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ABSTRACT OF DISSERTATION

Geometric Properties of Weighted Projective Space Simplices

A long-standing conjecture in geometric combinatorics entails the interplay between
three properties of lattice polytopes: reflexivity, the integer decomposition property
(IDP), and the unimodality of Ehrhart h∗-vectors. Motivated by this conjecture, this
dissertation explores geometric properties of weighted projective space simplices, a
class of lattice simplices related to weighted projective spaces.

In the first part of this dissertation, we are interested in which IDP reflexive
lattice polytopes admit regular unimodular triangulations. Let ∆(1,q) denote the
simplex corresponding to the associated weighted projective space whose weights are
given by the vector (1,q). Focusing on the case where ∆(1,q) is IDP reflexive such
that q has two distinct parts, we establish a characterization of the lattice points
contained in ∆(1,q) and verify the existence of a regular unimodular triangulation of
its lattice points by constructing a Gröbner basis with particular properties.

In the second part of this dissertation, we explore how a necessary condition for
IDP that relaxes the IDP characterization of [11] yields a natural parameterization of
an infinite class of reflexive simplices associated to weighted projective spaces. This
parametrization allows us to check the IDP condition for reflexive simplices having
high dimension and large volume, and to investigate h∗-unimodality for the resulting
IDP reflexives in the case that ∆(1,q) is 3-supported.

KEYWORDS: lattice polytope, Ehrhart theory, simplices, projective space, reflexiv-
ity, integer decomposition property
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Chapter 1 Introduction & Background

1.1 Introduction

This dissertation consists of four sections, the latter half of which combine the results
of two related projects. These two projects, both of which extend the literature on
geometric properties of so-called weighted projective space simplices, are

• identifying a regular unimodular triangulation of 2-supported weighted projec-
tive space simplices, and

• providing a classification of 3-supported reflexive weighted projective space sim-
plices possessing the integer decomposition property.

Chapter 1 delineates all the pertinent background material and preliminaries required
to understand the aforementioned projects. Specifically, it provides an overview of
the Ehrhart theory of lattice polytopes, the primary framework motivating my work,
and triangulations of lattice polytopes. In Chapter 2, we introduce the protagonist
of the rest of the document, namely, weighted projective space simplices. The re-
sults in Chapter 3 establish the existence of a regular unimodular triangulation of
certain 2-supported weighted projective space simplices. Finally, Chapter 4 presents
a complete characterization of 3-supported weighted projective space simplices that
are simultaneously reflexive and posses the integer decomposition property.

1.2 Lattice Polytopes

Polytopes, in the most basic and informal sense, are geometric objects with flat sides.
In essence, polytopes can be thought of as generalizations of polygons (e.g., triangles,
quadrilaterals, pentagons) in two dimensions and polyhedra (e.g., tetrahedra, cubes,
icosahedra) in three dimensions. The study of polytopes is very much active as they
possess combinatorially rich properties and have a number of applications in a wide
variety of fields including optimization, physics, algebraic geometry, and topology.

The integer points Zd form a lattice in Rd, and we refer to integer points as lattice
points. For our purposes, we will only be interested in polytopes whose vertices are
lattice points. We now give a formal definition of such polytopes.

Definition 1.2.1. A subset P ⊂ Rn is a d-dimensional (convex) lattice polytope if it
is the convex hull of finitely many points v1, . . . ,vm ∈ Zn, called vertices of P , that
collectively span a d-dimensional affine subspace of Rn. In this case,

P =

{
m∑
i=1

λivi : λi ≥ 0 for all i and
m∑
i=1

λi = 1

}
⊆ Rn

is the vertex description, or V-description, of P , and we write P = conv {v1, . . . ,vm}.
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P

Figure 1.1: A 2-dimensional lattice polytope with 5 vertices.

Equivalently, a lattice polytope P can be described as the intersection of finitely
many closed halfspaces. This description is referred to as the hyperplane description,
halfspace description, orH-description of P . A fundamental result of convex geometry
is that every polytope has both a V-description and an H-description. However, it is
a cumbersome task to prove the equivalence of these definitions, and it is, in general,
algorithmically nontrivial to obtain one description from the other (see, e.g., [36]). We
will be primarily concerned with V-descriptions of lattice polytopes moving forward.

Example 1.2.2. Consider the lattice polytope P depicted in Figure 1.1. A V-
description of P is given by the convex hull of its five vertices, i.e.,

P = conv {(0, 0), (1, 0), (2, 1), (1, 2), (0, 2)} .

An irredundant (i.e., no redundant constraints) H-description of P is given by the
following five inequalities that cut out the polytope:

P = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, y ≤ 2, y ≤ 3− x, y ≥ x− 1}.

For a fixed dimension d, we can define an important class of polytopes that have
the minimum number of vertices possible. Such polytopes are called simplices.

Definition 1.2.3. A polytope formed by the convex hull of exactly d + 1 affinely
independent points is called a d-simplex. For example, line segments are 1-simplices,
triangles form the set of all 2-simplices, and the 3-dimensional simplices are tetrahe-
dra.

For a polytope P , recall that the smallest affine subspace of Rn containing P
is called the affine hull of P . We denote this subspace by aff(P ), and it is given

by aff(P ) =
{∑`

i=1 λixi : xi ∈ P,
∑`

i=1 λi = 1
}

. If a polytope can be obtained from

another via certain transformations, such as reflections or translations, the two poly-
topes effectively carry the same combinatorial and geometric data. Thus, for our
purposes, we will consider lattice polytopes up to the following equivalence. Given
two lattice polytopes P ⊆ Rn and P ′ ⊆ Rn′ , we say P and P ′ are unimodularly
equivalent if there exists an affine map from the affine span of P to the affine span

2



of P ′ that maps P to P ′ and maps Zn ∩ aff(P ) bijectively onto Zn′ ∩ aff(P ′). Due to
this equivalence, it will be convenient for us to simply consider lattice polytopes that
are full-dimensional, that is, lattice polytopes living in their affine span so that their
dimension is equivalent to the dimension of their affine span.

Further recall from geometry that a supporting hyperplane of a set Q in Rn is a
hyperplane that satisfies both of the following conditions:

(i) Q is entirely contained in one of the two closed halfspaces bounded by the
hyperplane, and

(ii) Q has at least one boundary point on the hyperplane.

The following definition provides further polytopal terminology that will be useful
later on.

Definition 1.2.4. Let P be a lattice polytope.

• The intersection of P with a supporting hyperplane H is called a k-dimensional
face or k-face if dim(aff(P ) ∩H) = k.

• If dim(P ) = d, the (d−1)-faces are called facets and the 0-faces are the vertices
of P .

• If dim(P ) = d, its normalized volume, denoted Vol(P ), is defined to be d! times
the Euclidean volume of P .

For reasons that will become more apparent in the following section, combinato-
rialists are usually interested in normalized volume since it is always an integer for
any lattice polytope. Therefore, the term volume hereinafter will be taken to be the
normalized volume rather than Euclidean volume, unless otherwise stated explicitly.

1.3 Ehrhart Theory

Ehrhart theory is a fundamental area of discrete geometry concerned with counting
lattice points in polytopes and their dilates. Before considering the general case for
any dimension, we first state the following classical result due to Georg Pick (1859-
1942) which describes an interesting relationship between the lattice points of lattice
polygons and their areas. This provides some context for why the enumeration of
lattice points is of interest.

Theorem 1.3.1 (Pick’s Theorem, [30]). For a lattice polygon P ⊆ R2, let A denote
the area of P . Then,

A = i+
b

2
− 1,

where i denotes the number of lattice points in the interior of P and b denotes the
number of lattice points on the boundary of P .

3



Example 1.3.2. Consider the lattice polygon given in Figure 1.1. Observe that there
is 1 interior lattice point (namely, (1, 1)) and 6 boundary lattice points. According
to the theorem, this means that

A = 1 +
1

2
(6)− 1 = 3.

Indeed, this value coincides with the area of the pentagon obtained via basic geometry.

Unfortunately, higher-dimensional analogues for the volume of lattice polytopes
using only interior and boundary points do not exist. The quintessential counterex-
ample in three dimensions is the Reeve tetrahedron: a 3-dimensional polytope defined
as the convex hull of its vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, r), where r is a
positive integer. Indeed, for any r, the Reeve tetrahedron has 0 interior lattice points
and 4 boundary lattice points (namely, its vertices), but the arbitrariness of r allows
one to generate infinitely many possible volumes. This motivates the following theory
for lattice point enumeration in the general case (beyond two dimensions).

For a nonnegative integer t and polytope P , the t-th dilate of P , denoted tP , is
given by tP := {tp : p ∈ P}. Many interesting geometric and algebraic properties of
P are revealed by considering the cone over P , which provides an interesting means
of interpreting dilates of polytopes.

Definition 1.3.3. If v1, . . . ,vm ∈ Zn are the vertices of a lattice polytope P =
conv {v1, . . . ,vm} ⊆ Rn, we lift the vertices into Rn+1 by appending a 1 as the last
coordinate of each vertex of P and consider the nonnegative span of the resulting
vectors. The cone over P is

cone (P ) := spanR≥0
{(vi, 1) : i = 1, . . . ,m} .

Note that for each t ∈ Z>0, we can recover tP by simply slicing the cone at
height t, i.e., considering cone(P )∩{zn+1 = t}. Now, let P be a d-dimensional lattice
polytope. To P , we associate its Ehrhart function (or lattice point enumerator),
denoted LP , which enumerates the lattice points contained in nonnegative integral
dilates of P , i.e., LP (t) :=

∣∣tP ∩ Zd∣∣. This function (amazingly) is a polynomial in t of
degree d [18], and thus is more commonly referred to as the Ehrhart polynomial of P .
Moreover, due to Stanley [32], it is known that the generating function encoding this
polynomial, the Ehrhart series of P , is a rational function

EhrP (t)(z) :=
∑
t≥0

LP (t)zt =

∑d
j=0 h

∗
jz
j

(1− z)d+1
,

where h∗0 = 1 and h∗j ≥ 0 for all j. We call the numerator of the Ehrhart series the
h∗-polynomial of P , and the vector of its coefficients, h∗(P ) = (h∗0, h

∗
1, . . . , h

∗
d), the

h∗-vector. Note that the Ehrhart series of two lattice polytopes P and Q that are
unimodularly equivalent are equal.

4



P

2P

3P

Figure 1.2: The unit triangle P = conv {(1, 0), (0, 1), (0, 0)} and some of its dilates.

Example 1.3.4. Consider the unit triangle P = conv {(1, 0), (0, 1), (0, 0)} depicted
in Figure 1.2. Observing that the t-th dilate of P adds t+ 1 additional lattice points
not already contained in the (t− 1)-st dilate, we can conclude that the lattice point
enumerator is the sum of the first t + 1 positive integers. This is counted by the
binomial coefficient

(
t+2
2

)
, so using techniques from enumerative combinatorics, we

have that

EhrP (z) =
∑
t≥ 0

(
t+ 2

2

)
zt =

1

(1− z)3
.

Therefore, in this case, h∗(P ; z) = 1.

Much work has been done to identify combinatorial interpretations of the coeffi-
cients of h∗-polynomials in the context of a given polytope. For example, it is known
that the sum of the coefficients of the h∗-polynomial of a polytope P yields the nor-
malized volume of P . Moreover, h∗1 is always given by

∣∣P ∩ Zd∣∣ − d − 1, and h∗d is
given by the number of strictly interior lattice points contained in P . Recently, there
has been a significant focus on determining when h∗(P ) is unimodal [8]. We say
h∗(P ) is unimodal when there exists an index k such that h∗i ≤ h∗i+1 for all 0 ≤ i < k
and h∗i ≥ h∗i+1 for all k ≤ i ≤ d. Unimodality results for h∗-vectors are of interest
because their proofs frequently suggest some underlying structure or other interesting
properties of the polytope that are not readily discernible. However, verifying uni-
modality of h∗-vectors is a very challenging task in general, and identifying sufficient
conditions for h∗-unimodality remains a mystery. This is even the case for highly
structured classes of polytopes.

Two important properties associated with lattice polytopes (and unimodality of
their h∗-vectors) are the integer decomposition property and reflexivity.

Definition 1.3.5. We say a lattice polytope P has the integer decomposition property,
or is IDP, if for every m ∈ Z≥1 and p ∈ mP ∩ Zd, there exist p1, . . . ,pm ∈ P ∩ Zd
such that p = p1 + · · ·+ pm.

If we consider cone(P ), we can reformulate the previous definition as follows: P
is IDP if each integral point at height t in cone(P ) can be expressed as a sum of t
height 1 integral points.

5



Table 1.1: The number of reflexive polytopes (up to unimodular equivalence) in low
dimensions.

Reflexive Polytopes

Dimension # of equivalence classes

1 1

2 16

3 4,319

4 473,800,776

5 ?

Definition 1.3.6. Letting K◦ denote the topological interior of a space K, P is
reflexive if, possibly after translation by an integer vector, the origin is contained in
P ◦ and the (polar) dual of P is also a lattice polytope. The polar dual of P is given
by

P ∗ = {x ∈ Rd |x · y ≤ 1 for all y ∈ P}.

In particular, we have that (P ∗)∗ = P .

There are many interesting questions about polytopes that are IDP and/or re-
flexive, and they have been the subject of a copious amount of research [7, 9, 10,
11, 12, 19, 29]. Lagarias and Ziegler [24] demonstrated that there are only finitely
many reflexive polytopes (up to unimodular equivalence) in each dimension. Indeed,
Table 1.1 provides the results of Kreuzer and Skarke who used the assistance of com-
putational software to classify all refelxive polytopes up to dimension four [23]. The
number of equivalence classes of reflexive polytopes in dimension five and higher re-
mains a very difficult open problem. Furthermore, reflexive polytopes have a number
of applications in toric geometry, combinatorial mirror symmetry, and the theory of
error-correcting codes and random walks. In fact, reflexive polytopes were coined by
Victor Batyrev in [3] when he discovered applications to mirror symmetry in physi-
cal string theory. Since reflexive polytopes, via Definition 1.3.6, come in dual pairs,
reflexive polytopes describe mirror families of Calabi-Yau manifolds and can conse-
quently be used to compute invariants of the associated Calabi-Yau varieties. The
following result demonstrates one reason why reflexive polytopes are of interest in
the context of Ehrhart theory.

Theorem 1.3.7 (Hibi, [21]). A d-dimensional lattice polytope P ⊂ Rd containing the
origin in its interior is reflexive if and only if h∗(P ) satisfies h∗i = h∗d−i.

This result gives us a new technique for identifying reflexive polytopes. Hibi [20]
originally conjectured that every reflexive polytope has a unimodal h∗-vector, but
Mustaţǎ and Payne [26, 29] discovered counterexamples in dimensions 6 and higher.
While these counterexamples arise as reflexive simplices, none of these simplices are
IDP, lending itself to the following long-standing conjecture frequently attributed to
Hibi and Ohsugi.

6



Figure 1.3: All 16 reflexive polytopes (up to unimodular equivalence) in 2 dimensions.

Conjecture 1.3.8 (Hibi and Ohsugi, [28]). If P is a lattice polytope that is reflexive
and IDP, then P has a unimodal Ehrhart h∗-vector.

The interplay between reflexivity, IDP, and h∗-unimodality is not well-understood
[8], due in part to an inability to test the IDP condition for general polytopes living in
high dimensions. Moreover, it is a very difficult open problem to determine the num-
ber of reflexive polytopes of a fixed dimension (up to unimodular equivalence). Given
these challenges, much of the work done to explore these properties in the context
of Conjecture 1.3.8 has focused on certain classes of lattice polytopes. In particular,
restricting to families of lattice simplices has been shown to form a rich source of
examples in recent investigations [9, 10, 11] as one can leverage their geometric and
algebraic properties. Indeed, there is an algorithmic classification of reflexive sim-
plices [15], making this family a natural starting point for testing Conjecture 1.3.8.
One such class of reflexive simplices I have studied with Braun, Davis, Lane, and
Solus [10, 12] that also satisfy IDP (under certain conditions) is that of weighted
projective space simplices, defined and discussed in detail in the next chapter.

7



Another related result to this line of investigation regarding h∗-unimodality deals
with regular unimodular triangulations. Given that some of my work with weighted
projective space simplices verifies and exploits this property, we elaborate on such
triangulations in the following section.

1.4 Polytopal Triangulations

Stanley conjectured and Athanasiadis [1] verified that the h∗-vector of the Birkhoff
polytope, i.e., the polytope of doubly-stochastic matrices, is unimodal. The Birkhoff
polytope is both Gorenstein (i.e., has a symmetric h∗-vector) and IDP, making it
a source of interesting problems regarding unimodality [17]. A key property of the
Birkhoff polytope that Athanasiadis’s argument relies on is that it admits a regular
unimodular triangulation.

Definition 1.4.1. Let P ⊂ Rn be a lattice polytope, and let AP be the point
configuration consisting of the lattice points of P . A triangulation of AP is a collection
TP of d-simplices all of whose vertices are points in AP that satisfies the following
two properties:

(i) The union of all these simplices equals the convex hull of AP .

(ii) Any pair of these simplices intersects in a (possibly empty) common face.

Moreover, a triangulation is unimodular if every simplex has normalized volume one.
A triangulation is regular if it can be obtained by projecting the lower envelope of a
lifting of AP from Rd+1.

Bruns and Römer, [14] verified the following well-known result regarding the re-
lationship between h∗-unimodality and regular unimodular triangulations of reflexive
polytopes.

Theorem 1.4.2 (Bruns and Römer [14]). If P is reflexive and admits a regular
unimodular triangulation, then P has a unimodal Ehrhart h∗-vector.

Additionally, it is well known that if a lattice polytope admits a regular unimod-
ular triangulation, then the polytope is IDP. Therefore, it is of interest to determine
whether or not lattice polytopes that are both IDP and reflexive have a regular uni-
modular triangulation, motivating the investigation described in Chapter 3.

Copyright c© Derek W. Hanely, 2022.
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Chapter 2 Weighted Projective Space Simplices

2.1 Defining ∆(1,q).

As mentioned in Chapter 1, lattice simplices provide a nice testing ground for vet-
ting Conjecture 1.3.8. In this section, we formally define weighted projective space
simplices, the chief objects of interest in my work in [10, 12]. First, for context, we
recall the definition of a weighted projective space from algebraic geometry.

Definition 2.1.1. Given positive integers λ1, . . . , λn such that gcd{λ1, . . . , λn} = 1,
we define the polynomial algebra S(λ1, . . . , λn) := C[x1, . . . , xn] graded by degxi :=
λi. A weighted projective space with weights λ1, . . . , λn is the projective variety
P(λ1, . . . , λn) := Proj(S(λ1, . . . , λn)).

Now, consider an integer partition q ∈ Zd≥1 where q1 ≤ · · · ≤ qd.

Definition 2.1.2. The lattice simplex associated with q is

∆(1,q) := conv

{
e1, . . . , ed,−

d∑
i=1

qiei

}
⊂ Rd,

where ei denotes the i-th standard basis vector in Rd. Such lattice simplices are
referred to as weighted projective space simplices.

∆(1,2,3)

(1, 0)

(0, 1)

(−2,−3)

(1, 0, 0)

(0, 1, 0)

(−3,−4,−4)

∆(1,3,4,4)

Figure 2.1: Two weighted projective space simplices, ∆(1,2,3) (left) and ∆(1,3,4,4)

(right).

Set N(q) := 1 +
∑

i qi. One can show, as for instance in [27, Proposition 4.4],
that N(q) is the normalized volume of ∆(1,q). Let Q denote the set of all lattice
simplices of the form ∆(1,q). The family of simplices Q are the focus of active study
[2, 9, 11, 13, 25, 31], particularly in regard to Conjecture 1.3.8. The simplices in
Q correspond to a subset of the simplices defining weighted projective spaces [15].
Specifically, the vector (1,q) gives the weights of the projective coordinates of the
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associated weighted projective space. Given a vector of distinct positive integers
r = (r1, . . . , rt), we write

(rx11 , r
x2
2 , . . . , r

xt
t ) := (r1, r1, . . . , r1︸ ︷︷ ︸

x1 times

, r2, r2, . . . , r2︸ ︷︷ ︸
x2 times

, . . . , rt, rt, . . . , rt︸ ︷︷ ︸
xt times

) .

There is a natural stratification of Q based on the distinct entries in the vector q,
leading to the following definition.

Definition 2.1.3. If q = (q1, . . . , qd) = (rx11 , r
x2
2 , . . . , r

xt
t ), we say that both q and

∆(1,q) are supported by the vector r = (r1, . . . , rt) with multiplicity x = (x1, . . . , xt).
We write q = (r,x) in this case, and say that q is t-supported.

Figure 2.1 depicts two examples of weighted projective space simplices. Observe
that both ∆(1,2,3) and ∆(1,3,4,4) are 2-supported.

2.2 Important Results

A well-known result providing a number-theoretic basis for studying reflexive sim-
plices in Q is given in the following theorem.

Theorem 2.2.1 (Conrads [15]). The simplex ∆(1,q) ∈ Q is reflexive if and only if

qi divides 1 +
n∑
j=1

qj for all 1 ≤ i ≤ n .

Equivalently, if q = (r,x), then ∆(1,q) is reflexive if and only if lcm (r1, . . . , rd) divides

1 +
∑d

i=1 xiri.

Example 2.2.2. Let q1 = (2, 3) and q2 = (3, 4, 4). Note that ∆(1,q1) and ∆(1,q2) are
precisely the weighted projective space simplices depicted in Figure 2.1. Since each
weight divides the total sum of weights for both simplices, Theorem 2.2.1 affords that
∆(1,q1) and ∆(1,q2) are both reflexive polytopes.

In [11], Braun, Davis, and Solus gave a characterization of the reflexive IDP ∆(1,q),
and a formula for their h∗-polynomials (given in Theorem 2.2.3 below), both based in
elementary number theory. By relaxing this characterization to a necessary condition
for IDP, Braun, Davis, Lane, Solus, and I [10] were able to derive a natural param-
eterization of an infinite class of reflexive simplices associated to weighted projective
space (see Chapter 4). This machinery yields an efficient method for checking the
IDP and unimodality conditions for a relatively broad family of reflexive simplices
having large dimension and volume, thereby addressing some of the aforementioned
challenges associated with detecting IDP in the previous chapter.

Theorem 2.2.3 (Braun, Davis, Solus [11]). The h∗-polynomial of ∆(1,q) is

h∗(∆(1,q); z) =

q1+···+qn∑
b=0

zw(q,b),

10



where

w(q, b) := b−
n∑
i=1

⌊
qib

1 + q1 + · · ·+ qn

⌋
.

Example 2.2.4. Let q = (3, 4, 4). Then, w(q, b) = b −
⌊
b
4

⌋
− 2

⌊
b
3

⌋
, and thus by

Theorem 2.2.3,

h∗(∆(1,q); z) = 1 + 5z + 5z2 + z3.

Observe that the sum of the coefficients of h∗(∆(1,q); z) (i.e., the normalized volume of
∆(1,3,4,4)) is 1+5+5+1 = 12 which precisely corresponds with N(3, 4, 4) = 1+3+4+4,
i.e., the sum of the projective weights.

Copyright c© Derek W. Hanely, 2022.
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Chapter 3 Triangulations of 2-Supported ∆(1,q)

In this chapter, we study triangulations of IDP reflexive ∆(1,q) that are 2-supported.
This is based on joint work with Benjamin Braun. The results have been accepted
for publication and will appear in Annals of Combinatorics. A preprint of this work
can be found here [12].

3.1 Overview of Main Results

The following theorem due to Braun, Davis, and Solus [11] provides a complete
classification of 2-supported IDP reflexive ∆(1,q).

Theorem 3.1.1 (Braun, Davis, Solus, [11]). Let r1 < r2 be positive integers, and let
q = (rx11 , r

x2
2 ) for x1, x2 ∈ Z≥1. Then, ∆(1,q) is IDP and reflexive if and only if either

(1) r1 > 1 with r2 = 1 + r1x1 and x2 = r1 − 1, or

(2) r1 = 1 with r2 = 1 + x1 and x2 arbitrary.

As motivated by the discussion at the end of Section 1.4 , we seek to establish the
existence of a regular unimodular triangulation of 2-supported IDP reflexive ∆(1,q).

To begin, it has been shown [11] that each 2-supported IDP reflexive ∆(1,q) with
q = (1x1 , (1 +x1)

x2) arises as an affine free sum (defined in Chapter 4) of ∆(1,1x1 ) and
∆(1,1x2 ). Thus, every ∆(1,q) of this form admits a regular unimodular triangulation, for
example the triangulation arising as the join of the boundary of ∆(1,1x1 ) × (0x2) with
the unique unimodular triangulation of (0x1) ×

(
∆(1,1x2 ) − ex1+1

)
in Rx1+x2 . (Note

that this latter simplex has two triangulations, one being the entire simplex and the
other being the cone of the interior point with the boundary complex, and only one
of these is unimodular.)

Given this fact, we need only consider the other 2-supported case. Thus, for
the remainder of this chapter, we assume that q = (rx11 , (1 + r1x1)

r1−1) with r1 >
1. Observe that dim ∆(1,q) = d = x1 + x2 = r1 + x1 − 1. Define A′(q) :=
{a′1, . . . , a′r1+3,b

′
1, . . . ,b

′
d} ⊂ Zd, where:

a′r1+1 = ((−1)x1 , (−x1)r1−1)
a′r1+2 = (0x1 , (−1)r1−1)

a′r1+3 = (0x1 , 0r1−1)

a′i = (r1 − i+ 1)a′r1+1 + a′r1+2 for 1 ≤ i ≤ r1

b′j = ed−j+1 for 1 ≤ j ≤ d

Observe that a′1 = −q, so all vertices of ∆(1,q) are contained in A′(q). Note that later
we will use the notation A(q) to denote the set of these vectors where each vector
has a 1 appended. Thus, we use A′(q) for the vectors defined above.
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a′1 a′2 a′3 a′4 a′5 a′6 a′7 a′8 a′9 b′1 b′2 b′3 b′4 b′5 b′6 b′7 b′8 b′9



−6 −5 −4 −3 −2 −1 −1 0 0 0 0 0 0 0 0 0 0 1
−6 −5 −4 −3 −2 −1 −1 0 0 0 0 0 0 0 0 0 1 0
−6 −5 −4 −3 −2 −1 −1 0 0 0 0 0 0 0 0 1 0 0
−6 −5 −4 −3 −2 −1 −1 0 0 0 0 0 0 0 1 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 0 0 0 0 1 0 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 0 0 0 1 0 0 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 0 0 1 0 0 0 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 0 1 0 0 0 0 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 1 0 0 0 0 0 0 0 0

Figure 3.1: A′(q) for q = (64, 255).

Example 3.1.2. Let r1 = 6 and x1 = 4, so q = (64, 255) ∈ Z9. The elements of
A′(q) are given by the columns of the matrix in Figure 3.1.

In this chapter, we prove the following theorems.

Theorem 3.1.3. For q = (rx11 , (1 + r1x1)
r1−1) with r1 > 1, the lattice points of the

IDP simplex ∆(1,q) are given by A′(q).

Theorem 3.1.4. For q = (rx11 , (1+r1x1)
r1−1) with r1 > 1, there exists a lexicographic

squarefree initial ideal of the toric ideal associated with ∆(1,q).

Corollary 3.1.5. Every 2-supported IDP reflexive simplex ∆(1,q) admits a regular
unimodular triangulation. When q = (rx11 , (1 + r1x1)

r1−1) with r1 > 1, this triangula-
tion is induced by a lexicographic term order <lex.

The remainder of this chapter is structured as follows. In Section 3.2 we prove
Theorem 3.1.3. In Section 3.3 we introduce needed algebraic machinery and prove
Theorem 3.1.4. In Section 3.4 we describe the facets of the resulting triangulation
and discuss connections to the Ehrhart h∗-vector of ∆(1,q).

3.2 Proof of Theorem 3.1.3

Our strategy is to determine the number of lattice points in ∆(1,q), show that this
value equals the number of columns of A′(q), and then show that all of the columns
of A′(q) are contained in ∆(1,q).

Proposition 3.2.1. For q as given in Theorem 3.1.3, we have
∣∣∆(1,q) ∩ Zd

∣∣ = r1 +
d+ 3.
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Proof. Using Theorem 2.2.3, we know the Ehrhart h∗-polynomial of ∆(1,q), denoted
h∗(∆(1,q); z) := h∗0 + h∗1z + · · ·+ h∗dz

d, is given by

h∗(∆(1,q); z) =

r1(x1r1+1)−1∑
b=0

zw(q,b),

where

w(q, b) := b− x1
⌊

b

1 + x1r1

⌋
− (r1 − 1)

⌊
b

r1

⌋
.

It is well known (see, e.g., [5]) that the coefficient h∗1 is given by the formula

h∗1 =
∣∣∆(1,q) ∩ Zd

∣∣− (dim ∆(1,q) + 1) . (3.1)

To compute h∗1, we must determine all b for which w(q, b) = 1. Since 0 ≤ b ≤
r1(x1r1 + 1)− 1, the division algorithm allows us to write b = α(1 + x1r1) + β, where
0 ≤ α < r1 and 0 ≤ β < 1 + x1r1. Hence,

w(q, b) = w(q, α(1 + x1r1) + β)

= α(1 + x1r1) + β − x1
⌊
α(1 + x1r1) + β

1 + x1r1

⌋
− (r1 − 1)

⌊
α(1 + x1r1) + β

r1

⌋
= α(1 + x1r1) + β − αx1 − (r1 − 1)

(
αx1 +

⌊
α + β

r1

⌋)
= α + β − (r1 − 1)

⌊
α + β

r1

⌋
.

Therefore, the equation w(q, b) = 1 becomes

α + β − (r1 − 1)

⌊
α + β

r1

⌋
= 1 ⇐⇒ α + β = 1 + (r1 − 1)

⌊
α + β

r1

⌋
.

Now, let ` =
⌊
α+β
r1

⌋
. By the previous equation, α + β = 1 + (r1 − 1)`. Substituting

this equivalent expression for α+β into both sides of the previous equation, it follows
that solving w(q, b) = 1 is equivalent to finding all pairs (α, β) such that

1 + (r1 − 1)` = 1 + (r1 − 1)

⌊
1 + (r1 − 1)`

r1

⌋
= 1 + (r1 − 1)

(
`+

⌊
1− `
r1

⌋)
.

Rearranging this equation yields

(r1 − 1)

⌊
1− `
r1

⌋
= 0.
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Therefore, since r1 > 1, this implies⌊
1− `
r1

⌋
= 0 =⇒ ` =

{
0

1
=⇒ α + β =

{
1

r1
.

If α + β = 1, then (α, β) = (1, 0) or (α, β) = (0, 1). Otherwise, in the case that
α+β = r1, there are r1 possible pairs (α, β) where α ∈ {0, . . . , r1−1} and β = r1−α.
Thus,

h∗1 = |{b : w(q, b) = 1}| = r1 + 2.

Consequently, (3.1) implies ∣∣∆(1,q) ∩ Zd
∣∣ = r1 + d+ 3,

as desired.

Proposition 3.2.2. For t = (t1, . . . , td) ∈ Rd, define

λk(t) :=



d∑
j=1
j 6=k

tj − x1r1tk, if 1 ≤ k ≤ x1

d∑
j=1
j 6=k

tj − (r1 − 1)tk, if x1 + 1 ≤ k ≤ d

d∑
j=1

tj, if k = d+ 1 .

An irredundant H-description of ∆(1,q) is given by λk(t) ≤ 1 for all 1 ≤ k ≤ d+ 1.

Proof. Observe that for all 1 ≤ j ≤ d, ej satisfies all of the given inequalities tightly
except when k = j (i.e., λk(ej) = 1 for all k 6= j and λj(ej) < 1). Moreover, −q
satisfies the first d inequalities tightly (i.e., λk(−q) = 1 for all 1 ≤ k ≤ d), but not∑

j tj ≤ 1. Thus, as each vertex of the simplex ∆(1,q) satisfies exactly d of the given
inequalities with equality, the inequalities necessarily constitute an H-description of
∆(1,q).

Proof of Theorem 3.1.3. To begin, observe that |A′(q)| = r1 + d+ 3 =
∣∣∆(1,q) ∩ Zd

∣∣.
Therefore, as each element in A′(q) is an integer vector, it suffices to show that each
point satisfies the inequalities in Proposition 3.2.2. To this end, let λk be defined as
in Proposition 3.2.2; we evaluate each vector in A′(q) on λk. For each 1 ≤ i ≤ r1,
note that

a′i = (r1 − i+ 1)a′r1+1 + a′r1+2 =
(
(−(r1 − i+ 1))x1 , ((−(1 + (r1 − i+ 1)x1))

r1−1
)
.

Therefore, we have that

λk(a
′
1) = 1 if 1 ≤ k ≤ d and λd+1(a

′
1) < 1,

15



and for each i ∈ {2, . . . , r1} ∪ {r1 + 2},

λk(a
′
i) = 1 if x1 + 1 ≤ k ≤ d and λk(a

′
i) < 1 otherwise.

Also,

λk(a
′
r1+1) = 1 if 1 ≤ k ≤ x1 and λk(a

′
r1+1) < 1 otherwise,

and

λk(a
′
r1+3) < 1 for all 1 ≤ k ≤ d+ 1.

Lastly, for all 1 ≤ j ≤ d,

λk(b
′
j) = 1 if k 6= d− j + 1 and λk(b

′
j) < 1 if k = d− j + 1.

Thus, A′(q) ⊆ ∆(1,q) ∩ Zd, and the result follows.

3.3 Proof of Theorem 3.1.4

We next seek to prove the existence of a regular unimodular triangulation of the
convex hull of these points. Given a field K, there are natural parallels between
properties of lattice polytopes and algebraic objects such as semigroup algebras, toric
varieties, and monomial ideals. The following one-to-one correspondence between
lattice points and Laurent monomials plays a central role:

a′ = (a1, . . . , ad) ∈ Zd ←→ ta
′
:= ta11 · · · t

ad
d ∈ K[t±11 , . . . , t±1d ].

For details regarding the significance of this correspondence, see [34, Chapter 8].
Furthermore, for all notation related to combinatorial commutative algebra, we refer
the reader to [16].

Let K be a field, and define A(q) = (a1, . . . , ar1+3,b1, . . . ,bd) ⊂ Z(d+1)×(r1+d+3)

to be the homogenization of A′(q) where ai = (a′i, 1) and bj = (b′j, 1); that is,
A(q) is the matrix associated with the point configuration consisting of all vectors
in A′(q) lifted to height 1. (Note that we can view the columns of A(q) as the
intersection of Zd+1 with the degree 1 slice of the polyhedral cone over ∆(1,q).) Let
K[A(q)] := K[z1, . . . , zr1+3, y1, . . . , yd] be the polynomial ring associated with the
columns of A(q) in r1 + d + 3 variables over K. Moreover, let M(K[A(q)]) denote
the set of monomials contained in K[A(q)], and let RK [A(q)] be the K-subalgebra of
the Laurent polynomial ring K[t±1] := K[t±11 , . . . , t±1d+1] generated by all monomials
ta with a ∈ A(q), where ta = ta11 · · · t

ad+1

d+1 if a = (a1, . . . , ad+1). The toric ideal IA(q)
is the kernel of the surjective ring homomorphism π : K[A(q)] → RK [A(q)] defined
by

π(zi) = tai , for 1 ≤ i ≤ r1 + 3

π(yj) = tbj , for 1 ≤ j ≤ d.
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A generating set for IA(q) is given by the set of all homogeneous binomials f − g with
π(f) = π(g) and f, g ∈ M(K[A(q)]), see [34, Lemma 4.1]. We fix the lexicographic
term order <lex on K[A(q)] induced by the ordering of the variables

z1 > z2 > · · · > zr1+3 > y1 > y2 > · · · > yd.

Moreover, for f = zγ11 · · · z
γr1+3

r1+3 y
δ1
1 · · · y

δd
d ∈M(K[A(q)]), we introduce the notation

suppz (f) := {i ∈ {1, . . . , r1 + 3} : γi > 0} .

Given this setup, we restate Theorem 3.1.4. Note that Corollary 3.1.5 follows
immediately from Theorem 3.3.1 as it indicates the existence of a squarefree initial
ideal of the toric ideal IA(q) [34, Corollary 8.9].

Theorem 3.3.1 (Restatement of Theorem 3.1.4). Let B be the set of all (i, j) ∈ N2

satisfying the following conditions:

(i) j − i ≥ 2

(ii) 1 ≤ i ≤ r1

(iii) j ≤ r1 + 3

(iv) j 6= r1 + 1

(v) (i, j) 6= (r1, r1 + 2)

Given (i, j) ∈ B, define (k, `) as follows:

k =

⌊
i+ j

2

⌋
, ` =

⌈
i+ j

2

⌉
if j < r1 + 1

k =

⌊
i+ j − 1

2

⌋
, ` =

⌈
i+ j − 1

2

⌉
if j = r1 + 2

k = i+ 1, ` = r1 + 1 if j = r1 + 3, i 6= r1

k = r1 + 1, ` = r1 + 2 if j = r1 + 3, i = r1.

If x1 ≥ r1 − 2, then the set of binomials G given by

zizj − zkz`, (i, j) ∈ B (3.2)

zk+1

r1−1∏
`=1

y` − zr1−kr1+1z
k
r1+3, 0 ≤ k ≤ r1 − 1 (3.3)

zr1−k

d∏
`=r1

y` − zkr1z
x1+1−k
r1+2 , 0 ≤ k ≤ r1 − 1 (3.4)

zr1+2

r1−1∏
`=1

y` − zr1r1+3, (3.5)

zr1+1

d∏
`=r1

y` − zx1r1+2zr1+3 (3.6)
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is a Gröbner basis of IA(q) with respect to the lexicographic term order <lex as specified
above. In the case that x1 < r1 − 2, replace (3.4) above with

zr1−k

d∏
`=r1

y` − zkr1z
x1+1−k
r1+2 , 0 ≤ k ≤ x1 + 1

zr1−k

d∏
`=r1

y` − zk−x1−1r1−1 z2x1+2−k
r1

, x1 + 2 ≤ k ≤ r1 − 1.

(3.4*)

Note that regardless of case (either x1 ≥ r1 − 2 or x1 < r1 − 2), the initial terms
of the k-th binomial in (3.4) and (3.4*) are identical. Therefore, whenever we are
considering only leading terms of these polynomials, we can ignore any relationship
between x1 and r1 − 2.

Remark 3.3.2. The intuition for most of these binomial relations is that they are
encoding the additive structure on the columns of A(q). Specifically, in the definition
of A′(q), we see that a′i = (r1 − i + 1)a′r1+1 + a′r1+2 for 1 ≤ i ≤ r1, and there are
natural syzygies that result from this structure. We require the replacement of (3.4)
with (3.4*) in the case that x1 < r1−2 since otherwise, the exponent of zr1+2, namely
x1 + 1− k, would fail to be positive when x1 + 2 ≤ k ≤ r1 − 1.

To prove Theorem 3.3.1, we employ the following well-known lemma, e.g. [22,
(0.1)], for proving a finite subset of the toric ideal IA(q) is a Gröbner basis of IA(q).
For a finite set of polynomials G in a polynomial ring with a term order <, let in<(G)
denote the ideal generated by the set of initial terms of elements of G.

Lemma 3.3.3 ([22]). A finite set G of IA(q) is a Gröbner basis of IA(q) with respect
to the term order < if and only if {π(f) : f ∈ M(K[A(q)]), f /∈ in<(G)} is linearly
independent over K; i.e., if and only if π(f) 6= π(g) for all f /∈ in<(G) and g /∈ in<(G)
with f 6= g.

We will also require the following fact which provides an upper bound on the
supported z-variables for any monomial outside the initial ideal generated by the
binomials in Theorem 3.3.1 with respect to <lex.

Lemma 3.3.4. Let G be the set of binomials given in Theorem 3.3.1. Suppose

f = zγ11 · · · z
γr1+3

r1+3 y
δ1
1 · · · y

δd
d ∈M(K[A(q)])

with f /∈ in<lex
(G) and |suppz (f)| ≥ 1. Let m denote the minimal index such that zm

divides f . Then, |suppz (f)| ≤ 3 and we are restricted to the following possibilities:

(1) if 1 ≤ m ≤ r1 − 1, then γm+1, γr1+1 ≥ 0 and γi = 0 for all i ∈ {1, . . . , r1 + 3} \
{m,m+ 1, r1 + 1}.

(2) if m = r1, then γr1+1, γr1+2 ≥ 0 and γi = 0 for all i ∈ {1, . . . , r1− 1}∪ {r1 + 3}.
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(3) if m ∈ {r1 +1, r1 +2, r1 +3}, then γi = 0 for all i < m and γi ≥ 0 for all i > m.

Proof. Suppose 1 ≤ m ≤ r1 − 1. Since zmzm+1 /∈ in<lex
(G) and zmzr1+1 /∈ in<lex

(G),
zm+1 and zr1+1 possibly divide f . However, given the structure of B as defined
in Theorem 3.3.1, it follows that zmzr1+2, zmzr1+3, zmzn ∈ in<lex

(G) for all n with
n > m + 1, n 6= r1 + 1. Therefore, since m is minimal, |suppz (f)| ≤ 3 and we
precisely satisfy the conditions of Lemma 3.3.4(1).

Now, suppose m = r1. By the minimality of m, we need only consider in-
dices greater than r1. Observe that zr1zr1+1 /∈ in<lex

(G), zr1zr1+2 /∈ in<lex
(G),

and zr1zr1+3 ∈ in<lex
(G). Thus, we have that |suppz (f)| ≤ 3 and we end up in

Lemma 3.3.4(2).
Finally, for m ∈ {r1 + 1, r1 + 2, r1 + 3}, minimality of m immediately implies

|suppz (f)| ≤ 3. To see that this case yields Lemma 3.3.4(3), observe that zmzn /∈
in<lex

(G) for m,n ∈ {r1 + 1, r1 + 2, r1 + 3} with m 6= n.

Proof of Theorem 3.3.1. One easily checks that each binomial h = m1 −m2 ∈ G is
contained in IA(q) by showing π(m1) = π(m2). To show G is a Gröbner basis of IA(q),
we employ Lemma 3.3.3. Suppose f, g ∈ M(K[A(q)]) with f 6= g, f /∈ in<lex

(G),
and g /∈ in<lex

(G). Write

f = zα1
1 · · · z

αr1+3

r1+3 y
β1
1 · · · y

βd
d and g = z

α′1
1 · · · z

α′r1+3

r1+3 y
β′1
1 · · · y

β′d
d ,

where αi, α
′
i, βj, β

′
j ≥ 0. We may assume f and g are relatively prime (since otherwise,

we could simply factor out the common variables and consider the images of the
reduced monomials). Further assume to the contrary that π(f) = π(g), and without
loss of generality, assume |suppz (f)| ≥ |suppz (g)|. For convenience, let fπ,gπ ∈ Zd+1

denote the exponent vectors associated with π(f) and π(g), respectively, and let fπ[k]
(resp. gπ[k]) denote the k-th entry of fπ (resp. gπ). With this notation, observe that
π(f) = π(g) if and only if fπ[k] = gπ[k] for all 1 ≤ k ≤ d+ 1.

The general structure for the rest of the proof is to consider cases based on the size
of the z-support for monomials g and f . Throughout, we identify the minimal indices
of the z-variables dividing both g and f , and we repeatedly apply Lemma 3.3.4 to
deduce a contradiction in each of the resulting cases.

Case 1: |suppz (g)| = 0. By definition, it follows that α′i = 0 for all 1 ≤ i ≤ r1 + 3.
Therefore, we know that

gπ =
(
β′d, . . . , β

′
1,
∑

j β
′
j

)
.

Subcase 1.1: |suppz (f)| = 0. Thus,

fπ =
(
βd, . . . , β1,

∑
j βj
)
.

Since π(f) = π(g), this implies βj = β′j for all 1 ≤ j ≤ d, and consequently, f = g,
a contradiction.

Subcase 1.2: |suppz (f)| ≥ 1. Let m denote the minimal index such that zm
divides f (i.e., αm > 0 and αi = 0 for all i < m).
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(a) Suppose 1 ≤ m ≤ r1 + 1. Since zmyr1 · · · yd ∈ in<lex
(G) (by (3.4) and (3.6))

and f /∈ in<lex
(G), there exists an index ` ∈ {r1, . . . , d} such that β` = 0.

Hence,

fπ[d− `+ 1] =

r1+3∑
i=1

αiA(q)d−`+1,i︸ ︷︷ ︸
< 0

+
d∑
j=1

βjA(q)d−`+1,r1+3+j︸ ︷︷ ︸
=0

< 0.

However, gπ[d− `+ 1] = β′` ≥ 0, a contradiction.

(b) Suppose m = r1 + 2. Since zr1+2y1 · · · yr1−1 ∈ in<lex
(G) (by (3.5)) and f /∈

in<lex
(G), there exists an index k ∈ {1, . . . , r1 − 1} such that βk = 0. Since

k < r1, it follows that d−k+1 > x1. Therefore, A(q)d−k+1,r1+2 = −1. Hence,

fπ[d− k + 1] =

r1+3∑
i=1

αiA(q)d−k+1,i︸ ︷︷ ︸
=−αr1+2< 0

+
d∑
j=1

βjA(q)d−k+1,r1+3+j︸ ︷︷ ︸
=0

< 0.

However, gπ[d− k + 1] = β′k ≥ 0, a contradiction.

(c) Suppose m = r1+3. Since m is minimal, we know αi = 0 for all 1 ≤ i ≤ r1+2.
Since A(q) is homogenized, we also know

∑
i αi +

∑
j βj =

∑
i α
′
i +

∑
j β
′
j

(this can be seen directly from fπ[d+ 1] = gπ[d+ 1]). Hence, in this case, the
equation simplifies to αr1+3 +

∑
j βj =

∑
j β
′
j, and moreover,

fπ = (βd, . . . , β1, αr1+3 +
∑

j βj).

Since π(f) = π(g), βj = β′j for all 1 ≤ j ≤ d. Therefore, substituting into
the above equation,

αr1+3 +
∑

j βj =
∑

j β
′
j =

∑
j βj,

but αr1+3 > 0, a contradiction.

Case 2: |suppz (g)| ≥ 1. Let n denote the minimal index such that zn divides
g (i.e., α′n > 0 and α′i = 0 for all i < n). Since |suppz (f)| ≥ |suppz (g)| and
|suppz (g)| ≥ 1, we know suppz (f) 6= ∅. Hence, let m denote the minimal index
such that zm divides f . Via Lemma 3.3.4, this case naturally lends itself to the
following subcases of consideration.
Subcase 2.1: n ∈ {1, . . . , r1 − 1}. By Lemma 3.3.4, we know α′n > 0, α′n+1 ≥ 0,
α′r1+1 ≥ 0, and α′i = 0 for all i ∈ {1, . . . , r1 + 3} \ {n, n + 1, r1 + 1}. Since
zny1 · · · yr1−1 ∈ in<lex

(G) (by (3.3)), znyr1 · · · yd ∈ in<lex
(G) (by (3.4)), and g /∈

in<lex
(G), there exist indices k1 ∈ {1, . . . , r1 − 1} and `1 ∈ {r1, . . . , d} such that
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β′k1 = β′`1 = 0. Then,

fπ[d− k1 + 1] =

r1+3∑
i=1

αiA(q)d−k1+1,i + βk1 (3.7)

gπ[d− k1 + 1] = −(1 + (r1 − n+ 1)x1)α
′
n − (1 + (r1 − n)x1)α

′
n+1 − x1α′r1+1

(3.8)

fπ[d− `1 + 1] =

r1+3∑
i=1

αiA(q)d−`1+1,i + β`1 (3.9)

gπ[d− `1 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1. (3.10)

Note that π(f) = π(g) implies (3.7) = (3.8) and (3.9) = (3.10). Now, we claim
m ∈ {1, . . . , r1+1}. Indeed, assume otherwise, that is, suppz (f) ⊆ {r1+2, r1+3}.
Then, fπ[d−`+1] = β` ≥ 0 for all ` ∈ {r1, . . . , d}, but from (3.10), gπ[d−`1+1] < 0
since α′n > 0 and α′n+1, α

′
r1+1 ≥ 0. This contradicts π(f) = π(g). Hence, given

the structure of Lemma 3.3.4, we consider the following subsubcases.

(a) m ∈ {1, . . . , r1 − 1}. Since zmy1 · · · yr1−1 (by (3.3)), zmyr1 · · · yd ∈ in<lex
(G)

(by (3.4)), and f /∈ in<lex
(G), there exist indices k2 ∈ {1, . . . , r1 − 1} and

`2 ∈ {r1, . . . , d} such that βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (3.11)

gπ[d− k2 + 1] = −(1 + (r1 − n+ 1)x1)α
′
n − (1 + (r1 − n)x1)α

′
n+1

− x1α′r1+1 + β′k2
(3.12)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (3.13)

gπ[d− `2 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1 + β′`2 , (3.14)

where (3.11) = (3.12) and (3.13) = (3.14) as π(f) = π(g). Since 1 ≤ ki ≤ r1−
1 for i ∈ {1, 2}, subtracting the equation (3.11) = (3.12) from (3.7) = (3.8)
implies βk1 = −β′k2 . Similarly, since r1 ≤ `i ≤ d for i ∈ {1, 2}, subtracting
equation (3.13) = (3.14) from (3.9) = (3.10) implies β`1 = −β′`2 . Since
βj, β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies βk1 = β′k2 = β`1 = β′`2 = 0.

Also, by Lemma 3.3.4, we know αm > 0, αm+1, αr1+1 ≥ 0, and αi = 0 for
all i ∈ {1, . . . , r1 + 3} \ {m,m + 1, r1 + 1}. Consequently, equations (3.7)
and (3.9) simplify to

fπ[d− k1 + 1] = −(1 + (r1 −m+ 1)x1)αm − (1 + (r1 −m)x1)αm+1 − x1αr1+1

(3.15)

fπ[d− `1 + 1] = −(r1 −m+ 1)αm − (r1 −m)αm+1 − αr1+1. (3.16)

Since π(f) = π(g), (3.15) = (3.8) and (3.16) = (3.10), thereby implying
x1(3.10)−(3.8) = x1(3.16)−(3.15). Observe that x1(3.10)−(3.8) = x1(3.16)−

21



(3.15) is the following

αm + αm+1 = α′n + α′n+1. (3.17)

Now, consider the equation (3.16) = (3.10):

−(r1 −m+ 1)αm − (r1 −m)αm+1 − αr1+1 = −(r1 − n+ 1)α′n
− (r1 − n)α′n+1 − α′r1+1.

Adding (3.17) to this equation r1 times yields

(m− 1)αm +mαm+1 − αr1+1 = (n− 1)α′n + nα′n+1 − α′r1+1.

Either m < n or m > n (note that m 6= n since f and g are relatively prime).
First, suppose m < n. Subtracting (3.17) from our previous equation m− 1
times gives

αm+1 − αr1+1 = (n−m)α′n + (n−m+ 1)α′n+1 − α′r1+1 (3.18)

As m < n, we have that

αm+1 − αr1+1 = (n−m)︸ ︷︷ ︸
> 0

α′n︸︷︷︸
> 0

+ (n−m+ 1)︸ ︷︷ ︸
> 0

α′n+1︸︷︷︸
≥ 0

−α′r1+1

> α′n + α′n+1 − α′r1+1

(3.17)
= αm + αm+1 − α′r1+1,

which implies

α′r1+1 > αm︸︷︷︸
> 0

+αr1+1 =⇒ α′r1+1 > 0.

Since f and g are relatively prime, this forces αr1+1 = 0. Thus, suppz (f) ⊆
{m,m+ 1}. Moreover, α′n+1 = 0 since |suppz (f)| ≥ |suppz (g)| and we have
found α′n, α

′
r1+1 > 0. Consequently, (3.17) reduces to α′n = αm + αm+1 and

(3.18) reduces to

α′r1+1 = (n−m)αm + (n−m− 1)αm+1. (3.19)

Now, fπ[d+ 1] = gπ[d+ 1] gives that

αm + αm+1 +
∑
j

βj = α′n + α′r1+1 +
∑
j

β′j.

Since α′n = αm + αm+1 and α′r1+1 > 0, this implies
∑

j βj >
∑

j β
′
j. For each

r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

(r1 −m+ 1)αm + (r1 −m)αm+1 − βj = (r1 − n+ 1)α′n + α′r1+1 − β′j.
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Solving for α′r1+1 and substituting α′n = αm + αm+1 yields

α′r1+1 = (n−m)αm + (n−m− 1)αm+1 + β′j − βj.

Adding these equations for each r1 ≤ j ≤ d gives

(d− r1 + 1)α′r1+1 = (d− r1 + 1) [(n−m)αm + (n−m− 1)αm+1]

+
∑

r1≤j≤d

(β′j − βj). (3.20)

Similarly, for each 1 ≤ j ≤ r1− 1, −fπ[d− j+ 1] = −gπ[d− j+ 1] is given by

(1 + (r1 −m+ 1)x1)αm + (1 + (r1 −m)x1)αm+1 − βj = (1 + (r1 − n+ 1)x1)α
′
n + x1α

′
r1+1 − β′j.

Solving for x1α
′
r1+1 and making the appropriate substitutions yields

x1α
′
r1+1 = (n−m)x1αm + (n−m− 1)x1αm+1 + β′j − βj.

Adding these equations for each 1 ≤ j ≤ r1 − 1 gives

(r1 − 1)x1α
′
r1+1 = (r1 − 1) [(n−m)x1αm + (n−m− 1)x1αm+1]

+
∑

1≤j≤r1−1

(β′j − βj). (3.21)

Combining (3.20) and (3.21) gives

r1x1α
′
r1+1 = r1x1 [(n−m)αm + (n−m− 1)αm+1]︸ ︷︷ ︸

=α′r1+1 by (3.19)

+
d∑
j=1

(β′j − βj)︸ ︷︷ ︸
< 0

,

a contradiction. Now, suppose m > n. In this case, rather than subtracting
m− 1 copies of (3.17), we instead subtract n− 1 copies of (3.17) yielding

(m− n)αm + (m− n+ 1)αm+1 − αr1+1 = α′n+1 − α′r1+1.

Then, since m− n > 0, the same argument from the m < n case will follow
through by appropriately replacing each occurrence of α′n with αm, αm with
α′n, α′n+1 with αm+1, αm+1 with α′n+1, α

′
r1+1 with αr1+1, and αr1+1 with α′r1+1.

(b) m = r1. Since zr1y1 · · · yr1−1 (by (3.3)), zr1yr1 · · · yd ∈ in<lex
(G) (by (3.4)),

and f /∈ in<lex
(G), there exist indices k2 ∈ {1, . . . , r1−1} and `2 ∈ {r1, . . . , d}

such that βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (3.22)

gπ[d− k2 + 1] = −(1 + (r1 − n+ 1)x1)α
′
n − (1 + (r1 − n)x1)α

′
n+1

− x1α′r1+1 + β′k2
(3.23)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (3.24)

gπ[d− `2 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1 + β′`2 , (3.25)
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where (3.22) = (3.23) and (3.24) = (3.25) as π(f) = π(g). Subtracting the
equation (3.22) = (3.23) from (3.7) = (3.8) implies βk1 = −β′k2 . Similarly,
subtracting equation (3.24) = (3.25) from (3.9) = (3.10) implies β`1 = −β′`2 .
Since βj, β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies βk1 = β′k2 = β`1 = β′`2 = 0.

Also, by Lemma 3.3.4, we know αr1 > 0, αr1+1, αr1+2 ≥ 0, and αi = 0 for
all i ∈ {1, . . . , r1 − 1} ∪ {r1 + 3}. Consequently, equations (3.7) and (3.9)
simplify to

fπ[d− k1 + 1] = −(1 + x1)αr1 − x1αr1+1 − αr1+2 (3.26)

fπ[d− `1 + 1] = −αr1 − αr1+1. (3.27)

Since π(f) = π(g), (3.26) = (3.8) and (3.27) = (3.10), thereby implying
x1(3.10)−(3.8) = x1(3.27)−(3.26). Observe that x1(3.10)−(3.8) = x1(3.27)−
(3.26) is the following

αr1 + αr1+2 = α′n + α′n+1. (3.28)

Now, consider the equation −(3.27) = −(3.10):

αr1 + αr1+1 = (r1 − n+ 1)α′n + (r1 − n)α′n+1 + α′r1+1.

Substituting (3.28) into this equation yields

α′n + α′n+1 − αr1+2 + αr1+1 = (r1 − n+ 1)α′n + (r1 − n)α′n+1 + α′r1+1.

Rearranging by subtracting α′n + α′n+1 on both sides yields

αr1+1 − αr1+2 = (r1 − n)α′n︸ ︷︷ ︸
> 0

+ (r1 − n− 1)α′n+1︸ ︷︷ ︸
≥ 0

+α′r1+1. (3.29)

Observe that (3.29) implies αr1+1 > 0, so since f and g are relatively prime,
this forces α′r1+1 = 0. Therefore, subtracting r1 − n copies of (3.28) from
(3.29) gives

αr1+1 − (r1 − n)αr1 − (r1 − n+ 1)αr1+2 = −α′n+1,

which implies

α′n+1 = (r1 − n)αr1 + (r1 − n+ 1)αr1+2 − αr1+1. (3.30)

Now, fπ[d+ 1] = gπ[d+ 1] gives that

αr1 + αr1+1 + αr1+2 +
∑
j

βj = α′n + α′n+1 +
∑
j

β′j.

Since α′n = αr1 + αr1+2 − α′n+1 by (3.28) and αr1+1 > 0, this implies
∑

j βj <∑
j β
′
j. For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

αr1 + αr1+1 − βj = (r1 − n+ 1)α′n + (r1 − n)α′n+1 − β′j.
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Solving for α′n+1 and substituting α′n = αr1 + αr1+2 − α′n+1 yields

α′n+1 = (r1 − n)αr1 + (r1 − n+ 1)αr1+2 − αr1+1 + βj − β′j.

Adding these equations for each r1 ≤ j ≤ d gives

(d− r1 + 1)α′n+1 = (d− r1 + 1) [(r1 − n)αr1 + (r1 − n+ 1)αr1+2 − αr1+1]

+
∑

r1≤j≤d

(βj − β′j).

(3.31)

Similarly, for each 1 ≤ j ≤ r1− 1, −fπ[d− j+ 1] = −gπ[d− j+ 1] is given by

(1 + x1)αr1 + x1αr1+1 + αr1+2 − βj = (1 + (r1 − n+ 1)x1)α
′
n + (1 + (r1 − n)x1)α

′
n+1 − β′j.

Solving for x1α
′
n+1 and making the appropriate substitutions yields

x1α
′
n+1 = (r1 − n)x1αr1 + (r1 − n+ 1)x1αr1+2 − x1αr1+1 + βj − β′j.

Adding these equations for each 1 ≤ j ≤ r1 − 1 gives

(r1 − 1)x1α
′
n+1 = (r1 − 1) [(r1 − n)x1αr1 + (r1 − n+ 1)x1αr1+2 − x1αr1+1]

+
∑

1≤j≤r1−1

(βj − β′j).

(3.32)

Combining (3.31) and (3.32) gives

r1x1α
′
n+1 = r1x1 [(r1 − n)αr1 + (r1 − n+ 1)αr1+2 − αr1+1]︸ ︷︷ ︸

=α′n+1 by (3.30)

+
d∑
j=1

(βj − β′j)︸ ︷︷ ︸
< 0

,

a contradiction.

(c) m = r1 + 1. Since zr1+1yr1 · · · yd ∈ in<lex
(G) (by (3.6)) and f /∈ in<lex

(G),
there exists an index `2 ∈ {r1, . . . , d} such that β`2 = 0. Then, we have that

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (3.33)

gπ[d− `2 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1 + β′`2 , (3.34)

where (3.33) = (3.34) as π(f) = π(g). Subtracting the equation (3.33) =
(3.34) from (3.9) = (3.10) implies β`1 = −β′`2 . Since βj, β

′
j ≥ 0 for all

1 ≤ j ≤ d, this implies β`1 = β′`2 = 0. Also, by Lemma 3.3.4, we know
αr1+1 > 0, αr1+2, αr1+3 ≥ 0, and αi = 0 for all i ∈ {1, . . . , r1}. Consequently,
since β`1 = 0, equations (3.7) and (3.9) simplify to

fπ[d− k1 + 1] = −x1αr1+1 − αr1+2 + βk1 (3.35)

fπ[d− `1 + 1] = −αr1+1. (3.36)
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Furthermore, since f and g are relatively prime, αr1+1 > 0 implies α′r1+1 = 0,
so equations (3.8) and (3.10) simplify to

gπ[d− k1 + 1] = −(1 + (r1 − n+ 1)x1)α
′
n − (1 + (r1 − n)x1)α

′
n+1 (3.37)

gπ[d− `1 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1. (3.38)

Since π(f) = π(g), (3.35) = (3.37) and (3.36) = (3.38). Therefore, we have
that −(3.35) = −(3.37) and −(3.36) = −(3.38), that is,

x1αr1+1 + αr1+2 − βk1 = (1 + (r1 − n+ 1)x1)α
′
n + (1 + (r1 − n)x1)α

′
n+1

(3.39)

and

αr1+1 = (r1 − n+ 1)α′n + (r1 − n)α′n+1. (3.40)

Now, fπ[d+ 1] = gπ[d+ 1] gives that

αr1+1 + αr1+2 + αr1+3 +
∑
j

βj = α′n + α′n+1 +
∑
j

β′j.

Substituting (3.40) and since (r1 − n)α′n > 0, we obtain∑
j

βj <
∑
j

β′j . (3.41)

For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

αr1+1 − βj = (r1 − n+ 1)α′n + (r1 − n)α′n+1 − β′j,

which readily implies

αr1+1 = (r1 − n+ 1)α′n + (r1 − n)α′n+1 + βj − β′j.

Adding these equations for each r1 ≤ j ≤ d gives

(d− r1 + 1)αr1+1 = (d− r1 + 1)
[
(r1 − n+ 1)α′n + (r1 − n)α′n+1

]
+
∑

r1≤j≤d

(βj − β′j).

Using (3.40), this simplifies to

0 =
∑

r1≤j≤d

(βj − β′j) . (3.42)

Similarly, for each 1 ≤ j ≤ r1− 1, −fπ[d− j+ 1] = −gπ[d− j+ 1] is given by

x1αr1+1 + αr1+2 − βj = (1 + (r1 − n+ 1)x1)α
′
n + (1 + (r1 − n)x1)α

′
n+1 − β′j,
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which implies

x1αr1+1 = (1 + (r1 − n+ 1)x1)α
′
n + (1 + (r1 − n)x1)α

′
n+1 − αr1+2 + βj − β′j.

Adding these equations for each 1 ≤ j ≤ r1 − 1 gives

(r1 − 1)x1αr1+1 = (r1 − 1)
[
(1 + (r1 − n+ 1)x1)α

′
n + (1 + (r1 − n)x1)α

′
n+1

− αr1+2

]
+

∑
1≤j≤r1−1

(βj − β′j) .

Using (3.39), this simplifies to

0 = −(r1 − 1)βk1 +
∑

1≤j≤r1−1

(βj − β′j). (3.43)

Combining (3.42) and (3.43), and observing (3.41), gives

0 = −(r1 − 1)βk1 +
d∑
j=1

(βj − β′j)︸ ︷︷ ︸
< 0

,

which implies (r1 − 1)βk1 < 0, a contradiction.

Subcase 2.2: n = r1. By Lemma 3.3.4, we know α′r1 > 0, α′r1+1, α
′
r1+2 ≥ 0, and

α′i = 0 for all i ∈ {1, . . . , r1 − 1} ∪ {r1 + 3}. Since zr1y1 · · · yr1−1 ∈ in<lex
(G) (by

(3.3)), zr1yr1 · · · yd ∈ in<lex
(G) (by (3.4)), and g /∈ in<lex

(G), there exist indices
k1 ∈ {1, . . . , r1 − 1} and `1 ∈ {r1, . . . , d} such that β′k1 = β′`1 = 0. Then,

fπ[d− k1 + 1] =

r1+3∑
i=1

αiA(q)d−k1+1,i + βk1 (3.44)

gπ[d− k1 + 1] = −(1 + x1)α
′
r1
− x1α′r1+1 − α′r1+2 (3.45)

fπ[d− `1 + 1] =

r1+3∑
i=1

αiA(q)d−`1+1,i + β`1 (3.46)

gπ[d− `1 + 1] = −α′r1 − α
′
r1+1. (3.47)

Note that π(f) = π(g) implies (3.44) = (3.45) and (3.46) = (3.47). Now, we
claim m ∈ {1, . . . , r1 − 1} ∪ {r1 + 1} (we need not consider m = r1 since f and g
are relatively prime and n = r1 in this case). Indeed, assume otherwise, that is,
suppz (f) ⊆ {r1 + 2, r1 + 3}. Then, fπ[d− ` + 1] = β` ≥ 0 for all ` ∈ {r1, . . . , d},
but from (3.47), gπ[d− `1 + 1] < 0 since α′r1 > 0 and α′r1+1 ≥ 0. This contradicts
π(f) = π(g). Hence, given the structure of Lemma 3.3.4 and since m cannot be
r1, we consider the following subsubcases.

(a) m ∈ {1, . . . , r1 − 1}. Since zmy1 · · · yr1−1 (by (3.3)), zmyr1 · · · yd ∈ in<lex
(G)

(by (3.4)), and f /∈ in<lex
(G), there exist indices k2 ∈ {1, . . . , r1 − 1} and
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`2 ∈ {r1, . . . , d} such that βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (3.48)

gπ[d− k2 + 1] = −(1 + x1)α
′
r1
− x1α′r1+1 − α′r1+2 + β′k2 (3.49)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (3.50)

gπ[d− `2 + 1] = −α′r1 − α
′
r1+1 + β′`2 , (3.51)

where (3.48) = (3.49) and (3.50) = (3.51) as π(f) = π(g). Subtracting the
equation (3.48) = (3.49) from (3.44) = (3.45) implies βk1 = −β′k2 . Similarly,
subtracting equation (3.50) = (3.51) from (3.46) = (3.47) implies β`1 = −β′`2 .
Since βj, β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies βk1 = β′k2 = β`1 = β′`2 = 0.

Also, by Lemma 3.3.4, we know αm > 0, αm+1, αr1+1 ≥ 0, and αi = 0 for all
i ∈ {1, . . . , r1 + 3} \ {m,m + 1, r1 + 1}. Consequently, equations (3.44) and
(3.46) simplify to

fπ[d− k1 + 1] = −(1 + (r1 −m+ 1)x1)αm − (1 + (r1 −m)x1)αm+1 − x1αr1+1 (3.52)

fπ[d− `1 + 1] = −(r1 −m+ 1)αm − (r1 −m)αm+1 − αr1+1. (3.53)

Since π(f) = π(g), (3.52) = (3.45) and (3.53) = (3.47), thereby implying
x1(3.47) − (3.45) = x1(3.53) − (3.52). Observe that x1(3.47) − (3.45) =
x1(3.53)− (3.52) is the following

αm + αm+1 = α′r1 + α′r1+2. (3.54)

Now, consider the equation −(3.53) = −(3.47):

(r1 −m+ 1)αm + (r1 −m)αm+1 + αr1+1 = α′r1 + α′r1+1.

Substituting (3.54) into this equation and solving for α′r1+1 yields

α′r1+1 = (r1 −m)αm + (r1 −m− 1)αm+1 + αr1+1 + α′r1+2. (3.55)

Observe that (3.55) implies α′r1+1 > 0, so since f and g are relatively prime,
this forces αr1+1 = 0. Thus, suppz (f) ⊆ {m,m + 1}. Moreover, since
|suppz (f)| ≥ |suppz (g)|, αr1+1 = 0, and we have α′r1 , α

′
r1+1 > 0, it follows

that αm+1 > 0 and α′r1+2 = 0. Consequently, (3.54) reduces to α′r1 = αm +
αm+1 and (3.55) reduces to

α′r1+1 = (r1 −m)αm + (r1 −m− 1)αm+1.

Summing these reduced equations yields

α′r1 + α′r1+1 = (r1 −m+ 1)αm + (r1 −m)αm+1. (3.56)
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Now, fπ[d+ 1] = gπ[d+ 1] gives that

αm + αm+1 +
∑
j

βj = α′r1 + α′r1+1 +
∑
j

β′j.

Since α′r1 = αm + αm+1 and α′r1+1 > 0, this implies∑
j

βj >
∑
j

β′j . (3.57)

For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

(r1 −m+ 1)αm + (r1 −m)αm+1 − βj = α′r1 + α′r1+1 − β′j,

which, via (3.56), implies βj = β′j. Similarly, for each 1 ≤ j ≤ r1 − 1,
−fπ[d− j + 1] = −gπ[d− j + 1] is given by

(1 + (r1 −m+ 1)x1)αm + (1 + (r1 −m)x1)αm+1 − βj = (1 + x1)α
′
r1

+ x1α
′
r1+1 − β′j,

which, via (3.56), implies βj = β′j. Thus, we have that βj = β′j for all
1 ≤ j ≤ d, but we had in (3.57) that

∑
j βj >

∑
j β
′
j, a contradiction.

(b) m = r1 + 1. Since zr1+1yr1 · · · yd ∈ in<lex
(G) (by (3.6)) and f /∈ in<lex

(G),
there exists an index `2 ∈ {r1, . . . , d} such that β`2 = 0. Then, we have that

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (3.58)

gπ[d− `2 + 1] = −α′r1 − α
′
r1+1 + β′`2 , (3.59)

where (3.58) = (3.59) as π(f) = π(g). Subtracting the equation (3.58) =
(3.59) from (3.46) = (3.47) implies β`1 = −β′`2 . Since βj, β

′
j ≥ 0 for all

1 ≤ j ≤ d, this implies β`1 = β′`2 = 0. Also, by Lemma 3.3.4, we know
αr1+1 > 0, αr1+2, αr1+3 ≥ 0, and αi = 0 for all i ∈ {1, . . . , r1}. Consequently,
since β`1 = 0, equations (3.44) and (3.46) simplify to

fπ[d− k1 + 1] = −x1αr1+1 − αr1+2 + βk1 (3.60)

fπ[d− `1 + 1] = −αr1+1. (3.61)

Furthermore, since f and g are relatively prime, αr1+1 > 0 implies α′r1+1 = 0,
so equations (3.45) and (3.47) simplify to

gπ[d− k1 + 1] = −(1 + x1)α
′
r1
− α′r1+2 (3.62)

gπ[d− `1 + 1] = −α′r1 . (3.63)

Since π(f) = π(g), (3.60) = (3.62) and (3.61) = (3.63). Therefore, we have
that −(3.60) = −(3.62) and −(3.61) = −(3.63), that is,

(1 + x1)α
′
r1

+ α′r1+2 = x1αr1+1 + αr1+2 − βk1 (3.64)
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and

α′r1 = αr1+1. (3.65)

Plugging (3.65) into (3.64) and solving for βk1 gives

βk1 = αr1+2 − αr1+1 − α′r1+2. (3.66)

Note that if α′r1+2 > 0, the relatively prime condition would force αr1+2 = 0,
thereby implying βk1 < 0, a contradiction. Hence, we may assume α′r1+2 = 0,
and since βk1 ≥ 0, it must be that αr1+2 > 0. Now, fπ[d+ 1] = gπ[d+ 1] gives
that

αr1+1 + αr1+2 + αr1+3 +
∑
j

βj = α′r1 +
∑
j

β′j.

Substituting (3.65) and since αr1+2 > 0, this implies∑
j

βj <
∑
j

β′j . (3.67)

For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

αr1+1 − βj = α′r1 − β
′
j,

which, via (3.65), implies βj = β′j. Similarly, for each 1 ≤ j ≤ r1 − 1,
−fπ[d− j + 1] = −gπ[d− j + 1] is given by

x1αr1+1 + αr1+2 − βj = (1 + x1)α
′
r1
− β′j,

which, via (3.64), implies βk1 = βj − β′j. Therefore,

0 <
d∑
j=1

(β′j − βj) =

r1−1∑
j=1

(β′j − βj) +
d∑

j=r1

(β′j − βj) = −(r1 − 1)βk1 ≤ 0 ,

a contradiction.

Subcase 2.3: n = r1 + 1. By Lemma 3.3.4, we know α′r1+1 > 0, α′r1+2, α
′
r1+3 ≥ 0,

and α′i = 0 for all i ∈ {1, . . . , r1}. Since zr1+1yr1 · · · yd ∈ in<lex
(G) (by (3.6)) and

g /∈ in<lex
(G), there exists an index `1 ∈ {r1, . . . , d} such that β′`1 = 0. Then,

fπ[d− `1 + 1] =

r1+3∑
i=1

αiA(q)d−`1+1,i + β`1 (3.68)

gπ[d− `1 + 1] = −α′r1+1, (3.69)

where (3.68) = (3.69) as π(f) = π(g). Now, we claim m ∈ {1, . . . , r1} (we need
not consider m = r1 + 1 since f and g are relatively prime and n = r1 + 1 in
this case). Indeed, assume otherwise, that is, suppz (f) ⊆ {r1 + 2, r1 + 3}. Then,
fπ[d − ` + 1] = β` ≥ 0 for all ` ∈ {r1, . . . , d}, but from (3.69), gπ[d − `1 + 1] < 0
since α′r1+1 > 0. This contradicts π(f) = π(g). Hence, given the structure of
Lemma 3.3.4 and since m cannot be r1 +1, we consider the following subsubcases.
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(a) m ∈ {1, . . . , r1− 1}. Since zmy1 · · · yr1−1 ∈ in<lex
(G) (by (3.3)), zmyr1 · · · yd ∈

in<lex
(G) (by (3.4)), and f /∈ in<lex

(G), there exist indices k2 ∈ {1, . . . , r1−1}
and `2 ∈ {r1, . . . , d} such that βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (3.70)

gπ[d− k2 + 1] = −x1α′r1+1 − α′r1+2 + β′k2 (3.71)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (3.72)

gπ[d− `2 + 1] = −α′r1+1 + β′`2 , (3.73)

where (3.70) = (3.71) and (3.72) = (3.73) since π(f) = π(g). Subtracting
the equation (3.72) = (3.73) from (3.68) = (3.69) implies β`1 = −β′`2 . Since
βj, β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies β`1 = β′`2 = 0. Also, by Lemma 3.3.4

and since n = r1 + 1, we know αm > 0, αm+1 ≥ 0, αr1+1 = 0, and αi = 0 for
all i ∈ {1, . . . , r1 + 3}\{m,m+ 1}. Consequently, since β`1 = 0, the equation
(3.68) = (3.69) simplifies to

−(r1 −m+ 1)αm − (r1 −m)αm+1 = −α′r1+1,

which implies

α′r1+1 = (r1 −m+ 1)αm + (r1 −m)αm+1. (3.74)

Furthermore, the equation −(3.70) = −(3.71) simplifies to

(1 + (r1 −m+ 1)x1)αm + (1 + (r1 −m)x1)αm+1 = x1α
′
r1+1 + α′r1+2 − β′k2 .

Via (3.74), this equation is equivalent to

αm + αm+1 + x1α
′
r1+1 = x1α

′
r1+1 + α′r1+2 − β′k2 ,

which implies

β′k2 = α′r1+2 − αm − αm+1. (3.75)

Note that if α′r1+2 = 0, β′k2 < 0 by (3.75), a contradiction. Hence, we may
assume α′r1+2 > 0. Also, since |suppz (f)| ≥ |suppz (g)| and αr1+1 = 0, it
follows that αm+1 > 0 and α′r1+3 = 0. Now, fπ[d+ 1] = gπ[d+ 1] gives that

αm + αm+1 +
∑
j

βj = α′r1+1 + α′r1+2 +
∑
j

β′j.

Substituting (3.74), this implies∑
j

βj >
∑
j

β′j . (3.76)
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For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

(r1 −m+ 1)αm + (r1 −m)αm+1 − βj = α′r1+1 − β′j,

which, via (3.74), implies βj = β′j. Similarly, for each 1 ≤ j ≤ r1 − 1,
−fπ[d− j + 1] = −gπ[d− j + 1] is given by

(1 + (r1 −m+ 1)x1)αm + (1 + (r1 −m)x1)αm+1 − βj = x1α
′
r1+1 + α′r1+2 − β′j,

which, via (3.74) and (3.75), implies

β′k2 = β′j − βj. (3.77)

Therefore, by (3.76) and (3.77),

0 <
d∑
j=1

(βj − β′j) =

r1−1∑
j=1

(βj − β′j) +
d∑

j=r1

(βj − β′j)

=

r1−1∑
j=1

(βj − β′j)

= −(r1 − 1)β′k2
≤ 0,

a contradiction.

(b) m = r1. Since zr1y1 · · · yr1−1 ∈ in<lex
(G) (by (3.3)), zr1yr1 · · · yd ∈ in<lex

(G)
(by (3.4)), and f /∈ in<lex

(G), there exist indices k2 ∈ {1, . . . , r1 − 1} and
`2 ∈ {r1, . . . , d} such that βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (3.78)

gπ[d− k2 + 1] = −x1α′r1+1 − α′r1+2 + β′k2 (3.79)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (3.80)

gπ[d− `2 + 1] = −α′r1+1 + β′`2 , (3.81)

where (3.78) = (3.79) and (3.80) = (3.81) since π(f) = π(g). Subtracting
the equation (3.80) = (3.81) from (3.68) = (3.69) implies β`1 = −β′`2 . Since
βj, β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies β`1 = β′`2 = 0. We know αr1+1 = 0

since α′r1+1 > 0. Also, by Lemma 3.3.4, we know αr1 > 0 and αr1+2 ≥ 0, so
it follows that αi = 0 for all i ∈ {1, . . . , r1 + 3} \ {r1, r1 + 2}. Consequently,
since β`1 = 0, the equation (3.68) = (3.69) simplifies to

αr1 = α′r1+1. (3.82)
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Furthermore, the equation −(3.78) = −(3.79) simplifies to

(1 + x1)αr1 + αr1+2 = x1α
′
r1+1 + α′r1+2 − β′k2 .

Via (3.82), this equation is equivalent to

(1 + x1)α
′
r1+1 + αr1+2 = x1α

′
r1+1 + α′r1+2 − β′k2 ,

which implies

β′k2 = α′r1+2 − α′r1+1 − αr1+2. (3.83)

Note that if α′r1+2 = 0, β′k2 < 0 by (3.83), a contradiction. Hence, it must
be that α′r1+2 > 0. However, by the relatively prime condition, this implies
αr1+2 = 0. As a consequence, since αr1+1 = αr1+2 = 0 and α′r1+1, α

′
r1+2 > 0,

we have that

|suppz (f)| = 1 < 2 ≤ |suppz (g)| ,

contradicting our assumption that |suppz (f)| ≥ |suppz (g)|.
Subcase 2.4: n ∈ {r1 + 2, r1 + 3}. In this case, suppz (g) ⊆ {r1 + 2, r1 + 3}.
Consequently, for 1 ≤ j ≤ d, we have that

gπ[d− j + 1] =

{
−α′r1+2 + β′j, for 1 ≤ j ≤ r1 − 1

β′j, for r1 ≤ j ≤ d.
(3.84)

Now, we consider the possibilities for m.

(a) m ∈ {1, . . . , r1 + 1}. Since zmyr1 · · · yd ∈ in<lex
(G) (by (3.4) or (3.6)) and

f /∈ in<lex
(G), there exists an index `1 ∈ {r1, . . . , d} such that β`1 = 0.

Therefore, since αm > 0, we have that

fπ[d− `1 + 1] =

r1+3∑
i=1

αiA(q)d−`1+1,i︸ ︷︷ ︸
< 0

+
d∑
j=1

βjA(q)d−`1+1,r1+3+j︸ ︷︷ ︸
=0

< 0,

but this contradicts π(f) = π(g) since gπ[d− `1 + 1] = β′`1 ≥ 0 from (3.84).

(b) m ∈ {r1 + 2, r1 + 3}. Note that since the relatively prime condition implies
m 6= n, it follows that |suppz (f)| = |suppz (g)| = 1 in this case. Therefore,
we may assume without loss of generality that m = r1 + 2 and n = r1 + 3.
Since zr1+2y1 . . . yr1−1 ∈ in<lex

(G) (by (3.5)) and f /∈ in<lex
(G), there exists

an index k1 ∈ {1, . . . , r1 − 1} such that βk1 = 0. Therefore, since αr1+2 > 0,
we have that α′r1+2 = 0 and

fπ[d− k1 + 1] =

r1+3∑
i=1

αiA(q)d−k1+1,i︸ ︷︷ ︸
< 0

+
d∑
j=1

βjA(q)d−k1+1,r1+3+j︸ ︷︷ ︸
=0

< 0.

33



However, this contradicts π(f) = π(g) since gπ[d−k1+1] = −α′r1+2︸ ︷︷ ︸
=0

+β′k1 ≥ 0

from (3.84).

Since each of the above cases (which together cover all possible pairs (m,n)) yields a
contradiction, Lemma 3.3.3 implies that G forms a Gröbner basis of IA(q) with respect
to <lex, as required.

In sum, since we have demonstrated that G is a Gröbner basis of IA(q) with re-
spect to <lex, we know in<lex

(G) = in<lex
(IA(q)). Therefore, since we can clearly

see in<lex
(G) is squarefree, Theorem 3.1.4 holds and [34, Corollary 8.9] proves Corol-

lary 3.1.5. As such, there exists a regular unimodular triangulation of the points in
A′(q), as desired.

3.4 Facets of the Triangulation

For q = (rx11 , (1 + r1x1)
r1−1) with r1 > 1, let T (q) denote the regular unimodular tri-

angulation induced by the lexicographic term order <lex used in the previous section.
This triangulation is identical to the placing triangulation obtained by placing the
columns of A(q) from left to right in the order as given in Figure 3.1. Throughout
this section, we will abuse notation in that the variable in K[A(q)] associated with
each vertex of the triangulation T (q) will represent that vertex. The Gröbner ba-
sis G for IA(q) in Theorem 3.3.1 indicates which elements of M(K([A(q)])) generate
the minimal non-faces (i.e., minimal subsets of vertices that are not faces) of T (q).
From this, we can deduce the facets of T (q) as outlined in the following corollary.
More specifically, the facets correspond to the squarefree monomials of degree d + 1
in K[A(q)] that are not contained in in<lex

(G).

Corollary 3.4.1. Let f ∈ M(K[A(q)]) be squarefree with f /∈ in<lex
(G). Let m

denote the minimal index such that zm divides f . Then, f defines a facet of T (q)
when it is one of the following possible forms (the notation ŷk indicates the variable
yk is omitted):

(i) if 1 ≤ m ≤ r1 − 1, then f = zmzm+1zr1+1y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd for any
1 ≤ i ≤ r1 − 1 and r1 ≤ j ≤ d;

(ii) if m = r1, then f = zr1zr1+1zr1+2y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd for any 1 ≤ i ≤
r1 − 1 and r1 ≤ j ≤ d;

(iii) if m = r1 + 1, then f = zr1+1zr1+2zr1+3y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd for any
1 ≤ i ≤ r1 − 1 and r1 ≤ j ≤ d or f = zr1+1zr1+3y1 · · · yr1−1yr1 · · · ŷj · · · yd for
any r1 ≤ j ≤ d;

(iv) if m = r1+2, then f = zr1+2zr1+3y1 · · · ŷi · · · yr1−1yr1 · · · yd for any 1 ≤ i ≤ r1−1;

(v) if m = r1 + 3, then f = zr1+3y1 · · · yd.
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Proof. The normalized volume of ∆(1,q), denoted N(q), is given by N(q) = 1 +∑d
i=1 qi = 1 + x1r1 + (r1− 1)(1 + r1x1) = r1(1 + r1x1). Since T (q) is unimodular, we

know the number of facets of T (q) should equal N(q). Indeed, since d = r1+x1−1, it
is straightforward to verify that there are precisely r1(1 + r1x1) squarefree monomials
given by the forms (i)-(v) above. Moreover, note that any facet of T (q) will require
the inclusion of at least one z-variable since facets must consist of d + 1 points and
there are a total of d y-variables.

Now, suppose 1 ≤ m ≤ r1 − 1. By Lemma 3.3.4, we know suppz (f) ⊆ {m,m +
1, r1 + 1}. Since zmy1 · · · yr1−1 ∈ in<lex

(G) by (3.3) and zmyr1 · · · yd ∈ in<lex
(G)

by (3.4), there exist indices 1 ≤ i ≤ r1− 1 and r1 ≤ j ≤ d such that yi - f and yj - f .
As facets of T (q) must contain exactly d + 1 points, this forces the inclusion of all
other y-variables, zm+1, and zr1+1. With no further restriction on i and j, we obtain
form (i).

Now suppose m = r1. By Lemma 3.3.4, we know suppz (f) ⊆ {r1, r1 + 1, r1 + 2}.
Again, (3.3) and (3.4) indicate that zr1y1 · · · yr1−1 ∈ in<lex

(G) and zr1yr1 · · · yd ∈
in<lex

(G), so there exist indices 1 ≤ i ≤ r1 − 1 and r1 ≤ j ≤ d such that yi - f and
yj - f . Thus, to have a collection of d + 1 points, it must be that f is of the form
f = zr1zr1+1zr1+2y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd, giving form (ii).

Next, suppose m = r1 + 1. Lemma 3.3.4 gives that suppz (f) ⊆ {r1 + 1, r1 +
2, r1 + 3}, and we have that zr1+1yr1 · · · yd ∈ in<lex

(G) by (3.6). Therefore, there
exists some index r1 ≤ j ≤ d such that yj - f . Now, suppose zr1+2 | f . Since
zr1+2y1 · · · yr1−1 ∈ in<lex

(G) by (3.5), there exists some index 1 ≤ i ≤ r1 − 1 such
that yi - f . The exclusion of yi and yj necessarily requires the inclusion of all other
y-variables and zr1+3 to have a total of d + 1 points. As such, f is of the form
f = zr1+1zr1+2zr1+3y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd. Otherwise, if zr1+2 - f , then the
exclusion of yj forces the inclusion of all other y-variables and zr1+3 to have a to-
tal of d + 1 points. Thus, f is of the form f = zr1+1zr1+3y1 · · · yr1−1yr1 · · · ŷj · · · yd.
Combining these two possibilities gives form (iii).

Next, suppose m = r1 + 2. Since zr1+2y1 · · · yr1−1 ∈ in<lex
(G) by (3.5), there exists

some index 1 ≤ i ≤ r1 − 1 such that yi - f . To have a total of d + 1 points, this
forces the inclusion of all other y-variables and zr1+3. Therefore, f is of the form
f = zr1+2zr1+3y1 · · · ŷi · · · yr1−1yr1 · · · yd, giving (iv).

Finally, suppose m = zr1+3. Then, for f to be supported on d + 1 points, we
must necessarily include all y-variables, yielding the form f = zr1+3y1 · · · yd. Note
that f /∈ in<lex

(G), so we obtain form (v).

Given that we know an explicit description of the facets of the unimodular tri-
angulation T (q), a natural problem is to find a shelling of the facets from which
we can recover the Ehrhart h∗-polynomial using standard techniques [6, 33]. This
would provide another proof of Ehrhart h∗-unimodality, and give an explicit combi-
natorial interpretation to the coefficients of the h∗-polynomial. It is not clear how
to construct a shelling in which both the shelling and the restriction sets admit a
reasonable description. For example, one natural way to list the facets is to list them
in lexicographic order; however, while this works for some small values of r1 and x1,

35



computations with SageMath [35] show that this is not a shelling order when x1 is
sufficiently large compared to r1.

It would be of interest to describe the regular unimodular triangulations of the 2-
supported IDP reflexive ∆(1,q), and to connect these shellings explicitly to the Ehrhart
theory of these simplices. However, the most important aspect of the existence of
the regular unimodular triangulation given in this work is to establish that the h∗-
unimodality of these simplices falls within the framework of Theorem 1.4.2.

Copyright c© Derek W. Hanely, 2022.
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Chapter 4 Classification of 3-Supported IDP Reflexive ∆(1,q)

This chapter extends known classification results of IDP reflexive ∆(1,q) in the 2-
supported case to the 3-supported case. This chapter is based on joint work with
Benjamin Braun, Robert Davis, Morgan Lane, and Liam Solus. The results contained
within have been submitted for publication and can be found here [10].

4.1 Integer Decomposition Property & Reflexivity

Throughout this chapter, we seek to identify a classification result (similar to Theo-
rem 3.1.1) of ∆(1,q) that are both IDP and reflexive in the 3-supported case. Recall
Theorem 2.2.1 which provided a number-theoretic basis for studying reflexive sim-
plices in Q. The following setup provides us with another means of studying reflexive
∆(1,q).

Setup 4.1.1. Let q be reflexive and supported by the vector r = (r1, . . . , rd) ∈ Zd≥1
with multiplicity x = (x1, . . . , xd) ∈ Zd≥1. Let ` = `(q) be the integer defined by

1 +
d∑
i=1

xiri = ` · lcm (r1, r2, . . . , rd) . (4.1)

Finally, we define s := (s1, . . . , sd) where

si :=
lcm (r1, . . . , rd)

ri
(4.2)

for each 1 ≤ i ≤ d.

This setup provides useful restrictions on q, such as the following lemma.

Lemma 4.1.2 (Braun, Liu, [13]). In Setup 4.1.1, we have that gcd(r1, . . . , rd) = 1
and thus

lcm (s1, . . . , sd) = lcm (r1, . . . , rd) . (4.3)

4.1.1 Restrictions on IDP reflexive ∆(1,q)

For each r-vector, it is known [11] that there are infinitely many reflexive ∆(1,q)’s
supported on r. Given a pair ∆(1,q) and ∆(1,p), both reflexive and IDP, Braun and
Davis [9] proved that a new reflexive IDP ∆(1,y) can be constructed as shown in the
following theorem. Suppose that ∆(1,q) ⊂ Rn and ∆(1,p) ⊂ Rm are reflexive and the
vertices of ∆(1,p) are labeled as v0, v1, . . . , vm. For every i = 0, 1, . . . ,m, define the
affine free sum

∆(1,q) ∗i ∆(1,p) := conv
{

(∆(1,q) × 0m) ∪ (0n ×∆(1,p) − vi)
}
⊂ Rn+m.

The notion of an affine free sum can be generalized significantly [4], but in this article
it will not be necessary.
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Theorem 4.1.3 (Braun, Davis [9]). The simplex ∆(1,q) is reflexive and arises as
a free sum ∆(1,p) ∗0 ∆(1,w) if and only if ∆(1,p) and ∆(1,w) are reflexive and q =
(p, (1 +

∑
i pi)w). If ∆(1,p) is IDP reflexive and ∆(1,q) is IDP, then ∆(1,q) ∗0 ∆(1,p)

is IDP. Further, if ∆(1,p) and ∆(1,q) are reflexive, IDP, and h∗-unimodal, then so is
∆(1,q) ∗0 ∆(1,p).

Thus, there are infinitely many reflexive IDP ∆(1,q)’s that arise as a result of the
affine free sum operation, and these all satisfy Conjecture 1.3.8. However, the support
vector for ∆(1,q) ∗0 ∆(1,p) is distinct from that of p and q, so this operation does not
respect the stratification of Q given by support vectors. In fact, for many r-vectors,
it is impossible to generate infinitely many reflexive IDP ∆(1,q)’s supported on r, as
the following theorem shows.

Theorem 4.1.4 (Braun, Davis, Solus [11]). Given a support vector r ∈ Zd≥1, if there
exists some j < d such that rj - rd, then only finitely many reflexive IDP ∆(1,q)’s are
supported on r.

Computational experiments suggest that ∆(1,q) satisfying the criteria in Theo-
rem 4.1.4 are rare. Specifically, consider all r-vectors that are partitions of M ≤ 75
with distinct entries, such that there exist some rj such that rj - rd. Table 4.1 shows
that only 509 IDP reflexives are supported on r-vectors of this type. While this sug-
gests that IDP reflexive ∆(1,q)’s are rare, it is important to keep in mind that this
represents a relatively small sample set of simplices. For example,

q = (210, 211, 211, 211, 211, 1055, 1055, . . . , 1055︸ ︷︷ ︸
41 times

)

is not among this sample, but it is both IDP and reflexive with 210 - 1055.

Table 4.1: Experimental results.

# of r-vectors with some rj - rd # of IDP reflexives supported by these
501350 509

Fortunately, the following theorem provides a number-theoretic characterization
of the IDP property for reflexive ∆(1,q).

Theorem 4.1.5 (Braun, Davis, Solus [11]). The reflexive simplex ∆(1,q) is IDP if
and only if for every j = 1, . . . , n, for all b = 1, . . . , qj − 1 satisfying

b

(
1 +

∑
i 6=j qi

qj

)
−
∑
i 6=j

⌊
bqi
qj

⌋
≥ 2 (4.4)

there exists a positive integer c < b satisfying the following equations, where the first
is considered for all 1 ≤ i ≤ n with i 6= j:⌊

bqi
qj

⌋
−
⌊
cqi
qj

⌋
=

⌊
(b− c)qi

qj

⌋
, and (4.5)

38



c

(
1 +

∑
i 6=j qi

qj

)
−
∑
i 6=j

⌊
cqi
qj

⌋
= 1. (4.6)

The next corollary of Theorem 4.1.5 provides a necessary condition for a reflexive
∆(1,q) to be IDP. This condition is an essential tool in our study of IDP reflexive
elements of Q.

Corollary 4.1.6 (Braun, Davis, Solus [11]). If ∆(1,q) is reflexive and IDP, then for
all j = 1, 2, . . . , n,

1 +
n∑
i=1

(qi mod qj) = qj

or equivalently

1 +
n∑
i=1

xi(ri mod rj) = rj .

Definition 4.1.7. Any q satisfying one (hence both) of these equations for all j =
1, . . . , n is said to satisfy the necessary condition for IDP.

Note that if q satisfies the necessary condition for IDP, then ∆(1,q) is reflexive.

4.1.2 Stratifying by multiplicity instead of support

The necessary condition for IDP allows us to produce the following new refinement of
Theorem 4.1.4. It has the added benefit of giving a geometric interpretation of IDP
reflexive simplices as lattice points contained in a d-dimensional box with boundary
determined by the coordinates of the support vector r ∈ Zd≥1.

Theorem 4.1.8. Let (r,x) = q ∈ Zn≥1, where q has at least two distinct entries and
r1 < r2 < · · · < rd. If ∆(1,q) is reflexive and IDP, then

xi ≤ ri+1/ri

for all i ≤ d− 1. Further, if there exists some j < d such that rj - rd, then

xd ≤ rj/(rd mod rj) .

Thus, if there exists some j < d such that rj - rd, then there are at most finitely many
IDP reflexives supported on r.

Proof. Let j < d, and assume that ∆(1,q) is reflexive and IDP. Then by Corollary 4.1.6,
we have

xjrj ≤ 1 +
d∑
i=1

xi(ri mod rj+1) = rj+1 ,

from which the first inequality follows. Similarly, if rj - rd, then

xd(rd mod rj) ≤ 1 +
d∑
i=1

xi(ri mod rj) = rj ,
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from which the second inequality follows.

Theorem 4.1.8 indicates that there are important relationships between the mul-
tiplicity vector x of q and the support vector r. By shifting our primary focus to
the multiplicity vector, we are able to give a complete classification of all reflexive
IDP ∆(1,q)’s that are supported on up to 3 distinct entries. If x has one entry, it is
straightforward to prove the following.

Proposition 4.1.9. For q = (rx11 ), if ∆(1,q) is IDP reflexive, then q = (1, 1, . . . , 1).

If x has two entries, meaning that r has two distinct entries, the following theorem
applies.

Theorem 4.1.10 (Braun, Davis, Solus [11]). For the vector q = (rx11 , r
x2
2 ), ∆(1,q) is

IDP reflexive if and only if it satisfies the necessary condition. The following is a
classification of all such vectors, for x1, x2 ≥ 1:

1. q = (1x1 , (1 + x1)
x2)

2. q = ((1 + x2)
x1 , (1 + (1 + x2)x1)

x2)

Note that in the first case r1 | r2 while in the second case r1 - r2. We next extend
these known results using Theorem 4.1.8 and Corollary 4.1.6 to the 3-supported case.

Theorem 4.1.11. Consider a 3-supported vector q = (r,x) such that ∆(1,q) satisfies
the necessity condition for IDP given in Corollary 4.1.6. If x = (x1, x2, x3) is the
multiplicity vector, then r is of one of the following forms.

(i) r = (1, 1 + x1, (1 + x1)(1 + x2)).

(ii) r = (1 + x2, 1 + x1(1 + x2), (1 + x1(1 + x2))(1 + x2)).

(iii) r = ((1 + x2)(1 + x3), 1 + x1(1 + x2)(1 + x3), (1 + x1(1 + x2)(1 + x3))(1 + x2)).

(iv) r = (1, (1 + x1)(1 + x3), (1 + x1)(1 + x2(1 + x3))).

(v) r = (1 + (1 +x3)x2, (1 +x3)(1 +x1(1 + (1 +x3)x2)), (1 + (1 + (1 +x3)x2)x1)(1 +
(1 + x3)x2)).

(vi) r = ((1 + x3)(1 + (1 + x3)x2), (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)), (1 + (1 +
x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)).

(vii) r = (1 + x3, (1 + x3)(1 + x1(1 + x3)), (1 + (1 + x3)x1)(1 + (1 + x3)x2)).

(viii) There exists some k, s ≥ 1, where

r = (1+kx2, (skx2+s+k)(1+x1(1+kx2)), (1+x1(1+kx2))(1+x2(skx2+s+k)))

and
x = (x1, x2, skx2 + s− k + 1) .
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Further, the first seven r-vectors produce IDP ∆(1,q)’s, while (viii) does not.

As the necessary condition for IDP (see Definition 4.1.7) implies reflexivity, one
immediate consequence of Proposition 4.1.9 together with Theorems 4.1.10 and 4.1.11
is a complete classification of all IDP reflexive simplicies corresponding to weighted
projective spaces with one projective coordinate having weight unity and the others
limited to three options. Note that the first seven r-vectors in Theorem 4.1.11 each
correspond to a unique divisibility criteria for r = (r1, r2, r3), as follows:

(i) r1 | r2, r1 | r3, r2 | r3

(ii) r1 - r2, r1 | r3, r2 | r3

(iii) r1 - r2, r1 - r3, r2 | r3

(iv) r1 | r2, r1 | r3, r2 - r3

(v) r1 - r2, r1 | r3, r2 - r3

(vi) r1 - r2, r1 - r3, r2 - r3

(vii) r1 | r2, r1 - r3, r2 - r3

(viii) r1 - r2, r1 | r3, r2 - r3

We see that (v) and (viii) share the same divisibility pattern, yet of these two families
only (v) contains IDP simplices. Note that for each positive integer vector x of length
at most three, and for each divisibility condition on the support vector r, there is at
most one support vector r such that q = (r,x) is reflexive IDP. It would be of interest
to determine if this is true for x of arbitrary length.

4.2 Ehrhart Unimodality in the 3-Supported Case

Prior to discussing the case of reflexive IDP ∆(1,q), it is worth asking whether or
not h∗-unimodality is expected for an arbitrary ∆(1,q). Based on experiments con-
ducted via SageMath [35], there appears to be a trend in the overall frequency of
h∗-unimodality of ∆(1,q) as the normalized volume N(q) grows. Specifically, let
V (M) := {∆(1,q) : N(q) = M} and define un(M) to be the fraction of the sim-
plices in V (M) having a unimodal h∗-vector. The values of un(M) for M ≤ 75 have
been computed exactly, involving 61,537,394 simplices. A plot of approximate values
of un(M) using random samples is given in Figure 4.1.

The limiting behavior of un(M) is not known; various random sampling of q with
fixed values of N(q) suggests that un(M) continues to decrease as M →∞, but the
rate of decrease also appears to be approaching zero. This leads us to the following
question.

Question 4.2.1. Is lim
M→∞

un(M) = 0? If not, does the limit exist? If not, what are

the values of lim sup
M→∞

un(M) and lim inf
M→∞

un(M)?
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Figure 4.1: Approximate values of un(M) for M ≤ 120, based on randomly sampled
partitions.

Based on this empirical data, it seems reasonable to suspect that those ∆(1,q) hav-
ing unimodal h∗-polynomials are uncommon, and thus Conjecture 1.3.8 is suggesting
that reflexive IDP ∆(1,q)’s are unusual in this regard. Returning our focus to the
case where ∆(1,q) is IDP reflexive, we will later need to know that the h∗-polynomial
of ∆(1,q) often admits a geometric series as a factor, as the following definition and
theorem demonstrate.

Definition 4.2.2. Suppose r,x, ` and s are as given in Setup 4.1.1. We define

gxr (z) :=
∑

0≤α<lcm(r1,...,rd)

zu(α)

where

u(α) = uxr (α) := α`−
d∑
i=1

xi

⌊
α

si

⌋
.

Theorem 4.2.3 (Braun, Liu [13]). Assuming Setup 4.1.1, we have that

h∗(∆(1,q); z) =

(
`−1∑
t=0

zt

)
· gxr (z) .

Example 4.2.4. For q = (17, 34, 55), we have

(z2 + z + 1)(x14 + x11 + 2x10 + 2x8 + 3x7 + 2x6 + 2x4 + x3 + 1) .

Note that in this case, ` = 3 and a factor of z2 + z + 1 appears in the h∗-polynomial.

42



4.2.1 h∗-unimodality and ∆(1,q)

It has been previously shown [11] that all 1-supported and 2-supported IDP reflexive
∆(1,q) are h∗-unimodal. We consider here several of the 3-supported classes given in
Theorem 4.1.11.

Theorem 4.2.5. For x = (x1, x2, x3) a positive integer vector, if q = (r,x) where r
is one of the following forms, then ∆(1,q) is h∗-unimodal.

(i) r = (1, 1 + x1, (1 + x1)(1 + x2)).

(ii) r = (1 + x2, 1 + x1(1 + x2), (1 + x1(1 + x2))(1 + x2)).

(iv) r = (1, (1 + x1)(1 + x3), (1 + x1)(1 + x2(1 + x3))).

Proof. As shown in the proof of Theorem 4.1.11, these cases all arise as affine free
sums. Thus, by Theorem 4.1.3, they are h∗-unimodal.

Remark 4.2.6. Based on experimental evidence using SageMath [35], we conjecture
that the remaining four cases, listed here, are also h∗-unimodal.

(iii) r = ((1 + x2)(1 + x3), 1 + x1(1 + x2)(1 + x3), (1 + x1(1 + x2)(1 + x3))(1 + x2)).

(v) r = (1 + (1 +x3)x2, (1 +x3)(1 +x1(1 + (1 +x3)x2)), (1 + (1 + (1 +x3)x2)x1)(1 +
(1 + x3)x2)).

(vi) r = ((1 + x3)(1 + (1 + x3)x2), (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)), (1 + (1 +
x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)).

(vii) r = (1 + x3, (1 + x3)(1 + x1(1 + x3)), (1 + (1 + x3)x1)(1 + (1 + x3)x2)).

However, these do not arise as affine free sums. While a direct proof of h∗-unimodality
for these cases might be possible, it is not clear how to carry this out other than by
ad hoc arguments given case-by-case, similar to the proof of Theorem 4.1.11.

It is interesting that among the ∆(1,q) simplices, some can be found that are “on
the boundary” of both h∗-unimodality and the IDP condition. One example is the
following. Recall that for a lattice polytope P , the Hilbert basis of cone (P ) is the
minimal generating set of cone (P ) ∩ Zn+1. Thus, P is IDP if and only if the Hilbert
basis of cone (P ) consists of the elements at height 1 in cone (P ), i.e. (1, P ) ∩ Zn+1.

Theorem 4.2.7. For n ≥ 1, define r(n) = (1, 3n, 10n, 15n) and x(n) = (2n −
1, 1, 1, 1). Thus, q(n) := (r(n),x(n)) = rs((3n, 10n, 15n)). For n ≥ 2 with q =
(r(n),x(n)), we have

h∗(∆(1,q); z) = (1 + z2 + z4 + z6 + · · ·+ z2n−2) · (1 + 7z + 14z2 + 7z3 + z4) ,

which can be verified to be non-unimodal. For n ≥ 1 with q = (r(n),x(n)), let
V (n) = {(1,v) : v a vertex of ∆(1,q)}. The Hilbert basis for cone

(
∆(1,q)

)
consists of
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V (n) and the columns of the following matrix (where the height coordinate is the first
entry): 

1 1 1 1 1 1 1 2 2
0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 −2 −3
0 0 −1 −1 −2 −3 −4 −7 −10
0 −1 −1 −2 −3 −5 −6 −10 −15


Thus, there are exactly two elements in the Hilbert basis of height greater than 1, both
of which are at height 2.

As another example, for n ≥ 2, let

q = ((n, (2n− 1)(n+ 1), 2n(n+ 1)), (1, 1, 2(n− 1))) .

For n ≤ 20, it has been verified that

h∗(∆(1,q); z) = (1, (n+ 1)2,(2n+ 1)(n+ 1) + 1, (2n+ 1)(n+ 1), (2n+ 1)(n+ 1) + 1, . . . ,

(2n+ 1)(n+ 1) + 1, (2n+ 1)(n+ 1), (2n+ 1)(n+ 1) + 1, (n+ 1)2, 1)

and that the Hilbert basis of cone
(
∆(1,q)

)
consists of the points (1,∆(1,q)) ∩ Z2n+1

together with following the lattice point at height two (as given by the first coordi-
nate):

(2,−1,−2n− 1,−2(n− 1),−2(n− 1),−2(n− 1), . . . ,−2(n− 1))T .

Thus, this family of simplices is another example of polytopes on the boundary of
both IDP and h∗-unimodality; this family is more arithmetically complicated than
the one given in Theorem 4.2.7.

4.2.2 Proof of derivation of (i)-(viii) in Theorem 4.1.11

We first suppose that (r,x) satisfies the necessity condition, and show that the re-
sulting r-vectors must be of one of the eight types listed. Since r1 < r2 < r3,
reducing modulo r3 gives r3 = 1 + r1x1 + r2x2 . If we next consider the modulo
r2 necessary condition, then substituting the above for r3 and simplifying gives
r2 = 1 + x1r1 + x3((1 + r1x1) mod r2) . The challenge here is that we would like
to specify r2 using this formula, but it involves a remainder which could fluctuate.
The key observation is to recall that if the necessary condition for IDP holds, then
Theorem 4.1.8 implies x1 ≤ r2/r1. Thus, we have

1 + x1r1 ≤ 1 + (r2/r1)r1 = 1 + r2 . (4.7)

There are now three cases to consider.
Case 1: Suppose we have equality in (4.7). It is immediate that in this case

(1 + r1x1) mod r2 = (1 + r2) mod r2 = 1 ,
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and thus r2 = 1 + x1r1 + x3 = r2 + 1 + x3 . As x3 ≥ 1, this yields a contradiction, and
thus this case does not occur.

Case 2: Consider if 1 + x1r1 = r2 in (4.7). Then

(1 + r1x1) mod r2 = r2 mod r2 = 0 .

Thus, we have (r,x) = ((r1, 1 + x1r1, r3), (x1, x2, x3)) . However, we know that

r3 = 1 + r1x1 + r2x2 = (1 + x1r1)(1 + x2) ,

and thus (r,x) = ((r1, 1 + x1r1, (1 + x1r1)(1 + x2)), (x1, x2, x3)) . If r1 = 1, then the
result is (r,x) = ((1, 1 + x1, (1 + x1)(1 + x2)), (x1, x2, x3)) . which corresponds to (i)
in our theorem statement. If r1 ≥ 2, we consider our necessary condition modulo
r1 and obtain r1 = 1 + x2 + x3((1 + x2) mod r1) . Since (by this equality) we have
1 + x2 ≤ r1, it follows that there are two subcases.

Subcase 2.1: Suppose 1 + x2 = r1. Then our vector is

(r,x) = ((1 + x2, 1 + x1(1 + x2), (1 + x1(1 + x2))(1 + x2)), (x1, x2, x3)) ,

yielding (ii) in our theorem statement.

Subcase 2.2: Suppose 1 + x2 < r1. Then

r1 = 1 + x2 + x3((1 + x2) mod r1) = 1 + x2 + x3(1 + x2) = (1 + x2)(1 + x3) .

Then our vector is

(r,x) =(((1 + x2)(1 + x3),

1 + x1(1 + x2)(1 + x3),

(1 + x1(1 + x2)(1 + x3))(1 + x2)), (x1, x2, x3)) ,

yielding (iii) in our theorem statement.
Case 3: If 1+x1r1 < r2 in (4.7), it is immediate that (1+r1x1) mod r2 = 1+r1x1 ,

and thus r2 = 1 + x1r1 + (1 + r1x1)x3 = (1 + x3)(1 + x1r1) . Combining this with

r3 = 1 + r1x1 + r2x2 = 1 + r1x1 + (1 + x3)(1 + x1r1)x2 = (1 + r1x1)(1 + (1 + x3)x2) ,

we obtain that

(r,x) = ((r1, (1 + x3)(1 + x1r1), (1 + r1x1)(1 + (1 + x3)x2)), (x1, x2, x3)) ,

which is a function of the multiplicities and the value r1. If r1 = 1, then we obtain

(1, (1 + x1)(1 + x3), (1 + x1)(1 + x2(1 + x3)))

which corresponds to item (iv) in our theorem statement. If r1 ≥ 2, we again consider
the necessary condition modulo r1, for which we obtain

r1 = 1 + x2((1 + x3)(1 + x1r1) mod r1) + x3((1 + r1x1)(1 + (1 + x3)x2) mod r1)

= 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1).
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We now have three subcases to consider.
Subcase 3.1: If 1 + x3 < r1 then

r1 = 1 + x2(1 + x3) + x3((1 + (1 + x3)x2) mod r1) .

This requires two subsubcases.
Subsubcase 3.1.1: Suppose (1 + (1 + x3)x2) = r1. Then x3 is arbitrary, and we

have
(r,x) =((1 + (1 + x3)x2, (1 + x3)(1 + x1(1 + (1 + x3)x2)),

(1 + (1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)), (x1, x2, x3)) ,

establishing item (v) in the theorem statement.
Subsubcase 3.1.2: Suppose (1 + (1 + x3)x2) < r1. Then

r1 = 1 + x2(1 + x3) + x3(1 + (1 + x3)x2) = (1 + x3)(1 + (1 + x3)x2) ,

and thus it follows that for x = (x1, x2, x3), we have

r =((1 + x3)(1 + (1 + x3)x2),

(1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)),

(1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)) ,

establishing item (vi) in the theorem statement.
Subcase 3.2: Suppose 1 + x3 = r1. Then for x = (x1, x2, x3) we have

r = (1 + x3, (1 + x3)(1 + x1(1 + x3)), (1 + (1 + x3)x1)(1 + (1 + x3)x2)) ,

establishing item (vii) in the theorem statement.

Subcase 3.3: Suppose 1 + x3 > r1. If r1 | (1 + x3), then we have

r1 = 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1) = 1 + x3 .

This is a contradiction, and thus it follows that r1 - 1 + x3. If r1 | x2, then

r1 = 1 + x2((1 + x3) mod r1) + x3 ,

which implies that r1 | (1 + x3), again a contradiction. Thus, we must have that
r1 - x2, and since r1 - (1 + x3) we also know r1 > x2 since

r1 = 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1) > x2 .

We now consider two subsubcases.
Subsubcase 3.3.1: Suppose r1 | (1 + x2(1 + x3)). Then

r1 = 1 + x2((1 + x3) mod r1) .

Thus, there exists some k ≥ 1 where r1 = 1 + x2k, and we are forced to have

r1 = 1 + x2k = 1 + x2((1 + x3) mod r1)
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implying that k = (1 + x3) mod 1 + x2k. Thus, for some s ≥ 1 we set

x3 = skx2 + s− k + 1

and we have the case

r =(1 + kx2, (2 + skx2 + s− k)(1 + x1(1 + kx2)),

(1 + x1(1 + kx2))(1 + x2(2 + skx2 + s− k)))

with
x = (x1, x2, skx2 + s− k + 1) ,

corresponding to item (viii) in our theorem statement.

Subsubcase 3.3.2: Suppose r1 - (1 + x2(1 + x3)), so we have

r1 = 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1) .

We also have that 1 + x3 > r1 > x2. However, r1 - (1 + x2(1 + x3)) implies that

r1 = 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1) ≥ 1 + x3 ,

yielding a contradiction.
This completes our analysis of possible cases based on the necessary condition. In

particular, all of the types listed yield reflexive simplices.

4.2.3 Proof of IDP for types (i), (ii), and (iv) and of non-IDP for type
(viii) in Theorem 4.1.11

We now show that type (viii) r-vectors yield non-IDP simplices, where we apply
Theorem 4.1.5 and the notation therein. Let qj = r2 = (skx2+s+k)(1+x1(1+kx2)),
and set b = skx2 + s + k which is strictly less than r2 as needed for Theorem 4.1.5.
It is tedious but straightforward to reduce the left-hand side of (4.4) to the form
x3 + (x3 − 1)x2(skx2 + s+ k). Note that by the assumption of type (viii), we have

x3 = s+ 1 + k(sx2 − 1) ≥ 2

and thus

x3 + (x3 − 1)x2(skx2 + s+ k) ≥ 2 + x2(skx2 + s+ k) ≥ 2 ,

satisfying (4.4). Setting qi = r3, we now ask if there is a solution 0 < c < b satisfy-
ing (4.5) and (4.6). Using the fact that we must have 0 < c < b = skx2 + s + k, we
obtain that the left-hand side of 4.5 is: (⌊

(skx2 + s+ k)(1 + x1(1 + kx2))(1 + x2(skx2 + s+ k))

(skx2 + s+ k)(1 + x1(1 + kx2))

⌋
−
⌊
c(1 + x2(skx2 + s+ k))

skx2 + s+ k

⌋
= 1 + x2(skx2 + s+ k)− cx2 −

⌊
c

skx2 + s+ k

⌋
= 1 + x2(skx2 + s+ k − c)
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On the other hand, using 0 < c < b = skx2 + s+ k, we find that the right-hand side
of 4.5 is: ⌊

(skx2 + s+ k − c)(1 + x2(skx2 + s+ k))

(skx2 + s+ k)

⌋
=x2(skx2 + s+ k − c) +

⌊
1− c

skx2 + s+ k

⌋
=x2(skx2 + s+ k − c)

Thus, there is no c value in this range that satisfies (4.5), and hence we find that
simplices of type (viii) are not IDP.

We next show that simplices of types (i)-(vii) are IDP. Types (i), (ii), and (iv)
all follow from affine free sum decompositions as follows. For (i), observe that

r = (1x1) ∗0 (1x2) ∗0 (1x3) ,

and thus Theorem 4.1.3 applies. For (ii), observe that

r = ((1 + x1)
x2 , (1 + x1(1 + x2))

x2) ∗0 (1x3) ,

and thus Theorem 4.1.10 and Theorem 4.1.3 apply to finish this case. Finally, for
(iv) observe that

r = (1x3) ∗0 ((1 + x2)
x3 , (1 + x2(1 + x3))

x3) ,

and thus again Theorem 4.1.10 and Theorem 4.1.3 apply to finish this case.
Types (iii), (v), (vi), and (vii) do not follow from affine free sum decompositions,

and thus we must use Theorem 4.1.5 directly. Throughout the remainder of this
proof, we use the notation

h(b) := b

(
1 +

∑
i 6=j qi

qj

)
−
∑
i 6=j

⌊
bqi
qj

⌋
to denote the left-hand side of (4.4).

4.2.4 Proof of IDP for type (iii) in Theorem 4.1.11

We next verify IDP for r-vectors of type (iii) using Theorem 4.1.5. We must consider
three cases corresponding to three possible values of qj.

Case: qj = (1 + x2)(1 + x3). It is straightforward to verify that

h(b) = b− x3
⌊

b

(1 + x3)

⌋
,

and using this formula one can check that

h(k(1 + x3)) = k .
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Combining these two observations, it follows that h(b) = 1 only when b = 1 and
b = (1 + x3), thus identifying the b-values we are required to check in (4.4). To
verify that (4.5) always has the desired solution, we consider three cases. If qi =
(1 + x2)(1 + x3), the result is trivial. If qi = x1(1 + x2)(1 + x3) + 1, then we may
select c = 1, from which it follows that both sides of (4.5) are equal to x1(b − 1).
If qi = (1 + x2)(x1(1 + x2)(1 + x3) + 1), then we set c = (1 + x3), from which it is
straightforward to compute that both sides of (4.5) are equal to b(1 + x2)x1− x1(1 +
x2)(1 + x3)− 1 + bb/(1 + x3)c. This completes our first case.

Case: qj = x1(1 + x2)(1 + x3) + 1. It is straightforward to verify that

h(b) = b− x1
⌊

b(1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
,

where the values of b range from 1 to x1(1 + x2)(1 + x3). To verify that (4.5) always
has the desired solution, we consider three cases. If qi = x1(1 + x2)(1 + x3) + 1, the
result is trivial. If qi = (1 +x2)(1 +x3), then we write b = αx1 +β, where 0 ≤ β < x1
and 0 ≤ α ≤ (1 + x2)(1 + x3) for α, β ∈ Z. Consequently, we have⌊

b(1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
=

⌊
(αx1 + β)(1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
= α +

⌊
β(1 + x2)(1 + x3)− α
x1(1 + x2)(1 + x3) + 1

⌋
= α +

{
0, β > 0

−1, β = 0

}
.

In the case that β > 0, we have that h(b) = b − x1α = β. Hence, the viable
candidates for c-values from 1 to x1(1 + x2)(1 + x3) that satisfy equation (4.6) are
precisely those c such that c ≡ 1 mod x1. Therefore, the b-values we are required
to check in (4.4) are all b = αx1 + β, where 2 ≤ β ≤ x1 − 1. In this case, we
may choose c = αx1 + 1, from which it follows that both sides of (4.5) are equal
to 0, giving the desired result. On the other hand, if β = 0, then we have that
h(b) = h(αx1) = αx1 − x1(α− 1) = x1. If x1 = 1, then h(b) = 1. Thus, we need only
consider when x1 > 1. In order to satisfy (4.4), it must be that α > 0. Given that
x1 > 1 and α > 0, it is straightforward to verify that both sides of (4.5) when c = 1
are equal to α − 1. Finally, if qi = (1 + x2)(x1(1 + x2)(1 + x3) + 1), then we can set
c = 1 and the result is immediate. This completes our second case.

Case: qj = (1 + x2)(x1(1 + x2)(1 + x3) + 1). We first identify those values of b
that satisfy (4.4) and (4.6). It is straightforward to verify that

h(b) = b− x1
⌊

b(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
− ((1 + x2)− 1)

⌊
b

(1 + x2)

⌋
.

Writing b = m(1 + x2) + t where 0 ≤ m ≤ x1(1 + x2)(1 + x3) and 0 ≤ t ≤ (1 + x2), it
follows that

h(b) = h(m(1 + x2) + t) = m+ t− x1
⌊
m(1 + x2)(1 + x3) + t(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.
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We can now further divide into cases: either we have m = x1(1 + x2)(1 + x3) or we
have m = kx1 + w where 0 ≤ k < (1 + x2)(1 + x3) and 0 ≤ w < x1, which yields

h(b) = h((kx1 + w)(1 + x2) + t) = w + t− x1
⌊
w(1 + x2)(1 + x3) + t(1 + x3)− k

x1(1 + x2)(1 + x3) + 1

⌋
.

For m 6= x1(1 + x2)(1 + x3), observe that since 0 ≤ w(1 + x2)(1 + x3) ≤ x1 − 1
and 0 ≤ t(1 + x3) < (1 + x2)(1 + x3), with 0 ≤ k < (1 + x2)(1 + x3), we have that

0 ≤ w(1 +x2)(1 +x3) + t(1 +x3) < x1(1 +x2)(1 +x3). Thus,
⌊
w(1+x2)(1+x3)+t(1+x3)−k

x1(1+x2)(1+x3)+1

⌋
is equal to either 0 or −1.

Subcase 1 of 3: Suppose m = x1(1 + x2)(1 + x3). Since 0 ≤ t(1 + x3) <
(1 + x2)(1 + x3), we have

h((1 + x2)(1 + x3)x1(1 + x2) + t) = t− x1
⌊
t(1 + x3)− (1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
= t+ x1.

If this is equal to 1, then it must be that t = 0 and x1 = 1. Thus, if x1 = 1, we have
that h((1 + x2)(1 + x3)(1 + x2)) = 1.

Subcase 2 of 3: Suppose now that m 6= x1(1 + x2)(1 + x3) and that⌊
w(1 + x2)(1 + x3) + t(1 + x3)− k

x1(1 + x2)(1 + x3) + 1

⌋
= −1 .

Then since w, t ≥ 0 and x1 ≥ 1, we have h(b) = w+ t+x1 = 1 which forces w = t = 0
and x1 = 1. In this case, h(k(1 + x2)) = 1 any time that k > 0. Thus, if x1 = 1, we
have that h(k(1 + x2)) = 1 when 0 < k < (1 + x2)(1 + x3).

Subcase 3 of 3: Suppose again that m 6= x1(1 + x2)(1 + x3) and that⌊
w(1 + x2)(1 + x3) + t(1 + x3)− k

x1(1 + x2)(1 + x3) + 1

⌋
= 0 .

Then 0 ≤ k ≤ w(1 +x2)(1 +x3) + t(1 +x3), which implies that either (A) 0 < w < x1
with 0 ≤ t < (1 + x2) or (B) w = 0 with k ≤ t(1 + x3). If (A) holds, then
h(b) = w + t = 1 forces w = 1 and t = 0 since w > 0, which means that h(b) = 1
when b = (kx1 + 1)(1 + x2) for 0 ≤ k < (1 + x2)(1 + x3). If (B) holds, then our same
equation forces w = 0 and t = 1 when k ≤ (1 + x3), which means that h(b) = 1 when
b = kx1(1 + x2) + 1 for 0 ≤ k < (1 + x2)(1 + x3) and k ≤ (1 + x3).

We summarize the values of b for which h(b) = 1 that were just derived:

• If x1 = 1 and 0 < k ≤ (1 + x2)(1 + x3) we have b = k(1 + x2).

• If x1 ≥ 1 and 0 ≤ k < (1 + x2)(1 + x3), we have b = (kx1 + 1)(1 + x2).

• If x1 ≥ 1 and 0 ≤ k < (1 + x2)(1 + x3) and k ≤ (1 + x3), we have b =
kx1(1 + x2) + 1.
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Our next goal is to establish that (4.5) is always satisfied; recall that we are in the
case where qj = (1+x2)(x1(1+x2)(1+x3)+1). If qi = (1+x2)(x1(1+x2)(1+x3)+1),
then (4.5) is trivially satisfied. If qi = x1(1+x2)(1+x3)+1, we write b = m(1+x2)+t
where 0 ≤ m < x1(1 + x2)(1 + x3) + 1 and 0 ≤ t < (1 + x2). Substituting this form
of b into (4.5) yields the equation

−
⌊

c

(1 + x2)

⌋
=

⌊
t− c

(1 + x2)

⌋
.

If b > (1 + x2), we set c = (1 + x2) and the equation is satisfied. If 2 < b < (1 + x2),
then we set c = 1 and the equation is satisfied.

If qi = (1 + x2)(1 + x3), the analysis becomes more complicated. We write b =
m(1 + x2) + t where 0 ≤ m < d and 0 ≤ t < (1 + x2). Our argument will proceed by
considering x1 = 1 and x1 > 1 separately.

Suppose x1 = 1. Then the left-hand-side of (4.5) is reduced to⌊
t(1 + x3)−m

(1 + x2)(1 + x3) + 1

⌋
−
⌊

c(1 + x3)

(1 + x2)(1 + x3) + 1

⌋
and the right-hand-side to ⌊

t(1 + x3)−m− c(1 + x3)

(1 + x2)(1 + x3) + 1

⌋
.

Since m < (1 + x3), if t(1 + x3) − m < 0 this forces t = 0 and 0 < m, thus b is a
multiple of (1 + x2), and we found earlier that h(m(1 + x2)) = 1. Thus, we need
proceed no further. If t(1 +x3)−m ≥ 0, then since m < (1 +x3) we must have t ≥ 1,

and we also have t(1 + x3)−m < (1 + x2)(1 + x3). Thus,
⌊

t(1+x3)−m
(1+x2)(1+x3)+1

⌋
= 0, from

which it follows that (4.5) reduces to

−
⌊

c(1 + x3)

(1 + x2)(1 + x3) + 1

⌋
=

⌊
t(1 + x3)−m− c(1 + x3)

(1 + x2)(1 + x3) + 1

⌋
.

If m = 0, set c = 1 and this equation is solved. If m ≥ 1, set c = m(1 + x2) + 1
which is less than b in this case, and this equation is again satisfied. This completes
our proof for x1 = 1.

We next consider when x1 ≥ 2, maintaining our previous notation of b = m(1 +
x2) + t. Write m = fx1 + g where 0 ≤ f ≤ b(1 + x3)/x1c and 0 ≤ g < x1 except in
the case where f = b(1 +x3)/x1c in which case g is bounded above by (1 +x3)− (1 +
x3)b(1 + x3)/x1c. This leads to the left-hand-side of (4.5) having the form

f +

⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
−
⌊

c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
while the right-hand-side has the form

f +

⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f − c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.

51



We thus need to solve the equation⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
−
⌊

c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
=

⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f − c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
subject to the constraints 0 ≤ g < x1 (with the exception mentioned above), 0 ≤ t ≤
(1 + x2), and 0 ≤ f ≤ b(1 + x3)/x1c. Note that the first two inequalities imply that
0 ≤ g(1 + x2)(1 + x3) + t(1 + x3) < x1(1 + x2)(1 + x3), and also f ≤ b(1 + x3)/x1c ≤
(1 + x2)(1 + x3), hence⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
=

{
0 if g(1 + x2)(1 + x3) + t(1 + x3) ≥ f
−1 if g(1 + x2)(1 + x3) + t(1 + x3) < f

Subcase 1 of 2: Suppose g(1 + x2)(1 + x3) + t(1 + x3) − f ≥ 0. Then (4.5)
reduces to

−
⌊

c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
=

⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f − c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.

Note that f ≤ b(1 + x3)/x1c < (1 + x3), and thus we can set c = fx1(1 + x2) + 1
which is less than b. The left-hand-side of our above equation is given by

−
⌊

(fx1(1 + x2) + 1)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
= −

⌊
fx1(1 + x2)(1 + x3) + (1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
= −

⌊
fx1(1 + x2)(1 + x3) + f + (1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
= − f .

Similarly, the right-hand-side of our equation is given by

− f +

⌊
f − (1 + x3) + g(1 + x2)(1 + x3) + t(1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
= − f +

⌊
−(1 + x3) + g(1 + x2)(1 + x3) + t(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.

Since h(b) is assumed to be at least 2, we have that one or both of g and t are non-
zero. Combining this observation with g(1 +x2)(1 +x3) + t(1 +x3)− f ≥ 0 it follows
that g(1+x2)(1+x3)+t(1+x3) > 0. Note that (1+x3) | (g(1+x2)(1+x3)+t(1+x3)),
and thus x1(1 + x2)(1 + x3) + 1 > g(1 + x2)(1 + x3) + t(1 + x3)− (1 + x3) ≥ 0, which
forces the right-hand-side of our equation to equal −f , satisfying (4.5).

Subcase 2 of 2: Suppose g(1 + x2)(1 + x3) + t(1 + x3)− f < 0. Note that since
g, (1 + x2)(1 + x3), t, (1 + x3) ≥ 0, it follows that f ≥ 1 and thus b = (fx1 + g)(1 +
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x2) + t ≥ (1 + x2). Set c = (1 + x2), which is less than b. With these conditions,
the left-hand-side of (4.5) is easily seen to equal −1. The right-hand-side of (4.5) is
given by ⌊

g(1 + x2)(1 + x3) + t(1 + x3)− f − (1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.

Since g(1 + x2)(1 + x3) + t(1 + x3)− f < 0 and −(1 + x2)(1 + x3) < 0, the numerator
above is strictly negative. Also, since g, (1+x2)(1+x3), t, (1+x3) ≥ 0, the numerator
is minimized by −f−(1+x2)(1+x3) > −(1+x3)−(1+x2)(1+x3) ≥ −2(1+x2)(1+x3).
But, since we assumed that x1 ≥ 2, it follows that x1(1+x2)(1+x3)+1 > 2(1+x2)(1+
x3) and thus the floor function above is equal to −1, satisfying equality for (4.5). This
completes the proof establishing IDP for r-vectors of type (iii).

4.2.5 Proof of IDP for type (v) in Theorem 4.1.11

We next verify IDP for r-vectors of type (v) using Theorem 4.1.5. Again, we must
consider three cases corresponding to three possible values of qj.

Case: qj = 1 + (1 + x3)x2. It is straightforward to verify that

h(b) = b− x2
⌊

b(1 + x3)

1 + (1 + x3)x2

⌋
,

where 1 ≤ b ≤ (1 + x3)x2. To verify that (4.5) always has the desired solution, we
consider three cases. If qi = 1 + (1 + x3)x2, the result is trivial. If qi = (1 + x3)(1 +
x1(1 + (1 +x3)x2)), then we write b = αx2 +β, where 0 ≤ β < x2 and 0 ≤ α ≤ 1 +x3
for α, β ∈ Z. Consequently, observe that⌊

b(1 + x3)

1 + (1 + x3)x2

⌋
=

⌊
(αx2 + β)(1 + x3

1 + (1 + x3)x2

⌋
= α+

⌊
β(1 + x3)− α
1 + (1 + x3)x2

⌋
= α+

{
0, β > 0

−1, β = 0

}
.

In the case that β > 0, this formula implies that h(b) = b − x2α = β. Hence,
the viable candidates for c-values that satisfy (4.6) are precisely those c such that
c ≡ 1 mod x2. Therefore, the b-values we are required to check in (4.4) are all
b = αx2 + β, where 2 ≤ β ≤ x2 − 1. In this case, we may choose c = αx2 + 1, from
which it follows that both sides of (4.5) are equal to (β − 1)(1 + x3)x1. On the other
hand, if β = 0, then we have that h(b) = h(αx2) = αx2 − x2(α − 1) = x2. If x2 = 1,
then h(b) = 1. Thus, we need only consider when x2 > 1. Given that x2 > 1 and
0 ≤ α ≤ 1 + x3, it is straightforward to verify that both sides of (4.5) when c = 1 are
equal to (αx2− 1)(1 + x3)x1 +α− 1. If qi = (1 + (1 + (1 + x3)x2)x1)(1 + (1 + x3)x2),
then we may again set c = 1, from which it is straightforward to compute that both
sides of (4.5) are equal to (b − 1)(1 + (1 + (1 + x3)x2)x1). This completes our first
case.

Case: qj = (1 + x3)(1 + x1(1 + (1 + x3)x2)). We first identify those values of b
that satisfy (4.4) and (4.6). It is straightforward to verify that

h(b) = b− x1
⌊

b(1 + (1 + x3)x2)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
− x3

⌊
b

1 + x3

⌋
.
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Writing b = α(1 + x3) + β, where 0 ≤ β < 1 + x3 and 0 ≤ α ≤ x1(1 + (1 + x3)x2), it
follows that

h(b) = h(α(1 + x3) + β)

= α + β − x1
⌊
α(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
.

We can now further divide into cases: either we have α = x1(1 + (1 + x3)x2) or we
have α = γx1 + δ where 0 ≤ γ < 1 + (1 + x3)x2 and 0 ≤ δ < x1, which yields

h(b) = h((γx1 + δ)(1 + x3) + β)

= δ + β − x1
⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2)− γ(1 + x3)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
.

For α 6= x1(1 + (1 + x3)x2), observe that since 0 ≤ δ(1 + x3)(1 + (1 + x3)x2) ≤
(x1−1)(1+x3)(1+(1+x3)x2) and 0 ≤ β(1+(1+x3)x2) < (1+x3)(1+(1+x3)x2) with
0 ≤ γ(1+x3) < (1+x3)(1+(1+x3)x2), we have that 0 ≤ δ(1+x3)(1+(1+x3)x2)+β(1+

(1+x3)x2) < x1(1+x3)(1+(1+x3)x2). Thus,
⌊
δ(1+x3)(1+(1+x3)x2)+β(1+(1+x3)x2−γ(1+x3)

(1+x3)(1+x1(1+(1+x3)x2))

⌋
is equal to either 0 or −1.

Subcase 1 of 3: Suppose α = x1(1 + (1 + x3)x2). Since 0 ≤ β(1 + (1 + x3)x2) <
(1 + x3)(1 + (1 + x3)x2), we have

h((1 + x3)x1(1 + (1 + x3)x2) + β) = β − x1
⌊
β(1 + (1 + x3)x2)− (1 + x3)(1 + (1 + x3)x2)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
= β + x1.

If this is equal to 1, then it must be that β = 0 and x1 = 1. Thus, if x1 = 1, we have
that h((1 + x3)(1 + (1 + x3)x2)) = 1.

Subcase 2 of 3: Suppose now that α 6= x1(1 + (1 + x3)x2) and that⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ(1 + x3)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
= −1.

Then, writing α = γx1 + δ where 0 ≤ γ < 1 + (1 + x3)x2 and 0 ≤ δ < x1, we have
h(b) = δ + β + x1. Since δ, β ≥ 0 and x1 ≥ 1, for this to equal 1, we must have
δ = β = 0 and x1 = 1. In this case, h(γ(1 + x3)) = 1 whenever γ > 0. Thus, if
x1 = 1, we have that h(γ(1 + x3)) = 1 when 0 < γ < 1 + (1 + x3)x2.

Subcase 3 of 3: Suppose now that α 6= x1(1 + (1 + x3)x2) and that⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ(1 + x3)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
= 0.

Then, it follows that 0 ≤ γ(1 + x3) ≤ δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2),
which given the bounds on γ, δ, and β, implies that either (A) 0 < δ < x1 or (B)
δ = 0 with γ(1 + x3) ≤ β(1 + (1 + x3)x2). If (A) holds, then h(b) = δ + β = 1 forces
δ = 1 and β = 0 since δ > 0. Therefore, h(b) = 1 when b = (γx1 + 1)(1 + x3) for
0 ≤ γ < 1 + (1 + x3)x2. If (B) holds, then our same equation forces δ = 0 and β = 1
when γ(1 + x3) ≤ 1 + 1(1 + x3)x2, which further implies 0 ≤ γ ≤ x2. This means
h(b) = 1 when b = γx1(1 + x3) + 1 for 0 ≤ γ ≤ x2.

We summarize the values of b for which h(b) = 1 that were just derived:
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• If x1 = 1 and 0 < γ ≤ 1 + (1 + x3)x2, we have b = γ(1 + x3).

• If x1 ≥ 1 and 0 ≤ γ < 1 + (1 + x3)x2, we have b = (γx1 + 1)(1 + x3).

• If x1 ≥ 1 and 0 ≤ γ < 1 + (1 + x3)x2 and γ < x2, we have b = γx1(1 + x3) + 1.

Next, we establish that (4.5) is always satisfied; recall that we are in the case where
qj = (1+x3)(1+x1(1+(1+x3)x2)). If qi = (1+x3)(1+x1(1+(1+x3)x2)), then (4.5)
is trivially satisfied. Now suppose qi = (1 + (1 + (1 + x3)x2)x1)(1 + (1 + x3)x2).
Note that b 6= 1 + x3 since h(1 + x3) = 1. If b > 1 + x3, we set c = 1 + x3
from which it is straightforward to compute that both sides of (4.5) are equal to

bx2 − (1 + (1 + x3)x2) +
⌊

b
1+x3

⌋
. Otherwise, if b < 1 + x3, we may choose c = 1 from

which it follows that both sides of (4.5) are equal to (b − 1)x2 since 1 ≤ b < 1 + x3
implies 0 ≤ b− 1 < 1 + x3. Finally, if qi = 1 + (1 + x3)x2, we write b = α(1 + x3) + β,
where 0 ≤ β < 1 + x3 and 0 ≤ α < 1 + x1(1 + (1 + x3)x2). Moreover, we write
α = γx1 + δ, where 0 ≤ δ < x1 and 0 ≤ γ ≤ 1 + (1 +x3)x2. We consider the following
possible cases:

Subcase 1 of 4: Suppose β > 0 and δ > 0. Then, choosing c = (γx1+1)(1+x3) <
(γx1 + δ)(1 + x3) + β = b, it follows that both sides of (4.5) are equal to 0.

Subcase 2 of 4: Suppose β = 0 and δ > 0. Note that δ 6= 1 since h((γx1 +
1)(1 + x3)) = 1. Therefore, 2 ≤ δ < x1, so we may consider c = (γx1 + 1)(1 + x3) <
(γx1 + δ)(1 + x3) = b. Since 2 ≤ δ < x1 and 0 ≤ γ < 1 + (1 + x3)x2, both sides
of (4.5) are equal to 0.

Subcase 3 of 4: Suppose β > 0 and δ = 0. If 0 ≤ γ ≤ x2, then β 6= 1
since h(γx1(1 + x3) + 1) = 1. Thus, it must be that β > 1, thereby allowing us to
consider c = γx1(1 + x3) + 1 < γx1(1 + x3) + β = b. With this choice of c, it is
straightforward to verify both sides of (4.5) will again be equal to 0. Otherwise, if
x2 < γ ≤ 1 + (1 + x3)x2, consider c = x2x1(1 + x3) + 1 < γx1(1 + x3) + β = b. Then,
the left-hand side of (4.5) simplifies to

γ − x2 +

⌊
β(1 + (1 + x3)x2)− γ(1 + x3)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
,

and the right-hand side of (4.5) simplifies to

γ − x2 +

⌊
β(1 + (1 + x3)x2)− γ(1 + x3)− 1

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
.

Indeed, these two quantities are equivalent because β(1 + (1 + x3)x2) 6= γ(1 + x3).
To see this, assume otherwise. Then, it would follow that β = (γ − βx2)(1 + x3).
However, this is a contradiction as we assumed 0 < β < 1 + x3. Therefore, we have
that (4.5) is satisfied.

Subcase 4 of 4: Suppose β = δ = 0. In this case, b = γx1(1 + x3). Moreover,
note that γ > 0 since otherwise, b = 0 contradicting our bounds on b. If x1 = 1,
then h(b) = h(γ(1 + x3)) = 1. Hence, we need only consider when x1 > 1. Since
γ > 0 and x1 > 1, we may consider c = 1 + x3 < γx1(1 + x3) = b, from which it is
straightforward to find that both sides of (4.5) are equal to γ − 1.
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As these cases cover all possible values for β and δ, this completes our second
case.

Case: qj = (1 + (1 + (1 + x3)x2)x1)(1 + (1 + x3)x2). Thus, we consider 1 ≤ b ≤
(1 + (1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)− 1. Again, we will start by identifying those
values of b that satisfy (4.4) and (4.6). It is straightforward to verify that

h(b) = b− x1
⌊

b

1 + (1 + (1 + x3)x2)x1

⌋
− x2

⌊
b(1 + x3)

1 + (1 + x3)x2

⌋
.

Writing b = α(1 + (1 + x3)x2) + β, where 0 ≤ β < 1 + (1 + x3)x2 and 0 ≤ α <
1 + (1 + (1 + x3)x2)x1, it follows that

h(b) = h(α(1 + (1 + x3)x2) + β)

= α + β − x1
⌊
α(1 + (1 + x3)x2) + β

1 + (1 + (1 + x3)x2)x1

⌋
− x2

⌊
β(1 + x3)

1 + (1 + x3)x2

⌋
.

Now, writing β = γx2 + δ , where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, and α = εx1 + η,
where 0 ≤ η < x1 and 0 ≤ ε ≤ 1 + (1 + x3)x2, it follows that

h(b) = η + δ − x1
⌊
η(1 + (1 + x3)x2) + γx2 + δ − ε

1 + (1 + (1 + x3)x2)x1

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
.

Since 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, observe that⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
=

{
−1, δ = 0, γ > 0

0, otherwise
.

Given the bounds on ε, η, γ, and δ, note that −(1 + (1 +x3)x2) ≤ η(1 + (1 +x3)x2) +
γx2 + δ − ε < 1 + (1 + (1 + x3)x2)x1. Consequently, it follows that

|η(1 + (1 + x3)x2) + γx2 + δ − ε| < 1 + (1 + (1 + x3)x2)x1,

and this implies that
⌊
η(1+(1+x3)x2)+γx2+δ−ε

1+(1+(1+x3)x2)x1

⌋
is equal to either 0 or −1. To resolve

this floor function, we consider the following subcases which analyze the sign of the
numerator of its argument. Let n denote that numerator, i.e., n = η(1+(1+x3)x2)+
γx2 + δ − ε.

Subcase 1 of 3: Suppose η = 0 and γx2 + δ ≥ ε. Then, we have that n ≥ 0,
implying ⌊

η(1 + (1 + x3)x2) + γx2 + δ − ε
1 + (1 + (1 + x3)x2)x1

⌋
= 0.

Therefore, our equation for h(b) simplifies to

h(b) = δ − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.
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If δ = 0 and γ > 0, then h(b) = h(εx1(1 + (1 + x3)x2) + γx2) = x2. Thus, if x2 = 1,
we have that h(b) = h(εx1(2 + x3) + γ) = 1 whenever γ ≥ ε with γ > 0. Otherwise,
h(b) = δ, which forces δ = 1, i.e., h(b) = h(εx1(1+(1+x3)x2)+γx2+δ) = 1 whenever
γx2 + δ ≥ ε.

Subcase 2 of 3: Suppose η = 0 and γx2 + δ < ε. Then, we have that n < 0,
implying ⌊

η(1 + (1 + x3)x2) + γx2 + δ − ε
1 + (1 + (1 + x3)x2)x1

⌋
= −1.

Therefore, our equation for h(b) simplifies to

h(b) = δ + x1 − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

If δ = 0 and γ > 0, then h(b) = h(εx1(1 + (1 + x3)x2) + γx2) = x1 + x2 > 1.
Otherwise, h(b) = δ + x1, which forces δ = 0 and x1 = 1 since x1 ≥ 1, i.e., h(b) =
h(ε(1 + (1 + x3)x2) + γx2) = 1 whenever γx2 < ε.

Subcase 3 of 3: Suppose η ≥ 1. Then, we have that n ≥ 0, implying⌊
η(1 + (1 + x3)x2) + γx2 + δ − ε

1 + (1 + (1 + x3)x2)x1

⌋
= 0.

Therefore, our equation for h(b) simplifies to

h(b) = η + δ − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

If δ = 0 and γ > 0, then h(b) = h((εx1+η)(1+(1+x3)x2)+γx2) = η+x2 ≥ 1+x2 > 1.
Otherwise, h(b) = η + δ, which forces δ = 0 and η = 1 since we assume η ≥ 1, i.e.,
h(b) = h((εx1 + 1)(1 + (1 + x3)x2) + γx2) = 1.

We summarize the values of b for which h(b) = 1 that were just derived:

• If x1 = 1, η = δ = 0, and 0 ≤ γx2 < ε ≤ 1 + (1 + x3)x2, we have b =
ε(1 + (1 + x3)x2) + γx2.

• If x2 = 1, η = δ = 0, and 0 ≤ ε ≤ γ ≤ 1 + x3 with γ > 0, we have b =
εx1(2 + x3) + γ.

• If x1, x2 ≥ 1, η = 0, δ = 1, and 0 ≤ ε ≤ γx2 + 1 ≤ 1 + (1 + x3)x2, we have
b = εx1(1 + (1 + x3)x2) + γx2 + 1.

• If x1, x2 ≥ 1, η = 1, δ = 0, 0 ≤ γ ≤ 1 + x3, and 0 ≤ ε ≤ 1 + (1 + x3)x2, we have
b = (εx1 + 1)(1 + (1 + x3)x2) + γx2.

Our next goal is to establish that (4.5) is always satisfied; recall that we are in
the case where qj = (1 + (1 + (1 + x + 3)x2)x1)(1 + (1 + x3)x2). If qi = (1 + (1 +
(1 + x+ 3)x2)x1)(1 + (1 + x3)x2), the result is trivial. If qi = 1 + (1 + x3)x2, we write
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b = α(1+(1+x3)x2)+β, where 0 ≤ β < 1+(1+x3)x2 and 0 ≤ α < 1+(1+(1+x3)x2)x1.
Furthermore, we write β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, and we
write α = εx1 + η, where 0 ≤ η < x1 and 0 ≤ ε ≤ 1 + (1 + x3)x2. We consider the
following possible cases:

Subcase 1 of 4: Suppose η > 0 and δ > 0. We consider c = (εx1 + 1)(1 +
(1 + x3)x2) + γx2 < (εx1 + η)(1 + (1 + x3)x2) + γx2 + δ = b. Since 0 < η < x1 and
0 ≤ δ < x2, it follows that 0 < (η − 1)(1 + (1 + x3)x2) + δ < x1(1 + (1 + x3)x2).
Therefore, it is straightforward to verify that both sides of (4.5) are equal to 0.

Subcase 2 of 4: Suppose η = 0 and δ > 0. If γx2 + 1 ≥ ε, note that δ 6= 1 since
otherwise, h(b) = h(εx1(1+(1+x3)x2)+γx2 +1) = 1. Thus, we have that δ > 1, and
we consider c = εx1(1+(1+x3)x2)+γx2+1 < εx1(1+(1+x3)x2)+γx2+δ = b. Given
that 1 < δ < x2 implies γx2 + δ > γx2 + 1 ≥ ε, it is straightforward to verify that
our choice of c gives that both sides of (4.5) are equal to 0. Otherwise, if γx2 + 1 < ε
(and hence, ε > 1), we consider c = 1 + x1(1 + (1 + x3)x2) ≤ δ+ x1(1 + (1 + x3)x2) <
εx1(1 + (1 +x3)x2) +γx2 + δ = b. With this choice of c, it is straightforward to verify
both sides of (4.5) are equal to

ε− 1 +

⌊
γx2 + δ − ε

1 + (1 + (1 + x3)x2)x1

⌋
.

Subcase 3 of 4: Suppose η > 0 and δ = 0. Note that η 6= 1 since otherwise,
h(b) = h((εx1 + 1)(1 + (1 + x3)x2) + γx2) = 1. Thus, we have that η > 1, and we
consider c = (εx1 + 1)(1 + (1 + x3)x2) + γx2 < (εx1 + η)(1 + (1 + x3)x2) + γx2 = b.
Since 1 < η < x1, it is straightforward to verify that both sides of (4.5) are equal to
0.

Subcase 4 of 4: Suppose η = δ = 0. Further suppose γx2 < ε (and hence,
ε > 0). If x1 = 1, then h(b) = h(ε(1 + (1 + x3)x2) + γx2) = 1, so we may assume
x1 > 1. Consider c = 1 + (1 + x3)x2 < εx1(1 + (1 + x3)x2) + γx2 = b. Since x1 > 1
and γx2 < ε, it follows that −x1(1 + (1 + x3)x2) ≤ γx2 − ε − (1 + (1 + x3)x2) < 0.
Given this, it is straightforward to verify that both sides of (4.5) are equal to ε− 1.
Now, suppose γx2 > ε. Note that γ 6= 0 since otherwise, ε < 0 contradicting our
initial bounds on ε. Thus, we have that γ > 0. Moreover, if x2 = 1, it follows
that h(b) = h(εx1(2 + x3) + γ) = 1, so we may assume x2 > 1. Taking c = 1, the
inequality γx2 > ε readily implies that both sides of (4.5) are equal to ε. Finally,
suppose γx2 = ε. Note that neither γ nor ε can be equal to 0 since otherwise, we would
have η = δ = γ = ε = 0, implying b = 0. This, of course, contradicts the bounds
on b. Moreover, we may again assume x2 > 1 (and thus, ε > 1) since otherwise,
h(b) = h(εx1(2+x3)+γ) = 1. Since γx2 = ε, observe that b = ε(1+x1(1+(1+x3)x2)).
As such, we may consider c = 1 +x1(1 + (1 +x3)x2) which is strictly less than b since
ε > 1. This choice of c readily gives that both sides of (4.5) are equal to ε− 1.

Finally, if qi = (1 + x3)(1 + x1(1 + (1 + x3)x2)), we begin again by writing b =
α(1+(1+x3)x2)+β, where 0 ≤ β < 1+(1+x3)x2 and 0 ≤ α < 1+(1+(1+x3)x2)x1.
Furthermore, we write β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, and we
write α = εx1 + η, where 0 ≤ η < x1 and 0 ≤ ε ≤ 1 + (1 + x3)x2. We consider the
following possible cases:
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Subcase 1 of 3: Suppose δ > 1. Combined with our bounds on γ, this implies
that 0 ≤ (δ− 1)(1 +x3)− γ < 1 + (1 +x3)x2. Taking c = 1, it follows that both sides
of (4.5) are equal to α(1 + x3) + γ.

Subcase 2 of 3: Suppose δ = 1. If γx2 + 1 ≥ ε, note that η 6= 0 since otherwise,
h(b) = h(εx1(1 + (1 + x3)x2) + γx2 + 1) = 1. Thus, η ≥ 1, and we may consider
c = (εx1+1)(1+(1+x3)x2) < (εx1+η)(1+(1+x3)x2)+γx2+1 = b. Since γ ≤ 1+x3,
it is straightforward to show both sides of (4.5) are equal to (η−1)(1+x3)+γ. On the
other hand, if γx2 + 1 < ε (and hence, ε > 1), we may consider c = 1 + (1 + x3)x2 <
(εx1 + η)(1 + (1 + x3)x2) + γx2 + 1 = b, from which it follows that both sides of (4.5)
are equal to (εx1 + η − 1)(1 + x3) + γ.

Subcase 3 of 3: Suppose δ = 0. Note that η 6= 1 since otherwise, h(b) = 1. This
lends itself to two possibilities: (A) η = 0 or (B) η > 1. If (A) holds, we first suppose
γx2 < ε (and hence, ε > 0). If x1 = 1, then h(b) = 1, so we may assume x1 > 1. Since
ε > 0 and x1 > 1, we may consider c = 1+(1+x3)x2 < εx1(1+(1+x3)x2)+γx2 = b.
For this choice of c, it readily follows that both sides of (4.5) are equal to

(εx1 − 1)(1 + x3) +

⌊
γx2

1 + (1 + x3)x2

⌋
.

Now, suppose γx2 > ε. Since ε ≥ 0 by construction, this inequality implies γ 6= 0.
Moreover, note that if x2 = 1, then h(b) = 1. Thus, we may assume x2 > 1, and we
simply consider c = 1. Given that 0 < γ ≤ 1 + x3 and x2 > 1, it follows that 0 <
γ+(1+x3) < 1+(1+x3)x2. Therefore, with c = 1, we find that both sides of (4.5) are
equal to εx1(1+x3)+γ−1. Finally, suppose γx2 = ε. Since b 6= 0, this equality implies
that both γ and ε cannot be 0. Moreover, we may again assume x2 > 1 since x2 = 1
would imply h(b) = 1. Since γx2 = ε, it follows that b = ε(1 + x1(1 + (1 + x3)x2)),
and we also get that ε > 1 since we assume x2 > 1. Combining, we may consider
c = 1 + x1(1 + (1 + x3)x2) < ε(1 + x1(1 + (1 + x3)x2)) = b. As before, the inequality
0 < γ+(1+x3) < 1+(1+x3)x2 still holds in this case, from which it is straightforward
to verify both sides of (4.5) are equal to (ε− 1)x1(1 + x3) + γ − 1.

On the other hand, if (B) holds, we have that η > 1. Therefore, we consider
c = (εx1 + 1)(1 + (1 + x3)x2) + γx2 < (εx1 + η)(1 + (1 + x3)x2) + γx2 = b, from which
it follows that both sides of (4.5) simplify to (η−1)(1+x3). In any case, we find that
both sides of (4.5) are equivalent for each possible qi, thereby completing our third
and final case. Thus, we have established IDP for r-vectors of type (v).

4.2.6 Proof of IDP for type (vi) in Theorem 4.1.11

We next verify IDP for r-vectors of type (vi) using Theorem 4.1.5. Again, we must
consider three cases corresponding to three possible values of qj.

Case: qj = (1 + x3)(1 + (1 + x3)x2). We first identify those values of b that
satisfy (4.4) and (4.6). It is straightforward to verify that

h(b) = b− x2
⌊

b

1 + (1 + x3)x2

⌋
− x3

⌊
b

1 + x3

⌋
,
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where 1 ≤ b ≤ (1 + x3)(1 + (1 + x3)x2) − 1. Writing b = α(1 + x3) + β, where
0 ≤ β < 1 + x3 and 0 ≤ α < 1 + (1 + x3)x2 for α, β ∈ Z, it follows that

h(b) = h(α(1 + x3) + β)

= α + β − x2
⌊
α(1 + x3) + β

1 + (1 + x3)x2

⌋
.

We can now further divide into cases: either we have α = (1 + x3)x2 or we have
α = γx2 + δ where 0 ≤ γ < 1 + x3 and 0 ≤ δ < x2, which yields

h(b) = h((γx2 + δ)(1 + x3) + β)

= δ + β − x2
⌊
δ(1 + x3) + β − γ

1 + (1 + x3)x2

⌋
.

For α 6= (1 +x3)x2, let n = δ(1 +x3) +β− γ. Observe that since 0 ≤ δ(1 +x3) +β <
1 + (1 + x3)x2 and 0 ≤ γ < 1 + x3, it follows that |n| < 1 + (1 + x3)x2. Thus,⌊
δ(1+x3)+β−γ
1+(1+x3)x2

⌋
is equal to either 0 or −1.

Subcase 1 of 4: Suppose α = (1 + x3)x2. Since 0 ≤ β < 1 + x3, we have

h((1 + x3)
2x2 + β) = (1 + x3)x2 + β − (1 + x3)x2 − x2

⌊
β − (1 + x3)

1 + (1 + x3)x2

⌋
= β + x2.

If this is equal to 1, then it must be that β = 0 and x2 = 1. Thus, if x2 = 1, we have
that h((1 + x3)

2) = 1.
For the next three subcases, we assume α 6= (1+x3)x2, so we may write α = γx2+δ

where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3.
Subcase 2 of 4: Suppose δ = 0 and β ≥ γ. Then, we have that n ≥ 0, implying⌊

δ(1 + x3) + β − γ
1 + (1 + x3)x2

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = β, which forces β = 1, i.e.,
h(b) = h(γx2(1 + x3) + 1) = 1 whenever 0 ≤ γ ≤ 1.

Subcase 3 of 4: Suppose δ = 0 and β < γ. Then, we have that n < 0, implying⌊
δ(1 + x3) + β − γ

1 + (1 + x3)x2

⌋
= −1.

Therefore, our equation for h(b) simplifies to h(b) = β + x2, which forces β = 0 and
x2 = 1 since x2 ≥ 1, i.e., h(b) = h(γ(1 + x3)) = 1 for 0 < γ < 1 + x3.

Subcase 4 of 4: Suppose δ ≥ 1. Then, since 0 ≤ γ < 1+x3, we have that n ≥ 0,
implying ⌊

δ(1 + x3) + β − γ
1 + (1 + x3)x2

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = δ + β, which forces β = 0 and
δ = 1 since we assume δ ≥ 1, i.e., h(b) = h((γx2 + 1)(1 + x3)) = 1 for 0 ≤ γ < 1 + x3.

We summarize the values of b for which h(b) = 1 that were just derived:
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• If x2 = 1 and 0 < γ ≤ 1 + x3, we have b = γ(1 + x3).

• If x2 ≥ 1, δ = 0, β = 1, and 0 ≤ γ ≤ 1, we have b = γx2(1 + x3) + 1.

• If x2 ≥ 1, δ = 1, β = 0, and 0 ≤ γ < 1 + x3, we have b = (γx2 + 1)(1 + x3).

Our next goal is to establish that (4.5) is always satisfied; recall that we are in
the case where qj = (1 + x3)(1 + (1 + x3)x2). If qi = (1 + x3)(1 + (1 + x3)x2),
the result is trivial. If qi = (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2), we
write b = α(1 + x3) + β, where 0 ≤ β < 1 + x3 and 0 ≤ α < 1 + (1 + x3)x2.
Note that b 6= 1 + x3 since h(1 + x3) = 1. If b > 1 + x3, we set c = 1 + x3
from which it is straightforward to compute that both sides of (4.5) are equal to
((α − 1)(1 + x3) + β)(1 + (1 + x3)x2)x1 + α − 1. Otherwise, if b < 1 + x3, note that
α = 0 and hence b = β. To satisfy (4.4), we need only consider 1 < β < 1 + x3.
Thus, we may choose c = 1 from which it follows that both sides of (4.5) are equal to
(β − 1)(1 + (1 + x3)x2)x1 since 1 < b < 1 + x3 implies 1 ≤ β − 1 < 1 + x3. Finally, if
qi = (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)), we again write b = α(1 + x3) + β, where
0 ≤ β < 1+x3 and 0 ≤ α < 1+(1+x3)x2. Moreover, in the case that α 6= (1+x3)x2,
we write α = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ < (1 + x3). We consider the
following possible cases:

Subcase 1 of 5: Suppose α = (1+x3)x2. If x2 = 1, then β 6= 0 since h((1+x3)
2) =

1. Thus, we may consider c = (1 + x3)
2 < (1 + x3)

2 + β = b. With this choice of
c, it is straightforward to verify that both sides of (4.5) are equal to βx1(1 + x3).
Otherwise, if x2 > 1, we consider c = 1 + x3 < (1 + x3)

2x2 + β = b. Since x2 > 1
implies −x2(1 + x3) < β − 2(1 + x3) < 0, it is straightforward to verify that both
sides of (4.5) are equal to (b− (1 + x3))x1(1 + x3) + x3.

Subcase 2 of 5: Suppose α 6= (1 + x3)x2 with δ > 0 and β > 0. Then, choosing
c = (γx2 + 1)(1 + x3) < (γx2 + δ)(1 + x3) + β = b, it follows that both sides of (4.5)
are equal to ((δ − 1)(1 + x3) + β)x1(1 + x3).

Subcase 3 of 5: Suppose α 6= (1 + x3)x2 with δ > 0 and β = 0. Note that
δ 6= 1 since h((γx2 + 1)(1 + x3)) = 1. Therefore, 2 ≤ δ < x2, so we may consider
c = (γx2 + 1)(1 + x3) < (γx2 + δ)(1 + x3) = b. Given this choice, we find that both
sides of (4.5) are equal to (δ − 1)(1 + x3)x1(1 + x3).

Subcase 4 of 5: Suppose α 6= (1 + x3)x2 with δ = 0 and β > 0. If 0 ≤ γ ≤ 1,
then β 6= 1 since h(γx2(1 + x3) + 1) = 1. Thus, it must be that β > 1, thereby
allowing us to consider c = γx2(1 + x3) + 1 < γx2(1 + x3) + β = b. With this choice
of c, it is straightforward to verify both sides of (4.5) are equal to (β − 1)x1(1 + x3).
Otherwise, if 1 < γ < 1 + x3, consider c = 1 + (1 + x3)x2 < γx2(1 + x3) + β = b.
Then, both sides of (4.5) are equal to

((γ − 1)x2(1 + x3) + β − 1)x1(1 + x3) + γ − 1 +

⌊
β − γ

1 + (1 + x3)x2

⌋
.

Subcase 5 of 5: Suppose α 6= (1 + x3)x2 with δ = β = 0. In this case,
b = γx2(1 + x3). Moreover, note that γ > 0 since otherwise, b = 0 contradicting
our bounds on b. If x2 = 1, then h(b) = h(γ(1 + x3)) = 1. Hence, we need only
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consider when x2 > 1. Since γ > 0 and x2 > 1, we may take c = 1 + x3 <
γx2(1 + x3) = b, from which it is straightforward to find that both sides of (4.5) are
equal to (γx2 − 1)(1 + x3)

2x1 + γ − 1.
This completes our first case.
Case: qj = (1 +x3)(1 +x1(1 +x3)(1 + (1 +x3)x2)). We first identify those values

of b that satisfy (4.4) and (4.6). It is straightforward to verify that

h(b) = b− x1
⌊

b(1 + (1 + x3)x2)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x3

⌊
b

1 + x3

⌋
.

Writing b = α(1 + x3) + β, where 0 ≤ β < 1 + x3 and 0 ≤ α ≤ 1 + x1(1 + x3)(1 +
(1 + x3)x2), it follows that

h(b) = h(α(1 + x3) + β)

= α + β − x1
⌊

(α(1 + x3) + β)(1 + (1 + x3)x2)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
.

We can now further divide into cases: either we have α = x1(1 + x3)(1 + (1 + x3)x2)
or we have α = γx1 + δ where 0 ≤ γ < (1 + x3)(1 + (1 + x3)x2) and 0 ≤ δ < x1. If
α = x1(1 + x3)(1 + (1 + x3)x2), then since 0 ≤ β < 1 + x3, we have

h(b) = β − x1
⌊
β(1 + (1 + x3)x2)− (1 + x3)(1 + (1 + x3)x2)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= β + x1.

If this is equal to 1, then it must be that β = 0 and x1 = 1. Thus, if x1 = 1, we have
that h((1 + x3)

2(1 + (1 + x3)x2)) = 1. Otherwise, if α 6= x1(1 + x3)(1 + (1 + x3)x2),
we write α = γx1 + δ where 0 ≤ γ < (1 + x3)(1 + (1 + x3)x2) and 0 ≤ δ < x1. Thus,
h(b) simplifies as follows

h(b) = h((γx1 + δ)(1 + x3) + β)

= δ + β − x1
⌊

(δ(1 + x3) + β)(1 + (1 + x3)x2)− γ
1 + x1(1 + x3)(1 + (1 + x3)x2

⌋
.

For α 6= x1(1 + (1 + x3)x2), observe that since 0 ≤ δ(1 + x3)(1 + (1 + x3)x2) ≤
(x1− 1)(1 + x3)(1 + (1 + x3)x2) and 0 ≤ β(1 + (1 + x3)x2) < (1 + x3)(1 + (1 + x3)x2)
with 0 ≤ γ < (1+x3)(1+(1+x3)x2), we have that 0 ≤ (δ(1+x3)+β)(1+(1+x3)x2) <
x1(1+x3)(1+(1+x3)x2). Let n = (δ(1+x3)+β)(1+(1+x3)x2)−γ. The inequalities
above readily imply |n| < 1 + x1(1 + x3)(1 + (1 + x3)x2). Thus,⌊

δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
is equal to either 0 or −1. We further write γ = ε(1 + (1 + x3)x2) + η, where
0 ≤ η < 1 + (1 + x3)x2 and 0 ≤ ε < 1 + x3. Then, h(b) becomes

h(b) = δ + β − x1
⌊

(δ(1 + x3) + β)(1 + (1 + x3)x2)− (ε(1 + (1 + x3)x2) + η)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
.
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Subcase 1 of 4: Suppose δ = 0 and β > ε. Then, we have that n > 0, implying⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = β, which forces β = 1. Note that
β = 1 implies ε = 0 as β > ε. Thus, we have h(b) = h(ηx1(1 + x3) + 1) = 1 whenever
0 ≤ η ≤ (1 + x3)x2.

Subcase 2 of 4: Suppose δ = 0 and β < ε. Note that ε > 0 since β < ε. Then,
we have that n < 0, implying⌊

δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1.

Consequently, our equation for h(b) simplifies to h(b) = β + x1, which forces β = 0
and x1 = 1 since x1 ≥ 1, i.e., h(b) = h((ε(1 + (1 + x3)x2) + η)(1 + x3)) = 1 whenever
0 < ε < 1 + x3 and 0 ≤ η ≤ (1 + x3)x2.

Subcase 3 of 4: Suppose δ = 0 and β = ε. If η > 0, then we have that n < 0,
implying ⌊

δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1.

In this case, h(b) simplifies to h(b) = β + x1, which again forces β = 0 and x1 = 1.
Since β = ε, it follows that ε = 0, and so we have that h(b) = h(η(1 + x3) = 1
whenever 0 < η ≤ (1 +x3)x2. Otherwise, if η = 0, then we have that n = 0, implying⌊

δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = β, which forces β = 1 (and thus,
ε = 1), i.e., h(b) = h((1 + (1 + x3)x2)x1(1 + x3) + 1) = 1.

Subcase 4 of 4: Suppose δ ≥ 1. Then, we have that n ≥ 0, implying⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = δ + β, which forces δ = 1 and
β = 0 since δ ≥ 1. That is, we have h(b) = h(((ε(1+(1+x3)x2)+η)x1+1)(1+x3)) = 1
whenever 0 ≤ ε < 1 + x3 and 0 ≤ η ≤ (1 + x3)x2.

We summarize the values of b for which h(b) = 1 that were just derived:

• If x1 = 1, β = 0, and α = (1 + x3)(1 + (1 + x3)x2), we have b = (1 + x3)
2(1 +

(1 + x3)x2.

• If x1 = 1, β = δ = 0, 0 < ε < 1 + x3, and 0 ≤ η ≤ (1 + x3)x2, we have
b = (η(1 + (1 + x3)x2) + η)(1 + x3).

• If x1 = 1, β = δ = ε = 0, and 0 < η ≤ (1 + x3)x2, we have b = η(1 + x3).
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• If x1 ≥ 1, δ = ε = 0, β = 1, and 0 ≤ η ≤ (1+x3)x2, we have b = ηx1(1+x3)+1.

• If x1 ≥ 1, δ = η = 0, and β = ε = 1, we have b = (1 + (1 +x3)x2)x1(1 +x3) + 1.

• If x1 ≥ 1, δ = 1, β = 0, 0 ≤ ε < 1 + x3, and 0 ≤ η ≤ (1 + x3)x2, we have
b = ((ε(1 + (1 + x3)x2) + η)x1 + 1)(1 + x3).

Our next goal is to establish that (4.5) is always satisfied; recall that we are in the
case where qj = (1+x3)(1+x1(1+x3)(1+(1+x3)x2)). If qi = (1+x3)(1+x1(1+x3)(1+
(1+x3)x2)), the result is trivial. If qi = (1+(1+x3)(1+(1+x3)x2)x1)(1+(1+x3)x2),
note that b 6= 1 + x3 since h(1 + x3) = 1. If b > 1 + x3, we set c = 1 + x3
from which it is straightforward to compute that both sides of (4.5) are equal to

bx2 − (1 + (1 + x3)x2) +
⌊

b
1+x3

⌋
. Otherwise, if b < 1 + x3, we may choose c = 1 from

which it follows that both sides of (4.5) are equal to (b − 1)x2 since 1 < b < 1 + x3
implies 1 ≤ b − 1 < 1 + x3. Finally, if qi = (1 + x3)(1 + (1 + x3)x2), we again write
b = α(1 + x3) + β, where 0 ≤ β < 1 + x3 and 0 ≤ α < 1 + x1(1 + x3)(1 + (1 + x3)x2).
Moreover, in the case that α 6= x1(1 + x3)(1 + (1 + x3)x2), we write α = γx1 + δ with
γ = (ε(1+(1+x3)x2)+η), where 0 ≤ δ < x1, 0 ≤ ε < (1+x3), and 0 ≤ η ≤ (1+x3)x2.
We consider the following possible cases:

Subcase 1 of 5: Suppose α = x1(1+x3)(1+(1+x3)x2). If x1 = 1, note that β 6= 0
since h((1 + x3)

2(1 + (1 + x3)x2)) = 1. Thus, we may consider c = (1 + x3)
2(1 + (1 +

x3)x2) < (1+x3)
2(1+(1+x3)x2)+β = b. With this choice of c, it is straightforward to

verify that both sides of (4.5) are equal to 0. Otherwise, if x1 > 1, we consider c = 1.
Since x1 > 1 implies −x1(1+x3)(1+(1+x3)x2) < (β−x3−2)(1+(1+x3)x2) < 0, it is
straightforward to verify that both sides of (4.5) are equal to (1+x3)(1+(1+x3)x2)−1.

Subcase 2 of 5: Suppose α 6= x1(1 + x3)(1 + (1 + x3)x2) with δ > 0 and β > 0.
Then, choosing c = (γx1 + 1)(1 +x3) < (γx1 + δ)(1 +x3) +β = b, it follows that both
sides of (4.5) are equal to 0 since 0 ≤ δ − 1 < x1 − 1 and 0 < β < 1 + x3 together
imply 0 < (δ − 1)(1 + x3) + β < x1(1 + x3).

Subcase 3 of 5: Suppose α 6= x1(1 + x3)(1 + (1 + x3)x2) with δ > 0 and β = 0.
Note that δ 6= 1 since h((γx1 + 1)(1 + x3)) = 1. Therefore, 2 ≤ δ < x2, so we may
consider c = (γx1 + 1)(1 + x3) < (γx1 + δ)(1 + x3) = b. Given this choice, we find
that both sides of (4.5) are equal to 0 since 0 < δ < x1.

Subcase 4 of 5: Suppose α 6= x1(1 + x3)(1 + (1 + x3)x2) with δ = 0 and
β > 0. If β > ε, then β 6= 1 since otherwise, β = 1 would force ε = 0 and
h(ηx1(1 + x3) + 1) = 1. Thus, it must be that β > 1, thereby allowing us to consider
c = ηx1(1 + x3) < (ε(1 + (1 + x3)x2) + η)x1(1 + x3) + β = b. With this choice of c
and since β − 1 ≥ ε with β > 1, it is straightforward to verify both sides of (4.5) are
equal to ε(1+(1+x3)x2). Now, if β < ε, we have that ε > 1 since we assumed β > 0.
Therefore, we consider c = (1+(1+x3)x2)x1(1+x3)+1 < (ε(1+(1+x3)x2)+η)x1(1+
x3) + β = b. Then, both sides of (4.5) are equal to (ε − 1)(1 + (1 + x3)x2) + η − 1.
Lastly, if β = ε, we consider two possibilities. If η > 0, we may again choose
c = (1 + (1 +x3)x2)x1(1 +x3) + 1 < (ε(1 + (1 +x3)x2) + η)x1(1 +x3) +β = b and find
that both sides of (4.5) are equal to (ε−1)(1+(1+x3)x2)+η−1. Otherwise, if η = 0,
note that ε = β 6= 1 since otherwise, h(b) = h((1 + (1 + x3)x2)x1(1 + x3) + 1) = 1.

64



Therefore, the same value of c, namely c = (1 + (1 + x3)x2)x1(1 + x3) + 1, will again
be strictly less than b, from which it follows that both sides of (4.5) are equal to
(ε− 1)(1 + (1 + x3)x2) + η − 1.

Subcase 5 of 5: Suppose α 6= x1(1 + x3)(1 + (1 + x3)x2) with δ = 0 and
β = 0. In this case, b = γx1(1 + x3). Moreover, note that γ > 0 since otherwise,
b = 0 contradicting our bounds on b. If x1 = 1, then h(b) = h(γ(1 + x3)) = 1.
Hence, we need only consider when x1 > 1. Since γ > 0 and x2 > 1, we may take
c = 1 + x3 < γx1(1 + x3) = b, from which it is straightforward to find that both sides
of (4.5) are equal to γ − 1.

This completes our second case.
Case: qj = (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2). Thus, we consider

1 ≤ b ≤ (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2) − 1. Again, we will start
by identifying those values of b that satisfy (4.4) and (4.6). It is straightforward to
verify that

h(b) = b− x1
⌊

b(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
b(1 + x3)

1 + (1 + x3)x2

⌋
.

Writing b = α(1 + (1 + x3)x2) + β, where 0 ≤ β < 1 + x3 and 0 ≤ α < 1 + x1(1 +
x3)(1 + (1 + x3)x2) for α, β ∈ Z, it follows that

h(b) = h(α(1 + (1 + x3)x2) + β)

= α + β − x1
⌊

(α(1 + (1 + x3)x2) + β)(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
β(1 + x3)

1 + (1 + x3)x2

⌋
.

There are two different possibilities for both α and β: either α = x1(1 + x3)(1 + (1 +
x3)x2) or α = εx1 + η where 0 ≤ η < x1 and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2), and
either β = (1 + x3)x2 or β = γx2 + δ where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3. We
consider the following subcases.

Subcase 1 of 4: Suppose α = x1(1 + x3)(1 + (1 + x3)x2) and β = (1 + x3)x2.
Then,

h(b) = x1(1 + x3)(1 + (1 + x3)x2) + (1 + x3)x2

− x1
⌊
x1(1 + x3)

2(1 + (1 + x3)x2)
2 + (1 + x3)

2x2
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
(1 + x3)

2x2
1 + (1 + x3)x2

⌋
= x1 + x2

> 1.

Subcase 2 of 4: Suppose α = x1(1 + x3)(1 + (1 + x3)x2) and β 6= (1 + x3)x2.
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Writing β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3, we have that

h(b) = x1(1 + x3)(1 + (1 + x3)x2) + γx2 + δ

− x1
⌊

(x1(1 + x3)(1 + (1 + x3)x2)
2 + β)(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
(γx2 + δ)(1 + x3)

1 + (1 + x3)x2

⌋
= δ − x1

⌊
β(1 + x3)− (1 + x3)(1 + (1 + x3)x2)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
= δ + x1 − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

If δ = 0 and γ > 0, then h(b) = x1 + x2 > 1. Otherwise, we have that h(b) = δ + x1.
For this to be equal to 1, it must be the case that δ = 0 and x1 = 1 since x1 ≥ 1.
Moreover, note that β = 0 here since δ = 0 implies γ = 0 (otherwise, we are in
the previous case that δ = 0 and γ > 0). Therefore, when x1 = 1, we have that
h((1 + x3)(1 + (1 + x3)x2)

2) = 1.
Subcase 3 of 4: Suppose α 6= x1(1 + x3)(1 + (1 + x3)x2) and β = (1 + x3)x2.

Writing α = εx1 + η, where 0 ≤ η < x1 and 0 ≤ ε < (1 +x3)(1 + (1 +x3)x2), we have
that

h(b) = εx1 + η + (1 + x3)x2 − x1
⌊

((εx1 + η)(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
(1 + x3)

2x2
1 + (1 + x3)x2

⌋
= η − x1

⌊
(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
+ x2 .

Given that 0 ≤ η < x1 and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2), observe that

|(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε| < 1 + x1(1 + x3)(1 + (1 + x3)x2).

Therefore,
⌊
(η(1+(1+x3)x2)+(1+x3)x2)(1+x3)−ε

1+x1(1+x3)(1+(1+x3)x2)

⌋
is equal to either 0 or −1. If⌊

(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1 ,

then h(b) = η + x1 + x2 > 1. Otherwise, if⌊
(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0 ,

then either (A) 0 < η < x1 or (B) η = 0 with 0 ≤ ε ≤ (1 + x3)
2x2. If (A) holds, then

h(b) = η + x2 > 1 since η > 0. If (B) holds, then our same equation forces η = 0 and
x2 = 1 when ε ≤ (1 + x3)

2, which means that h(εx1(2 + x3) + (1 + x3)) = 1 whenever
0 ≤ ε ≤ (1 + x3)

2.
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Subcase 4 of 4: Suppose α 6= x1(1 + x3)(1 + (1 + x3)x2) and β 6= (1 + x3)x2.
Writing α = εx1 + η where 0 ≤ η < x1 and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2) and
β = γx2 + δ where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3, we have that

h(b) = εx1 + η + γx2 + δ − x1
⌊

((εx1 + η)(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
(γx2 + δ)(1 + x3)

1 + (1 + x3)x2

⌋
= η + δ − x1

⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
= η + δ − x1

⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

Given the bounds on η, γ, δ, and ε, observe that

|(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε| < 1 + x1(1 + x3)(1 + (1 + x3)x2).

Therefore, ⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
is equal to either 0 or −1.

(i) Suppose δ = 0 and γ > 0. If⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1 ,

then h(b) = η + x1 + x2 > 1. Otherwise, if⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0 ,

then either (A) 0 < η < x1 or (B) η = 0 with 0 ≤ ε ≤ γx2(1 + x3). If (A)
holds, then h(b) = η + x2 > 1 since η > 0 and x2 ≥ 1. If (B) holds, then our
same equation forces η = 0 and x2 = 1 when ε ≤ γ(1 + x3), which means that
h(εx1(2 + x3) + γ) = 1 whenever 0 ≤ ε ≤ γ(1 + x3).

(ii) Suppose otherwise, i.e., δ = 0 and γ > 0 does not hold. If⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1 ,

note that η = 0. Then, h(b) = δ + x1. For this to equal 1, it must be the
case that δ = 0 (and hence γ = 0 since otherwise, we would be in the previous
case) and x1 = 1. Since γ = δ = 0, we have that β = 0. Therefore, given
that η = 0 as well, it must be that ε > 0 since otherwise, b = 0 contradicting
our bounds on b. In this case, we have that h(ε(1 + (1 + x3)x2)) = 1 whenever
0 < ε < (1 + x3)(1 + (1 + x3)x2). Otherwise, if⌊

(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0 ,
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then either (A) 0 < η < x1 or (B) η = 0 with 0 ≤ ε ≤ (γx2 + δ)(1 + x3). If
(A) holds, then h(b) = η + δ, which setting equal to 1 forces η = 1 and δ = 0
since η > 0. Note that δ = 0 forces γ = 0 since otherwise, we would be in
the previous case. Therefore, we have that h((εx1 + 1)(1 + (1 + x3)x2)) = 1
whenever 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2). On the other hand, if (B) holds,
then our same equation forces η = 0 and δ = 1 when 0 ≤ ε ≤ (γx2 + 1)(1 +x3),
which means that h(εx1(1 + (1 +x3)x2) +γx2 + 1) = 1 whenever 0 ≤ γ < 1 +x3
and 0 ≤ ε ≤ (γx2 + 1)(1 + x3).

We summarize the values of b for which h(b) = 1 that were just derived:

• If x1 = 1, β = 0, and 0 < ε ≤ (1 + x3)(1 + (1 + x3)x2), we have b = ε(1 + (1 +
x3)x2).

• If x2 = 1, δ = η = 0, 0 < γ ≤ 1 + x3, and 0 ≤ ε ≤ γ(1 + x3), we have
b = εx1(2 + x3) + γ.

• If β = 0, η = 1, and 0 ≤ ε < (1 +x3)(1 + (1 +x3)x2), we have b = (εx1 + 1)(1 +
(1 + x3)x2).

• If η = 0, δ = 1, 0 ≤ γ < 1 + x3, and 0 ≤ ε ≤ (γx2 + 1)(1 + x3), we have
b = εx1(1 + (1 + x3)x2) + γx2 + 1.

Our next goal is to establish that (4.5) is always satisfied; recall that we are
in the case where qj = (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2). If qi =
(1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2), the result is trivial. If qi = (1 +
x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)), we write b = α(1 + (1 + x3)x2) + β, where
0 ≤ β < 1 + (1 + x3)x2 and 0 ≤ α < 1 + x1(1 + x3)(1 + (1 + x3)x2). Note that
b 6= 1 + (1 + x3)x2 since h(1 + (1 + x3)x2) = 1. If b > 1 + (1 + x3)x2, we set
c = 1 + (1 + x3)x2 from which it is straightforward to compute that both sides
of (4.5) are equal to

(α− 1)(1 + x3) +

⌊
β(1 + x3)

1 + (1 + x3)x2

⌋
.

Otherwise, if b < 1 + (1 + x3)x2, note that α = 0 and b = β. Therefore, to ensure we
satisfy (4.4), we consider 2 ≤ β < 1 + (1 + x3)x2. Moreover, note that β 6≡ 1 mod x2
since otherwise h(b) = h(β) = 1. Now, suppose β = (1 + x3)x2. If x2 = 1, then
h(β) = h(1 + x3) = 1, so we may assume x2 > 1. Setting c = 1 and since x2 > 1, it
is straightforward to compute that both sides of (4.5) are equal to x3. Otherwise, if
β 6= (1 + x3)x2, we write β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3. Note
that δ 6= 1 since h(γx2 + 1) = 1 for 0 ≤ γ < 1 + x3. Suppose δ > 1. Then, choosing
c = γx2 + 1 < γx2 + δ = b, it is straightforward to show that both sides of (4.5) are
equal to 0. On the other hand suppose δ = 0, so β = γx2, where γ > 0. If x2 = 1,
then h(β) = 1, so we may assume x2 > 1. Taking c = 1 and observing that x2 > 1
implies −x2(1 +x3) < −(1 +x3)−γ, it is straightforward to compute that both sides
of (4.5) are equal to γ − 1.
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Finally, if qi = (1+x3)(1+(1+x3)x2), the analysis becomes a bit more complicated.
We start by again writing b = α(1 + (1 + x3)x2) + β, where 0 ≤ β < 1 + (1 + x3)x2
and 0 ≤ α < 1+x1(1+x3)(1+(1+x3)x2). Suppose α = x1(1+x3)(1+(1+x3)x2). If
x1 = 1, then β 6= 0 since otherwise h(b) = 1. Thus, we may consider c = (1 + x3)(1 +
(1 + x3)x2)

2 < (1 + x3)(1 + (1 + x3)x2)
2 + β = b from which it is straightforward to

compute that both sides of (4.5) are equal to 0. If x1 > 1, observe that

−x1(1+x3)(1+(1+x3)x2) < −(1+x3)(2+(1+x3)x2) ≤ (β−1)(1+x3)−(1+x3)(1+(1+x3)x2) < 0 .

Choosing c = 1, the previous inequality readily gives that both sides of (4.5) are
equal to (1 + x3)(1 + (1 + x3)x2)− 1.

Now, suppose α 6= x1(1+x3)(1+(1+x3)x2). Then, we may write α = εx1+η, where
0 ≤ η < x1 and 0 ≤ ε < (1+x3)(1+(1+x3)x2), and so b = (εx1+η)(1+(1+x3)x2)+β.
Suppose β = (1+x3)x2. If η ≥ 1, then we may consider c = (εx1+1)(1+(1+x3)x2) <
(εx1 + η)(1 + (1 + x3)x2) + (1 + x3)x2 = b from which it is straightforward to show
that both sides of (4.5) are equal to 0. Otherwise, if η = 0, note that we may assume
x2 > 1 since x2 = 1 gives that h(b) = h(εx1(2 + x3) + (1 + x3)) = 1.

We consider two possible cases, namely when 0 ≤ ε < 1+x3 and when 1+x3 ≤ ε <
(1+x3)(1+(1+x3)x2). If 0 ≤ ε < 1+x3, we consider c = εx1(1+(1+x3)x2)+x2x3+1
which is strictly less than b = εx1(1 + (1 + x3)x2) + (1 + x3)x2 as x2 > 1. With this
choice of c and since 0 ≤ ε < 1 + x3, it is straightforward to show that both sides
of (4.5) are equal to 0. On the other hand, if 1+x3 ≤ ε < (1+x3)(1+(1+x3)x2), we
may consider c = 1 +x1(1 +x3)(1 + (1 +x3)x2) < εx1(1 + (1 +x3)x2) + (1 +x3)x2 = b
from which it is straightforward to compute that both sides of (4.5) are equal to

ε− (1 + x3) +

⌊
(1 + x3)

2x2 − ε
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
.

Now, suppose β 6= (1 + x3)x2. Then, we may write β = γx2 + δ, where 0 ≤ δ < x2
and 0 ≤ γ < 1+x3, and so b can be written as b = (εx1 +η)(1+(1+x3)x2)+γx2 + δ.
We consider the following possible subcases.

Subcase 1 of 4: Suppose η > 0 and δ > 0. We consider c = (εx1 + 1)(1 + (1 +
x3)x2) < (εx1 + 1)(1 + (1 +x3)x2) + γx2 + δ = b. Since 0 < η < x1 and 0 < γx2 + δ <
(1 + x3)x2, it follows that 0 < (η− 1)(1 + (1 + x3)x2) + γx2 + δ < x1(1 + (1 + x3)x2).
Therefore, it is straightforward to verify that both sides of (4.5) are equal to 0.

Subcase 2 of 4: Suppose η = 0 and δ > 0. If ε ≤ (γx2 + 1)(1 + x3), note
that δ 6= 1 since otherwise, h(b) = h(εx1(1 + (1 + x3)x2) + γx2 + 1) = 1. Thus,
we have that δ > 1, and we consider c = εx1(1 + (1 + x3)x2) + γx2 + 1 < εx1(1 +
(1 + x3)x2) + γx2 + δ = b. Given that ε ≤ (γx2 + 1)(1 + x3) and 1 < δ < x2, it
is straightforward to verify that our choice of c gives that both sides of (4.5) are
equal to 0. Otherwise, if (γx2 + 1)(1 + x3) < ε (and hence, ε > 1 + x3), we consider
c = 1 + x1(1 + x3)(1 + (1 + x3)x2) < εx1(1 + (1 + x3)x2) + γx2 + δ = b. With this
choice of c, it is straightforward to verify that both sides of (4.5) are equal to

ε− (1 + x3) +

⌊
(γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
.

Subcase 3 of 4: Suppose η > 0 and δ = 0. If γ > 0, we may consider c = (εx1 +
1)(1+(1+x3)x2) < (εx1+η)(1+(1+x3)x2)+γx2 = b from which it is straightforward
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to compute that both sides of (4.5) are equal to 0. On the other hand, if γ = 0, note
that η 6= 1 since otherwise, h(b) = h((εx1 + η)(1 + (1 + x3)x2)) = 1. Therefore, we
may again choose c = (εx1 + 1)(1 + (1 +x3)x2) < (εx1 + η)(1 + (1 +x3)x2) = b. Since
1 < η < x1, it is straightforward to verify that both sides of (4.5) are equal to 0.

Subcase 4 of 4: Suppose η = δ = 0. Further suppose γx2(1 + x3) < ε. If γ > 0,
then it follows that γx2 ≥ 1. Therefore, our assumed inequality implies ε > 1 + x3,
so we may consider c = 1+x1(1+x3)(1+(1+x3)x2) < εx1(1+(1+x3)x2)+γx2 = b.
Since γx2(1+x3) < ε, our choice of c readily gives that both sides of (4.5) are equal to
ε−x3−2. Otherwise, if γ = 0 (and hence, ε > 0 since we assumed γx2(1+x3) < ε), we
may assume x1 > 1 since otherwise, we would have that h(b) = h(ε(1+(1+x3)x2)) =
1. Thus, since x1 > 1, we may take c = 1 + (1 + x3)x2 < εx1(1 + (1 + x3)x2) = b.
Observe that the bounds on ε and x1 > 1 imply −x1(1 + x3)(1 + (1 + x3)x2) ≤
−2(1 + x3)(1 + (1 + x3)x2) < −(1 + x3)(1 + (1 + x3)x2) − ε < 0. Consequently,
it is straightforward to verify that both sides of (4.5) are equal to ε − 1. Now,
suppose γx2(1 + x3) > ε. Note that γ 6= 0 since otherwise, ε < 0 contradicting
our initial bounds on ε. Thus, we have that γ > 0. Moreover, if x2 = 1, it follows
that h(b) = h(εx1(2 + x3) + γ) = 1, so we may assume x2 > 1. Given the addition
restriction that ε ≤ (γx2−1)(1 +x3), we may choose c = 1 from which the inequality
ε ≤ (γx2 − 1)(1 + x3) readily implies both sides of (4.5) are equal to ε. However, for
(γx2 − 1)(1 + x3) < ε < γx2(1 + x3), we consider c = 1 + x1(1 + x3)(1 + (1 + x3)x2).
Note that x2 > 1 and γ > 0 together with our restriction on ε imply that ε > 1 + x3.
Therefore, we satisfy c < εx1(1 + (1 + x3)x2) + γx2 = b, and a straightforward
computation gives that both sides of (4.5) are equal to ε− (1 + x3). Finally, suppose
ε = γx2(1 + x3). Given this equality, note that neither γ nor ε can be equal to 0
since otherwise, we would have η = δ = γ = ε = 0, implying b = 0. This, of course,
contradicts the bounds on b. Moreover, we may again assume x2 > 1 (and thus,
ε > 1 + x3) since otherwise, h(b) = h(εx1(2 + x3) + γ) = 1. Since ε > 1 + x3, we may
consider c = 1 + x1(1 + x3)(1 + (1 + x3)x2) < εx1(1 + (1 + x3)x2) + γx2 = b. This
choice of c readily gives that both sides of (4.5) are equal to ε− (1 + x3).

In any case, we find that both sides of (4.5) are equivalent for each possible qi,
thereby completing our third and final case. Thus, we have established IDP for
r-vectors of type (vi).

4.2.7 Proof of IDP for type (vii) in Theorem 4.1.11

Here, we verify IDP for r-vectors of type (vii) using Theorem 4.1.5. Again, we must
consider three cases corresponding to three possible values of qj.

Case: qj = 1 + x3. Since 1 ≤ b ≤ x3 in this case, it is straightforward to
verify that h(b) = b. Hence, the b-values we are required to check in (4.4) are
2 ≤ b ≤ x3. To verify that (4.5) always has the desired solution, we consider three
cases. If qi = 1 + x3, the result is trivial. If qi = (1 + x3)(1 + x1(1 + x3)), then
we may select c = 1, from which it follows that both sides of (4.5) are equal to
(b− 1)(1 +x1(1 +x3)). If qi = (1 + (1 +x3)x1)(1 + (1 +x3)x2), then we may again set
c = 1, from which it is straightforward to compute that both sides of (4.5) are equal
to (b− 1)(x1 + x2 + x1x2(1 + x3)). This completes our first case.
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Case: qj = (1 + x3)(1 + x1(1 + x3)). It is straightforward to verify that

h(b) = b− x1
⌊

b

1 + x1(1 + x3)

⌋
− x3

⌊
b

1 + x3

⌋
,

where the values of b range from 1 to (1 +x3)(1 +x1(1 +x3))−1. To verify that (4.5)
always has the desired solution, we consider three cases. If qi = (1+x3)(1+x1(1+x3)),
the result is trivial. If qi = 1 + x3, then we write b = α(1 + x1(1 + x3)) + β, where
0 ≤ β < 1 + x1(1 + x3) and 0 ≤ α < 1 + x3 for α, β ∈ Z. Consequently, we have that

h(b) = h(α(1 + x1(1 + x3)) + β)

= α(1 + x1(1 + x3)) + β − αx1 − αx1x3 − x3
⌊
α + β

1 + x3

⌋
= α + β − x3

⌊
α + β

1 + x3

⌋
.

If β > 0, we may select c = 1, from which it follows that both sides of (4.5) are equal
to α. If β = 0, then our formula for h(b) reduces to

h(b) = h(α(1 + x1(1 + x3))) = α

since 0 ≤ α < 1 + x3. Thus, to satisfy (4.4), it must be that α > 1, implying
b = α(1 + x1(1 + x3)) > 1 + x1(1 + x3). In this case, taking c = 1 + x1(1 + x3), it
is straightforward to verify that both sides of (4.5) are equal to α − 1, and (4.6) is
satisfied as h(1 + x1(1 + x3)) = 1. Finally, if qi = (1 + (1 + x3)x1)(1 + (1 + x3)x2),
then we write b = α(1 + x3) + β, where 0 ≤ β < 1 + x3 and 0 ≤ α < 1 + x1(1 + x3)
for α, β ∈ Z. Consequently, since 0 ≤ β < 1 + x3, we have that

h(b) = h(α(1 + x3) + β)

= α(1 + x3) + β − x1
⌊
α(1 + x3) + β

1 + x1(1 + x3)

⌋
− αx3 − x3

⌊
β

1 + x3

⌋
= α + β − x1

⌊
α(1 + x3) + β

1 + x1(1 + x3)

⌋
.

If β > 0, we may select c = 1, from which it is straightforward to verify that both
sides of (4.5) are equal to α(1 + (1 + x3)x2) + (β − 1)x2 (since 0 ≤ β − 1 < x3). On
the other hand, if β = 0, then our formula for h(b) reduces to

h(b) = h(α(1 + x3)) = α−
⌊

α(1 + x3)

1 + x1(1 + x3)

⌋
.

In order to satisfy (4.4), it must be that α > 1, which implies b = α(1+x+3) > 1+x3.
Thus, in this case, we consider c = 1 + x3. Clearly, h(1 + x3) = 1, giving (4.6), and
moreover, it is straightforward to verify that both sides of (4.5) when c = 1 + x3 are
equal to (α− 1)(1 + (1 + x3)x2). This completes our second case.
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Case: qj = (1 + (1 + x3)x1)(1 + (1 + x3)x2). We first identify those values of b
that satisfy (4.4) and (4.6). It is straightforward to verify that

h(b) = b− x1
⌊

b(1 + x3)

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
b(1 + x3)

(1 + (1 + x3)x2)

⌋
.

Writing b = α(1 + (1 +x3)x2) +β, where 0 ≤ β ≤ (1 +x3)x2 and 0 ≤ α ≤ (1 +x3)x1,
it follows that

h(b) = h(α(1 + (1 + x3)x2) + β)

= α + β − x1
⌊
α(1 + x3)(1 + (1 + x3)x2) + β(1 + x3)

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
β(1 + x3)

1 + (1 + x3)x2

⌋
.

Now, writing β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, it follows that

h(b) = α+ δ − x1
⌊
α(1 + x3)(1 + (1 + x3)x2) + (γx2 + δ)(1 + x3)

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
.

Since 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, observe that⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
=

{
−1, δ = 0, γ > 0

0, otherwise .

We further write α = εx1 + η, where 0 ≤ η < x1 and 0 ≤ ε ≤ 1 + x3. Then,

h(b) = η + δ − x1
⌊

(η(1 + x3)− ε)(1 + (1 + x3)x2) + (γx2 + δ)(1 + x3)

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
= η + δ − x1

⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
.

Given the bounds on ε, η, γ, and δ, note that −(1+x3) ≤ δ(1+x3)−γ < 1+(1+x3)x2
and −(1 + x3) ≤ η(1 + x3)− ε+ γ ≤ (1 + x3)x1. Consequently, it follows that

|(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ| < (1 + (1 + x3)x1)(1 + (1 + x3)x2),

and this implies that
⌊
(η(1+x3)−ε+γ)(1+(1+x3)x2)+δ(1+x3)−γ

(1+(1+x3)x1)(1+(1+x3)x2)

⌋
is equal to either 0 or −1.

To resolve this floor function, we consider the following subcases which analyze the
sign of the numerator of its argument.

Subcase 1 of 6: Suppose η = 0 and ε > γ. Then, since δ(1 + x3) − γ <
1 + (1 + x3)x2, the numerator above will be negative, implying⌊

(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ
(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= −1.

Therefore, our equation for h(b) simplifies to

h(b) = δ + x1 − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.
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If δ = 0 and γ > 0, then h(b) = h(εx1(1 + (1 + x3)x2) + γx2) = x1 + x2 > 1.
If δ = γ = 0, then h(b) = h(εx1(1 + (1 + x3)x2)) = x1. Thus, if x1 = 1, we
have that h(εx1(1 + (1 + x3)x2)) = 1 whenever ε > 0. If δ > 0, then h(b) =
h(εx1(1 + (1 + x3)x2) + γx2 + δ) = δ + x1 > 1.

Subcase 2 of 6: Suppose η = 0 and ε < γ. Then, η(1 + x3) − ε + γ > 0, and
consequently, the numerator of our floor function argument will be positive. Hence,⌊

(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ
(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0,

simplifying our formula for h(b) to

h(b) = δ − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

If δ = 0 and γ > 0, then h(b) = h(εx1(1 + (1 + x3)x2) + γx2) = x2. Thus, if x2 = 1,
we have that h(b) = h(εx1(2 + x3) + γ) = 1 whenever ε < γ. Otherwise, h(b) = δ,
which forces δ = 1, i.e., h(εx1(1 + (1 + x3)x2) + γx2 + 1) = 1 whenever ε < γ.

Subcase 3 of 6: Suppose η = 0 and ε = γ. Then, η(1 + x3) − ε + γ = 0, so
the numerator of our floor function argument reduces to δ(1 + x3)− γ. If δ = 0 and
γ > 0, then δ(1 + x3)− γ < 0 which implies⌊

(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ
(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= −1.

Hence, for ε = γ > 0, h(b) = h(γx1(1+(1+x3)x2)+γx2) = x1+x2 > 1. If δ = γ = 0,
then δ(1 + x3)− γ = 0 which implies⌊

(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ
(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0.

Hence, h(b) = h(0) = 0. If δ > 0, then δ(1 + x3) − γ > 0 since 0 ≤ γ ≤ (1 + x3).
Therefore, ⌊

(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ
(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0.

As such, we have that h(b) = h(γx1(1+(1+x3)x2)+γx2 +δ) = δ, which forces δ = 1,
i.e., h(b) = h(γx1(1 + (1 + x3)x2) + γx2 + 1) = 1 for 0 ≤ γ ≤ 1 + x3.

Subcase 4 of 6: Suppose η = 1 and 0 ≤ ε < 1 + x3. Then, it follows that
η(1 + x3) − ε + γ > 0. Consequently, since δ(1 + x3) − γ < 1 + (1 + x3)x2, we have
that the numerator of our floor function argument is positive, implying⌊

(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ
(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0

for any 0 ≤ γ ≤ 1 + x3 and 0 ≤ δ < x2. As a result, if δ = 0 and γ > 0, then
h(b) = h((εx1 + 1)(1 + (1 + x3)x2) + γx2) = 1 + x2 > 1. If δ = γ = 0, then
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h(b) = h((εx1 + 1)(1 + (1 + x3)x2)) = η = 1 whenever 0 ≤ ε < 1 + x3. If δ > 0, then
h(b) = h((εx1 + 1)(1 + (1 + x3)x2) + γx2 + δ) = 1 + δ > 1.

Subcase 5 of 6: Suppose η = 1 and ε = 1+x3. Then, the numerator of our floor
function argument reduces to γ(1 +x3)x2 + δ(1 +x3), which is certainly nonnegative.
Therefore, it follows that⌊

(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ
(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0,

which simplifies our formula for h(b) to

h(b) = h((1 + (1 + x3)x1)(1 + (1 + x3)x2) + γx2 + δ) = 1 + δ − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

Therefore, if δ = 0 and γ > 0, it follows that h(b) = h((1 + (1 + x3)x1)(1 + (1 +
x3)x2) + γx2) = 1 + x2 > 1. Otherwise, h(b) = h((1 + (1 + x3)x1)(1 + (1 + x3)x2) +
γx2 + δ) = 1 + δ. So, for this to be equal to 1, it must be that δ = γ = 0, i.e.,
h((1 + (1 + x3)x1)(1 + (1 + x3)x2)) = 1.

Subcase 6 of 6: Suppose η > 1. Then, it follows that η(1 + x3)− ε+ γ > 0, and
consequently, since δ(1 +x3)− γ < 1 + (1 +x3)x2, we have that the numerator of our
floor function argument is positive. Therefore, we have that⌊

(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ
(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0,

which simplifies our formula for h(b) to

h(b) = h((εx1 + η)(1 + (1 + x3)x2) + γx2 + δ) = η + δ − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

Therefore, if δ = 0 and γ > 0, it follows that h(b) = h((εx1+η)(1+(1+x3)x2)+γx2) =
η + x2 > 1. Otherwise, h(b) = h((εx1 + η)(1 + (1 + x3)x2) + γx2 + δ) = η + δ > 1.

We summarize the values of b for which h(b) = 1 that were just derived:

• If x1 = 1, η = δ = γ = 0, and 0 < ε ≤ 1 + x3, we have b = ε(1 + (1 + x3)x2).

• If x2 = 1, η = δ = 0, and 0 ≤ ε < γ ≤ 1 + x3, we have b = εx1(2 + x3) + γx2.

• If η = 0, δ = 1, and 0 ≤ ε ≤ γ ≤ 1+x3, we have b = εx1(1+(1+x3)x2)+γx2+1.

• If η = 1, δ = γ = 0, and 0 ≤ ε ≤ 1 + x3, we have b = (1 + εx1)(1 + (1 + x3)x2).

Our next goal is to establish that (4.5) is always satisfied; recall that we are in the
case where qj = (1+(1+x3)x1)(1+(1+x3)x2). If qi = (1+(1+x3)x1)(1+(1+x3)x2),
the result is trivial. If qi = (1+x3)(1+(1+x3)x1), we write b = α(1+(1+x3)x2)+β,
where 0 ≤ β < 1 + (1 + x3)x2 and 0 ≤ α < 1 + (1 + x3)x1. If b > 1 + (1 + x3)x2 (and
thus, α ≥ 1), we can take c = 1 + (1 + x3)x2 as this makes both sides of (4.5) equal

to (α − 1)(1 + x3) +
⌊

β(1+x3)
1+(1+x3)x2

⌋
. If 2 ≤ b < 1 + (1 + x3)x2, note that α must be 0
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and hence b = β. We write β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3. In
the case that δ > 1, we set c = γx2 + 1 as this makes both sides of (4.5) equal to 0.
Moreover, note that we need not consider the case where δ = 1 since h(γx2 + 1) = 1.
Therefore, it only remains to find a c-value when δ = 0. If δ = 0, then b = β = γx2.
Observe that γ > 0 since γ = 0 would imply h(b) = 0 � 2. In this case, we set
c = (γ − 1)x2 + 1. Since 1 ≤ γ ≤ 1 + x3 implies that 1 ≤ 2 + x3 − γ ≤ 1 + x3, it is
straightforward to check that both sides of (4.5) will again be equal to 0.

Finally, if qi = 1 + x3, the analysis becomes slightly more complicated. As in
the previous case, we begin by writing b = α(1 + (1 + x3)x2) + β, where 0 ≤ β <
1 + (1 +x3)x2 and 0 ≤ α < 1 + (1 +x3)x1. Furthermore, we write β = γx2 + δ, where
0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, and we write α = εx1 + η, where 0 ≤ η < x1 and
0 ≤ ε ≤ 1 + x3. If b > 1 + (1 + x3)x2, we consider c = 1. Substituting c = 1 and the
alternate form for b into the left-hand side of (4.5), yields

ε+

⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + 1 + x3)x2)

⌋
︸ ︷︷ ︸

=:F1

.

On the other hand, substituting into the right-hand side of (4.5) yields

ε+

⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ

(1 + (1 + x3)x1)(1 + 1 + x3)x2)

⌋
︸ ︷︷ ︸

=:F2

.

We must show that F1 = F2. To this end, let n1 = (η(1+x3)−ε+γ)(1+(1+x3)x2)+
δ(1 + x3)− γ and n2 = (η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + (δ− 1)(1 + x3)− γ, that
is, n1 and n2 are the numerators of the arguments in F1 and F2, respectively. Given
the bounds on ε, η, γ, and δ, note that −(1 + x3) ≤ δ(1 + x3)− γ < 1 + (1 + x3)x2,
−2(1+x3) ≤ (δ−1)(1+x3)−γ < 1+(1+x3)x2, and −(1+x3) ≤ η(1+x3)−ε+γ ≤
(1 + x3)x1. Consequently, it follows that |nk| < (1 + (1 + x3)x1)(1 + (1 + x3)x2) for
k ∈ {1, 2}, and this implies that Fk is equal to either 0 or −1. Therefore, to achieve
our goal, we must verify that either n1, n2 < 0 or n1, n2 ≥ 0. Now, observe that
b > 1 + (1 +x3)x2 implies that either (A) α = 1 and β > 0, or (B) α > 1. For each of
these scenarios, we consider subcases. First assume (A) holds, i.e., α = 1 and β > 0.

Subcase 1 of 2: Suppose x1 = 1. Then, since 0 ≤ η < x1 = 1, it follows that
η = 0. Consequently, as 1 = α = εx1 + η, we have that ε = 1. Thus, n1 and n2

reduce to

n1 = (γ − 1)(1 + (1 + x3)x2) + δ(1 + x3)− γ, and

n2 = (γ − 1)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ

If γ = 0, then the numerators n1, n2 < 0 and hence F1 = F2 = −1. If γ = 1, note that
δ 6= 1 (since η = 0, ε = γ, and δ = 1 imply h(b) = 1). So, if δ = 0, then n1, n2 < 0
and hence F1 = F2 = −1. Otherwise, if δ > 1, then n1, n2 > 0 and thus F1 = F2 = 0.
If γ > 1, then n1, n2 > 0, implying F1 = F2 = 0.
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Subcase 2 of 2: Suppose x1 > 1. Then, given that α = 1, it must be the case
that ε = 0 and η = 1. Therefore, it immediately follows that F1 = F2 = 0 since
n1, n2 > 0.

Thus, we can conclude that F1 = F2 in situation (A). Now, we must consider
situation (B), i.e., when α > 1. We again consider subcases.

Subcase 1 of 3: Suppose η = 0. Then, it follows that ε > 0, and our numerators
reduce to

n1 = (γ − ε)(1 + (1 + x3)x2) + δ(1 + x3)− γ, and

n2 = (γ − ε)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ.

If γ > ε, then the numerators of both arguments will be positive, implying F1 = F2 =
0. If γ = ε, note that δ 6= 1 (since η = 0, ε = γ, and δ = 1 imply h(b) = 1). So,
if δ = 0, we have that n1, n2 < 0, and hence F1 = F2 = −1. Otherwise, if δ > 1, it
follows that n1, n2 ≥ 0 which implies F1 = F2 = 0. Finally, if γ < ε, it follows that
F1 = F2 = −1 since n1, n2 < 0.

Subcase 2 of 3: Suppose η = 1. Again, since α > 1, this implies ε > 0. As a
result, we have the following reduction of n1 and n2:

n1 = (1 + x3 − ε+ ε)(1 + (1 + x3)x2) + δ(1 + x3)− γ, and

n2 = (1 + x3 − ε+ γ)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ.

If ε < 1 + x3 then we have n1, n2 > 0, and thus F1 = F2 = 0. Otherwise, ε = 1 + x3.
Note that since η = 1, δ and γ cannot both be 0 as this would imply h(b) = 1.
Therefore, if γ = 0, it must be that δ > 0 which implies n1, n2 > 0 and F1 = F2 = 0.
Otherwise, if γ > 0, n1, n2 > 0, and thus F1 = F2 = 0.

Subcase 3 of 3: Suppose η > 1. Then, it immediately follows that n1, n2 > 0,
and we have that F1 = F2 = 0.

Thus, we find that F1 = F2. Therefore, we have that (4.5) is satisfied with
c = 1 for b > 1 + (1 + x3)x2. It remains to consider 2 ≤ b < 1 + (1 + x3)x2. If
2 ≤ b < 1 + (1 + x3)x2, note that α must be 0 and hence b = β. Therefore, to ensure
we satisfy (4.4), we consider 2 ≤ β < 1 + (1 +x3)x2. Since β > 1 in this case, we may
take c = 1 from which it is straightforward to verify that both sides of (4.5) are equal
to 0. This completes our third and final case, thereby establishing IDP for r-vectors
of type (vii).

Copyright c© Derek W. Hanely, 2022.
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