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ABSTRACT OF DISSERTATION

SUPPORTING STYLIZED LANGUAGE MODELS USING MULTI-MODALITY
FEATURES

As AI and machine learning systems become more common in our everyday lives,
there is an increased desire to construct systems that are able to seamlessly interact
and communicate with humans. This typically means creating systems that are able
to communicate with humans via natural language. Given the variance of natural
language, this can be a very challenging task. In this dissertation , I explored the
topic of humanlike language generation in the context of stylized language generation.
Stylized language generation involves producing some text that exhibits a specific,
desired style. In this dissertation, I specifically explored the use of multi-modality
features as a means to provide sufficient information to produce high-quality stylized
text output. I also explored how these multi-modality features can be used to identify
and explain errors in the generated output. Finally, I constructed an automated
language evaluation metric that can evaluate stylized language models.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

With the rapid development of machine learning, the likelihood of creating sys-

tems that exhibit human level intelligence is increasing. One of the most important

elements of intelligence is the ability for a machine to communicate with humans.

Many AI systems currently available, like visual captioning [37, 61, 64, 68, 72], have

the ability to communicate with human operators; however, these systems often can-

not communicate with humans in a humanlike way. This can potentially cause a

human operator to become frustrated with a system. On the other hand, enabling

human-level communication between an artificial system and a human operator could

result in the human becoming more willing to engage with the system. For example,

consider a situation in which an AI and a human are viewing the same scene. If

the machine could provide some comments on the scene, a human might feel more

connected with these comments and further interact more with the machine.

However, to build a visual captioning model and also make it conversational to

human requires this model not only need to understand the image context, but also

equips with some “humanlike” style. So, traditional image captioning work with only

image as input is not able to solve this question cause it only provide visual context.

To tackle this, a lot of researchers [22, 48, 71] have tried to employ multi-modality

fusion inputs, which include both image and other modalities so that the model could

get in touch with both visual context and style context.

Recent research works devoting towards stylized image captioning include but lim-

ited to StyleNet [17], MsCap [22], MemCap [71] and engaging captioning [48]. How-

ever, either they are inefficient to scale up and primarily limited to 2 styles (Humorous

and Romantic; Positive and Negative) or their caption generations are dominated by

styles and ignore the visual context. One way to solve this is to augment the visual

1



features so that the model could be easier to extract patterns from the visual infor-

mation. Specifically, I could augment visual features by using multi-modality visual

features to represent one image or one video.

Adding more modalities provides more information to the model and at the same

time too much information could add more possibilities for bringing in more input

errors. When a bad generation comes out, it is essential to know the cause and solve

it. However, it is actually not that easy to explain whether this error comes from

inputs error or model error. If a multi-modality model could support self-explaining

by providing more diverse information, it would be easier for a human to explain the

errors.

Even with more information from model, to human interpreter, one error is easy to

interpret, when it comes to 10000 or more, it becomes a tedious work. So, it would be

quite essential if I could design an automatic method to help humans to infer whether

there is error in the fusion of multi-modality inputs. If I found that there are errors

in the input modality, I would also want to know which modality caused the error

among all the modalities.

Besides assessing errors, assessing contribution for each modality is also challenging.

Previous approaches on assessing a text generation includes assessing generation with

human study, automatic metrics like BLEU [43], CIDEr [58] or trained model [70].

However, they either suffer from lacking of a universal standards or can only assess

the overall contribution of all the modalities inputs. The above metrics or methods

would be not enough if I would like to know how much my model associates with the

input style modality.

With all above background, my research goal is to build an multi-modality fusion

model for “humanlike” style visual caption generation and also solve the limitations

mentioned above. As I know, one way to interpret “humanlike” style is the gener-

ated sentence should express certain emotions. And I know voice contains emotions.

2



So, first, I showed that machines are capable of automatically generating humanlike

language based on visual and audio modalities. One can also interpret “humanlike”

style using personalities. So, I developed an approach for generating different styles

text with different personality types and made the framework support explanation on

the inputs feature errors with the help of multi-modalities inputs. Then, I developed

an automatic error feature detection method from multi-modality fusion features to

ease human efforts. Finally, I developed a method which could evaluate how much

the style modality was contributing to the caption generation.

Based on these works, the dissertation statement for my dissertation is as follows:

Thesis Statement: Multimodal inputs can be used to create more humanlike

image captions in terms of a set of automated text evaluation metrics. They can

also be used to identify errors in trained stylized captioning models. I introduce a

automatic evaluation metric that can be used to evaluate trained captioning models,

including those built using multimodal features. Based on this dissertation statement,

I have derived the following research questions:

1. How to automatically generate a “humanlike” caption when incorporating multi-

modalities inputs?

2. How to make the machine automatically generate different “humanlike” styles

text and also support explanation on error examples with the help of multimodal

inputs?

3. How to automatically find feature errors from multi-modality fusion input?

4. When I have multi-modality features as input, how could I assess style mortal-

ity’s contribution to the caption?

My research has addressed the above four questions in four phases. First, by fusing

different modalities data from video and using sequence to sequence networks, I built
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a model to generate commentary towards video game. Second, to generate caption

with different humanlike style, I combined personality and multiple visual information

and trained a model which could generate engaging caption towards images and at the

same time, provide rich information for explaining the generation. Third, I built an

automatic error feature detection method for multi-modality fusion model based on

casual inference. Finally, I built two style metrics which could assess the association

between generated captions and a given style, so that I could know how much style

modality contributing to caption generation.

Two major machine learning methods have been used in my research, which are

sequence to sequence networks for generations and multi-modalities features fusion

for augmenting. Also, different types of data were often combined in my study, one

is visual information, including video and image. Another are human traits, which

could be a person’s voice, or personality traits.

1.2 Motivation and Methods

With the development of deep learning, there has been an increased focus on im-

age captioning, which translates image information to sentences to describe an image.

These captions tend to be very formal rather than humanlike. Descriptive text gener-

ation is good for translating exactly what is in the image, but would be very limited

if it intends to attract a human’s attention or keep human feeling engaged. For ex-

ample, if I see an image and a system produces the comment “An apple on a wood

table”, since it just repeats what it has in the image, it would be difficult for a human

to connect with the system. To make the machine generate more stylized language, I

used data which contains human traits as one of the inputs for the machine to learn

how to generate stylized text. However, this task is very challenging.

The first challenge is a machine could easily learn repeated or common pattern from

big data, but I want the machine to be close to human. Humans tend to be more

flexible, diverse on words and can produce sentences with more variance. This would
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be very challenging for a machine learning approach. I could incorporate more modal-

ity data to help mitigate this problem. However, this could cause another challenge.

When a stylized visual caption model needs to incorporate many different modalities

of information such as: visual, audio, and human activity/behavior information, it

becomes harder for AI systems to identify and associate the important features and

translate them into desired outputs. Also, it has always been a challenge on how to

interpret the result of a trained caption model and this would be even harder when

use multi-fusion features. If the outputs of the model are wrong, I want to know the

cause of the errors. If they are right, I need to find a way to evaluate that they are

right. Only when I fully know, I can safely make it into production and can make

further improvement.

1.2.1 End-to-End Let’s Play Commentary Generation using Multi-Modal

Video Representations

Recall that the first research question I seek to answer involves how to generate “hu-

manlike” language based on multi-modality input. In the first part of my dissertation,

I focus on generating humanlike language based on a human speaker using primarily

video input. Specifically, I focus on generating game commentary. The reason I focus

on this topic is because game commentators often create stylized commentary that is

meant to entertain rather than strictly inform [23].

The input typically used for game commentary is video, which incorporates many

different types of input (e.g. images (frame) and audio). This multi-modality infor-

mation contains a great deal of information about the context that the commentator

uses to generate their commentary, making it an ideal input to a machine commentary

system.

To show it is possible to use machine to generate the “humanlike” words, commen-

tary in particular, from gameplay videos, I explored how deep learning approaches,

specifically sequence to sequence models, could be used for automatic commentary
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generation. Also, I examined how different choices of multi-modality inputs infor-

mation, such as optical flow or audio data, could impact automatic commentary

generation and assist in feature extraction. Finally, I presented a pipeline that could

be used for automatic, end-to-end commentary generation by using multi-modal video

representations. This addresses my first question proposed and shows how I can in-

corporate multi-modality inputs to produce “humanlike” language model with deep

learning models.

1.2.2 Stylized image captions using multimodal fusion with text features

With the experiment trial on video commentary generation presented in Chapter 2,

I confirmed the possibility for using sequence to sequence networks generating human-

like language based on different modalities information from game video information.

However, the approach I took only generate captions based on one speaker’s style and

this style is implicitly embedded in the language itself. This is very limited. Ideally, I

would like a machine to have the capability to generate many different styles. Also, I

want the systems to be able to have a better understanding of styles, such that they

could potentially apply styles to pre-existing language.

In this phase of my work, I looked to increase style understanding by adding per-

sonality as one of the input features for text generation. To explore the options for

generating words related to visual information and personality, I augmented the model

of engaging captioning generations proposed by [48] through injecting extra modality

knowledge. Specifically, I introduced a method for performing stylized image cap-

tioning based on multimodal fusion using textual features. I evaluated this approach

by performing a quantitative analysis comparing my technique with other state of

the art baselines in terms of automated NLP metrics. I also performed a qualitative

analysis where I examined the captions produced by my method compared to other

baselines. With the built model, it could produce different style captions for each im-

age (caption generation with happy style, caption generation with angry style,etc.).
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Along with multi-modalities inputs, such as dense captions [30], the model has rich

text information, such like (dense caption 1, dense caption 2, dense caption 3, ...,

dense caption 5, caption generation with happy style, caption generation with an-

gry style, caption generation with sad style...). I used the rich information including

ground truth to explain the faulty examples through building a decision tree which

predict input feature errors by associating the outputs with input modality. Finally,

I evaluated the the explaining ability of the model quantitatively and qualitatively.

This work addresses my second primary research question. Using this approach,

systems can fuse visual modality with personality modality to build a multi-style,

multi-modality deep learning model to automatically generate different humanlike

styles captions.

1.2.3 Error Causal inference for Multi-fusion Model

Although multi-modality inputs are essential for the above work, they also can

introduce additional sources of error into the trained model. For example, errors in

one type of input data could cause erroneous output. The inclusion of multiple types

of input increases this risk. Thus, for multi-modality input and fusion to be generally

useful in machine learning and language generation, it is critical that I could develop

approaches that enable human operators to identify the likely sources of errors in

generated output.

There are approaches for explainability that focus on identifying erroneous features

in the input space [1, 19, 31]. Researchers used network features and additional

training to predict the erroneous features or provided a framework which enables

one to determine the similarity of certain features through visualization, which can,

potentially, be used to determine a false labeling. While, by expanding the input

space (and merging things via vector combination), it is more difficult to do either

training or assessing via visualizations. So to address this issue with multi-modality

inputs, I applied casual inference on well-trained models.
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I designed a causal inference method specifically for error inference. I evaluated

the goodness of the method on the multi-style multi-modality captioning framework

I built on quantitatively and qualitatively.

1.2.4 StyleM: Stylized Metrics for Image Captioning Built with

Contrastive N-grams

When evaluating text generation, different automatic NLP metrics are frequently

used [2, 6, 43, 58]. They are convenient, easy to use, and can be used for different

datasets. They are designed for evaluating the overall quality of a caption by com-

paring caption generation with reference. However, they are not designed to evaluate

styles, so they cannot reflect the contributions of a style among all modalities for the

captions.

Traditionally, besides the automatic NLP metrics, researchers sometimes train an

extra classifier [22, 71] to evaluate stylized text. However, there can be a data discrep-

ancy between the trained classifier and evaluation dataset, which can result in poor

overall performance. For example, if one uses a different dataset or an older dataset

than the trained classifier dataset, some new traits embedded in the new dataset

will not be evaluated properly. Also, when new styles are introduced, one either has

to create a multi-class classifier or train multiple classifiers in order to perform an

evaluation. Both options can be difficult for their own unique reasons.

To address these issues, I designed style metrics that could be used to evaluate

stylized captioners using a reference dataset with multiple possible styles. Specifi-

cally, two metrics were designed. One is called Onlystyle, I used it to measure the

association between a given style and a given sentence. Another is called StyleCIDEr,

one can measure two sentences’ similarity with respect to a given style. Both these

metrics are designed using statistics of the dataset and do not include any training

process. I evaluated these two metrics using different possible datasets, and differ-

ent stylize caption models. I also performed a human subjects study to evaluate the
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consistency between the designing of metrics with human.

1.3 Conclusion

By the end of the my doctoral research, I developed an end-to-end system using

multi-modality fusion for generating image captions which supports multi-style out-

puts, feature errors explanation and style contribution evaluation. This dissertation

shows that the multi-modalities fusion could be used for generating stylized sentences

from visual information, can be used for explaining features errors and need to be

evaluated properly. All in all, I have made the following contributions:

1. An end-to-end pipeline for automatically game commentary generation based

on visual and audible modalities.

2. A model which fuses the personality and image modalities together to generate

different humanlike stylized sentences, supporting explaining error features.

3. A method for assessing the features errors from multi-modality source.

4. Create two style metrics which could assess the style modality contributions to

the visual captions.
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CHAPTER 2. END-TO-END COMMENTARY GENERATION USING

MULTI-MODAL VIDEO REPRESENTATIONS

2.1 Introduction

Recall that the first question I have to answer as a part of my dissertation is

“How to automatically generate a humanlike output from game play when I have

multi-modality inputs?”. To answer this, I trained my agent using the deep learning

approach, a sequence to sequence model, which took in embedded video information

and decoded them into sentences automatically. To teach machine to learn how

to ”talk” in humanlike ways, I explored different fusion options of video modalities

representations. In this work, I focused on automatic commentary generation as an

example of this task.

One of the primary strengths of deep learning is its ability to automatically generate

informative features from complex inputs. This has made it an ideal tool for inter-

preting visual data. As such, one of the most popular applications of deep learning is

in extracting informative features to better generate some desired output. One such

output is text. Deep learning has proven effective in image-to-text tasks [12, 61, 64].

Given this success, researchers have began exploring the related, but more difficult,

task of video-to-text.

Converting video streams to text presents a significant step up in difficulty when

compared to image-to-text tasks. Video-to-text tasks need to be able to model the

temporal relationships that exist between potentially long sequences of image frames.

Sequence to sequence networks [5, 39] have emerged as a common method for per-

forming video-to-text tasks [59, 60]. These approaches have focused on the specific

task of video captioning: providing descriptions of what is occurring in some input

video. In this chapter, I explored the use of sequence to sequence approaches for

commentary generation.
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Commentary generation from video task is a new research topic that focuses on

generating general commentary about a given input video. The primary difference

between caption generation and commentary generation is that commentary gener-

ation is not restricted to merely describing the actions that are occurring. Effective

commentary can include many different types of textual information including de-

scriptions of current behaviors, personal feelings about what is going on in the video,

or stories about other things that have happened outside of the video.

To simplify this task, one can use different modality data representations as input to

a deep learning architecture. Different representations can highlight different aspects

of the input data that could be relevant to generating commentary. For example,

some representations can highlight how objects move in the original input video,

which could have a great deal of influence on the commentary generated. Similarly,

audio data could contain information regarding the commentator’s emotional state,

which could also affect the commentary that’s being produced. One of the primary

goals of this chapter is to explore how different types of input representations affect

the type of commentary produced by deep learning methods. This will provide insight

into how multiple modalities can be combined in order to create a humanlike video

commentary.

2.2 Related Work

The rapid development of deep learning approaches for automatically generating

captions or commentary for video stems from the success of deep learning approaches

for images captioning [12, 61, 64]. There has also been work on applying analogous

attention models to further improve captioning efforts [67]. While a video is com-

posed of multiple continuous frames, care must be taken to maintain any temporal

relationships that could exist between frames when generating the desired text.

To account for this, some of the earliest work in video captioning took advantage

of different deep learning approaches to learn relationships between frames of an
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input video [47, 59, 66]. While there has been success in video captioning using deep

learning, commentary generation represents a unique challenge in that subjective

commentaries often contain subjective information that may be difficult to generate

using video features alone.

While commentary generation may be a more daunting task than video captioning,

there have been successes in this area in the past. In 2016, Yan [65] used video events

and frames number as video features to train a LSTM-based recurrent neural network

and structured SVM for commentary generation. While successful, their approach

was trained on limited data and required extensive hand authoring to generate the

requisite training commentaries. In 2018, Guzdial et al. [23] automatically generated

Let’s Play commentary by first clustering videos and then learning a mapping from

videos clusters to commentary types using machine learning methods. In their work,

videos were represented as a bag of sprites and the comments were represented as

a bag of words. This proved effective at generating commentaries for simple arcade

games, but this approach is likely to struggle to generalize for more complex games

where sprites may be difficult to extract. Recently, Tanaka[56] created larger dataset

related to E-sports commentary work and used different transformers to generate

video captions while they only considered single modality, sequence of images as the

input representations and ignored modeling styles of captions in their framework.

In this chapter, I explored how neural techniques paired with different modalities

input representations and data could address this limitation by automatically learning

visual features useful for commentary generation rather than manually extracting

sprite information.

2.3 Method

The primary contribution of this chapter is an exploration of machine learning-

based approaches to perform end-to-end commentary generation using different types

of input data. Specifically, I examined the applicability of sequence-to-sequence net-
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works using different video input representations to this task. In the following sec-

tions, I would provide additional details about the type of data used for this problem

as well as the networks and input data used for this problem.

2.3.1 Dataset

In this work, I used Let’s Play game play video along its commentary as my dataset.

A Let’s Play video is typically a video of a person playing through a video game while

providing real-time commentaries related to the events occurring in the game. The

primary reason that I chose to make use of this type of data is because Let’s Play

commentary is often stylized, emphasizing viewer entertainment over descriptiveness.

Thus, this type of data allows me to better understand how multi-modality inputs

can be used to generate stylized outputs.

For the experiments, I chose to focus on generating commentaries using Let’s Play

videos made for a specific game: Getting Over It with Bennet Foddy1. Getting over

it, released in 2017, is a climbing game where the player’s goal is to move his avatar, a

man inside of a cauldron, higher and higher using a hammer controlled by the mouse.

Using this hammer, the player can jump, swing, climb, and even fly in some cases. An

example frame from this game can be seen in Figure 1 (left). I chose this game because

it is a relatively popular game, ensuring that I have access to many playthroughs of

the game, and because it is a relatively short game. In addition, this game is notable

for its difficulty, which is likely to result in the associated commentary being infused

with emotion one would not expect to find in a classical captioning dataset.

Along with these videos (and the associated audio), it is possible to obtain text

transcripts of the commentary by using the closed captions associated with each video.

The closed captions to those video recordings are usually created by different human

annotators. As such, most closed captioning transcripts contain informal language

with potential grammar errors or nonstandard spellings of common words. This ends

1https://en.wikipedia.org/wiki/Getting Over It with Bennett Foddy
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up complicating the learning process as it results in very sparse word dictionaries.

Using this data, it becomes possible to create input representations using video or

audio data while using the associated text as the target output. With this information,

I trained different sequence to sequence models for commentary generation.

2.3.2 Architectures and Representations

I explored how different video input data modalities impact automatic humanlike

commentary generation using various sequence to sequence architectures. In particu-

lar, I focused on three input variations using two deep neural networks: RGB frames

representing a video clip using sequence to sequence architecture (baseline), RGB

frames representation using sequence to sequence networks with attention, sequence

to sequence networks using additional information about optical flow, and sequence

to sequence networks using multi-modal input consisting of video features and audio

features. Each of these variations will be discussed in greater details below.

Basic Architecture

The baseline uses RGB frames features to represent each video clip. I chose RGB

frames features as baseline feature input because this allows the deep learning archi-

tecture to extract what it views as the most relevant features for this task. Continu-

ous RGB frames features will also implicitly convey the motions, position and color

changes that occur from frame to frame. I used sequence to sequence networks to

perform commentary generation since they have proven effective on other video to

text tasks [55].

Sequence to sequence networks comprising encoders and decoders made of long

short-term memory (LSTM) nodes have achieved state-of-the-art performance in

video-to-text work [59]. In this chapter, I used a stacked LSTM encoder-decoder,

which is able to exploit temporal information from video clips [42], to encode and

decode video information. This involved using a video frame as one unit of the input

sequence, represented using either pixel values or as a vector of visual features. As a
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video clip consists of several video frames in time order, I treated one video clip as a

sequence. I used the closed caption transcript information associated with the video

clip as the target sequence.

Sequence to Sequence Architecture with Attention

As the basic sequence to sequence model compresses a source sequence to a fixed

length vector, partial vector information could get lost during the translation process.

In the baseline architecture, the only access that the decoder network has to the input

sequence is through this fixed length context vector. This can make it difficult for the

decoder to identify complex relationships between various parts of the input, espe-

cially if the encoder struggles to create a context vector that accurately encapsulates

the input sequence.

Attention mechanisms address this inherent limitation of baseline sequence to se-

quence networks by enabling the decoder to “peek” at the input sequence. This al-

lows the decoder to form a better alignment between the output sequence and input

sequence. As videos and comments are naturally aligned by time, adding attention

mechanism would help align the source frame in the video clip with the current target

token in the comment [5, 39]. Also, an attention model could enable the sequence to

sequence networks to better generate words which occur very rarely in the corpus [39],

which is ideal given the nature of Let’s Play commentaries.

Architecture Guided by Motion Stimulation Using Optical Flow

With video data, especially videos concerning video games, it is possible that neural

networks could get distracted by unimportant parts of the video (e.g. animated

background environments). However, game commentaries are closely related to the

activities and motions happening in the video. While these videos contain a lot of

information, I hypothesized that most of what is being talked about would be confined

to what’s moving on the screen to keep the audience engaged. The commentator

sometimes adds other comments which have no connection to the gameplay to increase
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Figure 2.1: RGB frame (left) and optical flow frame (right) sample

the entertainment of the whole comments. As such, recognizing the motions on the

screen can potentially help identify when the speaker is talking about other things

rather than gameplay. For example, while nothing on the screen is moving, I could

assume the speaker is making comments unrelated to the gameplay.

Dense optical flow has been used successfully to identify motions in video data [49]

and has been shown to improve performance on video-to-text tasks when compared

against networks that use only visual input [59]. Figure 1 shows a sample of what

dense optical flow looks like in a frame I extracted from the videos clips.

The dense optical flow is calculated by first obtaining a 2-channel array with optical

flow vectors through computing all the pixel displacements between current frame and

previous frame using polynomial expansion coefficients [16]. And then according to

the optical flow vectors, I determine their magnitude and direction. Direction is

assigned as the Hue value of the image and magnitude as Value plane. Finally, this is

converted back into a RGB representation. Through above process, I calculated the

dense optical flow between frames across videos and explore generating commentary

based on motion stimulation. To incorporate motion stimulation into the sequence

to sequence network and preserve the rich information contained in RGB features, I

directly combined optical flow with RGB frame features through concatenation and

used this concatenated vector as input.
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Architecture Guided by Audio Features

It is possible that the commentator’s mood could have a large effect on the type of

commentary that they produce. Thus, additional information about the commenta-

tor’s emotional state could prove to be invaluable in creating high quality commen-

taries.

To address this, I proposed using a multi-modal input sequence composed of video

frames paired with audio features to make the video commentary generation more

“subjective”. I chose to include audio as an additional input because audio informa-

tion can be used to determine the speaker’s feelings and speaking style [10] and these

feelings can influence the types of words that will be used in the commentary.

To represent the audio data, I converted the raw audio input into a Mel-spectrogram.

Mel-spectrograms have been shown to be an effective audio representation for transfer-

ring audio features [27, 51], which is the primary reason that I used this representation

in this work.

2.4 Experiment

To evaluate the impacts of different video representations using the deep learn-

ing architectures outlined above, I examined the performance of each when gener-

ating commentary for the game, Getting Over It with Bennet Foddy. Specifically,

I compared the perplexity of each video input representation in the following two

experimental conditions:

• Ground truth versus random words: In this condition, I compared the perplexity

of a network when generating the actual ground truth sentences versus the

perplexity of the network when generating sequences of random words drawn

from my word dictionary.

• Ground truth versus random sentences: In this condition, I compared the per-

plexity of a network when generating the actual ground truth sentences versus
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the perplexity of the network when generating other naturally occurring sen-

tences in my test set.

I discussed my data cleaning pipeline in addition to these experiments in greater

detail below.

2.4.1 Dataset Pipeline

I downloaded 8 Let’s Play videos of the same commentator playing through the

game Getting Over It with Bennet Foddy from Youtube. I then downloaded the closed

captioning transcripts along with timestamped information about when they occur.

In this game, Bennet Foddy, the game’s creator, provides commentary periodically.

This commentary is also included in the closed captioning transcripts associated with

each video. I used the timestamp information included with the closed caption tran-

scripts to segment the video and audio so that it is tightly coupled with the text. At

the end of this process, each video is divided into several clips, each lasting roughly

2-3 seconds, with the associated text extracted from the closed captions.

The reason that I used closed captioning transcripts as my ground truth and parsed

my videos as above is because closed captioning data is readily available for these types

of videos. Closed caption transcripts can be problematic, however, because they often

contain spelling or grammatical errors as well as informal language. This can result

in data sparsity with respect to the input vocabulary.

I used the Social Tokenizer [7] to extract tokens from the original sentences and

make all uppercase tokens into lowercase. This is the only preprocessing of the text

data that is used. This ensures that my training word corpus maintains the word

diversity present in the original corpus. This does, however, make the learning prob-

lem more difficult since some words that are clearly related (e.g. nooo and no) are

considered separate tokens. In total, my vocabulary size is 2598.

Youtube game commentary videos often contain an introduction and sign off mes-

sages which may be necessary for guiding and building rapport with the audience,
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but has no relation with the gameplay. Thus, I removed these parts of videos and

their associated transcripts. After this, I got a total of 2274 video segments with

associated audio and natural language commentary transcripts.

To generate data sources, I first extracted all the frames from each video clips with

default video frame rate 30fps. The dimension of each frame is 720×1280. Then I

read the raw pixels from each frame and concatenate the frame RGB pixels from one

video clip into one vector as one raw data source. Before I fed data to in my system,

I converted each raw data source into a sequence of 4096 dimension vectors through

vgg19 fc7 layer [50]. Vgg19 is a VGG Net with 19 layers and it is constructed with

very small convolution filters and very deep networks. And since it works well with

different datasets and get state-of-art results [13, 18, 64], vgg19 is always used as a

pretrained model to extract images features and ease future training. So, I embed

each segmented video into a sequence of vgg19 style vectors by passing each frame

into a 4096 dimension vector. And I fed these embeddings as my input vector into

the model.

To make sure every video among the 8 entire videos participates in training, I

randomly split the data into a training, test, and validation set. I set aside 10% of

the data as testing data, 10% as validation data, and 80% as training data from every

video in the 8 videos. In total, the training set contained 1828 video clips (each video

clip contain about 90 frames, represented as a vector with shape around 90*4096),

and the validation and test sets contained 223 video clips each.

2.4.2 Commentary Generation with RGB features

Here, I describe details related to each specific architecture that I examined in my

experiments.

Baseline

I used RGB features as video input using a sequence to sequence model as my

base model. There are two steps to this process. I first embedded all the video
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clips by using the vgg19 network as described in the above section. And then I fed

the embedded features into the encoder to get a final state vector as initial state

for decoder. Specifically, I used 3-stacked LSTM cells for both the encoder and the

decoder. Each LSTM cell has 128 hidden units. To help enable the network to

generalize, I applied 0.5 drop out before stacking. I also used word embeddings of

size 200. These word embeddings are initialized randomly and trained along with my

sequence to sequence networks.

I trained the base model for total 500 epochs using a batch size of 10. For this

network, I used flexible output sequence lengths, meaning that the expected length of

the output vector for each batch is different. I assigned this length for a given batch

to be equal to the size of the longest expected output sequence out of all examples

in the batch. Sequences shorter than this are padded up to this maximum length.

I used softmax cross-entropy as my loss function and used Adam optimization [32]

with a learning rate of 0.001 during training. To help reduce training variance and

prevent exploding gradients, I also clipped gradients between -1 and 1.

Sequence to Sequence Attention Mechanism

Based on baseline model I implemented, I added an attention mechanism [39] to

enhance the alignment between the source and target. To create the attention, in

details, at each time decoding, the current target token is fed to the stacked LSTM

layers and generate the current target hidden states. Then alignment between current

target and original source was calculated using current target hidden states and all

the source states. Finally, the context vector was derived from the inner product

of the alignment and all source states. Instead using current target as next input,

I combined the current target hidden states and the context vector to generate the

next input.

Data sources and targets are the same as baseline. I trained the attention model

with 500 epochs and batch size is 10. All the other hyper-parameters is the same as
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Figure 2.2: Encoder Decoder Network Architecture using Audio Features

my base model.

2.4.3 Commentary Generation using Optical Flow

To help capture the activities and motion features from videos, I calculated the

dense optical flow [16] between frames in each clip and generate the optical flow

frames which has the same dimension as the raw frames. As with the baseline, I

extracted all optical flow frame features using pre-trained vgg19 layers. To include

both RGB visual features and optical flow features as input, I concatenated each RGB

feature vector with the optical flow feature vector to create a new input embedding

of size 8192.

I used the same splitting as baseline to split all the data into training, validation and

testing sets. Data sources are the new video clips embeddings I generated and data

targets are the same comment vectors as before. I fed the new video clip embeddings

into the attention model as above. The model is trained 500 epochs and batch size

is 10, all other hyper-parameters are kept the same as baseline model.

2.4.4 Commentary Generation with Audio Features

To incorporate audio information into the learning process, I first encoded the

audio stream for each clip as a mel-spectrogram [41, 52]. Each mel-spectragram is

represented as a 2-D vector with size 128 x duration. Since the mel-spectrogram

dimensions are vastly different from the frame embeddings used above, instead of

combining RGB features and audio features directly, I combined RGB features and

audio features by concatenating two encoded hidden states. (see Figure 2). As you can

see in the figure, I encoded both the audio and visual features into 128 length feature
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vectors first. By encoding both, I captured the temporal information from video

frame features and audio features. The two feature vectors were then concatenated

into a 256 length input vector which is passed into a subsequent encoder-decoder

structure with attention as described for the previous approaches.

I trained the model for 500 epochs and all other hyper-parameters remain the same

as baseline.

2.4.5 Evaluation

Since commentary generation is an inherently generative process, I used perplexity

to evaluate the quality of each of the architectures described above.The perplexity of

a model can be calculated as:

perplexity = 2
−1
N

∑N
i=1 log2q(xi) (2.1)

Among (1), N is the count of tokens in one comment, xi is the i-th token in the

comment and q(xi) is probability of xi in the language model. Informally, perplexity

represents how “confused” a model is by a given output sequence. Thus, I would

expect a model to have higher perplexity for sequences that it is unlikely to be able

to generate and lower perplexity for sequences that it is likely to be able to generate.

Note, when calculating perplexity in these experiments I did not factor in padding

tokens. For these evaluations, I measured the perplexity of each architecture on the

sentences contained in the test set and compared these values against the perplexity

obtained on sequences of random words and on random sentences.

Recall that I considered the following two comparisons for my experiments: (1)

comparing ground truth perplexity versus the perplexity of random words and (2)

comparing ground truth perplexity versus the perplexity of random sentences. I

chose these two conditions because they give a clear picture on the capabilities of each

sequence to sequence architecture. By comparing against sequences of random words,
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Table 2.1: Random words experiment result of all the Models
Model Minimum Maximum Mean Median Standard Deviation

Sequence to Sequence(baseline RGB) 1.0 1.0 1.0 1.0 0.0
Sequence to Sequence with Attention 0.991 1.0 0.999 1.0 0.003
Optial Flow Model 0.995 0.995 0.995 0.995 0.0
Audio Feature Model 0.936 0.973 0.952 0.95 0.009

I could see if the architecture has the ability to recognize syntactically correct (at least

in terms of the training captions) sequences. By comparing against random complete

sentences, I evaluated if each architecture could correctly identify the context that

certain sentences should be used in.

When generating sequences of random words, I selected random words from the

word corpus until I generated a sentence of the same length as the ground truth

sentence. When selecting random sentences I simply selected from the set of sentences

available in the test set.

I am primarily concerned with whether the ground truth perplexity is lower than

the perplexity for the sequence of random words or random sentences. Thus, I re-

ported the results of this evaluation by reporting the percentage of test examples that

outperform either the sequence of random words or random sentences, depending on

the test condition.

Since the comparison sequences I generated are all done so randomly, I evaluated

the full test set 20 times, generating new random sentences each time. Across all

of these runs, I calculated the maximum percentage, minimum percentage, mean

percentage, and median percentage obtained. These values are used to compare each

of my test architectures with each other.

2.5 Result and Discussion

The results of my experiments are contained in Table 2.1 for the random words

experiments and in Table 2.2 for the random sentences experiments. In addition to

these quantitative results, I also provided a discussion on the qualitative quality of

the commentary generated by each model.
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Table 2.2: Random sentence experiment result of all the Models
Model Minimum Maximum Mean Median Standard Deviation

Sequence to Sequence(baseline RGB) 0.454 0.555 0.504 0.507 0.023
Sequence to Sequence with Attention 0.432 0.564 0.513 0.518 0.033
Optical Flow Model 0.464 0.568 0.520 0.523 0.030
Audio Feature Model 0.482 0.6 0.524 0.518 0.030

2.5.1 Quantitative analysis

From Table 2.1 it is easy to see that all networks achieved above 90% accuracy

across all relevant measures. This means that each model excels at identifying syn-

tactically correct sentences compared to sequences of random words. It is interesting

to note that the base model achieves 100% accuracy on average, meaning that it is

very likely to be able to recognize syntax. This could mean, however, that it is unlikely

to generalize. It is also interesting that using audio features performs poorly when

compared to the other architectures. It is possible that this is due to the complexity

of the input data. It is also possible, however, that the commentary generated by this

architecture would be more likely to generalize since it has access to more information

than the other networks.

From Table 2, the accuracy for each model is around 50%, peaking at 60% for the

audio feature model. This indicates that each model struggles to identify the correct

context based on the input for a given output sentence. One potential explanation

for this is that the commentary for these videos is generic. This could potentially be

improved by using semantic parsing to give my models a greater understanding of

what is happening in each video. Also, there are many potential explanations for why

this occurred. First, my video clips are very short (on the order of 2-3 seconds). It’s

possible that this is so short that the commentary that I captured is actually not very

related to the current clip because of a natural delay that occurs when people provide

commentary. Also, the scenes in Getting Over It are very similar to each other, which

could also add to the difficulty of determining correct context from video information.

Even with small range difference, one positive trend that I noticed, however, is
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Table 2.3: Examples of generations
Model Target Generated Text

Sequence to Sequence (Baseline RGB) no god , hooooh no oh noho come on ! ! ! ( * fun time ! *)

Sequence to Sequence with Attention no god , hooooh no i don ’ t want anything else for christmas . i just want to get back to where i was

Optical Flow Model no god , hooooh no that doesn ’ t mean it ’ s any less frustrating . .

Audio Features Model no god , hooooh no i never thought i would get back to this point -

that models with more information are, at least, less easily confused by other random

sentences given an input video segment. Sequence to sequence with attention out-

performs the baseline in terms of accuracy mean, max, and median. The attention

model, however, tends to be weaker when looking at minimum accuracy and standard

deviation. This indicates that there is more variance in the commentary generated

from the attention model compared to the others, including the baseline sequence

to sequence model. This may be because the attention network is more likely to

identify potentially spurious correlations between output words and the input image.

Although the optical flow network and the multi-modality network are also based on

the attention network, they contain more data as input. This helps minimize the

chance of the attention network finding spurious correlations. In terms of maximum

accuracy, the audio features architecture achieves 60% accuracy, the highest among

all models, within 20 runs. This provides support for my claim that the manner of

speaking influences the type of words used in commentary.

2.5.2 Qualitative analysis

While the quantitative analysis provides definitive metrics on the capabilities of

each network, it is important to have a qualitative perspective on the types of com-

mentary that is being generated. Output samples from each network are outlined in

Table 3. In this table, output for each of the architectures explored earlier is listed for

the same input clip. it is easy to see that the ground truth test target in Table 3 is a
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negative commentary. It is interesting to note that the input video used here involves

the player falling down. The commentaries generated by the attention model, mixed

RGB and optical flow model, and multi-modality model all apply to this situation.

This implies that it’s possible the agent is picking up more context than I realized,

and poor performance in the quantitative analysis is due to the nature of the dataset

I curated or the metrics I chose for evaluation.

One thing that I noticed from each output is that each network generates human

readable text that is syntactically correct. Although the output from the baseline

model contains some unorthodox characters, it is similar to the training text provided

to the network. One other thing to note is that these sentences are very general

and could potentially be fit for many different types of situations. This potentially

explains why these models struggled to achieve high accuracy in the quantitative

study. By generating broad commentary, the models would struggle to reproduce

any commentary that is tightly coupled with the test input.

It is not clear, however, if these broad comments are necessarily a limitation. It is

possible that humans are more accepting of this broad commentary as long as it at

least somewhat correlates with the context of the input video clip. So, even though

these networks may struggle from a quantitative perspective, it is possible that they

will produce effective commentary from a qualitative perspective.

2.6 Conclusions

In this chapter, I explored how deep learning approaches could be used to generate

humanlike commentaries based on different representations of video game playthrough

data. I developed a pipeline where I could take in the video source information and

translate them under attention mechanism into humanlike comments.

Each sequence to sequence model examined in this chapter is able to produce com-

mentaries that are syntactically correct. While the networks examined struggle to

produce contextually relevant commentaries according to my quantitative evaluation,
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my qualitative analysis provides some positive evidence that the commentaries gener-

ated using deep learning could still potentially be satisfying for human viewers. This

addresses the first question I proposed in my thesis, I am able to create a pipeline

which supports the “humanlike” generations on gameplay using deep learning ap-

proach.
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CHAPTER 3. 3M: MULTI-STYLE IMAGE CAPTION GENERATION

USING MULTI-MODALITY FEATURES UNDER MULTI-UPDOWN

MODEL

3.1 Introduction

In Chapter 2, I showed I could generate humanlike captions using multi-modality

inputs. However, the dataset I selected only allows us to build a model using a

single style: the speaker’s style. This is limiting in several ways. First, it requires

us to retrain the model should I want to generate text exhibiting a different style.

In addition, gathering this data and training a model proved to be costly in terms

of time. Second, using speaker text as a target output severely limits the types of

text that a system could generate. Ideally, I want systems to be able to have fine

control over the style of the output that they generate. This requires that systems

have a more detailed understanding of style, which is lost when one focuses solely on

a speaker’s output text as the source of stylistic information.

In this chapter, I addressed these limitations with past work and demonstrated that

I could also give systems additional control of the style of their outputs through multi-

modality fusion, where the system could output captions in multiple styles given an

image.

As I shared in Chapter 2, the classic image captioning approaches show a deep un-

derstanding of image composition and language construction, it often lacks elements

that make communication distinctly human. To address this issue, some researchers

have tried to add personality to image captioning in order to generate stylized cap-

tions. In general, stylized captioning systems are divided into two categories based on

how they are trained: single-style and multi-style. Single-style training involves train-

ing one model for each personality, whereas multi-style techniques learn to generate

captions in many different styles using one model.
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Past attempts [48] at generating multi-style captioners have struggled likely because

they require greater knowledge about the input image when compared to single-style

captioners. One way to address this is to utilize multi-modality [69]; however, many

times these approaches focus on generating features that describe local visual inputs

rather than a global context.

In this chapter, I attempted to address this limitation of multi-modality features

by allowing the model to self-select the most salient features from both visual and

textual features according to the current global context. Specifically, I used ResNext

features used by Shuster et al.’s work describing global features as well as region-based

dense caption features generated by the DenseCap network [30] for local features.

One issue with this approach is that both ResNext and dense caption features are

generated using pre-trained networks. This increases the likelihood that my generated

text is erroneous, since these models were not trained for my specific problem. In

situations like this, it is beneficial for the model to be able to explain the source of

said erroneous text generation so that a human operator can work to correct them.

Through experiments, I discovered that my proposed multi-style model with multi-

modality (image+text) inputs, which I refer to as 2M, could be used to produce

multi-references (in text), which are easily interpreted by humans and can help

identify the source of errors present in the stylized captions, such as poor style training

or if the errors result from ResNext or dense captions. This exactly aligns with what I

tried to achieve with building a stylized image captioning system which could support

explaining source errors.

With all these considerations, firstly, I showed the value of my approach by building

two stylized captioners: one using a Multi-UPDOWN captioner, and another created

by fine tuning a multimodal transformer. I also utilized the multi-references produced

by these models to construct a multi-view tree which can be used to generate expla-

nations for any errors present in generated text. I designed my evaluations to answer
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Figure 3.1: Architecture for Multi-style image caption generation using Multi-
modality features under Multi-UPDOWN model

two questions: 1. Can the 2M concept help to build an effective multi-style stylized

caption model? 2. Can the 2M concept help explain errors in the model? I evaluated

stylized caption model’s performance using various quantitative NLP metrics, and I

performed a qualitative analysis to evaluate the overall expressiveness and diversity

of generated captions.

Secondly, I evaluated how 2M could help us identify feature errors. I performed

the quantitative evaluation and examined the predicting accuracy on two stylized

captioners where I built with the multi-UPDOWN model and a transformer. I also

performed qualitative evaluation on multiple datasets by walking through examples

and demonstrated the multi-references are helpful for a human explaining the model.

3.2 Related Work

I first discussed work on stylized image captioning, and then on explanations for

image captioning.

3.2.1 Stylized Image Caption Model

There has been a great deal of work on generating single style captioning models [11,

17]. These models are designed to generate captions that exhibit a single style, such
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Figure 3.2: Two Decoders Fusion Details

as Romantic or Humorous. As these models are limited to a single captioning style,

they lack flexibility.

Later researchers explored developing models that addressed this limitation by

enabling them to generate text in multiple possible styles [22, 71]. Shuster et al. re-

leased the PERSONALITY-CAPTIONS dataset containing 215 personalities in 2019

for building engaging caption generations models. In their work, Shuster et al. built

an image caption retrieval model and also explored the multi-style generative caption

models along with various image encoding strategies using several state-of-the-art

image captioning models [3, 64]. I extended the best performing supervised model

presented in Shuster et al.’s work, which is the UPDOWN model to build a multi-

style model which supports interpreting multi-modality image features. Also, due

to the success of transformer structure on image captioning [37, 69], I also built a

multi-style multi-modality image captioner by fine-tuning on the pretrained model

[69].
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3.2.2 Explanation for Image Caption Model

There has been extensive work done on generating explanations for image cap-

tioning models. Many of these methods rely on identifying elements of the input or

specific neurons in a neural net that significantly contribute to a generated caption

[1, 31, 54]. In contrast, my model focuses on self-explanation and generating text

explanations, which are easily human interpretable. The goal of my work is to enable

users with little-to-no experience in computer science or AI to understand the likely

source of any errors in generated captions.

3.3 Methods

I applied 2M (multi-style multi-modality) on two popular deep learning structures

to build stylized captioners. First, I extended the UPDOWN model to construct

what I call a 3M structure. Second, I built 2MT by fine tuning a VinVL model [69]

and adjusting the input stream to generate stylized captions. I then outlined how to

make use of the 2M concept to explain the trained models when they generate faulty

captions by using source error predictions.

3.3.1 3M: Multi-style Multi-modality under Multi-UPDOWN Model

The first contribution of this chapter is an multi-fusion architecture that utilizes

multi-modality fusion for performing multi-style image captioning. This architecture

specifically utilizes the soft fusion of two parallel encoder-decoder blocks, with each

block containing an UPDOWN-like attention module. The overall architecture for

one step generation can be seen in Figure 3.1, where the multi-UPDOWN fusion

blocks synthesize the information from multi-modality image features, multi-style

components (previous word, personality) and previous hidden states to predict current

word and hidden states at each time step.

I utilized features from two pre-trained networks: ResNext [63] visual features and

text features describing the image itself [30]. These features allow the learner to

better ground the image features into natural language.
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Multi-style Component

As shown in Figure 3.1, the desired style of the output caption is given as an input

to my system using a one-hot vector. I then used an embedding matrix Wp embed

and a linear layer to encode each style into a fixed-size vector, I call it style vector

p. For each word in my target stylized caption, I used another embedding matrix

Wembed to embed each word. I used Wembed to embed the dense captions too. This

enables the model to better connect image features to natural language. To better

enable my network to generate words according to the given style, I concatenated

each embedded word vector with the p to create a stylized word vector, wwwt.

Multi-modality Image Features

Our architecture relies on two sets of bottom-up features extracted using pre-trained

networks: ResNext features and dense caption features. Specifically, I extracted

mean-pooled image features and spatial features from the ResNext network [48] and

5 dense captions from each image with a dense caption network [30]. Each word in the

dense captions is embedded using Wembed. By collecting both visual and text features,

my architecture could have a more complete understanding of the full context of the

image.

Multi-UPDOWN Fusion Model

My fusion model is composed of two individual encoders, the ResNext feature

encoder and the dense caption encoder. My model also employs a fused Top-down

fashion decoder, which used to decode captions from encoded image features.

ResNext Feature Encoder and Dense Caption Encoder I encoded the ResNext

mean-pooled image features and spatial features using a linear layer, dropout layer

and activation layer and get mean-pooled feature vector vvvmean pool and spatial fea-

ture vector vvvspatial 1, vvvspatial 2, ..., vvvspatial 7∗7. These are used as input features for the

decoding process showed in the right branch of Figure 3.2. Then, I encoded each

embedded caption vector Capi, i ∈ {1, 2, 3, 4, 5} using the Dense Caption Encoder,
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which is an LSTM network [26] shown below where wwwdp
t,i denotes a word vector in Capi

at time t.

hhhdp
t,i, ccc

dp
t,i = LSTM(wwwdp

t,i, (hhh
dp
t−1,i, ccc

dp
t−1,i)) (3.1)

I concatenated all 5 hidden states hhhdp
i into one vector vvvcap, which I call the caption

vector. To apply attention on specific words during the decoding procedure, I kept

all word states cccdpt,i from the LSTM encoding process, denoted as vvvw1 , vvvw2 ...vvvwL
, where

the 5 captions contain a total of L words.

Top-down Decoder Fusion I applied the Top-down decoder model on encoded

visual features and text features. At each time step, the Top-down decoder for text

features generates a caption attention vector hhhAtt cap
t by taking in the previous atten-

tion vector hidden states hhhAtt
t−1 as well as the concatenation of previous language model

hidden states hhhL
t−1, the caption vector vvvcap and the previous stylized word vector wwwt

as input.

hhhAtt cap
t = TopDownAttLSTM([hhhL

t−1, vvvcap,wwwt],hhh
Att
t−1) (3.2)

To calculate the attended caption feature vector, I used a process inspired by [3]. I used

vectors vvvw1 , vvvw2 ...vvvwL
and the caption attention vector hhhAtt cap

t in the below equations:

ai,t = wwwT
a tanh(Wvavvvwi

+Whahhh
Att cap
t ) (3.3)

αααt = softmax (aaat) (3.4)

v̂vvtcap =
K∑
i=1

αααt
ivvvwi

(3.5)

where Wva ∈ RH×V ,Wha ∈ RH×M and wwwa ∈ RH are learned parameters. This

attention vector v̂vvtcap is used as the input to the language LSTM layer where the initial

state is the previous hidden state from the language model, hhhL
t−1. This language LSTM

then outputs the current hidden states hhhL cap
t that encode text features as below:

hhhL cap
t = LanguageLSTM([v̂vv

t
cap,hhh

Att cap
t ],hhhL

t−1) (3.6)

I calculated the ResNext attention vector hhhAtt R
t , and current language model hidden
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Figure 3.3: The Framework of 2MT,showing the style modality with the fine-tuned
on VinVL model. This figure is based on the figure from [37] extended to
include my style components.

states from ResNext features, hhhL R
t , using a similar process with a separate network

(shown in Figure 3.2, right branch). I generated the final language hidden states of

the current step hhhL
t by fusing hhhL cap

t , hhhL R
t as below:

hhhL
t = hhhL cap

t + hhhL R
t (3.7)

I generated the final attention hidden states of the current step hhhAtt
t by fusing hhhAtt cap

t ,

hhhAtt R
t as below:

hhhAtt
t = hhhAtt cap

t + hhhAtt R
t (3.8)

I obtained the final language output as below:

hhhoutput
t = Dropout(hhhL cap

t ) +Dropout(hhhL R
t ) (3.9)

Then I applied a linear layer to project the final language output hhhoutput
t to the vocab-

ulary space and used a log softmax layer to convert it to a log probability distribution.
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3.3.2 2MT: Multi-style Multi-modality under Transformer Structure

Recently, natural language transformers have emerged as an effective tool for lan-

guage generation. These massive networks are able to learn vast amounts of com-

monsense knowledge and use it to generate high-quality natural language text. Re-

searchers typically harness this knowledge by fine tuning these networks on specialized

data, hoping to combine general commonsense knowledge with more specialized do-

main knowledge. Given this trend, I investigated if my 2M insights can be extended

to transformer models for similar reasons.

To investigate this, I built a multi-stylized image captioner, which I refer to as 2MT,

out of the VinVL transformer model [37]. Our extended transformer architecture can

be seen in Figure 3.3. Training data used as inputs to the VinVL model are pairs of

(w, q, v) where w is the ground truth word tokens, q is the set of detected object names

(in text) and v is the set of region features. The model aims to learn the relationship

between captions and image region features by using the detected object names.

As established earlier, however, factual image captioners that focus on region-based

visual features may not be sufficient for performing stylized image captions. Thus,

I need to extend this transformer model to take personality into consideration when

generating text. Specifically, I exchanged the anchor points q in VinVL with the

concatenation of a dense caption and personality indicator, [densecap : personality],

which are both in a text form. This is shown in the blue region of Figure 3.3. In

this way, the model learns relationships between text and visual features that are

conditioned on personality. To further align my input, I also substituted v with

ResNext features (shown in the green region of Figure 3.3). This ensures that the

input information for both 3M and 2MT will be the same.

I finetuned VinVL using masked token loss to learn the connection between im-

age captions and image features, dense captions and personalities. In this way, the

language modality in Figure 3.3, which includes dense captions, personality and the
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ground truth, share a common embedding space so that the model can learn which

words are visually related and match the current style. In addition, ResNext and

dense caption features come from the same image source, so their co-occurrence will

help the model extract ResNext features associated with specific dense captions se-

lected by style.

3.3.3 How does 2M Help Explain Multi-fusion Model?

I have previously described two stylized captioners built using 2M (multi-style

multi-modality). One of the reasons to use this technique is the expectation that

it could provide diverse information that could enable error inference should the

captioner produce erroneous text. Specifically, I used the multi-references provided by

2M, (dense caption, current generation, other generations)+ground truth,

to infer erroneous input features. The ground truth is used to judge which part of

the generated text is wrong. I illustrate how to use 2M for explaining multi-fusion

models by answering the following three questions: 1) How can we use 2M to generate

multi-references? 2) How can we align these multi-references? 3) How do we interpret

the results of multi-reference alignment?

How to Generate Multi-References with 2M?

By manipulating the p parameter, one can use my multi-style model to generate

text in many different styles. Each of these generated captions, along with dense

captions and ground truth captions all describe the same images, but in different

ways. By varying the input style, I can generate 4 sources of references (in text)

to understand the relationship of the current generation with the inputs: 1) output

caption from the current style p (a sentence), 2) other captions generated using other

styles (multiple sentences), 3) dense captions (5 sentences), and 4) the ground truth

caption (5 sentences).
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How to Align the Multi-reference?

I used multi-view decision trees for aligning and comparing multi-references. The

purpose of these trees is to mimic a heuristic that a humans could use to diagnose

errors. The trees are shown in Figure 3.4. First view results A-F were obtained by

comparing a generated caption from the current style with the dense captions and the

ground truth. Correspondingly, I got second view results 1-6 by comparing generated

text from other styles with the dense captions and the ground truth. The reasons I

set the splitting point is as follows:

Node1 With this splitting point, I would like to see whether dense captions con-

tribute to the generated text or not.

Node2 I would like to know whether the words from given visual information

contribute to the performance or not.

Node3 I would like to explore whether ResNext features or style have positive

contribution to the performance or not.

Node4 I would like to check whether the dense captions create noise to text gen-

eration.

Node5 I would like to explore whether style or ResNext features positively con-

tribute to the text generation when knowing some words from dense captions hinders

performance.

How to Digest the Result from Multi-Reference Alignment?

The three inputs (styles, Dense Captions, ResNext features) are the possible sources

of errors when I performed error estimates. I combined results (A-F and 1-6) from

the multi-view decision trees and created a check-table 3.1 as estimations. Generally,

I applied the following rules to estimate the error features in the table:

Style as error Style is the error when generated captions from other styles have

better overlapping results with the ground truth or dense captions compared to the

captions generated using the current style (e.g., cells C-1, D-1, E-1, F-1 in Table
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Figure 3.4: Multi-View decision trees for estimating the potential feature errors.
Gen:current generation or other generations words set; Cap: dense cap-
tions words set; stopwords:stop words from nltk library; gd: ground truth
words set; ∩: intersections of two words sets.

3.1), when visual features contribute to generated text (words from visual features

are found in the generated text and in the ground truth) while performance of current

generation is low, like cells A-1, A-2, A-3, A-4 in Table 3.1;

Dense captions as error Dense captions are the error when dense captions overlap

with the current generation but those overlapping words are either not in ground

truth, like cells C-4, D-2, D-4 in Table 3.1 or there are fewer words in the ground

truth than those that aren’t in the ground truth, like cells B-2, B-4, C-2 in Table 3.1;

ResNext as error ResNext is the error when the generated text has nonstop over-

lapping words with the ground truth but these words are not in any of the dense

captions, such like cells C-3, C-5, D-3, D-5 in Table 3.1. Using the two-view decision

tree will help us to eliminate some bias where the overlapping words could come from

current style, such as in cells E-1, F-1 where generations with other styles have good

words overlapping with ground truth and dense captions, but generation with the

current style does not. In this case, I ascribe style is the error rather than ResNext

or dense captions;

Other as error I always gave a second prediction as “other” when I found there
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OutputIndex 1 2 3 4 5 6
A Style, Other Style, Other Style, Other ResNext, Other Style, Other ResNext, Other
B Style, Caption Caption, Other Style, Caption Caption, Other Style, Caption ResNext, Caption
C Style, Caption Caption, Other ResNext, Other Caption, Other Caption, Style ResNext, Caption
D Style, Caption Caption, Other Caption, Style Caption, Other Caption, Style ResNext, Caption
E Style, Other Caption, Other Style, ResNext Caption, Other Style, other ResNext, Other
F Style, Other Style, Caption Style, Caption Style, Caption Style, ResNext Style, ResNext

Table 3.1: Rule-based estimation based on multi-view decision tree outputs

Method Training Method DenseCap ResNext B1 B4 ROUGE-L CIDEr SPICE
UPDOWN [48] Supervised+REINFORCE No Yes 44.0 8.0 27.4 16.5 5.2
UPDOWN [48] Supervised No Yes 40.5 6.9 26.2 16.2 4.0
2MT Supervised Yes Yes 41.6 6.3 26.8 15.2 4.8
3M Supervised Yes Yes 43.0 8.0 27.6 18.6 4.8

Table 3.2: Performance of Generative Models on PERSONALITY-CAPTIONS
Dataset. Note: Results of [48] under supervised learning are from re-
training due to performance on supervised method not reported in [48]
and some data of original dataset not available. I also listed original result
of [48] which is under supervised and reinforcement learning for reference.
B1-B4 denotes BLEU1-BLEU4.

is no other feature factor should be suspected as error source. It is possible other

factors like model bias or dataset bias cause the error rather than features. But in

this chapter, the work mainly focuses on feature error predictions.

3.4 Experiment Setting

I performed experiments to verify the stylized captioning capabilities of my model

as well as its usefulness in explaining model errors.

3.4.1 Multi-Style Captioning Model

To demonstrate the effectiveness of my model on stylized image captioning, I used

the PERSONALITY-CAPTIONS dataset, which contains 215 distinct personalities.

I trained them on 3M and 2MT, respectively.

I compared my results with the state-of-the-art work on the same datasets based on

their automatic evaluation metrics. Ablation studies are also done on the 3M model

to justify the contributions of each component of my model. To prove my model

is expandable to linguistic stylized captions, I also trained 3M on FlickrStyle10K

dataset [17] which contains humorous and romantic personalities. I discussed the
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sample generations for two datasets in my qualitative studies.

Dataset Details

I used two different datasets in my experiments to evaluate my model’s ability to

generate stylistic captions: PERSONALITY-CAPTIONS and FlickrStyle10K. Two

different datasets were used in my experiments to verify my model is capable of

generating human-like captions and linguistic stylize captions via personality.

The ground truth captions in PERSONALITY-CAPTIONS [48, 57] are created

to be engaging and have a human-like style. Each data entry in this dataset is

represented as a triple containing an image, personality trait, and caption. The

images are selected from YFCC100M dataset [57]. In total, 241,858 captions are

included in this dataset. Each caption is associated with one of the 215 person-

ality traits selected from a list of 638 traits [21]. In this work, I did not use the

full PERSONALITY-CAPTIONS dataset due to accessibility of some examples. In

total, my reduced dataset contains 186698 examples in the training set, 4993 exam-

ples in the validation set, and 9981 examples in the test set. The total vocabulary

size of PERSONALITY-CAPTIONS after replacing infrequent tokens with ’UNK’ is

10453. I performed replacement only when experimenting on 3M model. Since the

tokenizer in Bert [14] could directly mark infrequent tokens to unknown, so in the

experiment of 2MT model, original caption is used without any preprocessing. The

FlickrStyle10K dataset captions focus on linguistic style. Since only 7000 images are

publicly available, I evaluated using a similar process to the one outlined in [22, 71].

First I randomly selected 6,000 images as the training data and use the remaining

1000 images as testing data. I further split 10% data from training data as validation

data. Total vocabulary size of FlickrStyle10K is 8889. I trained 3M on FlickrStyle10K

with the same splitting as [22, 71].
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Caption Model P D R B1 B4 ROUGE-L CIDEr SPICE Unique words(#)
Multi-UPDOWN No Yes Yes 34.0 3.5 22.3 11.1 3.6 257
UPDOWN Yes No Yes 42.4 7.5 26.7 17.9 4.4 1558
UPDOWN Yes Yes No 43.2 8.1 27.6 18.0 4.6 1048
Multi-UPDOWN Yes Yes Yes 43.0 8.0 27.6 18.6 4.8 1378

Table 3.3: Results of Ablation Studies on PERSONALITY-CAPTIONS Dataset. P
represents Personality; D represents DenseCap; R represents ResNext; B1
represents BLEU1; B4 represents BLEU4.

Model Multi-references Random simulations
3M 64.25% 44.81%
2MT 84.26% 43.81%

Table 3.4: Accuracy of error estimation with multi-view tree or random simulations
under different model

Training and Inference

In the training of the 3M model, I used entropy as a loss function and the Adam

optimizer with an initial learning rate of 5e-4. The learning rate decays every 5

epochs. I also applied schedule sampling [8] to diminish the gap between training

and inference. Schedule sampling starts in the first epoch where the initial sampling

probability is 0 and every 5 epochs increases by 0.05. The maximum scheduled

sampling probability is 0.25. In total, I trained 30 epochs with a batch size of 128

and evaluate the model every 3000 iterations. I trained 30 epochs on 2MT model too.

AdamW optimizer and linear scheduler are used and the initial learning rate is 3e-5.

I trained for 100 epochs with batch size 128 when using the FlickrStyle10K dataset. I

used the validation set to decide the best model by tracking CIDEr performance and

save the best one for inference.

During inference, I generated captions using beam search with beam size 5. During

this process, I imposed a penalty to discourage the network of 3M from repeating

words, from ending on words such as an, the, at, etc and from generating special

tokens, like ‘UNK’.
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Model Poor Performance Examples(#) Single feature errors(#)
3M 4982 1989
2MT 4988 4164

Table 3.5: Poor Performance Examples(#) is the total number of erroneous examples
I have examined. Single feature errors(#) is the total number of single
features errors where single features include style, dense caption or ResNext
features.

Figure 3.5: R1-R3: Sample of captions generated using 3M PERSONALITY-
CAPTIONS and FlickrStyle10K (underscored). W1-W2: Samples of
imperfect captions generated using 3M trained on PERSONALITY-
CAPTIONS and FlickrStyle10K (underscored) along with generations
from the same image and other personalities with personality listed in
parenthesis. The ground truth has the same personality as the under-
scored generations

Evaluation Methodology

I performed both a quantitative and qualitative evaluation. My quantitative anal-

ysis is meant to show that my models can effectively generate stylized captions by

outperforming state-of-the-art baselines on automated NLP metrics. In addition, I

also run an ablation study on 3M model to validate the need for each part.

Baselines and Evaluation Metrics I first evaluated the performance of the two

models introduced here, the 3M model and the 2MT model. I compared them against
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Figure 3.6: W1-W3: Sample of imperfect captions generated using 3M trained on
PERSONALITY-CAPTIONS and FlickrStyle10K and their feature error
inference with single-reference from us. Single reference only compares
the generated caption with image, dense captions, and ground truth

the model introduced previously by Shuster et al. [48]. Since I used a subset of the

original PERSONALITY-CAPTIONS dataset, I retrained the method outlined by

Shuster et al. using similar settings.

I compared the performance of models using BLEU [43], ROUGE-L [38], CIDEr [58],

and SPICE [2]. The comparison results are listed in Table 3.2. To evaluate the exten-

sibility of my model, I also applied my method on the FlickrStyle10K dataset. This is

meant to evaluate how well my method can generate captions that capture linguistic

style. I compared against the following state-of-the-art baselines:

• StyleNet [17], a single-style model trained with paired factual sentences and

unpaired stylized captions.

• SF-LSTM [11], a single-style model trained with paired stylized caption and
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Figure 3.7: W1-W3: Samples of imperfect captions generated using 3M trained on
PERSONALITY-CAPTIONS and FlickrStyle10K. Also includes their fea-
ture error inference with multi-references from us. Multi-references con-
tain additional references besides image, dense captions, and ground truth.

paired factual captions.

• MsCap [22], a multi-style model trained with paired factual sentences and un-

paired stylized captions.

• MemCap [71], a multi-style model trained with paired factual sentences and

unpaired stylized captions.

Following [71], on FlickrStyle10K, I trained a logistic regression classifier for style

classification and a pretrained language model using SRILM toolkit [53] to measure

perplexity. I reported BLEU, Meteor [6], CIDEr, the style classification accuracy (cls)

and the average perplexity (ppl) for comparison and results are showed in Table 3.6.

Ablation Study Additionally, to evaluate the benefits of each component of

my model, I performed an ablation study using the PERSONALITY-CAPTIONS

dataset. I compared the full 3M models against the following variations: no person-

ality features, no text features, and no ResNext features. BLEU, ROUGE-L, CIDEr,

45



Method style method BLEU1 BLEU3 Meteor CIDEr ppl cls
SF-LSTM [11] romantic single-style 27.8 8.2 11.2 37.5 - -
SF-LSTM [11] humorous single-style 27.4 8.5 11.0 39.5 - -
StyleNet [17] romantic single-style 13.3 1.5 4.5 7.2 52.9 37.8
StyleNet [17] humorous single-style 13.4 0.9 4.3 11.3 48.1 41.9
MsCap [22] romantic multi-style 17.0 2.0 5.4 10.1 20.4 88.7
MsCap [22] humorous multi-style 16.3 1.9 5.3 15.2 22.7 91.3
MemCap [71] romantic multi-style 19.7 4.0 7.7 19.7 19.7 91.7
MemCap [71] humorous multi-style 19.8 4.0 7.2 18.5 17.0 97.1
3M romantic multi-style 25.2 6.8 10.0 31.0 6.83 93.7
3M humorous multi-style 25.5 7.0 10.0 30.7 6.98 92.5

Table 3.6: Performance of Generative Models on FlickrStyle10K Dataset

and SPICE were reported in Table 3.3 for evaluating the relevance between image and

generations. I also reported the number of unique words used across all generated

captions per model in Table 3.3 to show the expressiveness of each generative model.

Qualitatively, I seek to illustrate that my model is capable of generating captions

that match the given style as well as the image context. I first listed the given

image and five given dense captions, sample generations from 3M model along with

personality in the parenthesis, in Figure 3.5 as R1-R3. I discussed the whether caption

generations match the context in three aspects: 1. whether the multi-style component

effectively connects caption generations to the given personality; 2. whether valid text

features enable the generated text to match the image; 3. whether ResNext features

can help generate reasonable text int he case where text features fail to connect with

the image.

Other Fusion Models

In this part, I discussed some other fusion methods I tried.

• Fuse dense captions with style components. In this method, instead of using

Multi-UPDOWN to interpret each modality, I fused the dense captions with

the multi-style components before decoding. This fusion framework is shown

in Figure 3.8. It is easy to see I only used UPDOWN model to decode the
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Figure 3.8: Fusion caption into style components

Figure 3.9: Stack fusion framework

sentences. Specifically in the dense caption feature encoder, LSTM layers are

used to encode the 5 dense captions of the image. And then I added another

linear layer to pick up essential information from these 5 captions which became

a caption context vector. Then I concatenated this caption with the previous

word and personality vector for every current word generation. Then used the
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new fused multi-style component vector and previous history hidden state to

select attended ResNext information. In this way, I fused the caption modali-

ties in each decoding step. And at the same time, I calculated the correlation

between ResNext features and dense captions every time when calculated atten-

tion vectors. And all these calculations contribute for current word prediction.

I calculated the performance of this method in the Table 3.7.

• The Second fusion method I tried is stack fusion. Stack fusion interprets the

5 dense captions in the decoder using stack Top-down attention. Briefly, I

extracted the important sentence first and then important the words for the

current word generation. I plot the framework in Figure 3.9. Specifically, two

vectors were extracted from the dense caption encoder which employs LSTM

cells to encode each word. The two vectors are: a caption vector with 5*2048

dimensions representing 5 dense captions states (vcap in Figure 3.2); 5*16 word

vectors (vwi
, i ∈ 1...80 in Figure 3.2) and each with a size of 2048 representing

word states. With this, as in Equation 3.2, I first used the Top-Down attention

module (blue in Figure 3.9) to prune 5 dense captions to 1 dense caption by

extracting the attend caption vectors and attend word vectors from the 5 dense

caption vectors. I used the shared attention module for extracting attention

from captions and words. Using the selected caption and word vectors, along

with another Top-Down attention module (purple in Figure 3.9), I further se-

lected the final attend word vectors among 16 words. With these two fusion

attention modules, I used the multi-style component and previous hidden states

as input. In this way, I can fully make use of the useful text information from

the dense caption. I used the attend words from the Stack Fusion and attend

ResNext features from a separate Top-Down attention Module, to finally pre-

dict the current word. And I listed the performance of this approach in Table

3.7, too.
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Caption Model B1 B4 ROUGE-L CIDEr SPICE Unique words(#)
Fusion SC 43.5 8.1 27.4 17.9 4.4 1076
Stack Fusion 37.1 5.4 24.2 14.2 3.7 3146
UPDOWN 43.2 8.1 27.6 18.0 4.6 1048
Multi-UPDOWN 43.0 8.0 27.6 18.6 4.8 1378

Table 3.7: Results of other fusion methods on PERSONALITY-CAPTIONS Dataset.
B1 represents BLEU1; B4 represents BLEU4

I explored the above two methods and found they also produced reasonable results.

I compared them with UPDOWN model and Multi-UPDOWN model in Table 3.7.

3.4.2 Examine the Explanation Capacity with Multi-reference from 2M

I examined the explanation capacity of 2M on the test data of PERSONALITY-

CAPTIONS. Specifically, I used multi-references to find the dominant erroneous fea-

tures among multi-modality features so that I could use the found features to explain

the errors. I first defined the examples which might have errors. Specifically, I checked

if the BLEU1 score of a test example is lower than the median BLEU1 score for the

test data. These comprise the set of low performing examples, and I identified the

source of the errors present in these examples.

With multi-references, which involves regenerating captions under different styles, I

chose the best styles when making these replacements. Here, best styles refer to those

that are unlikely to have style errors. To determine this, I chose styles whose BLEU1

score is higher than the median BLEU1 score for the dataset. I utilized the top 5

best styles for both the 3M and 2MT models for this evaluation. When generating

multi-references, I replaced the current style with these 5 styles and used my models

to generate new stylized captions. Using the original stylized caption generation, the

5 new stylized captions, the ground truth, and the dense captions used by each model,

I estimated the likely source of the error using the multi-view decision tree described

previously.

I calculated the accuracy of the error estimate by comparing the predicted error

result with the error feature ground truth. I listed the calculation result for 3M model
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and 2MT model in the table 3.4. The ground truth error estimations were generated

using error causal inference [35]. I inferred the feature error for each error example.

I also performed random inference simulation and compared the prediction accu-

racy results with multi-references. For each example, I randomly sampled 2 features

from the set (Style, Dense Caption, ResNext, Other) as predictions. I compared

these random predictions with the ground truth and calculated the accuracy for each

example. I simulated 1000 rounds random simulations for each example and report

the average accuracy in the Table 3.4. For clarity, the number of errors in the ground

truth and the number of low performing examples were reported in Table 3.5. I also

listed imperfect sample generations from the 3M model underlined in Figure 3.6 and

Figure 3.7 as W1-W3. With these along with multiple generations under different

styles, I illustrated how I used multi-references for estimating input feature errors.

3.5 Results and Discussion

In this section, I outlined the results of my experiments and illustrated the caption

model performance with respect to effectiveness and explainable capacity in quanti-

tative and qualitative ways.

3.5.1 Caption Model’s Performance

Comparison with baselines and 2MT on Personality-Caption As seen in

Table 3.2, the 3M under Multi-UPDOWN model outperforms the single UPDOWN

model under the same training method across all the NLP metrics that I used for

evaluation. I also achieved better results on ROUGE-L, CIDEr compared to Shuster’s

model trained under reinforcement learning. With different structure and same input

information, 3M outperforms 2MT. Notably, 2MT didn’t really gain benefits using

multi-modality features compared to the single UPDOWN model. It appears to have

similar performance to the single UPDOWNmodel. This might be because I finetuned

the VinVL transformer, which notably is not pre-trained with personality information.

Comparison with baselines and 3M on FlickrStyle10K I showed that my 3M
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model does well on single-style captioning even though it was not designed for that

task. As Table 3.6 shows, my performance significantly outperforms two other multi-

style models, MsCap [22] and MemCap [71] on BLEU, CIDEr, Meteor, and ppl on

the FlickrStyle10K dataset.

Note that my 3M model also achieves high cls values, which shows how well my

captions capture the given style. One thing to note is I applied the method used

in [71] to train and calculate the cls due to the pre-trained style classifier model

unavailability. While MemCap outperforms my model in terms of cls for humorous

captions, the highest cls value trained on humorous in FlickrStyle10K I were able to

achieve was 89.7% while [71] achieve 96%. While I have reported the cls values for

my baselines as they were reported in [71], it is possible that my style classification

model was not as well trained as theirs, which would result in lower values for the

3M model.

I also have to mention the fact that my 3M model does not outperform the SF-

LSTM baseline, although I did achieve somewhat comparable performance across the

automated metrics. I do not see this as a significant weakness of my approach since

SF-LSTM is designed for a single-style generation task, whereas my 3M model was

designed for multi-style generation. I believe that the fact that 3M being able to

achieve comparable performance to a specialized network speaks to the robustness of

my approach.

Ablation Study From Table 3.3, it is easy to see if my model is trained without

the multi-style component, the performance of all the nlp metrics drops, proving how

critical this component is. Examining the results obtained from a model using only

text features against a model that only had access to ResNext features shows that

using only text features limits the overall expressiveness of generated captions as

shown by the low number of unique words generated.

My full model has achieved the highest ROUGE-L, CIDEr and SPICE score and
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improves expressiveness compared with model with only text features and improves

the relevancy compared to a model with only Resnext features.

Other Fusion Models

From Table 3.7, it is easy to see that the Fusion SC has quite competitive results

compared with Multi-UPDOWN. Its performance using the BLEU1 metric is even

better than the performance of the Multi-UPDOWN model. However, ROUGE-L,

CIDEr, and SPICE scores for the Fusion SC model are not superior to UPDOWN and

Multi-UPDOWN models. The Fusion SC model has more unique word generation

than the UPDOWN model. Even though, it is not significant when the Fusion SC has

more information to refer to. This means UPDOWN model without fusion could have

a relatively better performance than Fusion SC. This might be caused by one attention

module having too much information to choose from and, thus, the extra information

becomes too burdensome. When looking at the Stack Fusion model, which takes more

attention modules to decode dense captions, almost all the performance metrics are

the lowest compared with other fusion models. Despite this, the number of unique

words become the highest among all the models. So the Stack Fusion model generates

many different words, but a many of them neither match the style nor the image

background. So, more attention modules for dense captions are not necessary to

help to localize the right contexts. Compared with those two fusion methods I tried,

Multi-UPDOWN parallel decodes each modality datum. This way at least creates

less noise so that the decision layer knows which modality is salient to choose.

Qualitative Analysis For my qualitative analysis, I discussed the quality of the

trained 3M models across two datasets assessing whether my model is capable of

generating captions that match the given style and image context, and assessing

whether my model can assist in finding reasons for imperfect captions.

From all generations in Figure 3.5, it is easy to see my 3M model is able to generate

captions matching the given personality, which provides support that my multi-style
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component is able to help direct the generations in the desired personality tone. From

R2-R3 it is easy to see that when there is a valid text feature available, the 3M model

could make use of them. The generation in R1 is expressed in a more conservative and

global way since text features cannot provide correct information, which necessitates

the use of ResNext features.

3.5.2 2M’s Explanation Capacity

Here, I reported the results of my quantitative and qualitative analysis on the ca-

pability of my models to aid in predicting errors.

Quantitative Analysis From Table 3.4 it is easy to see, assisted by 2M, the chance

of a human being able to estimate dominant sourcing errors is more than 50% on

both the 3M model and 2MT model. This performance is higher than the one when

using random simulations. This serves as evidence that the information provided by

multi-references enables better guidance in identifying errors present in multi-fusion

models. Notably, 2M is especially good at helping humans to find errors on the 2MT

model. This is likely because many of the erroneous examples generated by the 2MT

model are single-feature errors. This is a stark contrast to the erroneous captions

generated by 3M, which are mostly caused by fusion feature errors. This tells us that

the 2MT model has the capability of identifying the most important modality when

generating captions, whereas the 3M model tends to fuse all modalities together when

generating a caption. This makes it easier for humans to identify single feature errors

from the 2MT model rather than the 3M model.

Qualitative Analysis I have collected a set of low-performing generations from the

3M model and displayed them in Figure 3.6. I showed how one can use multi-reference

error for error feature inference using three examples in Figure 3.6-3.7. Specifically,

human reasoning and predictions when they only have single-references (generated

captions with only one style) were discussed and these reasons and predictions with

the ones under multi-references (generated captions with multiple styles) were com-
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pared.

In Figure 3.6, I provided images, dense captions, ground truth captions and gen-

erated captions with a given style. I first inferred the error features by only using

this information. I referred to these inference as human single-reference inference

in Figure 3.6. Also, I listed the reasons for the inferences. I then combined addi-

tional references in Figure 3.7 and inferred the error features through the multi-view

decision tree (Multi-view Decision Tree Inference) and human perspectives (Human

Multi-reference Inference). I listed the reasons for these in Figure 3.7.

The example W1 in Figure 3.7 shows that the extra references contain the correct

visual word “rock” when generated under different styles. However, looking at the

caption generated in Figure 3.6 shows that the generated caption is not a complete

sentence and does not give a complete view of the image. Using multi-references,

I can strongly infer that the visual feature is correct; however it is not interpreted

correctly when combined with the style, “Anxious”. This will not be clear if only

look at the generation with “Anxious” and do single-reference inference, as I might

ascribe the error to visual features. In W2, a human could easily recognize the bad

phrase present in the dense captions that also occurs in the generated caption with

“Humorous”. However, if I changed the style to “Romantic”, the visual attention will

correct the visual word to “bike”. This extra information may indicate that the style

feature for “Humorous” might also be incorrect in addition to the dense captions.

In W3, when I generated captions under other styles, the visual words in different

generations are all wrong. Even though humans could easily guess the visual feature

is not correct using single-reference, having multiple references reduces the likelihood

that the errors could come from style.

From Figure 3.7, it is easy to see that the multi-view tree cannot always simulate a

human’s interpretation since it only considers overlapping word sequences and cannot

explicitly visualize the image. That being said, it does provide some insights which

54



align with human judgement, which are shown in purple in Figure 3.7. Thus, I believe

that this model can be very helpful especially when humans neglect some facts by

accident. I believe that humans can make better judgements about the errors present

in a model by making use of multi-references and the multi-view tree.

3.6 Conclusion

In this chapter I built two caption models: 3M and 2MT models supporting self-

explaining, which are multi-style image captioner and could integrate multi-modal

features and generate multiple stylized captions given one image. I demonstrated the

effectiveness of my 3M model by comparing against state-of-the-art work and 2MT

model using automatic evaluation methods. Ablation studies have also be done to

evaluate the contributions of each component of my 3M model. Since 3M and 2MT

could provide multi-reference for an image, I also showed the multi-reference is helpful

to explain the multi-modality fusion model on finding the dominant error features.
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CHAPTER 4. ERROR CAUSAL INFERENCE FOR MULTI-FUSION

MODELS

4.1 Introduction

Even though multi-modality fusion is beneficial on building humanlike image cap-

tioning, there are still errors in the input modalities in Chapter 3. 2M framework in

Chapter 3 could provide rich information to help human to explain the features er-

rors. However, as machine learning models become more complex and training data

become bigger, it is harder for humans to find errors manually once some output

went wrong. This problem is exacerbated by the black box nature of most machine

learning models. When a model fails, it can be difficult to determine where the error

comes from. This is especially true in problems that are inherently multimodal, such

as image captioning, where often multiple models are combined together in order to

produce an output. This lack of transparency or ability to perform a vulnerability

analysis can be a major hindrance to machine learning practitioners when faced with

a model that doesn’t perform as expected.

Recently, more and more people begin to fuse text and visual information for down-

streaming tasks. In many cases, these models utilize specialized, pre-trained models

to extract features. In these situations, it is highly likely that the source of these er-

rors is from these pre-trained networks either being misused or not being interpreted

correctly by the larger machine learning architecture. In this chapter, I explored

how one would perform a vulnerability analysis in these situations. Specifically, I

am interested in identifying model errors likely caused by these pre-trained networks.

Specifically, I diagnosed these errors by systematically removing elements of the larger

machine learning model to pinpoint what the causes of errors happen to be. This is

especially critical in tasks that utilize multi-modality input models since often these

models utilize attention. If the model attends to the wrong features, then this error
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could potentially cascade throughout the network. In other words, I seek to answer

the question, “Given a trained modelM which has input features x, y, z, if the current

test example is not performing well, is that because of the given features or not? If

it is, which specific feature is more likely the cause of the errors?”

By answering this question, I can give machine learning practitioners, specifically

those who are inexperienced with machine learning and AI concepts, some direction in

how to improve the performance of their architecture. I summarize my contributions

as follows: 1. I have provided a practical method to discover causal errors for multi-

modality input ML models; 2. I have explored how this method can be applied to

state-of-the-art machine learning models for performing stylized image captioning; 3.

I have evaluated my method through a case study in which I assessed whether I could

improve the performance of the investigated instance by removing or replacing these

problematic features.

4.2 Related Work

My approach to sourcing these errors uses causal inference [25, 44]. In this sec-

tion, I reviewed works related to causal inference as well as works that provided the

inspiration for this chapter.

Invariance Principle Invariance principle has been used for finding general causal-

ity for some outcome under designed treatment process, where people desired to find

actual effect of a specific phenomenon. Invariant causal prediction [44] has been

proposed to find casuals under linear model assumption. It later got extended to

nonlinear model and data [24]. This invariance can be roughly phrased as the out-

come Y of some model M would not change due to environment change once given

the cause for this Y . An example of an environment change when Y = M(X,Z,W )

and the cause for Y is X, could be a change on Z or W . The invariance principle

has been popularly used in machine learning models to train causal models [4, 45].

I employed the same insight, using the invariance principle to find causes for input
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errors of machine learning model. I am not intended to train a model, instead, I used

the well-trained models to derive the source cause for lower performance instances.

Potential Outcome and Counterfactual Rubin et al.[46] proposed using po-

tential outcomes for estimating causal effects. Potential outcomes present the values

of the outcome variable Y for each case at a particular point in time after certain

actions. But usually, people can only observe one of the potential outcomes since

situations are based on executing mutually exclusive actions (e.g. give the treatment

or don’t give the treatment). The unobserved outcome is called the “counterfactual”

outcome. When examine the outcome of a trained model with multi-input features,

people could observe the counterfactual by removing certain input features from the

model.

Debugging Errors Caused by Feature Deficiencies This chapter is also re-

lated to debugging errors from input, while it more focuses on using a causal inference

way to get the real cause for low performance. Other researchers only exploring as-

sociations [1, 31].

4.3 Methodology

The goal of this chapter is to perform a causal analysis in order to determine the

likely source of errors in a well-trained model. In the following sections, I outline my

underlying hypotheses related to this task and go into details on the task itself.

4.3.1 Hypothesis

Hypothesis 1: With a fixed model, if the output of an instance k is unchanged

after an intervention, I, then this is called output invariance. The causes of

the output for this instance k are irrelevant to the features associated with the

intervention, I.

Using this output invariance principle, people can identify features that are irrelevant

to the prediction made. After removing these irrelevant features, the ones that re-

main should contribute to any errors present in the output. Given the strictness of the
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output invariance principle, it is often the case that very few features are identified

as the cause of any error present. In some cases, no features are identified. In this

chapter, I am interested in determining the cause of errors by masking out certain

features, specifically those that are unlikely to be the cause of an error. As such, I am

interested in the specific case where the removal of certain features does not cause the

performance of the model to improve. This phenomenon, which I refer to as output

non-increasing will be rephrased below.

Hypothesis 2: With a fixed model, if the output of an instance, k, after an

intervention, I, is either less than or equal to the original performance of instance

k, then this is called output non-increasing. Then, the features associated with

intervention, I, are likely irrelevant to the cause of any error.

In this chapter, I specifically performed interventions that involve masking/hammer-

ing out certain input features. Hammering out features could mean zero out input

features or specific weights, or even remove certain input modalities, etc.. In this

chapter I changed the values of certain input features f to 0. Then, output is re-

generated according to this new input. If the output is unchanged (or gets worse),

then I removed this feature f from the causal features list. Before I performed these

interventions, I first identified the errors which do not relate to any of these features.

This leads to the next hypothesis.

Hypothesis 3: If we hammered out all input features and output invariance still

holds for instance k, we will record the cause for instance k having lower performance

as being due to model and dataset bias. We will refer to this as bias error.

In this chapter, I am interested in more than bias errors. With this goal, I have

arrived at my final hypothesis on performing causal inference for identifying errors.

Hypothesis 4: If the performance of instance k is poor and the output of instance

k is not caused by bias errors, and if all interventions keep feature f ⋆ unchanged and

we still have output non-increasing, we will say f ⋆ is the error feature which causes
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the lower performance output for k.

With all of the above hypotheses, it would be enough for us to infer whether the low

performance of the instance k is caused by a single feature f or not. Next I would

show how these hypotheses can be used to identify the causes of errors.

4.3.2 Causal Graph: with and without Hammering out Features

As we know, when building a model in deep learning, one always assumes a casual

graph in advance and then fit data into the graph for training. Figure 4.1 shows

a sample causal graph (a) with multiple input features. These features will be fit

into a black box model and finally the model will, in this case, generate some set of

output text. Once finished model training, one would be able to deploy the model

and obtain each testing instance’s performance. With a well-trained model, one can

perform many interventions, or investigate specific features by intervening on them in

different environments. In practice, however, it is impossible for us to obtain all the

random environments. Based on hypotheses 3 and 4, along with the steps that people

take to perform causal predictions in linear [44] and non-linear [24] situations, I give,

in this chapter, a more detailed and practical definition below to help us identify

whether a feature set S is the causal feature set or not. Here S could be a feature set

composed of a single feature or multiple features. After hamming out some features,

I call a remaining feature set P as S’s parental set when S ⊂ P . I denote FS as:

FS = {g(P ) | P is a parental set of S} and

g(P ) =


P if P satisfies output non-increasing,

∅ otherwise.

Then I could extract the estimated causal feature set F̂ as:

F̂ =
⋂

F :F∈FS

F (4.1)
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To understand above, I checked all the parental sets of S on output non-increasing

property to finally make decision on whether S is an error casual feature set or not. In

this chapter, only single feature sets are evaluated. To better explain, I also displayed

all the interventions (b–h in Figure 4.1) I have done to the features (masking out some

features) when there are a total of 3 features in the assumed causal graph. I inferred

the causal feature for a low performance instance k based on all of these potential

outcomes before and after interventions. I use ox, x ∈ {a, b, c...h} to note the score for

output generation of graphs in Figure 4.1. First, I extracted the instances when the

error cause is independent of any features where I found all the instances B, which

satisfy oa == oh. Then the following causal feature inferences will exclude detected

instances in B first. As this chapter is specifically focus on single feature errors, I

enumerated the situation when causal features are R,C, S for instance k, respectively.

First of all, according to hypothesis 3 and 4, k ̸∈ B. The causal feature is S when:

oa >= ob; oa >= oc; oa >= oe; The causal feature is C when: oa >= oc; oa >= od;

oa >= of ; The causal feature is R when: oa >= ob; oa >= od; oa >= og.

It is important to note that removing an error feature does not necessarily mean

that the performance will increase, as it is possible that there are other sources of

errors that still keep performance low. In these rules, I used the ”=” sign in its

strictest sense. However, one can always use it in a way that is interchangeable with

“very similar.” For example, if the difference between two output scores is 10−16, one

can choose to regard these two scores as equal per its needs.

4.4 Experiment

To show the effectiveness of my approach, I examined its performance on a stylized

image captioning task that uses multi-modality feature fusion. While I focused on

this task as an example, this approach could be applied to many other domains.
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Figure 4.1: Displays the causal graph with various sets of features zeroed out and a
red cross mark signifies zeroing out

4.4.1 Dataset

I chose the dataset and the task based on three qualities: the work has a well-

trained saved model which I could use for intervention and inference; this work still

has room to be improved by identifying and removing the source of potential errors;

the work utilizes multiple input features in a way that enables removing said features.

Specifically, I chose the work on the 3M model [34] and 2MT [36] for stylized

text captioning. I did this because it relies on generating captions using several input

features including pre-trained text features (C), ResNext features (R), and style infor-

mation (S) as an input. 3M uses Multi-UPDOWN caption model and 2MT finetunes

VinVL, a language visual pre-training model [69]. I would like to explore whether

these input features have caused problems when instances are under performing. The

dataset I examined is the test set from the PERSONALITY-CAPTIONS dataset

[48] using in both 3M model and 2MT model along with the pretrained model they
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provided 1. Even though I used its test set in my experiment, my method could be

applied on any set of data of any size when there is a debugging need for multi-fusion

models.

4.4.2 Implementing details

Specifically, I defined an instance as under performance in 3M model or 2MT model

when the BLEU1 [43] score is lower than the median BLEU1 value among all testing

data. In total, I have investigated 9981 instances and in 3M model, 4982 of them

are classified as under performing. 74 of these have been detected as bias errors. So

finally, 4908 instances have been examined for single feature errors.

And in 2MT model, 4988 instances have been examined for single feature errors

and no bias errors has been detected.

I first performed causal inference for style feature and denote those instances that

have style error asKs. Then performed the causal finding steps for ResNext and dense

captions without differentiating the order in the remaining instances. The reason to

decide such order is due to the structure of 3M and 2MT, where style is used globally

to refine ResNext and dense captions for later stylized text generations while ResNext

and dense captions have the same importance for text generations.

4.4.3 Evaluation

The reason to find the cause for the errors is that I would like to further improve

a model when it is well-trained or make a remedy when the model is malfunctioning,

especially from the source side. Thus, I evaluated casual predictions by evaluating

whether I could improve the model’s performance by just altering the causal feature.

There are many potential treatments that I could make on the source side such as

data augmentation, feature replacement, or feature removal. For each instance k

with predicted causal feature f , if its performance could be improved by improving

f , then I judged the causal error inference for this instance k as correct, otherwise

1https://github.com/cici-ai-club/3M
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incorrect. More details on the specific interventions I used are outlined below: Style:

(S1) replaced current style with 5 other well-trained styles S, where most instances

with style s, s ∈ S has better BLEU1 score than the medium BLEU1 score. (S2)

removed Style. Dense Caption: (C1) replaced dense captions to ground truth; (C2)

removed dense captions. Resnext: (R1) replaced dense captions to ground truth and

then removed Resnext, where I made sure at least one of the visual features is valid.

(R2) removed Resnext.

I recorded the best output BLEU1 score after each intervention. If the intervention

results in a higher BLEU1 score than the output prior to the intervention, then the

feature in question will be marked as the cause of an error. For all the instances which

have been ascribed by a feature f , I calculated the percentage of those in which the

BLEU1 score could be improved and report them in Table 4.1 and Table 4.2.

4.5 Result and Discussion

The result is shown in the Table 4.1 and Table 4.2. It is easy to see that for each

feature, most of the instances have increased their performance by improving the

predicted features. This performance is also a conservative value as I only did limited

feature improvements. For example, for Resnext, I had no better features available

and, thus, could not do a replacement.

Also in both Table 4.1 and Table 4.2, the style feature is the most predicted error

causal feature among all three feature modalities. 1041 instances point their per-

formance error towards style in 3M and 4057 instances point its performance error

towards style in 2MT. I speculated this is resulting from the weak training of a certain

set of styles, since the BLEU score can be improved if replaced with other better-

trained styles for 89.4% of these instances. To further investigate this, I reported the

frequency of the styles in those 1041 instances from 3M model in Figure 4.2 and 4057

instances from 2MT model in Figure 4.3. I further checked whether the estimated

error styles are distributed sparsely (styles are the main component contributing the
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Table 4.1: The evaluation result for each feature under casual inference of 3M model
[33]. Predictions Count are the number of instances predicted with corre-
sponding feature errors.

Feature Predictions Count Improvement(%)
Style 1041 0.894

Dense Caption 378 0.797
Resnext 300 0.769

Table 4.2: The evaluation result for each feature under casual inference of 2MT [36].
Predictions Count are the number of instances predicted with correspond-
ing feature errors.

Feature Predictions Count Improvement(%)
Style 4057 0.935

Dense Caption 78 0.897
Resnext 37 0.892

errors) or densely (a certain set of styles is not trained well). From Figure 4.2, it is

easy to see that some styles repeatedly appear as errors for various instances. How-

ever, in Figure 4.3 it is easy to see all the styles distribute quite evenly as errors. In

3M model, the model has more errors on special set of styles but less errors in other

styles. So I would think 3M balances the style and image context better compared

with 2MT. Errors from 2MT model has great dependency on styles rather than the

image context. This could be dangerous cause even though when style is interpreting

right, generation ignorance on image context could lead BLEU very low. With these

predicted error styles, one can either do some data augmentation to cover the gap

between training and testing or redesign the training process to enable the model to

focus more intently on these styles.

4.6 Conclusion

In this chapter, I developed a method which could detect feature errors in multi-

modality input features automatically. To achieve this, I applied an extended invari-

ance principle to provide a method for performing error causal inference. I evaluated
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Figure 4.2: Error style frequency on 3M model. The styles are those frequently pre-
dicted as the causal errors; the horizontal bar represents the frequency.
Here I select the top 50 styles.
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Figure 4.3: Error style frequency on 2MT model.The styles are those frequently pre-
dicted as the causal errors; the horizontal bar represents the frequency.
Here I select the top 50 styles.
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my method under different stylized image captioning models that use multi-modal

fusion as input features. I showed that I could improve the performance of the mod-

els based on simply removing or replacing those predicted causal errors. Also, my

method is model-agnostic, it could be used for different fusion model for optimization,

debugging or assessing purposes.
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CHAPTER 5. STYLIZED METRICS

5.1 Introduction

From the discussion in chapters 3-4, it is easy to see evaluating a model with respect

to their errors is very essential. It is also essential to evaluate the style’s contribution

properly. As we know, different styles of image captions could be used to adapt to

different people. With this new type of tasks towards caring the style of the sen-

tence, researchers [17, 22, 33, 48, 71] often use automatic NLP evaluation metrics,

like BLEU [43], ROUGE-L [38], CIDEr [38], and SPICE [2] for evaluating the accu-

racy of the generations and a trained classifier for evaluating the style components’

contributions. However, a trained classifier for evaluation is constrained by its own

accuracy once the number of classes scales up. Changing datasets will also require

another benchmark model to be trained and agreed upon by different researchers. If

individual researchers trained their own classifiers for evaluation, then it is difficult

to achieve a fair comparison between techniques as differences in training protocols

could lead to differences in performance that are difficult to reproduce.

Automatic evaluation metrics such as BLEU, CIDEr are based on measuring the

alignment between generated captions and reference captions using n-grams. These

metrics are frequently used to evaluate language generation models because they don’t

require training, which makes them suitable for providing stable evaluations across

different models. Given that stylized captions must describe the image in question as

well as produce a sentence that aligns with a given style, it may be difficult for these

types of metrics to give an accurate measure of the quality of a stylized captioning

system. If the CIDEr score, for example, is high for a stylized image caption, a

possible explanation is because it can accurately recreate elements of a caption that

describe the image. In these instances, it may fail to encompass the desired stylized

elements of the caption. This can be seen happening in Figure 5.1, where the CIDEr

69



Figure 5.1: An image generated caption for the personality “Abrasive (Annoying, Irri-
tating)”. The generated caption are measured using CIDEr, StyleCIDEr,
OnlyStyle scores. CIDEr fails to reflect styles
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score is high due to the 1-grams “i” and “boat” aligning with ground truth. However,

these two words could hardly reflect the desired personality. Thus, the CIDEr-like

scores may result in accurate evaluations for stylized captioning models.

For a metric to accurately evaluate the quality of a stylized image caption, it must

be able to reason about how the words in said caption contribute to its overall style.

To achieve that, I built automatic evaluation metrics from stylized captioning datasets

and used them to measure how words contribute to the overall style of automatically

generated captions. For building such metrics, I first need to address the following

questions: 1. Is a reference caption required to measure a generated caption’s ability

to capture style? 2. Does the metric align with human perceptions of a sentence’s

style?

To address the first question, I recognized that there are benefits to creating a

metric that requires a reference caption. The presence of a reference caption would

allow us to directly compare if the generated stylized caption is similar to a known

ground truth. There are situations, however, where a ground truth is not easily

obtainable. In these situations, one would prefer a metric that did not require a

reference sentence. Considering this, I designed two metrics that are both based

on the n-gram methods described earlier. The first evaluates how well a generated

caption captures a given style without the need for a reference sentence. I refer to

this metric as OnlyStyle. The second metric is based on the popular CIDEr metric,

while I adjusted its measures to place more emphasises on stylized words to better

measure the quality of a stylized caption. I refer to this metric as StyleCIDEr.

For the second question, I want my metrics align human’s judgment. CIDEr [58]

and Self-CIDEr [62] have been demonstrated to match human preferences when com-

paring two captions. However, evaluating styles can be difficult as people may have

different thoughts on what constitutes a particular style. For example, the data used

to train a stylized image captioning model may indicate a “Happy” style for words
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such as “I love” while a human judge may disagree. Thus, in this chapter I chose to

score stylized traits based on the dataset used to train the captioning model. While

this is my primary evaluation, I also performed a human subjects evaluation to see if

my metric aligns with human preferences.

5.2 Related Work

Stylized Image Captioning Models Several researchers have built stylized cap-

tioners [11, 17, 22, 71] using the FlickrStyle10K dataset which includes Humorous and

Romantic personalities. Some of these works use unpaired datasets and LSTM[20]

variants for caption models. Shuster et al. [48] released the PERSONALITY-

CAPTIONS dataset containing 215 personalities in 2019. They improved on past

approaches for stylized captioning by improving input features and exploring various

state-of-the-art image captioning models [3, 64]. Among them, the best performing

generative caption model is UPDOWN and the best features for representing image

input are generated using ResNext [63]. Li et al. extended the UPDOWN model

into the Multi-UPDOWN model which incorporates both visual and text information

as inputs. Recent researchers used transformer for image captioning work [37] where

Oscar uses multimodal-fusion with a transformer model trained using contrastive loss.

VinVL[69] outperforms Oscar by utilizing better text features and has since become

the state-of-art for image captioning work.

In this chapter, some of these frameworks are evaluated using my proposed metrics.

Specifically, I evaluated UPDOWN, Multi-UPDOWN, and a VinVL model fine-tuned

on a stylized captioning dataset (I call this model 2MT for convenience). This will

enable us to demonstrate how my proposed metrics can be used to evaluate stylized

captioning models.

Common Metrics Used in stylized Image Captioning In general, there are two

types of metrics used to evaluate stylized image captioning models: trained models

and automatic NLP evaluation metrics. There are many types of trained models that
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can be used for stylized caption evaluation. These include text classifiers trained to

identify the style of a sentence, or a model like BertScore [70], which uses a trained

language model to compare generated text against a reference sentence. One of the

main limitations of using a trained model as an evaluation metric is that it may require

retraining to use on a different dataset. Thus, metrics based on trained models may

require significant effort if used by different researchers on different datasets or in

different domains. I would like to develop a general metric that performs consistently

once the dataset is fixed. Thus, my approach is more similar to automatic NLP

evaluation metrics.

Many automated NLP evaluation metrics rely on n-gram matching precision or

recall, and are not necessarily designed with image captioning in mind. Examples of

these metrics include BLEU[43], METEOR [6] and ROUGE-L [38]. SPICE [2] and

CIDEr [58] are designed specifically for evaluating image captioning. SPICE depends

on scene graph matching, which is heavily influenced by the accuracy of the parsing

results. CIDEr averages the cosine similarities between two caption vectors across

1-4 grams, where vectors are calculated using TF-IDF. Since CIDEr is generally

considered to be effective at sensing semantic changes and representing a human’s

preference [62], Wang et al. created Self-CIDEr [62] to measure the diversity of

caption generations by using CIDEr as a kernel function. While effective on general

captioning tasks, CIDEr can struggle to identify the stylized elements of a caption.

N-Gram Weighting Schemes Since my metrics are based on n-gram methods,

I discussed several popular term weighting schemes [29, 40]. Term Frequency-Inverse

Document Frequency (TF-IDF) is effective at scoring salient n-grams; however, due

to the fact they punish stop words, they could weight words such as “not” as 0 with

the help of inverse document frequency if “not” appears in every style. To us, this

is limiting since this ignores the term frequency of “not” in different stylized corpora

and weights it the same in a “Happy” style and an ”Angry” style. Delta TF-IDF[40]
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uses the difference of TF-IDF scores between a positive dataset and negative dataset.

This may help to extract more stylized words than TF-IDF, but does not fix any of

the underlying issues with TF-IDF. I addressed this by using the average difference

of term frequency probabilities between a positive corpus and negative corpus.

5.3 Method

In this chapter I introduced two metrics for automatically evaluating stylized image

captions. To accomplish this, I divided the task into three parts. First, for each style

in a dataset I calculated a contrastive n-gram (CNG) score for each n-gram in the

corpus, which gives a high score to a n-gram representative of the given style and a

low score for those that are not. I used this n-gram score to represent the associations

between a given style and an n-gram. Secondly, I used these calculated n-gram scores

to build my first metric, which takes a caption and a style as input and outputs the

a score measuring how much this caption exhibits this style. I refer to this metric

as OnlyStyle. Thirdly, I constructed a second metric, StyleCIDEr, that measures

whether the stylized elements of a sentence align with a reference caption or not.

This metric uses CIDEr as a kernel function, but shifts the n-gram vector space. I

will talk about each of these three concepts in more detail below.

5.3.1 Contrastive N-gram Score

I built my metric based on n-gram comparisons, which means I will first calculated

a score for each n-gram in a caption that measures how aligned it is with a given

style. Generally, I scored an n-gram high if it only appears in the dataset associated

with current style and if it appears frequently in this dataset. That is to say, if

an n-gram has high contrastive n-gram score on style p, this n-gram contains good

characteristics for this style. Suppose I have a n-gram t, n ∈ {1, 2, 3, 4}, and I would

like to calculate how close this t with a given style p. I calculated the score sp,n for
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this n-gram t under style p as follows:

fp,n = | {d ∈ Dp : t ∈ d} | (5.1)

ECDF (fp,n) =
1

|Fp,n|
∑

xi∈Fp,n

1xi<=fp,n (5.2)

occur num = | {s ∈ S : t ∈ d, d ∈ Ds} | (5.3)

CNGp,n =
1

|S|
∑

q∈S,q!=p

ECDF (fp,n)− ECDF (fq,i)

occur num
(5.4)

Equation 5.1 calculates the document frequency for t in Dp where t is a n-gram

term and Dp is the corpus that includes all sentences related to the style p. I intended

to compare the t’s representations across different styles to see whether t is salient in

current style p. Since document frequency like fp,n is heavily influenced by the number

of documents in Dp, I converted fp,n into probability by calculating the empirical

distribution for all n-grams under style p. Specifically, I calculated fp,n’s probability in

Equation 5.2, where ECDF (fp,n) is the empirical distribution function which converts

a document frequency fp,n to a probability under empirical distribution. I call this

the ecdf score for short in the discussion below. Fp,n is a set that contains all n-gram

document frequencies under style p.

To check how frequently t occurs in documents of different styles, I calculated the

number of stylized corpora Ds where t has occurred (Equation 5.3). Here S is the

style set, which contains all styles. I used occur num from Equation 5.3 to penalize

the score of t in Equation 5.4. If t has occurred in multiple corpora, then it is not

deemed significant enough to represent the current style. To see how much better t

aligns with style p than another style q, I finally calculated the contrastive n-gram

score for t under style p by calculating the average difference between the ecdf score

under style p and all other styles q, where q is in the style set S but q is not equal to

p (Equation 5.4).
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Bounds Analysis The best case scenario of CNGp,n score for a n-gram t is when

t only occurs in Dp but not in any other Dq and occurs in every sentence d ∈ Dp.

That is to say t is only associated with style p and is also associated with every

sentence in Dp. With this, I can calculate the upper bound for CNGp,n, where

CNGp,n = ∥S∥−1
∥S∥ . The worst case scenario is when t never occurs in Dp but occurs

in all other datasets Dq, q! = p and appears in every sentence d ∈ Dq. This results

in the lower bound for CNGp,n, where CNGp,n = − 1
∥S∥ . Notably, the stop words

are naturally de-emphasized by occur num and subtraction if they are nearly evenly

distributed between different styles through Equation 5.4.

5.3.2 OnlyStyle

After I calculated the contrastive n-gram score for all n-grams in the dataset for a

given style p, I can calculate how much a caption c aligns with a style p. Since this

score is designed to assess a single caption without any reference caption, I call it the

OnlyStyle score. Specifically, for any caption c, I first extracted all the n-grams from

it, where n ∈ {1, 2, 3, 4}. With these n-grams, I can compute the OnlyStyle score as

follows:

OnlyStyle(c, p) =
1

4

4∑
n=1

OnlyStylen(c, p) (5.5)

OnlyStylen(c, p) =
1

|M |
∑
i∈M

CNGi
p,n (5.6)

In Equations 5.6, I calculated the average CNG score across all n-grams from caption

c, where CNGi
p,n is the CNG score for the ith n-gram under style p and M is the set

of all the n-grams in caption c. I got the OnlyStyle score using Equation 5.5 for c

under style p by averaging over n of OnlyStylen(c, p).

Bounds Analysis OnlyStyle displays the global view of a sentence’s association with

a style p by averaging across different CNG scores, so the bounds stay the same as for

CNG. Specifically, suppose I could always get the highest CNGp,n for every n-gram
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in M , this will give us the highest OnlyStyle score for c under p, which is ∥S∥−1
∥S∥ . On

the contrary, if I always get the lowest CNGp,n for every n-gram in M , this will result

in the lowest OnlyStyle score, which is − 1
∥S∥ .

5.3.3 StyleCIDEr

While the ability to evaluate a caption without a reference sentence has its benefits,

the presence of a reference sentence allows us to better evaluate the impact that

individual words have. This is especially useful for stylized image captioning because

individual words can have a large impact on the style that a sentence exhibits. To that

end, I proposed StyleCIDEr, a metric meant to evaluate how well a generated caption

aligns with a reference caption, which emphasis placed on stylized words. This metric

uses CIDEr as a kernel function. To better understand this, I first outlined how to

calculate CIDEr. Suppose that I have two captions, ci, cj:

CIDEr(ci, cj) =
1

4

4∑
n=1

CIDErn(ci, cj) (5.7)

CIDErn(ci, cj) =
gn(ci) · gn(cj)

∥gn(ci)∥ · ∥gn(cj)∥
(5.8)

where gn(ci) is a vector where each element is formed by a n-gram score calculated

by TF-IDF. TF-IDF is good at scoring salient n-grams for current captions, but it

does not necessarily focus on stylized words or n-grams. As a result, I replaced this

TF-IDF score with my CNG score. This means that each element in gn(ci) becomes

a score focusing on a given style, like p. Then I calculated using Equations 5.7 and

5.8, and I could compare ci, cj based on their stylized elements.

Bounds Analysis Since CIDEr score is bounded from (0,1), StyleCIDEr has the

same range. In the best case scenario, when evaluating a caption that is the exact

same as the reference caption, the StyleCIDEr would be 1. If there are no overlap-

ping n-grams between the generated caption and the reference caption caption, the
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StyleCIDEr score would be 0. To achieve a score of 1, StyleCIDEr does not require

every n-gram in the generated caption to be the same as in the reference caption. As

long as n-grams related to current style overlap between the generated caption and

the reference caption, the StyleCIDEr score can be 1. Also, if the generated caption

and reference caption have several overlapping n-grams but none of them are related

to current style, the StyleCIDEr can be 0.

5.4 Experiment

To verify my proposed metrics, I evaluated them on two Datasets: PERSONALITY-

CAPTIONS, which contains 215 different styles, and FlickrStyle10K, which contains

2 styles. In total, I performed three different evaluations. First, I measured how

well every ground truth caption performs compared to its ground truth style using

both OnlyStyle and StyleCIDEr. I compared these values against a baseline in which

ground truth captions were paired with a random style, rather than their respective

ground truth style. The second evaluation involves re-evaluating popular frameworks

for stylized image captioning using my proposed metrics. Compare how my metrics

perform versus common NLP metrics such as BLEU and CIDEr. Finally, I performed

a human subjects evaluation on OnlyStyle to verify that my metric aligns with human

perceptions of style.

5.4.1 Datasets

Since PERSONALITY-CAPTIONS and FlickrStyle10K are frequently used in styl-

ized image captioning work [11, 17, 22, 33, 48, 71], I decided to validate my proposed

metrics on these two datasets. The PERSONALITY-CAPTIONS dataset was re-

leased in 2019 [48]. It contains ground truth captions that were collected via human

crowdsourcing. During data collection, humans were required to create engaging cap-

tions based on the image context and the given personalities so that the caption

accurately embodies the given personality. Each data entry within this dataset is

represented as a triple containing an image, a personality trait, and a caption. The
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images are selected from YFCC100M dataset [57]. In total, 241,858 captions are in-

cluded in this dataset. Each caption is associated with one of the 215 personality

traits selected from a list of 638 traits [21]. Even though the number of potential

styles in the dataset makes captions more diverse, some of the styles in this dataset

could be difficult for a human to distinguish (e.g. “Happy” versus “Cheerful”).

In this work, I used the accessible data from this dataset which contains 186698

examples in the training set, 4993 examples in the validation set, and 9981 examples

in the test set. The PERSONALITY-CAPTIONS dataset is large, which enables my

contrastive n-gram metric to learn current style characteristics in a broader range.

This naturally leads to the question of how my metric would perform with significantly

fewer styles. To answer this question, I explored FlickerStyle10K.

FlickrStyle10K contains two styles: Humorous and Romantic. The ground truth

stylized captions included in this dataset are based on factual image captions (de-

scriptions without any style) that were modified so that they exhibit the given style.

Thus, humorous captions and romantic captions are often very similar when describ-

ing the image, but different when using words that exhibit the desired style. Since

only 7000 images are publicly available, I used this FlickrStyle7K dataset in my ex-

periment. When training a stylized captioning model, I used the protocol outlined in

[22, 33, 71]. This involves first randomly selected 6,000 images as the training data

and used the remaining 1000 images as testing data. I further split 10% data from

the training set into a validation set.

5.4.2 Stylized Captioning

UPDOWN [33] and Visual Language Pretraining (VLP) on transformers [69] have

shown good performance captioning tasks (stylized or otherwise) when evaluated

using common automated metrics (BLEU, CIDEr, etc.). As such, I evaluated these

three types of models using my proposed metrics.

For the UPDOWN captioning model, I used the parameters outlined in [48]. I used
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Dataset OnlyStyle Score StyleCIDEr Score
PERSONALITY-CAPTIONS 0.9775 0.9484
Flickr7k 0.9994 0.9032

Table 5.1: Evaluation of ground truth captions using OnlyStyle and StyleCIDEr fol-
lowing Equations 5.9 and 5.10

pretrained ResNext spatial (7*7*2048) features and mean-pooled features (2048),

along with style as one-hot vector as inputs to this network. For the Multi-UPDOWN

as captioning model, I used the process outlined in [33] and used ResNext spatial

(7*7*2048) features and mean-pooled features (2048), 5 dense captions, along with

style as a one-hot vector as inputs into its network. For 2MT as a captioning model,

I fine-tuned VinVL on the PERSONALITY-CAPTION dataset by replacing object

tags with 5 dense captions and styles (in text form) to learn the connection between

image captions with ResNext spatial features (7*7*2048), dense captions, and styles.

For each caption model, I also trained a model with the same settings but without style

inputs. So, in total, I trained 6 models for each dataset and they are named: (1) UP-

DOWN; (2) UPDOWN NoStyle; (3) Multi-UPDOWN; (4) Multi-UPDOWN NoStyle;

(5) 2MT; (6) 2MT NoStyle.

For (1)-(4), I used entropy as loss function and Adam optimization with an initial

learning rate of 5e-4. The learning rate decays every 5 epochs. For (5)-(6), I followed

the fine-tuning steps of VinVL and used masked token loss and AdamW optimaztion

with an initial learning rate of 3e-5. A linear scheduler is used for decaying the learning

rate. In total, I trained 30 epochs when using the PERSONALITY-CAPTIONS

dataset [48] with a batch size of 128 and evaluated the model every 3000 iterations.

I trained for 100 epochs when using the FlickrStyle10K dataset [17] following the

process outlined in [33, 37, 48].
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Model BlEU1 BlEU4 CIDEr StyleCIDEr Onlystyle
UPDOWN 0.241 0.034 0.231 0.046 0.126
UPDOWN NoStyle 0.255 0.035 0.249 0.034 0.055

Multi-UPDOWN 0.251 0.035 0.275 0.048 0.094
Multi-UPDOWN NoStyle 0.252 0.037 0.261 0.026 0.049

2MT 0.232 0.027 0.248 0.048 0.129
2MT NoStyle 0.233 0.029 0.249 0.033 0.084

Table 5.2: Different Model Performance on FlickrStyle7K

5.4.3 Evaluation

I evaluated my proposed metric under three cases. First, I directly evaluated the

ground truth captions in the dataset since each of them is associated with a style.

Second, I evaluated different caption models and compared them with models that

do not contain any style inputs. Third, I performed a human study and asked them

to evaluate some generated captions from a model. I then compared the human

evaluation results with my proposed metric results. More details are included below.

Evaluating Ground Truth Captions

Each ground truth caption included in each dataset is associated with a given style.

Because of this, I expected my metric could recognize if a caption was correctly paired

with its ground truth style as opposed to a randomly selected style. Thus, I would

expect to see the following behaviors:

OnlytStyleOnlytStyleOnlytStyle(s, p) > OnlytStyleOnlytStyleOnlytStyle(s, q) (5.9)

StyleCIDErStyleCIDErStyleCIDEr(s, sp) > StyleCIDErStyleCIDErStyleCIDEr(s, sq) (5.10)

Here, s is a caption from dataset and its gound truth style is p. q is another style

and q != p.

With the above assumptions, I calculated the OnlyStyle score for each ground
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truth sentence for all styles in each dataset. I also calculated the StyleCIDEr score

for each caption using either 1) all captions with the same style or 2) all captions with

a different style as reference sentences. Then I calculated the number of sentences

satisfying equation 5.9 and 5.10 and averaged the results over all captions in each

dataset. The results are reported in Table 5.1.

Model Comparison

If a trained stylized image captioning model were given only image features without

any indication of what style should be generated, the model is likely to accurately

describe the image, but have an unexpected style. In these situations, I would expect

that my metrics to score higher on models that have this style knowledge provided

in some way. To evaluate this, I used my metrics to evaluate the performance of the

stylized image captioners described previously with their NoStyle equivalents. For

each model, I reported their respective CIDEr, BLEU1, and BLEU4 to show the

accuracy of the generated text. At the same time, I reported OnlyStyle score and

StyleCIDEr score for each model to show how well each generated caption aligns with

its desired style. The results for PESONALITY-CAPTIONS is in Table 5.3 and the

results for FlickrStyle7K is in Table 5.2.

5.4.4 Human Evaluation

To evaluate the consistency between human judgments and my proposed metrics,

I performed a human evaluation by asking humans to rank some sample generations

from one of my models based on how well it represents a given style. For this evalu-

ation, I focused solely on OnlyStyle since StyleCIDEr is based on the CIDEr metric,

which has already been shown to align with human judgment.

Human Study Setup For this experiment, I chose the following six styles from

the PERSONALITY-CAPTIONS dataset: Abrasive (Annoying, Irritating), Angry,

Curious, Fearful, Gloomy, and Happy. I chose these styles because they closely re-

sembled the six basic emotions cited in Psychology literature [15], and I felt that this
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Figure 5.2: Human Study Instructions

Figure 5.3: 6 groups of sentences in the human evaluations
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Model BlEU1 BlEU4 CIDEr StyleCIDEr OnlyStyle
UPDOWN 0.424 0.075 0.177 0.108 0.02
UPDOWN NoStyle 0.287 0.024 0.082 0.029 0.002

Multi-UPDOWN 0.430 0.081 0.183 0.116 0.016
Multi-UPDOWN NoStyle 0.340 0.035 0.109 0.050 0.002

2MT 0.416 0.063 0.152 0.115 0.014
2MT NoStyle 0.367 0.041 0.111 0.026 0.001

Table 5.3: Model Performance on PERSONALITY-CAPTIONS

CorrCoef/Style Abrasive (Annoying, Irritating) Gloomy Angry
overall Pearson ρ 0.874 0.878 0.875
overall Spearman ρ 1.0 1.0 1.0

Table 5.4: Pearson and Spearman Correlation Between Human Judgment and
OnlyStyle:Abrasive (Annoying, Irritating),Gloomy,Angry

would make it easier for users to identify them.

For each of these styles, I sampled 3 captions generated by the Multi-UPDOWN

model on test data, as shown in Figure 5.3. After approval by Institutional Review

Boards, I then asked crowdsourced users from Prolific to rank three generated sen-

tences according to how well they are associated with a given style. The interface of

this study is provided in Figure 5.2. Users provided answers in the range of 1-3 with

1 indicating the worst association, and 3 indicating the best association. Users were

asked to perform this task 6 times, once for each style in the evaluation. In total, I

received 96 responses to this task.

Note that this study and all the materials associated with it were reviewed and

approved by the Institutional Review Board to ensure that subjects were exposed to

no more than a minimal risk during their participation.

Consistency with Human Judgment I picked the most common ranking of

the three sentences for each style from the 96 users as humans’ judgment. I then

compared these rank scores with the OnlyStyle scores of the sample generations.

I used Pearson and Spearman correlation coefficients to quantify the consistency
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CorrCoef/Style Happy Curious Fearful
overall Pearson ρ 0.017 0.053 0.039
overall Spearman ρ 0.5 0.5 0.5

Table 5.5: Pearson and Spearman Correlation Between Human Judgment and
OnlyStyle: Happy,Curious,Fearful

between my proposed OnlyStyle metric and human judgments. I reported both scores

for the six styles I examined in Table 5.4 and 5.5.

5.5 Results and Discussion

5.5.1 Evaluating Ground Truth Captions

As in Table 5.1, all of the scores are above 90%. This means in most cases, Equa-

tion 5.9 and Equation 5.10 are satisfied. This matches the expectations, which means

that OnlyStyle can differentiate correct and incorrect styles, and StyleCIDEr can

measure the accuracy of the generated stylized words. However, I should point out

that all ratings did not achieve 100% performance. This is because some sentences

may not be representative of the style that they are associated with in the dataset.

As an example, it is possible that some sentences appear in “Happy” and also ap-

pear in “Cheerful”. And some of these sentences might have a higher score with

“Cheerful” than with “Happy”. So, when I evaluated OnlyStyle(s, “Happy”) >

OnlyStyle(s, “Cheerful”), Equation 5.9 is not satisfied. In addition, when I evalu-

ated StyleCIDEr(s, sHappy) > StyleCIDEr(s, sCheerful), it is not satisfied either.

With StyleCIDEr, it is also possible that the two captions used for evaluation do not

have overlapping words, regardless of if they are drawn from the same style or different

styles. In this situation, both the within-style StyleCIDEr score and between-style

StyleCIDEr score would be zero, which violates Equation 5.10.

5.5.2 Model comparison

With Style Versus Without. From Tables 5.2 and 5.3, it is easy to see that

models with style modality as inputs have higher OnlyStyle and StyleCIDEr scores
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across all captioning models. This provides support to my claim that both StyleCider

and OnlyStyle can measure whether a model can effectively generate output that

aligns with a given style.

Style Metric vs Accuracy Metric. From Table 5.2, when only use BLEU and

CIDEr for evaluation, UPDOWN NoStyle and 2MT NoStyle perform better than

UPDOWN and 2MT. One reason for this may be because the stylized captions in

FlickrStyle7K are created by modifying the factual captions. In this situation, models

without a style vector as an input would generate the same output for both romantic

and humorous styles, which strongly resembles the original factual caption. These

outputs would score highly when evaluated using CIDEr and BLEU. Models with style

included as an input will produce different sentences to better exemplify the desired

style. As a result, these generated captions may have fewer overlapping words than

the reference sentence as they potentially transfer stylized words from other examples,

which in turn results in lower BLEU and CIDEr scores. This shows that it could be

misleading if simply relied on these metrics in this situation.

Caption Model performance If only look at models with style inputs, from Table

5.2, it is easy to see that the UPDOWN Model achieves the highest OnlyStyle score

for PERSONALITY-CAPTIONS and ranks second on FlickrStyle7K, which means

that the UPDOWN Model are good at generating more stylized sentences. However,

the UPDOWN model has the worst score on StyleCIDEr. This means that while the

UPDOWN model can produce stylized words that align with the desired style, they

may not accurately describe the image in question.

Multi-UPDOWN has the best StyleCIDEr score as well as excellent performance

on BLEU and CIDEr scores. This is likely because it is directly trained address

limitations with UPDOWN where it would overly focus on building connections be-

tween styles and generated captions and miss information in the visual space. The

Multi-UPDOWN model ranks second on PERSONALITY-CAPTIONS and is the
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Figure 5.4: The Contrastive 1-gram score for sample words under 6 styles; First col-
umn contains the sampled 6 styles; The 2-9 columns are the Contrastive
1-gram scores for the corresponding sampled word.

worst performing model on FlickrStyle7K on OnlyStyle, which means that the gain

in visual understanding likely came at the expense of generating stylized output.

The 2MT model has the worst accuracy performance on both datasets. Its Style-

CIDEr rating ranks as the best on FlickrStyle7K and the second on PERSONALITY-

CAPTION. Its OnlyStle rating ranks the best on FlickrStyle7K and worst on PERSONALITY-

CAPTION. This means that the 2MT Model tends to connect style with caption

generations on FlickrStyle7K which has 2 styles, and struggles to make correct con-

nections on the PERSONALITY-CAPTIONS dataset where size scales up.

5.5.3 Human Evaluation

In Table 5.4, it is easy to see Pearson and Spearman correlation coefficients are very

high with style Abrasive (Annoying, Irritating), Gloomy and Angry, which indicates

that rankings determined using the OnlyStyle metric are consistent with rankings

derived based on human judgment. However, in Table 5.5, Pearson and Spearman

scores are low for Happy, Curious and Fearful. Because of this finding, I decided to

further investigate this discrepancy.

Recall that for each style, I asked users to rank three generated sentences. By

investigating how users ranked these sentences, I hope to uncover the source of any

ranking discrepancy. I found that for the “Happy” style, people ranked the sentence

“what a beautiful day” higher than “i love rugby”, which means they think the first

sentence is more associated with “Happy” than the latter one. OnlyStyle scores
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these sentences in the opposite way. After further investigation, I discovered that

the phrase, “what a beautiful day,” appears in multiple styles in the dataset (e.g.

“Warm”, “Cheerful”, and “Enthusiastic”) but only occurs in “Happy” as a part of a

larger sentence. The phrase, “i love rugby,” only occurs in “Happy” as a complete

sentence.

For “Curious”, people rank “i wonder what these people are thinking about” higher

than “i wonder how many lamps there are” and OnlyStyle scores the opposite. The

first sentence never appears in “Curious” and only appears in “Freethinking” in the

dataset. The second sentence only appears in “Curious”.

For “Fearful”, people rank the caption, “i hope he doesn t fall,” higher than the

caption, “i hope that statue doesn t fall”. The first sentences appears in “Fearful” and

also appears in “Sympathetic” and “Gloomy” in the dataset. The second sentence

only appears in “Fearful”.

Even though people’s judgments are very reasonable, OnlyStyle gives higher scores

to phrases that appear frequently in one specific style, with the assumption that

those are more indicative of a given style. To investigate a little further, I calculated

the OnlyStyle scores for these sentences on all 215 styles in the PERSONALITY-

CAPTIONS dataset. I then calculated the retrieval ranks for “Happy”, “Curious”,

and “Fearful” for their respective sentences. I found that for each of the disagreeing

sentences, the correct style was always in the top 10% of retrieved styles, indicating

that these styles can be difficult to distinguish from other top styles. It also means

that even though these sentences are ranked differently by humans and the OnlyStyle

metric, they are all very close with respect to the given styles. Thus, it would be

hard for human to differentiate them and rank them as well. Overall, I think all these

disagreements could be resolved with better datasets.
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5.5.4 Additional Discussion

I mentioned previously that basing an evaluation metric on TF-IDF can be prob-

lematic. Some words, such as “not” or “happy” can appear across all the styles,

which would be scored as 0. I hypothesized that my use of a contrastive n-gram

score could address some of these issues. I evaluated this by sampling several words

including“not” and “happy” under six styles and calculating their contrastive 1-gram

score (shown in Figure 5.4). it is easy to see that “not” generally scores very low

due to its occurrence in every style in the dataset; however, it scores negatively in

“Happy” and “Curious”, which I viewed as a positive result. The 1-gram, “happy,”

scores negatively in “Abrasive (Annoying, Irritating)” and “Fearful” and scores high-

est in the style, “Happy”. Figure 5.4 also shows CNG deprecates word like “the” and

doesn’t neglect noun’s contribution to styles, like “car”. These all shows that using

the contrastive n-gram score allows us to get a more nuanced understanding of how

n-grams contribute to different styles.

5.6 Conclusion

In this chapter, I proposed two metrics for evaluating stylized image captioning

models: OnlyStyle and StyleCIDEr. These metrics can be used to automatically

measure the association between a caption and a given style. I have shown through

a series of evaluations that these metrics are effective at evaluating stylized image

captions and align with how humans perceive stylized sentences.

Despite the effectiveness of these metrics, they are still based on evaluating n-

grams. As such, they are subject to the same limitations of similar methods (e.g.

BLEU and CIDEr). The primary limitation of these types of models is that n-grams

might fail to capture distant dependencies. [28].

Despite these limitations, I feel that these metrics will be useful to researchers

in helping them evaluate stylized image captioning models where traditional NLP

metrics may not perform well.
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CHAPTER 6. CONCLUSION

Given the prevalence of AI systems such as Siri and Alexa [9], the ability for

such machines to interact with humans is of increased importance. However, current

systems have a limited capability of responding to human input. In addition, these

systems typically only focus on one type of information, be it text, audio, or vision. By

combining multiple sources of information together into a machine learning paradigm,

I seek to address the inherent limitations in pre-existing approaches for language

generation. By taking advantage of this information, I am able to create systems

that can effectively generate stylized output, which I speculate humans will have an

easier time interacting with. Below, a summary of my contributions made in this

dissertation is provided:

My first research question involves exploring how to build an end-to-end pipeline

that can generate humanlike text output based on multi-modality inputs. I solved this

by exploring different modality fusion techniques in Chapter 2. Specifically, I tested

how RGB image features can be combined with optical flow and audio features. I

compared them with a baseline model which only uses RGB features as input. I

found that these models were able to outperform a baseline using only RGB features

90% of the time using perplexity as an evaluation metric when asked to identify

true sentences versus sequences of random words. A more rigorous evaluation in

which I had my trained models attempt to identify random sentences (rather than

random words) shows that the fusion model that utilizes audio features was able to

outperform the baseline model 60% of the time. This provides support to the claim

that this additional information can be used to improve deep learnig performance on

language generation. However, I speculate that additional guidance may be necessary

in order to produce high-quality stylized text.

My second research question involved developing methods that can allow for greater
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control on the style of generated output. At the same time, I also explored whether

rich information from this kind of system could support the explanation of input

features errors. In Chapter 3, I first built a multi-style model (3M) which allows for

one to generate output according to a variety of different personality traits. Image

inputs to the model are represented using two types of data: dense captions (text)

and ResNext (image). To reconcile the different sources image information, I also

built a multi-UPDOWN attention mechanism where the model could learn to choose

one of the source image features to attend to. I compared 3M model with different

state-of-the-art models using different datasets, and perform ablation study where I

evaluated the components of my system as well as different possible fusion methods.

Quantitatively, my model outperforms all baseline multi-style captioning models in

terms of CIDEr score. However, I also found that the model using only dense captions

as an input representation along with the personality control feature achieves a higher

BLEU score than 3M. With this finding, I further explored whether I could use

this rich, multi-modality information to identify errors present in the input features.

I found that I could identify the likely cause of output errors using textual input

representations along with the ground truth output. I performed this inference using

a decision tree built using this input information. I examined the inference results by

comparing against ground truth error features and human inferences. I found that

with multi-references from the 3M framework, the error feature prediction accuracy

is higher than 64% while random simulation could only achieve around 44% accuracy.

To summarize, the multi-modality I designed for the captioning generation framework

not only could help us add more controlled to the styles, augmenting the image

features, but also helps explain the model with respect to error features.

In Chapter 3, I employed the benefits of using multi-modality features on explaining

erroneous features. In Chapter 4, I solved the 4th research question which focuses on

systematically finding errors from the fusion of features. Specifically, I used different
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masking strategies as interventions, and perform a causal inference on the faulty

examples with different trained models. However, normal causal inference is very

restricted on performance invariance after the intervention. This results in a very

small portion of errors being inferred. When I explored errors, generally, I would

be more willing to accept false error features rather than having errors features not

extracted. Thus, I relaxed the logic from invariance to come up with the idea of

performance non-increasing. This concept allows me to find a reasonable amount

of errors. Finally, I evaluated the inference result using extrinsic metric where if I

improved or removed this error features, the performance should go up. With the

designed method, I found out if I inferred the correct error features, after improving

or removing it, more than 76% examples’ performance would be boosted.

My final research question falls on the evaluation on styles: how could I evaluated

a style’s contribution among multi-modality fusions? In Chapter 4, I solved this

problem by designing two style metrics. One style metric is used to directly assess

the association between a generated caption and a given style. This metric does not

need a reference caption. The second metric I created is specifically designed for the

case where reference captions are available and one would like to know how much the

style contributes with respect to this reference sentence.

I used these two metrics to evaluate different multi-style captioning models using

the following attention structures: Multi-UPDOWN and self-attention. I re-compared

these models’ performance with respect to the original automatic metrics and the new

style metrics I designed. I also performed evaluation on ground truth and human

study. I found the style metric could measure the right style and against the wrong

style, and they are consistent with human’s judgement. With extra metrics on styles,

I achieved the goal measuring style’s contribution among multi-modalities features.

With all above work, I addressed all the research questions raised. I am able to

use multi-modality inputs creating more humanlike image captions with respect to
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different automatic NLP metrics. I also used multi-modalities to identify feature

errors in the trained models. Additionally, I am able to measure style captioning

system on styles, including but not limited to multi-modality models.
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