcome. 

 

Figure 2-12. Morphology of the chip during machining workpiece with an initial 

hardness of 53 HRC: (a) observed (b) predicted. (Source: Umbrello et al. (2012) with 

permission of Elsevier Inc., license number 5297321321062) 

Simoneau et al. (2007) investigated AISI 1045 steel microstructure effect on 

process outcome using FE simulation on ABAQUS: ExplicitTM software. Grain size and 

orientation effect on micro-machining with a finite sharp tool and two different 

microstructures (a normalized and four thermal cycles refined microstructure) were 

studied. FE has also seen application in white layer thickness prediction as Ranganath et 

al. (2009) developed a FE model to study subsurface deformation as white layers and bent 

grains in a finishing process. They used a Johnson-Cook model to describe the flow of 

nickel superalloy material, while results confirmed shear banding and distorted surface 

layers even at low process speed. In a similar work, Ramesh and Melkote (2008) modeled 

the white layer formation in orthogonal cutting of AISI 52100 steel and reported that the 

white layer produced a higher and shifted peak compressive residual stresses on the 

surface. FEM technique, however, highly depends on the power and performance of the 

operating computer for reduced computation time and flexibility. Also, while recent 
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technological advancements have been helpful, there remain drawbacks regarding the 

accurate characterization of the constitutive model and computation time when compared 

with other approaches. 

2.5.2.2 Analytical Modeling 

A good understanding of the physics behind machining operations has been a 

widely embraced approach for analyzing and predicting surface integrity factors such as 

residual stresses and fatigue life. This approach, commonly referred to as analytical 

modeling, provides better insight into the machining process through process assumptions 

at a much-reduced computational time. However, it is essential to be wary of the 

assumptions made, as the wrong assumptions could falsely represent the process. While 

analytical modeling is complex and requires an in-depth understanding of process physics, 

it still depicts the process better than other methods. Early work with this technique 

includes Liu and Barash (1976) two-part publication, which studied the effect of both sharp 

and worn tools on the sub-layer surface properties of a machined product. They confirmed 

that most of the changes in residual stress are due to an increased thermal effect caused by 

the worn tool face and speed increase. Wu and Matsumoto (1990) investigated the role 

hardness has on residual stress formation and discovered a strong relationship between the 

stress pattern and deformation field orientation. Liang and Su (2007) developed a residual 

stress predictive model using pre-existing force and temperature models. They validated 

their model with experimental data from the orthogonal cut of AISI 316L and AISI 4340 

alloys. In another work, Liang et al. (2008) proposed an inverse calculation approach which 

allows the use of the desired residual stresses as a pre-specified input to selecting process 

parameters and cutting-tool geometry.   

Yang and Liu (2002) developed a stress-based friction model and studied its 

influence on residual stresses. Outeiro et al. (2010) used experimental data to develop a 

model that explored the relationship between size effects and surface integrity because of 

the edge radius. Ulutan et al. (2007) developed a residual stress analytical model 

considering the elastic loading, tool and workpiece temperature model, and final relaxation 

process. The heat equations for the tool, chip, and workpiece were solved using a finite 

difference approach, and the thermo-mechanical stresses were resolved with an analytical 
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elasto-plastic model. Lazoglu et al. (2008) proposed an improved residual stress analytical 

model which used both isotropic and kinematic hardening along with triangular distribution 

of mechanical forces for enhanced modeling, results were validated with x-ray diffraction 

measurements. 

In recent work,  (Schoop et al., 2019) modeled the thermal, plastic, elastic, and 

thermodynamic domains in machining using analytical and semi-empirical models. The 

proposed approach was computationally effective and faster (in the order of seconds), with 

a result deviation around +/- 10%, as shown in Figure 2-13. Regardless of the selected 

modeling approach, accurate machining process prediction requires precise 

characterization of the process parameters. 

 
Figure 2-13. Validation of the proposed model in Ti-6Al-4V cryogenic machining with 

𝑉𝑉𝑐𝑐 = 60 𝑚𝑚/𝑚𝑚𝑇𝑇𝑚𝑚,𝑓𝑓 = 0.05𝑚𝑚𝑚𝑚/𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝛽𝛽 = 25 µ𝑚𝑚 (Source: (Schoop et al., 2019) with 

permission of CC BY NC ND) 

2.5.2.3 Empirical Modeling 

Empirical modeling is the easiest modeling approach due to its direct use of experimental 

trials to understand the correlation between process variables and outcomes. Experimental 

matrices are constructed to cover a wide range of cutting conditions, and data are analyzed 

using statistical methods. However, conclusions are only as robust as the experiment scope, 

and a poor experimental design would limit modeling accuracy. Also, this approach is quite 

expensive and time-consuming, as there is a need to consider different cutting conditions 
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for a better understanding of the process. Using a hardness-based flow stress model, 

Umbrello and Filice (UmbrelloandFilice) carried out empirical modeling of white and dark 

layer formation of hardened AISI 52100 alloy. Figure 2-14a & Figure 2-14b shows the 

hardness result after a dry orthogonal turning test at a fixed cutting speed and feed rate. 

Arrazola et al. (2013) summarize these models' principles, strengths, and limitations as 

shown in Table 2-1.   

 
Figure 2-14. Experimental hardness profile of the hard turned specimens at (a) 

fixed cutting speed of 250m/min and (b) fixed feed rate of 0.125 mm/rev. (Source: 

Umbrello and Filice (2009) with permission of Elsevier Inc., license number 

5263770984700) 

Table 2-1. Benefits and limitations of modeling approaches (Source: Arrazola et al. 

(2013) with permission of Elsevier Inc., license number 5297330394800) 

 Analytical Numerical Empirical Hybrid 
Principle Slip-line 

theory or 
minimum 

energy 
principle 

Continuum 
mechanics using 
FEM, FDM & 
meshless FEM 

Curve fitting of 
experimental data 

Combines the 
strengths of other 

approaches 

Capabilities Predicts 
cutting forces, 
chip geometry, 

tool-chip 
contact 

length, average 
stresses, 
strains, 

Predicts forces, 
chip geometry, 
stresses, strain, 
strain rates, and 

temperatures 

Applicable to most 
machining 

operations for 
measurable process 

variables only 

Provides meta-
models for a family 

of models to be 
integrated 
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 IN-SITU CHARACTERIZATION OF MACHINING PROCESSES 

This section presents a comprehensive overview of past and current research on the 

in-situ characterization of machining processes in the chip formation mechanism, surface 

integrity, induced strain, and temperature measurement of the machined workpiece, chip, 

and cutting tool. The varying material response and findings under the main deformation 

zones, specifically the primary, secondary, and tertiary deformation zones, are highlighted, 

focusing on specific considerations for efficient characterization of each unique zone. 

Various state-of-the-art in-situ characterization setups are discussed and compared, 

including each approach's relevant strengths and weaknesses. Finally, an outlook for future 

work in this highly relevant and growing area is presented, most notably the need for more 

widespread implementation of carefully constructed, diffraction-limited in-situ setups to 

enable rapid calibration and validation of physically informed and AI-enabled process 

modeling and optimization paradigms. 

 Review of Experimental Setups 

The earliest attempts towards investigating cutting processes and chip formation have 

adopted a quick stop device (QSD). The operating principle of the QSD design is centered 

strain-rates and 
temperatures 

Limitations Usually 
limited to 2-D 

analysis 
with single and 

multiple 
cutting 

edge, but some 
3-D models 

exist 

Material model, 
friction as input, 
computational 

limitations: e.g., 
meshing 

Valid only for the 
range of 

experimentation 

Limited to the 
strength of the base 

model: i.e., analytical, 
numerical, empirical, 

etc. 

Advantages Ability to 
develop fast, 

practical tools 

Opportunities to 
connect to 
industry-
relevant 

parameters 

Practical, fast, and 
direct estimation of 
industry-relevant 

parameters 

Improves the 
capabilities and 

accuracies of the base 
models 

Disadvantages Unique to each 
machining 
problem 

Long 
computation 

time 

Extensive 
experimentation, 
time-consuming 

and costly 

Need for extensive 
data from 

experiments and/or 
simulations 
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on a rapid separation or disengagement of the workpiece and cutting tool (Hastings, 1967). 

While this method is ex-situ, it is highly relevant for establishing historical significance 

and the need for more advanced in-situ techniques. This approach made it possible to 

observe and analyze the chip root after an abrupt ‘freezing’ of the cutting process. Pioneer 

reports on QSD setups can be traced to the 1920s when Rosenhain and Sturney (1925) 

investigated the cutting flow rupture mechanism, and Herbert (1928) also used the QSD 

setup to study the formation of the built-up edge during a turning operation. Several 

improved QSD designs were innovated between 1935 and 1970 and reported across 

(Administration et al., 1961; Bhattacharyya, 1964; Kececioglu, 1958). Notably, one such 

method is the explosive QSD, which operates by an explosive charge driving a piston 

alongside the tool post (Hastings, 1967; Philip, 1971; StevensonandOxley, 1969) and an 

explosively-driven bolt-stop on the tool holder (Ellis et al., 1969; Spaans, 1971; Williams 

et al., 1970). Stevenson and Oxley (1969) were among the first to attempt strain-rate 

measurement during orthogonal machining using printed grids and explosive QSD 

(developed by Hastings (1967)). In this method, they printed 0.002-inch square grids on 

the workpiece before cutting, and the QSD was used to freeze the assumed steady-state 

deformation during cutting. They also developed a post-process method to calculate the 

strain rate by analyzing the streamlined deformation on the printed grids. It is worth noting 

that the freezing procedure in QSD setups works on the assumption that continuous chip 

formation is a steady-state process whereby observation at a single instant would accurately 

depict average streamline deformation. However, Childs (1971) proved that this 

assumption is fundamentally false through a double exposure imaging technique at a 

relatively low cutting speed of 0.025 m/min, which made the QSD approach unreliable for 

detailed analysis of the mechanics of cutting processes. Additionally, a comprehensive 

study on QSDs by Brown and Komanduri (1973) showed a non-uniform acceleration in 

the explosive QSD setup capable of wrong tool location. It also exaggerates the pressure 

energy measurements after a time interval. Thus, researchers stopped using the QSD 

technique since it fails to provide reliable and quantitative information suitable for the 

calibration or validation of process models.  

The QSD setup limitations caused a shift towards an in-situ (or real-time) study that 

captures the fundamental behavior of metal cutting processes. The earliest record of 
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attempts to conduct in-situ cutting process observation was in 1936, when Prof. Schwerd 

(Schwerd, 1935) at the Technical University of Hannover, Germany. He developed a 

custom in-situ setup capable of 100 nanosecond exposure to study the transition between 

continuous and discontinuous chip formation in free machining of (leaded) steel at speeds 

ranging from 5 to 1000 m/min (0.083 to 16.67 m/s). 

 Strain and Strain Rate Characterization 

A plane strain linear sliding operating principle is based on a stationary or moving 

cutting tool that linearly advances into a moving or stationary workpiece with its edge 

perpendicular to its motional direction (also known as orthogonal cutting, shown in Figure 

2-15) (Osorio-Pinzon et al., 2019). The in-situ testbeds built on this principle operate with 

a high-speed or infrared camera directly observing the cutting process to achieve strain and 

temperature field measurement. This section will discuss the various plane strain linear 

sliding setups focused on extracting displacement, strain, material constitutive parameters, 

and friction modeling inputs.  

 

Figure 2-15. Overview schematic of plane strain machining (Source: Osorio-

Pinzon et al. (2019) with permission of Springer Nature, license number 5263771188932) 

Existing in-situ setups help capture the entire deformation field present in 

machining processes. Lee et al. (2006) obtained the strain deformation field for dry 

machined copper using a microscope, a CCD high-speed camera setup with transparent 

sapphire tools at 1 m/min and 250 fps. The camera offered a spatial resolution of about 
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3.3um (pixel size) for the process images, while the velocity and strain distribution field 

was estimated using the PIV technique. Accurate measurement with post-process analysis 

such as DIC or PIV requires good spatial resolution and low noise; however, this is not 

obtainable with the intensified multi-channel camera setup. Hijazi and Madhavan (2008) 

attempted to solve this bottleneck by developing a non-intensified multi-channel camera 

system comprising four high-speed dual-frame cameras and dual-cavity lasers (camera 

system picture and schematic displayed in Figure 2-16 and Figure 2-17, respectively). The 

setup was capable of ultra-high frame rates (up to 200MHz) image capture at default lens 

and camera resolution. This novel setup bypasses the gating present in the image 

intensifier, allowing pulsed illumination sources and provided improved spatial resolution 

up to 2 µ𝑚𝑚 and 0.1% noise.  

 
Figure 2-16. Proposed camera system: (a) the four dual-frame cameras mounted 

on the stereo microscope, (b) the four dual-cavity lasers, and the beam combining optics 

(Source: Hijazi and Madhavan (2008) with permission of IOP Publishing, order number: 

1215802) 
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Figure 2-17. Detailed schematic of camera setup (Source: Hijazi and Madhavan 

(2008) with permission of IOP Publishing, order number: 1215802) 

Guo et al. (2015) explored an in-situ observation of the deformation field in 

orthogonal machining of brass, both in cutting and sliding states. The experimental matrix 

covered dry-cut observations under plane strain conditions at different rake angles, 

subsequently controlling the chip formation and deformation field. The experimental setup 

comprises a novel die assembly (Figure 2-18a and b), providing constrained movement of 

the workpiece against a fixed tool wedge/indenter using sapphire glass (this allows good 

imaging). The whole fixture's compression loading enables the workpiece's movement via 

a plunger placed at the workpiece end. The rake angles on the indenters range between -

70° to 15° to adequately capture the cutting and sliding conditions. The process images 

were processed using particle image velocimetry to extract the grid deformation, strain, 

and strain-rate distribution. Guo et al. (2015), with the in-situ images displayed in Figure 

2-19, confirmed different chip formation modes and prow slope as the rake angle (α) is 

varied: stable prow/sliding mode (α = -70°), discontinuous chip mode (α= -50°), segmented 
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chip mode (α = -20°), and continuous chip mode (α = 0°). Results established a critical 

rake angle above which cutting occurs and below which sliding occurs. While this provides 

insight into both unsteady and continuous flow field formation, the experiments were 

limited to a low cutting speeds of about 10 mms-1, with 5000 frames/sec camera framerate 

and resolution of about 3.3 μm/pixel.  

Improving on the cutting speed, Baizeau et al. (2017) quantified the induced strain 

fields in aluminum machining, adopting a high-speed double-frame camera and pulsed 

laser lighting setup for the cutting zone observation. Their design displayed in Figure 2-20 

consists of a 30-mJ Nd: YAG laser (capable of 5 – 8 ns pulse duration), a 10x Mitutoyo 

telecentric microscope, and up to 90 m/min cutting speed. Adopting a double frame CMOS 

imager allowed a considerably low interframe time of around 120ns; however, the pulsed 

lighting reduced the camera acquisition frequency to 15Hz. The higher resolution images 

obtained detected the primary shear angle by combining the DIC technique with a custom 

numerical procedure to manage image aberrations. They prepared five different surfaces 

through micro-blasting and varying pressures for the DIC analysis. They obtained a 0.1-

micron uncertainty on the deformation regions. They also developed a custom approach 

for residual strain estimation, with the detailed schematic of the adopted acquisition and 

synchronization device displayed in Figure 2-21. 

 
Figure 2-18. Experimental setup (Source: Guo et al. (2015) with permission of Royal 

Society of London, order number: 1215805). 
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Figure 2-19. Slope (θ) of the prow free surface for (a) stable prow, (b) discrete 

particle, (c) segmented chip, and (d) continuous chip cases (Source: Guo et al. (2015) 

with permission of Royal Society of London, order number: 1215805) 

 
Figure 2-20. Experimental setup adopted by (Source: Baizeau et al. (2017) with 

permission of Royal Society of London, order number: 1215806) 

 
Figure 2-21. Detailed schematic of acquisition and synchronization device (Source: 

Baizeau et al. (2017) with permission of Springer Nature, license number: 

5297340862674) 
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The focus of most in-situ setups is either strain or temperature field measurements. 

However, Harzallah et al. (2018) concurrently achieved full-field strain and temperature 

measurement for Ti-6Al-4V machining using a bi-spectral imaging setup, a combination of 

an infrared and high-speed silicon-based camera (displayed in Figure 2-22). They observed 

a 500 x 500 µm area by applying a flux spectral separator, an off-axis parabolic mirror, and 

two 1040 lumen LEDs within a low cutting range of 3 – 15 m/min. However, as highlighted 

by Zhang (2019), the limitations of this setup include (1) different spatial resolution and 

acquisition rates between the infrared camera and silicon-based camera and (2) varying 

surface preparation requirements for digital image correlation and infrared imaging (3) the 

expensive setup cost of integrating thermal imaging and high-speed imaging. With a high-

speed camera (capable of 6000 frames per second and 25 microsecond exposure time), DIC 

technique, and a heat diffusion method, they acquired and post-processed captured images 

for strain, strain rate, and temperature estimation. Their results showed a significant 

influence of the cutting speed on the deformation mechanism. They also reported a 

combination of shear and compression in the primary shear zone (PDZ) at low cutting 

speeds, while at higher rates, there exists only a shear action and a decrease in the PDZ 

breadth. 

Arriola et al. (2011) also studied the temperature and strain field developed in steel 

orthogonal cutting, with an embedded thermocouple and a dual spectrum camera shown in 

Figure 2-23. The dual setup, which comprised a visual and thermal imaging system, was 

synchronized to enable accurate matching of the high-speed images with the tool, 

workpiece, and chip locations. A data acquisition system could extract the process cutting 

forces concurrently; however, the setup requires special tooling. Also, the extracted images 

were quite blurry, restricting the study to the primary shear zone. 
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Figure 2-22. (a) Orthogonal cutting device and imaging apparatus (b) Bi-spectral imaging 

schematic (Source: Harzallah et al. (2018) with permission of Elsevier Inc, license 

number: 5297340990081) 

 
Figure 2-23. Schematic of dual-spectrum camera setup (Source: Arriola et al. 

(2011) with permission of Elsevier Inc, license number: 5297341233639) 

Zhang et al. (2017) investigated the cutting stress distribution during orthogonal 

machining; they evaluated the deformation field with a DIC technique and effectively 

combined the experimental results with a material constitutive model. A crucial 

contribution of their efforts is tweaking the hydrostatic pressure field in the mechanical 
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equilibrium equations to account for elastic deformation inaccuracies in captured images. 

Their experimental setup comprised a prodimax HD high-speed camera coupled with a 

Navitar X12 zoom lens and two 40W high-power LEDs. They cut the workpiece samples 

into 40 x 13 x 2.5 mm sizes via electrical discharge machining and ground (for oxide layer 

removal), polished with 220 grit SIC paper and 320 grit micro-bead. This ensured surface 

patterns fit for accurate post-process DIC analysis. They observed the cutting action 

through a sapphire glass, which provided a plane strain setup. The authors used the 

computed stress distribution obtained to calculate the cutting forces indirectly. The results 

were compared with the experimental force measurements and were in good agreement.  

 In Germany, Tausendfreund et al. (2018) achieved in-process stress and 

strain measurements within a nanometer range for a single-tooth milling process. They 

investigated the impact of process-induced strain on their setup's final workpiece surface 

integrity, as displayed in Figure 2-24. Their design comprises an Optronis CP70 high-speed 

camera coupled with a custom periscope optic with an adjustable lens aperture between 

𝑓𝑓/4 𝑎𝑎𝑚𝑚𝑑𝑑 𝑓𝑓/22, yielding a 4080 x 3072 pixels image resolution and a 5.5 µm pixel size at 

a 10 m/s cutting speed. Understanding that varying parameters (such as speckle size and 

evaluation window size) can influence the measurement uncertainties in speckle 

photography, the authors conducted Monte Carlo simulations to determine each 

parameter's influence. In another work, the authors used the same setup to investigate the 

workpiece displacement frequent in rough manufacturing (such as rolling, grinding, single 

tooth milling) conditions (Tausendfreund et al., 2020).  

Huang et al. (2020) developed an extended DIC method that reconstructs the 

displacement field and accounts for the elastoplastic strain and stress distribution during 

orthogonal cutting. They successfully reconstructed the stress fields by combining the 

displacement field, estimated from DIC analysis, and the material constitutive model. 

Experimental results and comparison displayed in Table 2-2 show significant improvement 

with the model-based finite-element (FE) DIC over a subset DIC and a FE DIC method. 
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Figure 2-24. Experimental setup (Source: Tausendfreund et al. (2018) with permission of 

CC BY 2.0) 

 
Figure 2-25. Experimental setup (Source: Huang et al. (2020) with permission of IEEE 

Incorporated, order number: 1216994) 

Table 2-2. Performance of different DIC methods on displacement, strain, and stress 

(Source: Huang et al. (2020) with permission of IEEE Incorporated, order number: 

1216994) 

 

Methods 

Relative % Errors (Max, Ave) 

Displacement Strain Stress 

Subset-DIC (100.0, 1.70) (132.4, 73.2) (825.7, 235.8) 

FE-DIC (111.9, 2.24) (95.5, 86.8) (701.6, 51.9) 

M-FE-DIC (0.96, 0.08) (6.0, 1.4) (31.3, 6.1) 

Several publications have attempted to estimate material plastic constitutive 

parameters using both in-situ setup and DIC analysis (Cheng et al., 2019; Thimm et al., 

2019; Zhang et al., 2018b; Zhang et al., 2019). An inverse method by Thimm et al. (2019) 
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combined both high-speed imaging and Digital Image Correlation (setup displayed in 

Figure 2-26), focusing on realistic industry cutting conditions. As shown in Figure 2-27, 

the input material parameter A, B, and n were first calculated using a nonlinear least square 

regression analysis. Initial values were assumed for both C and m, which helps estimate 

the shear strain rate, cutting, and thrust force values. The obtained results (shown in Table 

Figure 2-3) were compared with experimental results, and the deviations are stored as 𝑄𝑄𝑖𝑖. 

The routine is iterated for varying conditions as defined by the experimental matrix. The 

deviation values 𝑄𝑄𝑖𝑖 are summed, and the program only ends when a minimum deviation 𝑄𝑄 

is attained, and the final material parameters signify the optimal values. Based on linear 

orthogonal cutting tests, their experimental setup comprises a Kistler dynamometer type 

9129AA (5 kHz sampling rate), double-cavity Nd-YAG-Laser, and a high-speed camera 

capable of 2550 x 1600 pixels. The experiments were done at 160 m/min cutting speed, 0.1 

mm chip thickness and 750 mm cut length. The Johnson-Cook parameters obtained were 

compared to those reported by (JaspersandDautzenberg), who used a Split-Hopkinson test 

setup; results were found comparable and further validated with FEM simulations. 

Zhang et al. (2019) also presented a hybrid approach to identifying the material 

constitutive model coefficients needed for efficient metal cutting modeling via in-situ 

imaging characterization of the primary shear zone post-process DIC analysis. They 

quantified the strain and strain rate values in the deformation field of Nickel Aluminum 

Bronze Alloy cutting; the shear forces were extracted from the stress model and 

subsequently matched with the measured data using sequential optimization, yielding the 

constitutive model coefficients. Experiments were carried out at cutting speeds between 

30 𝑚𝑚/𝑚𝑚𝑇𝑇𝑚𝑚 and 180 𝑚𝑚/𝑚𝑚𝑇𝑇𝑚𝑚, with 532 nm wavelength lasers, Kistler 9257B dynamometer, 

and a dual shutter camera attached to a Navitar zoom lens. FEM simulation was also used 

to validate the strain, strain rate, and temperature measure from the in-situ characterization 

by calculating the shear force estimates and matching them against the measured force. It 

was then solved using optimization and a sequential least square approach. However, they 

reported blurry images at cutting speeds above 300 m/min and highlighted the need for a 

dedicated and improved LED lighting system. Besides, since the constitutive models were 

solely identified from the primary shear zone, they are not suitable for the secondary shear 

zone FEM simulations due to temperature differences in the two zones. In recent work, 
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Zhang et al. (2021) also investigated the plastic deformation behavior during orthogonal 

cutting of AL7075-T6 alloy using digital image correlation and heat convection-

conduction techniques. Their results showed substantial strain-softening action in the PSZ 

and lowered thermal softening action during fast heating scenarios. These efforts also set 

the tone for further studies on material behavior and robust numerical models. 

Denkena et al. (2021) in-situ setup focused on estimating the friction coefficient 

necessary for improved friction models. They studied the chip formation mechanism 

adopting a PSLS setup with a Photron Fastcam SA5 camera, Kistler Dynamometer, and 

digital particle image velocimetry. The study was carried out at cutting speed between 50 

– 150 m/min and 10,000 -30,000 frames/sec, with CrAlN coatings. This effort gave a better 

understanding of the induced friction in cutting processes and significant progress towards 

friction modeling.  

 

Figure 2-26. Experimental setup (Source: Thimm et al. (2019) with permission of CC BY 

NC ND) 
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Figure 2-27. An inverse method for determining Johnson Cook parameters (Source: 

Thimm et al. (2019) with permission of CC BY NC ND) 

Table 2-3. Comparison of obtained John Cook model input (Source: Thimm et al. (2019) 

with permission of CC BY NC ND) 

 𝑇𝑇 𝑇𝑇𝑚𝑚 𝑀𝑀𝑀𝑀𝑎𝑎 𝐵𝐵 𝑇𝑇𝑚𝑚 𝑀𝑀𝑀𝑀𝑎𝑎 𝐶𝐶 𝑚𝑚 𝑚𝑚 𝜑𝜑𝑜𝑜 𝑇𝑇𝑚𝑚 𝑎𝑎−1 
Inverse 492 585 0.0088 1.2162 0.1677 0.001 

Jaspers et al. 553 601 0.0134 1 0.234 1 

 
Large-scale extrusion machining (LSEM) is useful in creating ultra-fine grains by 

manipulating the severe plastic deformation process. A couple of machining publications 

have adopted an in-situ study of the cutting process (Cai et al., 2015; Efe et al., 2012; 

SuttonandHild, 2015). (Cai et al., 2015) studied the strain distribution field present during 

LSEM of OFHC copper. Combining a novel LSEM device, high-speed imaging, and post-

process DIC analysis could better estimate and develop a new shear strain model. They 

adopted two setups: free and constrained machining setups. The constrained machining 

displayed in Figure 2-28 helped investigate the geometrical constraint effect on strain 

distribution present in LSEM. The constraint changed the chip flow direction as the 

material flows into the PDZ, increasing the inclination angle β as the chip thickness ratio 
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decreases. A Photron SA-X2-480K-M1 camera was used to observe a 1x1 mm deformation 

field at 50 fps and 1 micron per pixel spatial resolution. 

 

Figure 2-28. (a) Experimental setup (b) captured process image for constrained 

machining setup (Source: Cai et al. (2015) with permission of Elsevier Inc., licencese 

number: 5300550674729) 

More recently, Schoop et al. (2019) developed a state-of-the-art high-speed in-situ 

testbed consisting of a custom video microscope with coaxial illumination and a custom-

built LED liquid light guide-fed light source (patents: (Schoop, 2020a; Schoop, 2020b)), 

delivering more than 2000 lumens at the sample (see Figure 2-29c for typical image quality 

obtained at very short 159 ns exposure time). The setup also comprises a high-speed linear 

servo motor stage, 50 nm encoder feedback, and various integrated sensors such as strain 

gages, thermocouples, acoustic emission sensors, and accelerometers. By matching the 

numerical aperture (NA) and magnification of each objective lens with the CMOS 1024 by 

1024, 20 µm pixel size imaging sensor of the Photron SA-Z 2001K, the setup realizes very 

high spatial resolution (up to 800 nm with Nyquist sampling at 50x objective magnification 

(0.7 NA)) and continuous acquisition rates up to 2.1 million/second at exposure time down 

to 159 nanoseconds (representative image displayed in Figure 2-29c).  

Figure 2-29a provides an overview of the custom-built in-situ testbed.  The testbed 

was constructed on a ~2-ton granite surface plate (see Figure 2-29b), with a welded steel 

base bolted into the building’s concrete foundation and filled with sandbags to dampen 

vibrations. The primary cutting stroke (1 m travel length), powered by a proprietary linear 

servo motor by Yaskawa (experimental series SLGFW2), can achieve up to 4.2 m/s (~250 
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m/min) travel speed with 5 Gs of acceleration and a peak force above 5 kN. Encoder 

feedback of 50 nm/pulse and travel straightness of better than 5 microns over the entire 

stroke promotes exceptionally smooth speed and positional control required for high 

magnification in-situ microscopy at frame rates up to 2.1 million/second (typically around 

200,000 fps) and up to 50x objective magnification. The vertical axis, which controls the 

uncut chip thickness in 2D cutting (which could also be considered the depth of cut or 

feed), features positional repeatability of better than 0.4 microns. Integrated foil strain 

gauges capture cutting forces by Futek, which typically achieve better than 0.2 N force 

measurement accuracy at a sampling bandwidth of 50 kHz (Futek’s IAA300 differential 

amplifier).  
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Figure 2-29. (a) Custom-built  experimental in-situ characterization testbed setup, 

highlighting relevant features, with (b) external overview of the overall setup and (c) 

Representative in-situ image for machining of Inconel 718 at 10x objective 

magnification, 159 nanosecond exposure, speed = 120 m/min, uncut chip thickness = 

70μm. (Source: (Schoop et al., 2019) with permission of CC BY NC ND) 

The in-situ PSLS imaging and DIC technique have been applied extensively in 

CFRP studies (Agarwal et al., 2015; Barile et al., 2019; Li et al., 2020; Topac et al., 2017; 

Venkatachalam et al., 2018). Agarwal et al. (2015) attempted to understand the impact of 

anisotropy and heterogeneity frequent in fiber-reinforced plastic machining damage 

mechanisms by adopting chip, force, and DIC analysis on a speckled workpiece. Figure 

2-30a and b show the experimental setup and strain distribution obtained at 0.1 mm depth 

of cut and 300 mm/min cutting speed. This setup was limited to low cutting speed due to 

camera capability and design. Also, the captured images, as evident in Figure 2-30b, can 

be improved. Li et al. (2020) investigated the influence of different hole-making machining 

strategies (such as abrasive waterjet machining (AWJM), drilling, ultraviolet laser multi-

pass machining, and high-power fiber laser cutting) on the surface integrity of CFRP 

laminates. Adopting a setup of two CCD cameras coupled with 50 mm focal length and 

two separate illumination sources, they could capture process images of 2448 x 2048 

pixels. To ensure speckled pattern for DIC analysis, the CFRP samples were first prepared 

with black paint coating sprayed on a white background (size of 150-250 micron, shown 

in Figure 2-31) 
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Figure 2-30. (a) Experimental setup (b) 𝜀𝜀𝑥𝑥𝑥𝑥 - strain distribution at 0.1 mm chip thickness 

and 300 mm/min cutting speed (Source: Agarwal et al. (2015) with permission of 

Elsevier Inc, license number: 5297371134035) 
 

 

Figure 2-31. Experimental setup (Source: Li et al. (2020) with permission of Elsevier Inc, 

license number: 5297371279737) 

Interestingly DIC techniques have also been adopted in woodcutting and loading 

(Matsuda et al., 2018; Mckinley et al., 2019). Matsuda et al. (2018) used the DIC technique 

to measure the strain distribution across the cutting zone during woodcutting (workpiece 

made from air-dried hinoki).  The 50 mm x 5mm x 50 mm sample was machined at a 

varying cutting angle and cut depth but with a fixed clearance angle. The process was 
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observed with a KEYENCE high-speed camera, at a low frame rate of 250 fps, 2.2 𝑥𝑥 10−3 

mm/pixel and a picture resolution of 640 x 480 pixels. After the DIC processing, they were 

able to extract the compression 𝜀𝜀𝑥𝑥, normal 𝜀𝜀𝑦𝑦, and shear 𝛾𝛾𝑥𝑥𝑦𝑦 strain. 

The ballistic characterization setup is a unique design pioneered at Denver Research 

Institute in 1982, when Komanduri et al. (1982) used two different designs; a planning type 

ballistic setup and a lathe machine to investigate shear instability in steel machining. List 

et al. (2013) later developed their ballistic setup to study the primary shear zone in mild 

steel machining. As shown in Figure 2-32, the design can be split into a launch and a 

receiving tube; the sample is fixed to a projectile and shot in the launch tube, which must 

be long enough to attain a steady speed. Two cutting tools are symmetrically placed at the 

entrance of the receiving tube to cut the samples. They observed the process with an 

intensified CCD camera and microscope setup at 1024 x 1024-pixel resolution, 3.5 𝑚𝑚𝑚𝑚2 

observation area, and 30 mm focal length. Due to the high-speed setup, a short exposure 

time in micro-seconds was necessary. A snapshot of the chip cross-section at a cutting 

speed of 1020 m/min, allowing observation of the deformation flow pattern. The same 

setup was adopted by Sutter and List (2013) to study the chip formation mechanism during 

Ti-6Al-4V machining. The process was carried out with an intensified CCD 54 m/s cutting 

speed and 0.25 mm depth of cut.  

 

Figure 2-32. (a) Schematic diagram of the ballistic cutting setup (b) detailed view 

(Source: List et al. (2013) with permission of Elsevier S.A., order number: 1215824) 
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 SMART SENSOR SELECTION 

Smart sensors and instrumentation are critical driving factors of innovation for 

Industry 4.0 and other trends such as digital twins, smart factories, smart production, smart 

mobility, smart home, and smart city. Several authors have recognized and acknowledged 

the importance of sensors, measurement science, and smart evaluation for Industry 4.0 

(KimandHwangbo, 2018; Lee et al., 2018; Wu et al., 2019). In order to effectively optimize 

the use of Industry 4.0 or digital process twin in manufacturing, it is crucial to understand 

the many technologies, particularly sensors, that enable manufacturing processes to 

function efficiently while using these innovations. For instance, any reliable monitoring 

system must be built around an efficient and, if possible, inexpensive sensorial system with 

fast signal processing methods and low-cost computational strategies capable of correlating 

measured signals with relevant information about the process's current status. Also, the 

adoption of sensors makes it possible to acquire information, evaluate the gathered data, 

and take actions based on the merged models and entities in a DPT. Also, with sensors, 

cloud-based IoT solutions can link the physical and virtual worlds, allowing businesses to 

control IoT device connection and flexibility.  

The illustration in Figure 2-33 depicts an idea for a smart hybrid manufacturing 

system capable of performing both subtractive and additive manufacturing operations on a 

single platform (Kim et al., 2018).  

 

Figure 2-33. Smart hybrid manufacturing system (Source: (Kim et al., 2018) with 

permission of Elsevier S.A., license number: 5297380297019). 
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Numerous sensors, including force, vibration, displacement, temperature, 

humidity, acceleration, and energy consumption sensors, are incorporated into the system, 

providing real-time data on these variables. The common industrial practice, as highlighted 

in Figure 2-33 is to have as many sensors as possible installed on machine equipment or 

tools. Though this approach yields tons of data, it is expensive, and not all of the extracted 

data is useful for process monitoring and prediction. It might be best to only select sensors 

based on required model parameters to resolve this challenge.  In this work, a model-driven 

sensor selection approach is considered. Only force sensors (strain gages), acoustic 

emission, and accelerometers were used on the lab in-situ high-speed testbed due to the 

required model parameters. For instance, the acoustic emission sensor can detect process-

induced cracks during titanium aluminide machining. The following sub-section discusses 

the application of acoustic emission in crack detection and process monitoring. 

 Acoustic Emission 

Existing methods focused on monitoring and analyzing the crack formation during 

titanium aluminide machining are post-mortem. However, since a release of energy 

typically accompanies crack formation, the authors propose that the crack formation in 

titanium aluminide machining can be monitored with an acoustic emission sensor. The 

extracted acoustic emission signal data can then be analyzed for pattern recognition, 

damage quantification, process monitoring, and control; an approach applied in various 

fields of study (Neupane et al., 2021; Oh and Jo, 2019; Tran and Lundgren, 2020). An 

informed sensor selection for process characterization is known as 'smart' or 'physics-

informed' sensors and sensor data. This approach contrasts with the 'big data' methodology, 

which often is without physical correlation to material behavior and causal mechanisms. 

For accurate process characterization, it is imperative to select sensors whose data correlate 

to the real-world material's behavior.  

Acoustic Emission (AE) involves the rapid release of energy in a structure or body 

undergoing loading or deformation conditions. The ability to pick the deformation stress 

wave frequency with a piezoelectric sensor can be traced to redistributing local strain 

energy associated with respective deformation conditions. They have substantial practical 

relevance to non-destructive testing, but they are also often used in seismology. In terms 
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of nondestructive testing and tool condition monitoring, the main limitation of AE is the 

lack of a rigid formula or set of models that can be applied to every use case, including 

those involving different materials and failure modes. AE is primarily a qualitative 

measurement tool, and other non-destructive tests or calibration/correlation trials are 

required to obtain quantitative feedback. However, some of the advantages of using AE for 

machining applications include high sensitivity, continuous online measurement, bulk 

volume monitoring, and pinpointing the location of damaged regions. AE signals include 

application functions, sensor type, propagation medium, coupling efficiency, sensor 

sensitivity, amplifier gain, and threshold voltage. 

Additionally, the cost of testing and developing a baseline for comparison is both 

expensive and time-consuming. For the most part, most AE studies in machining have 

concentrated on machine condition and tool wear monitoring. In both approaches, relevant 

features such as AE energy, counts, RMS values, and count distributions were extracted 

and correlated with selected quality metrics. However, only a few attempts have been made 

to correlate the AE signals with the surface finish of the workpiece. Extracted AE signals 

contain process or material-specific information useful for the signal source detection, 

location, and severity. AE signals can be categorized under burst, continuous, and mixed 

signals. Burst signals are due to defect emergence during deformation. 

In contrast, continuous signals consist of overlapping transients (noise included) 

from varying emission sources, and mixed AE signals consist of both burst and continuous 

signals overlaid with environmental noise. According to Terchi and Au (2001), the post-

utilization of AE signals for process monitoring involves three critical steps; signal 

enhancement, signal separation, and signal analysis. The signal enhancement step involves 

the optimal removal of embedded noise, preceding the segmentation of crucial burst signals 

or critical events. The signal analysis subsequently attempts to identify or correlate the 

wave source and appropriately characterize its magnitude, severity, and propagation. The 

acoustic emission technique has found several studies and applications in material science 

research. Its scope spans damage initiation detection, dynamic loading, composite 

materials crack propagation, and definition of damage and fracture mechanism. The 

application of AE signals has focused extensively on machine and tool condition 

monitoring, friction analysis, and fault detection in machining. It is also a well-established 
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sensor for detecting fracture and fracture/deformation mode. Modern advancements in 

signal processing and pattern recognition analysis have driven several AE signal 

characterization and adoption fields in recent years. 

 CONCLUSIONS 

Due to its intermetallic structure, titanium aluminide exhibits unique properties 

such as low density, high strength, high stiffness, corrosion resistance, and creep resistance. 

However, as reported in this section, surface integrity problems defects (such as 

microstructural alterations, work hardening, residual stresses, and surface cracks) are 

induced during the cutting of titanium aluminide alloy. This material has proven to be much 

more difficult to machine when compared to other alloys. Based on the literature review 

above, the following conclusions were deduced:  

• Titanium aluminide alloys tend to work harden due to their organized 

microstructures and ionic limits. This behavior impacts component quality in 

roughness, surface integrity, and tool service life.  

• The low ductility of titanium aluminides is a significant disadvantage to surface 

integrity. It fosters crack initiation and lamellar deformation, affecting machined 

components' surface integrity and fatigue strength. 

• The heat generated at the cutting interface is dissipated through the cutting tool due 

to the low thermal conductivity, resulting in accelerated cutting-edge wear.  

• Maintaining hardness and strength at temperatures between 700 and 800 degrees 

Celsius makes chip formation more complex, resulting in higher cutting forces and 

faster tool wear. 

Also, based on the comprehensive review of efforts to observe cutting processes in-

situ through optical and kinematic approaches provided, the following key directions of 

this field of study can be noted. Considering the current state-of-the-art in this field, we 

propose that future efforts focus specifically on realizing improved spatial and temporal 

resolution to enable a more detailed analysis of the highly relevant evolution of sub-surface 

strains and temperatures during cutting. Such efforts will require a more complex, multi-

disciplinary engagement with advanced optics and lighting experts. Achieving diffraction-
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limited optical performance in high-speed imaging is a non-trivial technical challenge, and 

most currently used setups involve very low NA (numerical aperture), optics (e.g., 2x 

objective magnification and 0.055 NA), along with optical magnifiers (e.g., 2-15x), which 

only provide ‘empty magnification’ and thus significantly limit the Rayleigh resolution of 

the obtained images. Many currently used setups leverage external lighting, which is a 

highly inefficient means of delivering photons to a high-speed camera sensor. Thus, 

excessively long exposure times are often selected, resulting in significant motion blur. 

Based on results in the literature and considering the well-established physics of 

microscope optics, coaxial illumination with lasers and ultra-high intensity LEDs can be 

considered the most efficient means of illuminating microscopic high-speed videos. 

Recent efforts with high NA (e.g., up to 0.7 NA and 50x objective magnification) 

optics with long working distances have demonstrated the ability to yield true sub-micron 

optical/spatial resolution (Adeniji and Schoop, 2021; Schoop, 2021; Schoop et al., 2019; 

Schoop et al., 2021) Moreover, adequately designed coaxial illumination allows for 

extremely short (100s of a nanosecond) exposure times required for blur-free imaging of 

cutting processes at industrially relevant speeds (100s of m/s). Careful matching of high-

speed camera sensors/pixels with custom lighting and optics is critical to achieving the 

required resolution, depth of field, and working distances to analyze machining process 

phenomena beyond those occurring in the primary deformation zone. In particular, we 

envision higher resolution in-situ characterization to offer new possibilities in detailed 

measurements of sub-surface (micro) strain evolution, which is required for an improved 

understanding of machining-induced surface integrity (e.g., sub-surface strain hardening 

and residual stress evolution). While much work has been devoted to studying the chip 

formation process, including large plastic strains and temperatures (in the primary, 

secondary, and tertiary shear zones), future work should focus on better elucidating how 

surface integrity evolves dynamically due to coupled thermal and mechanical (i.e., thermo-

mechanical) effects. Encouraging results, such as that by Tausendfreund et al. (2018) point 

toward the tremendous potential of in-situ characterization to be efficiently leveraged. As 

the industry progresses towards greater use of near-net-shape manufacturing techniques 

such as additive manufacturing and precision casting while also driving towards more 

sustainable practices such as multiple product life cycles, a robust understanding of 
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machining-induced surface integrity is needed will only increase. In-situ characterization 

could serve as an excellent tool to improve this understanding, inevitably leading to new 

product and process innovations. 

Additionally, ‘multi-physics’ characterization of cutting processes, e.g., optical 

strain measurement and thermographic temperature measurement, along with kinematic 

force measurement, will be vital to using in-situ characterization as an experimental tool 

for direct and/or inverse calibration of constitutive material models, as well as the state of 

variable friction and contact between the cutting tool, chip, and workpiece surface. Indeed, 

leveraging in-situ characterization of machining as a quasi ‘materials characterization 

technique for machining-specific thermo-mechanical regimes’ is one of the most long-

standing promises and objectives of this field, with many researchers attempting to solve 

this problem over the years. Recent advances in camera sensors, optics, lighting, and more 

advanced computer algorithms (e.g., DIC and PIV) and emerging machine learning 

techniques for image and data analysis serve as crucial enablers towards this ambitious 

goal. Recent results such as those by Zhang et al. (2019) suggests that in-situ 

characterization may soon become an established technique for inverse calibration of 

constitutive material models, supporting more reliable process modeling efforts. They 

propose that using novel artificial intelligence algorithms to (a) analyze in-situ data more 

quickly and efficiently and (b) link experimentally-identified parameters to process model 

inputs represents a significant opportunity that deserves further study.  

In conclusion, as advanced machining research is increasingly embracing more 

digitally-enabled technologies to enable more efficient and sustainable machining 

practices, the almost 100-year-old experimental tools of in-situ characterization should 

continue to serve as a stable foundation for identifying fundamental process physics, 

leveraging in-situ experimental techniques, fast and efficient calibration, and validating 

AI-augmented process modeling paradigms. It should yield significantly faster and more 

robust process models that could generate Digital Process Twins of cutting processes in 

the industry. A summary of technical specification for various in-situ setup and literature 

findings highlighted above is shown in Table 2-4. 
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Table 2-4. Overview of technical specification for various in-situ setup found in the literature. (Adapted and expanded from Zouabi et 

al. (2021) with permission of CC BY NC ND) 
Material Speed Camera Area of 

study 
Chip 

thickn
ess 

Field 
of 

View 

Magnific
ation 

Resoluti
on 

Pixel 
size 

(μm) 

Effective 
Spatial 

Resolution 
(μm) 

Frames 
per 

second 
(fps) 

Exposure 
 time (μs) 

References 

Brass 0.25 𝑥𝑥 10  - Chip 
formation 

- - X25 - - - - 2 Childs (1971) 

Steel 1000 - Chip 
formation 

- -  - - - 10,000 0.100 Schwerd (1935) 

42CrMo
4 

150/30
0 

Photron 
Ultima 

APX-RS 

Chip 
formation 

0.2, 0.3 1 x 1 X12 - 20 3.33 400 1 Pujana et al. 
(2008) 

AISI 
1045 

 

200 Imager-
Intense 

(SensiCa
mQE) 

Chip 
formation 

(PDZ) 

0.15 0.35 x 
0.25 

X25 1296 x 
925 

6.5 6.5 1,000,0
00 

0.500 Hijazi and 
Madhavan 

(2008) 

Al6061-
T6 

0.6 - Large 
Strain 

Defomation 

0.1 2.1 x 
2.1 

X3 256 x 
256 

8.2 5.47 250 - Gnanamanickam 
et al. (2009) 

42CrMo
4 

30 - Temperatur
e, Plastic 

Strain 

0.1 - X15 256 x 
128 

- - 30,000 33 Arriola et al. 
(2011) 

Ti, Mg 0.6 pco.dima
x HD 

LSEM 0.2 1.4 x 
1.4 

- 1000 x 
1000 

11 - 2,000 - Guo et al. (2012) 

Ti-6Al-
4V 

6 FASTCA
M APX 

RS2 

Strain Field 
Measureme

nt 

0.15 0.3 x 
0.3 

- 128 x 
128 

17 - 70,000 10 Calamaz et al. 
(2012) 

AISI101
8 

1020 - Strain and 
velocity 

fields 

0.84 1.75 x 
1.75 

X10 1024 x 
1024 

1.7 - - - List et al. (2013) 

Ti-6Al-
4V 

6 Photron 
Fastcam 
APX-RS 

Strain 
fields 

0.25 0.65 x 
0.6 

X10 384 x 
352 

17 3.4 18,000 6.6 Pottier et al. 
(2014) 
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Brass 0.06 pco.dima
x HD 

Deformatio
n fields 

0.05-
0.15 

4.3 x 
2.4 

X5 1296 x 
720 

11 4.4 - - Guo et al. (2015) 

Copper 6 𝑥𝑥 10−4 Photron 
SA-X2-
480K-

M1 

Strain 
Modeling 
in LSEM 

0.1-
0.25 

1 x 1 - 1000 x 
1000 

20 - 32,400 - Cai et al. (2015) 

Al7075-
T6 

0.35/0.
5 

pco.dima
x HD 

Stress 
Fields 

0.1/0.1
5 

1.68 x 
0.94 

X12 1920 x 
1080 

11 1.83 - - Zhang et al. 
(2017) 

AW7020
-T6 

90 PCO 
edge 5.5 

Strain 0.1 1.7 x 
1.4 

X10 - 6.5 1.30 - .020 Baizeau et al. 
(2017) 

Al6061-
T6 

0.1 pco.dima
x HD 

Velocity 
and stress 

fields 

0.06/0.
08/0.1 

1.75 x 
0.98 

X12 1920 x 
1080 

11 1.83 1,000 - Zhang et al. 
(2018a) 

Ti-6Al-
4V 

3/15 Photron 
Fastcam 

SA3 

Temperatur
e and 

kinematic 
fields 

0.25 0.58 x 
0.58 

X15 512 x 
512 

20 2.67 6,000 50 Harzallah (2018) 

0.43 x 
0.39 

384 x 
352 

10,000  

ECAE Ti 30 Photron 
SA-5 

Strain and 
Strain Rate 

0.1 0.5 x 
0.5 

X12 1024 x 
1024 

20 3.3 50,000 - Davis et al. 
(2018) 

Ti-6Al-
4V, AISI 

4340 

 Photron 
Fastcam 

SA-Z 

Surface 
Integrity, 
Contact 

Mechanics 

0.001-
0.150 

 X50 1024 x 
1024 

20 0.60 50,000 
-

2,100,0
00 

0.159 (Schoop et al., 
2019) 

Ti-6Al-
4V 

8 PCO.dim
ax HD 

Displaceme
nt, Strain, 
and Stress 

Fields 

0.02 4 x 4 X12 1296 x 
720 

11 1.83 2,000 - Huang et al. 
(2020) 

 
AISI 
4140 

50 Photron 
Fastcam 

SA5 

Friction 
Modeling 

0.1 - X6 1024 x 
1024 

20 6.67 10,000 10 Denkena et al. 
(2021) 100 20,000 6.25 
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Table 2-5. Summary of literature review findings 

 Current Research State Research Gaps and Future Work 

 
 
 
 

Surface Integrity 
Modeling 

 
• A significant amount of 

experimental/anecdotal studies 
from academia, but the lack of 
industrial adoption of SI 
modeling. 
 

• Relevant recent keynotes and 
reviews: Arrazola et al. (2013); 
Jawahir et al. (2011) 
 
 

• Realistic prediction of industry-relevant quality metrics (such as 
surface integrity, tool-life, surface roughness, etc) 

• Lack of reliable and efficient predictive models connecting 
fundamental variables with industry-relevant quality metrics. 

•  
• Model-based selection of process variables (feeds/speeds). 
• Insufficient understanding of the machining process and 

physics-based modeling. 
• Hybrid analytical/numerical modeling approach. 
• Capability for short computational time and relevant inputs (see 

below). 
• Model-based analysis and optimization of surface integrity 

evolution. 
• Lack of realistic numerical and analytical model inputs 

(material flow stress, friction, and thermal data). 
  • Model-based optimization of material/component performance, 

using ‘machining as surface engineering process’. 
• Lack of understanding of the correlation between surface 

integrity parameters and functional performance of machined 
components. 
 

In-situ 
Characterization 

• Persistent lack of machining-
specific friction and flow stress 

• Efficient material characterization technique for capturing 
realistic strain, strain rates, and temperature values. 
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In-situ 
Characterization 

 

data, due to lack of realistic 
characterization techniques 

• Relevant recent keynotes and 
reviews: Harzallah et al. (2018); 
Melkote et al. (2017). 
 

• Low process speed for current/previous in situ machining test 
setups 

• Limited in-situ imaging capabilities (low frame-rates and 
spatial resolution) 

• Database of validated flow stress models for common alloys 
in machining. 

• Lack of accurate relationship between material flow stress and 
pertinent process variables. 

• Lack of realistic and robust process models (e.g., hybrid 
models) 

 
 

Adaptive 
Machining Process 

Control (Digital 
Process Twins) 

• Significant focus on forces, tool-
life, and part geometry 
improvement; lack of surface 
integrity considerations, Beyond 
‘form, fit, function’ 

 
• Relevant recent keynotes and 

reviews: Jones et al. (2020); Ritto 
and Rochinha (2020); Ulsoy and 
Koren (1993) 

 
 

• Real-time adaptive control of  machining-induced surface 
integrity, using process models 

• Limited leverage of machine learning techniques to identify 
process trends needed for accurate surface integrity monitoring 

• AI-enabled multi-objective adaptive process optimization (e.g., 
tool-life, residual stress, productivity/cost, etc.) 

• Lack of real-time capable process models to inform ‘physics’ 
aspect of AI optimization scheme 
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CHAPTER 3.  
MATERIALS AND METHODOLOGY 

 CUSTOM IN-SITU TESTBED FOR MATERIAL CHARACTERIZATION 

For many decades, much anecdotal evidence of the detrimental effects of 

machining-induced damage, such as grain deformation, strain hardening, and grain 

plucking, has been collected by industry and academia. Several papers have attempted to 

study the correlation between machining-induced surface integrity and product functional 

performance (Brinksmeier et al., 2014; Brinksmeier et al., 2018). However, despite these 

efforts, there remains a lack of efficient and robust models to relate machining process 

parameters, such as feeds and speeds, with surface damage characteristics. Significant 

advances have been made to promote model-based Integrated Computational Materials 

Engineering (ICME) in alloy design and primary and secondary processing (casting, 

forging, forming, joining). However, there are no industrially-viable models for predicting 

process-induced surface integrity (Bolcavage et al., 2014). This limitation severely affects 

the aerospace industry, where new and novel materials are regularly developed but with 

little knowledge of appropriate finish machining strategies. 

The status quo for optimizing manufacturing processes across different sectors is 

empirical modeling due to the shortage of efficient and reliable modeling alternatives. 

Empirical models (EM) are the most robust and easily implementable modeling approach, 

which leverage the direct use of experimental trials to understand the correlation between 

process variables and outcomes (Arrazola et al., 2013). Experimental matrices are 

constructed to cover a wide range of cutting conditions, and data are analyzed using 

statistical methods. However, conclusions are only as robust as the experiment scope, and 

a poor experimental design would limit modeling accuracy. Also, this approach is quite 

expensive and time-consuming, as there is a need to consider different cutting conditions 

for a holistic understanding of the process physics.  

Modeling alternatives such as numerical and analytical models are unreliable due 

to a lack of in-situ characterization of model inputs and long computational time. Early 
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efforts toward so-called in-situ characterization of machining processes can be dated to 

Schwerd (1935), who was among the first to study the process of chip formation during 

cutting. Subsequently, (StevensonandOxley) adopted more advanced characterization 

techniques, such as explosive quick stop device setup. The deformation to the square grids 

printed on the workpiece was observed after an abrupt process stop. However, most of 

these approaches did rely on significant post-processing and an oversimplified assumption 

of instantaneous ‘freezing’ of a steady-state deformation, as Childs (1971) later established. 

Since achieving an efficient and realistic process or material, characterization is critical for 

developing (and calibrating) robust and accurate process models. Several publications have 

been on this topic, including  (2015; 2018; Lee et al.). However, the cutting speed range 

for adopted solutions is not representative of a typical machining process due to imaging 

and experimental setup limitations. 

In 2019, (Schoop et al., 2019) reported their experimental development efforts of 

an improved ultra-high-speed in-situ testbed, capable of realistic process characterization 

up to 250 m/min cutting speed and beyond 1,000,000 fps, with standard frame rates order 

of 50,000 to 500,000 fps (setup shown in Figure 2-30). This unique ultrahigh-speed 

microscopy testbed created at the University of Kentucky was used to capture the data for 

most of the experiments in this work. Using the latest generation of CMOS high resolution 

(2 Mpx), ultra-high-throughput (16 Gpx/sec) sensor technology (iX cameras i-speed 726), 

combined with a custom-built ultra-high intensity LED liquid light guide (>250 million 

lux) , the system is capable of obtaining nanosecond exposure microscopic images at 

realistic cutting speeds (vc = 50-250 m/min) and frame rates up to 1,000,000 frames per 

second. In this scenario, the ultra-high-speed camera is coupled to a high-resolution video 

microscope produced by Mitutoyo (VMU-V), as shown in Figure 3-1, which can be utilized 

consistently at magnifications of up to 50 times. When optical (Raleigh/diffraction) and 

sensor (Nyquist/sampling) restrictions are taken into consideration, the maximum spatial 

resolution of the system is roughly 550 nm, which corresponds to the wavelength of visible 

light (550nm). This allows for the resolution of very tiny strains and extremely high strain 

rates, up to 108. At the same time, extremely high stresses, up to a factor of 10,000 percent, 

may be resolved with digital image correlation software (DIC) written in Matlab. However, 
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it is worth noting that the adopted setup was not designed with lubrication or cooling 

capability, thereby the experiments were limited to dry machining. 

 

Figure 3-1. A zoomed-in view of the experimental set-up. 

The ultra-high-speed microscopy system is combined with a high-speed linear stage 

capable of more than 5 Gs of acceleration and peak speeds of 4 m/s and 50 nm absolute 

encoder feedback to allow in-situ creation of a very detailed picture sequence in the 

laboratory. The use of DIC to analyze these sequences reveals complex strain and strain 

rate fields, which can then be correlated with synchronized force, vibration, thermal, and 

other data collected using a variety of sensors such as high-resolution strain gages, 

accelerometers, infrared pyrometers, and thermocouples, among other things. The custom-

developed testbed allows for extensive characterization of dynamic material behavior 

throughout the machining process over a wide range of physical characteristics and 

domains. A key goal was to use the machining/finishing process as a more accurate 

material property characterization approach, accomplished via careful design. 

 Machining Deformation Zones 

Different zones characterize the metal cutting process, the most commonly cited 

ones being the Primary Deformation Zone (PDZ), the Secondary Deformation Zone (SDZ), 

and the Tertiary Deformation Zone (TDZ). Among these three, only the TDZ is most 

closely related to the field of surface integrity. Figure 3-2 provides a schematic overview 
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of the five total zones identified by (Schoop et al., 2019), overlaid on a real in-situ optical 

micrograph obtained during the cutting of Inconel 718 at a cutting speed of 70 m/min. The 

primary shear zone occurs along the shear plane formed due to the contact between the 

cutting tool edge and the uncut chip, while the secondary shear zone occurs along the tool 

rake face due to the rubbing interaction between the formed chip and tool rake face. The 

tertiary shear zone, which has been scarcely studied, is formed due to the contact between 

the tool flank face and the workpiece surface. The rubbing interface generates heat and 

induces a significant proportion of the temperature observed in the workpiece sub-surface. 

The subsequent sections of this work will highlight studies across these three zones. 

 
Figure 3-2. Schematic overview of the various zones of deformation that characterize 

metal cutting operations. 

As seen in Figure 3-2, two additional zones were proposed, the Elastic Deformation 

Zone (EDZ) and the Heat Damage Zone (HDZ); both are particularly relevant to the surface 

integrity study. Notably, neither of these zones has received much attention, primarily 

attributed to the technical challenges of obtaining in-situ data from these tough to observe 

zones of the workpiece sub-surface region. Strain in the EDZ and HDZ is relatively small 

(less than 0.1 in almost all cases) and is accumulated in a complex and 
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infinitesimal/incremental loading/unloading cycle. In contrast, measurement of the 

considerable strain within the PDZ is readily achieved even with limited spatial and 

temporal resolution (i.e., using limited magnification and relatively low frame rates). 

With the ultra-high-speed in-situ characterization testbed, fundamental process-

specific material properties of gamma titanium-aluminide (γ-TiAl) low-pressure turbine 

(LPT) alloy would be characterized in both cutting (machining) and severe plastic 

deformation (burnishing) regimes with continuous acquisition mode at previously 

unattainable temporal (159ns) and spatial (500nm) resolution. Samples were processed into 

test coupons via electric discharge machining (EDM) and low-stress grinding and polishing 

(~3mm width strips of 100-200mm length and 20-60mm height).  

The multi-sensor plane-strain (2D) in-situ characterization approach captures 

optical, kinematic, and thermal data to unambiguously characterize and calibrate the 

workpiece material’s process-specific behavior across four relevant physical locations 

domains (elastic, plastic, thermal, thermodynamic). Outlined trials for a limited but tailored 

experimental work are shown in Table 3-1. Proposed experimental trials would evaluate 

‘extremes’ during in-situ testing to cover the range observed in production. The experiment 

would consist of two types of cutting tools, a carbide (K68 grade) and a polycrystalline 

cubic boron nitride tool.  As shown in Table 3-1, the cutting speed, uncut chip thickness, 

and tool wear varied regarding the desired regime and realistic machining conditions. 

Table 3-1. Experimental matrix for in-situ characterization of γ-TiAl machining. 
 

Tool Material Cutting 

Speed 

(m/min) 

Uncut chip 

thickness 

(μm) 

Tool Wear 

(μm) 

Carbide (K68) 25 0-20um Unworn 

PcBN (low 

binder micro 

grain) 

50, 100, 150 Near ℎ𝑚𝑚𝑖𝑖𝑚𝑚 50, 100, 150 

Permutations 2 4 2 4 



 

72 
 

Also, the proposed technique integrated both optically measured strain and cutting 

force data. Titanium aluminide block samples were processed into test coupons via electric 

discharge machining (EDM) and low stress grinding and polishing (~3mm width strips of 

100-200mm length and 20-60mm height).  

Table 3-2. Hand Polishing recipe for γ-TiAl  alloy 

Polishing Pad Abrasive Base 
Speed 
(RMP) 

Time (min: 
seconds) 

Comments 

180 Grit SiC 
Paper 

Water: low 
amount 

300 Depends Keep polishing until the 
majority of samples 
appear in the same 

plane. 
220 Grit SiC w/ 

MD Gekko 
Water: low 

amount 
300 Depends  

500 Grit SiC w/ 
MD Gekko 

Water: low 
amount 

300 Depends  

1200 Grit SiC 
w/ MD Gekko 

Water: Low 
Amount 

300 Depends  

MD-Largo 9µm diamond 150 10:00 – 20:00 Run closer to the center 
of the pad. 

PolyPAD 3 µm diamond 150 10:00 – 20:00  

TRICOTE 1 µm diamond 150 10:00 – 20:00  

TRICOTE 0.5 µm 
diamond 

150 10:00  

TRICOTE 0.02 µm 
colloidal 

silica/OPS 

150 04:30 Run water and continue 
polishing for 30 

seconds immediately 
after the 4-minute mark 

to wash away the 
reacted layer of 

material. 

The polishing procedure/recipe is described in Table 3-1, and Figure 3-3 shows a 

good microscopy result obtained without etching. The microscopy images clearly show the 

sample microstructure (γ-phase grains), a prerequisite for a quality in-situ characterization. 

The microscopy result can be further improved by etching the samples. 
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Figure 3-3. Near lamellar γ-TiAl microstructure captured after polishing recipe 

The cutting tool edge geometry significantly impacts the cutting process and 

machined product’s functional performance. This edge geometry does not remain constant 

during a cutting process due to necessary metal-to-metal contact between the tool and the 

workpiece leading to wear/degradation of the tool edges. The tool edge geometry changes 

affect the thermo-mechanical properties, influencing the surface integrity factors. Its wear 

rate and pattern hugely depend on the machinability of the workpiece and cutting tool 

material. The carbide tools used for the experimental work were prepared for different edge 

geometries using the process described in Figure 3-4. A custom experimental tool holder 

setup was assembled. The cutting tool edge was diamond grinded on a polishing machine 

to bring the edge to a rough geometry. A final step of micron-graded diamond film lapping 

was used to bring the tool edge to the desired geometry and flank wear. 

Figure 3-4. A figure of the cutting tool edge preparation process 



 

74 
 

 Force Measurement 

The primary cutting stroke (1 m travel length), powered by a proprietary linear 

servo motor by Yaskawa (experimental series SLGFW2), can achieve up to 4.2 m/s (~250 

m/min) travel speed with 5Gs of acceleration and a peak force above 5 kN. The vertical 

axis, which controls the uncut chip thickness in 2D cutting (which could also be considered 

the depth of cut or feed), features positional repeatability of better than 0.4 microns. 

Integrated foil strain gauges capture cutting forces (Futek LLB300 series), which typically 

achieve better than 0.2 N force measurement accuracy at a sampling bandwidth of 50 kHz 

(Futek's IAA300 differential amplifier). A high natural frequency (beginning at 21.0 kHz 

and increasing up to 58 kHz) is delivered by the sensor, which results in a rapid reaction 

time that improves accuracy and reduces cycle time. Furthermore, the high rigidity of the 

sensor contributes to its accuracy by allowing for very low deflection, which may be 

measured in increments as small as 0.0003" (0.0076 mm). Aside from that, specific design 

and manufacturing touches improve the sensor's performance even further, such as a highly 

tailored strain element that significantly minimizes the number of solder connections, 

thereby enhancing the sensor's dependability and durability. 

 Acoustic Emission Measurement 

For this study, the acoustic emission signals were collected using an AE sensor by 

KISTLER, model 8152C with 5125C AE coupler, featuring a bandwidth of 100-900 kHz, 

was used along with a National Instruments USB-6361 data acquisition system (DAQ), 

featuring a peak sampling rate of 2 Ms/ch. The AE sensor was integrated into the cutting 

tool holder using a rigid M6 screw connection per the manufacturer's specification to 

maintain constant signal attenuation during cutting. The distance of the AE sensor to the 

cutting tool tip was approximately 20mm, with the solid steel tool holder shank (grade AISI 

4350) separating the tungsten carbide cutting insert (NB2R geometry, K68 grade) and AE 

sensor. It comprises the sensor housing, the piezoelectric sensing element, and the built-in 

impedance converter referred to as the AE-Sensor. The piezoelectric ceramic sensing 

element is set on a thin steel diaphragm, which acts as a mechanical coupling. The 

sensitivity and frequency response of the sensor is determined by the way it is constructed. 
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A little protrusion is visible on the coupling surface of the diaphragm welded into the 

housing, which is used to measure the AE signals. Consequently, a precisely specified 

coupling force is produced during mounting, ensuring that the AE transmission has a steady 

and repeatable coupling throughout. As a result of the design, the sensing element is 

acoustically separated from the housing and provides excellent protection against external 

noise.  

 Displacement and Strain Measurement 

The two standard techniques for extracting the strain deformation field from 

captured process images are Digital Image Correlation (DIC) and Particle Image 

Velocimetry (PIV). Digital Image Correlation (DIC) is a non-contact technique used in 

measuring 2D and 3D material deformation through image tracking and registration. The 

deformation quantification is achieved by correlating two or more captured images, 

representing the before (reference) and after (current) deformation state of the observed 

region/workpiece.  

The underlying physics is based on subset-based tracking, whereby the area of 

interest is subdivided into about 𝑚𝑚 𝑥𝑥 𝑚𝑚 pixels regions, commonly referred to as subsets. 

Subsets from both reference and current images are chosen for correlation via measurement 

of their local displacements in the x and y directions. To achieve accurate and precise 

matching, the subset selected must contain appropriate variations in intensity to ensure that 

it can be classified uniquely and reliably in the deformed picture. The surface to be 

examined must be dotted with natural or artificial speckles pattern (or, more precisely, the 

strength of random gray level fluctuation). Hence, researchers often painted the sample’s 

area of interest with random paint speckles before deformation for efficient image tracking. 

As shown in Figure 8, Equation 2 and 3, the initial point (𝑥𝑥,𝑦𝑦) from the reference image 

can be mapped to the point (𝑥𝑥∗,𝑦𝑦∗) on the deformation image, then the center translations 

(u, v) of the sub-image in the 𝑋𝑋 𝑎𝑎𝑚𝑚𝑑𝑑 𝑌𝑌 directions can be evaluated using the Taylor Series. 

𝑥𝑥∗ = 𝑥𝑥 + 𝑢𝑢(𝑥𝑥,𝑦𝑦) (2) 

𝑦𝑦∗ = 𝑦𝑦 + 𝑟𝑟(𝑥𝑥,𝑦𝑦) (3) 
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Figure 3-5. Schematic figure of reference and current subsets in DIC 

To compare and match the process images, correlation criteria such as cross-

correlation criterion, squared sum differences criterion, and the sum of absolute differences 

criterion. Also, since the reference and deformed images' intensity are different (since they 

are captured at various locations), it is essential to account for variations using correlation 

criteria such as the Zero-Normalized Square sum of Differences Criterion (ZNSSD). The 

correlation coefficient C between the subset pixels of the two successive images can be 

calculated using a fast Fourier transformation as shown in Equation 6, with 𝑓𝑓(𝑥𝑥,𝑦𝑦) and 

𝑔𝑔(𝑥𝑥∗,𝑦𝑦∗), representing the grayscale values for reference and deformed state (Tong, 2018).  

𝑥𝑥∗ = 𝑥𝑥 + 𝑢𝑢 +
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

∆𝑥𝑥 +
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

∆𝑦𝑦 +
1𝜕𝜕2𝑢𝑢
2𝜕𝜕𝑥𝑥2

∆𝑥𝑥2 +
1𝜕𝜕2𝑢𝑢
2𝜕𝜕𝑦𝑦2

∆𝑦𝑦2 +
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

∆𝑥𝑥∆𝑦𝑦 (4) 

𝑦𝑦∗ = 𝑦𝑦 + 𝑟𝑟 +
𝜕𝜕𝑟𝑟
𝜕𝜕𝑥𝑥

∆𝑥𝑥 +
𝜕𝜕𝑟𝑟
𝜕𝜕𝑦𝑦

∆𝑦𝑦 +
1𝜕𝜕2𝑟𝑟
2𝜕𝜕𝑥𝑥2

∆𝑥𝑥2 +
1𝜕𝜕2𝑟𝑟
2𝜕𝜕𝑦𝑦2

∆𝑦𝑦2 +
𝜕𝜕2𝑟𝑟
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

∆𝑥𝑥∆𝑦𝑦 (5) 

𝐶𝐶 =
∑ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑔𝑔(𝑥𝑥∗,𝑦𝑦∗)𝑆𝑆

�∑ 𝑓𝑓2(𝑥𝑥, 𝑦𝑦)∑ 𝑔𝑔2(𝑥𝑥∗,𝑦𝑦∗)𝑆𝑆𝑆𝑆
(6) 

Where, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 represent the normal strains, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 represents the shear 

strains, ∆𝑥𝑥 and ∆𝑦𝑦 represent the distance from the reference subset center to a similar point 

on the deformed image subset. The displacement and strain fields can either be reduced or 

interpolated to form a "continuous" displacement/strain field. Each subgroup's 
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displacement and strain information is computed using the first and second-order 

transformations. The result is a grid containing displacement and strain information to the 

reference configuration, referred to as Lagrangian displacements/strains.  

While the DIC technique has enabled reduced computational time and accurate 

deformation measurement, its application in machining has been limited to two-

dimensional image correlation due to the focus of existing experimental setups on in-plane 

deformation. Also, the limitation of the subset-based DIC technique includes (1) the 

presence of unwanted pixels around the area of interest boundary (2) for specimens with 

geometric discontinuities; the subset-based DIC technique is likely to produce erroneous 

measurements (Pan, 2011).  The camera quality, lighting source, and out-of-plane 

movement have also been identified as significant sources of error when adopting the DIC 

technique (Hoult et al., 2013; Siebert et al., 2007), and attempts have been made to quantify 

the number of uncertainties involved (Badaloni et al., 2015; Balcaen et al., 2017; Wang et 

al., 2012b; Zappa et al., 2014). Hence, this technique's accuracy depends on the 

experimental setup, image quality, and workpiece surface/speckle pattern. The DIC 

technique has seen application beyond machining across subject topics such as vibration 

analysis (Beberniss and Ehrhardt, 2017; Helfrick et al., 2011; Wang et al., 2012a), tensile 

tests (Tung et al., 2010; Wang et al., 2010; Wattrisse et al., 2001), and biomechanics 

(Palanca et al., 2015; Palanca et al., 2016). Figure 3-6a and b show the captured process 

images (for reference and deformed state) from a tensile loading experiment. At the same 

time, the displacement output after applying two different DIC methods is displayed in 

Figure 3-7a and b. 

 

Figure 3-6. Experiment tensile loading images (a) reference image, (b) deformed image, 

(Source: Pan (2011) with permission of Elsevier S.A., license number: 5297380778601) 



 

78 
 

 

Figure 3-7. DIC displacement field output for (a) custom technique (b) subset-

based DIC technique  (Source: Pan (2011) with permission of Elsevier S.A., license 

number: 5297380778601) 

The PIV technique is used to compute the 2D velocity field in a fluid flow at a high 

spatial resolution by seeding the fluid particles and taking snapshots of the fluid flow. The 

images are discretized into different sections, and the seeded particles are tracked to obtain 

the particle displacement over the time frame. As shown in subsequent sections, the PIV 

technique has been extensively applied across various machining studies (Denkena et al. 

2021; Guo et al., 2012; Lee et al., 2006; Meinhart et al., 1999). The images must be in the 

right sequence for DIC and PIV analysis for an accurate result. DIC is often preferred to 

PIV at low to moderate cutting speed and in serrated chip studies (Harzallah, 2018); 

however, it requires unblurred images, which are challenging to obtain at high cutting 

speeds. 

 SCANNING WHITE LIGHT INTERFEROMETRY 

Surface roughness and surface porosity are critical in determining the quality of a 

machined surface of porous tungsten, measured in microns. Ra = 0.8 µm is the current 

industry standard for average surface roughness. A value of 32 µin is comparable to Ra = 

0.8 µm. Surface roughness may be measured in various techniques, the most frequent 

optical comparisons using a set of standardized samples and profilometry (profiling). The 

latter approach probes the surface of a machined sample using a stylus with a tiny radius 

tip, as opposed to the former. Profilometry can not provide highly accurate surface 

roughness data for finely polished surfaces (Ra < 1 µm) because no feature smaller than the 
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stylus tip radius can be identified. An initially sharp stylus will undergo wear due to the 

initial sharpness of the stylus. The Ra of machined porous tungsten samples, as measured 

by a non-contact approach, was determined as a result. This was accomplished using a 

Zygo NewView 7300 scanning white-light interferometer (SWLI) with 20x and 50x 

objectives, which Zygo manufactured. SWLI digitizes 3D surfaces with nanometric 

accuracy (±5 nm) by scanning the sample vertically and capturing interference fringes to 

create a point cloud of data that can be assembled. 

Surface roughness measurements of machined porous tungsten were collected at 

three different percentages of the sample's radius, in the same way as surface porosity 

measurements were taken. Ten evenly spaced measurement lines were obtained from each 

tested area to get a statistically significant average value for Ra and the dispersion over a 

particular surface from the three measured regions. Because of the porosity of the 

workpiece material, the surface roughness of the workpiece cannot be easily compared to 

the surface roughness of the corresponding dense material. Although this is impossible, a 

qualitative comparison of samples machined with various settings is possible. This was 

partly due to the high number of measurements obtained from each sample, which allowed 

the average roughness for a specific sample to be more consistently repeatable than 0.05 

mm. Cutting edge radii measurements were taken similarly to surface roughness 

measurements. At a magnification of 50x, different locations along cutting edges or objects 

of interest were photographed. Figure 3-8 summarizes the most common uses of SWLI 

during this study. 



 

80 
 

 

Figure 3-8. Overview of most commonly used applications of Zygo NewView 7300 3D 

profiler.  Top image shows the instrument, which uses a laser to create nanometrically 

accurate point clouds of interference fringe data.  Edge radius and surface roughness 

measurements were performed on the same instrument yet analyzed with specialized 

applications, shown in the bottom two images. 
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CHAPTER 4.  
SENSOR-BASED IN-SITU CHARACTERIZATION OF TIAL MACHINING 

 SCOPE AND INTRODUCTION 

Pioneering works on the real-time characterization of machining processes goes as 

far back as the 1960s (Oxley, 1961; Palmer and Oxley, 1959; Roth and Oxley, 1972; 

Stevenson and Oxley, 1969). The advancement of sensors and imaging equipment has 

made this approach gain significant ground. Its application has evolved to different material 

alloys and machining conditions. To achieve a realistic, accurate, and economical process 

characterization, the adoption of low-cost sensors and transducers such as acoustic 

emission sensors, strain gages, and accelerometers have been widely accepted. A well-

positioned sensor can accurately detect process variables and extract relevant data 

necessary for fault detection or monitoring.  

Considering the difficulty (formation of surface cracks) associated with titanium 

aluminide machining, several studies have investigated post-mortem factors influencing 

crack formation. However, there is a gap regarding the in-situ/real-time investigation of 

TiAl machining process. The current gap in the real-time characterization of titanium 

aluminide is primarily due to the shortage of an experimental setup capable of extracting 

needed process variables and data. This chapter leveraged the recently developed, ultra-

high-speed in-situ characterization testbed to study cutting and severe plastic deformation 

processes in continuous acquisition mode at previously unattainable temporal (159ns) and 

spatial (500nm) resolution. Figure 4-1 summarizes the approach to capturing multi-sensory 

measurements (optical, kinematic, thermal) via ultra-high-speed microscopy (2.1 million 

frames/second), dynamometers, strain gauges, dynamometers, accelerometers, acoustic 

emission devices, thermocouples, infrared imaging, and servo motor controller data to 

yield the process-specific data across four relevant physical domains (elastic, plastic, 

thermal, and thermodynamic). 
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Figure 4-1. Overview of multi-sensory in-situ testbed characterization domains and 

associated measurement. 

This chapter will look into achieving a precise range of machining parameters for 

both orthogonal cutting and milling of γ-TiAl  alloy with carbide cutting tools. Relevant 

data such as the force, strain, and acoustic emission signal data extracted from the in-situ 

characterization testbed described in Chapter 3 and the influence of the chip thickness will 

be discussed in this chapter. 

 IN-SITU PROCESS CHARACTERIZATION  

 High-Speed Imaging of γ-TiAl Orthogonal Cuts 

The in-situ testbed developed at the University of Kentucky can capture high-speed 

images of orthogonal machining cuts. The Photron FASTCAM SA-Z captures high-

definition digital pictures at ultra-fast speeds, allowing detailed observation and 

understanding of processes. The FASTCAM SA-Z employs Photron's patented CMOS 

image sensor technology that combines fast recording speeds with exceptional light 

sensitivity and picture clarity to deliver today's most adaptable ultra-high-speed digital 

camera. It delivers the maximum imaging performance with megapixel picture resolution 

at frame rates up to 21,000 frames per second (fps) using its very light-sensitive image 

sensor (monochrome ISO 50,000) with a 12-bit dynamic range, frame rates in excess of 2 

million frames per second at decreased picture quality, as well as shutter speeds as fast as 

159 nanoseconds. The camera body design uses heat-pipe technology, resulting in a 

thermally stable and dependable high-speed imaging system appropriate for usage in the 
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most demanding conditions. This camera has standard operating features such as a 

mechanical shutter for remote system calibration, a dual-channel Gigabit Ethernet interface 

for quick picture download, and internal memory card drives for image download and 

storage on low-cost removable recording media. The system also has memory 

segmentation, allowing recording in one memory partition while downloading a prior 

recording in another. To remotely turn off cooling fans to prevent vibration while recording 

at high magnifications.  Figure 4-2 shows the in-situ image captured at a cutting speed of 

120 m/min, 70 μm chip thickness using a 10x microscope objective on a Photron 

FASTCAM SA-Z camera. Extracting high-resolution machining microscopic images 

makes it possible to apply digital image correlation on such images for severe plastic 

deformation, sub-surface, strain, and strain rate characterization.  

 

Figure 4-2. Captured in-situ image at 10x objective magnification, 159 nanosecond 

exposure, speed = 120 m/min, uncut chip thickness = 70 μm. 

Figure 4-3 shows the high-speed image of an orthogonal cut of titanium aluminide 

alloy at a 60m/min cutting speed, 20x objective, 200 kfps, 318 ns exposure, and 0.003mm 

chip thickness using a sharp carbide cutting tool. This set of cutting parameters gives a 

ductile cutting mode. However, a slight change in the cutting tool edge geometry was 

observed to cause ‘chip squeezing’ during machining. The experimental trials show that it 



 

84 
 

is possible to avoid thermal cracks with an appropriate selection of feed and speed using a 

sharp or worn tool. 

Figure 4-3. High-speed images from the orthogonal cutting of titanium aluminide alloys 

at 0.003 mm chip thickness and 60 m/min cutting speed. 

 Digital Image Correlation 

Since resolutions of 1/100th of a pixel may be attained with good optics and 

illumination, digital imaging methods (such as DIC) have been widely used for the 

investigation of displacements and stresses. While most research has been on continuous 

flow (finite/large strain) across the primary and tertiary deformation zones, DIC may also 

be used to investigate nanometric sub-surface deformations, which are critical to 

developing surface integrity (e.g., RS and sub-surface strain hardening measurement). This 

study used an open-source 2D digital image correlation program in MATLAB, called 

Ncorr, to estimate the strain and strain rate values. Also, a two-pass approach initially 

developed by Tausendfreund et al. (2018) was used to examine the subsurface deformation 

field. An initial subsurface image with the cutting tool just slightly above the workpiece 

was captured, followed by another shot during the machining of the workpiece where the 

cutting tool is fully engaged on the machined surface. The two images were then passed 

into the ncorr application. The objective is to achieve some kind of one-to-one correlation 

between material spots in the reference (initial undeformed image) and current (subsequent 

deformed picture) configurations. DIC does this by taking tiny pieces of the reference 

picture, known as subsets, and calculating their placements in the present configuration. 
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We acquire displacement and strain information for each subset through the transformation 

used to match the subset's position in the present configuration. In the reference design, 

many subsets are chosen, generally with a spacing parameter to decrease computing 

expense (also note that subsets typically overlap). The ultimate result is a grid with 

displacement and strain information relative to the reference configuration, commonly 

known as Lagrangian displacements/strains. To generate a "continuous" 

displacement/strain field, the displacement/strain fields may be decreased or interpolated. 

 

Figure 4-4. Digital image correlation steps and final displacement field. 

By locating the exact point of the workpiece material spring back (i.e., the point at 

which the workpiece material exists, the flank face at the height of ℎ𝑚𝑚𝑖𝑖𝑚𝑚 above the bottom 

of the tool tip), and finding the horizontal intersection of this streamline with the beginning 

of sub-surface plastic deformation in the SPD zone (severe plastic deformation), as 
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illustrated in Figure 4-4. Likewise, the equivalent contact width in cutting may be 

determined by finding the shear plane angle and projecting a right-angle line towards the 

sub-surface ahead of the cut. It was found that grain pullout/cracking occurred 

preferentially when TiAl lamellae were approximately perpendicular to the shear plane, 

i.e., when mechanical loading was applied along the weakest direction of the 

microstructure. 

 Cutting Forces 

The orthogonal cutting experiments were carried out on the custom in-situ testbed 

developed at the University of Kentucky, as described in Chapter 3. On the testbed, 

integrated foil strain gauges were used to capture cutting forces (Futek LLB300 series), 

which typically achieve better than 0.2 N force measurement accuracy at a sampling 

bandwidth of 50 kHz (Futek's IAA300 differential amplifier). The experimental matrix 

ranges from 1 to 21µm chip thickness, 60 m/min cutting speed, sharp tool (carbide and 

PCBN), and worn tool (25, 50, and 150µm VB). Three values were recorded and averaged 

for each force measurement to obtain a meaningful number. The reported scatterplot 

comprises the spread between the maximum and minimum of the five force values and 

uncertainty of ±5%, representing the inherent inaccuracy of the foil strain gauge itself. 

The cutting and feed force data were captured for 3, 5, 7, 9, 14, and 21 µm chip 

thickness at 60 m/min cutting speed for three separate trials. Figure 4-5 shows the plot of 

the average cutting force and respective chip thickness for different cutting tools and tool 

edge geometry. From Figure 4-5, it is observed that the cutting force magnitude increases 

proportionally with chip thickness and tool edge radius. Also, the data profile for both the 

sharp carbide and sharp PCBN tool is similar. This result is similar to findings from 

existing literature (Aspinwall et al., 2005; Mantle and Aspinwall, 1997; Mantle and 

Aspinwall, 2000). The maximum chip thickness was restricted to 21µm due to the poor 

surface integrity of the machined surface beyond this value. This observation is due to the 

brittle nature of titanium aluminide alloys and the corresponding increase in cutting forces 

with respect to the chip thickness. 
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Figure 4-5. Cutting force against chip thickness for different cutting-edge geometry and 

cutting tool types. 

4.2.3.1 Force Data Analysis 

The force data extracted from the in-situ testbed were analyzed for further deductions. 

The cutting and feed force data were captured for 3, 5, 7, 9, 14, and 21µm chip thickness 

at 60 m/min cutting speed for three separate trials.  Figure 4-5 shows the plot of the average 

cutting force and respective chip thickness for different cutting tools and tool edge 

geometry. The specific feed, 𝑘𝑘𝑐𝑐  and cutting force, 𝑘𝑘𝑓𝑓  are calculated for respective chip 

thickness as shown below; 

𝑘𝑘𝑐𝑐 =
ℎ

2.97 × 𝐹𝐹𝑐𝑐 × 0.001
  (7) 

𝑘𝑘𝑓𝑓 =
ℎ

2.97 × 𝐹𝐹𝑓𝑓 × 0.001
(8) 

The coefficient and exponent on the log-log plot in Figure 4-6 were recorded and 

used to generate the cutting and feed force coefficient empirical model as a function of the 

flank wear.  
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Figure 4-6. A plot of the specific feed force and chip thickness 

The cutting force coefficient, 𝑘𝑘𝑐𝑐1; strain hardening coefficient, 𝑚𝑚𝑐𝑐  as a function of 

flank wear (𝑉𝑉𝐵𝐵) is computed from the curve fitting is calculated by;  

𝑘𝑘𝑐𝑐1 = 6058 × 𝑉𝑉𝐵𝐵0.4534 (9) 

𝑚𝑚𝑐𝑐 = 0.3043 × 𝑉𝑉𝐵𝐵0.1731 (10) 

𝐾𝐾𝑓𝑓1 = 6833 × 𝑉𝑉𝐵𝐵0.6312 (11) 

𝑚𝑚𝑓𝑓 = 0.5825 × 𝑉𝑉𝐵𝐵0.0956 (12) 

 

Figure 4-7. Plot of the specific feed and cutting force against the tool flank wear 
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To compute the sub-surface thermal distribution, a force model was developed for 

various uncut chip thicknesses, ℎ ; cutting speed, 𝑟𝑟𝑐𝑐 ; and dynamic tool flank wear 

condition, 𝑉𝑉𝐵𝐵 using the edge geometry calculations. The cutting, friction, and resultant 

force (𝐹𝐹𝑐𝑐 ,𝐹𝐹𝑓𝑓,𝐹𝐹𝑟𝑟) are calculated as follows; 

𝐹𝐹𝑐𝑐 = 𝑘𝑘𝑐𝑐1 × (ℎ)−𝑚𝑚𝑐𝑐 × �
100 − 𝛾𝛾

100 � × 𝑤𝑤 ∗ 0.001 ∗ ℎ (13) 

𝐹𝐹𝑓𝑓 = 𝑘𝑘𝑓𝑓1 × (ℎ)−𝑚𝑚𝑓𝑓 × �
100 − 𝛾𝛾

100 � × 𝑤𝑤 ∗ 0.001 ∗ ℎ (14) 

𝐹𝐹𝑟𝑟 = �𝐹𝐹𝑐𝑐2 + 𝐹𝐹𝑓𝑓2 (15) 

The final workpiece temperature was computed by first finding the workpiece heat 

partition estimate, 𝐻𝐻𝑀𝑀𝐻𝐻, as follows; 

𝐻𝐻𝑀𝑀𝐻𝐻 =
ℎ𝑚𝑚𝑖𝑖𝑚𝑚

𝐹𝐹𝑟𝑟
(16) 

If ℎ𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝑟𝑟

> 1, then 𝐻𝐻𝑀𝑀𝐻𝐻 = 1, else, 

𝐻𝐻𝑀𝑀𝐻𝐻 = ℎ𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝑟𝑟

 (17)  

Subsequently, the final workpiece cutting force, 𝐹𝐹𝑐𝑐𝑐𝑐; is estimated by; 

𝐹𝐹𝑐𝑐𝑐𝑐 = 𝐹𝐹𝑐𝑐 × 𝐻𝐻𝑀𝑀𝐻𝐻 (18) 

The shear plane length, 𝑇𝑇𝑠𝑠 and maximum heat source extension (𝐻𝐻𝐻𝐻𝐻𝐻 are calculated for 

varying chip thickness as follows,  

𝑇𝑇𝑠𝑠 =
ℎ𝑚𝑚𝑖𝑖𝑚𝑚

sin∅
 (19) 

Equivalent friction force as; 

𝐹𝐹𝑟𝑟(𝑒𝑒𝑒𝑒.) = 𝐻𝐻𝑀𝑀𝐻𝐻 × 𝐹𝐹𝑟𝑟 (20) 

The approximate Peclet number of the chip is;  

𝑀𝑀𝑒𝑒 =
𝑟𝑟𝑐𝑐  ×  𝑇𝑇𝑠𝑠 × 10−6

4 × 𝛼𝛼𝑖𝑖
(21) 



 

90 
 

The flash temperature is calculated as a function of cutting speed, uncut chip thickness, 

and Peclet number.  

If 𝑀𝑀𝑒𝑒 > 5 

𝑇𝑇𝑓𝑓 =
𝜋𝜋 ∗ 𝐹𝐹𝛽𝛽 ∗ 𝑟𝑟𝑐𝑐
𝑘𝑘 ∗ 𝑤𝑤4

∗ �
𝜅𝜅

𝐴𝐴 ∗  𝑟𝑟𝑐𝑐
(22) 

If 𝑀𝑀𝑒𝑒 < 5 

𝑇𝑇𝑓𝑓 =
𝜋𝜋 ∗ 𝐶𝐶4 ∗  𝐹𝐹𝛽𝛽 ∗ 𝜅𝜅
20 ∗ 𝑘𝑘 ∗ 𝑤𝑤 ∗ 𝐴𝐴

(23) 

The initial prediction of the flash temperature was computed using constant thermal 

properties. However, multiple iterations are needed, where properties are updated based on 

the previous prediction until convergence is achieved (typically three to five iterations). 

(show convergence example graph) 

 

Figure 4-8. Maximum safe cutting speed against trial iteration plot 

Based on graphs of flash temp vs. cutting speed, the maximum speed is determined at 

𝑇𝑇 =  𝑇𝑇𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 
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Figure 4-9. Peak temperature against cutting speed plot 

 Acoustic Emission 

A KISTLER AE sensor, model 8152C with a 5125C AE coupler, 100–900 kHz 

bandwidth, and a National Instruments USB-6361 data acquisition system (DAQ) with a 

peak sampling rate of 2 Ms/ch were employed in this investigation. The AE sensor was 

incorporated into the cutting tool holder using a strong M6 screw connection following the 

manufacturer's specifications to ensure consistent signal attenuation while cutting. The AE 

sensor was roughly 20 mm away from the cutting tool tip, with the tungsten carbide cutting 

insert (NB2R geometry, K68 grade) separated from the AE sensor by the solid steel tool 

holder shank (grade AISI 4350). A major problem faced during AE signal analysis is the 

noise resulting from environmental conditions. These conditions are difficult to eliminate 

due to internal vibration generated by the servo motors while moving or holding position. 

To address this challenge, the extracted AE signals from the cuts must first undergo a 

denoising step before being analyzed. While there are several denoising approaches, the 

wavelet interval-dependent denoising technique in the MATLAB wavelet toolbox was 

adopted; however, an alternative Fourier transform approach could be applied so long as 

the extraneous signals do not vary over time. 

Within the 1-D Wavelet Toolbox app, the reference wavelet of db2, or Daubechies 

2, was used. It is a type of wavelet helpful in analyzing signals with sharp peaks that 
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typically occur during fracture events. Eight decomposition levels were used during signal 

processing, and the signal was then denoised. Threshold values for each of the eight 

decomposed levels were selected based on the signal acquired outside the testing region. 

The method for determining the threshold values can be summarized by selecting the 

'lowest trough' for each level or the smallest signal amplitude. The eight levels range from 

lower to higher frequency content so that the various external signals can be filtered over 

the frequency ranges. After excluding the minimum acquired signal for each of the eight 

levels, the signal was cropped to the testing region. A later comparison between this 

method and reversing the order of denoising, then cropping showed little difference in the 

final output signal. However, the minimum threshold values were easier to spot when the 

tool was not engaged with the workpiece. The denoised signal can be further analyzed via 

scalograms through a convolutional neural network and traditional signal-analysis 

techniques. One observation made during this process is that the deeper and more 

aggressive the cut, the more the servo must operate to maintain the cutting depth and, 

therefore, more ringing and vibrations. This phenomenon causes the relative need for 

denoising to increase for a larger depth-of-cut. 

 

Figure 4-10. Raw and Denoised Acoustic Emission Signal 

The denoised acoustic emission data plots show an increase in signal amplitude 

with respect to the chip thickness. This observation is due to an increase in the cutting 

force, and machine dynamics on the tool due to an increase in chip thickness. In the 

subsequent chapter, features such as mean, standard deviation, energy, and mean frequency 
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were extracted from the AE signal data with the intent that these features could help 

distinguish between different cutting modes to aid process monitoring and control. 

 SURFACE QUALITY MEASUREMENT  

Surface crack formation is one of the prevalent drawbacks and challenges in γ-TiAl  

machining. In conventional machining practices, this problem is often solved or avoided 

by raising the process cutting temperature via an increase in cutting speeds, improving the 

alloy ductility, and reducing the chances of crack initiation. However, the downside of this 

approach is the concurrent increase in thermal load and accumulation at the cutting edge, 

which results in rapid tool wear or low tool life. Also, this approach is challenging to adopt 

in γ-TiAl machining since the cutting temperature must exceed the brittle-to-ductile 

transition temperature of 600°C - 700°C. The estimated cutting temperature at the cutting 

tool-workpiece interface using high-speed machining is around 420°C, which is below the 

brittle to ductile transition temperature expected in γ-TiAl machining. Uhlmann et al. 

(2009) proposed a workpiece preheating approach to overcome this limitation. They 

established that preheating the workpiece to about 300°C significantly reduced the size and 

density of surface cracks as to room temperature machining while increasing the preheat 

temperature to 700°C reduced the macro-cracks to micro-cracks and >800°C preheat 

temperature eliminated the surface cracks after machining. 

The correlation between surface crack and tool wear was confirmed by Priarone et 

al. (2012a), showing that the ability of PCBN and diamond cutting tools to maintain a sharp 

cutting edge during cutting helps in reducing the crack density. A low crack density was 

also reported when low cutting forces were adopted in operations such as grinding 

(Beranoagirre and De Lacalle, 2013). It has been established that the cutting tool wears out 

concurrently as the surface defect occurs. Turning tests on titanium 45-2-2-0.8 alloy by 

Sharman et al. (2001a) showed that depth of cuts influenced the surface crack density by 

67% when a low cutting speed and depth of cut between 0.05 and 0.1 mm were adopted. 

The least crack geometry (50 µm width and 5 µm depth) was observed in the smallest depth 

of cut (0.05mm), while the 0.1 mm depth of cut had a crack geometry of 150 µm width and 

15 µm depth. Studies by Mantle and Aspinwall (1997) on gamma XDTM titanium aluminide 
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(Ti-45Al-2Nb-2Mn-0.8% TiB2) turning at a low cutting speed of 25 m/min, 0.1 m/rev feed 

rate, and 0.7 mm depth of cut correlated the surface cracks to the flank wear and cutting 

time.  

A custom coaxially illuminated microscope based on a Thorlabs ITL200 infini-ty-

corrected tube lens was constructed using a Mitutoyo M-plan 10x long working distance 

objective lens for vertical surface analysis. Images were acquired using a View-Works VC-

25MC 25 megapixel machine vision camera, Karbon-CL KBN-CL4-2.7-SP frame grabber, 

and Matlab image acquisition software. Three-dimensional scans of the machined surface 

morphology were captured using a ZYGO New View 7300 white light profilometer at 20x 

magnification. Three cutting modes were observed during the orthogonal cuts on the in-

situ testbed, namely, ductile, brittle, or mixed cutting mode. The ductile cutting mode was 

observed between the range of 0-3 µm chip thickness, a mixed-mode between 3-5 µm, and 

brittle mode above 5 µm chip thickness, assuming a sharp cutting tool is used.  

Figure 4-11 summarized the effect of the uncut chip thickness on the specific 

cutting forces while showing the top surface images of the machined sample. 

 

Figure 4-11. A plot of specific cutting force against uncut chip thickness and 

characteristic machined surface images. 
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Experimental trials show that for the same conditions (speed and depth of cut), the 

mode and morphology of surface fractures change between a sharp tool, mildly worn, and 

worn tool at the end of its useful life (as shown in Figure 4-12). Also, the type of surface 

cracks formed can be categorized either as mechanical cracks or thermal cracks. The 

mechanical cracks were mainly observed in sharp or slightly worn tools (1 - 25µm), while 

the thermal cracks were predominant in highly worn tools (50 - 150µm). This observation 

is due to the larger tool edge radius/ surface contact on worn tools, which increases the 

temperature.  

 

Figure 4-12. Surface images after machining using sharp and different worn tools 

A MATLAB script evaluated the cracked machined surface area percentage by 

accounting for the black spots/cracks on the surface images. The algorithm converts the 

grayscale surface images captured by the upright Nikon microscope to black and white 

images using a specified threshold. The threshold value ranges between 0.27-0.32 

depending on the image brightness and feed mark intensity, thereby manually adjusted as 
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needed. The algorithm computes the number of black pixels and divides them by the total 

number of image pixels, representing the gross crack percentage.  

However, the gross crack percentage is not corrected for the feed marks, which 

sometimes have the same color intensity as the surface cracks. The crack algorithm 

processes a baseline surface image with zero cracks and uses the resulting crack percentage 

(due to feed marks) as a correction factor to account for feed marks. The baseline surface 

crack percentage is subtracted from subsequent images, thereby accounting for the feed 

marks. Figure 4-13 (a, b, and c) shows the surface crack output and the estimate algorithm's 

flowchart. 

 

Figure 4-13. (a) Surface image with cracks at 21µm DOC using a sharp carbide tool (b) 

processed image output with MATLAB crack script (c) MATLAB script flowchart. 

We captured data for six trials at each depth of cut. Due to camera limitations, the 

overall surface image from each of these cuts was divided into 50 segments. The surface 

images segments were processed with the developed MATLAB script, and the crack 

percentage of each segmented image was computed and averaged per depth. Figure 4-14 

shows the plot of the average surface cracks against chip thickness (1, 3, 5, 7, 9, 14, 21 

µm) for a sharp carbide tool cut at a 60 m/min cutting speed. The crack trend and 

representative surface images are captured in Figure 4-14, which shows that the surface 

crack percentage and measurement deviation tend to increase with the depth of cut. From 

observation, ductile cuts with few or no microcracks were recorded for cut depth less than 
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five microns, and the surface cracks from 5 µ𝑚𝑚 upward exhibit a brittle cutting mode with 

pronounced micro and macro cracks. These cracks result from the mechanical effect on the 

surface during machining. The final surface quality from each trial was categorized into 

three groups: good, marginal, and poor quality, considering the average surface crack 

percentage shown in Figure 4-14. Data from trials with a surface crack percentage less than 

2.5% are grouped as good quality. In comparison, trials with crack percentages above 2.5% 

but lower than 3.6% are grouped under marginal quality. The remaining trials with a higher 

crack percentage (above 3.6%) are grouped as poor quality.  

 

Figure 4-14. Average surface cracks against chip thickness plot with respective optical 

images using a sharp carbide tool. 

 MECHANICAL FRACTURE  

During titanium aluminide machining, mechanical fractures are formed depending 

on the cutting tool geometry and parameters. This fracture type was predominant in sharp 

cutting tools with chip thickness of less than 21µm and slightly worn cutting tools less than 

10µm. This phenomenon can be traced to the mechanical force load on the machined 

surface and lower cutting temperature under the above-specified cutting conditions. 
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Mechanical fractures are undesirable in the final machined surface due to their adverse 

effect on the fatigue life of these components during the use stage. In order to quantify the 

depth and severity of these fractures, three-dimensional scans of the machined surface 

morphology were captured using a ZYGO New View 7300 white light profilometer at 20x 

magnification. The surface scans were taken at five different locations. Their average 

values and deviations were reported for perfectly sharp tools, 25µm VB worn tools, and 

50µm VB worn tools (all tools are made of tungsten carbide). Figure 4-15 shows sample 

3D images for machined surfaces captured with Zygo3D profiler. 

 

Figure 4-15. Sample 3D images for machined surfaces captured with Zygo3D profiler (a) 

ductile cut (b) brittle cut 

From Figure 4-16, it can be seen that the fracture depth increases with the uncut 

chip thickness. A fracture depth of 3µm was observed with sharp tools; however, no 

significant fracture depth was recorded in worn tools at a chip thickness less than 5µm. 

This observation is due to the minimum chip thickness phenomenon of the ploughing or 

smearing effect synonymous with worn tools. The maximum value of the uncut chip 

thickness was constrained to 21µm due to the extreme surface damage to the machined 

surface at this value. Also, it can be observed that the maximum average fracture depth of 

approximately 15µm was recorded across the cutting tools.  
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Figure 4-16. Plots of fracture depth against uncut chip thickness 
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Figure 4-17 summarizes the experimental fracture findings, showing that to avoid 

surface cracks, the maximum uncut chip thickness should be limited to 1µm for a sharp 

tool, 3µm chip thickness for a 25µm VB worn tool, and 5µm chip thickness for a 50µm 

VB worn carbide tool. Therefore, it can be concluded from Figure 4-17 that higher tool 

wear allows for higher uncut chip thickness. This finding also provides a conservative 

approach to achieving a good surface finish while machining titanium aluminide alloys. 

Figure 4-17. A plot of critical chip thickness beyond which fracture will occur as a 

function of tool wear 

 SUMMARY AND CONCLUSIONS 

In this chapter, the high-speed imaging setup on the in-situ testbed made it possible 

to observe the machining process. An initial set of machining parameters for crack-free 

machining of titanium aluminide was established using a sharp and worn carbide cutting 

tool. In addition, mechanical fractures experienced during TiAl machining were captured 

using empirical models, and resulting conclusions were drawn: 

• Captured high-speed images gave the capability for severe plastic deformation, 

sub-surface, strain, and strain rate characterization using Digital Image Correlation. 

• Analysis showed (sub-) grain displacement/stress localization due to anisotropic 

material response to the thermo-mechanical loads of cutting. Grain pullout/cracking 
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occurred preferentially when TiAl lamellae were approximately perpendicular to 

the shear plane, i.e., mechanical loading was applied along the weakest direction of 

the microstructure. 

• Experimental results show ductile cuts with few or no microcracks occur at chip 

thickness less than 5 microns, while chip thickness from 5 microns and upward 

shows a brittle cutting mode with prominent micro and macro cracks. This 

phenomenon can be traced to the mechanical forces acting on the surface while 

being machined. 

• Both sharp carbide and PCBN tools have a similar data profile; their cutting force 

magnitude increases as the chip thickness and tool edge radius rise. 

• The mechanical fracture depth increases with the uncut chip thickness; however, to 

achieve a crack-free surface using a conservative approach, the maximum uncut 

chip thickness should be limited to 1µm for a sharp tool, 3µm chip thickness for a 

25µm VB worn tool, and 5µm chip thickness for a 50µm VB worn carbide tool. 

Therefore, it can be concluded that higher tool wear allows for higher uncut chip 

thickness. 

• Efforts in this chapter have observed the machining of titanium aluminide alloys in 

real-time and have established safe boundaries for cutting parameters. These 

experiments have been conducted while looking at the machining process from a 

single plane with an optical microscope; however, the cracks formed during TiAl 

machining do not occur at a single plane but throughout the entire volume of the 

machined workpiece.  
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CHAPTER 5.  
QUALITY MONITORING USING ACOUSTIC EMISSION SCALOGRAM 

 SCOPE AND INTRODUCTION 

Efforts in this work thus far have focused on a single plane observation of the crack 

initiation and propagation during titanium aluminide machining; however, the cracks occur 

anywhere in the volume of the machined component and not just on the single plane of 

high-speed imaging. This chapter targeted efforts to achieve real-time monitoring of the 

entire crack propagation across the workpiece volume during TiAl machining. The 

formation of cracks in different materials has been accompanied by the stress wave 

generated from the rapid release of energy from localized sources (Kobayashi et al., 2015; 

Sun and Balk, 2008). An approach widely accepted for crack analysis across various 

literature is acoustic emission signal analysis. Studies have shown that sound emission 

occurs at the tool/workpiece/chip interface and is directly influenced by changes in the 

cutting process, making acoustic emission signal analysis an appropriate technique for 

process condition monitoring. Analyzing the AE signal extracted from the testbed, the 

crack signals formed were rapid and tended to occur at approximately 65 kHz. 

Conventional acoustic emission signal processing techniques involve manual extraction 

for signal statistical features such as mean, standard deviation, and root mean square 

values. However, this is tedious, and it is difficult to capture the best parameters that 

accurately describe the process with this approach. This study explores machine learning 

techniques (such as the convolutional neural network) to minimize the AE signal pre-

processing and feature extraction steps. However, the AE signals collected were first 

examined for differences in pattern using principal component analysis.  

Efficient integration of machine learning techniques with signal analysis often 

comprises a three-phase process: signal collection, feature selection/extraction, and model 

training (Fu et al., 2017). The signal collection phase involves a holistic experiment design, 

collection, and accurate labeling. The feature extraction phase involves detecting key signal 

characteristics and matching them with their corresponding data labels. The model training 

phase matches the extracted features with their respective process states. Manual feature 
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extraction involves a human selection of crucial data characteristics suitable for the 

problem. However, the features selected are only suitable for that specific problem and 

might not be relevant in a different scenario. Also, it might be challenging to decide 

between features of similar performance. 

 PATTERN RECOGNITION 

Pattern recognition technique applies mathematical or machine learning algorithms 

on existing data to distinguish and categorize between process trends for process decision 

and control. It is essential to collect good and quality data to achieve efficient pattern 

recognition. The data must be filtered, classified, evaluated, and interpreted for AE signals. 

The collection of object characteristics is helpful in adequately describing the object.  The 

features or characteristics, f, of an AE signal can be collected to form a vector, x in a 

dimensional space, d. The collection of all the vectors in a table represents the pattern 

matrix. The next step after a feature extraction is data pre-processing, where the collected 

data can be processed to a usable form for data comparison. This step involves feature 

calculation, selection, normalization, and transformation. Feature normalization is a 

common and important step in data preprocessing and pattern recognition, as it helps 

transform the multiple features to the same scale or range. For instance, extracted AE 

features such as amplitude, 0.8V, and frequency (200KV) can be normalized to the same 

range, e.g., 0 to 1. Other transformations, including zero mean or unit variance, are also 

applied during the normalization step. Once the data is pre-processed, the next step would 

be to find similarities between the collected data and a known database. The new data is 

categorized under the group whose pattern is similar. Pattern classification can be achieved 

by two main methods: unsupervised pattern recognition and supervised pattern recognition. 

• Unsupervised pattern recognition is a technique in which data can be classified to 

the appropriate group without needing a prior or existing database. The data is 

classified using feature comparison and cluster generation. 

• Supervised pattern recognition involves classifying data into the appropriate group 

by comparing the data/feature pattern to an existing database. This technique learns 

from example; hence the name supervised learning. Before applying this technique 



 

104 
 

to acoustic emission, it is essential to understand the possible classes or process 

conditions.  

 PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) is a dimensionality reduction approach for large 

datasets; the reduction is achieved by transforming the large dataset with multiple features 

into a smaller dataset while still retaining most of the information in the large dataset. 

Having a smaller dataset makes data visualization, exploration, and analysis much easier 

and faster. Also, reducing the dataset variable is perfect for machine learning algorithms. 

While reducing the number of variables in data typically affects the accuracy, it is possible 

to maintain high accuracy and simplicity concurrently with PCA. In summary, PCA 

reduces the number of variables in a dataset while preserving as much information or 

minimizing variation. 

The first step in PCA is to standardize or normalize the continuous range of the 

initial variable such that they are all on the same scale. Mathematically, this can be 

achieved by subtracting the variable mean from the original value and dividing it by the 

standard deviation for each variable. 

𝑧𝑧 =
𝑟𝑟𝑎𝑎𝑇𝑇𝑢𝑢𝑟𝑟 −𝑚𝑚𝑟𝑟𝑎𝑎𝑚𝑚

𝑎𝑎𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑𝑎𝑎𝑟𝑟𝑑𝑑 𝑑𝑑𝑟𝑟𝑟𝑟𝑇𝑇𝑎𝑎𝑑𝑑𝑇𝑇𝑑𝑑𝑚𝑚
(24) 

In the second step, the covariance matrix is calculated. This step aims to understand 

how the data values vary from the mean to each other and investigate any relationship 

between them. The covariance matrix helps to detect any form of correlation between the 

variables. Subsequently, in the third step, eigenvectors and eigenvalues are calculated from 

the covariance matrix to determine the data's principal components. Principal components 

are new variables constructed as a linear combination of the initial variables.  These new 

variables are constructed such that they are uncorrelated and still contain a significant 

chunk of the original information. It is important to note that multiple principal components 

are formed. However, the maximum possible information is stored in the first principal 

component. For instance, if there are seven principal components, PCA stores most of the 
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data information in the first component and stores the following most important 

information in the second component. 

In this work, thirteen features (minimum amplitude, maximum amplitude, mean, 

RMS, peak RMS, peak to peak, variance, standard deviation, kurtosis, energy, band power, 

power bandwidth, mean frequency) were extracted from the acoustic emission signal data 

collected during orthogonal milling of the titanium aluminide sample. These features were 

passed through a dimension reduction using principal component analysis, and Figure 5-1a 

and b show the 2D and 3D PCA plots. From the feature space on the plot, it can be seen 

that there is a distinction between the AE signal of the three strategies adopted. The thermal 

wear strategy tends to tilt to the right, while good quality and mechanical wear strategies 

tilt to the left and appear more similar. This similarity is most likely due to the intermittent 

formation of the cracks across the surface, while for most of the cut, they both have a 

similar data profile. 

  

Figure 5-1. (a) 2D Principal component plot for different wear strategies (b) 3D 

Principal component plot for different wear strategies 

 CONTINUOUS WAVELET TRANSFORM 

Fourier transform captures the frequency information over an entire signal using 

only sine and cosine basis functions. However, this approach is unsuitable for signals with 

short intervals of characteristic oscillations, such as in Electrocardiography (ECG). 

Wavelet transform can address this limitation by decomposing functions into sets of 
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infinite wavelets basis functions, which is ideal for non-stationary and non-linear signal 

analysis. Wavelet transform also has variable windows, giving more accurate signal data 

information (Neupane et al., 2021). Wavelets are wave-like oscillations localized in time. 

There are two types of wavelet transform; continuous and discrete wavelet transform. 

Continuous wavelet transforms (CWT) use all possible wavelets over various locations and 

scales, while discontinuous wavelet transforms (DWT) are defined to specific locations 

and scales. The difference between these two methods includes scale parameter 

discretization, transient localization of non-stationary signals, and the time resolution in 

the frequency band. CWT has better scale discretization and is more suitable for transient 

localization in non-stationary signals than DWT. CWT is displacement insensitive while 

DWT is displacement dependent; overall, CWT is the most suitable for non-stationary 

signals. CWT methods transform one-dimensional time signals to a two-dimensional time-

frequency domain and are highly useful in time-frequency location multi-resolution of 

signals. They are mathematically represented as follows: 

𝐶𝐶𝑑𝑑𝑇𝑇(𝑎𝑎, 𝜏𝜏) =
1
√𝑎𝑎

� 𝑎𝑎(𝑑𝑑)𝜓𝜓∗ �
𝑑𝑑 − 𝜏𝜏
𝑎𝑎 � 𝑑𝑑𝑑𝑑

+∞

−∞
(25) 

 where 𝑎𝑎  is the wavelet scale, 𝜓𝜓∗  represents the mother wavelet (𝜓𝜓) 

conjugate,  𝜏𝜏 is the wavelet time localization and 1
√𝑐𝑐

 maintains the wavelet energy constant 

at varying scales. Signal representation with CWT allows better visualization and analysis 

of signal data extracted from machining processes. There are different types of CWT, of 

which Mexican, Morlet, and Gaussian wavelets are the most common. The Morlet wavelet 

is more suitable for wideband signals with time-based frequency and scale attributes 

(NajmiandSadowsky, 1997). In ths present study, a morlet based wavelet was adopted to 

generate acoustic emission scalograms. A spectrogram is the frequency spectrum 

representation of an audio signal as a function of time. It is generated when the signals are 

windowed with a constant length window adjusted in time and frequency. Similarly, the 

application of CWT on signals gives a 2D time-frequency spectrum known as scalograms. 

Scalograms represent a continuous wavelet transform (CWT), whose color code represents 

the wavelet coefficient magnitude, a dimensionless estimate that localizes the AE energy 

in both time and frequency. Scalograms are obtained from wavelets shifted in time and are 



 

107 
 

particularly useful for short sound signals with high frequency. The analytical morlet 

wavelet was used as the wavelet basis function for the scalogram generation of the AE 

signals. 

 CONVOLUTIONAL NEURAL NETWORK  

Deep learning is a machine learning tool that uses deep architecture to extract high-

level abstraction from data by combining several linear and non-linear processing units. 

Some of the deep learning techniques are auto-encoders, convolutional neural networks 

(CNNs), deep belief networks (DBNs), and multi-layer perceptrons. CNN is a deep 

learning technique explicitly designed for image classification. It comprises multi-layer 

perceptron variants that detect visual trends in images. An input image, feature extraction 

block (comprising convolution, activation, and pooling layers), fully connected layers, and 

a classification layer make up a typical CNN architecture. The convolutional layer is the 

most critical block in a CNN architecture because it performs most of the computation. It 

requires data, a feature detector (kernel or filter), and a feature map as inputs. The feature 

detector moves across the receptive fields of the image, searching for features, a process 

known as convolution.  The dot product of the input pixels and the filter is computed, and 

the filter is applied to a specific image area. When the filter is finished, it shifts by a stride 

and repeats the process for other image areas until the entire image has been covered. Each 

stride's final output is passed to an output array, and the total output of this computation is 

referred to as a feature map or activation map.  

The output depth is determined by the number of filters used; three filters would 

result in a depth of three (three feature maps). The fully connected layer classifies the 

images using features extracted from the previous layers and SoftMax activation filters. 

CNN architecture comes in various variants, including LeNet, AlexNet, GoogleNet, and 

ResNet. The pooling layer reduces the number of parameters that must be entered. 

Dimensionality reduction is a technique used to reduce the size of a dataset. It scans through 

the input with a filter in the same way that the convolutional layer does. The filters in the 

pooling layer, on the other hand, have no weight, and the final output array is simply the 

sum of values from each receptive field. The maximum value of each receptive field can 
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be sent to the output array, known as max pooling, or the average value, known as average 

pooling. Though the pooling layer can lose much information, it helps to reduce overfitting 

and complexity while also increasing efficiency.  

AlexNet is a deep learning structure whose architecture consists of five 

convolutional layers, three max-pooling layers, two normalization layers, two fully 

connected layers, and one softmax layer. The AlexNet architecture was introduced in 2012, 

like the 1998 LeNEt architecture. However, it is a deeper structure and uses a ReLU 

activation instead of a sigmoid function. The first convolutional layer comprises an 11 x 

11 window shape to capture the input image fully. This window is followed by a 5 x 5 

window size in the second layer and a 3 x 3 windows size on the remaining convolutional 

layers. The choice of ReLU as the activation function in AlexNet makes the computation 

easier and model training easier when adopting different parameter initialization methods. 

AlexNet adopts a drop-out approach to control model complexity, while LeNet only uses 

weight decay.   

Typically, AE signals are one-dimensional; however, recent research efforts have 

represented the 1D AE signals as 2D CWT images (Neupane et al., 2021; 

TranandLundgren, 2020). This method is often preferred as images represent information 

better than one-dimensional signal charts. The application of CNN extends across object 

tracking and recognition, text tracking and recognition, action recognition, and scene 

labeling. Following the acoustic emission signal denoising and pre-processing, the local 

time-frequency attributes or scalograms of the AE signals were generated using the wavelet 

time-frequency analysis, a unique class of analytic wavelets known as Morse wavelets in 

MATLAB. MATLAB used the cwtfilterbank to segment the time-bandwidth to 1.7 ms 

mini-signals and tune the Morse wavelet. The segmented signals were converted to 

scalogram images and grouped into their respective quality groups as described above. 

Figure 5-2 and Figure 5-3 show the 2D and 3D scalogram outputs for 1 and 21 µm depths 

of cut using a sharp carbide tool. The 2D scalograms show the signal frequency as high as 

65 to 100 kHz. Figure 5-2 shows a low wavelet coefficient magnitude and high frequency 

for the 1 µm/ductile cut, while a higher magnitude at lower frequency was recorded for the 

21 µm/brittle depth of cut, as shown in Figure 5-3. This difference in magnitude and shift 
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in frequency resulted from the cracks/fracture on the specimen surface at a higher depth of 

cut, as displayed in Figure 5-3c. The wavelet coefficient magnitude for the 1 µm cut with 

a fine surface finish is concentrated around 100 kHz, while the 21 µm cut with a poor 

surface finish is concentrated around the 20–55 kHz range, as shown in Figure 5-3a. The 

surface images in Figure 5-2c and Figure 5-3c have been time-matched to the scalograms 

to clearly show the workpiece surface state at the specific instance on the scalogram 

representation (Figure 5-3). 

 

Figure 5-2. (a) 2D scalogram, (b) 3D scalogram, and (c) surface image for 1 µm depth of 

cut at 60 m/min (Source: Adeniji et al. (2022) with permission of CC BY 2.0) 
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Figure 5-3. (a) 2D scalogram, (b) 3D scalogram, and (c) surface image for 21 um depth 

of cut at 60 m/min (Source: Adeniji et al. (2022) with permission of CC BY 2.0) 

Figure 5-4 shows a pictorial representation of the acoustic emission wavelet 

analysis data observations, showing the ductile cutting mode with fewer surface cracks, 

high signal frequency, and low magnitude. The mixed/transition cutting mode is concurrent 

with the ductile and brittle cutting mode (BCM). The BCM occurs at a lower signal 

frequency with a higher magnitude.  

 

Figure 5-4. Qualitative illustration of the observed trend in γ-TiAl  cutting mode (Source: 

Adeniji et al. (2022) with permission of CC BY 2.0) 
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 CNN for Fracture Detection (Feature Extraction and Classification) 

In this section, the scalograms generated from the acoustic emission signals were 

passed through a convolutional neural network for image or signal classification. We 

created three data categories (good, marginal, and poor surface quality), considering the 

computed surface crack percentage of each cut. For instance, for the sharp tool cuts, the 1, 

3, and 5 µm depths of cut comprising 18 AE signals were categorized as good quality, the 

7 and 9 µm depths of cut comprising 12 AE signals as marginal quality, and the 14 and 21 

µm depth of cut scalograms consisting of 12 AE signals as poor quality (selected samples 

shown in Figure 5-5). Since the same workpiece sample and cutting speed were used for 

these trials, each of the captured AE signals had a length of 80 ms. After converting the 

AE signal data, each trial dataset had only about 270 scalogram images of 227 x 227 pixels, 

displayed in Figure 5-6. Passing this small amount of data into CNN models would result 

in overfitting due to the small size. The features can be extracted by passing the scalogram 

images to a pre-trained deep neural network (DNN) to overcome this challenge. A pre-

trained network is a CNN model trained on a large dataset whose learning can then be 

transferred to smaller datasets. The typical pre-trained architecture includes VGG, 

AlexNet, ResNet50, and InceptionV3. This work used VGG19 and ResNet50 architectures 

previously trained on more than a million images as the pre-trained network to extract the 

scalogram features. Using these three models for classification would help compare their 

respective performances and select the best classifier for further analysis. Table 5-1 shows 

the segmented scalogram images for each category and dataset. 

Table 5-1. Number of segmented images for respective categories and datasets. 

 

 Dataset A Dataset B Dataset C 
Categories Training Testing Training Testing Training Testing 

Good 679 129 720 158 1035 332 
Marginal 440 100 500 115 774 200 

Poor 440 100 540 130 1041 558 
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Figure 5-5. Typical scalogram image for (a) good surface quality, (b) marginal 

surface quality with minor cracks, and (c) poor surface quality (Source: Adeniji et al. 

(2022) with permission of CC BY 2.0) 

 

Figure 5-6. Typical CWT segmented scalograms for (a) good surface quality, (b) 

marginal surface quality with minor cracks, and (c) poor surface quality (Source: Adeniji 

et al. (2022) with permission of CC BY 2.0) 

The experimental trials with a sharp tool were performed at 1m/s cutting speed for 

varying depths of cut: 1, 3, 5, 7, 9, 14, and 21 µm. The worn tool trials were captured at 

0.2 and 1 m/s cutting speeds for only the 3 and 21 µm depths of cut. The worn tool chip 

thickness was limited to 21 µm due to the fatal surface damage (thermal and mechanical 
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cracks) observed above the 21 µm depth of cut. The extracted scalograms for both sharp 

and worn tool cuts were grouped into Dataset A, Dataset B, and Dataset C. Dataset A 

consists of only sharp tool scalograms, grouped into training and testing datasets. Dataset 

B consists of both sharp and worn tool scalograms; however, only the sharp tool scalograms 

are used for training, while the worn tool scalograms are used for testing. This approach 

evaluates whether the sharp tool cutting data can adequately predict the worn tool cutting 

condition. Similarly, Dataset C consists of all the scalograms, but the training and testing 

data include an adequate proportion of sharp and worn tool scalograms. 

In this work, we adopted both the accuracy and F1 score to evaluate the 

performance of the proposed models. The accuracy indicates the correct classification rate. 

The F1-score is computed from precision and recall, representing the value of true positives 

divided by the cumulation of true and false positives. In contrast, recall is the value of true 

positives divided by aggregating true positives and false negatives. Table 5-2 shows the 

accuracy and F1 score of different classifiers. The result shows that a scalogram is an 

effective way of representing the acoustic emission signal. The lowest accuracy recorded 

for Dataset B is traceable because the models were trained with sharp tool scalograms and 

tested on worn tool scalograms. The poor performance in this dataset establishes the theory 

that machine/process dynamics differ and cannot be transferred between different tool 

geometries. The confusion matrix for the best models is shown in Tables 3 and 4 for 

Datasets A and C. The confusion matrix for Dataset B was excluded due to its poor 

performance. Table 5-2 shows that the accuracy of VGG19 makes it the best performing 

model across all datasets, with emphasis on Datasets A and C. The accuracy of the “good” 

surface quality signals had the highest performance in the confusion matrix in both 

datasets. It is also shown that there is repeated misclassification between the “marginal” 

surface quality scalograms and that of both good and poor category scalograms. The 

convergence of the training and validation process of VGG19 is shown in Figure 5-7. 

Convergence of the training and validation process of VGG19: (a) accuracy and (b) cross-

entropy loss (Source: (Adeniji et al., 2022) 
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Table 5-2. The accuracy and F1-score of the selected models. 

 Dataset A Dataset B Dataset C 

Classifier Accuracy 
(%) 

F1-
Score 

Accuracy 
(%) 

F1-
Score 

Accuracy 
(%) F1-Score 

VGG19 76.78 0.75 39.27 0.33 80.83 0.78 
ResNet50 78.64 0.78 51.64 0.40 50.92 0.60 
AlexNet 75.00 0.70 46.25 0.35 60.52 0.65 

Table 5-3. The confusion matrix of the best performing model (VGG19) for Dataset A. 

Labels Good (%) Marginal (%) Poor (%) 
Good 93.02 6.98 0.00 

Marginal 21.65 72.16 6.20 
Poor 1.03 39.18 59.79 

Table 5-4. The confusion matrix of the best-performing model (VGG19) for Dataset C. 

Labels Good (%) Marginal (%) Poor (%) 
Good 89.76 3.61 6.63 

Marginal 26.00 62.00 12.00 
Poor 10.75 6.98 82.26 

 

Figure 5-7. Convergence of the training and validation process of VGG19: (a) accuracy 

and (b) cross-entropy loss (Source: Adeniji et al. (2022) with permission of CC BY 2.0) 

 SUMMARY AND CONCLUSIONS 

The main contribution of this chapter is the presentation of a novel approach for 

converting AE signals extracted during machining to time-frequency scalograms and 

executing further analysis with classification into different cutting modes using CNN 

models. This approach offers new possibilities for real-time, low-cost, and non-destructive 
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(NDE) quality monitoring of critical surface features when manufacturing high-value 

components.  

• The CNN model developed in this work successfully classified the cutting mode 

during titanium aluminide into three different quality categories: good, marginal, 

and poor quality created using the crack depth information.  

• A total of 42 AE signals of 80ms each were generated from seven different depths 

of cut (1, 3, 5, 7, 9, 14, 21 µm). These AE signals were then segmented into a 

sequence of 40 signals with 2ms each and converted to scalograms of 227 x 

227pixels. These images were passed to the CNN algorithm and split using a ratio 

of 60:20:20 for the training, evaluation, and testing dataset, respectively.  

• The results show that the scalogram-CNN model achieves a state-of-art accuracy. 

Also, the segmented scalogram and transfer learning approach give flexibility to 

the amount of data needed for adequate model training and validation.  

• Ultimately, the wear condition during titanium aluminide machining can be 

estimated with acoustic emission and machine learning integration, with a 

predictive accuracy of 80.83%. 

The adopted approach provides a straightforward but accurate monitoring and 

potential process control capability. While the present work dealt with second-generation 

TiAl alloys, our technique presented can be extended to future material variants of TiAl 

alloys, such as the third-generation alloys studied by Beranoagirre(Beranoagirre et al., 

2019). It is worth noting that the future industrial implementation of the proposed paradigm 

will require custom sensor-integrated tool holders or fixtures to ensure consistent signal 

quality and attenuation. Nevertheless, the technique is not limited to monitoring surface 

finish during titanium aluminide machining. It could, in principle, be adopted for a wide 

variety of manufacturing processes and material systems that exhibit physical mechanisms 

(e.g., energy release during crack formation or tribological phenomena) that correlate with 

the quality and performance of the manufactured components. This furthermore includes 

potential future applications for use-stage asset condition monitoring, such as real-time 

detection of cracks during the operation of turbines. 
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CHAPTER 6.  
METRICS-BASED PRODUCTION PERFORMANCE ANALYSIS 

 SCOPE AND INTRODUCTION 

Metrics are used to evaluate a strategy, process, product, or system's efficiency, 

performance, progress, or quality. When several performance areas, such as economic, 

environmental, and social issues, must be reviewed for overall sustainability, a range of 

metrics will be required. They must be grouped into an effective structure to help improve 

decision-making. Thus, comprehensive frameworks and measurements must assess 

sustainable manufacturing performance at the product, process, and system levels (Huang 

and Badurdeen, 2018). According to Jawahir et al. (2020), the interconnection between 

machining process performance metrics makes developing predictive models limited and 

complex. Precise forecast factors compound this challenge for maximum productivity and 

quality under real-world situations. In this chapter, a simple case study was designed to test 

and compare the performance of the proposed DPT method to the existing state of process 

development, i.e., empirical modeling. While the precise values utilized in this research 

were not generated from actual production data, they were developed after extensive 

consultation with industry partners and TiAl machining specialists. Our research aims to 

assess the influence of apparently minor DPT improvements and trade-offs on the overall 

resource and energy efficiency of a low-pressure turbine (LPT) manufacturing process. 

The processing strategies and their performance were assessed for product quality, process 

time, cost, and material and energy consumption. 

 Analysis of Resource-Efficiency Metrics 

A simple case study was designed to evaluate and compare the performance of the 

proposed DPT approach to the current process development status quo, i.e., empirical 

analysis. While the exact numbers used in this study were not derived from actual 

production data, they were developed after extensive consultation with industry partners 

and TiAl machining experts. Our analysis seeks to assess the impact of seemingly minor 

DPT improvements and trade-offs on the overall resource and energy efficiency of a 
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generic low-pressure turbine (LPT) manufacturing process. To accomplish this, the 

processing strategies and their performance were assessed in terms of product quality, 

process time, cost, and material and energy utilization.  

6.1.1.1 Product Quality and Material Utilization 

For LPT applications, product quality is of chief importance. Any surface damage 

(e.g., machining-induced cracks and grain pull-out) may lead to a turbine engine's 

catastrophic failure and must thus be avoided at any cost. As a result, thorough quality 

control (QC) is required, and parts are individually inspected utilizing tailored non-

destructive evaluation techniques, such as fluorescent penetrant testing 

(RadkowskiandSep, 2014). The numbers are shown in Table 6-1. Quality performance 

overviews were generated for DPT model validation purposes and represent the outcomes 

of an experimental validation campaign. The results of the proposed DPT approach and the 

status quo manufacturing process of an undisclosed (proprietary) industry partner were 

contrasted. 

It should be noted that these data are not directly representative of actual production 

metrics because no full production has been completed using the novel DPT approach to 

date. Instead, based on the frequency and magnitude of machining-induced surface defects, 

the authors used lab-scale results to obtain reasonable estimates of the likely QC Pass, 

Fixable, and Scrap Rates (e.g., cracking, smearing, grain deformation). The quality check 

pass rate for the currently status quo was estimated to be around 90% and that of the 

proposed DPT to be around 95%, while it was assumed that the fixable rate of the DPT 

will be substantially better than the status quo, due to the presence of few and shallow 

cracks if any at all. The scrap rate for DPT is envisioned to be better due to improved 

fixable rate. The difference in QC pass rate, fixable rate, and scrap rate between the status 

quo and the DPT-optimized TiAl machining process is depicted in Table 6-1. Quality 

performance overview below.  
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Table 6-1. Quality performance overview 

 QC Pass Rate Fixable Rate Scrap Rate 

Status quo 90% 70% 3% 

DPT 95% 80% 1% 

Improvement +5% +10% -2% 

The DPT setup is assumed to have a modest 5% quality check pass rate (QCPR) 

improvement and 10% fixable rate (FR) improvement over the current status quo of 

empirical process optimization. The scrap rate (SR) was calculated from the quality check 

failure rate (QCFR) and FR as shown in Eqn. 26 and 27: 

𝑄𝑄𝐶𝐶𝐹𝐹𝑄𝑄 = 1 − 𝑄𝑄𝐶𝐶𝑀𝑀𝑄𝑄 (26) 

𝐻𝐻𝑄𝑄 = 𝑄𝑄𝐶𝐶𝐹𝐹𝑄𝑄(1 − 𝐹𝐹𝑄𝑄) (27) 

As shown in Table 1,  even the seemingly small increase in as-produced product 

quality has a significant improvement of approximately 2% reduced scrap rate, resulting in 

significantly improved material and embodied energy utilization within the DPT 

processing strategy. 

6.1.1.2 Process Time 

To determine the total process time (TPT), the time for machining a single LPT 

Blade (MT), quality check (QCT), rework (RWT), and delay time due to queue (QT) were 

all taken into account, as shown in Eqn. 28 and 29. Also, the possible part per hour was 

calculated with Equation 30. 

𝑄𝑄𝑇𝑇 =  𝑄𝑄𝐶𝐶𝑇𝑇[(1 − 𝑄𝑄𝐶𝐶𝑀𝑀𝑄𝑄 − 𝐻𝐻𝑄𝑄) + 2(1 − 𝑄𝑄𝐶𝐶𝑀𝑀𝑄𝑄)] (28) 

𝑇𝑇𝑀𝑀𝑇𝑇 = 𝑀𝑀𝑇𝑇 + 𝑄𝑄𝐶𝐶𝑇𝑇 + 𝑄𝑄𝑑𝑑𝑇𝑇(1 − 𝑄𝑄𝐶𝐶𝑀𝑀𝑄𝑄 − 𝐻𝐻𝑄𝑄) + 𝑄𝑄𝑇𝑇 (29) 

Parts
hour

=
60

TPT
  (30) 
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6.1.1.3 Cost 

The total cost for the status-quo and DPT across possible stages was computed 

using Equations 31-33, which consider the costs associated with machining, quality 

control, rework, and scrap. 

𝑄𝑄𝑑𝑑𝐶𝐶 =  𝑄𝑄𝑑𝑑𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠 ∗ 𝑄𝑄𝑑𝑑𝑇𝑇 (31) 

𝑄𝑄𝐶𝐶𝐶𝐶 = 𝑄𝑄𝐶𝐶𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠 ∗ 𝑄𝑄𝐶𝐶𝑇𝑇 (32) 

𝐻𝐻𝐶𝐶 = 𝑄𝑄𝑀𝑀𝐶𝐶 ∗ 𝐻𝐻𝑄𝑄 (33) 

where RWC, 𝑄𝑄𝑑𝑑𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠, RWT, QCC, 𝑄𝑄𝐶𝐶𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠, QCT, SC, and RMC  denote total 

rework cost, rework cost per min, total rework time, quality control cost, quality control 

cost per min, total quality control time, scrap cost, and raw material cost. Based on an 

integrated accounting of the various process costs, the total machining cost (MC) can be 

described by Eqn. 34 below: 

𝑀𝑀𝐶𝐶 = (1 − 𝑄𝑄𝐶𝐶𝑀𝑀𝑄𝑄 − 𝐻𝐻𝑄𝑄) ∗ �(𝑀𝑀𝑇𝑇 ∗ 𝑀𝑀𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚) + 𝑇𝑇𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑀𝑀𝑇𝑇 + 𝑄𝑄𝐶𝐶𝑇𝑇)� (34) 

where 𝑀𝑀𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚, 𝑇𝑇𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚, MT, MC represent machining cost per min, tooling cost per 

min, machining time, and total machining cost, respectively 

6.1.1.4 Energy consumption and embodied energy 

The machining, quality control, and rework operations were measured by 

considering the energy consumption per unit time for each of these, which was assumed to 

be an average of 300 kJ/min. The total energy consumption was determined by 

subsequently considering how long each component spends in each operation. Considering 

that each operation takes several minutes, the overall energy consumption per part was in 

single-digit MJ order. Treloar et al. (1997) defined embodied energy (EE) as the energy 

required to provide a product (both directly and indirectly) through all processes upstream 

(i.e., traceable backward from the finished product to consideration of raw materials). 

Based on a review of the literature, the embodied energy of the cutting tool (EEC) material 

(tungsten carbide) was taken as 15 MJ/tool (Kirsch et al., 2014) and 500 MJ/kg (Norgate 

et al., 2007) for the workpiece material (EEW) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, with an assumed weight (𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) of 

0.1 kg for each LPT component (i.e., 50 MJ/component). While cutting tools are consumed 
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at an approximately constant rate of a certain number of tools per hour (i.e., fixed tool-life), 

the loss of embodied energy from 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 LPT components is taken as the scrap rate, as well 

as any energy introduced during the machining and quality control stages (both of which 

are about an order of magnitude smaller than the overall embodied energy). 

With energy per min (EPM) assumed to be 300kJ, the energy metrics were 

calculated as follows: 

𝐻𝐻𝐶𝐶𝑇𝑇 = �𝑄𝑄𝐶𝐶𝑀𝑀𝑄𝑄 + 𝑄𝑄𝑑𝑑𝑇𝑇(1 − 𝑄𝑄𝐶𝐶𝑀𝑀𝑄𝑄 − 𝐻𝐻𝑄𝑄)� (35) 

𝑀𝑀𝐻𝐻𝑀𝑀 =  𝐻𝐻𝐶𝐶𝑇𝑇 ∗ 𝐻𝐻𝑀𝑀𝑀𝑀 (36) 

𝑀𝑀𝐻𝐻𝐻𝐻 =
𝑀𝑀𝑎𝑎𝑟𝑟𝑑𝑑
ℎ𝑑𝑑𝑢𝑢𝑟𝑟

∗
𝑀𝑀𝐻𝐻
𝑝𝑝𝑎𝑎𝑟𝑟𝑑𝑑

(37) 

𝑇𝑇𝐻𝐻𝑀𝑀 =  𝐻𝐻𝐶𝐶𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇 (38) 

𝑇𝑇𝐻𝐻𝐻𝐻 =
𝑝𝑝𝑎𝑎𝑟𝑟𝑑𝑑𝑎𝑎
ℎ𝑑𝑑𝑢𝑢𝑟𝑟

∗ 𝑇𝑇𝐻𝐻𝑀𝑀 ∗ 𝐻𝐻𝐻𝐻𝐶𝐶 (39) 

𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐻𝐻𝑄𝑄 ∗ 𝐻𝐻𝐻𝐻𝑑𝑑 ∗
𝑀𝑀𝑎𝑎𝑟𝑟𝑑𝑑
ℎ𝑑𝑑𝑢𝑢𝑟𝑟

∗ 𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (40) 

𝑇𝑇𝐻𝐻𝐻𝐻 = 𝑀𝑀𝐻𝐻𝐻𝐻 +  𝑇𝑇𝐻𝐻𝐻𝐻 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (41) 

where ECT, PEP, PEH, EPM, TEP, TEH, EEC, 𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, EEW denotes energy-

consuming time, process energy per part, process energy per hour, energy per min,  tooling 

energy per part, tooling energy per hour, embodied energy per cutting tool, embodied 

energy per blade, and total embodied energy consumption, respectively. 

 SUMMARY AND CONCLUSIONS 

Based on the energy metrics analysis approach laid out in the previous section, a 

comparative analysis of the DPT approach's relative performance against the current status 

quo was conducted. As shown in Figure 6-1, the DPT approach has about 161% 

improvement over the status quo regarding the embodied energy of each LPT blade 

produced. Approximately 107% reduction in tooling energy per hour and 19% reduction 
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in process energy. Also, the total embodied energy (TEE) is significantly reduced by 84%. 

These improvements can be traced to reducing scrap rate (from 3% to 1%).  

 

Figure 6-1. Energy performance for status quo & DPT 

For respective operation time, the performance of a DPT approach is similar to the 

status quo as it pertains to the total machining time (MT), total quality time (QCT), and 

rework time (RWT), as shown in Figure 6-2. Also, it has about 93% queuing time and 15% 

total time improvement over the status quo. This performance improvement can be traced 

to a percentage increase in the LPT blades that passed the quality check at the first attempt 

with a DPT approach.  

 

Figure 6-2. Time performance for status quo & DPT  
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Like the time metric result, the total machining cost, quality control cost, and total 

rework cost per part are almost identical. However, a DPT approach yielded a significant 

improvement of 93% in queuing cost and 2% in scrap cost, as shown in Figure 6-3.   

 

Figure 6-3. Cost performance for status quo & DPT  

In this chapter, a novel process metric framework was proposed. Preliminary results 

showed an improvement of 84% in energy efficiency, 93% in process queuing time, 2% in 

scrap cost, and 93% in queuing cost compared with the low-pressure turbine blade finish 

machining status quo. In light of the need for more sustainable and resource-efficient 

manufacturing practices, the present work provides an example of how the proposed 

Digital Process Twin (DPT) methodology may enable transformative sustainability 

improvements at the process level. The DPT allows high-level consideration of various 

mutually interconnected metrics, as well as multi-objective optimization using artificial 

intelligence (AI) algorithms by tracking both environmental (energy, resources, etc.) and 

economic (costs, time, etc.) metrics. Future work will be needed to refine and validate 

specific sustainability metrics at the process level and consider the life-cycle implications 

of process-induced product quality (e.g., the impact of surface integrity on fatigue life or 

turbine energy consumption). Efforts are ongoing to expand their approach to a more 

comprehensive, system-level approach by considering both process and product 

performance, i.e., merging the DPT (manufacturing stage) and the Digital Twin (design 

and use stage) of turbine components. 
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CHAPTER 7.  
CONCLUSIONS AND FUTURE WORK 

 SUMMARY OF MAJOR RESEARCH FINDINGS  

The development and adoption of a digital process twin are envisioned to improve 

titanium aluminide alloys' machining/manufacturing process. However, to establish a 

machining DPT framework for titanium aluminide machining, different techniques such as 

in-situ process characterization, sensor technology, physics-based modeling, metrics-based 

production performance modeling, and data analytics have to be integrated. These 

components each have their unique contribution to the overall goal of creating a digital 

process twin for titanium aluminide machining. This research effort has focused mainly on 

implementing in-situ process characterization and data analytics techniques necessary for 

developing a DPT for machining processes. The characterization results covered in Chapter 

4 of this work comprise high-speed video microscopy of the machining process, force data 

and acoustic emission extraction, post-mortem analysis of high-speed images for strain 

quantification, surface quality estimation, and mechanical fracture analysis of the 

machined surface captured on a high-speed testbed developed at the University of 

Kentucky. An initial set of parameters for crack-free machining of titanium aluminide was 

established using a sharp and worn carbide cutting tool with different edge geometry. The 

overall research summary is shown in Figure 7-1, however, the following conclusions were 

drawn from the in-situ characterization of the machining process: 

• Captured high-speed images gave the capability for severe plastic deformation, 

sub-surface, strain, and strain rate characterization using Digital Image Correlation. 

• This research discovered that the crack formation is microstructure dependent and 

that achieving a  ductile cut in TiAl is possible. Experimental analysis showed (sub-

) grain displacement/stress localization due to anisotropic material response to the 

thermo-mechanical loads of cutting. Grain pullout/cracking occurred preferentially 

when TiAl lamellae were approximately perpendicular to the shear plane, i.e., 

mechanical loading was applied along the weakest direction of the microstructure. 
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• When cutting brittle materials (such as TiAl), many researchers have observed a so-

called ‘critical uncut chip thickness’ effect. When the value of the uncut chip 

exceeds this critical material-specific value, a fracture occurs. Experimental results 

show ductile cuts with few or no microcracks occur at chip thickness less than 5 

microns, while chip thickness from 5 microns and upward shows a brittle cutting 

mode with prominent micro and macro cracks. Due to the critical uncut chip 

thickness, no significant fracture depth was recorded in worn tools at a chip 

thickness less than 5µm. 

• To avoid surface cracks, the maximum uncut chip thickness should be limited to 

1µm for a sharp tool, 3µm chip thickness for a 25µm VB worn tool, and about 5µm 

chip thickness for a 50µm VB worn carbide tool. 

• Both sharp carbide and PCBN tools have a similar data profile; their cutting force 

magnitude increases as the chip thickness and tool edge radius rise. Critical uncut 

chip thickness characterization revealed that increasing tool-wear allows for 

increased feed rates. Fracture depths generally increase with increasing uncut chip 

thickness 

• Also, TiAl needs to be machined at low cutting speeds (~30 m/min) to achieve 

reasonable tool-life and avoid thermal damage (transverse cracking due to thermal 

expansion/shock). Practically, TiAl needs to be machined at very low feed rates 

(~5-10 microns/rev) to remain below the single-digit critical uncut chip thickness 

threshold. 

• Although industrial tool-life criteria are already relatively low (VB < 50 µm), in-

situ characterization results show that a revised tool-life limit should be even lower 

to avoid thermal damage (e.g., less than 30 microns flank wear at 30 m/min) 

In Chapter 5, the extracted acoustic emission signals were used for process 

monitoring via a scalogram-CNN approach. The transformation of extracted acoustic 

emission signals into scalograms was used to train a convolutional neural network for 

process feedback and monitoring. This approach provided an accurate process monitoring 

and potential process control capability, as described in Adeniji et al. (2022). It is worth 

noting that the future industrial implementation of this paradigm will require custom 
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sensor-integrated tool holders or fixtures to ensure consistent signal quality and 

attenuation. Nevertheless, the technique is not limited to monitoring surface finish during 

titanium aluminide machining. It could, in principle, be adopted for a wide variety of 

manufacturing processes and material systems that exhibit physical mechanisms (e.g., 

energy release during crack formation or tribological phenomena) that correlate with the 

quality and performance of the manufactured components. The DPT prospect further 

includes potential future applications for use-stage asset condition monitoring, such as real-

time detection of cracks during the operation of turbines. In Chapter 6, the potential benefit 

of the proposed digital process twin paradigm against the industry's existing status quo for 

manufacturing a γ-TiAl low-pressure turbine blade. A DPT framework provides more 

sustainable and resource-efficient manufacturing practices, enabling transformative 

sustainability improvements at the process level. This was achieved by tracking 

environmental (energy, resources, etc.) and economic (costs, time, etc.) metrics. Future 

work to refine and validate specific sustainability metrics at the process level and consider 

life-cycle implications of process-induced product quality (e.g., surface integrity impacts 

on fatigue life or turbine energy consumption) will be required. Also, hile the present work 

dealt with second-generation TiAl alloys, the DPT technique presented can be extended to 

future variants of TiAl alloys and other difficult-to-machine materials. 
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Figure 7-1. Summary of thesis work 
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 FUTURE WORK AND OUTLOOK  

The adopted in-situ characterization approach provides a straightforward approach 

towards quickly developing a robust process understanding and enables the measurement 

of relevant model inputs to develop accurate predictive process models. When properly 

calibrated and validated, such models can run process simulations and generate sufficient 

data for a machine learning model. The computational models act significantly faster when 

arranged in a modular fashion since highly complex ‘chip formation’ simulations often 

predict various highly complex phenomena (e.g., chip serration) that may ultimately not be 

necessary to predict desired process metrics (e.g., surface cracking). The ML model must 

be carefully curated to account for process uncertainties while also learning from the 

simulated data in a converging manner. When these digital components of the DPT are 

appropriately integrated, the overall predictive capability will enable a future extension 

(extrapolation) to previously unforeseen scenarios, e.g., across a new range of process 

parameters.   

While much work has been done in cyber-physical manufacturing systems and 

establishing a digital twin of manufactured components, much of these efforts fail to 

address the impact of unit manufacturing processes on a given component's physical 

properties (Leng et al., 2019; Uhlemann et al., 2017). A digital process twin framework, as 

identified by Ritto and Rochinha (2020), is created from the integration of three 

components (i) computational models and (ii) model calibration and validation using past 

and current process data (iii) process uncertainty quantification. Successful integration of 

these components provides a much-improved process planning, monitoring, and 

adjustment capability. However, the current effort to create an efficient and robust 

machining process model is plagued by a lack of realistic model inputs and a poor 

understanding of underlying process physics, as identified above.  Also, traditional models 

are limited in accounting for varying process uncertainties. Therefore, to create a robust 

machining DPT, an efficient machining characterization setup, a simplified computational 

model, and real-time process deployment must be created.  
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In this context, this study proposes a new definition for a Digital Process Twin 

(DPT) as an accurate, fast, and efficient virtual process representation that considers the 

impact of a unit manufacturing process on the physical characteristics of a workpiece, 

fusing physically informed models and measured data to optimize a given process. This 

approach is intended to symbiotically augment the popular digital twin (DT) concept, 

which acts on a higher ‘systems’ level to digitally integrate the entire product life cycle. 

Thus, a DPT would be housed within the DT of a component and ultimately serve to inform 

design-stage optimization efforts, which are ultimately the key to improving the product, 

process, and system sustainability (Badurdeen et al.). Figure 7-2 illustrates the overall 

approach of calibrating the DPT with in-situ process characterization and leveraging AI to 

optimize process parameters across a wide range of process and resource efficiency 

metrics. The model input variables such as process forces, temperature, and material-

specific data help calibrate pertinent process models. However, the models must be 

validated to ensure accuracy and robustness. The validated models simulate data for 

varying cutting conditions and train various ML algorithms. Integrated with the physics-

based models would be a stochastic layer that helps to account for process uncertainties.  

 

Figure 7-2. Proposed process schematic for a digital process twin of surface integrity in 

machining 

In addition, a crucial and highly recommended improvement to the proposed AE-

scalogram framework is the implementation and adoption of in-process custom sensor-
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integrated tool holders or fixtures, which would help ensure consistent signal quality and 

attenuation in acoustic emission signal analysis. Also, while academic research in this field 

has recently gained ground (Suprock, 2011; Suprock et al., 2008; Xie et al., 2020), existing 

solutions are not driven by a process model and, in most cases, not affordable. It is 

recommended that the process model requirement determine which sensor should be 

integrated into the cutting tool. There is a range of brittle metals in which surface cracks 

and poor surface finish during machining are significant concerns. An excellent next step 

would be to evaluate the applicability of findings and framework from the present study to 

machining other difficult-to-machine alloys such as Inconel.  The proposed DPT 

framework for machining may be an efficient means to achieve zero surface cracks, 

optimal productivity, and excellent surface finish in alloys preferred for aerospace 

applications. Lastly, the research approach in this study can be used to extract pertinent 

process models and develop functional physics based process models and DPT for other 

difficult-to-machine alloys. 
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APPENDIX 

#Data Manipulation Libraries 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

import re #regular expressions 

from tqdm import tqdm 

from datetime import datetime 

#Read Images 

import os 

from skimage import io 

from PIL import Image 

import cv2 

#Visualization 

import matplotlib.pyplot as plt 

import seaborn as sns 

#Image copy 

from shutil import copyfile 

from random import seed 

from random import random 

import shutil 

#Modelling 

import tensorflow as tf 

import sys 

from matplotlib import pyplot 

from keras.models import Sequential 

from tensorflow.keras.utils import to_categorical 

from keras.applications.vgg16 import VGG16 

from keras.applications.vgg19 import VGG19 

from tensorflow.keras.applications import EfficientNetB0 

from tensorflow.keras import applications 

from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout 

from keras.models import Model 

from tensorflow.keras.optimizers import SGD, Adam 

from keras.preprocessing.image import ImageDataGenerator 

from sklearn.metrics import  r2_score,roc_auc_score,f1_score,recall_score,precision_score,classification

_report, confusion_matrix,log_loss 
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import random 

# Image load 

from keras.preprocessing.image import load_img 

from keras.preprocessing.image import img_to_array 

from keras.models import load_model 

# Increase rows and columns visible on the notebook 

pd.set_option('display.max_rows', 5000) 

pd.set_option('display.max_columns', 200) 

pd.set_option('max_colwidth', 100) 

# import required libraries 

import warnings 

warnings.filterwarnings("ignore") 

# Images in training directory 

image_path = '../input/train-data-sharp/Train' 

train_directories = os.listdir(image_path) 

print("There are ",len(train_directories), " directories") 

print(train_directories) 

for category in train_directories: 

    full_image_path = image_path + "/" +category + "/" 

    print(category,len(os.listdir(full_image_path))) 

image_categories = [] 

file_names =[] 

image_names = [] 

# Loop across the directories having images. 

for category in train_directories:         

    #full_image_path = image_path +  category + "/" +category + "/" 

    full_image_path = image_path + "/" +category + "/" 

    # Retrieve the filenames from the all the  directories. OS package used. 

    image_file_names = [os.path.join(full_image_path, f) for f in os.listdir(full_image_path)]  

    # Read the labels and load them into an array 

    for file in image_file_names: 

        # Eliminate path from file name 

        file_name = os.path.basename(file)  

        image_categories.append(category) 

        file_names.append(file) 

        image_names.append(file_name) 
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print("Images count ",len(file_names)) 

df = pd.DataFrame({'file_names': file_names, 'image_names': image_names,'image_categories':image_cate

gories}, columns=['file_names', 'image_names','image_categories']) 

df.sample(5) 

df.info() 

#Function to upload and if need be resize the training images 

def upload_train_images(image_path, categories ,height, width): 

    images = [] 

    labels = [] 

    file_names =[] 

    # Loop across the directories having images. 

    for category in categories:  

        # Append the  category directory into the main path 

        full_image_path = image_path + "/" +category + "/" 

        # Retrieve the filenames from the all the three wheat directories. OS package used. 

        image_file_names = [os.path.join(full_image_path, f) for f in os.listdir(full_image_path)]           

        # Read the images and load them into an array 

        for file in image_file_names[0:100]:          

            image=io.imread(file) #io package from SKimage package  

            images.append(np.array(image)) 

            # Label for each image as per directory 

            labels.append(category) 

            file_names.append(file) 

         

    return images, labels, file_names 

height = 256 

width = 256 

train_images, train_categories, train_file_names  = upload_train_images(image_path,train_directories,heigh

t,width) 

#Size and dimension of output image and labels 

train_images = np.array(train_images) 

train_categories = np.array(train_categories) 

train_file_names = np.array(train_file_names) 

#Check properties of uploaded images 

print("Shape of training images is " + str(train_images.shape)) 
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print("Shape of training labels is " + str(train_categories.shape)) 

print("Shape of training labels is " + str(train_file_names.shape)) 

## Eliminate path from file name 

# use regular expressions to extract the name of image 

image_names = [] 

for i in train_file_names: 

    fname = os.path.basename(i) 

    image_names.append(fname) 

#View images 

image_names = np.array(image_names) 

print(len(image_names)) 

image_names[0:5] 

DISPLAY IMAGE 

import random 

def show_train_images(images, train_categories, train_file_names,image_names,images_count): 

     for i in range(images_count):   

        index = int(random.random() * len(images)) 

        plt.axis('off') 

        plt.imshow(images[index]) 

        plt.show() 

         

        print("Size of this image is " + str(images[index].shape)) 

        print("Class of the image is " + str(train_categories[index])) 

        print("Image path is " + str(train_file_names[index]))         

        print("Image name is " + str(image_names[index]))    

#Execute the function 

print("Train images, sizes and class labels") 

show_train_images(train_images, train_categories,train_file_names,image_names, 6) 

Display A Batch of Images 

# show the image batch 

def show_batch_train_images(images,train_categories,image_names): 

    plt.figure(figsize=(20,15)) 

    for n in range(20): 

        ax = plt.subplot(5,5,n+1) 

        index = int(random.random() * len(images)) 
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        plt.imshow(images[index) 

        title = train_categories[index],image_names[index] 

        plt.title(title) 

        plt.axis('off') 

show_batch_train_images(train_images,train_categories,image_names) 

plt.show() 

#image categories 

pd.Series(train_categories).value_counts().reset_index().values.tolist() 

# some chart showing distribution 

plt.figure(figsize = (15,8)) 

sns.countplot(df.image_categories) 

plt.show() 

Training And Validation Preparaation 

#Delete working directory if it already exists 

def ignore_absent_file(func, path, exc_inf): 

    except_instance = exc_inf[1] 

    if isinstance(except_instance, FileNotFoundError): 

        return 

    raise except_instance 

shutil.rmtree('/kaggle/working/David', onerror=ignore_absent_file) 

# create training and validation directories 

dataset_home = 'David/' 

subdirs = ['train/', 'validation/'] 

for subdir in subdirs: 

    # create label subdirectories 

    for labldir in train_directories: 

        newdir = dataset_home + subdir + labldir 

        os.makedirs(newdir, exist_ok=True)   

import random 

seed = 1 

val_ratio = 0.25 

for index, row in df.iterrows(): 

    if row['image_categories'] != 'test': 

        src = row['file_names'] 

        if random.random() < val_ratio: 
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            dst = '/kaggle/working/David/validation'+ '/' + row['image_categories'] + '/' +row['image_names'] 

        else: 

            dst = '/kaggle/working/David/train'+ '/' + row['image_categories'] + '/' +row['image_names'] 

    copyfile(src, dst) 

 

output_path = dst = '/kaggle/working/David/' 

print("Validation images") 

for category in train_directories[:20]: 

    full_image_path = output_path +  'validation' + "/" +category + "/" 

    print(category,len(os.listdir(full_image_path))) 

print("Training images") 

for category in train_directories[:20]: 

    full_image_path = output_path +  'train' + "/" +category + "/" 

    print(category,len(os.listdir(full_image_path))) 

Modelling 

Custom CNN with 3 layers 

# define cnn model 

def define_model(): 

    model = Sequential() 

    model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_s

hape=(384, 512, 3))) 

    model.add(MaxPooling2D((2, 2))) 

    model.add(Dropout(0.2)) 

    model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) 

    model.add(MaxPooling2D((2, 2))) 

    model.add(Dropout(0.2)) 

    model.add(Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) 

    model.add(MaxPooling2D((2, 2))) 

    model.add(Dropout(0.2)) 

    model.add(Flatten()) 

    model.add(Dense(128, activation='relu', kernel_initializer='he_uniform')) 

    model.add(Dropout(0.5)) 

    model.add(Dense(3, activation='softmax')) 

    # compile model 

    opt = SGD(lr=0.001, momentum=0.9) 
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    #Compile the model 

    model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) #sparse_categorica

l_crossentropy 

    return model 

# plot diagnostic learning curves 

def summarize_diagnostics(history): 

    # plot loss 

    plt.subplot(211) 

    plt.title('Cross Entropy Loss') 

    plt.plot(history.history['loss'], color='blue', label='train') 

    plt.plot(history.history['val_loss'], color='orange', label='test') 

    # plot accuracy 

    plt.subplot(212) 

    plt.title('Classification Accuracy') 

    plt.plot(history.history['accuracy'], color='blue', label='train') 

    plt.plot(history.history['val_accuracy'], color='orange', label='test') 

    # save plot to file 

    filename = sys.argv[0].split('/')[-1] 

    plt.savefig(filename + '_plot.png') 

    plt.close()   

# run the test harness for evaluating a model 

def run_test_harness(): 

    # define model 

    print("Define Model") 

    model = define_model() 

    # create data generator 

    print("Creating Image Data Generator") 

    datagen = ImageDataGenerator(rescale=1.0/255.0) 

    # prepare iterators 

    print("Preparing iterators") 

    train_it = datagen.flow_from_directory('/kaggle/working/David/train', class_mode='categorical', batch_si

ze=128, target_size=(384, 512)) #binary 

    test_it = datagen.flow_from_directory('/kaggle/working/David/validation/', class_mode='categorical', bat

ch_size=128, target_size=(384, 512)) 

    # fit model 

    print("Fitting the model") 
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    history = model.fit_generator(train_it, steps_per_epoch=len(train_it),validation_data=test_it, validation_

steps=len(test_it), epochs=50, verbose=1) 

    model.save('baseline_marine.h5') 

    class_dictionary = train_it.class_indices 

    print("Testing the model") 

    # evaluate model 

    _, acc = model.evaluate_generator(test_it, steps=len(test_it), verbose=1) 

    print('> %.3f' % (acc * 100.0)) 

    # learning curves 

    summarize_diagnostics(history) 

    return(history,class_dictionary) 

#Execute the baseline model 

# 

model_history,class_dictionary = run_test_harness() 

#plot Loss  

plt.subplot(111) 

plt.title('Cross Entropy Loss Plot') 

plt.plot(model_history.history['loss'], color='blue', label='train') 

plt.plot(model_history.history['val_loss'], color='red', label='test') 

plt.legend() 

plt.show() 

#plot accuracy 

plt.subplot(111) 

plt.title('Classification Accuracy') 

plt.plot(model_history.history['accuracy'], color='blue', label='train') 

plt.plot(model_history.history['val_accuracy'], color='red', label='test') 

plt.legend() 

plt.show() 

Add Augmentations 

# data augmentation on baseline we've  above. 

# Create cnn model 

def define_model(): 

    model = Sequential() 

    model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_s

hape=(128, 128, 3))) 
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    model.add(MaxPooling2D((2, 2))) 

    model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) 

    model.add(MaxPooling2D((2, 2))) 

    model.add(Flatten()) 

    model.add(Dense(64, activation='relu', kernel_initializer='he_uniform')) 

    model.add(Dense(3, activation='sigmoid')) 

    # compile model 

    opt = SGD(lr=0.001, momentum=0.9) 

    model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) 

    return model 

# plot diagnostic learning curves 

def summarize_diagnostics(history): 

    # plot loss 

    pyplot.subplot(211) 

    pyplot.title('Cross Entropy Loss') 

    pyplot.plot(history.history['loss'], color='blue', label='train') 

    pyplot.plot(history.history['val_loss'], color='orange', label='test') 

    # plot accuracy 

    pyplot.subplot(212) 

    pyplot.title('Classification Accuracy') 

    pyplot.plot(history.history['accuracy'], color='blue', label='train') 

    pyplot.plot(history.history['val_accuracy'], color='orange', label='test') 

    # save plot to file 

    filename = sys.argv[0].split('/')[-1] 

    pyplot.savefig(filename + '_plot.png') 

    pyplot.close() 

# run the test harness for evaluating a model 

def run_test_harness(): 

    # define model 

    model = define_model() 

    # create data generators 

    train_datagen = ImageDataGenerator(rescale=1.0/255.0, width_shift_range=0.1, height_shift_range=0.1,

 horizontal_flip=True) 

    test_datagen = ImageDataGenerator(rescale=1.0/255.0) 

     

    # prepare iterators 
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    train_it = train_datagen.flow_from_directory('/kaggle/working/David/train/',class_mode='categorical', ba

tch_size=64, target_size=(128, 128)) 

    test_it = test_datagen.flow_from_directory('/kaggle/working/David/validation/',class_mode='categorical',

 batch_size=64, target_size=(128, 128)) 

    # fit model 

    history = model.fit(train_it, steps_per_epoch=len(train_it),validation_data=test_it, validation_steps=len(t

est_it), epochs=50, verbose=1) # Were 10 epochs earlier 

    # evaluate model 

    _, acc = model.evaluate(test_it, steps=len(test_it), verbose=1) 

    model.save('VGGmarine.h5') 

    print('> %.3f' % (acc * 100.0)) 

    # learning curves 

    summarize_diagnostics(history) 

    return(history) 

Augmentation Results 

da_model_history = run_test_harness() 

#Plot Cross Entropy Loss 

plt.subplot(111) 

plt.title('Cross Entropy Loss') 

plt.plot(da_model_history.history['loss'], color='blue', label='train') 

plt.plot(da_model_history.history['val_loss'], color='red', label='test') 

plt.legend() 

plt.show() 

# plot accuracy 

plt.subplot(111) 

plt.title('Classification Accuracy') 

plt.plot(da_model_history.history['accuracy'], color='blue', label='train') 

plt.plot(da_model_history.history['val_accuracy'], color='red', label='test') 

plt.legend() 

plt.show() 

Transfer Learning:VGG19 

# Create cnn model 

def vgg_model(): 

    # load model 
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    model = VGG19(include_top=False, input_shape=(224,224,3)) #weights='imagenet'. Crosscheck before 

and after 384, 512 weights='imagenet', 

    # mark loaded layers as not trainable 

    for layer in model.layers:layer.trainable = False 

    # add new classifier layers 

    flat1 = Flatten()(model.layers[-1].output) 

    class1 = Dense(128, activation='relu', kernel_initializer='he_uniform')(flat1) 

    output = Dense(3, activation='softmax')(class1) 

    # define new model 

    model = Model(inputs=model.inputs, outputs=output) 

    # compile model 

    #opt = SGD(lr=0.001, momentum=0.9) 

    opt = Adam(lr=0.001) 

    model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) #sparse_categorica

l_crossentropy, 

    return model 

**Train on whole dataset and apply transfer learning and image augmentation 

model ** 

 

#Delete directory if it exists. 

# we create a combined directory with all the train and validation images used earlier for training.  

#Then will need to do final training on all images 

def ignore_absent_file(func, path, exc_inf): 

    except_instance = exc_inf[1] 

    if isinstance(except_instance, FileNotFoundError): 

        return 

    raise except_instance 

shutil.rmtree('/kaggle/working/David/combined', onerror=ignore_absent_file) 

#Create a directory combining both train and validation dataset 

dataset_home = 'David/combined/' 

# create label subdirectories 

for labldir in train_directories: 

    newdir = dataset_home  + labldir 

    os.makedirs(newdir, exist_ok=True)  

# Copy files from input to combined directory.  

for index, row in df.iterrows(): 
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    if row['image_categories'] != 'test': 

        src = row['file_names'] 

        dst = '/kaggle/working/David/combined'+ '/' + row['image_categories'] + '/' +row['image_names'] 

        copyfile(src, dst) 

# How many images in directories 

output_path = dst = '/kaggle/working/David/combined' 

for category in train_directories[:5]: 

    full_image_path = output_path +   "/" +category + "/" 

    print(full_image_path) 

    print(category,len(os.listdir(full_image_path))) 

model = vgg_model() 

# create data generator 

datagen = ImageDataGenerator(featurewise_center=True) 

datagen.mean = [123.68, 116.779, 103.939] 

# prepare iterator 

train_it = datagen.flow_from_directory('/kaggle/working/David/combined/',class_mode='categorical', batch

_size=32, target_size=(224, 224)) 

print("Fitting the model") 

# fit model 

model.fit_generator(train_it, steps_per_epoch=len(train_it), epochs=100, verbose=1)  

Resnet 50 

# Create cnn model 

def resnet_model(): 

    # load model 

    model = applications.resnet50.ResNet50(include_top=False, input_shape=(224,224,3)) #weights='image

net'. Crosscheck before and after 384, 512 weights='imagenet', 

    # mark loaded layers as not trainable 

    for layer in model.layers:layer.trainable = False 

    # add new classifier layers 

    flat1 = Flatten()(model.layers[-1].output) 

    class1 = Dense(128, activation='relu', kernel_initializer='he_uniform')(flat1) 

    output = Dense(3, activation='softmax')(class1) 

    # define new model 

    model = Model(inputs=model.inputs, outputs=output) 

    # compile model 
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    #opt = SGD(lr=0.001, momentum=0.9) 

    opt = Adam(lr=0.001) 

    model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) #sparse_categorica

l_crossentropy, 

    return model 

 

model = vgg_model() 

# create data generator 

datagen = ImageDataGenerator(featurewise_center=True) 

datagen.mean = [123.68, 116.779, 103.939] 

# prepare iterator 

train_it = datagen.flow_from_directory('/kaggle/working/David/combined/',class_mode='categorical', batch

_size=32, target_size=(224, 224)) 

print("Fitting the model") 

# fit model 

model.fit_generator(train_it, steps_per_epoch=len(train_it), epochs=100, verbose=1)  

APPLY NOW OUR MODELS IN TEST Data 

t_file_names =[] 

t_file_path =[] 

test_image_path = '../input/testmixed-sharp/Mixed' 

test_image_file_names = [os.path.join(test_image_path, f) for f in os.listdir(test_image_path)] # Retrieve th

e filenames from the all the  directories. OS package used. 

for tfile in test_image_file_names:         # Read the labels and load them into an array 

        FILE = os.path.basename(tfile) ## Eliminate path from file name 

        t_file_names.append(FILE)     

        t_file_path.append(tfile) 

#Create Test Dataframe 

df_test = pd.DataFrame({'t_file_names': t_file_names,'t_file_path':t_file_path}, columns=['t_file_names','t_

file_path']) 

# load the image 

test_images =[] 

for index, row in df_test.iterrows(): 

    img = load_img(row['t_file_path'], target_size=(224, 224)) 

    img = img_to_array(img) 

    img = img.reshape(1, 224, 224, 3) 
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    test_images.append(np.array(img)) 

predictions =[] 

for i in test_images: 

    y_predict = model.predict(i,batch_size=8,verbose=0) 

    predictions.append(y_predict) 

def test_images(): 

    # load the image 

    test_images =[] 

    for index, row in df_test.iterrows(): 

        test_images.append(row['t_file_names']) 

    return(test_images) 

#Execute function 

test_images = test_images() 

column_names = [] 

labels = (train_it.class_indices) 

dict_labels = dict((v,k) for k,v in labels.items()) 

for key, value in dict_labels.items(): 

    print(key, '->', value) 

    column_names.append(value) 

column_names.insert( 0, 'FILE'); 

column_names 

 

df_FILE = pd.DataFrame(test_images) 

df_FILE 

print("predicted") 

df_predicted = pd.DataFrame(np.concatenate(predictions)) 

df_predicted[:10] 

print("submission") 

submission = pd.concat([df_FILE, df_predicted], axis=1) 

print("columns") 

submission.columns =[column_names] 

submission[:5] 

submission['label']=submission[['Good','Marginal','Poor']].apply(lambda x: x.argmax(), axis=1) 

submission.to_csv('s.csv',index=False) 

submission=pd.read_csv('./s.csv') 
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submission.info() 

my_dict={0:'Good',1:"Marginal",2:'Poor'} 

submission["label"] = submission["label"].apply(lambda x: my_dict[x]) 

#our prediction file 

#can now prepare the actual labels from the test folder 

# Images in training directory 

image_path = '../input/test-data-sharp/Test' 

test_directories = os.listdir(image_path) 

print("There are ",len(test_directories), " directories") 

print(test_directories) 

# How many images in directories 

for category in train_directories: 

    full_image_path = image_path + "/" +category + "/" 

    print(category,len(os.listdir(full_image_path))) 

image_categories = [] 

file_names =[] 

image_names = [] 

# Loop across the directories having images. 

for category in test_directories:         

    #full_image_path = image_path +  category + "/" +category + "/" 

    full_image_path = image_path + "/" +category + "/" 

    # Retrieve the filenames from the all the  directories. OS package used. 

    image_file_names = [os.path.join(full_image_path, f) for f in os.listdir(full_image_path)]  

    # Read the labels and load them into an array 

    for file in image_file_names: 

        # Eliminate path from file name 

        file_name = os.path.basename(file)  

        image_categories.append(category) 

        file_names.append(file) 

        image_names.append(file_name) 

print("Images count ",len(file_names)) 

df = pd.DataFrame({'file_names': file_names, 'image_names': image_names,'image_categories':image_cate

gories}, columns=['file_names', 'image_names','image_categories']) 

df 

submission.rename(columns={'FILE':'image_names',inplace=True) 
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submission=submission.sort_values(by=['image_names']) 

df=df.sort_values(by=['image_names']) 

#ACCURACY 

def accuracy(y_true,y_pred): 

    count=0 

    for x,y in zip(y_true,y_pred): 

        if x==y: 

            count+=1 

    return count/len(y_true)         

from sklearn import metrics 

accuracy(df['image_categories'],submission['label']) 

metrics.accuracy_score(df['image_categories'],submission['label']) 

metrics.f1_score(df['image_categories'],submission['label'],average='micro') 

metrics.f1_score(df['image_categories'],submission['label'],average='macro') 

metrics.precision_score(df['image_categories'],submission['label'],average='macro') 

metrics.recall_score(df['image_categories'],submission['label'],average='micro') 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import ConfusionMatrixDisplay 

confusion_matrix(df['image_categories'], submission['label']) 

#disp=ConfusionMatrixDisplay(df['image_categories'], submission['label']) 
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