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ABSTRACT OF THESIS 

 

 

Assessing Machine Learning Utility in Predicting Hydrologic and Nitrate Dynamics in 

Karst Agroecosystems 

 

Seasonal hypoxia in the Gulf of Mexico and harmful algal blooms experienced in 

many inland freshwater bodies is partially driven due to excessive nitrogen loading seen 

from agricultural watersheds. Within the Mississippi/Atchafalaya River Basin, many 

areas are underlain with karst features, and efforts to reduce nitrogen contributions from 

these areas have had varying success, due to lacking a complete understanding of nutrient 

dynamics in karst agricultural systems. To improve the understanding of nitrogen cycling 

in these systems, 35 months of high resolution in situ water quality and atmospheric data 

were collected and fed into a two-hidden layer extreme learning machine (TELM) to 

predict discharge and nitrate exports from a karst agroecosystem in the Inner Bluegrass 

region, to improve the understanding of nitrate dynamics in karst and determine the 

variables of influence driving nitrate loading in karst systems. Including atmospheric and 

soil moisture and temperature records to 100 cm in modeling resulted in the TELM 

providing accurate estimates of both nitrate concentration and flowrate (NSE=0.9328 and 

NSE=0.9363 respectively) and represented short term storm event hysteresis and diurnal 

signals in model predictions. The TELM also showed the variables most influential in 

training were the soil moisture and temperature parameters levels, pointing to the 

importance of focusing future work on understanding how temperature influences matrix-

macropore interactions in the temperate karst environment. Finally, the ELM showed the 

fertilizer application data was not influential in model training, indicating that, at this 

study site, the fertilizer application has little control over nitrate loading. This should be 

studied further in other landscapes with higher rates of fertilizer application where 

alternative hysteretic patterns have been observed. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview and Research Need 

Karst regions cover an estimated 7-10% of the Earth’s land surface and are a 

drinking water source for 25% of the world’s inhabitants (Ford, 1989). Karst landscapes 

are widely used for agricultural production across the world (van Beynen, 2011). In the 

United States, 18% of landscapes are underlain by soluble rocks having karst or the 

potential for the development of karst features. Food-producing states underlain with 

these features include Kentucky, Tennessee, Nebraska, Kansas, Mississippi, Wisconsin, 

and several other states that lie within the Mississippi/Atchafalaya River Basin (MARB) 

(Robertson & Saad, 2021; Weary & Doctor, 2014). Further, it is estimated 60 to 73% of 

the total nitrogen contributed to the MARB results from agricultural practices, 

specifically fertilizers, manure, and fixation, with much of this ending up in the Gulf of 

Mexico (Robertson & Saad, 2021). These contributions result in eutrophication of aquatic 

systems and can lead to toxic algal blooms and hypoxic (dead) zones. This problem is not 

isolated to the Gulf of Mexico, as there have been over 400 dead zones recorded globally, 

although the Gulf of Mexico is consistently one of the largest (NAE, 2017; NOAA, 

2021).  

There is widespread recognition that fertilization practices impact the 

concentration and loading of nitrate in karst agroecosystems.  In cultivated landscapes, 

the use of industrially produced inorganic fertilizers have increased in recent years to 

meet food production needs (Robert & Rutger, 2008). Studies have shown strong 

increases in nitrate concentrations in subsurface drainage following inorganic fertilizer 

application (e.g., Ford et al., 2018).  Additionally, organic sources, such as livestock 
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waste, are also major contributors to NO3
- leaching to groundwater, with several studies 

showing a direct link between livestock operations and elevated nitrate concentrations in 

groundwater seeps and conduits (Boyer & Pasquarell, 1996). This buildup of nitrate has 

been shown to create legacy effects, where decomposition of the manure is delayed, 

slowly releasing nitrate. These legacy sources can deliver high nitrate concentrations for 

many years after application, especially when applied at a regular schedule (Basu et al., 

2012; Johnson & Stets, 2020).  Timing, magnitude, and extent of organic and inorganic 

fertilizer applications make assessments of nitrate loadings a challenge at the watershed-

scale. 

Assessments of nitrate loading in karst systems is complicated by karst’s 

heterogeneous structure, unique flow pathways, and in-stream processes. Karst systems 

are often characterized as a set of vertical zones, where the soil may retain much of the 

applied nitrate and release it to diffuse or concentrated flow paths within the epikarst and 

conduits following rain events (Opsal, 2017; Husic, 2019). This retention and release 

makes determining nitrate loading difficult in karst because it is highly variable 

depending on flow path activation, which can vary drastically based on time of year, 

weather patterns, and the structure of the karst system being study. Many studies 

characterizing karst systems as zones do not recognize the vertical variability seen in the 

soil matrix, particularly in soil moisture levels, which may have a substantial impact in 

exports due to the karst features that connect subsurface layers.   Further in-stream 

process downstream of springs and seeps are hotspots for biochemical activity and thus 

strongly alter nitrate concentrations at the watershed-scale (Ford et al., 2019).  
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With the improvements in high resolution in situ sensing capabilities, water 

quality monitoring now results in extensive datasets for analysis. This influx of big data 

requires improved analysis procedures such as machine learning to create predictive 

models. Conventional information retrieval and processing methods typically require vast 

amounts of human labor and expertise because they require tuning and adjusting of the 

parameters on a case-by-case basis. Machine learning solves some of these issues by 

providing researchers the ability to leverage computational advancements to elucidate 

patterns in data and identify correlations that may otherwise go unnoticed (Shen, 2018). 

Several studies in environmental and watershed science have employed machine learning 

techniques to improve modeling and forecasting with promising results (Prasad, 2018; 

Shen, 2018; Fijani, 2019; Wen, 2019) with others calling for increased implementation of 

the technology in hydrologic and environmental studies (Lary, 2016; Shen, 2018; 

Moreido, 2021).  Few studies to our knowledge use machine learning approaches for 

water quality assessments in karst agroecosystems, despite the recognized importance of 

these landscapes. 

1.2 Objectives 

The overarching objective of this study was to improve understanding of ag 

fertilization practices and soil hydrologic connectivity on nitrate concentration and 

loading dynamics in karst agroecosystems.  To meet the overarching objective, the 

specific objectives of this thesis were to:  

1. Collect and analyze a novel high-frequency database of surface water nitrate 

concentrations in a karst agricultural watershed to model governing dynamics. 
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2. Assess the utility of machine learning to predict flowrate and nitrate concentrations in 

the karst agroecosystem and determine the relative importance of atmospheric, soil 

moisture and temperature, and agricultural fertilization practices on nitrate 

concentrations. 

3. Assess the utility of machine learning models to account for hysteresis and in-stream 

processes impacting nitrate concentrations in watersheds. 

1.3 Thesis Contents 

Chapter 1: Introduction. Provides an overview of the importance of nitrate loading 

from karst agroecosystems to regional water quality problems in the MRB, identifies the 

objectives and defines the contents of this thesis. 

Chapter 2: Literature Review. Provides a review of karst hydrology, soil nitrate 

dynamics in karst, and big data applications in karst.  

Chapter 3: Methodology. Outlines methodology for the data collection and analysis, 

and analytical methodologies to address the objectives of this thesis. 

Chapter 4: Results and Discussion. Details the results of the high-frequency dataset, 

machine learning model performance and evaluation, and nitrate loading analysis results. 

The utility of machine learning to predict nitrate and flow in heterogenous karst 

agroecosystems, the impacts of perceived important environmental factors, and 

implications for management are discussed.  

Chapter 5: Conclusions and Future Work. Summarizes the major findings of this 

thesis and highlights future research needs. 

Chapter 6: References Cited. Lists the details of works cited in this thesis. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Karst Hydrological Processes 

Karst topography is characterized by an expansive underground drainage network 

that includes caves, sinkholes, and other cracks and fissures in subsurface rocks. This 

type of topography is often found in areas with limestone, dolomite, or gypsum bedrocks 

and is formed through a process of dissolution, or karstification. Karstification creates 

heterogeneity within the subsurface through selective dissolution that initially develops at 

discontinuities, fractures, joints, bedding planes or macropores within the bed 

(Bakalowicz, 2005). As the process advances these small imperfections in the bedrock 

develop into fissures and fractures which develop into larger conduits. Based on 

dissolution mechanics for calcite, the karstification process shows positive feedback, 

creating a hierarchical organizational structure analogous to fluvial systems (Bakalowicz, 

2005; Hartmann et al., 2014). This structure creates an interconnectedness between 

hydrologic zones that gives karst its unique hydrologic properties. 

The hydrologic regions of karst watersheds can be characterized by three main 

zones; the soil, epikarst, and phreatic, which have been conceptualized as distinct 

reservoirs differentiated by the groundwater’s residence time and behavior within the 

zone (Bakalowicz, 2005; Hartmann et al., 2014; Husic et al., 2019). The soil is the 

topmost layer of the subsurface and acts as a large reservoir for storage and transmission 

during rain events, releasing the entrained water into the epikarst, adjacent quick flow 

pathways, and through evapotranspiration (Husic et al., 2019). The epikarst, also known 

as the skin of karst, is the uppermost region of the karst network and can begin at either 

the land surface or from the soil bedrock interface, extending downward for several to 
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tens of meters (Jones, 2013). Several studies have determined stored water within the 

epikarst is pushed out and replaced by newer water during storm events, showing the 

large storage and transfer potential the epikarst maintains (Buda & DeWalle, 2009; Jones, 

2013). The phreatic zone is characterized as the area below the vadose zone and is always 

saturated and in karst landscapes is often comprised of well-developed conduits with a 

high hydraulic conductivity (Bakalowicz, 2005). These conduits do not act as storage for 

the watershed, but instead transfer the groundwater to large regional aquifers or local 

tributaries (Reed et al., 2010). 

Hydrologic pathway dynamics in karst watersheds heavily influence movement of 

contaminants to subsurface springs and seeps. Flow pathways are often discretized into 

quick, intermediate, and slow flow pathways (Hartmann et al., 2014; Husic et al., 2019).  

The quick flow pathways reflect rapid connectivity water sources to surface and 

subsurface pathways, primarily via overland flow, or sinkholes and swallets that are 

directly connected to subsurface conduits in the epikarst and phreatic zones (Hartmann et 

al., 2014; White, 2002). Many karst systems experience much of their groundwater 

recharge through intermediate and slow flow pathways, with some systems estimated at 

over 80% (Husic et al., 2019). The intermediate flow paths reflect transport through 

vertical conduits and fractures in the epikarst which transmit water deeper into the 

phreatic zone during high flow conditions, while tertiary or less developed flow paths act 

as a bottleneck for infiltrating water, slowing and retaining water, or moving it laterally 

through the epikarst. The slow flow pathways exist within the micropores in the soil and 

very small diffuse fissures and cracks in the epikarst, and their dynamics are heavily 

dependent on the conditions experienced above ground, typically draining into the more 
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developed karst network following heavy rains (Aquilina et al., 2006).  This dynamic 

relationship between the karst features and the soil matrix emphasizes the impact soil 

process have in karst hydrology.  

Soil water stored in the vadose zone prior to storm events may become connected 

to surface waters through preferential flow pathways activated at variable depths in the 

soil profile or reconnection of perched aquifers deeper in the vadose zone. Preferential 

flows are often associated with flow through macropores created by earthworm borrows, 

root penetration, and fingering paths which often do not penetrate through the complete 

soil column into the subsoil, resulting in variable activation within the soil profile.  Klaus 

and McDonnell (2013) showed new infiltrating water enters through macropores and 

disperses into the matrix, which results in new water mixing with the old, stored water, 

and once the soil reaches saturation the mixed water is mobilized and pushed deeper into 

the soil through preferential flow paths.  The authors found that the soil layer from 0.2 to 

0.4 m was found to account for much of the flow contributing to the preferential flow 

paths, due to the extensive earthworm channels at their tile-drained study site.  Others 

have also highlighted the role of macropores in driving recharge of matrix water before 

saturation is reached, at which point the macropores act like fissures and cracks, 

channeling infiltrating water to surface streams or into karst fissures and conduits (Chen 

et al., 2021; Germer & Braun, 2015). Further, if conditions remain dry for extended 

periods, perched aquifers within the vadose zone may become isolated until the water 

table returns to an elevated state (Williams, 1983). Some studies show that only in high 

soil saturation conditions within the vadose zone, when the karst system network of 

fissures and cracks are hydraulically connected, will you see the mobilization of 
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entrained water (Kogovšek & Petrič, 2012; Klaus et al., 2013; Wang et al., 2018).  

Cumulatively, these studies illustrate a need to account for soil moisture variability both 

spatially and temporally to accurately predict karst discharge and flow pathway 

dynamics.  

Given the complexities of karst hydrology, numerical models are often utilized to 

understand system behavior and develop predictive tools, however existing approaches 

do not account for within-profile soil moisture variability. In many hydrologic models of 

karst systems, the various zones (soil matrix, epikarst, phreatic zone, and quick flow 

paths) are treated as reservoirs, each with their own storage and contribution 

characteristics (Tzoraki & Nikolaidis, 2007; Husic et al., 2019). These types of models 

have been shown to accurately reflect multiple pathways (Fleury et al., 2007; Tritz et al., 

2011), however, concerns regarding model suitability and equifinality have been raised, 

requiring more rigorous evaluation of the model’s process-representation capability 

(Hartmann et al., 2013, 2017; Hartmann, 2017). Husic et al., 2019 showed the lumped 

reservoir model was effective at elucidating complex pathways, processes, and timing of 

nitrogen in karst systems, although they also pointed to the relative dominance of the 

slow flow paths in karst being an underdeveloped topic in water science. This is evident 

because these lumped reservoir models tend to treat the soil matrix as a single reservoir 

or combine it with the epikarst rather than isolating different depths of the soil matrix to 

elucidate the effects different layers of the soil profile have on nitrate exports and 

loading. Due to the role the soil plays in the attenuation of contaminant transport into 

groundwater (Russo et al., 2013), this lack of recognition on the impacts of variable soil 
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conditions in the model parameters may be a weakness of lumped reservoir models and is 

an ongoing research need.  

2.2 Nitrate dynamics in Karst Agroecosystems 

Studies of nitrate dynamics in karst landscapes have shown recurring trends 

regarding flow pathways and hydrologic zone connectivity.  During storm events, studies 

investigating nitrate concentrations in karst landscapes have found a dilution effect 

during peak flow, which coincides with precipitation waters that are transported through 

quick flow pathways (Baran et al., 2008; Buda & DeWalle, 2009; Ford et al., 2019; Husic 

et al., 2019). Following quickflow of precipitation waters, epikarst and soil drainage 

waters become connected through quick and intermediate flow paths, resulting in peak 

event nitrate concentrations (Husic et al., 2019). Later in the event, recession of soil and 

epikarst zones and increases in phreatic contributions result in more moderate nitrate 

concentrations, given that nitrate concentration of the phreatic base flow has been 

observed to fall between the diluted event dominated flow and the high concentration soil 

matrix waters (Ford et al., 2019; Rusjan et al., 2008). To illustrate the impact of this 

conceptual model on nitrate loading, results from Husic et al. (2019) estimated quickflow 

accounted for 19% of total water contribution while only exporting 11% of total nitrate, 

intermediate flow (soil and epikarst) accounted for 42% of total water and 49% of total 

nitrate, and the phreatic pathway accounted for 39% of exported water while accounting 

for 40% of exported nitrate. 

Deviations from the conceptual model are likely in fertilized agroecosystems, 

particularly for the quickflow pathway in systems with commercial fertilizer applications. 

Inorganic industrial fertilizers are engineered to have high water solubility to promote 
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availability to the crops/vegetation, especially nitrogenous fertilizers. Due to this high 

water solubility, nitrate fertilizers can easily be transported by runoff or infiltration 

resulting in shallow and/or karst aquifers being contaminated with excess levels of nitrate 

(Robertson and Saad, 2021; Zhang et al., 2020: Katz, 2019; Buda and DeWalle, 2009; 

Zhu, 2009; Alexander et al., 2008). Livestock and animal husbandry operations may 

impact nitrate leaching as elevated nitrate concentrations have been detected in 

groundwater due to runoff from fields, paddocks, and housing structures during heavy 

rains (Boyer & Pasquarell, 1995). Slurries and manure are often spread across pastures to 

add nutrients to ensure a healthy food source for grazing animals as well as controlling 

waste buildup (van Beynen, 2011). Organic fertilizer must be broken down by soil 

microbes, through a process called mineralization, which has been shown to reduce build-

up of nitrate when compared to inorganic sources (Zhang et al., 2012; Meng et al., 2005). 

Despite their slower release times, organic fertilizers can still elevate nitrate levels in 

surface and groundwater beyond safe and approved levels (Yang et al., 2017; Meng et al., 

2005).  

Soil hydrologic and biochemical processes have been found to cause temporal 

variability in nitrate concentrations of drainage waters in karst agroecosystems. Coupled 

evapotranspiration and mineralization of soil organic matter has been found to increase 

soil nitrate in between flushing events, leading to peak concentrations and loadings 

during wet seasons. For instance, these seasonal variations were observed in karst and 

non-karst agroecosystems in China (Yang et al., 2017; Yue et al., 2019), the Lake Erie 

basin (Tian et al., 2015), in Rhode Island and Vermont (Seybold et al., 2019), in southern 

Portugal (Yevenes and Mannaerts, 2011), and across the Mississippi River Basin (Donner 
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et al., 2004). These observations suggest soil moisture and biochemical processes are 

important for nitrate loading; however, we find few studies in these environments have 

directly assessed the impact of vertical variability in soil moisture dynamics on nitrate 

concentrations and loadings.  Nevertheless, studies have demonstrated asymmetric 

profiles of nitrate concentrations at varying depths in the soil columns (Igbal and Krothe, 

1994; Green et al., 2018), suggesting variable connectivity of soil layers within storm 

events will significantly impact drainage water concentrations and loadings.  

Complex in-stream processes can also greatly impact the nitrate concentration and 

loading from a watershed. Dissolved inorganic nitrogen can be removed by aquatic 

vegetation such as algae and duckweed (Bunnell et al., 2020).  Dissolved inorganic N 

may also be released back into surface waters when biota decompose (Korner & 

Vermaat, 1998; Peterson et al., 1997; Webster et al., 2003). These pools of detrital 

organic matter facilitate growth of heterotrophic bacteria communities that can transform 

nitrogen through nitrification and denitrification. Denitrification is an anaerobic process 

that has been seen to occur in these low-oxygen vegetative biomass pools, while the 

aerobic nitrification process can also occur at the boundaries of the biomass pools, being 

stimulated by turbulent advection and diffusion of oxygen (Korner & Vermaat, 1998; 

Eriksson, 2001; Arango & Tank, 2008). Hydrologic variables, such as flow rate, also 

impact nitrogen cycling through scour and vegetation washout, as well as conditions 

around the stream such as canopy cover (Park & Clough, 2012; Griffiths et al., 2013; 

Ford et al., 2017). Seasonal changes have also been shown to greatly reduce loading, 

particularly during summer, due to changes in nutrient uptake and flow conditions (Ford 

et al., 2019). Collectively, previous research has demonstrated the importance of 
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considering ag fertilization practices, soil profile connectivity variability, and in-stream 

processes on fluvial nitrate concentrations in drainage waters of karst agroecosystems.  

Models are needed that consider temporal gradients spanning these governing processes. 

2.3 Big data applications for hydrologic and water quality studies 

2.3.1 High-frequency sensing 

Advances in sensing technology over the last few decades have enabled collection 

of in situ hydrologic and water quality data at higher frequencies, which has improved 

our understanding of pathways, sources and fate of contaminants in karst environments 

(Carey et al., 2014; Jensen & Ford, 2019; Pellerin et al., 2013). Precision and accuracy of 

contemporary in situ sensors has allowed researchers to confidently monitor variations in 

soil temperature and moisture (Bell et al., 2013; Diamond et al., 2013) and water 

parameters such as conductivity, temperature, and nitrate (Snyder et al., 2018), in 

addition to long-standing measurements of flowrate.  Many studies have used these 

sensing platforms to better understand how anthropogenic changes have impacted nitrate 

cycling in watershed studies (Aubert et al., 2016; Baker & Showers, 2019; Bunnell, 2020; 

Carey et al., 2014; Hansen & Singh, 2018; Jensen & Ford, 2019; Yang et al., 2020). 

Blaen et al. (2017) showed the utility of linking hydroclimatological variables with in-

situ high resolution sensing of nutrients. Another study out of the Houzhai catchment in 

China used high resolution sensing to create a coupled hydrological-biogeochemical 

model to understand the sources and pathways for nitrogen within a karst landscape 

(Zhang et al., 2020). Several studies have also used high-frequency sensing to monitor in-

stream processes. Kunz et al. (2016) demonstrated the use of high-frequency sensing in 

quantifying nitrogen uptake processes in higher order streams.  Heffernan et al. (2010) 
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employed high-frequency nitrate measurements in combination with long-term chemical 

and hydrologic records and longitudinal sampling to describe spatial and temporal 

patterns in nitrogen input and removal in a spring fed study site. Burns et al. (2016) 

leveraged high-frequency data to quantify seasonal variations of diel nitrate loss and 

compared that to the total in-stream nitrate losses. Collectively studies have demonstrated 

the utility of high frequency data to provide insights into both upland and in-stream 

processes.   

 Concentration-discharge relationships for water quality parameters are now 

commonly applied to infer sources and pathways of contaminants.  Specifically, nitrate 

hysteresis, or relationships between flow rate and nitrate concentration during and 

following a rain event, can be used to improve the understanding of source and 

connectivity dynamics (Liu et al., 2021; Blaen et al., 2017). A quantitative index is now 

commonly used that compares the normalized flow rate with the normalized constituent 

concentration during a storm event as they fluctuate overtime due to varying flow path 

activation (Clare et al., 2019). In many systems the maximum or minimum flow rate and 

maximum or minimum concentration are experienced at different times during the storm 

event which, when plotted against each other, creates a C-Q hysteresis loop. These loops, 

caused by the temporal lags between discharge and concentration, inform the rapidly 

changing hydrochemical conditions during rain events (Liu et al., 2021; Pellerin et al., 

2014). The shape, direction, curvature, and trends of the hysteresis loops can all vary 

depending on the system, the land use, and the rain event itself. Recent studies have 

suggested using HI values to evaluate the efficacy of model simulations to represent 
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flow-concentration dynamics due to the rapid shifts seen during storm events, but is a 

metric that has rarely been utilized (Liu et al., 2021; Mehdi et al., 2021).  

2.3.2 Machine Learning Applications for Hydrology and Water Quality 

The large databases generated from high-frequency sensing has brought on a 

revolution of machine learning applications in hydrologic and water quality modeling, 

particularly regarding neural network-based approaches. Neural networks employ a 

network of layers consisting of an input layer, one or multiple hidden layers, and an 

output layer, each consisting of individual nodes or neurons (Figure 2.1). Each neuron 

has a weight associated with it and these neurons are connected to neurons in both 

adjacent layers, with a bias associated with each connection. The bias and weight 

determine how the neuron affects the next layer and ultimately the learning algorithm 

output. This structure (Figure 2.1) is modeled after the structure of neurons within the 

brain and allows the machine learning algorithm to process complex datasets with great 

efficiency and accuracy (Acharya et al., 2014; Yaseen et al., 2019). One type of machine 

learning algorithm is the extreme learning machine (ELM). ELMs have been employed in 

a variety of applications across many sectors to analyze data and generate representative 

models, due to their ability to achieve similar or better generalization performance, better 

scalability, and faster learning times than traditional support vector machines (Huang et 

al., 2012). ELM are used to train feedforward networks, removing the need for iteratively 

tuning each hidden node as seen in traditional feedforward neural networks (FNN) and 

support vector machines (SVM), resulting in improved efficiency (Huang et al., 2015). 

In recent years, ELMs and other forms of machine learning have been used in 

several hydrologic and water quality studies (Tables and Figures 
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Table 2.1). Barzegar et al. (2018) demonstrated ELMs and adaptive neuro-fuzzy 

inference systems (ANFIS) can produce accurate groundwater risk maps with better 

performance than both M5 Tree and MARS models. Although the standard ELM 

performed poorly in predicting electrical conductivity (EC) due to the time-lag seen in 

the study system, a variant called a wavelet-extreme learning machine was able to 

account for the time-lag and produced an accurate forecast of EC. Heddam et al. (2017) 

used an extreme learning machine with a sigmoid activation function (S-ELM), ELM 

with radial based activation function (R-ELM), online sequential ELM (OS-ELM), and 

optimally pruned ELM (OP-ELM) to predict dissolved oxygen (DO) based on other 

water quality parameters and compared the results with those from a multiple linear 

regression (MLR) model and a multilayer perceptron neural network (MLPNN). The 

results showed all versions of the ELM outperformed the MLR and MLPNN, with the 

best results generated by the S-ELM, when using all water quality parameters as 

predictors. Ravinesh et al. (2016) produced an ELM used to predict monthly streamflow 

in three rivers in Queensland, Australia using hydrometeorological data, climate indices, 

and sea surface temperature and compared the results to those produced by a standard 

artificial neural network (ANN). The ELM provided better performance for all three 

rivers and required less manual preparation than the ANN. Prasad et al. (2018) employed 

an ELM and variations to predict soil moisture based on solar radiation, precipitation, 

minimum and maximum daily temperatures, and continental parameter maps such as soil 

characteristics and seasonal vegetative growth. They found an ELM integrated with 

ensemble empirical mode decomposition (EEMD-ELM) was highly efficient with great 

performance when forecasting both upper- and lower-layer soil moisture. More examples 
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of ELMs and other machine learning applications in hydrologic and water quality studies 

have been summarized in Tables and Figures 

Table 2.1. As evidenced from this review, the use of machine learning in nitrate 

concentration and loading predictions at a watershed scale are lacking; however, 

collectively the referenced studies show the effectiveness of machine learning in 

processing large datasets in environmental studies, and have demonstrated, coupled with 

appropriate input data and processing, that they can also effectively model source and in-

stream contaminant dynamics.  

A common issue seen when implementing machine learning is overfitting. 

Overfitting can occur when the algorithm has a small training dataset or there are too 

many inputs included in the training set (Ying, 2019). When the dataset is too small, the 

noise has a high probability of being trained into the model and later being used to 

generate predictions. This can be mitigated by having a large enough dataset to represent 

a wide variety of conditions experienced within the study system. With a large number of 

inputs in training, model complexity is increased, and noise can be built into the model 

due to redundancy present with excess input parameters (Chen et al., 2020). Reducing the 

number of input variables by removing those that are redundant or are unimportant in 

training, known as pruning, can effectively reduce overfitting. This can either be done in 

practice by comparing a range of models having different numbers of hidden units or 

starting with a large network and pruning out the least significant connections, either by 

removing individual weights or removing complete units (Bishop, 1995). Several studies 

have tested methods of pruning, successfully demonstrating effectiveness at preventing 
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overfitting (Bishop, 1995; Chen et al., 2020; Hinton et al., 2012; Lai et al., 2020; Miche 

et al., 2011; Ying, 2020). 
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2.4 Tables and Figures 

Table 2.1: Literature review of hydrologic and water quality studies implementing machine learning approaches. 

 

Study 
Study Location/ Site 

Description 
Landscape Application 

Machine 

Learning 

Approaches 

Major Findings 

Heddam and 

Kisi, 2017 

USA; 8 different 

river systems 

1 Clackamas Basin, OR; 1 Willamette 

Basin, OR; 2 Umpqua Basin, OR; 2 

Tualatin Basin, OR; 1 Delaware basin, 

NJ; 1 Cumberland Basin, TN; mostly 

non-karst 

Water Quality; modeled Dissolved Oxygen in 8 river 

systems using water temp, specific conductance, turbidity, 

and pH 

S-ELM, R-

ELM, OS-

ELM, OP-

ELM 

S-ELM had best performance, with every 

ELM outperforming the MLPNN and 

MLR 

Barzegar et 

al, 2017 

Aji-Chay River, 

Northwestern Iran 

Iran's East Azerbaijan province; mostly 

non-karst 
Water Quality; electrical conductivity (EC) 

ELM, WA-

ELM, ANFIS, 

WA-ANFIS 

Demonstrated ELM and ANFIS models 

had low performance when forecasting 

EC but the boosted WA-ELM and WA-

ANFIS performed well to account for 

time-lag 

Barzegar et 

al, 2018 
East Azerbaijan, Iran 

Marand plain to the west of the Caspian 

Sea; non-karst basin with three aquifer 

system in the plain area 

Water Quality; construct reliable and accurate groundwater 

risk maps to provide strategic measures for the protection 

and management of groundwater 

ELM, MARS, 

M5 Tree, SVR 

Showed the ELM and SVR performed 

better than the M5 Tree and MARS 

models, and when combined yielded high 

accuracy 

Fijani et al., 

2019 

Small Prespa Lake, 

Western Macedonia, 

Greece 

Some karst features causing sub-surface 

flow which is partially responsible for 

Small Prespa Lake's recharge 

Water quality; Test a variety of low-cost modeling 

techniques to determine the optimal predictive model 

construction to be aid real-time water quality monitoring 

ELM, 

LSSVM, 

CEEMDAN, 

VMD 

The two-layer hybrid decomposition 

model improved performance with the 

VMD-CEEMDAN-ELM model showing 

the best performance 

Ewusi, 

Ahenkorah, 

Aikins, 2020 

Tarkwa, Western 

Region, Ghana 

Mining community in Ghana with high 

water contamination, low intergranular 

permeability with some aquifer 

formation, water source is surface water 

and bore holes 

Water quality; develop predictive model testing different 

constructions predicting TDS in groundwater, surface water, 

and drinking water in Tarkwa, Ghana, and evaluate the 

performance of the various models 

GPR, BPNN, 

PCR 

The advanced machine learning 

techniques, GPR and BPNN, are effective 

tools for predicting water quality indices 

and are a useful tool for future prediction 

and management of various water 

systems in mining communities 

Ransom, 

Nolan, et al., 

2021 

Conterminous USA 
Varied across the lower 48; Karst and 

Non-karst 

Water Quality; employed three-dimensional extreme 

gradient boosting (XGB) machine learning model to predict 

nitrate based on several predictor variables within a network 

of 12,082 sampling wells 

XGB 

Showed XGB can be applied to three-

dimensional national-scale groundwater 

quality modeling and provides a 

significant milestone in documenting 

nitrate in groundwater 
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Study 
Study Location/Site 

Location 
Landscape Application 

Machine 

Learning 

Approaches 

Major Findings 

Wunsch et 

al., 2021 

Alpine/Mediterranean 

Region 
Karst Around Mediterranean Sea 

Use atmospheric and soil moisture levels to forecast flow 

from karst catchments in South Central Europe 
CNN 

The 2D-CNN (convolutional neural 

network) showed good performance in 

modeling the flow from the karst 

watershed 

Ollivier et 

al., 2020 

Fontaine de Vaucluse 

South-eastern France 
Karst System 

Used a reservoir-based model, complimented with 

multifactorial monitoring (neural network) to model flows 

from the karst catchment 

Multifactorial 

monitoring 

Demonstrated the effectiveness of 

machine learning at developing 2D and 

3D modeling of the soil characteristics to 

aid in the accuracy produced by 

reservoir-based model of karst system 

Ravinesh, 

Mehmet, 

2016 

Queensland, 

Australia 

Eastern coast of Queensland; Gowrie 

Creek, Mary River, and Albert River 

Flow prediction; predicting monthly streamflow based off 

hydrometeorological data, climate indices, and sea surface 

temp 

ELM 

Determined ELM offers an efficient 

approach for streamflow simulation and 

is practical for other hydrologic modeling 

Yaseen; 

Sulaiman; et 

al., 2019 

Malaysian Peninisula 
Some karst features present on the 

Malaysian Peninsula 

Flow prediction; assess the viability of the enhanced version 

of extreme learning machine (EELM) modeling of river flow  
EELM 

Shows utility in ELM variants to 

successfully model river flow based 

hydrologic variables and correlating lag 

times 

Rezaie-Balf; 

Kisi; 2018 
Tajan River, Iran 

Some karst features in the area; due 

south of the Caspian Sea 

Flow prediction; tested three soft computing methods in 

forecasting daily river flow 

MLPNN, OP-

ELM, EPR 

Showed the EPR represented best 

performance in simulating peak flow 

compared to the other methods, while 

MLPNN significantly under or over 

estimated 

Roushanger 

et al., 2017 

Ajichay watershed, 

Northwest Iran 
Mostly non-karst region Rainfall-runoff, monthly river runoff 

ELM, G-

ELM, I-ELM, 

W-ELM 

Showed the G-ELM model coupled with 

previous wavelet transformation 

produced an accurate representation of 

the study river flow 

Yaseen et 

al., 2016 
Tigris River, Iraq Iraq has well known karst development 

River/stream flow; Use of an ELM to forecast monthly 

stream-flow discharge rates in the Tigris River 

ELM, SVR, 

GRNN 

Found the ELM showed superior 

performance over the SVR and GRNN 

Prasad et al., 

2018 
Australia 

New South Wales where most 

Australia's agriculture is located, 

maintains a variety of geophysical 

conditions  

Soil Moisture; Used an ELM integrated with ensemble 

empirical mode decomposition to forecast soil moisture 

ELM, 

CEEMDAN, 

EEMD 

EEMD-ELM proved to be highly 

efficient with better performance when 

forecast both upper and lower layer soil 

moisture 

Feng et al., 

2017 

Shouyang, Shanxi 

Province, North 

China 

Karst Region spread through Shanxi 

Province 

Develop an ELM  and generalized regression neural network 

models for maize evapotranspiration 
ELM, GRNN 

Showed the ELM and GRNN predicted 

well with meteorological and crop data, 

and generated acceptable predictions with 

just meteorological data 
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Figure 2.1: Structure of a feed forward neural network, such as an ELM. This shows how 

the data moves through the layers, with each neuron carrying a weight and a transfer 

function and each connection between neurons maintaining a bias. These weights and 

biases are randomly assigned and automatically adjusted during training.  
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CHAPTER 3. METHODOLOGY 

3.1 Study Site 

To meet the objectives of this study, data collection and analysis efforts were 

conducted in the Camden Creek watershed within the Inner Bluegrass region of 

Kentucky, U.S.A (Figure 3.1).  This watershed has a cumulative drainage area of 1,069 

ha and drains a substantial portion of the University of Kentucky’s 600 ha C. Oran Little 

Research Center (LRC). The LRC is the university’s main animal research property, 

housing beef, swine, and sheep research facilities along with about 150 ha of row crops 

(Figure 3.1). The watershed is located within the Inner-Bluegrass physiographic region of 

central Kentucky which is characterized by a temperate Midwestern United States 

climate, maintaining four distinguishable seasons (Ford et al., 2019).  The watershed is 

characterized by broad, shallow sinkholes; large valleys and ridges with low-relief; and 

sparse rock outcrops and thick, fertile soils (Ford et al., 2019). Over the past decade, the 

region  has received an average annual rainfall of 1322 mm with an average temperature 

of 13.14°C (MRCC, 2021). 

Heterogeneity has been observed in karst conduit maturity in the region and the 

Camden Creek watershed is reflective of heterogenous karst development (Ford et al., 

2019; Mahoney et al., 2018; Reed et al., 2010). Local, ephemeral springs and seeps show 

high connectivity between the epikarst and the surface channel throughout the watershed.  

Further, the presence of a blue hole spring and cave spring show a more mature 

connection between the epikarst and phreatic zone in portions of the watershed. Fourteen 

individual springs have been identified on the LRC farm, including ephemeral, local 

perennial, and regional perennial springs (Ford et al., 2019). Dye traces elucidated 
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sinkhole connectivity and enabled delineation of springsheds, resulting in an estimated 

cumulative watershed drainage area extending well beyond the surface watershed (Ford 

et al., 2019). The complexity and heterogeneity of the karst features in the watershed 

makes process-based modeling a challenge and is an excellent testbed for assessing the 

utility of machine learning approaches for hydrologic and water quality modeling.  

3.2 Data Collection and Analysis 

To meet the objectives of this study, data collection efforts were focused on 

surface water quality and hydrologic data at the watershed outlet (Figure 3.1), along with 

the use of private and public databases maintaining data on meteorological variables, soil 

conditions, and fertilizer applications. Surface water measurements included flow depth 

and nitrate/nitrite concentration and were obtained from in situ water quality sondes that 

were validated using grab samples.  Meteorological and soil variables including 

precipitation, wind speed, air temperature, solar radiation, soil moisture and temperature 

at depths of 10, 20, 50, and 100-cm were obtained from the National Centers of 

Environmental Information’s climate reference network, which is operated through 

NOAA.  Farm management data focused on the nitrogen fertilizer application rates in the 

watersheds and was estimated based on the pounds of inorganic nitrogen applied, and the 

volume of manure slurry applied to the fields. The types and duration of monitoring data 

are summarized in Table 3.1 and are further detailed in the following subsections. 

3.2.1 Surface water measurements 

Flowrates were estimated based on flow depths over a v-notch weir at the 

watershed outlet (Table 3.1). Pressure measurements were collected at a 15-minute 

interval, beginning on Aug. 29, 2018 through Aug. 4, 2021 (1070 days). Due to sensor 
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errors, research restrictions with the Covid-19 pandemic, and QAQC processing, some 

data is missing or was discarded. Of the 1070 days included in the collection period, 921 

days are included for discharge data. Two YSI EXO2 sondes were used interchangeably 

throughout this project to collect flow depth data, with each unit requiring monthly 

calibration, battery replacement, and general maintenance consistent with manufacturer 

specifications (YSI Incorporated, 2014). Data was screened to check if points fell within 

maximum and minimum threshold values for the sensors per manufacturer specifications 

and were flagged if they fell outside of bounds. The data was then manually checked for 

any abnormalities or outliers and cross-referenced with field notes.  Given the pressure 

sensor was not vented, corrections were needed to account for barometric pressure. The 

actual flow depth (YSIDepth) was estimated using equation 1. 

𝑌𝑆𝐼𝐷𝑒𝑝𝑡ℎ = (𝑌𝑆𝐼𝑟𝑒𝑎𝑑𝑖𝑛𝑔 + 𝐵𝑎𝑟𝑜𝐷𝑂 − 𝐵𝑎𝑟𝑜𝐴𝑃) ∗ 0.703
𝑚

𝑝𝑠𝑖
+ 𝐶𝑜𝑟𝑟 −

𝑂𝑓𝑓𝑠𝑒𝑡      (1) 

  

where, 𝑌𝑆𝐼𝑅𝑒𝑎𝑑𝑖𝑛𝑔  is the pressure value recorded by the YSI depth sensor in psi, 𝐵𝑎𝑟𝑜𝐷𝑂 

is the value entered for the barometric pressure (psi) during calibration of the DO sensor 

for each deployment of the YSI, 𝐵𝑎𝑟𝑜𝐴𝑃 (psi) is the barometric pressure recorded at 

Bluegrass airport, Corr (m) is the correction for the height of the sensor above the bottom 

of the channel (0.282 m), and Offset (m) is the average difference between the corrected 

YSI depth measurements and the manual measurements taken during site visits. 

Barometric pressure values were obtained hourly from the Bluegrass Airport in 

Lexington, KY and was downloaded from the Midwestern Regional Climate Center. 

When the YSI EXO2 were swapped monthly, the depth in the channel was measured 
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using a meter stick with 1mm resolution. Measured values were compared with estimated 

flow depths to ensure accuracy in measurements.   

Flowrates (Q) at the watershed outlet were estimated based on flow depths over a 

downstream weir. This weir was installed in August 2018 and included a 120° V-notch 

with an invert 0.5 feet from the channel bed.  The top of the weir was 1.5 ft from the bed 

and was 14 feet wide to accommodate the width of the culvert.  This construction resulted 

in piecewise flow rate calculations depending on if flow was restricted within the v-notch 

(equation 2a) or flowed over the broad crested weir (equation 2b).  

𝑄 = 4.330𝑑2.5        if d < 1ft  (2a) 

𝑄 = 4.330 + 46.62(𝑑 − 1)1.5      if d > 1ft (2b) 

where d = height above the invert of the v-notch (ft) which was estimated based on the 

total flow depth and distance of the weir crest from the channel bed. 

High-frequency nitrate measurements at the watershed outlet were obtained using 

a SUNA V2 sensor manufactured by Sea-Bird Scientific. The SUNA measures nitrate-

nitrite concentration using their intrinsic absorption of UV light at wavelengths less than 

240 nm, with a resolution of approximately 1 nm. The SUNA contains a stable UV light 

source, a straight-through quartz sampling chamber, and a precision spectrometer to 

measure the UV absorption. There is an onboard absorption curve-fitting algorithm using 

laboratory/manufacturer calibrated instrument-specific extinction coefficients for nitrate-

nitrite that resolve the measured absorption into a concentration (MacIntyre et al., 2009). 

Values of nitrate-nitrite as N were reported as milligrams of nitrogen per liter, mgN/L. 

Data was collected from Sept. 7, 2018 to Aug. 4, 2021 at 15-minute intervals. Similarly, 

to the flow data, there are periods of missing nitrate data due to sensor errors, restrictions 
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to research from Covid-19 precautions, and data that failed QC protocols. The longest 

period of missing date fell from Nov. 20, 2019 until July 20, 2020 and this was a 

combination of problems that led to the SUNA needing to be sent to Sea-Bird for 

servicing and was returned to the university after Covid-19 work restrictions were in 

place. Reference spectrum updates were completed every one to three months based on 

weather conditions and lab access, although most updates were carried out every four to 

five weeks. The sensor was checked for debris or other possible fouling during site visits. 

The SUNA was powered externally and a data logger was used to store and offload data. 

The data collection platform consisted of a solar powered instrument panel consisting of 

a Hubbell-Wiegmann NEMA 12 JIC series enclosure which houses a Sutron X-link data 

logger, a voltage regulator, two fuse blocks, and three terminal blocks. The software used 

to communicate with the SUNA V2 was Sea-Bird Scientific’s UCI 2.0.3 version software 

(Scientific, 2019). Quality control analyses were performed using an analogous approach 

to YSI sensors.  Additionally, the SUNA reported an RMSE value with each 

measurement to estimate the goodness of the nitrate spectral fit. The SUNA values were 

noted and flagged if this RMSE value was reported as 0.001 or higher. Grab samples 

were used to validate SUNA measurements and ensure flagged values were still accurate. 

At least two samples were collected each month and were delivered to the Kentucky 

Geological Survey (KGS) for analysis of nitrate nitrogen (NO3-N). KGS follows EPA 

method 9056A-Determination of Inorganic Anions by Ion Chromatography when 

determining the nitrate concentration of surface water samples (EPA, 2007).  Linear 

regression was performed between measured nitrate values and surrogate nitrate 

estimates to check for accuracy and precision (Bunnell, 2020).   
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3.2.2 Meteorological and Soil moisture data 

Soil and meteorological data were obtained from the Midwestern Regional 

Climate Center cli-MATE database (MRCC, 2021) and the US Climate Reference 

Network (Diamond et al., 2013). Soil and meteorological variables were collected by the 

automated weather observation system (AWOS) located on the LRC property 

(ID:63838). This station contains a Geonor T-200B series precipitation gauge and three 

sets of HydraProbe II sensors using SDI-12 connection mounted 120° off from each other 

(Figure 3.2), which are the standard mandated by NOAA (Geonor, 2016; Stevens, 2019; 

NOAA, 2021). The station latitude and longitude are 38.0944 and -84.7464, respectively 

(Figure 3.1). Soil moisture and temperature sensors were located at 10, 20, 50, and 100-

cm depths at the monitoring station. Data was collected hourly and were interpolated to 

fifteen-minute data using linear interpolation.  Atmospheric variables including 

precipitation, 1.5m windspeed, air and surface temperature, relative humidity, and solar 

radiation data were obtained at 5-minute intervals and were aggregated to 15-minute 

intervals. The meteorological and soil data was obtained for the entire monitoring period, 

starting on Aug. 29, 2018 and running through Aug. 4, 2021. There were also several 

periods when data was missing, with the longest period being the 100-cm data from 

August 29, 2018 to June 30, 2019. Data is also missing from December 31, 2018 19:15 

(7:15 pm) until January 12, 2019 23:45 (11:45 pm) for air temperature, precipitation, 

surface temperature, and 1.5m wind speed. Portions of the 50-cm soil moisture data were 

also cleaned due to inconsistencies with the soil moistures at the other depths and 

precipitation data. During manual inspection it was determined there were irregular 

jumps in the 50 cm soil moisture data that resulted in a significant spike over an hour 
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period, with some spikes being 50% of the baseline value. These spikes were only seen 

for one to two hours (one or two data points) and quickly returned to the pre-spike level 

and occurred 18 times throughout the monitoring period. To ensure these were not trends 

in the soil moisture, the 50-cm values were compared with the 10, 20, and 100-cm soil 

moistures, as well as the precipitation data. If there were variations in any of these values 

within two hours of the suspect point that may have corresponded with changing 

conditions at the weather station the 50-cm soil moistures were not corrected. If these 

values were unchanging at or around the suspected time stamp the 50-cm soil moisture 

was assumed equal to levels before and after the jump. Due to unrealistic shifts in the 

100-cm data through 2019 and early 2020, inclusion in the TELM training and evaluation 

began on July 29, 2020. This was to ensure a consistent, realistic representation of the 

dynamics within the deep soil was used. 

3.2.3 Management Data 

The study watershed receives several different fertilizer applications ranging from 

inorganic sources such as urea and urea ammonium nitrate to organic sources such as 

dairy and swine slurries. These fertilization periods typically occurred between March 

and June, which coincides with crop planting. All inorganic fertilizer inputs at the LRC 

were accessed through the cloud-based farm management software, Granular Business, 

that discretizes the farm into fields based on usage, allowing farm personnel to manage 

and record important events and treatments each field receives. The organic fertilization 

data was not available on the Granular database therefore it had to be acquired from farm 

managers directly. This application data was also broken down using the same discretized 
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fields used for the inorganic fertilizer application. The values reported were daily 

applications values and are summarized in Appendix B and C.   

3.3 Analytical Methodology 

 To assess how temporal variability of soil moisture at various levels within the 

soil profile and fertilization impact nitrate loading dynamics in disturbed agroecosystems, 

a form of extreme learning machine (ELM) was utilized known as a two-hidden-layer 

ELM (TELM). The ELM was chosen due to its success in hydrologic and water quality 

studies and its ease of implementation, and the TELM has been shown to outperform the 

original ELM (Qu et al., 2016). ELMs are traditionally single hidden layer feed forward 

networks that assign the weights between the input layer and hidden layer and bias of the 

hidden layer randomly and then tune themselves to map the assigned input data to the 

defined output variable. In a TELM, like in an ELM, the weights and bias of the first 

hidden layer are randomly assigned with the output of the first hidden layer being the 

weight matrix of the second hidden layer, rather than being randomly initialized like the 

first. Qu et al., 2016 outlined the structure, function, and process.  Next, we assessed the 

utility of the TELM models to reflect hysteresis patterns in nitrate concentration data, and 

diurnal variability (e.g., in-stream processes).  Finally, we assessed the impact of 

prevailing variables on nitrate loading in the karst agroecosystem watershed. 

3.3.1 Extreme Learning Machines Model Setup and Evaluation 

To build our TELM, an optimized tensor computation package known as PyTorch 

was employed to assist in model generation in Python. PyTorch is an open source project 

produced by Facebook, Inc. to be used for deep learning applications using graphics 
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processing units (GPUs) and central processing units (CPUs), with a strong history of 

recent use in academia (Chen et al., 2019; Steppa & Holch, 2019). PyTorch provides 

tools and library used across many sectors to call from, allowing for the creation and 

implementation of advanced machine learning application without requiring in depth 

knowledge on the intricacies of machine learning algorithms. PyTorch provided the 

framework to construct the neural network and designate the model characteristics such 

as number of hidden layers, number of neurons within the hidden layer, activation 

function contained within the hidden neurons, and structure to implement the other 

modules used in the models construction (torch.nn.Module, 2019; PyTorch, 2021). Many 

universities and other institutions of higher learning that are now offering courses which 

focus on using PyTorch in their machine/deep learning curriculum (Cornell, 2021; Devry, 

2021; Maryland; Soylu, 2021).  

Several other Python modules were used in the development with PyTorch. 

Pandas and NumPy are modules used for fast, powerful, flexible, and easy analysis and 

manipulation of data. These modules allow users to apply scientific computing to data by 

arranging the input data into arrays, quickly parse and remove any data based on user 

defined parameters and manipulate the shape and dimensions of the arrays for 

computation (pandas, 2021; NumPy, 2005). Sklearn or scikit-learn is a module that 

supports supervised and unsupervised learning and provides various tools for model 

fitting, data preprocessing, model selection and evaluation, among other uses (sci-kit 

learning, 2019). It was used to define specific parameters, in conjunction with those with 

PyTorch, within the learning model such as the splits for the training and testing datasets 

and the min/max scaler used to normalize the datasets after the training and testing sets 
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were defined. Captum is another module used in the development of the learning model 

and was used to determine the variables that carried the most influence throughout 

training. Due to the increasing complexity and lack of transparency in model 

interpretability, this module provides algorithms, like integrated gradients, that 

understand which features provide greater influence in the model output (Captum, 2021). 

The last two modules leveraged in the development of the TELM were OpenPyXL and 

Matplotlib. OpenPyXL allows for the easy reading and writing from Python to xlxs and 

xlsm formats (Gazoni et al., 2021). This was used to write output of the model such as the 

predictions and attributions, or variables of influence and their associated influence 

percentages to an Excel spreadsheet. Matplotlib is a comprehensive library for creating 

static, animated, and interactive visualization in Python (Hunter et al., 2021). This 

module was used to generate the plot and figures used during model training and the 

graphs that were associated with the attribution functions. 

Variables used as inputs for the flowrate and nitrate concentration models were 

based on available long-term atmospheric, soil moisture and management data which 

were perceived to impact hydrologic and N cycles in the karst agroecosystem watershed.  

Inputs to both models included precipitation, air temperature, ground surface 

temperature, soil moisture and soil temperature at depths of 10, 20, 50, and 100-cm, solar 

radiation, 1.5m wind speed, and relative humidity.  For the nitrate model, pounds of 

inorganic nitrogen applied, gallons of swine slurry applied, and gallons of dairy slurry 

applied were also included.  The fertilizer application data was included as an input for 

the model due to its perceived impact on nitrate exports. By including the organic and 

inorganic fertilizer separately the impacts of the fertilizers from different sources can be 
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better elucidated, and by separating the organic sources between dairy and swine the 

impacts can be further refined. Both the inorganic and organic fertilizer data received 

from the Granular database and farm managers were in daily totals applied to the 

discretized fields, meaning, to be used as a model input, the total fertilizer applied per day 

was distributed uniformly at 15-minute applications over the eight-hour working period 

of the days applied, with all other fertilizer values being zero.  In other words, each time 

that did not fall during the eight-hour working period of the days of fertilizer application 

had fertilization values of zero. 

 The initial model tested was a two hidden-layer extreme learning machine with 50 

neurons in each hidden layer. This multi-layer construction was also tested with neuron 

counts of 40, 60, and 100. For the single layer construction, neuron counts of 40, 50, 60, 

80, and 100 were tested. Each scenario was run at least four times with the construction 

that produced the lowest mean squared error (MSE) being the model chosen for all 

scenario analysis. Once the model construction was determined, multiple runs with 

differing sets of training data were tested to see the effects on the accuracy of the model 

predictions, giving insight on the effects of the different sets (scenarios) on the nitrate 

exports and flow discharge of the system. These sets included combinations of the 

atmospheric variables (precipitation, 1.5m windspeed, air and surface temperature, 

relative humidity, and solar radiation), soil moisture at 10-cm, 20-cm, 50-cm, and 100-

cm, soil temperature at 10-cm, 20-cm, 50-cm, and 100-cm, and inorganic and organic 

fertilization, which are summarized in Table 3.1. Scenarios were identical for flow and 

nitrate, except nitrate had an additional run to consider the impact of fertilization.  The 

100-cm soil moisture data was not included in most of the model runs because there were 
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larger gaps in the database as compared with other datasets, however it was considered 

after determining influential parameters in the broader dataset.  

For each of the aforementioned scenarios, the training datasets were used to 

predict nitrate concentrations and flowrates. At the beginning of each run, all the 

collected data for all variables within the system were loaded into the model. There is a 

set of user defined options, one of which allows the user to define which variables are 

then included in model training and testing. The other options include batch size, use the 

CPU or GPU to run the model (if a GPU is available), neuron count, learning rate, the 

loss warning threshold, the loss exit and save threshold, the model name to load, and the 

model name to save. Data was randomly divided into fifths in which four of the divided 

sets were used to train the model in batches and the last fifth was retained to validate the 

model’s effectiveness. Within the model, each input is represented by a neuron in the 

input layer, and each of these neurons is connected to the neurons within the first hidden 

layer (Table 2.1). Each connection between the neurons of the different layers has a 

weight and when the model is initialized the weights between the input layer and first 

hidden layer are randomly assigned. This random assignment of weights at initialization 

differentiates extreme learning machines from other neural network applications and 

removes the need to iteratively tune the weights, reducing the time required to train the 

model. Each neuron in the hidden layer has an activation function which defines the 

output of the neuron, based on the inputs. The outputs of the first hidden layer are then 

passed to the second hidden layer, with each connection having its own weight which is 

assigned by the TELM based off the information passed between neurons. Each neuron in 

the second hidden layer has an activation function which behaves analogously to the first 
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hidden layer. The activation function used in this study was the Rectified Linear Unit 

activation function, which is a commonly cited and used activation function within deep 

learning (Agostinelli et al., 2014; Banerjee et al., 2020; Jin et al., 2015).  

The output of the TELM model was then used to evaluate the performance of the 

model. The test data is then used to verify the model’s accuracy and the model will 

reinitialize the training after each run until a user specified variation threshold is reached 

or a user specified number of epochs without variation is reached. Each iteration of 

training is called an epoch. At the completion of each epoch, a scatter plot showing the 

predicted regression and several test points is generated, as well as the percent of 

predicted values that fall within defined percentiles. This gives the operator an indication 

of the model’s accuracy. Mean square error (MSE) was output directly from the model 

during training and testing to monitor the progress and performance while learning. This 

is the default loss function for most PyTorch regression models and is calculated as 

𝑙𝑜𝑠𝑠(𝑦𝑖
𝑜𝑏𝑠, 𝑦𝑖

𝑝𝑟𝑒𝑑) = (𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑖

𝑝𝑟𝑒𝑑
)2 (3) 

where 𝑦𝑖
𝑜𝑏𝑠 represents the ith observation of the measured value and 𝑦𝑖

𝑝𝑟𝑒𝑑
 represents the 

ith observation of the predicted value. Once model runs were completed, the predictions 

from each of the trained models were generated and exported to Excel to compare with 

the measured values and calculate the root mean squared error (RMSE) of each run.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑝𝑟𝑒𝑑

)2𝑁
𝑖=1

𝑁
 

(4) 

where N represents the number of samples, 𝑦𝑖
𝑜𝑏𝑠 represents the ith observation of the 

measured value, and 𝑦𝑖
𝑝𝑟𝑒𝑑

 represents the ith observation of the predicted value. 

Following the RMSE calculation, Nash-Sutcliffe Efficiency (NSE) was also used to 
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verify the TELM’s effectiveness at capturing the nitrate variation. NSE is a widely used 

statistic for evaluating hydrologic and water quality models (Moriasi et al., 2007; 

McCuen et al., 2006). 

𝑁𝑆𝐸 = 1 − [
∑ (𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑝𝑟𝑒𝑑)

2
𝑁
𝑖=1

∑ (𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑚𝑒𝑎𝑛)

2𝑁
𝑖=1

] 

(5) 

where 𝑦𝑖
𝑜𝑏𝑠 represent the ith observation of the measured constituent being evaluated, 

𝑦𝑖
𝑝𝑟𝑒𝑑

 represents the ith observation of the predicted constituent being evaluated, 𝑦𝑚𝑒𝑎𝑛 

represents the mean of the observed data for the constituent being evaluated, an N is the 

total number of observations (Moriasi et al., 2007). 

3.3.2 Impact of variables on flowrates and nitrate concentrations 

 Using the Captum module, the impact each of the variables has on the model 

training was performed with the intention of understanding how the system interacts 

holistically, while also giving a representation of the most important data to collect in 

future studies at different locations. The feature of the Captum module used for this study 

was integrated gradients (IG). Gradients of the output with respect to the input within the 

model are a natural analog of the model coefficients for a deep network, meaning they are 

a good starting point for defining the attribution, or relevance, of inputs to the output 

(Sundararajan et al., 2017). IG recognizes these gradients within the trained model and 

integrates them across the entire sample to determine the average importance each 

variable carried during the training process, see Sundararajan et al., 2017 for full 

explanation of integrated gradients. By using these integrated gradients, each variable’s 

perceived effect on the system can be represented. For this reason, determining the 

variables of influence driving nitrate exports within karst agroecosystems was an 
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important consideration to enable the most accurate model generation with the least 

number of variables, therefore requiring the fewest sensors. These values were reported 

as a decimal summing to 1. This attribution function was run three times for each model 

run to ensure an accurate estimate was made due to the use of Riemann Sum to determine 

the IG. Once generated from each model run, the IG were averaged, giving a composite 

IG for each run. The composite IGs from each run were then averaged to give an IG for 

each scenario.  

3.3.3 Overfitting 

Overfitting due to a small training dataset was not a concern because the different 

scenarios contained between roughly 35,000 to 75,000 datapoints. To ensure our ELM 

does not suffer from overfitting due to the use of a large number of inputs, variables were 

pruned from the full dataset to reduce the complexity of the neural network. This post-

pruning method used the attribution scores generated from the scenarios testing variable 

influence to determine which variables were least important in training and removed 

them to prevent redundancy, as described in Bishop, 1995. The first scenarios used only 

the six atmospheric variables in scenario 3 for nitrate and scenario 2 for discharge, 

designated as nitrate overfitting (OF) scenario 1 and discharge OF scenario 1. Trials were 

also conducted using only six soil condition parameters (moisture level and temperature 

at 10-cm, 20-cm, and 50-cm) for the full monitoring period and eight soil condition 

parameters (moisture level and temperature at 10-cm, 20-cm, 50-cm, and 100-cm) for the 

portion of the monitoring period with reliable 100-cm data for both nitrate concentration 

and discharge modeling (Table 3.2). To determine if overfitting occurred in the original 

model scenarios due to redundant variables, NSEs were calculated for the overfitting 
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scenarios and compared to those generated for the variable analysis. If overfitting occurs 

due to redundant variables, all NSEs calculated would be lower regardless of the 

combination of variables; however, if the NSEs calculated from the OF scenarios using 

the variables with the highest attributions scores (soil conditions) are similar to the 

scenarios using all variables, the ELM does not overfit due to the inclusion of redundant 

variables. 

 

3.3.4 Hysteresis and Diel variability Analysis 

 Evaluating predictive models’ performance at predicting concentration-discharge 

relationships, is particularly important to accurately estimate loading dynamics and how 

changes in environmental variables may alter loading. To evaluate the ability of the 

machine learning model to predict nitrate hysteresis, a hysteresis index (HI) for specific 

storm events during the monitoring period were selected. The index was determined by 

first normalizing the flow and concentration data for each event. This was accomplished 

using the equations 

𝑄𝑛𝑜𝑟𝑚 =
𝑄𝑖−𝑄𝑚𝑖𝑛

𝑄𝑚𝑎𝑥−𝑄𝑚𝑖𝑛
                (6)  

where Qi is the measured flow at the ith time step, Qmin is the minimum flow measured 

during the event period, and Qmax is the maximum flow measured during the event period, 

and 

𝐶𝑛𝑜𝑟𝑚 =
𝐶𝑖−𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛
                (7)      

where, Ci is the measured nitrate concentration at the ith time step, Cmin is the minimum 

nitrate concentration measured during the event period, and Cmax is the maximum nitrate 

concentration measured during the event period. With data normalized, the HI can be 
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determined by relating Cnorm with the same values of Qnorm before and after the peak flow 

during the event and applying the equation 

𝐻𝐼𝑖% = 𝐶𝑖% 𝑏𝑒𝑓𝑜𝑟𝑒 𝑚𝑎𝑥 − 𝐶𝑖% 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑥             (8) 

where, HIi% is the hysteresis index for the ith percent, Ci% before max is the normalized 

concentration at Qi% before max, and Ci% after max is the normalized concentration at the Qi% after 

max. For example, for HI90%, Ci% before max equals the Cnorm that coincides with Q90% before max 

and Ci% after max equals the Cnorm that coincides with Q90% after max. This was performed for 

the range of flows experienced during the rain event. The intention was to have one 

small, one medium, and one large event represented during each of the four seasons and 

compare the observed hysteresis (using the measured nitrate concentration and observed 

discharge), with the modeled hysteresis (using the predicted nitrate concentration and 

observed discharge).  Nevertheless, a large event was not captured during the summer 

months within the monitoring period. The sizes within each category varied slightly 

between the seasons, with the small events having a peak Qobs less than 0.3 cms, medium 

events between 0.3 and 0.9 cms, and large events greater than 1 cms. The seasons were 

defined as winter being December 21st through March 19th, spring being March 20th 

through June 20th, summer being June 21st through September 21st, and fall being 

between September 22nd and December 20th.  In total, eleven storm events were selected 

for analysis. These events chosen are summarized in Table 3.3: Summary of the rain 

events chosen to perform the hysteresis analysis. Three events of varying sizes were 

chosen from each season to evaluate the TELM’s ability to capture storm event 

dynamics. No captured event during the summer met the criteria for a large event.  
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 Daily fluctuations in nitrate data are likely due to in-stream aquatic vegetation and 

microbial processes (Yang et al., 2019).  To evaluate the ability of the nitrate 

concentration model to reflect diel fluctuations, timeseries of measured and modeled 

results were compared visually for periods with and without pronounced diurnal 

flucutations. These periods were chosen based on the findings of Bunnell (2020), where 

diel variability in the nitrate signal was minimal during the late fall and winter months, 

and greater in spring and summer. These observation dates were also distributed 

throughout these respective seasons to further test the models ability to capture these 

variable diel fluctuations. The dates are summarized in Table 3.3. 
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3.4 Tables and Figures 

Table 3.1: Summary of the variables included in each set of training scenarios. With the 

model construction determined, nitrate (green) and discharge (orange) were mapped to 

with different combinations of data. Each combination was trained three times to develop 

an average. The highlighted cells indicate which variables were included in each set of 

runs.  
 Nitrate ELM modeling Discharge ELM modeling 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 

Precipitation              

Wind Speed             

Solar Radiation             

Air Temp             

Surface Temp             

Relative Humidity             

Soil Moisture 

10 cm        
 

   

20 cm        
 

   

50 cm        
 

   

100 cm   
 

 
  

   

Soil Temp 

10 cm   
 

   
 

   

20 cm 

  

   
 

   

50 cm   
 

   
 

   

100 cm   
 

 
  

   

Inorganic Fertilizer      
    

Swine Fertilizer   
      

Dairy Fertilizer   
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Table 3.2: Summary of the variables included in the scenarios used to test the model 

does not overfit. Nitrate (green) and discharge (orange) were mapped to different datasets 

that were reduced based on attributions score. The highlight cells indicate which 

variables were included in each set of runs. 
  Overfitting Nitrate ELM modeling Overfitting Discharge ELM modeling 

  
OF 

Scenario 1 

OF 

Scenario 2 

OF 

Scenario 3 

OF 

Scenario 1 

OF 

Scenario 2 

OF 

Scenario 3 

Precipitation             

Wind Speed             

Solar Radiation             

Air Temp             

Surface Temp             

Relative Humidity             

Soil 

Moisture 

10 cm             

20 cm             

50 cm             

100 cm             

Soil 

Temp 

10 cm             

20 cm             

50 cm             

100 cm             

Inorganic 

Fertilizer     
  

    
  

Swine Fertilizer             

Dairy Fertilizer             
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Table 3.3: Summary of the rain events chosen to perform the hysteresis analysis. Three 

events of varying sizes were chosen from each season to evaluate the TELM’s ability to 

capture storm event dynamics. No captured event during the summer met the criteria for 

a large event. 

Season Size Start Date End Date Max Q (cms) 

Summer 

Small 7/29/2020 8/9/2020 0.18 

Med 7/3/2019 7/13/2019 0.4013 

Large None None None 

Fall 

Small 12/19/2020 12/23/2020 0.14 

Med 10/28/2020 11/10/2020 0.357 

Large 10/30/2019 11/7/2019 1.85 

Winter 

Small 2/10/2021 2/21/2021 0.2796 

Med 1/30/2021 2/10/2021 0.843 

Large 2/27/2021 3/14/2021 2.76 

Spring 

Small 4/23/2021 4/29/2021 0.081355 

Med 5/2/2021 5/22/2021 0.756 

Large 6/6/2021 6/13/2021 1.53 
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Table 3.4: Summary of the base-flow dates and seasonal distribution chosen to compare 

mesaured and predicted diel variablity to assess the TELM’s ability to capture short terms 

seasonal dynamics observed in the study system. 

 

 

  

Season Start Date End Date 

Mid-Fall 15-Nov-20 29-Nov-20 

Late-Fall 6-Dec-20 16-Dec-20 

Mid-Winter 11-Jan-21 24-Jan-21 

Early-Summer 25-Jun-21 30-Jun-21 

Mid-Summer 24-Jul-21 4-Aug-21 

Late-Summer/Early-Fall 17-Sep-20 1-Oct-20 
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Figure 3.1: The LRC property lines with the discretized fields based on usage and 

fertilization; the basin and overall watershed boundaries; the stream network on the 

watershed; the ST1 monitoring site; and the NOAA weather station. 
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Figure 3.2: The AWOS on the LRC property that collected the atmospheric and soil data. 
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CHAPTER 4. RESULTS 

4.1 In-stream and soil data results   

 Comparison of laboratory analysis of grab samples and SUNA V2 in situ 

measurements showed that the SUNA V2 is an accurate and unbiased estimator of 

nitrate-N concentrations (Figure 4.1-4.2).  The best-fit linear regression equation between 

laboratory and SUNA V2 measurements had a slope of 0.96 and an intercept of 0.07. The 

regression was performed on 80 grab samples and resulted in an R2 value of 0.98 (Figure 

4.1).  A perfect relationship between the in situ and laboratory measurements would 

result in a slope of 1, intercept of 0, and R2 value of 1.  Therefore, it is evident the SUNA 

does an excellent job of capturing the range of concentrations, especially considering the 

potential uncertainties associated with both the in-situ measurements and the analytical 

errors for the laboratory method.  

Timeseries of the nitrate and discharge data highlighted the impacts of flow 

pathway dynamics, seasonality, and in-stream processes on nitrate concentrations 

throughout the monitoring period (Figure 4.2). The three-year timeseries of flow and 

nitrate data (Figure 4.2a) illustrates seasonality of nitrate concentrations in the karst 

agroecosystem watershed.  During summer, (July-September) concentrations were lowest 

on average with concentrations often dropping below 2 mg/L.  Low concentrations 

coincided with lower flow conditions.  Conversely, during the higher flow conditions of 

late fall and winter, concentrations were substantially higher, often exceeding 4 mg/L. 

During rain events (Figure 4b-e) a dilution in the nitrate concentration is observed on the 

rising limb of the hydrograph, although this dilution is much more prominent in winter 

months as compared to summer months, likely reflecting the gradients observed in pre-
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event concentrations between the seasons.  On the falling limb of the hydrograph, nitrate 

concentrations increased and often met or exceeded pre-event levels.  The rebound of 

nitrate concentrations reflected the magnitude of the event as evidenced by the delayed 

rebound of nitrate in the small winter event (4.2b) as compared to the larger winter and 

summer events (4.2c-d).  Strong diurnal variations were also commonly observed during 

the summer months in between storm events (Figure 4.2d and 4.2e) but were often not 

prominent in winter months (Figure 4.2b and 4.2c) likely reflecting in-stream aquatic 

vegetation and microbial production and respiration processes which result in increased 

concentrations during the night when respiration is prominent and decreased 

concentrations during the day when primary production is prominent (Pellerin, 2021; 

Bunnell, 2020). 

Findings from our study site are reflective of upland connectivity, seasonal, and 

in-stream processes that are typical of karst and agricultural watersheds, excluding 

findings from heavily fertilized agricultural landscapes (Baran  et al., 2008; Blaen et al., 

2017; Buda & DeWalle, 2009; Liu et al., 2007; Husic et al., 2019; Jackson et al., 2020; 

Yue et al., 2019). Storm event hysteresis patterns observed in the data reflect hydrologic 

connectivity pathways that have been commonly described during events in karst 

landscapes.  Lui et al. (2007) and Jackson (2020) showed similar seasonal trends and 

storm event dilution and recharge characteristics in their karst study sites when analyzing 

biogeochemical process such as CO2 production in soils, specific conductance (SC), and 

dissolved inorganic carbon (DIC). Likewise, numerous studies have highlighted the 

impact of wet seasons on enhanced nitrate concentration and loading (e.g., fall through 

early spring for our study site) due to the enhanced connectivity and flushing of nitrate 
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rich pore waters in the soil (Basu et al., 2010; Husic et al., 2019; Yang et al., 2017; Yue 

et al., 2019).  Further, our results showed a decrease in nitrate concentrations during the 

day and an increase during the night in warm periods of late spring-early fall.  Results 

from Bunnell (2020) demonstrated that these diurnal patterns in nitrate are correlated 

with diurnal fluctuations in dissolved oxygen saturation. Maximum values of dissolved 

oxygen saturation during the day are recognized to be governed by growth of aquatic 

vegetation that release oxygen into the water column, and minimum values at night 

reflect prominence of the endogenous and microbial respiration processes in the stream 

ecosystem (Grace et al., 2015).  The impacts of in-stream processes on fluvial nitrogen 

budgets has been broadly recognized (Alexander et al., 2009; Bernhardt et al., 2005; Ford 

et al., 2017; Griffiths et al., 2013; Mulholland et al., 2008) and has been increasingly 

observed in high-frequency nitrate measurements (Carey et al., 2014; Pellerin et al., 

2013; Rode et al., 2016; Yang et al., 2019).  Contrary to findings from heavily fertilized 

agricultural fields and watersheds, we did not find flushing of nitrate-rich waters during 

the rising limb or peak of the hydrograph (Ford et al., 2018; Kennedy et al., 2012; Rusjan 

et al., 2008).  Collectively, the findings suggest the study site is a representative testbed 

to evaluate the ability of machine learning algorithms to represent hydrologic 

connectivity processes of N sources, as well as in-stream processes; although its ability to 

reflect fluvial fertilizer losses may be limited.    

Comparison of the nitrate measurements with soil moisture data illustrates that the 

magnitude and variable response of soil moisture layers with depth influence nitrate 

concentrations at the watershed outlet (Table 4.4). The measured nitrate concentrations 

were typically low during periods of low soil moisture and concentrations were elevated 
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during periods of high soil moisture (Figure 4.3a). Generally, larger changes in soil 

moisture levels corresponded with larger shifts in the nitrate concentrations measured at 

the watershed outlet. Furthermore, when looking at events during seasonal transitions 

from dry to wet periods, particularly summer to late fall (Figure 4.3b), the variable soil 

moisture responses within different layers of the soil profile corresponded with a variable 

response in nitrate concentration fluctuations. When the shallower depths of the soil 

profile (10 and 20-cm depths) had increasing soil moisture contents without a response in 

deeper soil layers (e.g., Aug 25-26, 2019), some increase in nitrate concentration were 

observed, although responses were often relatively small (1.26 to 1.86 mg/L).  

Conversely, as deeper layers of the soil profile (e.g., 50-cm) had increasing soil moisture 

content, larger shifts were observed in nitrate concentrations.  For instance, the event seen 

on Oct 6, 2019 impacted the 50-cm depth with an increase in VWC from 0.1325 to 

0.1875, and a subsequent increase nitrate concentration, from 0.357 to 2.53 mg/L, was 

measured (Figure 4.3b). There is also a lag in activation between the layers of the soil 

profile seen when all measured layers are activated during events (Figure 4.3c). This 

shows the deeper layers begin to activate and reach their peak levels later in the event that 

the shallower layers, with the 100-cm layers showing activation following all other 

layer’s peak activation.    

The coupled response of soil moisture and nitrate exports emphasize the 

importance of matrix-macropore interaction in soils on controlling nitrate loading. As the 

soil moisture increases, the stored matrix water becomes more connected with the 

macropore pathways and is transported to the karst features, ultimately being conveyed 

out of the watershed. This has been reported in several studies (Donner et al., 2004; 
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Yevenes and Mannaerts, 2011; Tian et al., 2015; Husic et al., 2019), and some studies 

have shown asymmetric profiles in nitrate concentrations at varying depths within the soil 

column (Igbal and Krothe, 1994; Green et al., 2018), however these studies did not 

specifically link soil moisture variations based on depth and the impact this has on nitrate 

loading in karst agroecosystems. The visual connection between the different depths 

within the soil column and their perceived effects on the nitrate concentration measured 

at the watershed outlet were evident, with activation due to rain events within the 10 and 

20-cm zone corresponding with smaller, storm event associated nitrate dynamics, and the 

deeper reaches of the soil profile,  corresponding with the large, seasonal fluctuations 

associated with the flushing events that drive overall nitrate loading from these karst 

agroecosystems. This is likely due to the deeper regions of the soil profile becoming 

disconnected from the macropores and karst network during the vegetative growth season 

resulting from the higher water usage at the surface. During these periods, water and 

nutrients are pulled from the active root zone and used for plant growth. The study 

system is predominantly used for cattle grazing and is therefore pastureland. This means 

the prevailing vegetation is Bluegrass with an average effective root depth of 

approximately 46-cm, while the other cultivated crops on the property (soybeans, corn, 

and wheat) having an average effective root depth zone of 61-cm (Staff, 2005). As a rule 

of thumb, the effective root depth accounts for about 70% of the moisture extracted by 

the root. This indicates most of the vegetation growing at the LRC is extracting much of 

the required water and nutrients from the regions of the soil profile shallower than 50-cm 

during the main growth season. This results in the 50-cm and deeper regions of the soil 

becoming disconnected, leading to a buildup of nitrate and other nutrients during the 
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warmer summer months. Following the growth season and the deeper regions of the soil 

matrix become connected to the macropores and karst pathways, a flushing of nitrate 

occurs from these karst agroecosystems, resulting in elevated nitrate exports throughout 

the wetter, winter months. The impacts of ET on nitrate concentration and flow are 

supported by a reservoir-style modeling approach recently applied in a nearby mature 

karst watershed (Husic et al., 2019). 

4.2 Extreme Learning Machine Models for Flow and Nitrate concentrations 

4.2.1 Flowrate ELM modeling 

 The results of the three discharge modeling scenarios showed the importance of 

including vertical soil profile variability in predicting flowrate dynamics in karst 

agroecosystem watersheds.  Scenario 2 (which only used atmospheric variables) had the 

lowest performance with the calculated Nash-Sutcliff Efficiency (NSE), ranging from 

0.1511 to 0.1549 with the average being 0.1551. For scenario 1 the NSE values fell 

between 0.5974 and 0.6558 with the average of the runs being 0.6519. The NSE values 

showed great improvement for scenario 3, with NSE ranging from 0.9228 to 0.9363, with 

the average of the runs being 0.9328. These results are summarized in Table 3.1.  Moriasi 

et al. (2015) outlined ranges to interpret NSE for flow values at the watershed scale at a 

daily, monthly, and annual time step, with 0.80 < NSE ≤ 1 being considered very good, 

0.70 < NSE ≤ 0.80 being good, 0.50 < NSE ≤ 0.70 being satisfactory, and below 0.50 

being not satisfactory; however, it is often suggested that ranges should be relaxed for 

higher frequency measurements. Nevertheless, under this criterion, the findings for 

scenario 1 are satisfactory and scenario 3 are very good.  Visually, scenario 2 reacts to 

overall baseflow but does not capture any response beyond seasonal changes, and these 
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are subtle. Scenarios 1 and 3 capture the seasonal trends and storm event changes well; 

however, scenario 1 does not capture the extremes in the flow response. Scenario 3 shows 

a strong ability to recognize the magnitude of the events and successfully captures the 

extremes, especially the peaks, well. 

Integrated gradients analysis highlighted the importance of soil moisture and 

temperature data (see appendix G) for accurately predicting discharge from the karst 

agroecosystem watershed. The integrated gradients for scenarios 1 and 3 returned the 50-

cm moisture level being the most important with an attribution score of 0.3287 for 

scenario 1 and 0.1995 for scenario 3. For both scenarios 1 and 3, multiple soil 

temperatures were also assigned attribution scores above .08. For scenario 1 the second 

highest score reported in training was assigned to 50-cm temperature at 0.1416 and 

scenario 3 reported the second highest score as 20-cm temperature at 0.1858. The 

remaining top five variables of influence for both scenarios were also soil profile data. 

Scenario 2 returned surface temperature as the most influential variable in training. The 

attribution scores for each of the scenarios are summarized in Table 4.2. These results 

show the importance of understanding soil dynamics, when accurately determining 

discharge characteristics from heterogenous karst systems and incorporating the time lag 

associated with soil layers. By representing the moisture levels and temperature at the 

different depths within the soil profile, the variable activation time of the different soil 

layers within the soil matrix and macropores is represented which directly determines the 

flow contributions from that depth.    

Results of our model support a growing body of evidence that representing 

vertical variability of soil moisture is important for predicting karst hydrologic 
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variability, but also suggests the importance of soil temperature.  Recent studies have 

used machine learning approaches to represent the impact of spatial and vertical 

variability of soil moisture in karst hydrologic predictions. Ollivier et al. (2020) reported 

NSE values between 0.88 and 0.92 using a distributed-reservoir model that employed a 

form on neural network known as multifactorial modeling to estimate spatial variability 

within the soil reservoir. Wunsch et al (2021) reported NSE values of 0.73 and 0.87 for a 

Convolution Neural Network modeling approach where volumetric water content at four 

different levels within the soil column were used to generate flow predictions and showed 

improved modeling ability when compared to the results from models not including the 

soil moisture variability.  Similar to our study, both of these studies provided vastly 

improved NSE values as compared to reservoir-style modeling approaches that are 

commonly employed (Tritz et al., 2011; Tzoraki and Nikolaidis, 2007; Husic et al., 

2019).  Unique to our study was the highlighted importance of soil temperature, which 

was found to have a prominent influence on hydrologic predictions based on the IG 

analysis.  The importance of the soil temperature in the attribution scores may be 

associated with improved representation of mixing of various sources of water, given 

water temperature can be used as a tracer when delineating flow components in a karst 

watershed (Doucette and Peterson, 2014; Kurylyk et al., 2017).  Alternatively, this 

finding may suggest that temperature is an important regulator in matrix-macropore 

interaction, which has been highlighted recently in frozen soils (Mohammed et al., 2018). 

Cumulatively these findings highlight the utility of machine learning methods to predict 

karst hydrologic processes and suggest further work is needed to determine the physical 

mechanisms governing soil temperature impacts on flowrate.  
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4.2.2 Nitrate concentration ELM modeling 

Results for the four nitrate modeling scenarios outlined in Table 3.1 also 

highlighted the importance of accounting for soil moisture variability in predicting nitrate 

concentration dynamics in the karst agroecosystem watershed (Table 4.1; Figure 4.5). 

The Nash-Sutcliffe Efficiency (NSE) for scenario 3 (which focused on only atmospheric 

parameters) were found to provide the poorest predictions of nitrate concentration, with 

NSEs for model runs falling between 0.3630 and 0.3924 and averaging 0.3820. Visually, 

the results show the TELM represents the general trends across the seasons, with an 

average increase during the wetter winter month when baseflow is elevated and an 

average decrease during the summer months when baseflow is reduced. This scenario 

does not perform well when capturing the short-term dynamics within the seasons and 

storm events, reducing its viability for expanded application. Conversely, the model 

results from scenarios 1, 2 and 4 (which included soil moisture and temperature 

parameters) indicated improved ability to reflect within event and daily variability in 

nitrate concentrations (Figures 4.5a-b,d). Visually, these model scenarios predict both the 

large increases in nitrate concentration seen during the seasonal flushing events and the 

short-term event dynamics that many models have difficulty capturing. They also appear 

to capture the extremes with decent accuracy, especially scenario 4. Further, Nash-

Sutcliff values for scenarios 1,2 and 4 were 2-3-fold greater, with averages of 0.92, 0.89, 

and 0.94, respectively. Moriasi et al. (2015) also outlined ranges to interpret NSE for 

nitrogen predictions at the watershed scale at a monthly time step, with 0.65 < NSE ≤ 1 

being considered very good, 0.50 < NSE ≤ 0.65 being good, 0.35 < NSE ≤ 0.50 being 

satisfactory, and below 0.35 being not satisfactory; however, it is often suggested that 
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ranges should be relaxed for higher frequency measurements. These findings therefore 

suggest exceptional performance of the model for Scenarios 1, 2 and 4 considering the 

15-minute model evaluation timestep, and the high temporal variability in the 

concentrations at the watershed outlet. 

 Results from the integrated gradients analysis suggested high importance of soil 

moisture variables, moderate influence of atmospheric variables, and limited impact of 

fertilization variables in model training (Table 4.2).  For the three scenarios that included 

soil parameters in training, all returned combinations of the soil variables being the most 

impactful on training for nitrate. For scenarios 1 and 2, the soil moisture at 50-cm was 

returned as the most influential parameter, receiving a score of 0.2151 and 0.2291, 

respectively. Scenario 4 returned the soil moisture at 20-cm to be the most influential 

variable in training. Scenario 3, which excluded both soil moisture and fertilizer from 

training and evaluation, returned surface temp as the most influential variable in training. 

Interestingly, the three types of fertilization data included in scenario 1 were ranked as 

three of the four least important variables in model training, with precipitation being the 

fourth. Their scores were inorganic fertilizer 0.00054, swine fertilizer 0.00028, 

precipitation 0.00011, and dairy fertilizer 0.00010. The attribution scores for each 

scenario training to nitrate are summarized in Table 4.2. 

 The results from the different scenarios' performance and the IG analysis show 

the model captures the variability in the hydrologic connectivity and the variability of 

nitrate source composition in the various soil layers. The soil moisture and temperatures 

at various depths within the soil profile received the highest attribution scores in 

scenarios 1, 2, and 4. As described with the visual comparison and flowrate results, the 
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soil moisture and temperature at the various levels drive the overall discharge from the 

watershed due to the connection between the different layers of the soil profile with the 

macropores and karst features, which has a strong influence on the nitrate loading.  This 

underscores the importance of hydrologic source connectivity of soil sources to the 

watershed nitrate concentrations.  Further, several studies have linked the importance of 

soil temperature and moisture to nitrogen mineralization rates within the soil (De Neve et 

al., 2003; Guntinas et al., 2012; Miller and Geisseler, 2018) indicating these properties 

strongly regulate the microbial processes governing nitrate composition in the soil layers. 

The IG results indicate the TELM is accounting for the time-varying impacts of both 

connectivity and upland biochemical processes.  

 Our findings suggest fertilization in agricultural practices had limited impact on 

nitrate concentrations which likely reflect the low application rates of both inorganic and 

organic fertilizers within the study watershed, although legacy N contributions are likely 

important. Roughly 150 ha of the more than 1000 ha watershed are dedicated to row crop 

production, with most of the watershed being used for pasture/grazing which might 

explain why limited impact of nitrate-based fertilizers were observed during the events 

and why the IG analysis was not significant.  While the organic fertilizers did not provide 

a direct source of nitrate, they likely contributed to legacy contributions. These legacy 

contributions have been reported to persist for several decades, with nearly 30% of total 

applied organic N still residing in soil organic matter or leaking into the hydrosphere over 

a 30-year period (Sebilo et al., 2013). The IG analysis showed that near surface 

temperatures and soil moisture were important for nitrate concentration predictions (even 
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moreso than for flowrate), which could reflect the sensitivity of mineralization of legacy 

N in these layers upper soil layers.   

4.2.3 Overfitting Analysis 

The results of the overfitting (OF) scenarios show the scenarios including all 

available data are not overfit due to redundant variables present in training and 

evaluation. When comparing the NSEs for the nitrate overfitting scenarios, scenario 1 had 

a value of 0.3820, scenario 2 had a value of 0.9028, and scenario 3 had a value of 0.9569. 

The discharge OF scenario 1 had an NSE value of 0.1551, scenario 2 had an NSE value 

of 0.6351, and scenario 3 had an NSE value of 0.9382 (). These NSEs are consistent with 

the initial analysis looking at the effect of the different input parameters on model 

performance which shows the inclusion of a large set of possibly redundant variables did 

not improve model performance due to overfitting. This also further illustrates the 

importance of representing the vertical variability within the soil profile. By excluding 

the atmospheric variables, the complexity of the model is reduced, decreasing the 

processing demand and time of training, while also not impacting model performance 

because of the heavy importance seen in representing the vertical variability within the 

soil profile to understanding flow and nitrate export dynamics. 

4.3 Capturing Hysteresis and In-stream Process Dynamics 

 

A hysteresis index was generated for eleven events between 2019 and 2021 using 

the observed flow and prediction results from nitrate scenarios 2, and nine events using 

the observed flow and predicted results from scenario 4 (Table 4.3; Figure 4.7). Scenario 

1 was excluded from the hysteresis analysis because the addition of fertilization data 
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showed little impact in improving NSE values and the attribution scores showed it carried 

the least impact in model training. For the eleven observed events, all hysteresis indices 

were calculated as negative and fell between -0.2035 and -0.6340, with the average HI 

being -0.3914 (Table 4.3a-c). Scenario 2 resulted in the small fall and small spring events 

having positive HI and the nine other events negative HI, ranging from -0.5231 to 0.3193 

(Table 4.3a). For scenario 3, the HI for the small spring and small and medium summer 

events were positive, with the rest being negative, and all HI ranged between -0.4380 and 

0.1276 (Table 4.3b). For the nine events generated for scenario 4, the HI values were all 

negative and fell between -0.5654 and -0.1881, with the average being -0.3331, which is 

compared to an average observed HI for the nine events of -0.4132 (Table 4.3c). This 

means the difference between the average observed HI and average predicted HI for 

scenario 2 was 0.2881, for scenario 3 was 0.2358, and for scenario 4 was 0.0801. The 

hysteresis loops were also generated for the measured nitrate, scenario 2 predicted nitrate, 

and scenario 4 predicted nitrate (Figures 4.6) to better understand how well the TELM 

modeled in event dynamics and timing. Clear improvement in modeling these dynamics 

was seen for seven of the nine events that were modeled between scenario 2 and 4. This 

improvement is especially visible in the December 20-21, 2020 and May 4-5, 2021 

events. For the December event, scenario 2 shows a clockwise hysteresis with 

concentration increases early in the event, leveling off during most of the rising limb, and 

slowly decreasing during the falling limb of the hydrograph. Scenario 4 more closely 

tracks the observed trends, with slightly overpredicting but mirroring the trends for most 

of the rising limb. It also predicts an increase in concentration resulting in a negative 

hysteresis index, like what was observed. For the May event, both scenarios and the 
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observed hysteresis indices were negative, and the rising limbs of both the scenario 

predictions showcased similar magnitude and trends. Scenario 4 did show more accurate 

predictions for the falling limb, tracking the trends of the observed falling limb with 

higher accuracy than scenario 2. These comparisons show the improved rain event 

prediction performance with the inclusion of the 100-cm soil condition data and further 

underscore the importance of soil moisture and temperature variability when 

understanding nitrate dynamics in karst systems. 

Diurnal variations were also visually compared between the measured nitrate 

concentrations and modeled nitrate concentrations for scenarios 2 and 4 and highlighted 

the importance of 100 cm soil moisture data to successfully capture diurnal variation in 

the nitrate signal (Figure 4.7). These figures show Scenario 4 generally provides better 

representation than scenario 2, particularly during the summer months when aquatic 

vegetation is recognized to have prominent impact on N (Bunnell et al., 2020). Figure 

4.7e shows this difference between the scenarios well, with scenario 4 tracking both 

timing and magnitude of the variations with much greater accuracy than scenario 2 

during summer. During the winter months, both scenarios appear to predict some diurnal 

variability that was not observed in the measured data; however, these variations are 

small in comparison to the summer months. These findings emphasize that the model 

generally captures time-varying in-stream process dynamics. 

Through the hysteresis analysis and assessment of diurnal variations, the TELM 

shows good performance at modeling cumulative watershed processes that impact N 

fluxes in the karst agroecosystem.  The hysteresis patterns are well represented because 

time lags associated with hydrologic connectivity of soil layers is well represented in 
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input data layers.  The diel variability is likely well represented because of the 

representation of soil water temperature as well as atmospheric conditions which are 

governing inputs to deterministic models of in-stream N cycle models (Bunnell et al., 

2020; Ford et al., 2017). Specifically, inclusion of soil water temperature at 100 cm was 

likely more reflective of ambient surface water temperatures and thus improved the 

diurnal predictions in Scenario 4 as compared to Scenario 2.  This analysis also 

emphasized the importance of accounting for hysteresis analysis in model performance, 

as traditional metrics such as NSE did not show major differences between model 

scenarios 1,2, and 4 for the nitrate ELM modeling analysis. While studies have 

previously emphasized the importance of hysteresis in model evaluation in future studies 

(Liu et al., 2021), few studies have also suggested quantitative metrics for diel variations 

associated with in-stream processes. Quantitative metrics such as those presented for 

riverine nitrate uptake in Yang et al. (2019) may also be beneficial to include in 

calibration and optimization routines in future work.  

4.4 Implications of findings for modeling nitrate exports in karst agroecosystems 

 

This study highlighted the effectiveness of machine learning, specifically the 

extreme learning machine, at modeling hydrologic and hydro-chemical fluxes in complex 

systems like karst agroecosystems. Using accepted metrics like Nash-Sutcliffe Efficiency 

and hysteretic patterns, this study showed the two-hidden-layer extreme learning machine 

variant was able to model the system complexity with high accuracy. The hysteresis 

analysis showed the TELM also performed well when assessing the short-term rain event 

predictions when the time lag associated with variable soil moisture layer responses was 
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represented in the training data; however, poor performance of hysteretic patterns was 

observed when this time lag was not captured in the training data, which may create 

issues in data sparse regions where only atmospheric variables are available.  In the 

absence of soil moisture data, recent innovations have suggested time lags between input 

and response variables can be represented using transformations and decomposition of 

input and response variable signal including approaches such as wavelet transforms 

(Barzegar et al. 2017), particle swarm optimization (Zhu et al., 2020; Surahki, 2021), or 

empirical mode decomposition (Prasad et al., 2018).  For instance, Prasad et al., 2018 

employed a hybrid ELM integrated with ensemble empirical mode decomposition to 

forecast upper and lower layer soil moisture using meteorological data (solar radiation, 

precipitation, minimum and maximum daily temperatures) along with continental 

parameter maps (albedo, soil characteristics, and seasonality of vegetation), reporting an 

R2 of 0.966 between the observed and predicted soil moisture. An adaptation to the ELM 

that incorporates one of these methods could prove to be an effective tool in developing 

models that can accurately represent and predict the nitrate exports when soil moisture 

data is lacking, or sparse, and thus serve as a predictive tool.  

The findings of this study highlight the importance of inclusion of soil moisture 

variability for representing nitrate exports in process-based or conceptual modeling 

frameworks. The results show regions of the soil profile below the effective root zone can 

play a substantial role in nitrate loading, and in some case can be the region of the soil 

that dominates the loading. Existing modeling approaches for water quality simulations in 

karst utilize reservoir-style models that lump the entire soil matrix or the soil matrix and 

epikarst into a single reservoir (e.g., Husic et al., 2019).  Our findings suggest that root 
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zone, and deeper soil moisture dynamics (and subsequent matrix-macropore exchange), 

should be more robustly represented given the gradients observed in nitrate 

concentrations between these zones and throughout the year.  This may be accomplished 

through incorporating more process-based, distributed models of soil hydrologic and 

biochemical processes at the watershed-scale (e.g., SWAT) with reservoir models often 

used to represent epikarst and phreatic zones in karst hydrologic and water quality 

models. Alternatively, more discretization of reservoirs for the soil layer (e.g., surface, 

root zone, and deeper layers) may be sufficient, and would significantly reduce 

parameterization requirements over spatially distributed models such as SWAT.  

Given the importance of nitrate loading from deeper portions of the soil layer, our 

results support that treatment strategies at springheads and headwater tributaries are 

likely needed to decrease downstream nitrate contributions. Treatment strategies could 

include the construction of pools and wetlands at the spring outlets that slow the flow to 

allow for sites of high nitrogen uptake and denitrification. Small, slower moving pools 

that allow for the growth of vegetation like duckweed or floating aquatic macrophytes 

(Bunnell et al., 2020) may provide a suitable location for high nitrogen removal, but this 

is only an effective strategy during the warmer months. To control the bulk of the nitrate 

loading, measures to address the contributions seen during the winter months must be 

implemented to handle the seasonal flushing that occurs during the periods of elevated 

soil water content, when there is a reconnection of the deeper soil matrix with the 

macropores and karst network in these agroecosystems. At the very least, these findings 

indicate treatment strategies should be implemented alongside improved management 

practices. Through this combined approach, the legacy nitrate that is present within the 
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deeper reaches of the soil profile can be buffered and removed from the surface waters, 

while application is regulated at a responsible level to promote crop growth while not 

increasing the levels retained within the deep soils. 
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4.5 Tables and Figures 

 

Table 4.1: The three scenarios used to test the ELMs ability to model the study system 

using different sets of variables. 

Scenario Inputs 
Response 

Variable 
NSE 

1 
Atmospheric; Soil Data at 10, 20, and 

50 cm; Fertilization data 
NO3 0.9196 

2 
Atmospheric; Soil Data at 10, 20, and 

50 cm 
NO3 0.8851 

3 Atmospheric NO3 0.3820 

4 
Atmospheric; Soil Data at 10, 20, 50, 

and 100 cm 
NO3 0.9363 

1 
Atmospheric; Soil Data at 10, 20, and 

50 cm 
Discharge 0.6519 

2 Atmospheric  Discharge 0.1551 

3 
Atmospheric; Soil Data at 10, 20, 50, 

and 100 cm 
Discharge 0.9328 
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Table 4.2: The average attribution values assigned to each of the variables used in the 

tested scenarios. Each set represents the averaged results from at least three runs of the 

specified scenario for both the nitrate and discharge models. 
Attributions for Nitrate Models Attributions for Discharge Models 

Scenario 1 

  IG 

Scenario 1 

  IG 

Avg Soil Mstr 50-cm 0.2151 Avg Soil Mstr 50-cm  0.3287 

50-cm Temp 0.1861 50-cm Temp  0.1416 

20-cm Temp 0.1651 Avg Soil Mstr 10-cm 0.1053 

10-cm Temp 0.1336 20-cm Temp  0.0950 

Avg Soil Mstr 10-cm 0.0865 Avg Soil Mstr 20-cm 0.0860 

Avg Soil Mstr 20-cm 0.0700 Air Temp 0.0800 

Air Temp 0.0632 10-cm Temp 0.0579 

Sur Temp 0.0427 Sur Temp  0.0397 

Avg Rel Hum 0.0191 Avg Rel Hum  0.0365 

Sol Rad  0.0100 1.5m Wind Speed  0.0186 

1.5m Wind Speed  0.0075 Sol Rad  0.0107 

lbs inorganic N 0.0005 Precip  0.0002 

Swine Gallons 0.0003 

Scenario 2 

Sur Temp 0.5163 

Precip  0.0001 1.5m Wind Speed 0.2196 

Dairy Gallons 0.0001 Avg Rel Hum 0.1400 

Scenario 2 

Avg Soil Mstr 50-cm 0.2291 Air Temp 0.0809 

20-cm Temp 0.2079 Sol Rad 0.0425 

50-cm Temp 0.1724 Precip 0.0008 

Avg Soil Mstr 10-cm 0.0846 

Scenario 3 

Soil Mstr 50-cm 0.1995 

Air Temp 0.0720 20-cm Temp 0.1858 

Avg Soil Mstr 20-cm 0.0719 Soil Mstr 100-cm 0.1177 

Sur Temp 0.0626 50-cm Temp 0.0983 

10-cm Temp 0.0573 10-cm Temp 0.0868 

Avg Rel Hum 0.0271 Sur Temp 0.0738 

1.5m Wind Speed 0.0108 Soil Mstr 20-cm 0.0573 

Sol Rad 0.0041 Rel Hum 0.0524 

Precip 0.0001 Air Temp 0.0401 

Scenario 3 

Sur Temp 0.4936 Avg Soil Mstr 10-cm 0.0309 

Avg Rel Hum 0.2367 100-cm Temp 0.0257 

Air Temp 0.1676 Sol Rad 0.0208 

Sol Rad 0.0815 1.5m Wind Speed 0.0106 

1.5m Wind Speed 0.0206 Precip 0.0002 

Precip 0.0001 
   

Scenario 4 

Avg Soil Mstr 20-cm 0.1610 
   

20-cm Temp 0.1349 
   

Avg Soil Mstr 10-cm 0.1175 
   

100-cm Temp 0.1099 
   

10-cm Temp 0.1018 
   

Avg Soil Mstr 100-cm 0.0791 
   

Avg Soil Mstr 50-cm 0.0647 
   

Sur Temp 0.0637 
   

Air Temp 0.0532 
   

Avg Rel Hum 0.0479 
   

50-cm Temp 0.0293    
Sol Rad 0.0190    

1.5m Wind Speed 0.0177    
Precip 0.0004  
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Table 4.3: The Nash-Sutcliffe Efficiencies of the three scenarios used to test overfitting 

within the ELM. 

Scenario Inputs Response Variable NSE 

OF 1 Atmospheric NO₃ 0.3820 

OF 2 Soil Data at 10, 20, and 50 cm NO₃ 0.9028 

OF 3 Soil Data at 10, 20, 50, and 100 cm NO₃ 0.9569 

OF 1 Atmospheric Discharge 0.1551 

OF 2 Soil Data at 10, 20, and 50 cm Discharge 0.6351 

OF 3 Soil Data at 10, 20, 50, and 100 cm Discharge 0.9382 
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Table 4.4: a) The results for the hysteresis analysis for a) Scenario 2 and b) Scenario 4. 

 

a) Rain Event Hysteresis Scenario 2 

Season Size Start Date End Date Max Q (cms) Predicted HI Observed HI Difference 

Summer 

Small 7/29/2020 8/9/2020 0.18 -0.1209 -0.6340 0.5131 

Med 7/3/2019 7/13/2019 0.4013 -0.0472 -0.3827 0.3355 

Large None None None None None None 

Fall 

Small 12/19/2020 12/23/2020 0.14 0.3193 -0.5484 0.8677 

Med 10/28/2020 11/10/2020 0.357 -0.5231 -0.2602 0.2629 

Large 10/30/2019 11/7/2019 1.85 -0.2021 -0.2035 0.0015 

Winter 

Small 2/10/2021 2/21/2021 0.2796 -0.1547 -0.2292 0.0745 

Med 1/30/2021 2/10/2021 0.843 -0.1888 -0.4100 0.2212 

Large 2/27/2021 3/14/2021 2.76 -0.0142 -0.3130 0.2988 

Spring 

Small 4/23/2021 4/29/2021 0.081355 0.1172 -0.3342 0.4514 

Med 5/2/2021 5/22/2021 0.756 -0.1607 -0.3957 0.2350 

Large 6/6/2021 6/13/2021 1.53 -0.1607 -0.5944 0.4338 

    

Average -0.1033 -0.3914 0.2881 

 
b) Rain Event Hysteresis Scenario 4 

Season Size Start Date End Date Max Q (cms) Predicted HI Observed HI Difference 

Summer 

Small 7/29/2020 8/9/2020 0.18 -0.2626 -0.6340 0.3714 

Med 7/3/2019 7/13/2019 0.4013 None None None 

Large None None None None None None 

Fall 

Small 12/19/2020 12/23/2020 0.14 -0.4575 -0.5484 0.0909 

Med 10/28/2020 11/10/2020 0.357 -0.5654 -0.2602 0.3051 

Large 10/30/2019 11/7/2019 1.85 None None None 

Winter 

Small 2/10/2021 2/21/2021 0.2796 -0.3111 -0.2292 0.0819 

Med 1/30/2021 2/10/2021 0.843 -0.4013 -0.4100 0.0087 

Large 2/27/2021 3/14/2021 2.76 -0.3493 -0.3130 0.0363 

Spring 

Small 4/23/2021 4/29/2021 0.081355 -0.2098 -0.3342 0.1245 

Med 5/2/2021 5/22/2021 0.756 -0.2529 -0.3957 0.1428 

Large 6/6/2021 6/13/2021 1.53 -0.1881 -0.5944 0.4063 

    

Average -0.3331 -0.4132 0.0801 
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Figure 4.1: Linear regression comparison of laboratory measurements of grab samples 

and the observed SUNA V2 nitrate measurements for all samples. 
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Figure 4.2: a) Timeseries for measured nitrate and discharge at the watershed outlet from 

Aug 29, 2018 through Aug 4, 2021. Storm events and subsequent recessions are provided 

for typical events in winter on b) Feb 10-11, 2021, and c) Jan 23-24, 2019.  Storm events 

and subsequent recessions are also provided for typical events in summer on d) Sept 2-3, 

2020 and e) July 21-22, 2019. 
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Figure 4.3: a) Measured nitrate concentrations are plotted against the volumetric water 

content measured at four different depths within the soil profile (10, 20, 50, and 100-cm) 

throughout the monitoring period of Aug 29, 2018 through Aug 4, 2021. b) Period from 

Aug 7 to Nov 20, 2019 is emphasized to demonstrate varied temporal response of soil 

moisture with depth and the associated impacts on nitrate concentrations. c) Rain event 

on Jan 25-26, 2021 showing the activation of the various layers within the soil profile and 

the time lag associated with this activation during a rain event. 
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Figure 4.4: Timeseries of the measured vs. predicted flow measurements for the three 

input parameter scenarios, a) showing scenario 1 predictions, b) scenario 2 predictions, 

and c) scenario 3 predictions. Note scenario 3 falls within a shorter time period (July 29, 

2020 through Aug 4, 2021).
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Figure 4.5: Timeseries of the measured vs. predicted nitrate concentration for the four input parameter scenarios, showing a) 

scenario 1 predictions, b) scenario 2 predictions, c) scenario 3 predictions, and d) scenario 4 predictions. Note scenario 4 falls 

within a shorter time period (July 29, 2020 through Aug 4, 2021).
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Figure 4.6: Hysteresis loops for the eleven rain events chosen for the hysteresis comparison. Note, only nine events occurred 

during the period included for scenario 4.
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Figure 4.7: Comparison of the measured and predicted in-stream diurnal variations in 

nitrate concentration from scenarios 2 and 4 for periods following storm events in 

fall/winter and summer/early fall. Nov 16-29, 2020 (a); Dec 6-16, 2020 (b); Jan 16-21, 

2021 (c); June 25-30, 2020 (d); July 24-31, 2021 (e); and Sept 17-30, 2020 (f). 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

 A two-hidden layer extreme learning machine was developed in this study using 

available libraries in Python from proven machine learning developers to assess the 

TELM’s ability to model both flowrate and nitrate concentration exported from a 

heterogenous karst agroecosystem. The main conclusions are the following: 

1. The TELM can successfully predict both flowrate and nitrate exports from these complex 

systems when the time lag associated with the soil conditions is appropriately represented 

in model training. Nash-Sutcliff efficiencies as high as 0.9328 for flow and 0.9363 for 

nitrate were observed when soil moisture and temperature at varying depths of the soil 

profile were included in training and evaluation show excellent effectiveness in the 

model’s ability to capture flowrate and nitrate concentration. 

2. The inclusion of deep soil profile moisture and temperature data (well below the effective 

root zone) in training and evaluating the TELM is important to accurately capturing the 

storm event and diurnal variations seen in the nitrate export signal in heterogenous karst 

agroecosystems. When 100-cm soil moisture and temperature data was included in 

training and evaluation (along with 10-cm, 20-cm, and 50-cm) the TELM successfully 

captured timing and magnitude of diurnal signals and storm event hysteresis indices for 

multiple periods evaluated. 

3. In well-managed agroecosystems, fertilization inputs may not represent the main driver 

of nitrate exports. N stored within the soil matrix from past upland management may be a 

larger factor in nitrate exports than newly applied fertilizers. This can have reaching 

implications in adjusting nutrient loading management strategies to take a coupled 
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approach of treating fluvial exports, focusing on removal of excess nutrient through the 

construction of wetlands, while also regulating upland fertilizer application to levels that 

meet crop demand without over applying.  

5.2 Future Work 

 While the result of this research provided insight into the importance of 

understanding how the variability within the soil matrix controls the flowrate and 

discharge from karst agroecosystems, more research is needed to fully understand aspects 

of the findings and build upon the work. The following recommendations stem from the 

findings. 

1. Develop and implement new methods to process atmospheric input data to represent the 

time lag associated with the soil matrix buffering surface conditions. The methodology 

used in this research could be more widely applied if an effective technique for 

processing or transforming the climatological data collected by the NOAA maintained 

AWOS was implemented with some form of ELM. This would provide a much larger 

pool of data that could be used, in conjunction with in-situ nitrate and flow data, to 

elucidate trends in other watersheds and build predictive models to better understand 

loading from complex systems, whether karst or non-karst. 

2. Applying these machine learning techniques in an agricultural karst watershed that 

experience higher rates of fertilization than that of the study watershed. One possible 

explanation for why the applied fertilizer data had such a low impact on model training is 

because the treated land only encompassed a small portion of the watershed. In more 

heavily fertilized watersheds, the export signal may experience a greater influence from 

the fertilizer application. 
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3. Apply these machine learning models to both hindcasts and future-casts to see trends in 

past nitrate loading and predict what loading trends may look like in relation to future 

climate projects. Using these models in conjunction with other predictive models used in 

future climate and landcover scenarios may aid in assessing the potential impacts of 

nitrate exports in the future.   

4. Implementation of new management strategies focusing on treating spring exports for 

excess nutrients may be a more effective control on excess loading that upland 

management for agroecosystems that are well regulated in fertilizer inputs.   
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CHAPTER 6. APPENDIX 

Appendix A: Periods of missing data during the monitoring period. 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

NO3 

8/29/2018 12:00 9/7/2018 19:15 9.30 9/7/2018 19:30 2/19/2019 11:15 164.66 

796.78 

2/19/2019 11:30 3/20/2019 15:45 29.18 3/20/2019 16:00 10/23/2019 14:15 216.93 

10/23/2019 14:30 10/25/2019 17:30 2.13 10/25/2019 17:45 11/20/2019 11:00 25.72 

11/20/2019 11:15 7/10/2020 16:30 233.22 7/10/2020 16:45 2/2/2021 13:45 206.88 

2/2/2021 14:00 2/2/2021 14:45 0.03 2/2/2021 15:00 4/5/2021 12:45 61.91 

4/5/2021 13:00 4/5/2021 13:45 0.03 4/5/2021 14:00 5/11/2021 16:00 36.08 

5/11/2021 16:15 5/11/2021 18:00 0.07 5/11/2021 18:15 7/6/2021 11:00 55.70 

7/6/2021 11:15 7/6/2021 11:30 0.01 7/6/2021 11:45 8/4/2021 9:45 28.92 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

Discharge 

  0.00 8/29/2018 12:00 3/2/2019 15:15 185.14 

921.46 

3/2/2019 15:30 3/29/2019 12:30 26.87 3/29/2019 12:45 8/4/2019 18:15 128.23 

8/4/2019 18:30 8/26/2019 6:45 21.51 8/26/2019 7:00 8/31/2019 22:45 5.66 

8/31/2019 23:00 10/6/2019 19:45 35.86 10/6/2019 20:00 10/11/2019 7:45 4.49 

10/11/2019 8:00 10/11/2019 21:00 0.54 10/11/2019 21:15 10/12/2019 11:00 0.57 

10/12/2019 11:15 10/16/2019 0:30 3.55 10/16/2019 0:45 10/19/2019 13:00 3.51 

10/19/2019 13:15 10/21/2019 16:00 2.11 10/21/2019 16:15 10/22/2019 2:15 0.42 

10/22/2019 2:30 10/22/2019 8:00 0.23 10/22/2019 8:15 10/24/2019 15:15 2.29 

10/24/2019 15:30 10/26/2019 5:00 1.56 10/26/2019 5:15 4/3/2020 12:45 160.31 

4/3/2020 13:00 5/30/2020 13:15 57.01 5/30/2020 13:30 8/4/2021 9:45 430.84 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

Sp Cond 
  0.00 8/29/2018 12:00 3/2/2019 15:15 185.14 

986.98 3/2/2019 15:30 3/29/2019 12:30 26.87 3/29/2019 12:45 4/3/2020 12:45 371.00 

4/3/2020 13:00 5/30/2020 13:15 57.01 5/30/2020 13:30 8/4/2021 9:45 430.84 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

4 in Soil 

Moisture 
  0.00 8/29/2018 12:00 8/4/2021 9:45 1070.91 1070.91 
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Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

8 in Soil 

Moisture 
  0.00 8/29/2018 12:00 8/4/2021 9:45 1070.91 1070.91 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

20 in Soil 

Moisture 

    0.00 8/29/2018 12:00 8/4/2021 9:45 1070.91 1070.91 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

40 in Soil 

Moisture 

8/29/2018 12:00 6/30/2019 18:00 305.25 6/30/2019 18:15 8/4/2021 9:45 765.65 765.65 

 

Data Type Date Start 

Missing 

Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

4 in Soil 

Temp 

    0.00 8/29/2018 12:00 12/31/2018 19:45 124.32 

1069.36 12/31/2018 20:00 12/31/2018 23:00 0.13 12/31/2018 23:15 10/17/2019 7:00 289.32 

10/17/2019 7:15 10/17/2019 12:00 0.20 10/17/2019 12:15 12/31/2020 19:00 441.28 

12/31/2020 19:15 1/1/2021 23:00 1.16 1/1/2021 23:15 8/4/2021 9:45 214.44 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

8 in Soil 

Temp 

  0.00 8/29/2018 12:00 12/31/2018 19:45 124.32 

1069.36 12/31/2018 20:00 12/31/2018 23:00 0.13 12/31/2018 23:15 10/17/2019 7:00 289.32 

10/17/2019 7:15 10/17/2019 12:00 0.20 10/17/2019 12:15 12/31/2020 19:00 441.28 

12/31/2020 19:15 1/1/2021 23:00 1.16 1/1/2021 23:15 8/4/2021 9:45 214.44 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

20 in Soil 

Temp 

      8/29/2018 12:00 12/31/2018 19:45 124.32 

1069.36 12/31/2018 20:00 12/31/2018 23:00 0.13 12/31/2018 23:15 10/17/2019 7:00 289.32 

10/17/2019 7:15 10/17/2019 12:00 0.20 10/17/2019 12:15 12/31/2020 19:00 441.28 

12/31/2020 19:15 1/1/2021 23:00 1.16 1/1/2021 23:15 8/4/2021 9:45 214.44 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

40 in Soil 

Temp 
  0.00 8/29/2018 12:00 7/16/2021 7:45 1051.82 1069.23 

7/16/2021 8:00 7/17/2021 23:45 1.66 7/18/2021 0:00 8/4/2021 9:45 17.41 
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Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

Solar Radiation     0.00 8/29/2018 12:00 8/4/2021 9:45 1070.91 1070.91 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

Relative 

Humidity 

  0.00 8/29/2018 12:00 12/31/2018 19:45 124.32 

1069.36 12/31/2018 20:00 12/31/2018 23:00 0.13 12/31/2018 23:15 10/17/2019 7:00 289.32 

10/17/2019 7:15 10/17/2019 12:00 0.20 10/17/2019 12:15 12/31/2020 19:00 441.28 

12/31/2020 19:15 1/1/2021 23:00 1.16 1/1/2021 23:15 8/4/2021 9:45 214.44 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

Air Temp 

    0.00 8/29/2018 12:00 9/28/2018 11:30 29.98 

1055.69 

9/28/2018 11:45 9/28/2018 11:45 0.00 9/28/2018 12:00 11/1/2018 11:00 33.96 

11/1/2018 11:15 11/1/2018 12:00 0.03 11/1/2018 12:15 11/13/2018 6:00 11.74 

11/13/2018 6:15 11/13/2018 7:00 0.03 11/13/2018 7:15 12/31/2018 19:00 48.49 

12/31/2018 19:15 1/12/2019 23:45 12.19 1/13/2019 0:00 2/11/2019 8:00 29.33 

2/11/2019 8:15 2/11/2019 9:00 0.03 2/11/2019 9:15 3/4/2019 12:00 21.11 

3/4/2019 12:15 3/4/2019 13:00 0.03 3/4/2019 13:15 4/23/2019 12:00 49.95 

4/23/2019 12:15 4/23/2019 13:00 0.03 4/23/2019 13:15 5/5/2019 8:00 11.78 

5/5/2019 8:15 5/5/2019 9:00 0.03 5/5/2019 9:15 6/28/2019 19:00 54.41 

6/28/2019 19:15 6/28/2019 20:00 0.03 6/28/2019 20:15 8/28/2019 8:00 60.49 

8/28/2019 8:15 8/28/2019 8:15 0.00 8/28/2019 8:30 10/8/2019 9:30 41.04 

10/8/2019 9:45 10/8/2019 10:00 0.01 10/8/2019 10:15 10/17/2019 7:00 8.86 

10/17/2019 7:15 10/17/2019 12:00 0.20 10/17/2019 12:15 10/19/2019 7:00 1.78 

10/19/2019 7:15 10/19/2019 8:00 0.03 10/19/2019 8:15 11/4/2019 15:00 16.28 

11/4/2019 15:15 11/4/2019 16:00 0.03 11/4/2019 16:15 11/11/2019 8:00 6.66 

11/11/2019 8:15 11/11/2019 9:00 0.03 11/11/2019 9:15 11/18/2019 2:00 6.70 

11/18/2019 2:15 11/18/2019 3:00 0.03 11/18/2019 3:15 12/4/2019 10:00 16.28 

12/4/2019 10:15 12/4/2019 11:00 0.03 12/4/2019 11:15 12/8/2019 8:00 3.86 

12/8/2019 8:15 12/8/2019 9:00 0.03 12/8/2019 9:15 12/25/2019 11:00 17.07 

12/25/2019 11:15 12/25/2019 12:00 0.03 12/25/2019 12:15 12/26/2019 13:00 1.03 

12/26/2019 13:15 12/26/2019 14:00 0.03 12/26/2019 14:15 12/27/2019 8:00 0.74 

12/27/2019 8:15 12/27/2019 9:00 0.03 12/27/2019 9:15 12/31/2019 19:00 4.41 

12/31/2019 19:15 12/31/2019 23:45 0.19 1/1/2020 0:00 1/11/2020 21:00 10.87 

1/11/2020 21:15 1/11/2020 22:00 0.03 1/11/2020 22:15 1/21/2020 9:00 9.45 
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1/21/2020 9:15 1/21/2020 10:00 0.03 1/21/2020 10:15 1/25/2020 8:00 3.91 

1/25/2020 8:15 1/25/2020 9:00 0.03 1/25/2020 9:15 2/10/2020 16:00 16.28 

2/10/2020 16:15 2/10/2020 17:00 0.03 2/10/2020 17:15 3/11/2020 11:00 29.74 

3/11/2020 11:15 3/11/2020 12:00 0.03 3/11/2020 12:15 4/22/2020 9:00 41.86 

4/22/2020 9:15 4/22/2020 10:00 0.03 4/22/2020 10:15 4/27/2020 9:15 4.96 

4/27/2020 9:30 4/27/2020 9:30 0.00 4/27/2020 9:45 6/9/2020 19:00 43.39 

6/9/2020 19:15 6/9/2020 20:00 0.03 6/9/2020 20:15 6/26/2020 3:00 16.28 

6/26/2020 3:15 6/26/2020 4:00 0.03 6/26/2020 4:15 7/6/2020 7:00 10.11 

7/6/2020 7:15 7/6/2020 8:00 0.03 7/6/2020 8:15 8/15/2020 2:00 39.74 

8/15/2020 2:15 8/15/2020 3:00 0.03 8/15/2020 3:15 9/30/2020 5:00 46.07 

9/30/2020 5:15 9/30/2020 6:00 0.03 9/30/2020 6:15 11/19/2020 4:00 49.91 

11/19/2020 4:15 11/19/2020 5:00 0.03 11/19/2020 5:15 12/5/2020 12:00 16.28 

12/5/2020 12:15 12/5/2020 13:00 0.03 12/5/2020 13:15 12/12/2020 8:00 6.78 

12/12/2020 8:15 12/12/2020 9:00 0.03 12/12/2020 9:15 12/13/2020 7:00 0.91 

12/13/2020 7:15 12/13/2020 8:00 0.03 12/13/2020 8:15 12/31/2020 19:00 18.45 

12/31/2020 19:15 12/31/2020 23:45 0.19 1/1/2021 0:00 1/7/2021 4:00 6.17 

1/7/2021 4:15 1/7/2021 6:00 0.07 1/7/2021 6:15 1/20/2021 15:00 13.36 

1/20/2021 15:15 1/20/2021 16:00 0.03 1/20/2021 16:15 2/5/2021 23:00 16.28 

2/5/2021 23:15 2/6/2021 0:00 0.03 2/6/2021 0:15 3/17/2021 9:00 39.36 

3/17/2021 9:15 3/17/2021 10:00 0.03 3/17/2021 10:15 3/27/2021 11:00 10.03 

3/27/2021 11:15 3/27/2021 12:00 0.03 3/27/2021 12:15 3/27/2021 22:00 0.41 

3/27/2021 22:15 3/27/2021 23:00 0.03 3/27/2021 23:15 4/7/2021 12:00 10.53 

4/7/2021 12:15 4/7/2021 13:00 0.03 4/7/2021 13:15 4/23/2021 20:00 16.28 

4/23/2021 20:15 4/23/2021 21:00 0.03 4/23/2021 21:15 5/16/2021 10:00 22.53 

5/16/2021 10:15 5/16/2021 11:00 0.03 5/16/2021 11:15 6/29/2021 3:00 43.66 

6/29/2021 3:15 6/29/2021 4:00 0.03 6/29/2021 4:15 7/15/2021 11:00 16.28 

7/15/2021 11:15 7/15/2021 12:00 0.03 7/15/2021 12:15 7/21/2021 7:45 5.81 

7/21/2021 8:00 7/21/2021 8:00 0.00 7/21/2021 8:15 7/28/2021 7:30 6.97 

7/28/2021 7:45 7/28/2021 8:00 0.01 7/28/2021 8:15 8/4/2021 9:45 7.06 
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Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

Surface 

Temp 

    0.00 8/29/2018 12:00 11/1/2018 11:00 63.96 

1055.83 

11/1/2018 11:15 11/1/2018 12:00 0.03 11/1/2018 12:15 11/13/2018 6:00 11.74 

11/13/2018 6:15 11/13/2018 7:00 0.03 11/13/2018 7:15 12/31/2018 19:00 48.49 

12/31/2018 19:15 1/12/2019 23:45 12.19 1/13/2019 0:00 2/11/2019 8:00 29.33 

2/11/2019 8:15 2/11/2019 9:00 0.03 2/11/2019 9:15 3/4/2019 12:00 21.11 

3/4/2019 12:15 3/4/2019 13:00 0.03 3/4/2019 13:15 4/23/2019 12:00 49.95 

4/23/2019 12:15 4/23/2019 13:00 0.03 4/23/2019 13:15 5/5/2019 8:00 11.78 

5/5/2019 8:15 5/5/2019 9:00 0.03 5/5/2019 9:15 6/28/2019 19:00 54.41 

6/28/2019 19:15 6/28/2019 20:00 0.03 6/28/2019 20:15 10/17/2019 7:00 110.45 

10/17/2019 7:15 10/17/2019 12:00 0.20 10/17/2019 12:15 10/19/2019 7:00 1.78 

10/19/2019 7:15 10/19/2019 8:00 0.03 10/19/2019 8:15 11/4/2019 15:00 16.28 

11/4/2019 15:15 11/4/2019 16:00 0.03 11/4/2019 16:15 11/11/2019 8:00 6.66 

11/11/2019 8:15 11/11/2019 9:00 0.03 11/11/2019 9:15 11/18/2019 2:00 6.70 

11/18/2019 2:15 11/18/2019 3:00 0.03 11/18/2019 3:15 12/4/2019 10:00 16.28 

12/4/2019 10:15 12/4/2019 11:00 0.03 12/4/2019 11:15 12/8/2019 8:00 3.86 

12/8/2019 8:15 12/8/2019 9:00 0.03 12/8/2019 9:15 12/25/2019 11:00 17.07 

12/25/2019 11:15 12/25/2019 12:00 0.03 12/25/2019 12:15 12/26/2019 13:00 1.03 

12/26/2019 13:15 12/26/2019 14:00 0.03 12/26/2019 14:15 12/27/2019 8:00 0.74 

12/27/2019 8:15 12/27/2019 9:00 0.03 12/27/2019 9:15 12/31/2019 19:00 4.41 

12/31/2019 19:15 12/31/2019 23:45 0.19 1/1/2020 0:00 1/11/2020 21:00 10.87 

1/11/2020 21:15 1/11/2020 22:00 0.03 1/11/2020 22:15 1/21/2020 9:00 9.45 

1/21/2020 9:15 1/21/2020 10:00 0.03 1/21/2020 10:15 1/25/2020 8:00 3.91 

1/25/2020 8:15 1/25/2020 9:00 0.03 1/25/2020 9:15 2/10/2020 16:00 16.28 

2/10/2020 16:15 2/10/2020 17:00 0.03 2/10/2020 17:15 3/11/2020 11:00 29.74 

3/11/2020 11:15 3/11/2020 12:00 0.03 3/11/2020 12:15 4/22/2020 9:00 41.86 

4/22/2020 9:15 4/22/2020 10:00 0.03 4/22/2020 10:15 6/9/2020 19:00 48.36 

6/9/2020 19:15 6/9/2020 20:00 0.03 6/9/2020 20:15 6/26/2020 3:00 16.28 

6/26/2020 3:15 6/26/2020 4:00 0.03 6/26/2020 4:15 7/6/2020 7:00 10.11 

7/6/2020 7:15 7/6/2020 8:00 0.03 7/6/2020 8:15 8/15/2020 2:00 39.74 

8/15/2020 2:15 8/15/2020 3:00 0.03 8/15/2020 3:15 9/30/2020 5:00 46.07 

9/30/2020 5:15 9/30/2020 6:00 0.03 9/30/2020 6:15 11/19/2020 4:00 49.91 

11/19/2020 4:15 11/19/2020 5:00 0.03 11/19/2020 5:15 12/5/2020 12:00 16.28 

12/5/2020 12:15 12/5/2020 13:00 0.03 12/5/2020 13:15 12/12/2020 8:00 6.78 

12/12/2020 8:15 12/12/2020 9:00 0.03 12/12/2020 9:15 12/13/2020 7:00 0.91 

12/13/2020 7:15 12/13/2020 8:00 0.03 12/13/2020 8:15 12/31/2020 19:00 18.45 
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12/31/2020 19:15 12/31/2020 23:45 0.19 1/1/2021 0:00 1/7/2021 4:00 6.17 

1/7/2021 4:15 1/7/2021 6:00 0.07 1/7/2021 6:15 1/20/2021 15:00 13.36 

1/20/2021 15:15 1/20/2021 16:00 0.03 1/20/2021 16:15 2/5/2021 23:00 16.28 

2/5/2021 23:15 2/6/2021 0:00 0.03 2/6/2021 0:15 3/17/2021 9:00 39.36 

3/17/2021 9:15 3/17/2021 10:00 0.03 3/17/2021 10:15 3/27/2021 11:00 10.03 

3/27/2021 11:15 3/27/2021 12:00 0.03 3/27/2021 12:15 3/27/2021 22:00 0.41 

3/27/2021 22:15 3/27/2021 23:00 0.03 3/27/2021 23:15 4/7/2021 12:00 10.53 

4/7/2021 12:15 4/7/2021 13:00 0.03 4/7/2021 13:15 4/23/2021 20:00 16.28 

4/23/2021 20:15 4/23/2021 21:00 0.03 4/23/2021 21:15 5/16/2021 10:00 22.53 

5/16/2021 10:15 5/16/2021 11:00 0.03 5/16/2021 11:15 6/29/2021 3:00 43.66 

6/29/2021 3:15 6/29/2021 4:00 0.03 6/29/2021 4:15 7/15/2021 11:00 16.28 

7/15/2021 11:15 7/15/2021 12:00 0.03 7/15/2021 12:15 8/4/2021 9:45 19.90 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

1.5m 

Wind 

Speed 

    0.00 8/29/2018 12:00 11/1/2018 11:00 63.96 

1055.83 

11/1/2018 11:15 11/1/2018 12:00 0.03 11/1/2018 12:15 11/13/2018 6:00 11.74 

11/13/2018 6:15 11/13/2018 7:00 0.03 11/13/2018 7:15 12/31/2018 19:00 48.49 

12/31/2018 19:15 1/12/2019 23:45 12.19 1/13/2019 0:00 2/11/2019 8:00 29.33 

2/11/2019 8:15 2/11/2019 9:00 0.03 2/11/2019 9:15 3/4/2019 12:00 21.11 

3/4/2019 12:15 3/4/2019 13:00 0.03 3/4/2019 13:15 4/23/2019 12:00 49.95 

4/23/2019 12:15 4/23/2019 13:00 0.03 4/23/2019 13:15 5/5/2019 8:00 11.78 

5/5/2019 8:15 5/5/2019 9:00 0.03 5/5/2019 9:15 6/28/2019 19:00 54.41 

6/28/2019 19:15 6/28/2019 20:00 0.03 6/28/2019 20:15 10/17/2019 7:00 110.45 

10/17/2019 7:15 10/17/2019 12:00 0.20 10/17/2019 12:15 10/19/2019 7:00 1.78 

10/19/2019 7:15 10/19/2019 8:00 0.03 10/19/2019 8:15 11/4/2019 15:00 16.28 

11/4/2019 15:15 11/4/2019 16:00 0.03 11/4/2019 16:15 11/11/2019 8:00 6.66 

11/11/2019 8:15 11/11/2019 9:00 0.03 11/11/2019 9:15 11/18/2019 2:00 6.70 

11/18/2019 2:15 11/18/2019 3:00 0.03 11/18/2019 3:15 12/4/2019 10:00 16.28 

12/4/2019 10:15 12/4/2019 11:00 0.03 12/4/2019 11:15 12/8/2019 8:00 3.86 

12/8/2019 8:15 12/8/2019 9:00 0.03 12/8/2019 9:15 12/25/2019 11:00 17.07 

12/25/2019 11:15 12/25/2019 12:00 0.03 12/25/2019 12:15 12/26/2019 13:00 1.03 

12/26/2019 13:15 12/26/2019 14:00 0.03 12/26/2019 14:15 12/27/2019 8:00 0.74 

12/27/2019 8:15 12/27/2019 9:00 0.03 12/27/2019 9:15 12/31/2019 19:00 4.41 

12/31/2019 19:15 12/31/2019 23:45 0.19 1/1/2020 0:00 1/11/2020 21:00 10.87 

1/11/2020 21:15 1/11/2020 22:00 0.03 1/11/2020 22:15 1/21/2020 9:00 9.45 
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1/21/2020 9:15 1/21/2020 10:00 0.03 1/21/2020 10:15 1/25/2020 8:00 3.91 

1/25/2020 8:15 1/25/2020 9:00 0.03 1/25/2020 9:15 2/10/2020 16:00 16.28 

2/10/2020 16:15 2/10/2020 17:00 0.03 2/10/2020 17:15 3/11/2020 11:00 29.74 

3/11/2020 11:15 3/11/2020 12:00 0.03 3/11/2020 12:15 4/22/2020 9:00 41.86 

4/22/2020 9:15 4/22/2020 10:00 0.03 4/22/2020 10:15 6/9/2020 19:00 48.36 

6/9/2020 19:15 6/9/2020 20:00 0.03 6/9/2020 20:15 6/26/2020 3:00 16.28 

6/26/2020 3:15 6/26/2020 4:00 0.03 6/26/2020 4:15 7/6/2020 7:00 10.11 

7/6/2020 7:15 7/6/2020 8:00 0.03 7/6/2020 8:15 8/15/2020 2:00 39.74 

8/15/2020 2:15 8/15/2020 3:00 0.03 8/15/2020 3:15 9/30/2020 5:00 46.07 

9/30/2020 5:15 9/30/2020 6:00 0.03 9/30/2020 6:15 11/19/2020 4:00 49.91 

11/19/2020 4:15 11/19/2020 5:00 0.03 11/19/2020 5:15 12/5/2020 12:00 16.28 

12/5/2020 12:15 12/5/2020 13:00 0.03 12/5/2020 13:15 12/12/2020 8:00 6.78 

12/12/2020 8:15 12/12/2020 9:00 0.03 12/12/2020 9:15 12/13/2020 7:00 0.91 

12/13/2020 7:15 12/13/2020 8:00 0.03 12/13/2020 8:15 12/31/2020 19:00 18.45 

12/31/2020 19:15 12/31/2020 23:45 0.19 1/1/2021 0:00 1/7/2021 4:00 6.17 

1/7/2021 4:15 1/7/2021 6:00 0.07 1/7/2021 6:15 1/20/2021 15:00 13.36 

1/20/2021 15:15 1/20/2021 16:00 0.03 1/20/2021 16:15 2/5/2021 23:00 16.28 

2/5/2021 23:15 2/6/2021 0:00 0.03 2/6/2021 0:15 3/17/2021 9:00 39.36 

3/17/2021 9:15 3/17/2021 10:00 0.03 3/17/2021 10:15 3/27/2021 11:00 10.03 

3/27/2021 11:15 3/27/2021 12:00 0.03 3/27/2021 12:15 3/27/2021 22:00 0.41 

3/27/2021 22:15 3/27/2021 23:00 0.03 3/27/2021 23:15 4/7/2021 12:00 10.53 

4/7/2021 12:15 4/7/2021 13:00 0.03 4/7/2021 13:15 4/23/2021 20:00 16.28 

4/23/2021 20:15 4/23/2021 21:00 0.03 4/23/2021 21:15 5/16/2021 10:00 22.53 

5/16/2021 10:15 5/16/2021 11:00 0.03 5/16/2021 11:15 6/29/2021 3:00 43.66 

6/29/2021 3:15 6/29/2021 4:00 0.03 6/29/2021 4:15 7/15/2021 11:00 16.28 

7/15/2021 11:15 7/15/2021 12:00 0.03 7/15/2021 12:15 8/4/2021 9:45 19.90 

 

 

 

 

 

 



84 

 

Data Type Date Start Missing Date End Missing Complete Days Excluded Date Included Start Date Included End Complete Days Included Total 

Precip 

    0.00 8/29/2018 12:00 11/1/2018 11:00 63.96 

1055.84 

11/1/2018 11:15 11/1/2018 13:00 0.07 11/1/2018 13:15 11/13/2018 6:00 11.70 

11/13/2018 6:15 11/13/2018 8:00 0.07 11/13/2018 8:15 12/31/2018 23:45 48.65 

1/1/2019 0:00 1/12/2019 23:45 11.99 1/13/2019 0:00 2/11/2019 8:00 29.33 

2/11/2019 8:15 2/11/2019 10:00 0.07 2/11/2019 10:15 3/4/2019 12:00 21.07 

3/4/2019 12:15 3/4/2019 14:00 0.07 3/4/2019 14:15 4/23/2019 12:00 49.91 

4/23/2019 12:15 4/23/2019 14:00 0.07 4/23/2019 14:15 5/5/2019 8:00 11.74 

5/5/2019 8:15 5/5/2019 10:00 0.07 5/5/2019 10:15 6/28/2019 19:00 54.36 

6/28/2019 19:15 6/28/2019 21:00 0.07 6/28/2019 21:15 10/17/2019 7:00 110.41 

10/17/2019 7:15 10/17/2019 12:00 0.20 10/17/2019 12:15 10/19/2019 7:00 1.78 

10/19/2019 7:15 10/19/2019 9:00 0.07 10/19/2019 9:15 11/4/2019 15:00 16.24 

11/4/2019 15:15 11/4/2019 17:00 0.07 11/4/2019 17:15 11/11/2019 8:00 6.61 

11/11/2019 8:15 11/11/2019 10:00 0.07 11/11/2019 10:15 11/18/2019 2:00 6.66 

11/18/2019 2:15 11/18/2019 4:00 0.07 11/18/2019 4:15 12/4/2019 10:00 16.24 

12/4/2019 10:15 12/4/2019 12:00 0.07 12/4/2019 12:15 12/8/2019 8:00 3.82 

12/8/2019 8:15 12/8/2019 10:00 0.07 12/8/2019 10:15 12/25/2019 11:00 17.03 

12/25/2019 11:15 12/25/2019 13:00 0.07 12/25/2019 13:15 12/26/2019 13:00 0.99 

12/26/2019 13:15 12/26/2019 15:00 0.07 12/26/2019 15:15 12/27/2019 8:00 0.70 

12/27/2019 8:15 12/27/2019 10:00 0.07 12/27/2019 10:15 1/11/2020 21:00 15.45 

1/11/2020 21:15 1/11/2020 23:00 0.07 1/11/2020 23:15 1/21/2020 9:00 9.41 

1/21/2020 9:15 1/21/2020 11:00 0.07 1/21/2020 11:15 1/25/2020 8:00 3.86 

1/25/2020 8:15 1/25/2020 10:00 0.07 1/25/2020 10:15 2/10/2020 16:00 16.24 

2/10/2020 16:15 2/10/2020 18:00 0.07 2/10/2020 18:15 3/11/2020 11:00 29.70 

3/11/2020 11:15 3/11/2020 13:00 0.07 3/11/2020 13:15 4/22/2020 9:00 41.82 

4/22/2020 9:15 4/22/2020 11:00 0.07 4/22/2020 11:15 6/9/2020 19:00 48.32 

6/9/2020 19:15 6/9/2020 21:00 0.07 6/9/2020 21:15 6/26/2020 3:00 16.24 

6/26/2020 3:15 6/26/2020 5:00 0.07 6/26/2020 5:15 7/6/2020 7:45 10.10 

7/6/2020 8:00 7/6/2020 8:00 0.00 7/6/2020 8:15 8/15/2020 2:00 39.74 

8/15/2020 2:15 8/15/2020 4:00 0.07 8/15/2020 4:15 9/30/2020 5:00 46.03 

9/30/2020 5:15 9/30/2020 7:00 0.07 9/30/2020 7:15 11/19/2020 4:00 49.86 

11/19/2020 4:15 11/19/2020 6:00 0.07 11/19/2020 6:15 12/5/2020 12:00 16.24 

12/5/2020 12:15 12/5/2020 14:00 0.07 12/5/2020 14:15 12/12/2020 8:00 6.74 

12/12/2020 8:15 12/12/2020 10:00 0.07 12/12/2020 10:15 12/13/2020 7:00 0.86 

12/13/2020 7:15 12/13/2020 9:00 0.07 12/13/2020 9:15 8/4/2021 9:45 234.02 
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Appendix B: Inorganic fertilizer applied to the watershed during the monitoring period. 

Field Name 

Task Start 

and End 

Dates 

Partial, 

Full, or 

No 

Inclusion Input Name 

Area 

Applied 

(acres) 

Area 

Applied 

(m²) 

Portion of 

field on 

watershed 

Rate 

Applied 

Total 

Applied to 

full farm 

Total 

Applied to 

Watershed 
 

Pounds of 

nitrogen 

applied 

LRC-CKF-J 27-Feb-19 Full 32-0-0 UAN 24.1 97527.4 1.000 

10.19 

gal/ac 245.50 gal 245.500 gal 867.302 

LRC-CKF-K1 27-Feb-19 Full 32-0-0 UAN 49.9 201934.4 1.000 

10.10 

gal/ac 504.20 gal 504.200 gal 1781.238 

LRC-CKF-R 27-Feb-19 No 32-0-0 UAN 7.8 31564.9 0.000 

8.82 

gal/ac 68.80 gal 0.000 gal 0.000 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Partial 46-0-0 Urea 7.59 30715.1 0.748 

108.00 

lb/ac 0.41 ton 0.307 ton 257.725 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Partial 46-0-0 Urea 7.49 30310.4 0.974 

108.00 

lb/ac 0.40 ton 0.390 ton 327.398 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 7.42 30027.1 1.000 

108.00 

lb/ac 0.40 ton 0.400 ton 336.000 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 7.61 30796.0 1.000 

108.00 

lb/ac 0.41 ton 0.410 ton 344.400 

LRC-AS-

Beef-

Research 
19-Mar-19 Partial 46-0-0 Urea 2.47 9995.5 0.835 

108.00 

lb/ac 0.13 ton 0.109 ton 91.155 
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Pastures 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Partial 46-0-0 Urea 2.53 10238.4 0.907 

108.00 

lb/ac 0.14 ton 0.127 ton 106.709 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Partial 46-0-0 Urea 2.41 9752.7 0.984 

108.00 

lb/ac 0.13 ton 0.128 ton 107.458 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 2.35 9509.9 1.000 

108.00 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 2.72 11007.2 1.000 

108.00 

lb/ac 0.15 ton 0.150 ton 126.000 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 2.48 10036.0 1.000 

108.00 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 2.61 10562.1 1.000 

108.00 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 2.49 10076.5 1.000 

108.00 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 
19-Mar-19 Full 46-0-0 Urea 2.51 10157.4 1.000 

108.00 

lb/ac 0.14 ton 0.140 ton 117.600 
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Pastures 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 2.59 10481.2 1.000 

108.00 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 2.42 9793.2 1.000 

108.00 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 2.41 9752.7 1.000 

108.00 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 7.46 30189.0 1.000 

108.00 

lb/ac 0.40 ton 0.400 ton 336.000 

LRC-AS-

Beef-

Research 

Pastures 19-Mar-19 Full 46-0-0 Urea 7.49 30310.4 1.000 

108.00 

lb/ac 0.40 ton 0.400 ton 336.000 

LRC-CKF-J 22-Mar-19 Full 32-0-0 UAN 23.18 93804.4 1.000 

10.36 

gal/ac 240.10 gal 240.100 gal 852.451 

LRC-CKF-K1 22-Mar-19 Full 32-0-0 UAN 50.67 205050.4 1.000 

10.05 

gal/ac 509.30 gal 509.300 gal 1808.219 

LRC-CKF-R 22-Mar-19 No 32-0-0 UAN 7 28327.5 0.000 

9.71 

gal/ac 68.00 gal 0.000 gal 0.000 

LRC-CKF-J 28-Mar-19 Full 32-0-0 UAN 24.52 99227.1 1.000 

10.19 

gal/ac 249.80 gal 249.800 gal 882.493 

LRC-CKF-K1 28-Mar-19 Full 32-0-0 UAN 51.33 207721.3 1.000 
10.09 

517.90 gal 517.900 gal 1829.637 
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gal/ac 

LRC-CKF-R 28-Mar-19 No 32-0-0 UAN 6.87 27801.4 0.000 

9.74 

gal/ac 66.90 gal 0.000 gal 0.000 

LRC-AS-E 4-Apr-19 No 46-0-0 Urea 9.84 39820.3 0.000 

108.70 

lb/ac 0.53 ton 0.000 ton 0.000 

LRC-AS-E 4-Apr-19 Partial 46-0-0 Urea 23.25 94087.7 0.038 

108.70 

lb/ac 1.26 ton 0.048 ton 40.671 

LRC-AS-E 4-Apr-19 Partial 46-0-0 Urea 14.51 58718.8 0.153 

108.70 

lb/ac 0.79 ton 0.121 ton 101.792 

LRC-AS-G 4-Apr-19 Partial 46-0-0 Urea 41.67 168629.4 0.902 

108.70 

lb/ac 2.26 ton 2.038 ton 1712.006 

LRC-AS-

Sheep-

Lakebarn 4-Apr-19 Full 46-0-0 Urea 13 52608.2 1.000 

163.04 

lb/ac 1.06 ton 1.060 ton 890.400 

LRC-CKF-I 4-Apr-19 Full 46-0-0 Urea 8.78 35530.7 1.000 

163.04 

lb/ac 0.72 ton 0.720 ton 604.800 

LRC-CKF-I 4-Apr-19 Full 46-0-0 Urea 5.51 22297.8 1.000 

163.04 

lb/ac 0.45 ton 0.450 ton 378.000 

LRC-CKF-

Salad bowl 4-Apr-19 Full 46-0-0 Urea 7.59 30715.1 1.000 

109.00 

lb/ac 0.41 ton 0.410 ton 344.400 

LRC-CKF-

Uppercreek 4-Apr-19 Full 46-0-0 Urea 9.83 39779.9 1.000 

163.04 

lb/ac 0.80 ton 0.800 ton 672.000 

LRC-Sheep-

Desert 4-Apr-19 Full 46-0-0 Urea 2.57 10400.2 1.000 

163.04 

lb/ac 0.21 ton 0.210 ton 176.400 

LRC-Sheep-

Desert 4-Apr-19 Full 46-0-0 Urea 2.58 10440.7 1.000 

163.04 

lb/ac 0.21 ton 0.210 ton 176.400 

LRC-Sheep-

Desert 4-Apr-19 Full 46-0-0 Urea 2.5 10117.0 1.000 

163.04 

lb/ac 0.20 ton 0.200 ton 168.000 
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LRC-Sheep-

Desert 4-Apr-19 Full 46-0-0 Urea 2.78 11250.1 1.000 

163.04 

lb/ac 0.23 ton 0.230 ton 193.200 

LRC-Sheep-

Desert 4-Apr-19 Full 46-0-0 Urea 2.95 11938.0 1.000 

163.04 

lb/ac 0.24 ton 0.240 ton 201.600 

LRC-Sheep-

Desert 4-Apr-19 Full 46-0-0 Urea 1.32 5341.8 1.000 

163.04 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-Sheep-

Desert 4-Apr-19 Full 46-0-0 Urea 1.43 5786.9 1.000 

163.04 

lb/ac 0.12 ton 0.120 ton 100.800 

LRC-Sheep-

Desert 4-Apr-19 Full 46-0-0 Urea 1.51 6110.6 1.000 

163.04 

lb/ac 0.12 ton 0.120 ton 100.800 

LRC-Sheep-

Desert 5-Apr-19 Full 46-0-0 Urea 1.84 7446.1 1.000 

163.04 

lb/ac 0.15 ton 0.150 ton 126.000 

LRC-CKF-L 25-Apr-19 Full 46-0-0 Urea 38 153777.7 1.000 

346.57 

lb/ac 6.58 ton 6.580 ton 5527.200 

LRC-CKF-L 25-Apr-19 Full 

Agrotain 

Advanced 38 153777.7 1.000 

0.36 

qt/ac 3.46 gal 3.460 gal 0.000 

LRC-CKF-R 29-Apr-19 Partial 46-0-0 Urea 32 129497.0 0.245 

434.98 

lb/ac 6.96 ton 1.707 ton 1433.817 

LRC-CKF-R 29-Apr-19 Partial 

Agrotain 

Advanced 32 129497.0 0.245 

0.44 

qt/ac 3.50 gal 0.858 gal 0.000 

LRC-CKF-M 30-Apr-19 Full 46-0-0 Urea 27 109263.1 1.000 

369.55 

lb/ac 4.99 ton 4.990 ton 4191.600 

LRC-CKF-M 30-Apr-19 Full 

Agrotain 

Advanced 27 109263.1 1.000 

0.37 

qt/ac 2.51 gal 2.510 gal 0.000 

LRC-CKF-P 1-May-19 Full 46-0-0 Urea 49.4 199911.0 1.000 

360.08 

lb/ac 8.89 ton 8.890 ton 7467.600 

LRC-CKF-P 1-May-19 Full 

Agrotain 

Advanced 49.4 199911.0 1.000 

0.36 

qt/ac 4.47 gal 4.470 gal 0.000 
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LRC-CKF-P 17-May-19 Full 46-0-0 Urea 49.4 199911.0 1.000 

360.08 

lb/ac 8.89 ton 8.890 ton 7467.600 

LRC-CKF-P 17-May-19 Full 

Agrotain 

Advanced 49.4 199911.0 1.000 

0.36 

qt/ac 4.47 gal 4.470 gal 0.000 

LRC-CKF-M 21-May-19 Full 46-0-0 Urea 6.5 26304.1 1.000 

347.23 

lb/ac 1.13 ton 1.130 ton 949.200 

LRC-CKF-M 21-May-19 Full 

Agrotain 

Advanced 6.5 26304.1 1.000 

0.35 

qt/ac 0.57 gal 0.570 gal 0.000 

LRC-CKF-M 21-May-19 Full 46-0-0 Urea 23 93076.0 1.000 

347.23 

lb/ac 3.99 ton 3.990 ton 3351.600 

LRC-CKF-M 21-May-19 Full 

Agrotain 

Advanced 23 93076.0 1.000 

0.35 

qt/ac 2.01 gal 2.010 gal 0.000 

LRC-CKF-Q 21-May-19 Partial 46-0-0 Urea 19 76888.8 0.086 

347.23 

lb/ac 3.30 ton 0.285 ton 239.507 

LRC-CKF-Q 21-May-19 Partial 

Agrotain 

Advanced 19 76888.8 0.086 

0.35 

qt/ac 1.66 gal 0.143 gal 0.000 

LRC-AS-

Sheep-

Lakebarn 14-Jun-19 Full 32-0-0 UAN 12.78 51717.9 1.000 

10.10 

gal/ac 129.08 gal 129.080 gal 454.775 

LRC-CKF-K1 14-Jun-19 Full 32-0-0 UAN 4.03 16308.5 1.000 

20.12 

gal/ac 81.08 gal 81.080 gal 285.661 

LRC-CKF-M 14-Jun-19 Full 32-0-0 UAN 0.99 4006.3 1.000 

29.89 

gal/ac 29.59 gal 29.590 gal 104.109 

LRC-CKF-

Uppercreek 14-Jun-19 Full 32-0-0 UAN 8.43 34114.4 1.000 

10.20 

gal/ac 85.99 gal 85.990 gal 302.960 

LRC-J-

Waterway 14-Jun-19 Full 32-0-0 UAN 5.31 21488.4 1.000 

20.15 

gal/ac 107.00 gal 107.000 gal 376.982 

LRC-CKF-L 1-Mar-20 Full 32-0-0 UAN 34.93 141354.1 1.000 
11.45 

399.90 gal 399.900 gal 1412.767 
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gal/ac 

LRC-CKF-M 1-Mar-20 Full 32-0-0 UAN 26.03 105337.7 1.000 

10.04 

gal/ac 261.40 gal 261.400 gal 923.474 

LRC-CKF-M 1-Mar-20 Full 32-0-0 UAN 26.2 106025.7 1.000 

10.08 

gal/ac 264.00 gal 264.000 gal 932.659 

LRC-CKF-P 1-Mar-20 Full 32-0-0 UAN 49.02 198373.2 1.000 

10.06 

gal/ac 492.90 gal 492.900 gal 1741.317 

LRC-CKF-P 1-Mar-20 Full 32-0-0 UAN 49 198292.3 1.000 

10.10 

gal/ac 495.00 gal 495.000 gal 1751.904 

LRC-CKF-L 5-Mar-20 Full 32-0-0 UAN 34.84 140989.8 1.000 

10.59 

gal/ac 368.90 gal 368.900 gal 1303.250 

LRC-CKF-K 9-Mar-20 Full 32-0-0 UAN 29.64 119946.6 1.000 

10.03 

gal/ac 297.40 gal 297.400 gal 1050.655 

LRC-CKF-K 9-Mar-20 Full 32-0-0 UAN 29.75 120391.7 1.000 

10.04 

gal/ac 298.60 gal 298.600 gal 1054.894 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Partial 46-0-0 Urea 7.2 29136.8 0.748 

108.69 

lb/ac 0.39 ton 0.292 ton 245.153 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Partial 46-0-0 Urea 7.24 29298.7 0.974 

108.69 

lb/ac 0.39 ton 0.380 ton 319.213 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 6.86 27760.9 1.000 

108.69 

lb/ac 0.37 ton 0.370 ton 310.800 

LRC-AS-

Beef-

Research 
12-Mar-20 Full 46-0-0 Urea 7.22 29217.8 1.000 

108.69 

lb/ac 0.39 ton 0.390 ton 327.600 
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Pastures 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Partial 46-0-0 Urea 2.47 9995.5 0.835 

108.69 

lb/ac 0.13 ton 0.109 ton 91.155 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Partial 46-0-0 Urea 2.53 10238.4 0.907 

108.69 

lb/ac 0.14 ton 0.127 ton 106.709 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Partial 46-0-0 Urea 2.41 9752.7 0.984 

108.69 

lb/ac 0.13 ton 0.128 ton 107.458 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.35 9509.9 1.000 

108.69 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.72 11007.2 1.000 

108.69 

lb/ac 0.15 ton 0.150 ton 126.000 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.48 10036.0 1.000 

108.69 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.61 10562.1 1.000 

108.69 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-AS-

Beef-

Research 
12-Mar-20 Full 46-0-0 Urea 2.49 10076.5 1.000 

108.69 

lb/ac 0.14 ton 0.140 ton 117.600 
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Pastures 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.51 10157.4 1.000 

108.69 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.59 10481.2 1.000 

108.69 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.42 9793.2 1.000 

108.69 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.41 9752.7 1.000 

108.69 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 7.46 30189.0 1.000 

108.69 

lb/ac 0.41 ton 0.410 ton 344.400 

LRC-AS-

Beef-

Research 

Pastures 12-Mar-20 Full 46-0-0 Urea 7.49 30310.4 1.000 

108.69 

lb/ac 0.41 ton 0.410 ton 344.400 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.83 11452.4 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.62 10602.6 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 
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LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.49 10076.5 1.000 

76.00 

lb/ac 0.09 ton 0.090 ton 75.600 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.5 10117.0 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.54 10278.8 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.76 11169.1 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.33 9429.0 1.000 

76.00 

lb/ac 0.09 ton 0.090 ton 75.600 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.55 10319.3 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.39 9671.8 1.000 

76.00 

lb/ac 0.09 ton 0.090 ton 75.600 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 2.58 10440.7 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-AS-

Sheep Barn 

Pastures 12-Mar-20 Full 46-0-0 Urea 3.43 13880.5 1.000 

76.00 

lb/ac 0.13 ton 0.130 ton 109.200 

LRC-AS-E 16-Mar-20 No 46-0-0 Urea 12.12 49047.0 0.000 

109.00 

lb/ac 0.66 ton 0.000 ton 0.000 

LRC-AS-E 16-Mar-20 Partial 46-0-0 Urea 23.25 94087.7 0.038 
109.00 

1.27 ton 0.049 ton 40.993 
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lb/ac 

LRC-AS-G 16-Mar-20 Partial 46-0-0 Urea 41.67 168629.4 0.902 

109.00 

lb/ac 2.27 ton 2.047 ton 1719.582 

LRC-AS-

Sheep Barn 

Pastures 16-Mar-20 Full 46-0-0 Urea 2.94 11897.5 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-

Sheep Barn 

Pastures 16-Mar-20 Full 46-0-0 Urea 2.92 11816.6 1.000 

109.00 

lb/ac 0.16 ton 0.160 ton 134.400 

LRC-AS-

Sheep Barn 

Pastures 16-Mar-20 Full 46-0-0 Urea 2.86 11573.8 1.000 

109.00 

lb/ac 0.16 ton 0.160 ton 134.400 

LRC-CKF-I 16-Mar-20 Full 46-0-0 Urea 8.78 35530.7 1.000 

109.00 

lb/ac 0.48 ton 0.480 ton 403.200 

LRC-CKF-I 16-Mar-20 Full 46-0-0 Urea 5.51 22297.8 1.000 

109.00 

lb/ac 0.30 ton 0.300 ton 252.000 

LRC-CKF-K1 16-Mar-20 Full 46-0-0 Urea 3.93 15903.8 1.000 

109.00 

lb/ac 0.21 ton 0.210 ton 176.400 

LRC-CKF-

Lake field 16-Mar-20 Full 46-0-0 Urea 4.67 18898.5 1.000 

109.00 

lb/ac 0.25 ton 0.250 ton 210.000 

LRC-CKF-

Lake hillside 16-Mar-20 Full 46-0-0 Urea 10 40467.8 1.000 

109.00 

lb/ac 0.54 ton 0.540 ton 453.600 

LRC-CKF-M 16-Mar-20 Full 46-0-0 Urea 5.66 22904.8 1.000 

109.00 

lb/ac 0.31 ton 0.310 ton 260.400 

LRC-CKF-

Salad bowl 16-Mar-20 Full 46-0-0 Urea 7.59 30715.1 1.000 

109.00 

lb/ac 0.41 ton 0.410 ton 344.400 

LRC-CKF-

Springhouse 16-Mar-20 Full 46-0-0 Urea 3.55 14366.1 1.000 

109.00 

lb/ac 0.19 ton 0.190 ton 159.600 
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LRC-CKF-

Uppercreek 16-Mar-20 Full 46-0-0 Urea 9.83 39779.9 1.000 

109.00 

lb/ac 0.54 ton 0.540 ton 453.600 

LRC-J-

Waterway 16-Mar-20 Full 46-0-0 Urea 7.17 29015.4 1.000 

109.00 

lb/ac 0.39 ton 0.390 ton 327.600 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 2.62 10602.6 1.000 

109.00 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 2.57 10400.2 1.000 

109.00 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 2.58 10440.7 1.000 

109.00 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 2.5 10117.0 1.000 

109.00 

lb/ac 0.14 ton 0.140 ton 117.600 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 2.78 11250.1 1.000 

109.00 

lb/ac 0.15 ton 0.150 ton 126.000 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 2.95 11938.0 1.000 

109.00 

lb/ac 0.16 ton 0.160 ton 134.400 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 1.84 7446.1 1.000 

109.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 1.32 5341.8 1.000 

109.00 

lb/ac 0.07 ton 0.070 ton 58.800 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 1.43 5786.9 1.000 

109.00 

lb/ac 0.08 ton 0.080 ton 67.200 

LRC-Sheep-

Desert 16-Mar-20 Full 46-0-0 Urea 1.51 6110.6 1.000 

109.00 

lb/ac 0.08 ton 0.080 ton 67.200 

LRC-AS-G 18-Mar-20 Partial 32-0-0 UAN 38.05 153980.0 0.902 

10.08 

gal/ac 383.70 gal 346.027 gal 1228.533 

LRC-VS-Big 

Field 18-Mar-20 Partial 46-0-0 Urea 16.41 66407.7 0.983 

86.00 

lb/ac 0.71 ton 0.698 ton 586.135 
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LRC-VS-

Creek Field 18-Mar-20 Full 46-0-0 Urea 9.58 38768.2 1.000 

86.00 

lb/ac 0.41 ton 0.410 ton 344.400 

LRC-VS-

Shed Field 18-Mar-20 Partial 46-0-0 Urea 12.04 48723.2 0.970 

86.00 

lb/ac 0.52 ton 0.504 ton 423.565 

LRC-CKF-L 3-Apr-20 Full 32-0-0 UAN 31.25 126461.9 1.000 

10.07 

gal/ac 314.80 gal 314.800 gal 1110.614 

LRC-CKF-M 3-Apr-20 Full 32-0-0 UAN 26.32 106511.3 1.000 

10.02 

gal/ac 263.70 gal 263.700 gal 930.334 

LRC-CKF-P 22-Apr-20 Full 32-0-0 UAN 49 198292.3 1.000 

10.01 

gal/ac 490.60 gal 490.600 gal 1730.837 

LRC-CKF-K 12-May-20 Full 46-0-0 Urea 49.73 201246.4 1.000 

347.39 

lb/ac 8.64 ton 8.640 ton 7257.600 

LRC-CKF-K 12-May-20 Full 

Agrotain 

Advanced 49.73 201246.4 1.000 

0.28 

qt/ac 3.47 gal 3.470 gal 0.000 

LRC-CKF-M 12-May-20 Full 46-0-0 Urea 6.4 25899.4 1.000 

347.39 

lb/ac 1.11 ton 1.110 ton 932.400 

LRC-CKF-M 12-May-20 Full 

Agrotain 

Advanced 6.4 25899.4 1.000 

0.28 

qt/ac 0.45 gal 0.450 gal 0.000 

LRC-CKF-J 14-May-20 Full 46-0-0 Urea 24 97122.7 1.000 

347.39 

lb/ac 4.17 ton 4.170 ton 3502.800 

LRC-CKF-J 14-May-20 Full 

Agrotain 

Advanced 24 97122.7 1.000 

0.28 

qt/ac 1.68 gal 1.680 gal 0.000 

LRC-CKF-K1 14-May-20 Full 46-0-0 Urea 49.13 198818.3 1.000 

347.39 

lb/ac 8.53 ton 8.530 ton 7165.200 

LRC-CKF-K1 14-May-20 Full 

Agrotain 

Advanced 49.13 198818.3 1.000 

0.28 

qt/ac 3.43 gal 3.430 gal 0.000 

LRC-CKF-M 14-May-20 Full 46-0-0 Urea 6.4 25899.4 1.000 

347.39 

lb/ac 1.11 ton 1.110 ton 932.400 
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LRC-CKF-M 14-May-20 Full 

Agrotain 

Advanced 6.4 25899.4 1.000 

0.28 

qt/ac 0.45 gal 0.450 gal 0.000 

LRC-CKF-M 14-May-20 Full 46-0-0 Urea 25 101169.5 1.000 

347.39 

lb/ac 4.34 ton 4.340 ton 3645.600 

LRC-CKF-M 14-May-20 Full 

Agrotain 

Advanced 25 101169.5 1.000 

0.28 

qt/ac 1.75 gal 1.750 gal 0.000 

LRC-CKF-Q 1-Jun-20 Partial 46-0-0 Urea 18 72842.1 0.086 

347.39 

lb/ac 3.13 ton 0.270 ton 227.168 

LRC-CKF-Q 1-Jun-20 Partial 

Agrotain 

Advanced 18 72842.1 0.086 

0.28 

qt/ac 1.26 gal 0.109 gal 0.000 

LRC-CKF-R 2-Jun-20 No 46-0-0 Urea 9.24 37392.3 0.000 

347.39 

lb/ac 1.60 ton 0.000 ton 0.000 

LRC-CKF-R 2-Jun-20 No 

Agrotain 

Advanced 9.24 37392.3 0.000 

0.28 

qt/ac 0.65 gal 0.000 gal 0.000 

LRC-CKF-R 4-Jun-20 Partial 46-0-0 Urea 31.6 127878.3 0.245 

347.39 

lb/ac 5.49 ton 1.346 ton 1130.985 

LRC-CKF-R 4-Jun-20 Partial 

Agrotain 

Advanced 31.6 127878.3 0.245 

0.28 

qt/ac 2.21 gal 0.542 gal 0.000 

LRC-CKF-J 4-Mar-21 Full 32-0-0 UAN 22.6 91457.2 1.000 

20.26 

gal/ac 457.90 gal 457.900 gal 1615.471 

LRC-CKF-M 4-Mar-21 Full 32-0-0 UAN 6.8 27518.1 1.000 

20.28 

gal/ac 137.90 gal 137.900 gal 487.173 

LRC-CKF-M 4-Mar-21 Full 32-0-0 UAN 22.4 90647.9 1.000 

20.19 

gal/ac 452.20 gal 452.200 gal 1597.532 

LRC-CKF-Q 4-Mar-21 Partial 32-0-0 UAN 17.7 71628.0 0.086 

20.27 

gal/ac 358.70 gal 30.992 gal 109.490 

LRC-CKF-R 4-Mar-21 Partial 32-0-0 UAN 31.1 125854.9 0.245 

20.27 

gal/ac 630.50 gal 154.629 gal 546.273 
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LRC-CKF-R 4-Mar-21 No 32-0-0 UAN 6 24280.7 0.000 

20.23 

gal/ac 121.40 gal 0.000 gal 0.000 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 2.83 11452.4 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 2.97 12018.9 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 3.02 12221.3 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 2.92 11816.6 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 2.94 11897.5 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 3.28 13273.4 1.000 

76.00 

lb/ac 0.12 ton 0.120 ton 100.800 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 2.98 12059.4 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 3.03 12261.7 1.000 

76.00 

lb/ac 0.12 ton 0.120 ton 100.800 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 2.88 11654.7 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-AS-
18-Mar-21 Full 46-0-0 Urea 3 12140.3 1.000 

76.00 
0.11 ton 0.110 ton 92.400 
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Sheep Barn 

Pastures 

lb/ac 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 3.1 12545.0 1.000 

76.00 

lb/ac 0.12 ton 0.120 ton 100.800 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 3.2 12949.7 1.000 

76.00 

lb/ac 0.12 ton 0.120 ton 100.800 

LRC-AS-

Sheep Barn 

Pastures 18-Mar-21 Full 46-0-0 Urea 3.82 15458.7 1.000 

76.00 

lb/ac 0.15 ton 0.150 ton 126.000 

LRC-CKF-

Lake field 18-Mar-21 Full 46-0-0 Urea 4.67 18898.5 1.000 

76.00 

lb/ac 0.18 ton 0.180 ton 151.200 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 4.89 19788.8 1.000 

76.00 

lb/ac 0.19 ton 0.190 ton 159.600 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 2.62 10602.6 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 2.57 10400.2 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 2.58 10440.7 1.000 

76.00 

lb/ac 0.10 ton 0.100 ton 84.000 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 2.5 10117.0 1.000 

76.00 

lb/ac 0.09 ton 0.090 ton 75.600 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 2.78 11250.1 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 2.95 11938.0 1.000 

76.00 

lb/ac 0.11 ton 0.110 ton 92.400 

LRC-Sheep-
18-Mar-21 Full 46-0-0 Urea 1.84 7446.1 1.000 

76.00 
0.07 ton 0.070 ton 58.800 
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Desert lb/ac 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 1.32 5341.8 1.000 

76.00 

lb/ac 0.05 ton 0.050 ton 42.000 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 1.43 5786.9 1.000 

76.00 

lb/ac 0.05 ton 0.050 ton 42.000 

LRC-Sheep-

Desert 18-Mar-21 Full 46-0-0 Urea 1.51 6110.6 1.000 

76.00 

lb/ac 0.06 ton 0.060 ton 50.400 

LRC-AS-

Beef-

Research 

Pastures 22-Mar-21 Partial 46-0-0 Urea 7.59 30715.1 0.748 

131.00 

lb/ac 0.50 ton 0.374 ton 314.299 

LRC-AS-

Beef-

Research 

Pastures 22-Mar-21 Partial 46-0-0 Urea 7.49 30310.4 0.974 

131.00 

lb/ac 0.49 ton 0.477 ton 401.062 

LRC-AS-

Beef-

Research 

Pastures 22-Mar-21 Full 46-0-0 Urea 7.42 30027.1 1.000 

131.00 

lb/ac 0.49 ton 0.490 ton 411.600 

LRC-AS-

Beef-

Research 

Pastures 22-Mar-21 Full 46-0-0 Urea 7.61 30796.0 1.000 

131.00 

lb/ac 0.50 ton 0.500 ton 420.000 

LRC-AS-

Beef-

Research 

Pastures 23-Mar-21 Partial 46-0-0 Urea 7.48 30269.9 0.035 

109.00 

lb/ac 0.41 ton 0.015 ton 12.220 

LRC-AS-

Beef-

Research 
23-Mar-21 No 46-0-0 Urea 7.47 30229.5 0.000 

109.00 

lb/ac 0.41 ton 0.000 ton 0.000 
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Pastures 

LRC-AS-

Beef-

Research 

Pastures 23-Mar-21 Partial 46-0-0 Urea 7.67 31038.8 0.355 

109.00 

lb/ac 0.42 ton 0.149 ton 125.358 

LRC-AS-

Beef-

Research 

Pastures 23-Mar-21 Full 46-0-0 Urea 7.46 30189.0 1.000 

131.00 

lb/ac 0.49 ton 0.490 ton 411.600 

LRC-AS-

Beef-

Research 

Pastures 23-Mar-21 Full 46-0-0 Urea 7.49 30310.4 1.000 

131.00 

lb/ac 0.49 ton 0.490 ton 411.600 

LRC-AS-

Beef-

Research 

Pastures 23-Mar-21 No 46-0-0 Urea 7.49 30310.4 0.000 

109.00 

lb/ac 0.41 ton 0.000 ton 0.000 

LRC-AS-

Beef-

Research 

Pastures 23-Mar-21 No 46-0-0 Urea 7.43 30067.6 0.000 

109.00 

lb/ac 0.40 ton 0.000 ton 0.000 

LRC-AS-E 23-Mar-21 Partial 46-0-0 Urea 15.22 61592.0 0.153 

109.00 

lb/ac 0.83 ton 0.127 ton 106.946 

LRC-AS-G 23-Mar-21 Partial 46-0-0 Urea 41.67 168629.4 0.902 

109.00 

lb/ac 2.27 ton 2.047 ton 1719.582 

LRC-AS-

Sheep Barn 

Pastures 23-Mar-21 Full 46-0-0 Urea 3.18 12868.8 1.000 

152.00 

lb/ac 0.24 ton 0.240 ton 201.600 

LRC-AS-

Sheep Barn 
23-Mar-21 Full 46-0-0 Urea 2.92 11816.6 1.000 

152.00 

lb/ac 0.22 ton 0.220 ton 184.800 
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Pastures 

LRC-AS-

Sheep Barn 

Pastures 23-Mar-21 Full 46-0-0 Urea 2.86 11573.8 1.000 

152.00 

lb/ac 0.22 ton 0.220 ton 184.800 

LRC-CKF-I 23-Mar-21 Full 46-0-0 Urea 8.78 35530.7 1.000 

152.00 

lb/ac 0.67 ton 0.670 ton 562.800 

LRC-CKF-I 23-Mar-21 Full 46-0-0 Urea 5.51 22297.8 1.000 

152.00 

lb/ac 0.42 ton 0.420 ton 352.800 

LRC-CKF-K1 23-Mar-21 Full 46-0-0 Urea 3.93 15903.8 1.000 

109.00 

lb/ac 0.21 ton 0.210 ton 176.400 

LRC-CKF-

Lake field 23-Mar-21 Full 46-0-0 Urea 4.67 18898.5 1.000 

109.00 

lb/ac 0.25 ton 0.250 ton 210.000 

LRC-CKF-M 23-Mar-21 Full 46-0-0 Urea 5.66 22904.8 1.000 

109.00 

lb/ac 0.31 ton 0.310 ton 260.400 

LRC-CKF-N 23-Mar-21 Full 46-0-0 Urea 24.21 97972.6 1.000 

152.00 

lb/ac 1.84 ton 1.840 ton 1545.600 

LRC-CKF-P 23-Mar-21 Full 46-0-0 Urea 6.38 25818.5 1.000 

152.00 

lb/ac 0.48 ton 0.480 ton 403.200 

LRC-CKF-R 23-Mar-21 Full 46-0-0 Urea 7.75 31362.6 1.000 

152.00 

lb/ac 0.59 ton 0.590 ton 495.600 

LRC-CKF-

Salad bowl 23-Mar-21 Full 46-0-0 Urea 7.59 30715.1 1.000 

109.00 

lb/ac 0.41 ton 0.410 ton 344.400 

LRC-CKF-

Uppercreek 23-Mar-21 Full 46-0-0 Urea 9.83 39779.9 1.000 

152.00 

lb/ac 0.75 ton 0.750 ton 630.000 

LRC-J-

Waterway 23-Mar-21 Full 46-0-0 Urea 7.17 29015.4 1.000 

109.00 

lb/ac 0.39 ton 0.390 ton 327.600 

LRC-Sheep-

Research 
23-Mar-21 Full 46-0-0 Urea 1.42 5746.4 1.000 

76.00 

lb/ac 0.05 ton 0.050 ton 42.000 
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Pastures 

LRC-Sheep-

Research 

Pastures 23-Mar-21 Full 46-0-0 Urea 1.27 5139.4 1.000 

76.00 

lb/ac 0.05 ton 0.050 ton 42.000 

LRC-Sheep-

Research 

Pastures 23-Mar-21 Full 46-0-0 Urea 1.32 5341.8 1.000 

76.00 

lb/ac 0.05 ton 0.050 ton 42.000 

LRC-Sheep-

Research 

Pastures 23-Mar-21 Full 46-0-0 Urea 1.27 5139.4 1.000 

76.00 

lb/ac 0.05 ton 0.050 ton 42.000 

LRC-Sheep-

Research 

Pastures 23-Mar-21 Full 46-0-0 Urea 1.31 5301.3 1.000 

76.00 

lb/ac 0.05 ton 0.050 ton 42.000 

LRC-Sheep-

Research 

Pastures 23-Mar-21 Full 46-0-0 Urea 1.34 5422.7 1.000 

76.00 

lb/ac 0.05 ton 0.050 ton 42.000 

LRC-CKF-M 29-Mar-21 Full 32-0-0 UAN 6.85 27720.4 1.000 

10.00 

gal/ac 68.50 gal 68.500 gal 243.531 

LRC-CKF-M 29-Mar-21 Full 32-0-0 UAN 22.9 92671.3 1.000 

10.00 

gal/ac 229.00 gal 229.000 gal 813.042 

LRC-CKF-Q 29-Mar-21 Partial 32-0-0 UAN 17.7 71628.0 0.086 

10.00 

gal/ac 177.00 gal 15.293 gal 54.126 

LRC-CKF-R 29-Mar-21 Partial 32-0-0 UAN 31.4 127068.9 0.245 

10.00 

gal/ac 314.00 gal 77.008 gal 273.039 

LRC-CKF-R 29-Mar-21 No 32-0-0 UAN 5.85 23673.7 0.000 

10.00 

gal/ac 58.50 gal 0.000 gal 0.000 

LRC-CKF-J 18-May-21 Full 46-0-0 Urea 23.18 93804.4 1.000 

347.39 

lb/ac 4.03 ton 4.030 ton 3385.200 
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LRC-CKF-J 18-May-21 Full 

Agrotain 

Advanced 23.18 93804.4 1.000 

0.28 

qt/ac 1.62 gal 1.620 gal 0.000 

LRC-CKF-L 18-May-21 Full 46-0-0 Urea 38 153777.7 1.000 

347.39 

lb/ac 6.60 ton 6.600 ton 5544.000 

LRC-CKF-L 18-May-21 Full 

Agrotain 

Advanced 38 153777.7 1.000 

0.28 

qt/ac 2.66 gal 2.660 gal 0.000 

LRC-CKF-M 18-May-21 Full 46-0-0 Urea 26.9 108858.4 1.000 

347.39 

lb/ac 4.67 ton 4.670 ton 3922.800 

LRC-CKF-M 18-May-21 Full 

Agrotain 

Advanced 26.9 108858.4 1.000 

0.28 

qt/ac 1.88 gal 1.880 gal 0.000 

LRC-CKF-P 18-May-21 Full 46-0-0 Urea 49.4 199911.0 1.000 

347.39 

lb/ac 8.58 ton 8.580 ton 7207.200 

LRC-CKF-P 18-May-21 Full 

Agrotain 

Advanced 49.4 199911.0 1.000 

0.28 

qt/ac 3.45 gal 3.450 gal 0.000 
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Appendix C: Organic fertilizer applied to the watershed during the monitoring period. 

 

Swine 

 

Date 

Location 

Field Acres Application Source Start Depth Stop Depth Gallons 

3/8/2018 P  48 One Injected  Tank 2 14.9 10.5 88140 

10/4/2018 P  48 One Injected  Tank 2 10.5 6.2 86468 

10/5/2018 P  48 One Injected  Tank 2 6.2 2.5 74928 

10/23/2018 K 53 One Injected  Tank 1/Tank 2 19 15 160538 

10/24/2018 K 53 One Injected  Tank1/Tank 2 15 10 200224 

10/25/2018 K 53 One Injected  Tank 1/Tank 2 10 5.9 164942 

4/11/2019 K 53 One Injected  Tank1/Tank 2 16.2 13.2 121400 

7/24/2019 Beef 24 7.62 One irrigated  Tank 3 16.7 15.7 21328 

7/25/2019 Beef 24 7.62 One irrigated Tank 3 15.7 13.9 36114 

7/26/2019 Beef 24 7.62 One irrigated Tank 3 13.9 11.1 56732 

7/28/2019 Beef 24 7.62 One irrigated Tank 3 11.1 8.2 58467 

7/30/2019 Beef 24 7.62 One irrigated Tank 3 8.2 5.8 48011 

7/31/2019 Beef 24 7.62 One irrigated Tank 3 5.8 3.8 40981 

8/23/2019 H 27.12 One irrigated Tank1/Tank 2 16.3 10 252242 
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8/29/2019 H 27.12 One irrigated Tank1/Tank 2 13.3 10 132160 

9/4/2019 H 27.12 One irrigated Tank1/Tank 2 10 8.5 61840 

9/12/2019 H 27.12 One irrigated Tank1/Tank 2 8.5 7.2 53440 

9/17/2019 H 27.12 One irrigated Tank1/Tank 2 7.2 5.3 88720 

9/18/2019 H 27.12 One irrigated Tank1/Tank 2 5.3 3.8 60440 

9/22/2019 H 27.12 One irrigated Tank1/Tank 2 4.2 2.9 52230 

9/26/2019 H 27.12 One irrigated Tank1/Tank 2 5.9 3.8 84188 

4/8/2020 R 32 One Injected Tank1/Tank 2 17.9 16.5 57422 

4/9/2020 R 32 One Injected Tank1/Tank 2 16.5 14.4 84166 

5/8/2020 R 32 One Injected Tank1/Tank 2 14.4 10.3 165329 

5/13/2020 R 32 One Injected Tank1/Tank 2 10.3 5.3 200652 

5/15/2020 R 32 One Injected Tank1/Tank 2 5.3 2.3 120020 

5/20/2020 R 32 One Injected Tank1/Tank 2 15.5 10.2 213067 

5/21/2020 R 32 One Injected Tank 3 10.2 5.1 102241 

6/1/2020 R 32 One Injected Tank 3 5.1 2.1 60740 

6/4/2020 Beef 24 7.67 One Irrigated Tank 3 14.8 12.4 48658 

6/7/2020 Beef 24 7.67 One Irrigated Tank 3 12.4 12.2 4688 

7/22/2020 Beef 24 7.67 One Irrigated Tank 3 12.2 8 84548 

7/24/2020 Beef 24 7.67 One Irrigated Tank 3 8 5.4 52219 

7/27/2020 Beef 24 7.67 One Irrigated Tank 3 5.4 3.5 38671 
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10/14/2020 R 32 One Injected Tank 3 19.6 10.9 174083 

10/15/2020 R 32 One Injected Tank 3 17.1 12.6 91337 

10/16/2020 R 32 One Injected Tank 3 12.6 6.9 114188 

10/19/2020 R 32 One Injected Tank 3 6.8 2.5 86219 

10/22/2020 R 32 One Injected Tank 1/Tank2 8.4 5.4 123426 

10/23/2020 R 32 One Injected Tank1/Tank 2 5.4 2.5 117356 

3/15/2021 K 53 One Injected Tank1/Tank 2 10.7 8.3 113,112 

3/16/2021 K 53 One Injected Tank1/Tank 2 8.3 5.1 119258 

3/23/2021 K 53 One Injected Tank1/Tank 2 5.1 1.6 107124 
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Dairy 

 

Date Location Field Acres Application 

Start 

Depth 

Depth from 

Top  Gallons Gallons/Acre 

3/26/2019 Lake Barn 24 One Injected 2.5' 5' 302500 12604 

3/27/2019 Lake Barn 24 One Injected 5' ~ 6.5' 181500 7563 

3/28/2019 Lake Barn 24 One Injected 6.5' ~ 8' ~ 181500 7563 

2/10/2020 Lake Barn 24 Two Injected Full 2' ~ 242000 10083 

2/12/2020 Lake Barn 24 Two Injected 2' ~ 4' ~ 242000 10083 

2/21/2020 Lake Barn 24 Two Injected 4' ~ 7' ~ 363000 15125 

2/24/2020 Lake Barn 24 Two Injected 7' ~ 10' ~ 363000 15125 

2/26/2020 Lake Barn 24 Two Injected 10' ~ 14' 484000 20167 

3/9/2020 Lake Barn 24 Two Injected Full 2' ~ 242000 10083 

3/12/2020 Lake Barn 24 Two Injected 2' ~ 5' ~ 363000 15125 

3/19/2020 Lake Barn 24 Two Injected 5' ~ 8' ~ 363000 15125 

3/26/2020 Lake Barn 24 Two Injected 8' ~ 12' ~ 484000 20167 

3/27/2020 Lake Barn 24 Two Injected 12' ~ 14' 242000 10083 
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Appendix D: Report on the physical properties of 32-0-0 UAN fertilizer. Used for 

determining weight of nitrogen applied in aqueous fertilizer. 
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Appendix E: Calibration Report for Optical Dissolved Oxygen sensor from May 6, 2021. 
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Appendix F: Summary of the results from model tuning. 

Run # # of Layers # of Neurons MSE after 5000 epoch Avg MSE 

Run 4 1 40 Failed at 469  
Run 7 1 40 Failed at 507  
Run 1 1 40 Failed at 255  
Run 2 1 40 Failed at 270  
Run 3 1 40 Failed at 408  
Run 2 1 50 0.000103 

0.000081 Run 3 1 50 0.000075 

Run 4 1 50 Failed at 280 

Run 5 1 50 0.000066 

Run 1 1 80 Failed at 356 

0.000063 

Run 2 1 80 Failed at 225 

Run 3 1 80 0.00007 

Run 4 1 80 0.000058 

Run 5 1 80 0.000058 

Run 6 1 80 0.000066 

Run 8 1 100 0.00008 

0.000075 Run 9 1 100 0.000091 

Run 10 1 100 Failed after 199 

Run 6 1 100 0.000053 

Run 1 2 40 0.000084 

0.000079 

Run 2 2 40 Failed at 577 

Run 3 2 40 missed epoch 5000 

Run 1 2 40 0.000093 

Run 5 2 40 Failed at 255 

Run 6 2 40 0.00006 

Run 7 2 40 failed at 566 

Run 1 2 50 0.000056 

0.000051625 

Run 2 2 50 Failed after 286 epoch 

Run 3 2 50 0.000054 

Run 4 2 50 0.000047 

Run 5 2 50 0.000054 

Run 6 2 50 0.000048 

Run 1 2 50 Failed after 359 epoch 

Run 2 2 50 0.000053 

Run 3 2 50   

Run 1 2 50 0.000057 

Run 2 2 50 0.000044 

Run 5 2 60 0.000047 

0.00005625 

Run 1 2 60 0.000075 

Run 2 2 60 Failed after 476 

Run 3 2 60 Failed at 512 

Run 4 2 60 0.000051 

Run 5 2 60 0.000046 

Run 6 2 60 0.000061 

Run 7 2 60 0.000048 

Run 8 2 60 0.000074 

Run 9 2 60 0.000048 

Run 4 2 100 0.00008 

0.000067 Run 8 2 100 Failed at 297 

Run 9 2 100 0.00005 

Run 10 2 100 0.000072 
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Appendix G: Soil moisture variations measured during the monitoring period. 
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Appendix H: Field Notes 

 

Feb 28, 2020 -1.75ft on wall 

-Deployment started 10:59, swapped 11:20am 

 

May 30, 2020 -18.9in at YSI 

  -Deployed 2:25pm 

 

June 30, 2020 -Algae growth has really started 

  -Deployed 0383 1:23pm 

  -Depth 1.05ft on wall 

  -Lowest flow I had seen  

  -Removed 1274 

 

July 10th, 2020 -Algae growth continued 

  -Deployed SUNA about 2pm 

  -Depth: Wall 28.3cm 

   Center 28.3cm 

   YSI 28.3 

 

July 29th, 2020 -Deploy YSI 1274 1:30-1:45pm 

  -0.975ft on wall 

  -Low Flow 

 

August 8th, 2020   -Attempted to deploy bottles for ISCO Sampling but refrigerator 

compartment was about 1/5-1/6 full of water (2-3L). Tubing also fell into 

stream. Not prepared and must repair early next week 

  

August 11th, 2020 -Returned to site to deploy ISCO bottles 
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  -Used small container and shammy to remove water 

  -Appears to be a drain in bottom of ISCO 

 -Pulled Tubing up using scuba spool 

 

August 18th, 2020 -Arrived to discover several power failures during the past week 

11:35am-1:15pm -Noticed the solar panel was shaded by tree from behind at 

approximately noon 

 -Cut back several branches to allow solar view and tilted panel to face 

more skyward (to midday sun) 

 -Recovered 6 Samples 

 -Samples deposited starting with 1 on Aug 19 at 00:00 

 

August 25th, 2020 -ISCO appears to have maintained power for the week 

11:45am  -Filled bottle 14 while onsite 

   

Sept 1, 2020 -Swapped YSI yesterday, August 31st about 1:40pm 

 -Troll handheld computer is dead 

 -Raining off and on for the last 1.5 days or so 

 -Downloaded SUNA Data 

 -Water Level 1.05ft 11:25 

 -Swapped Bottles 

 -Snakes in water when I arrived 

 -Crawfish eating a dead fish 

 

Sept 8, 2020 -ISCO seems to have worked properly; a few samples missing; needs 

new battery 

 -Power failure on bottles 3, 5, 7, 9 

-12:38pm Downloading Troll Data, approximately 20 minutes, big file 
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Sept 15, 2020 -Power failure on bottles 3, 7, 11 

 -Center of Channel Depth: 29.5cm 

 -YSI Depth: 29cm 

 

Sept 19, 2020 -Power Failure on bottle 3 (sept 17 00:00) 

 -Between bottles 2 and 4 the distributor became misaligned resulting in 

bad samples 

 

Sept 26, 2020 -Swapped ISCO bottles 10am 

 -Distributor Error and only samples 1 and 2 are good 

 

Sept 30, 2020 -Swapped YSI about 11 am 

 -Depth Center: 24.4 

 -Depth YSI: 25cm 

 -Depth Wall: 0.8ft 

 

Nov 6, 2020 -Placed YSI in channel for cross-over point at 7:34am 

 -Cross-over point at 7:45am 

 -Time not updated on YSI for time change 

 

Nov 13, 2020  -Removed SUNA for dirty read at 12:35pm 

 -dirty read 0.10mgN/L 

 -clean read 0.06mgN/L 

 -Reference Spectrum updated 13:36 

 

Dec 10, 2020 -Swapped YSI: 1274 going in 

 -Depth: meter stick center 37cm 

 -crossover point 1:30 
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Jan 5, 2021 -Arrived 8:40am 

 -Misty and wet 

 -Center Channel: 55.8cm meter stick 

 -Depth at YSI: 56cm 

 -Crossover: 9-9:15am 

 -38°F feels like 30°F 

 -fDOM not calibrated 

 -Downloaded troll 9:15-9:25 

 -Downloaded SUNA 9:38-9:40 

 

Jan 14, 2021 -Arrived 12:28pm 

 -Approach from opposite end of culvert 

 -pool at sensor murky 

 -obtained grab sample between 12:31 and 12:32 

 -Forgot filter at lab, filtered at 13:20 once back to lab 

 -Depth YSI: 44.5cm 

 -Depth center: 45cm 

 

Jan 26, 2021 -Arrived onsite 10:15 

 -Water level highest I’ve seen  

 -Not comfortable with entering channel while being the only person 

onsite 

 -About 2.4 on scale on wall 

 -Grab sample collected at 10:30 

 -Very turbid, difficult to filter full sample with one filter, slow drip at 

end 

 

Feb 2, 2021 -Placed YSI in channel for crossover at 13:05, crossover time 13:15 

 -Grab sample collected at 13:10 
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 -depth center: 60-61cm 

 -Depth cage: 59.8-60cm 

 -downloaded SUNA data 13:40-13:45 

 -SUNA removed for reference spectrum update 13:50 

 -Replaced SUNA about 14:45 

 

Feb 10, 2021 -Grab Sample collected 13:20-13:25 

 -Forecasted to get ice and snow this evening into night 

 -Tomorrow is supposed to be nasty 

 -About 30 degrees and is supposed to drop to single digits 

  

Mar 5, 2021 -Swapped YSI about 13:30 local time 

 -Water level much lower than Monday 

 -Center of channel 59-59.5cm 

 -Cage: 58.5-59cm 

 -Tube/Strainer 23-24cm from the bed 

 -grab sample 13:30-13:35 

 

Mar 26, 2021 -12:15 grab sample 

 

Apr 5, 2021 -13:39 placed YSI for swap 

 -14:30 Dirty Read 

 -SUNA replaced 14:54 edt 

 -Removed about 14:00 

 

Apr 23, 2021 -Grab Sample 12:25 

 -Depth Center: 37-37.5cm 

 -Depth YSI: 37.5cm 
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May 11, 2021 -12:27 EDT deployed YSI for next interval at 12:30 

 -Updated the time on sonde because it was 7-8 minutes fast 

 -Placed in channel 12:36 for next read at 12:45 

 -Depth Center: 47.5-48cm 

 -Depth YSI: 47.5cm 

 -Placed in cage after crossover 12:52 

 -Deployment stopped 13:06 

 

June 1, 2021 -Grab sample collected 9:12 

 -39cm center 

 -38cm YSI 

 -9:30 EDT crossover point 

 -SUNA removed from channel between 9:40 and 9:45edt 

 -Returned to channel about 10:30-11 

 

July 6, 2021 -11:50edt placed YSI on Channel for crossover at 12edt 

 -SUNA replaced and old YSI removed at 12:48 edt 

 -Center channel 38.5-39cm 

 -YSI side 39-39.5cm 

 -Grab Sample 7.6.21.12.50 

 

August 4, 2021 -Placed YSI in channel 12:50edt 

 -Cluster of a day, tried deploying NitraLED but the calibration was off, 

didn’t have everything for site specific correction, wiper wasn’t installed 

after calibration so Emma and Vanessa went back to lab 

 - reference spectrum update on SUNA 

 -Removed YSI 2:15edt 

 -Wiper had fallen off 
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