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ABSTRACT OF DISSERTATION

Models and Optimal Controls for Smart Homes and their Integration into the
Electric Power Grid

Smart homes can operate as a distributed energy resource (DER), when equipped
with controllable high-efficiency appliances, solar photovoltaic (PV) generators, elec-
tric vehicles (EV) and energy storage systems (ESS). The high penetration of such
buildings changes the typical electric power load profile, which without appropriate
controls, may become a “duck curve” when the surplus PV generation is high, or a
“dragon curve” when the EV charging load is high. A smart home may contribute to
an optimal solution of such problems through the energy storage capacity, provided
by its by battery energy storage system (BESS), heating, ventilation, and air condi-
tioning (HVAC) system, and electric water heater (EWH), and the advanced controls
of an home energy management (HEM). The integrated modeling of home energy
usage and electric power distribution system, developed as part of this dissertation
research, provides a testbed for HEM control methods and prediction of long-term
scenarios.

A hybrid energy storage system including batteries and a variable power EWH
was proposed. It was demonstrated that when the operation of the proposed hybrid
energy storage system was coordinated with PV generation, the required battery
capacity would be substantially reduced while still maintaining the same functional-
ity for smart homes to operate as dispatchable generators. A newly developed co-
simulation framework, INSPIRE+D, enables the dynamic simulation of smart homes
and their connection to the grid.

The equivalent thermal model of a reference house was proposed with parameters
based on the systematic study of experimental data from fully instrumented field
demonstrators. Energy storage capacity of HVAC systems was calculated and an
equivalent state-of-charge (SOC) was defined. The aggregated HVAC load was calcu-
lated based on special HVAC parameters and a sequential DR scheme was proposed
to reduce both ramping rate and peak power, while maintaining human comfort ac-
cording to ASHRAE standards. A long short-term memory (LSTM) method was



applied to for the identification of HVAC system from the aggregated data.

The generic water heater load curves based on the data retrieved from large ex-
perimental projects for resistive EWHs and heat pump water heaters (HPWHs) were
created. A community-level digital twin with scalability has been developed to cap-
ture the aggregated hot water flow and average hot temperature in the tanks. The
potential electricity saving of shifting from EWH to HPWH was calculated. The
energy storage capacities for both EWHs and HPWHs were calculated.

Long term load prediction by considering different fractions of smart homes with
HEM for at the power system was provided based on one of the largest rural field
smart energy technology demonstrators located in Glasgow, KY, US. Also demon-
strates was the ability of EWH to provide ancillary services while maintaining cus-
tomer comfort. The minimum participation rates for EWH and batteries were calcu-
lated and compared with respect to different peak reduction targets.

The aggregated charging load for EV in a community was calculated based on
data from the National Travel Household Survey (NHTS). The EV charging and
RESS operation were scheduled to reduce the daily utility charge. Building resilience
was quantified by analyzing the self-sustainment duration for all possible power out-
ages throughout an entire year based on the annual electricity usage of a typical
California residence. The influence of factors such as energy use behavioral patterns,
BESS capacity, and an availability of EV was evaluated.

A concept of generalized energy storage (GES) model for BESS, EWH and HVAC
systems was proposed. The analogies, including SOC versus water/indoor temper-
ature differential, were identified and explained, and models-in-the-loop (MIL) were
introduced, which were compatible with the Energy Star and Consumer Technology
Association (CTA)-2045 general specifications and command types. A case study
is included to illustrate that the “energy content” and “energy take” for BESS and
EWH.

The main original contributions of this dissertation include the comprehensive sim-
ulation of the total building energy usage and the development of the co-simulation
framework incorporating building and power system simulators. Another contribu-
tion of the dissertation is the quantification of building resilience based on the building
energy usage model. The dissertation also contributes to the concept of GES which
regards the HVAC and EWH as virtual energy storage and their unified controls with
BESS. The GES facilitates the employment of industrial standards, e.g., CTA-2045,
and the hybrid ESS reduces required BESS capacity.

This dissertation contributes to the modeling of aggregated load for EWH, HVAC,
and EV using different methods and long term forecasting of power profile at the
system level. The aggregated generic load for EWH was calculated based on large
amount of field data, the aggregated EV charging load was estimated based on na-



tional survey results, and the aggregated HVAC load was simulated based on the
modeling of every residences, where the model parameters were populated according
to special distributions. The methods based LSTM for the identification of HVAC
power from the aggregated load was developed.

KEYWORDS: Smart home, Generalized energy storage (GES), Electric vehicle (EV),
Home energy management (HEM), Long short-term memory (LSTM)
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Chapter 1

Introduction

1.1 Background

According to the U.S. Department of Energy, a net zero energy (NZE) home is a

residence for which the total amount of energy used on an annual basis is less than

or equal to the amount of renewable energy generated on site [1]. Due to the high

energy usage and concerns over greenhouse gas emissions, efforts have been made to

implement more NZE homes both in the USA and worldwide. For instance, as per

the California Public Utilities Commission, the plan was for residential constructions

to be NZE by the year 2020 [2]. The “Nearly zero-energy buildings” proposed by

European Commission required all EU Member States to have all new buildings to

be nearly zero-energy by the end of 2020 [3]. As a result, a growing number of US

states and countries have started to build NZE residences at different scales, varying

from single homes to big neighborhoods, and their objectives range from reduced

energy usage to net positive energy input to the grid.

The NZE homes typically incorporate solar photovoltaic (PV) systems as the
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main source of renewable energy. Solar PV generation is largely dependent by ex-

ternal environment conditions, leading to unpredictability and stochastic properties.

The mismatch between the peaks of PV generation and residential load leads to vari-

ations in the net power flow, which may cause the “duck curve” phenomenon for

example [4]. Such challenges are further exacerbated when a number of PV systems

are congregated in the same neighborhood comprising NZE homes [5].

Battery energy storage systems (BESS) provides increased flexibility to the NZE

residences. The sizing for BESS is mainly determined by factors including building

characteristics, utility tariffs and the BESS operating schedule [6–8]. Apart from the

BESS, an electric water heater (EWH) can be regarded as a uni-directional energy

storage system.

The ubiquity of EWHs make them one of the most advantageous appliances for

participation in the virtual power plant (VPP) operation for residential buildings.

The EWHs have large thermal masses of water in their tanks and can be regarded as

both heat reservoirs and energy sinks. Nevertheless, the unpredictability of customer

behavior makes quantifying the benefits of controlling EWHs difficult. Demand re-

sponse implementations must carefully balance the water temperature in the tank

for the maximum grid benefit between two bounds, i.e., it must be kept high enough

to meet the user demand while not exceeding the stipulated safety reference. Fortu-

nately, technologies such as mixing valves may be used to allow the water to be safely

stored up to 145F and still meet safety requirements [9, 10].

EWHs can be used to absorb surplus PV generation, or to, for a short period of

time, be turned OFF for load shedding while maintaining the water temperature at
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the reference temperature. As PV penetration advances, there are multiple benefits

of incorporating EWHs into home energy management. Recent research indicates

that battery capacity may be reduced by up to 30% when batteries are coordinated

with EHW, which were regarded as “uni-directional” energy storage [11].

The heating, ventilation, and air conditioning (HVAC) systems are widely per-

ceived as solely energy-consuming in the power grid. This view is being re-assessed in

the field of home energy management (HEM) as recent research from the Oak Ridge

National Laboratory (ORNL) demonstrates that the HVAC system can be regarded

as an equivalent energy storage device and be conveniently controlled by a similar

charging/discharging procedure [12]. For example, a commercial building with mul-

tiple zones can be modeled to operate as an equivalent energy storage device and can

be controlled by adjusting zonal airflow rates [13]. As claimed in [14], the round trip

efficiency of the HVAC-based equivalent energy storage can be near 100%.

Utilizing HVAC systems as demand response (DR) devices has great opportunity

to yield significant energy savings, especially at an aggregated level. To properly study

the simulated implementation of HVAC DR schemes, a suitable model of HVAC power

and energy use is required. Aggregated modeling for a community of air conditioning

loads has been proven effective for the study of large-scale DR implementation [15].

Commercial HVAC system modeling employs statistical methods that are also highly

accurate [16].

The DR studies with residential-level HVAC models, however, are more recent and

have yet to reach this degree of confidence due to the strong link among HVAC energy

use, random user behavior, and external weather conditions. To ensure adequate
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thermal comfort, the HVAC control follows Standard 55 of the American Society

of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), in terms of

external and internal temperature, relative humidity, individual metabolic rate, etc.

[17]. The ASHRAE Standards quantify the comfort of the space using a numerical

scale called the Predicted Mean Vote (PMV) that was derived from survey results

where participants ranked their comfort from -3, very cold, to 3, very hot. This allows

for an association between a range of environmental conditions to a comfortable status

within a home that can be calculated as a PMV between -0.5 and 0.5, which may be

used to control heating and cooling systems without affecting thermal comfort.

In the rapidly evolving electric power system, in which new renewable and dis-

tributed energy resources are being connected and fossil fuel based generators are

being retired at a growing rate, it is increasingly more important to ensure a contin-

ued and reliable supply of electricity. For example, approximately 8,000 MW may

need to be imported to avoid blackouts in California by filling in gaps caused by

renewable energy generation variability and increased power demand. Another ma-

jor threat to energy supply reliability are large natural disasters, such as, in recent

years, wide-spread wild fires [18]. In 2020, there were more than 8 thousand fires in

California alone resulting in almost 1.5 million burnt out acres and significant power

system damage [19]. In a winter storm in 2021, approximately 2 million homes suf-

fered power outages in Texas which substantially increased electricity demand due

to record-breaking low temperatures [20]. Worse still, about 34,000 MW of renew-

able wind generation capability within Texas was lost during this storm as freezing
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temperatures forced power plants offline in quick succession [21]. It is very impor-

tant to ensure power system reliability through whatever means possible under such

conditions to protect residents from environmental health risks.

The growing trend of electric vehicles (EV) provides the potential to boost the

energy capacity of residential energy storage systems (ESS). Hence, research towards

the development of smart energy management in residential houses using home ESS

and EV battery systems is in progress [22, 23]. Residences with EV can help to

improve the load factor in communities, reducing costs related to the maintenance

of transformers, feeders, etc. [24]. A previous study using data from the National

Household Travel Survey (NHTS) found that most cars commute around 20 miles

daily, resulting in 90% of SOC remaining on average for EVs when they return home

[25].

Depending on the user preferences and applications of the EV, the additional

energy storage can expand the residential ESS, but may not be available at the

residence when the outage occurs. For example, according to recent reports, the

very large 90kWh battery installed on the most recent EV model of the Ford F-150

truck can be controlled to supply up to 10 days of electricity for a connected home

[26]. Other factors including user behavior regarding residential load, the capacity

of the residential ESS, renewable energy generation, etc., should all be taken into

consideration for systematically quantifying building resilience.

For modern smart appliances and devices, a new standard was developed as Con-

sumer Technology Association (CTA) 2045 [27],[28]. This initiative aims at meeting

the challenges of the large deployment of smart devices, including differences between
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products across manufacturers and data streaming. In principle, the Energy Star

[29] and CTA-2045 standard define a set of functional requirements such as “normal

operation”, “shed”, “load up”, etc., and a set of specifications and concepts such as

“energy capacity”, “energy content”, and “energy take”. Those specifications and

functional requirements may be extended to any energy storage device, enabling a

unified approach at the system level. For EWH, success has been reported at the

individual residential and utility aggregated levels [30, 31].

In the past decade the penetration of smart metering in the United States has

rapidly increased from less than 5% in 2008 to over 60% in 2019 [32] with more than

90 million devices installed. The increase in smart meter infrastructure represents a

major shift in smart grid equipment deployment, but regulatory and demand flexibil-

ity barriers still exist in utilizing the smart meters in DR programs such as time-of-use

(ToU) pricing. Furthermore, to assess load specific information from HVAC systems

and water heaters, the pro-dominant use devices, through field measurements re-

quires additional direct load control (DLC) instrumentation such as [33] on top of

smart meters, which poses a substantial cost and implementation barrier, including

data management and processing challenges [34].

1.2 Literature Review

A brief literature review is provided in this section with more details being in-

cluded in each of the dissertation chapters. Starting with the concept of smart home,

this is one of the enabling ideas for building a pathway towards a sustainable power

system in the future by facilitating the participation of every power generation entity.
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The futuristic smart homes not only integrate information technology but also pro-

vide the opportunity to incorporate other innovative technologies such as PV, smart

devices, and energy storage. Due to such technological advancements, smart homes

can enhance energy efficiency, and improve both stability and reliability by allowing

owners to regulate electricity usage [35–37]. They may also have a positive impact on

the electric utility overall residential load by minimizing both energy usage and peak

demand in the residences [38–41].

Most research works report simulation of the residential electricity consumption

by either mathematical models or building energy simulation software. The mathe-

matical house energy usage models sum the typical household loads [42–51]. Coupling

factors including solar illumination, radiant energy from appliances and people, im-

pact of airflow, and etc. add complexities to the mathematical models. There is a

trade-off between the accuracy and complexity of such models. Other research works

use building energy simulation software to produce the static house load profiles. The

software tools such as EnergyPlus, Building Energy Optimization (BEopt), eQUEST,

etc., are able to model houses with various characteristics in different locations[52–

59]. The Integrated District Energy Assessment (IDEA) reports another method to

model and control the building energy usage considering the environment, networks

and building characteristics [60].

Some technical challenges are associated with the high penetration of PV in the

residences, one of which is the “duck curve”. This phenomenon occurs when the net

power demand fluctuates with a large deviation within a short period, typically dur-

ing the hours between the afternoon and the evening [4]. For ensuring local voltage
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support, it is necessary to maintain a minimum generation of electricity by the utility

plants. Hence, the reliability of the power system is compromised when the genera-

tion of power is minimized during the mid-day to allow high PV generation [61]. To

match with the fast increasing power demand in the evening, high-cost high-ramp

rate generators are required when PV generation becomes unavailable [62]. Electrical

energy storage systems can be divided into three categories: electrochemical, mechan-

ical, and ultracapacitors [63]. A deferrable load can be redefined as an energy storage

device by three integral properties: “the volume of energy that can be stored, the

rate at which energy can be absorbed, and the rate at which energy can be released”

[64]. This uniformity enables a single HEM strategy across electric energy storage

devices and deferrable energy loads [11, 22].

The EWHs are also capable of providing ancillary services due to the large ther-

mal mass of the water tank, as well as their presence in most households [65, 66]. The

potential of water heater related technologies was widely appreciated in the annual

conference of Hot Water Forum held by the American Council for an Energy-Efficient

Economy (ACEEE) [67]. Most EWH manufacturers allow the CTA-2045 modules in

their new products or offer refurbishments to enable real-time communication and

control [68, 69]. Previous research showed that a smart home may achieve compara-

ble functionality with a smaller battery energy capacity, given that special EWH and

associated controls are incorporated in a hybrid energy storage system [11]. These

services could improve the reliability of the grid and offer monetary benefits to both

the grid and residences while maintaining user comfort [70–74]. The potential regula-

tion capacity of water heaters is impacted by factors including ambient temperature,
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hot water usage, and setpoint [75–78].

The electric power profile of water heaters is dependent of user behavior. In

previous studies, the hot water draws for 48 representative days were evaluated based

on measured data from California homes [79]. The proposed schedules are used in the

California Building Energy Code Compliance for Residential buildings (CBECC-Res)

[80]. In another study, the aggregated EWH load was calculated by analyzing the hot

water usage schedules [81]. A typical aggregated load for EWHs has a morning and

evening peak, as shown in the study involving 50 water heaters [82]. The aggregated

load curve for the resistive EWHs was proposed in a previous conference paper by

the same group of authors [83].

Ancillary services, such as those described in [84], are employed in order to enhance

the capabilities of the electric power system. Smart homes can be used as virtual en-

ergy storage by utilizing various thermal components such as the HVAC systems,

EWH for circumventing peak demand [85]. Residence can support the ancillary ser-

vices with its energy flexibility, which depends on factors including the capacity of

the HVAC system [86]. The aggregated HVAC systems can be used to improve power

quality efficient in DR [87]. At the aggregated level, the HVAC systems can be con-

trolled in a sequential way to reduce the peak demand while maintaining the user

comfort [88].

Studies reported multiple demonstrations for the effectiveness of HVAC systems

as DR devices through control or price-based schemes [81]. A study in which indoor

temperature of an individual simulated building was controlled based on electricity

retail prices found that heating and cooling energy use was reduced by 12% and 21%
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for the coldest and hottest months, respectively [89]. A bonus-based DR approach

that employs Stackelberg game theory to reduce mismatch between residential energy

use and renewable generation also yielded significant results with a reduced deviation

ranging from about 32% to 43% [90]. A bi-level optimal control study including

residential HVAC systems resulted in as much as 22% in energy savings [91]. An

internet-based survey involving 1,600 members found that approximately 70% of the

residential participants would allow the utility to control their switches or thermostats

when proper incentives were available [92].

In lack of specific measured data, the HVAC power can be alternatively estimated

through software that models the entire building energy usage, such as eQuest [93],

BEopt [94], EnergyPlus [11], and OpenStudio [95], or is based on R-C equivalent

circuit models, e.g. [96]. Based on a collection of representative building models and

assuming a statistical distribution, the HVAC power load at the community level

can be aggregated on methods such as Gaussian Kernel Density Estimation (GKDE)

[97]. Substantial developing effort and uncertainties, inclusive of those associated with

the physical characteristics of construction materials and different human behaviour

that result in questionable accuracy and generality, continue to be considered typical

challenges for the computational models.

Recent research shows that EV batteries can operate as a voltage source or offline

uninterruptible power supply (UPS) for a home in an outage [98, 99]. A well managed

energy storage system with BESS and EV support could provide good performance

during both transient and steady-state operation, considering the voltage waveform

and current harmonics distortion [100]. Different operation modes of EV in smart
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homes have been proposed and explored, and it was shown that depending on the

usage preferences of the user, EV batteries can act as a power source to feed resi-

dential appliances during a power outage [98]. When energy not supplied (ENS) or

system average interruption duration index (SAIDI) is taken into consideration, the

participation of a EV connected to the home improved resilience the most [101].

The vehicle-to-home (V2H) capability of EV realizes the outage management and

cost reduction for a smart home [102, 103]. EV systems can potentially adopt the

same method introduced in [104] allowing the battery system to switch between input

PV energy harvesting mode and output V2H mode for emergency situations. V2H

functionality also improves power system resilience factors including load restora-

tion, reactive power supply, and peak reduction, etc. [105–109]. Bidirectional wire-

less power transfer will further facilitate V2H applications by enabling higher power

transfer and easing the barrier to entry for the consumer [110].

Utilities have electric power monitoring capabilities mostly at the aggregated com-

munity level, as recent smart meter-type technologies are yet to be widely deployed

in the field at building level and substantially contribute to the historic collection

of big-data. As such, there is continued interest in community studies based on a

variety of methods such as Multivariate Quantile Regression [111], Deep Neural Net-

works (DNN) [112], Quantile Regression Averaging on Sister Forecasts [113], and

more recently Long Short-Term Memory (LSTM) neural networks, e.g. [114, 115].

Extensive literature review on more detailed aspects of smart homes and their

integration in the electric power grid is distributed throughout this dissertation and

included in each chapter. These include the co-simulation frameworks in Chapter
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2, modeling and control for EWH and HPWH in Chapters 3, modeling and control

for VPP in Chapter 4, EV studies in Chapter 5, and the application of artificial

intelligence and machine learning methods in Chapter 6.

1.3 Research Objectives and Original Contribu-

tions

Research objectives

The increasing penetration of smart homes brings challenges to the power system.

The house types are switching from conventional to more advanced. The co-simulation

framework is developed for the dynamic analysis of controls for smart homes. The

co-simulation framework utilizes OpenDSS, EnergyPlus, and Python. The software

framework provides a virtual building, and offers a platform for the testing of various

energy storage operating schedules to meet the specified objectives, as introduced in

Chapter 2. With the dynamic modeling of building energy usage and power system,

the long term forecasting for power demand at system level with increasing penetra-

tion of smart homes is enabled.

The solar generation and power demand are mismatched in a typical smart home.

The modeling and prediction for PV generation and building load are required for

the coordination of the local solar generation and power demand. Challenges in a

uniform approach arise because the energy usage in houses differs due to weather,

location, human behavior and other factors. As described in Chapter 2, the power

demand for smart homes was modeled using whole building modeling software and
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validated against experimental data. Systematic guidelines for the sizing of solar

PV and energy storage systems to achieve NZE operation are proposed based on the

building energy models.

At the power system level, the generic curve for large amount of EWHs is created

based on experimental data, as explained in Chapter 3. A representative power profile

for aggregated water heater load that can be scaled to any number is developed. Also,

EWHs and HPWHs have very different characteristics so they need to be analyzed

separately. While inlet and outlet temperatures are easy to measure, they do not

represent stored energy well as the temperature inside the water tank is stratified

[30].

Most HVAC system models require parameters that are challenging to acquire.

It becomes increasingly difficult for aggregated HVAC load modeling considering ad-

ditional parameters for the multiple buildings. In Chapter 4, the aggregated HVAC

load is modeled while monitoring the room temperatures for individual buildings.

The proposed model allowed DR control and maintain user comfort.

The aggregated EV charging power is modeled based on the NHTS 2017 data,

considering the distribution of arrival home time and daily mileage, as explained in

Chapter 5. EV provides larger energy storage and can be used to improve the building

resilience. Both battery, EWH, HVAC, and EV are modeled as generalized energy

storage complying to CTA-2045 standards.

The quantification for building residence is proposed in Chapter 5. The build-

ing resilience for smart homes should consider different time occurrences for power
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outages. Residences with solar PV generation would be less dependent on electric-

ity from the grid during the daytime and could self-sustain longer if outages occur

at times when electricity usage is low. The building resilience for residences with

varying electricity usage, PV generation capability, and BESS capacities need to be

analyzed in order to provide a reference for all types of house owners.

The BESS, EV, EWH, and HVAC systems can be described as generalized energy

storage (GES) and controlled uniformly using a set of specifications and concepts

such as “energy capacity”, “energy content”, and “energy take”. A set of functional

requirements defined by the CTA-2045 standards and Energy Star specifications such

as “normal operation”, “shed”, “load up”, etc. can be applied to the GES. The

proposed GES can potentially meet the challenges in the large employment of smart

devices, including differences between products across manufacturers to supply HEM.

Fewer studies into aggregated HVAC load separation of entire distribution circuits

including hundreds to thousands of homes were found. The newly developed machine

learning method explained in Chapter 6 addresses at the community level the timely

topic of day-ahead forecast with a view at enabling optimal energy controls and

utility planning. This is possible through the introduction of new key temperature

indicators corresponding to the stand-by zero-power operation for the HVAC systems

for summer cooling and winter heating and an innovative additional run of the trained

LSTM model with such constant temperature and zero irradiance.

Original contributions

The major contributions of the dissertation are summarized as:
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• development of a co-simulation framework capable of modeling of electric dis-

tribution system and building power flow, demonstrated on case studies with

hundreds of homes and appliances

• modeling and control of large-scale virtual power plants using smart homes and

appliances as distributed energy resources

• modeling of aggregated power for electric water heaters, HVAC systems, and

electric vehicles based on computational and experimental data

• definition of generalized energy storage for electric water heater, HVAC system,

battery, and electric vehicle, according to CTA-2045 based conceptions

• disaggregation of HVAC power and baseload using machine learning, the long

short-term memory methods, for large communities.

1.4 Dissertation Outline

Following the introduction, co-simulation frameworks for the analysis of the dis-

tribution power flow and smart homes are introduced in Chapter 2. In Chapter 2,

the residential power systems are sized for smart homes to operate as dispatchable

generator or load. The generic load curve and optimal control for aggregated power of

EWH and HPWH are developed in Chapter 3. The energy storage capacity of EWH

and HPWH are calculated based on the generic load curve. The virtual power plant

operation for large residential communities with increasing smart homes is discussed

in Chapter 4. The modeling for large scale HVAC load and the DR control for peak
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reduction are introduced in the Chapter 4 as well. In Chapter 5, the EV operation

at aggregated level for charging (G2V), V2H, and V2G power are analyzed based on

survey data and the building resilience is quantified and improved by EV. The ap-

plication of LSTM machine learning methods for the separation of HVAC power and

baseload is presented in Chapter 6. The dissertation is concluded in the last chapter.

1.5 Publications

The main elements of this dissertation have been peer-reviewed and published in

the following journal papers:

• H. Gong, E. S. Jones, R. Alden, A. G. Frye, D. Colliver, and D. M. Ionel, “Vir-

tual power plant control for large residential communities using HVAC systems

for energy storage,” IEEE Transactions on Industry Applications, Vol. 58, No.

1, pp. 622-633, 2022.

• H. Gong, T. Rooney, O. M. Akeyo, B. T. Branecky, and D. M. Ionel, “Equiv-

alent electric and heat-pump water heater models for aggregated community-

level demand response virtual power plant controls,” IEEE Access, Vol. 9, pp.

141233–141244, 2021.

• H. Gong and D. M. Ionel, “Improving the power outage resilience of buildings

with solar PV through the use of battery systems and EV energy storage,”

Energies, Vol. 14, No. 18, pp. 5749, 2021.

• R. E. Alden, H. Gong, E. S. Jones, C. Ababei, and D. M. Ionel, “Artificial

intelligence method for the forecast and separation of total and hvac loads with

16



application to energy management of smart and nze homes,” IEEE Access,

Vol. 9, pp. 160497–160509, 2021.

• H. Gong, V. Rallabandi, M. L. McIntyre, E. Hossain, and D. M. Ionel, “Peak

reduction and long term load forecasting for large residential communities in-

cluding smart homes with energy storage,” IEEE Access, Vol. 9, pp. 19345–

19355, 2021.

• H. Gong, V. Rallabandi, D. M. Ionel, D. Colliver, S. Duerr, and C. Ababei,

“Dynamic modeling and optimal design for net zero energy houses including

hybrid electric and thermal energy storage,” IEEE Transactions on Industry

Applications, Vol. 56, No. 4, pp. 4102–4113, 2020.

Additional peer-reviewed conference proceedings papers have been published and

are listed in the following:

• H. Gong, E. S. Jones, A. Jakaria, A. Huque, A. Renjit, and D. M. Ionel, “Gen-

eralized energy storage model-in-the-loop suitable for energy star and CTA-

2045 control types,” 2021 IEEE Energy Conversion Congress and Exposition

(ECCE), pp. 814–818, 2021.

• H. Gong, O. M. Akeyo, T. Rooney, B. Branecky, and D. M. Ionel, “Aggregated

generic load curve for residential electric water heaters,” 2021 IEEE Power

Energy Society General Meeting (PESGM), pp. 1–5, 2021.

• H. Gong and D. M. Ionel, “Combined use of EV batteries and PV systems for

17



improving building resilience to blackouts,” 2021 IEEE Transportation Electri-

fication Conference & Expo (ITEC), pp. 584–587, 2021.

• H. Gong, E. S. Jones, R. E. Alden, A. G. Frye, D. Colliver, and D. M. Ionel,

“Demand response of hvacs in large residential communities based on experi-

mental developments,” 2020 IEEE Energy Conversion Congress and Exposition

(ECCE), pp. 4545–4548, 2020.

• H. Gong, E. S. Jones, and D. M. Ionel, “An aggregated and equivalent home

model for power system studies with examples of building insulation and hvac

control improvements,” 2020 IEEE Power Energy Society General Meeting (PESGM),

pp. 1–4, 2020.

• H. Gong and D. M. Ionel, “Optimization of aggregated EV power in residen-

tial communities with smart homes,” 2020 IEEE Transportation Electrification

Conference & Expo (ITEC), pp. 779–782, 2020.

• R. E. Alden, H. Gong, C. Ababei, and D. M. Ionel, “Lstm forecasts for smart

home electricity usage,” 2020 9th International Conference on Renewable En-

ergy Research and Application (ICRERA), pp. 434–438, 2020.

• E. S. Jones, R. E. Alden, H. Gong, A. G. Frye, D. Colliver, and D. M. Ionel,

“The effect of high efficiency building technologies and PV generation on the

energy profiles for typical us residences,” 2020 9th International Conference on

Renewable Energy Research and Application (ICRERA), pp. 471–476, 2020.

• H. Gong, V. Rallabandi, M. L. McIntyre, and D. M. Ionel, “On the optimal

18



energy controls for large scale residential communities including smart homes,”

2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 503–507,

2019.

• H. Gong, V. Rallabandi, and D. M. Ionel, “Load variation reduction by ag-

gregation in a community of rooftop PV residences,” 2019 IEEE Power Energy

Society General Meeting (PESGM), pp. 1–4, 2019.

• E. S. Jones, H. Gong, and D. M. Ionel, “Optimal combinations of utility level

renewable generators for a net zero energy microgrid considering different utility

charge rates,” 2019 8th International Conference on Renewable Energy Research

and Applications (ICRERA), pp. 1014–1017, 2019.

• H. Gong, V. Rallabandi, D. M. Ionel, D. Colliver, S. Duerr, and C. Ababei,

“Net zero energy houses with dispatchable solar PV power supported by elec-

tric water heater and battery energy storage,” 2018 IEEE Energy Conversion

Congress and Exposition (ECCE), pp. 2498–2503, 2018.

• H. Gong, O. Akeyo, V. Rallabandi, and D. M. Ionel, “Real time operation

of smart homes with PV and battery systems under variable electricity rate

schedules and transactive power flow,” 2018 7th International Conference on

Renewable Energy Research and Applications (ICRERA), pp. 1392–1395, 2018.

• O. Akeyo, H. Gong, V. Rallabandi, N. Jewell, and D. M. Ionel, “Power utility

tests for multi-mw high energy batteries,” 2018 7th International Conference

on Renewable Energy Research and Applications (ICRERA), pp. 1396–1399,

19



2018.

Other papers have been completed and are currently under review:

• H. Gong, R. E. Alden, A. Patrick, and D. M. Ionel, “Community level total

load forecast and HVAC disaggregation through a new LSTM method,” Ener-

gies, 15p, 2021, (Submitted in Dec, 2021).

• H. Gong, E. S. Jones, A. Jakaria, A. Huque, A. Renjit, and D. M. Ionel,

“Large-scale modeling and demand response control of electric water heaters

with energy star and CTA-2045 control types in distribution power system,”

IEEE Transactions on Industry Applications, 10p, 2021, (Submitted in Dec,

2021).

• H. Gong, D. M. Ionel, and R. E. Alden, “V2G Operations for Community as

VPP Complying to CTA-2045 Standards Based on Stochastic EV Power Mod-

eling,” 2022 IEEE Transportation Electrification Conference & Expo (ITEC),

5p, 2022, (Submitted in Jan, 2022).

• L. Donovin, H. Gong, and D. M. Ionel, “Sizing considerations for EV dynamic

wireless charging systems with integrated energy storage,” 2022 IEEE Trans-

portation Electrification Conference & Expo (ITEC), 6p, 2022, (Submitted in

Jan, 2022).

20



Chapter 2

Co-simulation of Buildings and
Electric Power Grid

2.1 Introduction

The advancement of smart home and grid technologies and the associated electric

power system integration studies relies on individual and combined simulators for

buildings, such as EnergyPlus, and circuit networks, e.g., OpenDSS, MATPOWER,

GridLAB-D, etc. [116]. OpenDSS versions of the representative IEEE distribution

system test cases, such as the IEEE 123-bus test system, are available and may be em-

ployed for studies of large scale Distributed Energy Resource (DER) implementation

and demand response (DR) control [117, 118]. These distribution system models in

combination with the simulation of smart devices enables the community-level study

of control strategies in an aggregated manner.

A co-simulation framework named INSPIRE+D, incorporating freeware including

Python, BEopt, EnergyPlus, and OpenDSS is proposed. The proposed co-simulation

framework is capable of simulating the energy usage and instantaneous solar genera-

tion for a large community of net zero energy (NZE) homes, and their interconnection
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with the grid. An important feature of INSPIRE+D is that it utilizes OpenDSS,

widely used by the utilities, in contrast with more academic approaches based on

MATPOWER. There are only very few such simulation tools available, including the

authors’ previous Smartbuilds, the PNNL developed GridLAB-D and the extremely

recently announced HELICS by PNNL, which is yet to be used by the professional

community [119]. The software framework provides virtual buildings, and offers a

platform for the testing of various energy storage operating schedules to meet the

specified objectives.

Another testbed, namely, the DER integration testbed, which utilizes MILs to

simulate DERs, enables the study of home energy management (HEM) system imple-

mentation at the residential and community level. The testbed includes open-source

simulation software, was originally developed by the Electric Power Research Institute

(EPRI), comprises multiple layers for controls, devices, and circuits, and is able to

communicate using protocols that are typically employed for hardware components

[120, 121]. HEMs may coordinate various DERs such that energy use and cost is

optimized. Algorithms developed for such optimization may shift energy usage of

controllable loads, such as heating ventilation and air-conditioning (HVAC), electric

water heater (EWH), and electric vehicle (EV), and utilize rooftop solar photovoltaic

(PV) generation with battery energy storage system (BESS) such that the distribu-

tion system experiences a significant combined effect that may drastically reduce total

energy use and peak load for the utility [122, 123]. Using this technique, the DER

integration testbed can be used with a combination of real physical devices and/or
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with their equivalent model-in-the-loop (MIL) software implementation. The advan-

tages of the MIL approach include cost-effective development and testing in a realistic

set-up and the ability to largely scale-up studies with minimal hardware [124, 125].

This chapter features the modeling and validation of the building energy usage

within the INSPIRE+D co-simulation framework. The electricity usage is calculated

for California and Kentucky, and validated using data from the California Building

Energy Code Compliance (CBECC) and experimental data from the existing low-cost

low-income near-NZE houses in southern Kentucky, respectively. Coupling factors

including solar illumination, radiant energy from appliances and people, impact of

airflow, and etc. add complexities to the mathematical models. There is a trade-off

between the accuracy and complexity of such models.

The NZE homes typically incorporate solar PV systems as the main source of

energy [126, 127]. Solar PV generation is largely decided by external environment

conditions, leading to unpredictability and stochastic properties. The mismatch be-

tween the peaks of PV generation and residential load leads to variations in the net

power flow, which causes the “duck curve” phenomenon [4]. In addition, the power

flow due to surplus solar generation can potentially exceed the rated capacity of dis-

tribution lines and transformers. Curtailment of solar energy and the use of energy

storage systems are common methods to overcome these challenges [128].

BESS provides increased flexibility to the NZE residences. The sizing for BESS

is mainly determined by factors including building characteristics, utility tariffs and

the BES operating schedule [6–8]. A placement planning scheme for the optimal

combination of PV and BESS with stochastic optimization is proposed [129]. The
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stability and control for a PV-BESS system were studied in recent research works

[130, 131]. The stability of power converters, which are the main components of such

a power electronic interface, were studied [132, 133].

Apart from the BESS, an EWH can be regarded as a uni-directional energy storage

system. Research works regarding EWH as a deferrable load realize the HEM by

changing its working status between “on” and “off” [134–136]. Others works have

demonstrated the use of EWH in conjunction with batteries. For instance, an EWH

coupled with the DC bus is used to suppress the power fluctuation in systems with

large batteries [137]. This chapter proposes the control of batteries, together with

water heaters to operate a community of grid connected NZE homes as dispatchable

generators, which can provide constant grid power flow for specified durations of time

on typical winter and summer days. It is demonstrated that the required battery

capacity is reduced by utilizing the EWH along with the battery to form a hybrid

PV energy storage system (HyPVESS).

In addition to the distributed optimization and control approach of these DERs,

behind-the-meter (BTM) transactive control may be employed with HEMs for energy

use reduction in residences by coordinating home appliances in market schemes that

also consider human comfort [125]. Furthermore, optimal management methods for

typical residential devices have potential to accommodate for the drastic change in

that distribution load profiles will likely experience due to the increasing popularity

of EVs in the automobile market [138]. When the NZE homes operate as dispatchable

generator/load, the power flow at the distribution system level is relatively stable.

The co-simulation framework, INSPIRE+D, which enables the dynamic modeling
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of building energy software and power system simulator, was developed and intro-

duced in this chapter. Another testbed, the DER integration testbed, which utilizes

MILs to simulate DERs, enables the study of HEM system implementation at the

residential and community level was also introduced. The calculation of power flow

and the mathematical basis of OpenDSS were introduced.

A method for sizing for the capacity of the solar PV and energy storage systems to

meet the NZE mandate and minimize the side impact of the renewables was proposed.

The proposed power electronic interface in this chapter interconnects the BESS, PV,

the grid and other house loads. The example sizing case was presented based on

the representative design days. A HyPVESS was proposed to realize dispatchable

output for the NZE community while harvesting the maximum of PV generation

with minimum BESS energy capacity.

This chapter is substantially based on the following journal papers:

• H. Gong, et al., “Large-scale modeling and demand response control of electric

water heaters with energy star and CTA-2045 control types in distribution power

system,” IEEE Transactions on Industry Applications, 10p, 2021, (Submitted in

Dec, 2021).

• H. Gong, et al., “Dynamic modeling and optimal design for net zero energy

houses including hybrid electric and thermal energy storage,” IEEE Transac-

tions on Industry Applications, Vol. 56, No. 4, pp. 4102–4113, 2020.
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2.2 Co-simulation Framework–Structure, Models,

and Examples

2.2.1 The INSPIRE+D Co-simulation Software Framework

The proposed co-simulation software framework comprises freeware including BEopt,

EnergyPlus, OpenDSS, BCVTB, and Python (Fig. 2.1). The name for the co-

simulation framework is “Integrated Network simulation for Smart Power-flow In

Residences using EnergyPlus and OpenDSS” (INSPIRE+D, pronounced as INSPIRED).

INSPIRE+D provides an improved platform for instantaneous building energy usage

modeling and simulation, based on the freeware BEopt, EnergyPlus from Lawrence

Livermore National Lab, and simulation of distribution power networks, using the

frequency domain OpenDSS freeware from EPRI. INSPIRE+D is a Python-based

co-simulation tool which allows residential load calculation, district network analysis

and control realization in just one model. INSPIRE+D is capable of simulating 1000s

of homes in parallel at one minute intervals. Each thread handles one EnergyPlus

process and needs approximately 1GB of RAM. The time required for the whole sim-

ulation depends on the time-step and running period. A typical simulation for the

entire year with a time-step of 5-minutes takes approximately 10 minutes to complete.

Solar generators, battery energy storage, control for water heater and HVAC sys-

tems can also be included in the framework. The software framework uses BEopt and

EnergyPlus for building simulations, which allow both fast house energy modeling as

well as dynamic instantaneous load simulation. BEopt converts the geometric data

and the schedules of the appliances for the user-defined house to input data file (IDF),
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Figure 2.1: The INSPIRE+D co-simulation framework, including four parts. Thou-
sands of single house energy models can be simulated in parallel through a high
performance computing (HPC) system.

which serves as the input for the EnergyPlus software. The IDF is an ASCII file con-

taining the data describing the building to be simulated. EnergyPlus is capable of

simulating domestic energy usage to a time step of 1-minute. The Building Controls

Virtual Test Bed (BCVTB) is a software environment that allows coupling different

simulation programs [89, 139].

The proposed co-simulation framework is capable of running thousands of Energy-

Plus processes in parallel in the platform powered by the high performance computing

(HPC) system. The net power flow from all the houses form the loads of the electric

power system, which is simulated by the OpenDSS software. Energy storage control

algorithms to achieve different objectives can be implemented in the proposed IN-

SPIRE+D framework, both at the single house and distribution power system levels.

The calculated energy usage is validated using examples based on California Build-

ing Energy Code Compliance (CBECC) and the near-NZE subdivision in southern

Kentucky (Fig. 2.2).
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Figure 2.2: A newly developed field demonstrator with twelve near-NZE houses in
southern Kentucky, which are modeled within the INSPIRE+D co-simulation frame-
work and validated with measured load data.

2.2.2 DER Integration Virtual Testbed

The EPRI’s DER integration testbed (Fig. 2.3) simulates power system models

with real world communication systems and DER models. The testbed can assess the

control functionality and communication interoperability of the DER Management

System (DERMS) and can evaluate different control strategies for any circuit. It

also supports real world communication systems by incorporating industry standard

protocols, such as the CTA-2045 standard, Energy Star specifications, DNP3, and

SunSpec Modbus. The testbed can simulate scenarios that include a variety of DERs,

feeders, load conditions, weather, and DER penetration levels.

The DER integration testbed has four layers in its architecture: control, device,

circuit, and visualization and analytics (Fig. 2.3). The circuit layer contains a power

system simulator, such as OpenDSS or Cyme, to model the feeder and calculate

powerflow. The visualization and analytics layer provides the user with actionable
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Figure 2.3: The architecture of EPRI’s DER integration testbed. Models-in-the-loop
(MIL) are employed at the device layer. The chapter proposes unified models for
the BESS and EWH suitable for Energy Star and CTA-2045 control types, which are
issued by a distributed energy resource management system (DERMS). The MILs are
to communicate with the distribution system simulator, which is OpenDSS for this
study, through the Message Queuing Telemetry Transport (MQTT), which enables
distribution-level simulation of control schemes.

information to analyze the full system. The control layer manages DER in the device

layer using control strategies that may be user-built or commercial.

OpenDERMS is an EPRI developed reference control tool that can aggregate,

optimize and manage large number of DER to provide grid services while enabling

customer benefits. The devices in the device layer are implemented as software simula-

tors that emulate real world DER characteristics and incorporate built-in commercial

communication interfaces for common industry protocols. The device and circuit

layers communicates through the Message Queuing Telemetry Transport (MQTT)

protocol, which is an effective communication tool for IoT devices and has great po-

tential for facilitating co-simulation of multiple DER ecosystems [140]. The way in
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which these layers are interconnected provides a high level of modularity and scala-

bility to the testbed. Utilizing this tool enables distribution-level simulation of DR

control schemes and co-simulation of the distribution system simulator, MIL, and

other device-level simulators such as EnergyPlus, a whole building energy simulation

program.

2.2.3 Modeling and Example Validation for House Energy

Usage

The INSPIRE+D co-simulation framework provides instantaneous home energy

usage data, based on the floorspace, occupancy, and ambient conditions, which en-

ables testing of the developed real-time control for advanced home appliances. The

building simulations are validated by comparing with experimental data from field

demonstrator homes in Southern Kentucky. The calibration for the developed house

energy usage models is carried out for three types of loads, respectively. The three

types of loads are: the HVAC system, which reflects the influences of the external

temperature; the EWH, as it is of interest for the proposed hybrid energy storage

system; and the remaining loads.

The HVAC load depends on the nominal rating, thermostat set-points, ambient

temperature as well as building insulation and materials. The EWH load is decided

by the nominal power rating, the set point, the deadband, and the hot water draw of

different equipment including clothes washer, dish washer, shower, bath, etc.

Two weeks, one in summer and the other in winter are chosen for the valida-

tion such that the house electricity consumption and PV generation under different
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Table 2.1: Weekly and annual energy usage for an example California house (kWh).

Load type
Winter Summer Annual

CBECC EP CBECC EP CBECC EP

HVAC 11 12 294 292 5,625 5,628
EWH 59 59 23 23 1,664 1,679
Other loads 101 106 88 82 4,741 4,816
Total usage 170 177 404 398 12,030 12,122

external environments are fully represented.

The reference energy usage and PV generation for a single house are from two dif-

ferent sites, California and southern Kentucky. The home energy model for California

is validated based on the weekly energy usage complying with the California Building

Energy Code Compliance Residential Standards (CBECC-Res). The reference data is

simulated from the CBECC-Res 2019 software. The EnergyPlus (EP) house model is

validated as it has good agreement with the CBECC-Res in both weekly and annually

basis (Table 2.1).

The home energy model representing house in southern Kentucky has good agree-

ment with the experimental data in weekly basis (Table 2.2). Due to the mild climate

in Kentucky, HVAC consumption throughout the whole year is fairly low. It is worth

noticing the electricity consumed by the EWH for the house in the chosen summer

week is very low. The building simulation tools can be used to generate instantaneous

energy usage data over the day. Daily house load profiles of the reference and simu-

lated data in CA for the summer week and KY for the winter week have satisfactory

agreement (Figs. 2.4 and 2.5). It may be noted that variations from the measured

instantaneous energy usage are introduced because of consumer behavior. The en-

ergy usage from the CBECC-Res 2019 software has a) resolution of one hour, while
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Table 2.2: Weekly and annual energy usage for an example Kentucky house (kWh).

Load type
Winter Summer Annual

Exp EP Exp EP EP

HVAC 214 225 64 66 2,603
EWH 42 40 8 9 1,829
Other loads 182 181 93 92 6,689
Total usage 439 446 164 168 11,121

Figure 2.4: Results from two building simulation tools on the daily and weekly load
for a typical 3-bedroom, 1.5 bathroom house calculated during a summer week in
California with CBECC-Res 2019 (top) and EnergyPlus(bottom).

the time step for EnergyPlus is set to five minutes. The peaks from EnergyPlus are

averaged through a period of an hour, for the purpose of comparison with the output

from CBECC-Res, for example at hour t:

Phour(t) =
∑n=12

n=1 P5min(n) ⋅∆n

60
, (2.1)

where ∆n is the time step set to five minutes.

The measured house load data has the resolution of 15 minutes (Fig. 2.5). It may

32



Figure 2.5: Experimental (top) and EnergyPlus simulation data for a house in south-
ern KY in a winter week. The total weekly energy usage comply satisfactorily.

be noted that human behavior adds randomness to the house load, which accounts

for the differences between the measured and simulated schedules. Human behavioral

modeling and its effect on the load are beyond the scope of this work.

2.2.4 Modeling of Power System with Realistic Residential

Loads–A Modified IEEE 123-bus Test Case

The modified IEEE 123-bus feeder [118] was used for the simulation of the dis-

tribution system for the community (Fig. 2.6). The original spot loads of each node

were replaced by the residential loads, which was comprising of the measured data

from the SET project and simulated EWH power. The bus-150 was connected to

upper level transmission system, and regarded as the slack bus in the simulation.

In this study, a maximum of 10kW for residential loads was assumed. Node 2
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Figure 2.6: The modified IEEE 123-bus feeder. The original spot loads were replaced
by the residential loads, which are comprising of measured data from the SET project
and the simulated EWH power.

has 20kW in its phase-2, therefore, 2 houses were connected to Node 2 phase-2.

Similarly to node 65, 4 houses to phase-1, 4 houses to phase-2, and 7 houses to phase-

3 were connected. No generator bus (P-V bus) was considered in the study. The PV

generation may cause negative power flow from the residence to the power grid. Even

when the residence provides power, the bus is still considered a load bus (P-Q bus).

The house number was rounded to ceiling if the results for dividing the original

spot load was not an integer. For example, Phase-1 of node 65 has a spot load of

35kWh. Therefore, 4 houses were connected to phase-1 of node 65. A total of 353

houses were connected to the IEEE 123-bus feeder. In this study, the power factor of

0.95 was given to all buses [141].

The differences between houses were represented by their bedroom numbers in
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Table 2.3: Percentage and number of houses with different numbers of bedrooms
Bedrooms Percentage (%) Number
0 & 1 2.1 + 8.2 36
2 25.8 91
3 42.8 151
4 16.7 59
5+ 4.5 16

this study (Table 2.3). The percentage in Table 2.3 was retrieved from the survey

published by the United States Census Bureau [142]. The bedroom number was used

to select the hot water draw in the study.

The workflow of the simulation is presented in Fig. 2.7. After determining the

numbers of each house type (Table 2.3), the residential load profiles were selected.

The SET project provides the daily loads for 5,000 residences with a resolution of

15 minutes. To protect the privacy of its residents, only the timestamp, anonymous

house ID, and electricity usage are known. A total of 353 different load profiles whose

daily electricity usage was between 20kWh and 40kWh were selected randomly.

Residences were attributed to each of the nodes in the IEEE 123-bus feeder. Each

residence was assumed to have a 10kW maximum and the default kW value of each

node was referred by [118] as “spot loads”. The system was populated with the

representative residences by assigning a randomly selected residence from among the

353 total to an available connection point, or node, which had belonged to pre-existing

spot loads from the original IEEE 123-bus example system. This procedure ensured

that a residence was connected to only one node and allowed for a node to have

multiple residences.
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Figure 2.7: Work flow for the simulation of the modified IEEE 123-bus system with
realistic residential load and water heater power.
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2.3 Formulation and Solution of Electric Power

Flow

2.3.1 Definition of Power Injection

The calculation of load flow is to determine the following quantities at each and

every node of any power system:

1. The voltage magnitude ∣V ∣

2. The phase angle of the voltage σ

3. the real power injection P

4. the reactive power injection Q.

The power injected into the ith node is given by:

Si = Pi + jQi = ViI
∗
i . (2.2)

For a power system with n nodes, the network equation is given by the matrix equa-

tion:

I = Y V , (2.3)

where, I is n vectors of current injections, Y is n × n bus admittance matrix, V is n

vectors of node voltages.

The current injected into the i th node can be obtained from (2.3):

Ii =
n

∑
k=1

YikVk = Yi1V1 + Yi2V2 +⋯ + YinVn. (2.4)
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Solving (2.4 and 2.2) we get:

Si = Pi + jQi =
n

∑
k=1

ViV
∗
ikV

∗
k (2.5)

Rewriting Vk = ∣Vk∣ δk, Yik = ∣Yik∣ θik, (2.5) becomes:

Si =
n

∑
k=1
∣Vi∣ δi ∣Yik∣ −θik ∣Vk∣ −δk = ∣Vi∣ ∣Yik∣ ∣Vk∣ δi − θik − δk. (2.6)

Therefore, the real and reactive power injection into ith node are given by

Pi = Re(Si) =
n

∑
k=1
∣Vi∣ ∣Yik∣ ∣Vk∣ cos(δi − θik − δk) (2.7)

Qi = Im(Si) =
n

∑
k=1
∣Vi∣ ∣Yik∣ ∣Vk∣ sin(δi − θik − δk) (2.8)

2.3.2 Calculation of Power Flow

The power injected into the nodes of a power system network consisting of n

busbars from (2.5) is described by a set of complex equations given by:

Si = Pi + jQi =
n

∑
k=1

ViY
∗
ikV

∗
k

= ViY
∗
iiV

∗
i + Vi

n

∑
k=1,k≠i

Y ∗ikV
∗
k , i = 1,2,⋯, n

(2.9)

Rewriting (2.9):

Y ∗iiV
∗
i =

Si

Vi

−
n

∑
k=1,k≠i

Y ∗ikV
∗
k i = 1,2,⋯, n (2.10)

Dividing both side of (2.9) by Y ∗ii :

V ∗i =
1

Y ∗ii
[Si

Vi

−
n

∑
k=1,k≠i

Y ∗ikV
∗
k ] i = 1,2,⋯, n (2.11)

The complex conjugate of (2.11) is :

Vi =
1

Yii

[
S∗i
V ∗i
−

n

∑
k=1,k≠i

YikVk] i = 1,2,⋯, n (2.12)
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The computer algorithm for Gauss Seidel method is summarized in (algorithm.

2.1). The voltage for P-Q bus is calculated directly. For P-V bus, the magnitude

needs to be adjusted while angle updated.

The flow chart of Gauss Seidel method is presented in Fig. 2.8.

Algorithm 2.1 Calculate the power flow using Gauss Seidel method

Read line data and construct the bus admittance matrix;
Read node data;
For P-V nodes, the starting values of the voltages are: V 0

k = ∣V s
k ∣ 0 k = 1,2,⋯,m;

For P-Q nodes, the starting values are: V 0
k = 1.0 0 k =m + 1,m + 2,⋯, n;

Set iteration count i=1;
while mismatches larger than tolerance do

Set node number k=2;
while k<n do

if k>m then
Go to line 15;

else
Go to lines 13;

As a P-V busbar, compute the current: Ik = ∑k−1
r=1 YkrV i

r +∑n
r=k YkrV i−1

r ;
Compute the reactive power injection : Qk = Im(Sk) = Im(V i−1

k I∗k );
Compute the new value of voltage: V i

k =
1

Ykk
[ S∗k
(V i−1

k
)∗ −∑

n
k=1,k≠i YikVk];

if k<m then
Calculate the voltage angle: δk = atan2(Im{V i

k},Re{V i
k});

As a P-V node, correct the magnitute: V i
k = ∣V s

k ∣ δk;
k = k + 1;

end
i = i + 1;

end

2.3.3 Modeling and Solving of Power System in OpenDSS

OpenDSS uses the primitive admittance, or primitive Y, matrix approach for the

system modeling. A two-phased coupled impedance example is illustrated in Fig. 2.9

and defined as:
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Figure 2.8: Flow chart for Using Gauss Seidel mothod to solve the power system
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Figure 2.9: The primitive Y matrix for a two-phase coupled impedance. All voltages
are with with respect to the ground.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1

I2

I3

I4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎣

Z−1 −Z−1

−Z−1 Z−1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

V4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.13)

where the impedance characteristics, Z, are defined as:

Z =
⎡⎢⎢⎢⎢⎣

z11 M12

M12 z22

⎤⎥⎥⎥⎥⎦
(2.14)

In OpenDSS, the power line types are defined by the impedance matrix. For a

three phase bus example, the impedance matrices is:

Z = R + jX =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.15)

,

The series resistance matrix is defined as ohms per unit length:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R11

R21 R22

R31 R32 R33

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.16)
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The series reactance matrix is defined as ohms per unit length:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X11

X21 X22

X31 X32 X33

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.17)

The shunt nodal capacitance matrix is defined as nanofarads per unit length:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C11

C21 C22

C31 C32 C33

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.18)

The screenshot from OpenDSS model file (*.DSS) in Fig. 2.10 (a) shows the

example definition for power lines types with 1, 2, 3 phases, respectively. In the

example *.DSS file, the “—” symbol separates the rows. Also defined for the line

types are number of phase and base frequency. In OpenDSS, power lines can be

created with the line types, line length, number of phase, and the terminals at the

two ends, as shown in Fig. 2.10 (b).

A power system model can be created in OpenDSS with its power source (Fig. 2.10

(c)) and load. For the IEEE 123-bus system, the examples for creating the regulator

and switch are shown in Fig. 2.10 (d) and Fig. 2.10 (e), respectively. OpenDSS

provides other components, such as, PV generator, capacitors, and battery energy

storage.

The power flow is solved in OpenDSS by the iteration loop, as shown in Fig.

2.11. The main system admittance matrix, Y, is constructed by the small nodal

admittance matrices of each line. The source currents and node voltages are updated

at each iteration until it converges typically 0.0001 p.u.

The Ohm’s Law in matrix form with the main system admittance matrix, Y, is
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(a)

(b)

(c)

(d)

(e)

Figure 2.10: Example of OpenDSS definition for (a) line types; (b) power line; (c)
source bus; (d) transformer and regulator; (e) switch.
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Figure 2.11: Illustration of the OpenDSS solution loop. The main system admittance
matrix, Y, is constructed by the small nodal admittance matrices of each line.

expressed as:

Is =YV, (2.19)

where Is is the source currents; V, the node voltages. OpenDSS adopts the “flat

start”, i.e., all voltage angles set to zero and magnitudes set to 1.0 p.u. During the

iteration, the V is calculated with sparse matrix solver, denoted by:

V
(k+1)
i = 1

Yii

(Isi −∑
j≠i

YijV
k
j ). (2.20)

Updating (2.19) with the newly calculated V(k+1):

Ik+1s =YVk+1 (2.21)

.
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The new Ik+1s and Vk+1 are used in (2.20) and the procedure repeats until the cal-

culated voltages converge to 0.0001 p.u. The procedure is summarized in Algorithm.

2.2.

Algorithm 2.2 Power Flow Solution in OpenDSS

Flat start: set V1 = 1 0○, V1 = 1 0○, ..., Vn = 1 0○

while ∃∣V (k+1)i − V (k)i ∣ > 0.0001 do
Update node voltages according to (2.20);
Update source currents according to (2.21);

end

2.4 Sizing and Scheduling Studies for Residential

Power

The solar PV system capacity required to achieve NZE operation was calculated

from the simulated annual average energy usage, based on

∫ Pc(t)dt ⩾ EH , (2.22)

where Pc is the PV capacity; EH , the total annual energy usage for the simulated

house. The obtained PV system capacities to meet NZE targets for the chosen 3-

bedroom 1.5-bathroom residence in CA, and the low-cost low-income house in south-

ern KY are at least 7.2kW and 6.5kW, respectively. It may be noted that a solar PV

system with a capacity substantially exceeding the annual energy usage has a higher

probability of meeting the NZE mandate but may lead to a high value of grid feed-in

power during the middle of the day when loads are low, and a large power demand in

the evening, when loads increase and PV energy reduces. This may potentially cause

the “duck curve”.
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The EWH typically leads to repeating load peaks (Figs. 2.4 and 2.5). A residen-

tial battery can be sized and its operation scheduled to maximize the home owner’s

profitability by absorbing power from the grid during low price periods, and supply-

ing the home loads when the electricity rate is high. This would benefit the home

owner. In another approach, the battery can be sized and scheduled to minimize the

peak-peak grid power flow variation, which would potentially benefit the utility com-

pany. As the focus in this chapter is on mitigating the technical challenges brought

forth by large NZE communities, the second sizing approach is discussed. The home

electricity spending under a ToU tariff is calculated to evaluate the incentive for users

to operate their energy storage systems to minimize the grid power fluctuation.

A battery may be charged during midday to absorb the solar energy surplus, and

be discharged later in the day to supply the EWH load, to avoid the absorption of

peak power from the utility grid. In principle, a battery can be sized to mitigate

the “duck curve” and reduce the residential peak load, however, its capacity and

power rating would become prohibitively high. A hybrid PV energy storage system,

including both battery and EWH controls is proposed. The EWH is a ‘uni-directional’

energy storage, and it is expected that the solar PV generation coordinated controls

of this system would reduce the residential peak load, and mitigate the “duck curve”

issue with a reduced battery size. The energy stored in the EWH is

∆Q = cm∆T = cm(TH − TL), (2.23)

where Q is the energy; c = 4.18J/(g ⋅ k), the specific heat of water; m, the mass of water;

∆T the change of water temperature.
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The provision of mixing valves allows the water to be maintained at a higher

temperature, thereby increasing the thermal capacity of the tank. Control parameters

for the EWH include the tank temperature. In this example, the highest and lowest

temperatures of water in the tank are set to 70℃ and 50℃, respectively, ensuring the

continued supply of hot water as the required temperature is always achievable by

mixing cold water. The mass of water is fixed for a typical tank volume of 50 gallons,

which will service 3-4 people. Given the volume of 50-gallons and deadband of 20℃,

the EWH can only absorb 4.4kWh thermal energy.

The control of EWH is realized, for example, by the proposed power electronic

interface interconnecting the solar panels with the HyPVESS and the utility grid (Fig.

2.12). A multi-port converter inter solar PV panels, battery and variable power EWH

to the DC bus, which feeds a single phase inverter connected to the utility and home

loads. The converter is configured such that power flow to the PV and EWH systems

is uni-directional. On the other hand, the power flow to the battery is bi-directional.

In order to provide for high hot water draw, the EWH has both AC and DC elements,

so that excess hot water demand can be serviced directly from the grid.

The switch Spv is modulated such that the PV operates at its maximum power

point. The inverter switches S1 to S4 are controlled to supply power to the grid

and home loads at the specified voltage and frequency. The battery converter is

controlled to regulate the dc bus voltage. Operation of Sb1 and Sb2 causes the battery

to discharge and charge, respectively. The EWH absorbs the desired power from the

DC bus by the modulation of Sewh. The converter allows the DC bus voltage to be

higher than that of the solar PV, battery and EWH.
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Figure 2.12: Example power electronic interface for an NZE house. The battery
storage, EWH and PV array are interconnected with the DC bus via a multi-port
converter.

In the traditional case, the EWH is generally equipped with conventional controls,

which leads to a peak load that might not coincide with the peak of solar generation

(Figs. 2.13 (a) and (b)). On the other hand, the solar PV coordinated controls of the

EWH lead to the shifting of this load to a time in the middle of the day when solar

power is in abundance (Figs. 2.13 (c) and (d)). This reduces the required energy

capacity of the battery, which would otherwise have had to operate in the charging

mode to absorb all the surplus solar power. Additionally, the use of a variable power

EWH as opposed to a fixed power type reduces peak loads, which leads to a further

reduction in the required energy and power ratings of the battery.

It may be noted that the energy consumed by the EWH depends on the hot

water load, and is therefore the same in both fixed and variable power EWH types.

Negligible heat loss, which is realized by good insulation, ensures the same EWH
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(a) (b)

(c) (d)

Figure 2.13: Battery and EWH schedules for the traditional case with a fixed power
water heater for a representative (a) summer day and (b) winter day in California.
Variable power water heater with controls co-ordinated with solar power availability
for the same (c) summer day and (d) a winter day.

Figure 2.14: Procedure for the sizing of HyPVESS, calculation for electricity spending
of NZE home and aggregated power of the distribution system.
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energy consumption irrespective of the times at which it operates, therefore, the

operating schedule involves distributing a fixed energy.

The procedure for the systematic sizing of the HyPVESS is shown (Fig. 2.14).

Following the modeling and calibration of the house energy consumption model, rep-

resentative design days for summer and winter were chosen. Based on the PV gen-

eration and energy usage data for the design days, the differential evolution (DE)

method was used for BES sizing and the scheduling for BESS and EWH. Electricity

spending of individual NZE homes was calculated using the ToU and buy back rate

based on CA. The savings for individual homes were analyzed comparing the different

electricity spendings caused by HyPVESS for the same house at the same day. The

benefits of HyPVESS at distribution power system level were analyzed by comparing

the peak power reduction.

The power balance for each home is expressed as:

PM(t) = PPV (t) + PBES(t) ⋅ η + PR(t) ,

PR(t) = PEWH(t) + PR1(t) ,

(2.24)

where, PM(t) is the metered power; PPV (t), the PV power generation; PBES(t),

the battery power; η, the battery efficiency (which, unless specified otherwise, is

considered to be 100% considered for simplicity. A study of the real efficiency effects

is later on included); PR(t), the residential load power; PEWH(t), the EWH load

power; and PR1(t), the residential load power excluding the EWH.

The ideal grid power flow would be constant throughout the day, however, such

profiles are not practical due to solar power variability and peak loads. Therefore,

each house is considered to deliver or absorb constant power to and from the grid for
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a certain time during the day in order to minimize the grid power fluctuation, and

mitigate issues related to solar power variability Therefore, the power is fixed at two

levels, as defined below,

PM(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 0 ≤ t ≤ t1,

P2 t1 ≤ t ≤ t2,

P1 t2 ≤ t ≤ 24.

(2.25)

With two such power levels considered, only 4-parameters are required to define

PM(t), i.e., P1, P2, t1, t2. It may be noted that when this analysis is combined maxi-

mum profitability considerations, the metered power variation will change accordingly.

The battery size and metered power would depend on the weather conditions. In this

study, two representative summer and winter days are considered.

In the simulation, the battery is assumed to have the same amount of energy in

the end as the beginning. Upon the integration of (2.24) over the whole day, taking

the efficiency η = 1 and setting ∫ PBES(t) ⋅ ηdt = 0 yields

∫ PM(t)dt = EPV +ER, (2.26)

where, EPV and ER are energy generation by the solar PV system, and home energy

usage over a day, respectively. Both these terms are fixed for given weather and

residential load data, and thus, the term ∫ PM(t)dt can be calculated. This can be

used to eliminate one of the 4-parameters composing the grid power definition using

∫ PM(t)dt = P1 ⋅ t1 + P2 ⋅ (t2 − t1) + P1 ⋅ (24 − t2). (2.27)

The variation in grid power flow is defined as:

∆P = ∣P1 − P2∣. (2.28)
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A multi-objective optimization problem using P1, P2 and t1 as variables is set up.

The objectives considered are minimizing the battery energy capacity (CB), variation

in grid output power (∆P ), and maximum battery power (PB), as follows:

Min(CB,∆P,PB), (2.29)

where (2.29) is subject to (2.24-2.27).

At each instant of time, for a specified value of PM , and knowing the values of

PPV and PR1, the term PBES − PEWH can be calculated using (2.24). The battery

and water heater schedules are separated considering that the water heater is capable

of only energy absorption, unlike the battery which can sink or source power. The

EWH tank size and power rating are decided based on the requirements of typical

single water heater homes. Furthermore, the EWH schedule is coordinated with the

PV power generation such that as far as possible it operates when solar energy is in

abundance.

Other objectives including the financial profitability for the house owner can be

stated as follows:

Min(
t

∑
i

(P t
M ⋅ rtc − P t

M ⋅ rtb)), (2.30)

where, P t
M is the discrete form of PM(t) from (2.24); rtc, the utility charge rate at

time t, and rtb, the utility buy back rate at time t.
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2.5 Studies Optimal Power Flow at System Level

with Minimum Battery Energy Capacity

2.5.1 Control of House Net Power with the PV Hybrid En-

ergy Storage System

The ratings of the battery and EWH systems for each day are determined from an

optimization study, using typical meteorological year (TMY) weather data and design

days, which are representative of typical winter and summer days. A more exhaustive

sizing methodology may involve a consideration of different weather conditions for a

specific location, and sorting of the similar days of a year.

Several thousand candidate values of these optimization variables are consid-

ered, and the process is exemplified for home load and PV generation on a sum-

mer’s and winter’s day in California (Fig. 2.15). It is seen that a battery rated for

3.5kWh/2.2kW would achieve power delivery to the grid with a maximum fluctuation

of 2.3kW in summer, and a battery rated for 1.4kWh/1.5kW would have a fluctua-

tion for output power of 2.4kW in winter. A battery rated for larger capacity, i.e.,

3.5kWh/2.2kW for the summer case in CA is chosen in order to handle the worst

case. This battery rating is approximately a quarter of that marketed by commercial

battery manufacturers [143].

The results of optimal sizing for southern Kentucky, where the EWH electricity

consumption is fairly low (Table 2.2) on the representative summer day show that

even in this case, the proposed HyPVESS reduces the battery size required. The

required minimal BESS capacity CB is reduced from 5.8kWh/6.3kW of the PVBES
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(a) (b)

Figure 2.15: The variation of battery energy capacity, CB with grid power fluctu-
ation, ∆P evaluated for several thousand values of P1, P2 and t1 in NZE homes
equipped with only BESS and PV (PVBES), and the hybrid PV energy storage
system (HyPVESS) on a representative (a) summer’s day and (b) winter’s day for
California.

to 4.1kWh/1.3kW through the use of the EWH with the proposed controls. The two

cases are marked with a☆ and a ◇, respectively (Fig. 2.16 (a)).

The detailed net power flow for the best cases of California on both summer and

winter days are based on the optimization results (Fig. 2.15). In the absence of energy

storage, peak load are serviced by the absorption of power from the utility grid (Figs.

2.17 (a) and (b)). The time-of-use (ToU) utility charge rates and the buy back rate,

which is 3.8 cents/kWh for the case studies are based on CA [144, 145]. The electricity

spending (ES) were calculated for the power flows (Fig. 2.17). Assuming the BESS

efficiency is 100%, the daily electricity spending for the same summer weekday were

$10.08 and $8.91, without and with HyPVESS scheduling, respectively (Fig. 2.17

(a) and (c)). The electricity spending for the same winter weekday were reduced

from $3.46 to $1.80 with the HyPVESS scheduling (Fig. 2.17 (b) and (d)). This

analysis shows that the operation scheduling of the HyPVESS to operate each home

as a dispatchable generator is able to reduce the electricity spending to benefit the
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(a) (b)

Figure 2.16: The DE results of battery sizing for southern Kentucky on a represen-
tative (a) summer’s day and (b) winter’s day. A battery rated for 4.1kWh/1.3kW is
chosen based on the summer case and marked with a ☆. The sized battery has a
maximum output power fluctuation of 2.6kW and 1.2kW for the summer and winter
days, respectively. Though better choices are available on the winter day, the limita-
tion is set by the summer.

individual houses. This would serve as an incentive to home owners to operate the

HyPVESS so that each house behaves like a dispatchable generator.

The effects of BESS efficiency on the proposed HyPVESS is studied (Table 2.4).

In line with expectations, for both the studied summer and winter weekdays, energy

losses decrease as BESS efficiency increases. It is observed that the daily electricity

spending does not vary significantly with the changes in BESS efficiency. This is

due to the fact that the proposed sizing method enables the minimum BESS energy

capacity with fewer BESS operations.

On the other hand, in NZE residences equipped with the HyPVESS, the oper-

ating schedules can ensure that the home provides dispatchable power to the grid,

or behaves like a controllable load for relatively long duration of time (Figs. 2.17

(c) and (d)). The variation of power flow to the grid is determined by the solar PV
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(a) (b)

(c) (d)

Figure 2.17: Power flow in a home equipped with a solar panel, but no storage, on
(a) a summer’s day, and (b) a winter’s day. Power flow in a home with solar panels
and coordinated control of energy storage systems on the same (c) summer’s day and,
(d) winter’s day.

Table 2.4: The impact of BESS efficiency on system loss and electricity spending
BESS

efficiency
(%)

Energy loss (kWh) Daily ES ($)
summer
weekday

winter
weekday

summer
weekday

winter
weekday

80 2.73 0.81 8.97 1.80
85 2.05 0.61 8.95 1.80
90 1.37 0.41 8.94 1.80
95 0.68 0.20 8.92 1.80
100 0.00 0.00 8.91 1.80

Total daily energy usage, summer: 58.13kWh; winter: 24.25kWh
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Figure 2.18: The IEEE 3-phase single line diagram 13-node feeder test case is adopted
for the district level simulation. Sixty NZE houses are linked to node 634.

generation, as well as by the rating and operating schedule of the energy storage sys-

tem, and more particularly that of the battery. The calculated battery ratings would

minimize the power flow fluctuations on typical winter and summer days. Increased

battery ratings may be required if the number of cloudy days per year are higher,

which may be the case in Kentucky, though not in California.

2.5.2 Optimal Power Flow at Power Distribution System Level

In order to evaluate the effect of the proposed home energy storage scheduling on

an aggregated level, the behavior of the NZE homes at the district level is modeled

by interconnection with an IEEE-13 node test feeder system, which is described in

[146]. Sixty NZE homes with residential load and PV generation profiles modified

according to the number of occupants and local weather variations are connected to

node 634 (Fig. 2.18).
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Figure 2.19: Power flow profile at node 634 of the IEEE 13-bus test system from Fig.
2.18 on a summer day.

Four types of homes, conventional i.e., without solar PV and BES; PVStd, in-

cluding solar PV and conventional EWH but no batteries; PVBES, equipped with

solar PV, conventional EWH, and batteries of the sized energy capacity; and the

proposed HyPVESS containing both solar panels, batteries, and EWH with controls

co-ordinated with solar PV generation are examined to verify the benefits of the pro-

posed HyPVESS at the district level (Figs. 2.19 and 2.20) . In case of the HyPVESS

homes, the battery and EWH schedules and ratings are derived for each home as

detailed in Section IV. The active power at the node 634 is monitored.

Homes of the PVStd type, which contain no storage can achieve NZE targets by

feeding power to the utility during periods of plentiful solar power, and absorbing it

when solar generation reduces. One of the limitations associated with this type of

operation is that PV generation and load peaks are not coincident, leading to an excess
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Figure 2.20: Power flow profile at node 634 of the IEEE 13-bus test system from Fig.
2.18 on a winter day.

inflow of power into the utility at and around midday. In contrast, during the evening,

PV generation diminishes, and load rise, therefore excess power is absorbed from the

utility grid at this time. This type of behavior leads to the “duck curve”, which would

be exacerbated for high PV penetration communities (Figs. 2.19 and 2.20). For large

PV communities, a power system incorporating a number of fast responding gas

plants would be required to service this rate of change of load, requiring tremendous

investment. The peaks of power inflow and outflow could also potentially cause issues

including overloading of distribution lines, transformers, and excessive voltage drop.

The PVBES homes, i.e., homes with batteries and conventional EWH systems can

theoretically eliminate the “duck curve” and offset the peaks, however, the batteries

required to achieve these objectives would have large energy capacities, and lead to

high cost. In the HyPVESS case, i.e., homes with the variable power controllable
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EWH as well as batteries the “duck curve” is alleviated and peak demand is reduced,

with a smaller size battery. When the homes are equipped with the HyPVESS, each

one is controlled to deliver dispatchable power (Figs. 2.19 and 2.20). It is observed

that peaks and the “duck curve” of the power flow to the grid are the minimum in

all the cases for both summer and winter days (Figs. 2.19 and 2.20). Thus, these

case studies demonstrate that the proposed hybrid PV and BESS and controls can

potentially mitigate the issues stemming from solar power variability, with a relatively

small battery size. The proposed schedules for the battery and EWH can be combined

with economic analysis and modified accordingly in order to maximize profitability

for the consumer, in order to motivate more consumers to install home energy storage

systems.

2.6 Conclusion

This chapter introduces a co-simulation framework called INSPIRE+D, which is

capable of modeling the instantaneous energy usage and solar generation of a large

community of buildings, and simulating their interconnection with the grid. Also

introduced was the DER integration testbed, which enables the study of HEM system

implementation at both the residential and community levels. An example community

for 353 residences was modeled using the IEEE 123-bus feeder case with filed measured

data. This example community will be further used for the verification smart devices,

which are able to react to DR signals complying to CTA-2045 standards.

The energy usage models within the co-simulation framework are used to predict

the electricity consumption for California and Kentucky, and validated based on the
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California Building Energy Code Compliance Residential Standards, and experimen-

tal data from southern Kentucky, respectively. A method to identify the minimum

size of the solar PV panels in order to achieve NZE operation based on the simulated

annual average energy usage was proposed. An energy storage system using batter-

ies along with water heaters was proposed to alleviate the duck curve caused due

to non coincident solar generation and load demands. It was demonstrated through

simulation studies on a large community of grid connected NZE homes that home

energy storage systems can be controlled such that the grid power flow fluctuation

can be minimized on typical winter and summer days, thereby mitigating technical

challenges associated with solar power variability.

A methodology based on multi-objective differential evolution for sizing and schedul-

ing the operations of the hybrid energy storage system on typical winter and summer

days was outlined. The objectives include the energy capacity and power ratings of

the BESS, and the fluctuation of the net metered power. Simulation studies show

that the distribution power system operated as dispatchable generator/load with a

30% smaller battery through the use of the proposed controlled variable power water

heaters. Furthermore, the sizing for BESS could be extended to consider charg-

ing/discharging patterns for different weather conditions over the year. For a case

considering the ToU tariff and buy back rates from California, it is found that the

electricity spending costs can be reduced significantly for representative summer and

winter days through this control of the hybrid energy storage system.

61



Chapter 3

Electric Water Models including

Energy Storage Characteristics and

Demand Response Applications

3.1 Introduction and Problem Formulation

The electric water heater (EWH) accounts for a substantial portion of a typical

house electric power consumption [147]. However, the unpredictability of customer

behavior makes quantifying the benefits of controlling EWHs difficult. Demand re-

sponse (DR) implementations must carefully balance the water temperature in the

tank to provide the maximum grid benefit between two bounds, i.e., it must be kept

high enough to meet the user demand while not exceeding the stipulated safety refer-

ence. Fortunately, technologies such as mixing valves may be used to allow the water

to be safely stored up to 145F and still meet safety requirements [9, 10].

The ubiquity of EWHs make them one of the most advantageous appliances for
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participation in the virtual power plant (VPP) operation for residential buildings.

The EWHs have large thermal masses of water in their tanks and can be regarded as

both heat reservoirs and energy sinks to provide ancillary services with relatively low-

cost [22, 31]. Their effective tank insulation gives high equivalent thermal resistance

compared to pipes, resulting in less energy loss associated with water heater tanks

than distribution systems [148]. These properties allow EWHs to, for a short period

of time, be turned Off for load shedding while maintaining the water temperature

at the reference temperature. Furthermore, EWHs can be used to absorb surplus

PV generation. These services could improve the reliability of the grid and provide

monetary benefits to both the grid and residences while maintaining user comfort

[70–74]. The potential regulation capacity of water heaters is impacted by factors

including ambient temperature, hot water usage, and setpoint [75–78].

Energy storage devices and systems, which can be electric, such as battery en-

ergy storage systems (BESS), or thermal, such as EWH or heating, ventilation and

air conditioning (HVAC) systems, are essential in order to ensure an optimal energy

management and power flow within the modern grid with DER. This method of hy-

brid energy storage can reduce required BESS capacity by up to 30% while providing

the same capability [11]. To support technology development and standard-type im-

plementation that would enable wide scale industrial and utility deployment, Energy

Star, a program conducted by the Environmental Protection Agency (EPA) and De-

partment of Energy (DOE), provides general specifications for energy parameters and

DR functionalities [29].

For EWH, these specifications are typically implemented using the Consumer
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Technology Association (CTA) 2045 standard [27], and success has been reported at

the individual residential and utility aggregated levels [30], [31]. In principle, the

combined Energy Star and CTA-2045 specifications and concepts such as “energy

capacity”, “energy content”, and “energy take” and DER commands, such as “load

up”, “shed”, etc., can be extended to any energy storage device and system, enabling

a unified approach at the system level. For EWH, success has been reported at the

individual residential and utility aggregated levels [30, 31].

Modeling of EWH energy use at the individual level to be employed in a DER

testbed may be performed through different means, including grey-box modeling

which employs a combination of white-box (theory-based) and black-box (data-driven)

methods. For example, [149] employs physics-based equations to model the thermal

losses to the environment and water consumption as well as for the contribution from

the heating element. In addition to these mathematical representations, estimation

through measured data was utilized to determine certain parameters of the physical

model.

Regardless of the model type, the common input for an EWH MIL is the total

domestic hot water (DHW) usage of end use appliances. Typical DHW schedules,

such as those provided by the CBECC-Res Compliance Software Project [80], are

very useful resources for performing realistic community-level simulation studies. An

internet-based survey involving 1,600 members found that approximately 70% of the

residential participants would allow the utility to control their switches or thermostats

when proper incentives were provided [92]. The potential of water heater related

technologies was widely appreciated in the annual conference of Hot Water Forum

64



held by the American Council for an Energy-Efficient Economy (ACEEE) [67].

The power profile of water heaters is largely decided by user behavior. In previous

studies, the hot water draws for 48 representative days were evaluated based on

measured data from California homes [79]. The proposed schedules are used in the

California Building Energy Code Compliance for Residential buildings (CBECC-Res)

[80]. In another study, the aggregated EWH load was calculated by analyzing the hot

water usage schedules [81]. A typical aggregated load for EWHs has a morning and

evening peak, as shown in the study involving 50 water heaters [82].

The problems addressed in this chapter include water heater as generalized en-

ergy storage, thermodynamics of water heater when DR is applied, the total energy

storage capacity of EWHs and HPWH, and impact of DR controls on the distribution

power system. Each of the problems are defined in the subchapters: water heater as

generalized energy storage in section 3.2.1, thermodynamics of water heater, and the

total energy storage capacity of EWHs and HPWH in section 3.3, and impact of DR

controls on the distribution power system in section 3.4.

In this chapter, the EWH was modeled using the equivalent circuit with parame-

ters calibrated against measured data. A representative power profile for aggregated

water heater generic load curve that can be scaled to any number was developed based

on public data. The potential of water heaters as energy storage at the power system

level was estimated based on the generic curve. Also, EWH and heat pump water

heater (HPWH) have very different characteristics and were analyzed separately. A

total number of 353 EWH were modeled separately and connected to a modified IEEE

123-bus feeder, which also included the realistic residential load from measurement.
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DR signals complying to CTA-2045 standards were applied to the EWHs and their

impacts were monitored at the power system, including power flow and voltage at

each bus.

This chapter is substantially based on the following journal papers:

• H. Gong, et al.,“Equivalent electric and heat-pump water heater models for ag-

gregated community-level demand response VPP controls,” IEEE Access, Vol. 9,

pp. 141233–141244, 2021.

• H. Gong, et al., “Large-scale modeling and demand response control of EWH

with energy star and CTA-2045 control types in distribution power system,”

IEEE Transactions on Industry Applications, 10p, 2021, Submitted in Dec, 2021.

3.2 Multi-physics Models for EWHs

3.2.1 Energy Storage Generalized Concepts based on CTA-

2045

The EPRI’s DER integration testbed for energy storage systems is of particular

interest for this study as it was utilized for the simulation of an EWH that is treated as

an energy storage system [121]. The simulator is capable of various smart functions,

such as connection/disconnection, charging/discharging, volt-VAR curve input, and

generation level and power factor adjusting. The EWH MIL was simulated in the

chapter and connected to EPRI’s DER integration testbed (Fig. 3.1).

The Generalized Energy Storage (GES) in a residence includes BESS, EWH, and

the HVAC system. For a BESS, the “current available energy storage capacity” is
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Figure 3.1: Schematic of the Model-In-the-Loop (MIL) for an Electric Water Heater
(EWH). The computer code is implemented in C# under Visual Studio 2020 and com-
munications with the EPRI’s DER integration testbed follow the CTA-2045 standard
for Energy Star commands.

calculated as follows:

EC,B(t) = EB,R ⋅ (SOCB,max − SOCB(t)), (3.1)

where EB,R is the rated energy capacity of the BESS; SOCB,max, the maximum

allowed SOC.

For most of the academic work, the water temperature in the tank was used to

represent the current status of the energy storage for the EWH. Practically, the water

temperature is hard to measure as it is stratified inside the tank. Therefore, most

CA-2045 available EWH only provide the “energy take” by manufactures based on

their undisclosed algorithms.

In this chapter, the “energy content of the stored water” for the EWH is defined

as:

EW (t) = V ρcpθT (t), (3.2)
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where V is water tank volume; ρ, density of water; cp, specific heat capacity of water;

θT , the average temperature in the water tank. Based on (3.2), the “current available

energy storage capacity” for a water heater is calculated by referring to the set point,

as follows:

EC,W (t) = EW,S −EW (t), (3.3)

where EW,S = V ρcpθT,S is the maximum energy capacity for the EWH, defined by

θT,S, the set point. The “energy take” is defined as follows:

ET,W (t2 − t1) = EW (t2) −EW (t1). (3.4)

The HVAC system is regarded as an energy storage and its equivalent SOC is

defined as:

SOCH(t) =
θmax − θI(t)
θmax − θmin

, (3.5)

where the θmax and θmin are the maximum and minimum room temperature, respec-

tively; θI , the indoor temperature. The energy storage capacity of the HVAC system,

EH,C , is defined as the input electricity needed to change the room temperature from

the maximum to the minimum with a fixed outside temperature [88]. The “current

available energy storage capacity” for the HVAC system calculated as:

EC,H(t) = EH,C ⋅ (1 − SOCH(t)). (3.6)

Two cases, which were based on experimental results, were studied to validate

the EWH as a MIL in the EPRI’s DER integration testbed. In the first case, the

simulation results of a resistive EWH was validated against the experimental data

from an EPRI performance test on a CTA-2045 compatible EWH [30]. The tank
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Figure 3.2: Example of simulated EWH “Shed Event” corresponding to the experi-
mental data illustrated in Fig. 3.3. Based on DR control signals, the “energy take”
capacity was increased from 900Wh to 2,200Wh, resulting in a shift/delay of the wa-
ter heating process.

temperature and the “energy take” values were monitored as the EWH responded to

the “Shed Event” signal (Fig. 3.2). The simulation has satisfactory results compared

with the experimental data (Fig. 3.3).

The value of “energy take” has different ranges which correspond to the types of

DR signal. Under normal operation, the range of “energy take” is [0, 900Wh]. When

the value of “energy take” is more than 900Wh, the EWH turns On until the value

reaches 0 (Fig. 3.2). The temperature and water draw are referred in p.u., where the

base values for temperature and hot water flow are 140 F and 1 gallon per minute

(GPM), respectively.

At 3:10, the EWH responded to the DR signal ”Shed Event” by setting the “en-

ergy take” range to [2,000Wh, 2,200Wh]. The DR signal “Shed Event” postponed
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Figure 3.3: Experimental data, previously reported by NREL/EPRI [30], and em-
ployed for the satisfactory validation of the proposed EWH MIL. The “Shed Event”
occurs from 3:10 to around 4:10, which causes the “energy take” range to increase
and the heating process to be postponed while maintaining occupant comfort.

the heating process by allowing more energy to be taken from the tank by the hot

water while maintaining occupant comfort. The “Shed Event” ended at around 4:10

and the EWH was turned On immediately to bring the “energy take” value to 0.

For comparison, an illustration of the experimental data for the “Shed Event” case

reported in [30] is provided in Fig. 3.3.

The second case was based on the experiment from the SHINES program, which

was launched in 2016 by the DoE to develop and demonstrate technologies that enable

sustainable and holistic integration of energy storage with solar PV [150]. In this

chapter, the EWH loads of the two houses, as well as the BESS, solar PV, pool pump

and HVAC were tested in the field. The different EWH loads and BESS charging

schedule as well as the corresponding energy and aggregated power of the two EWHs

are provided for a comparative study (Fig. 3.4).

The example charging schedule for the BESS resulted in a similar power rating
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Figure 3.4: Comparative study of energy storage with BESS and EWH, including
typical/normal base line (BL) and DR schedules. For BL operation, the EWH has
a morning and two evening peak power cycles. The BESS schedule was adjusted to
allow comparison with a EWH study for DR load shifting around noon, which may
align well with PV generation, if available.

when compared to the EWH DR power. This example shows that the BESS and

EWH are comparable when considering their energy content as GES. The average

temperature of the water was monitored in the case studies and shown in Fig. 3.5.

When the peak in the morning was shifted, the temperature in the tank was still above

the commonly acceptable user comfort level, which is 115F. Mixing valve technology

was used to guarantee occupant safety when the temperature in the water tank was

high. The EWH under DR can be programmed at night to boost the tank temperature

to the same value as the beginning of the day.

The EPRI SHINES project provides timely data with a resolution of 15 minutes

for the power flow at the transformer where four houses were connected. Two of

the four houses have their own solar PV installations, HVACs, pool pumps, and
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Figure 3.5: Power draw and water tank temperature for an EWH operating under BL
and DR studied schedules. The high water temperature in the tank may be enabled
by special mixing valve technologies.

other non-DER loads monitored by the SHINES project. The non-DER loads of the

monitored houses were added to the total power of the other two houses, and were

labeled as “uncontrollable loads” at the distribution level (Fig. 3.6).

The EWH provided the energy storage capacity for the surplus PV generation as

the BESS (Fig. 3.4). The net flow at the aggregated level was reduced due to the

DR control, as shown in Fig. 3.7. Shifting the EWH load also reduced the peaks in

the afternoon and evening.

3.2.2 Water Flow and Electric Power Load

Hot water draw from the CBECC-Res data set was named as “XDY”. X is the

number of bedrooms and X∈{1,2,3,4,5}. CBECC-Res water heater draw has three
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Figure 3.6: Combined experimental and simulated power flow on an example February
day for two smart homes, which are located in Florida and were developed as part of
the EPRI SHINES DoE project (photo inset). The EWH simulations were performed
with the proposed MIL.

Figure 3.7: Case studies for the aggregated net power flow at the distribution level.
For the proposed control, during the day, a substantial portion of the solar PV gen-
erated energy was locally stored in the EWH or BESS.
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Table 3.1: Hot water fraction and end use temperature of fixtures.
End use Hot water fraction End use Temp. [F]
Faucet 0.50 95
Shower 0.66 105
Clothwasher 0.22 78
Bath 0.66 105
Dishwasher 1.00 125

types of days: weekdays (D), weekends (E), and holidays (H). Only type “D” was con-

sidered in this study. Y is the Yth profiles for one category and Y∈{0,1,2,3,4,5,6,7,8,9}.

The value for Y is only the natural sequence for different profiles and does not at-

tribute to any specific day. For example, “3D8” is the 8th weekday profile for a 3

bedroom house, and it represents a user behavior which could occur at any weekday.

In this study, there were 36 residences with 1 bedroom (Table 2.3). Therefore,

36 hot water draw were selected randomly as “1DY” (Y∈{0,1,2,3,4,5,6,7,8,9}) with

repetition, i.e., some profiles were selected more than once. Similar procedures were

performed for the other residences with more than 1 bedroom, and a total of 353 hot

water draw profiles were selected based on the 50 representative hot water profiles

from CBECC-Res.

The daily hot water draw profiles in CBECC-Res include the hot water flow at

different fixtures (Fig. 3.8). Based on the hot water draw, the EWH power, tank

temperature, and energy take were calculated. The temperature for hot water and

cold water, and the hot water fraction of end use were concluded in [79]. The end use

temperature for the fixtures were calculated (Table 3.1).

The hot water flow at the outlet of the water tank was calculated using the water
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Example hot water draws from CBECC-Res data for different end use (a),
(d); Calculated tank temperature and total hot water draw (b), (e); and calculated
EWH power and energy take (c), (f). Shown are two example daily hot water draws
corresponding to “5D3” (top), and “3D2” (bottom).

flow balance and energy balance:

V̇H + V̇C =∑ V̇i, (3.7)

where V̇H is the water flow at the outlet of water tank; V̇C , water flow of cold water;

V̇i, water flow at fixture.

The energy balance is represented as follows:

V̇HθT (t) + V̇CθW,C =∑ V̇iθi, (3.8)

where θT (t) is the water temperature in the tank; θW,C , cold water temperature; θi,

end use temperature listed in Table 3.1.

Each EWH had different initialized water temperature and energy take value. The

1R1C gray-box model of EWH is used for the calculation of water temperature with
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Table 3.2: Parameters for the equivalent EWH model.
Parameter Value or unit
Density of water ρ 993 kg/m3

Specific heat capacity of water cp 4,179 J/kg○C
Room air temperature θA 22 ○C
Temperature of cold water θW,C 10 ○C
Water heater heating rate PH kW
Water tank volume V 50 gallon

Equiv. thermal resistance R
a1400 ○C/kW
b600 ○C/kW

Water temperature in the tank θT ○C
Hot water flow W m3/s

aEWH, bHPWH

three major effects, i.e., the input electric power, the standby heat loss, and the hot

water draw activities, as:

C
dθT (t)
dt

= S(t)PH(t) −
1

R
[θT (t) − θA] − ρcpW (t) [θT (t) − θW,C] . (3.9)

The values for the parameters are listed in Table 3.2.

C and S(t) are the equivalent thermal capacitance and On/Off status, defined

respectively, as:

C = V ⋅ ρ ⋅ cp. (3.10)

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if S(t − 1) = 1 & ET,W (t) ≤ QT,min(t)

1, if S(t − 1) = 0 & ET,W (t) ≥ QT,max(t)

S(t − 1), otherwise,

(3.11)

where the QT,min and QT,max are the energy take levels, which differ for DR events

(Table 3.3) [30]. When the energy take value is larger than the maximum energy

take level, EWH has to be On in order to compensate for the lost energy. The higher
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Table 3.3: Water heater condition as characterized by energy take levels

Event
Energy take levels (QT ) [Wh]
Minimum Maximum

Normal operation 0
300: ≥ 1 GPM
600: ≥ 0.3 GPM
900

Shed 1800 2250
Load up 0 300

the maximum energy take level, the more hot water allowed to be drawn without

triggering on the EWH. When the energy take value is smaller than the minimum

energy take level, EWH would be turned Off. The energy take at a given time point

ET,W (t) was referred to the starting point of the simulation and (3.4) is rewritten as:

ET,W (t) = EW (t) −EW (0). (3.12)

For the Normal operation event, the maximum energy take level depends on the

hot water flow. Increased hot water flow causes the energy take level to be lower.

When the hot water draw is high, EWH will be On, even if the energy take value is

low, so that the user comfort is guaranteed. For the shed event, the energy take levels

are much higher to allow for more hot water draw. The EWH would be On during the

shed event when the energy take is too high, which indicates low water temperature

in the tank. For the load up event, the EWH would be On even if the energy take is

low. The load up event always occurs when there is surplus PV generation.

3.3 Aggregated Generic Load Curve for EHW and

HPWH
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Figure 3.9: The illustrative parts of A. O. Smith “Energy Smart” model and CTA-
2045 standard port. The “Energy Smart” controller is smart grid ready and imple-
ments standardized communications for DR.

3.3.1 Large Scale Experimental Study for EWH

A smart EWH that allows users to control the setpoint, the operating mode and

receive alerts based on the device operation was developed by A. O. Smith. Ap-

proximately 800 anonymized units with the “Energy Smart” EWH controller were

analyzed in the program, in which appliance usage data were retrieved and evalu-

ated. The “Energy Smart” controller can be plugged into the EWH and enables the

monitoring, remote control, alarming, and creating custom heating schedules [151].

The EWH heater models optionally include a CTA-2045 port adapter and utility

communication module to enable smart communication with energy providers (Fig.

3.9).

Over a two-year period from 2018 to 2020, the data analyzed witnessed a growing

number of participants, peaking at nearly 500 EWHs recorded per day in early 2019
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Figure 3.10: Daily number of EWH in service. Approximately 800 participants were
analyzed as part of the program and an increase from 2018 till early 2019 can be
observed before the gradual decline.

(Fig. 3.10). Based on the data retrieved, up to 100 participants opted out of the

program at inception and 140 EWHs participated through the entire length of the

project (Fig. 3.11). During the project span, approximately 350 EWHs were reporting

their instantaneous power online.

The daily power profile for EWHs is determined by the user-influenced parameters

such as hot water usage and the hot water temperature set point. The power profile

for EWHs is also influenced by other factors including the ambient temperature, inlet

water temperature, and the insulation of domestic water pipes. Hence, there is varia-

tion in the power curve from one EWH unit to the other. A typical residential EWH

would normally have two or three short heating cycles daily, leading to sharp power

differences throughout the day. Only when the number of EWHs being analyzed is

fairly large is the aggregated EWH power relatively smooth with distinct trends.
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Figure 3.11: Participant engagement over the duration of the research. Reduction
in the number of participants in some cases were attributed to changes in internet
settings and monitoring hardware devices being disconnected

.

The experimental data was reported in Coordinated Universal Time (UTC) but

the location of the EWH was not recorded. This is because all the user information

had been anonymized in order to protect privacy. As the data was collected within

the entire continental USA, the time zone for the experimental data is regarded as

UTC-06:30, i.e., between the CST and MST.

At each minute, the aggregated EWH load was calculated by summing all the

selected power together. The base power, which is used to calculate the per unit

value, is defined as follows:

Pbase =
E ⋅N
T

, (3.13)

where, E is the average daily electricity usage; N, the total number of EWHs; and

T, representing the number of hours to be averaged over. In this chapter, E is fixed
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to 12.5kWh as the typical daily electricity usage for EWH and T is fixed to 24, for

the number of hours in one day. In the case of HPWHs, E is also 12.5kWh so the

per-unit load values for both EWH and HPWH are comparable. The actual energy

produced by EWHs and HPWHs is assumed to be the same. For the HPWH, the

COP is defined as the ratio between the power drawn out of the HPWH and the

power supplied to the compressor. Due to the COP of HPWH, the electricity usage

of EWH and HPWH are different.

The per unit value for the aggregated water heater load power is calculated as:

Ppu(t) =
PA(t)
Pbase

, (3.14)

where PA is the aggregated water heater power acquired from the measurements at

time t.

The measured power profiles were used to develop an aggregated generic load

profile to represent the typical power flow for multiple EWHs. The generic EWH

load profile was defined by 8 data points for which the mathematical derivative of

the load curve, i.e. ramping rate, changes drastically. The data point for hour 24 is

not shown because hour 0 and hour 24 have the same value (Table 3.4). The values

between those points were interpolated linearly with user defined resolution. The

time step of 1-minute was used throughout this chapter if not mentioned otherwise.

The generic curve captured the major characteristics of the experimental data, as the

peaks, ramping rates, and the power values for different time periods were almost the

same (Fig. 3.12). The aggregated EWH load curves shown in Fig. 3.12 include the

per unit value and an example for 1,000 EWHs for which the base power has been
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Table 3.4: The p.u. value of average EWH power
Hour 0 3 6 9 15 18 20
Power
[p.u.]

0.33 0.33 1.5 1 0.75 1.25 1.25

Figure 3.12: Example daily aggregated power transfer for EWH. The aggregated
generic profile was developed based on data retrieved from the two-year long project.

calculated with (3.13) to be equal to 521kW.

Another experimental study, of a smaller scale with only 50 EWH, has been con-

ducted by the researchers from the Oak Ridge National Laboratory (ORNL) [82].

The results shown in Fig. 3.13 confirm the typical timing of the morning and evening

peaks, which shows the similar trend compared with the generic curve. When com-

paring data and considering scaling between Figs. 3.12 and 3.13, it should be kept

in mind that the smaller scale study illustrates the variability due to the day of the

week, which can be substantial, and also includes larger power variations possibly

due to community/location specifics and the low number of EWH considered. Ob-

taining substantially large local data for the utility might be a challenge and the
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Figure 3.13: Experimental aggregated data based on a smaller scale study that in-
cluded only 50 water heaters [82]. The morning and the evening peaks are approxi-
mately timed in line with expectations, as compared with the example generic curve
of Fig. 3.12, and the power values illustrate the community dependent variability.

corresponding aggregated load based on the limited data might have large variation.

On the other hand, the generic curved proposed in Fig. 3.12 is artificially aggre-

gated in time and space throughout the entire continental US, which spans four time

zones, i.e., UTC-05:00 to UTC-08:00. Therefore, the aggregated load was able to

represent the national trend, but needed adjustment when employed to a specific lo-

cation. The learnings from the two studies can be combined with other locally based

statistics to establish a specific load curve for electric power utility DR planning.

3.3.2 Large Scale Experimental Study for HPWH

The Bonneville Power Administration (BPA) has spent the recent years developing

the capability to use the CTA-2045 enabled water heaters for both traditional DR and

everyday applications such as renewable generation integration. The project, which

delivered the experimental data used by this chapter, deployed 300 CTA-2045 enabled
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HPWHs in the Pacific Northwest (PNW) over one year. The data has a resolution

of 1-minute and covers January through August of 2018 [152]. The emphasis of this

section has been on the modeling of HPWH not the house energy. The simulations

for HPWH have been considered independent of the residential energy usage.

The data includes multiple columns, among which the timestap, alias, curr watts,

curr curtail type were used to generate the generic load curve for the HPWH. The

alias records the device name and distinguishes the type of water heater. This was

used in this chapter to select only the data from HPWHs. The curr curtail type

records the demand control signal. In this chapter, only the days having a signal

of End Shed/Run Normal = 8 for the entire day were selected. Therefore, for the

selected days, all their 1,440 records of column curr curtail type must be 8. The

timestamp and curr watts record the timestamp and the instantaneous watt re-

ported by the water heaters. Additionally, only the business days were selected as

user behavior differs on holidays and weekends.

Approximately 10,000 daily HPWH schedules were selected and each schedule

had 1,440 recorded power instances. The distribution for the values of the selected

instantaneous power shown in Fig. 3.14 does not include times without a power

draw. When the HPWHs were On in End Shed/Run Normal mode all day long, the

compressors were operating alone 94% of the time and, for the other 6% of the time,

the resistance element was On.

The data was provided for three seasons separately, i.e., Winter: Jan-Apr, Spring:

Apr-June, and Summer: June-Aug. The annual curve was calculated by using the

data from all three seasons together. It is observed that, even though the peak values
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Figure 3.14: The distribution for the instances of selected power values. Two clusters
stand for the compressor power only and the instances which include the resistance
element, which are approximately 94% and 6%, respectively.

Table 3.5: The p.u. value of average HPWH power
Hour 0 3 5 8 15 18 21
Power
[p.u.]

0.24 0.1 0.1 0.5 0.18 0.21 0.37

differ, all the daily load curves have two peaks at approximately 8am and 9pm, as

shown in Fig. 3.15.

The generic HPWH load curve was created based on the annual load curve pre-

sented in Fig. 3.15 and was defined by 8 data points as in the Table 3.5. The data

for hour 24 is not shown because, as at the end of the day, the value is the same as

the beginning. The generic curve based on the annual data is shown in Fig. 3.16 in

both per unit value and the value for 1,000 HPWH.

The experimental data and generic curves for both EWHs and HPWHs are pre-

sented together in Fig. 3.17. The peak value for EWHs is approximately 3 times
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Figure 3.15: The generic power curve created based on the BPA data for Spring,
Summer, and Winter for the year of 2018. The annual curve, which includes the data
from the three seasons, is used to generate the generic HPWH curve.

Figure 3.16: The experimental and generic curve of the daily HPWH power profile.
The experimental curve is based on the same data as the annual curve shown in Fig.
3.15.

86



Figure 3.17: The experimental and generic curves for both EWHs (indicated with
☆) and HPWHs (indicated with ○) in the same scale.

the peak value for HPWHs. It is observed that the peak for HPWH comes later for

both morning and evening. Unless otherwise mentioned, the studies in the rest of

this chapter are all based on the generic curves.

The per unit value for energy usage is deduced by integrating both side of (3.14)

with respect to time:

∫ Ppu(t)dt = ∫
PA(t)
Pbase

dt⇒ Epu(t) =
EA(t)
Pbase

, (3.15)

where EA(t) is the measured aggregated energy usage. In a per unit system, the base

and the actual value have the same unit. Based on (3.15), the base value for the

aggregated energy (MWh) has the same magnitude as Pbase ( ∣Ebase∣ = ∣Pbase∣). The

cumulative electricity usage based on the generic load curves for EWH and HPWH are

shown in Fig. 3.18. At the end of the day, the aggregated electricity usage for EWH

and HPWH are 21.4 p.u. and 6.3 p.u., respectively. Given 1,000 water heaters, the
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Figure 3.18: The accumulated electricity usage for the EWH and HPWH based on
the generic load curves. The daily electricity usage for EWH and HPWH are 21.4
p.u. and 6.3 p.u., respectively.

daily electricity usage for an all EWH community and an all HPWH community are

11,146kWh and 3,281kWh, respectively. For a community changing from all EWH

to all HPWH, the daily saving on electricity is approximately 70%.

3.3.3 Equivalent Model and Digital Twin at Aggregated Level

One simplification and two assumptions have been made in this chapter to fa-

cilitate the study. The water temperature in the tank was simplified to be uniform

instead of stratified. Other models, including the “WaterHeater:Mixed” in EnergPlus

[153] and the model used for International Energy Conservation Code (IECC) by the

DOE and Pacific Northwest National Laboratory (PNNL) [154] all consider uniform

temperature tanks appropriate. The models developed by Ecotope [155] consider
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vertical stratification of the water tanks and have accurate results at the cost of per-

formance. In this chapter, the uniform temperature in the water tank was considered

as it is sufficient for the evaluation of the energy balance in the water tank.

The first assumption is that Coefficient Of Performance (COP) of the HPWH

was constant for the calculation of the daily profile. COP will not change drastically

when the ambient environment remains stable, which is the common case for most

of residential users. The second assumption is that the average water temperature

for all the EWHs whose power was used to generate the generic curve (Fig. 3.12)

was constant when there was no DR control. This assumption was based on basic

aggregation, that for a given point in time, some water heaters have high temperature

while others have low. Based on these assumptions, the hot water usage and the

temperature in the tank for the water heaters can be calculated.

An equivalent thermal model is used to calculate the daily hot water usage based

on the generic load. Typically, the water temperature in the tank is stratified. In this

chapter, the average water temperature is considered sufficient for the estimation of

the energy storage capacity of the water heater. Therefore, the thermodynamic of

the water heater is represented in a single-nodal model:

C
dθT (t)
dt

= S(t)PH(t) −
1

R
[θT (t) − θA] − ρcpW (t) [θT (t) − θW,C] . (3.16)

It is assumed the efficiency of the resistive element is 100% for heating. The three

terms on the RHS consider the effect of the input electric power, the standby heat

loss, and the hot water draw activities, respectively. C and S(t) are the equivalent
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thermal capacitance and On/Off status, defined respectively, as:

C = V ⋅ ρ ⋅ cp. (3.17)

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if S(t − 1) = 1 & θT (t) ≥ θH(t)

1, if S(t − 1) = 0 & θT (t) ≤ θL(t)

S(t − 1), otherwise,

(3.18)

where θL and θH are the lower and upper band of the water tank temperature. The

definitions of other parameters are listed in Table 3.2. It is worth noting that the

water heater heating rate PH , the water temperature in the tank θT and the hot water

draw W have only their units listed in the table. Also important is that the water

heater heating rate PH for the HPWH should consider its COP.

The proposed single-nodal model is scalable with its parameters represented in

the per unit system. Dividing both sides of (3.16) by Pbase∣N=1 yields:

C

Pbase∣N=1
dθT (t)
dt

= S(t) PH(t)
Pbase∣N=1

− 1

RPbase∣N=1
[θT (t) − θA]−

ρcp
W (t)

Pbase∣N=1
[θT (t) − θW,C] . (3.19)

When there is only one water heater, the aggregated power is the power of the

single water heater:

PA(t) = PH(t), (3.20)

and the per unit value for the aggregated water heater power in (3.14) becomes:
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Ppu =
PH(t)

Pbase∣N=1
, (3.21)

as Pbase∣N=1 = E
T , (3.19) is rewritten as:

CT

E

dθT (t)
dt

= S(t)Ppu(t) −
1

RE/T
[θT (t) − θA] − ρcp

W (t)T
E

[θT (t) − θW,C] . (3.22)

Defining the per unit values as: Cpu = ∣C ⋅TE ∣ ,Rpu = ∣R⋅ET ∣ ,Wpu = ∣W ⋅TE ∣, the heat

transfer function of a water heater is represented as:

Cpu
dθT (t)
dt

= S(t)Ppu(t) −
1

Rpu

[θT (t) − θA] − ρcpWpu(t) [θT (t) − θW,C] . (3.23)

The heat transfer function (3.16) holds for single water heater, therefore, it holds

for the average values of C,PH(t),R, and W (t):

C
dθT (t)
dt

= S(t)PH(t) −
1

R
[θT (t) − θA] − ρcpW (t) [θT (t) − θW,C] . (3.24)

Rewriting (3.24) as:

Cpu
Cbase

N

dθT (t)
dt

= S(t)Ppu(t)
Pbase

N
−

1

Rpu
Rbase

N

[θT (t) − θA] − ρcpWpu(t)
Wbase

N
[θT (t) − θW,C] . (3.25)

Compared with (3.23), the equation (3.25) holds when ∣Cbase

N
∣ = ∣Pbase

N
∣ = ∣ 1

Rbase/N ∣ =

∣Wbase

N
∣. Therefore, the base values are defined as: ∣Cbase∣ = ∣Wbase∣ = ∣Pbase∣, ∣Rbase∣ =

∣N2/Pbase∣.
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In the study, it is assumed that the average temperature of all the EWHs was con-

stant at θT (t) = 125F due to their fast recovery rate relative to HPWHs. Therefore,

(3.23) can be re-written to calculate the per unit hot water usage:

Wpu(t) =
S(t)Ppu(t) − 1

Rpu
[θT (t) − θA]

ρcp [θT (t) − θW,C]
. (3.26)

The generic load for EWHs is used to calculate the aggregated hot water draw,

i.e., the item “S(t)Ppu(t)” is replaced by the value of the generic load of the EWH

at each time point. The calculated generic hot water flow shown in Fig. 3.19 stands

for the representative user behavior and does not change when the water heater is

HPWH or the DR is implemented. In this study, the hot water flow has the time

resolution of 1-minute and is presented in per unit value as well as gallon per minute

(GPM). The daily hot water draw is calculated by integrating the hot water flow with

respect to minute, and the results, i.e., the area between x-axis and the curve in Fig.

3.19 are 112 p.u., and 58,507 gallons for the 1,000 water heater example.

The generic hot water draw and the generic load curves are used to calculate

the average tank temperature using (3.23). As shown in Fig. 3.20, the average

tank temperature for EWH is constant as expected. The variation in the average

temperature for HPWH reflects its latent nature.

The equivalent water heater model may be thought of as a digital twin for three

reasons. First, all the I/O can be real-time if the data is available. Second, the model

can stream data complying to the communication protocol approved by CTA-2045

standard. Third, the model is exchangeable with the hardware in a co-simulation

circumstance where the EWH is involved as one of the smart components. Example
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Figure 3.19: The calculated aggregated daily hot water flow. The total daily hot
water usage was 112 p.u. Given 1,000 water heaters, total daily hot water usage was
58,507 gallons.

Figure 3.20: The average temperature for EWH and HPWH, which were calculated
using the same hot water flow. The variation in average temperature for HPWH
shows the deferring nature of the compressor.
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Table 3.6: Event type and duration
Event Duration
Shed [7:00,10:00) ∪ [17:00,19:00)
Load up [6:00,7:00) ∪ [11:00,16:00)
Normal operation Other time

applications can be found in the Distributed Energy Resources (DER) integration

testbed developed by EPRI [156]. This chapter focuses on the computational parts

of the EWH model while the data packing and communication will be introduced in

future work.

3.4 Optimal DR Case Study on a Modified IEEE

123-Bus System Co-simulated with Individual

EWHs

3.4.1 Electric Water Heater Operation

In this study, example DR control was applied to all the EWHs in the distribution

system introduced in Fig. 2.6. All the 353 EWHs in the simulated distribution system

received and reacted to the same control signals listed in Table 3.6. A sequential

control method, which spreads out the turning On operation of EWHs, might reduce

the peak caused by rebound effect [96]. For utilities serving large areas, the simulated

distribution system is one node at the transmission system, and the simulated EWHs

could be controlled as one batch.

The initial water temperature in the tanks for all simulated EWHs were evenly

distributed between 115F and 135F, noted as U(115F,135F ). The initial energy take
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Figure 3.21: Working status of the EWHs without control (top) and with CTA-2045
control (bottom). The Shed command in the morning and evening postpone most of
the EWHs to be On.

for all simulated EWHs were evenly distributed between 0 and 1000Wh, noted as

U(0,1000Wh). Two shed event commands were issued during 7:00–10:00 and 17:00–

19:00 to reduce the peak power. The first load up event starting from 6:00 was to

increase the water temperature for the coming shed event. The other load up event

during 11:00–16:00 was to absorb the potential surplus PV generation from other

nodes of the entire transmission power system.

The simulation results of On/Off status for all 353 EWHs demonstrate the an-

tedated and postponed peak under CTA-2045 control (Fig. 3.21). The shadowing

parts for the controlled case (bottom) indicate the duration for when the DR control

signals were implemented. Many EWHs were turned On when the load up events
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Figure 3.22: Aggregated power for all the simulated EWHs. The shed command
postponed the heating power and reduced the peak power during the DR control
period in the morning and evening, but also caused the rebound afterwards.

started at 6:00 and 11:00.

The shed event postponed the time for most EWHs to be turned On, as observed

at 10:00 and 19:00 when the shed events ended. User comfort was maintained during

the shed event as some EWHs were turned On when their energy take values were

higher than the maximum level. The rebound effect was observed at approximately

9:00 and 18:00.

The impacts of DR events are demonstrated by the aggregated power for all the

simulated EWHs (Fig. 3.22). The peak at 6:00 was caused by the load up event. The

aggregated power was reduced from 7:00 to approximately 9:00 because of the shed

event. The following rebound effect at 9:00 was caused by temperature recovering to

maintain user comfort.
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Figure 3.23: Energy take of the EWHs without control (top) and with CTA-2045
control. The shed command allowed more energy take while the load up did less.

When the shed event ended at 10:00, most EWHs were turned On which resulted

in another peak. This was due to the insignificant effect of the early load up event

that started at 11:00 to the aggregated power curve. The shed event in the evening

reduced the power and also led to a peak afterwards. It is observed by comparing the

two shed events that the longer the event, the larger the rebound peak afterwards.

The summary for the energy take of all EWHs shows the difference between nor-

mal operation and DR events (Fig. 3.23). For the case without DR (top), most of

the EWHs had the energy take value between [0,1000Wh]. The outliers, which are

represented by red dots, were caused by high hot water draw. Most of the outliers

appeared in the morning and reflected the high water usage for residences at that

time.
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During the two load up events (Fig. 3.23 (bottom)), the boxes for energy take

were shorter as the maximum energy take level was smaller (Table 3.3). During the

two shed events, higher energy take values were allowed for all simulated EWHs. The

minimum energy take values for shed events stayed at 0 instead of 1,800Wh as stated

in Table 3.3 because some EWHs did not have hot water draw. Therefore, even when

the minimum energy take level was high, some EWHs experienced an energy take of

approximately 0 until there was hot water usage. This can be observed from 8:00 to

9:00 as the boxes were shifting above.

Starting from 9:00, the energy take for some EHWs were too high, and these EWHs

were turned On to maintain user comfort. Therefore, at 9:30, the upper whisker was

lower than that of 9:00. The 25% percentile and median at 9:30 were higher than

those of 9:00, indicating that more EWHs had higher energy take. At 10:00, most

EWHs had high energy take and the box moved upward, making the 0 energy take

value an outlier. If the shed event had lasted longer, the box would keep moving

upward and have the minimum and maximum energy take values as stated in Table

3.3. The shed event in the evening lasted for 2 hours and the forms of boxes behaved

similarly to the first 2 hours of the morning shed event (7:00-9:00).

The aggregated energy take rose from approximately 20kWh to 510kWh from

7:00 to 9:00 and then remained at around 500kWh until the shed event ended at

10:00 (Fig. 3.24). The load up and shed events in the morning together postponed

electricity usage of approximately 490kWh during the peak time. Theoretically, each

EWH could have 0 energy take when the shed event starts and have 2,250Wh energy

take when the shed event ends. Practically, the hot water draws were not identical
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Figure 3.24: Aggregated energy take for all the simulated EWHs. The shed command
in the morning and evening resulted in high energy take. When the load up command
was implemented in the afternoon, energy take was kept at a low level.

and, therefore, the energy take values for EWHs could be different at a given time

step. The simulated 353 EWHs were not able to have the aggregated energy take as

794kWh because, at any given time step, there were always some EWHs that did not

reach the energy take of 2,250Wh and others that had more than 2,250kWh which

were turned On. In this study, the average energy take an EWH can contribute was

1,388Wh maximum.

The load up event occurred in the afternoon and a lower aggregated energy take

was observed with control. The load up command could be issued to the communities

where the load PV generation is high. The shed event in the evening lasted for a short

period of time during which the aggregated energy take increased up to approximately

310kWh. For both shed events in the morning and evening, the energy take decreased
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Figure 3.25: Water temperature in the tank for the EWHs without control (top)
and with CTA-2045 control (bottom). The temperature was reduced during the shed
event and was maintained high during the load up event in the afternoon.

very quickly after the DR event.

The water temperature in the tank for all EWHs was kept relatively stable during

the normal operation event (Fig. 3.25 (top)). The minimum temperature decreased,

and outliers with low temperature appeared from 7:00 to 9:00 due to high hot water

usages. The two shed events resulted in lower water temperature. The water temper-

ature increased significantly during the first load up event. The water temperatures

for all EWHs were increased by the load up event in the afternoon, which can be

observed clearly from the results at the aggregated level (Fig. 3.26).

In this study, user comfort was considered violated when the energy take value

was more than 2,300Wh. The maximum energy take levels during shed event was

2,250Wh. The EWHs hvae 50 gallons, and the extra 50Wh allowed approximately
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Figure 3.26: Average tank temperature for all simulated EWHs.

0.4F lower than the minimum user comfort value. For the case without DR response,

96 EWH had the violation for at least 1 minute, and, with DR control, the number

was 171 (Fig. 3.27).

Further insight revealed that most EWHs had short periods of violation for the

without control case, e.g., 72 EWHs violated for less than 15 minutes. With the DR

control, 51 EWHs had violation minutes of less than 5. The DR control reduced

the violation time for some EWHs because of the preheating process under the load

up event starting from 6:00. The DR control also caused more EWHs to have more

violation minutes due to the shed event. The total violation minutes for all the

EWHs was calculated by adding up the violation minutes for each EWH. In total,

the case without control had 1,500 violation minutes, and the case with control had

4,033. Given a total number of 353, each EWH experienced around 7 minutes of

temperature that was lower than the minimum boundary on average.
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Figure 3.27: Summary of daily violation minutes for each EWH. Three EWHs had
daily violation minutes with [40,50) without control, and this number was 18 with
control. With DR control, the number of EWHs with more daily violation minutes
increased.

3.4.2 Distribution Power System Operation

The total power demand for the simulated IEEE 123-bus was presented in Fig.

3.28. The results were acquired with the OpenDSS command circuit.TotalPower,

and only the active power (kW) is presented. Peaks were observed at 6:00 when the

load up event occurred and at 10:00 and 19:00 when the shed event ended, as has

been explained in the previous section (Fig. 3.22). The peak power from 7:00–10:00

was reduced from 983kW to 706kW, a reduction of 28%.

The combined use of OpenDSS commands of circuit.ActiveBus.puVmagAngle,

circuit.SetActiveBus(), and circuit.AllBusNames and returned 278 voltage val-

ues. If a bus has three phases, the voltages of Φ-1, Φ-2, and Φ-3 were recorded sepa-

rately. The voltage for all the buses are presented in Fig. 3.29. All the voltage values

102



Figure 3.28: The aggregated residential load for all houses. The shed command
postponed the peak power in the morning and evening for this distribution system.

were within the tolerance of 1±0.05 p.u., although large variations were observed at

6:00, 10:00, and 19:00.

For most of the cases, many of the bus voltages were higher than 1 p.u., as the

simulated total residential loads were smaller than the spot loads in the original

IEEE 123-bus cases. For example, node 2 had an original spot load of 20kW but was

replaced by 2 residences, which could not reach such high power demand. Therefore,

the voltage for the entire simulated power system was more than 1 p.u. for most of

the time.

Bus voltages for selected hours were presented in Fig. 3.30 to show the impact of

DR controls. The samples with the same marks for both cases were taken from Fig.

3.30. When the load up event occurred at 6:00, the voltage for most buses dropped as
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Figure 3.29: The voltages for all buses in the IEEE 123-bus feeder. The boxes during
the DR period are marked and compared side-to-side.

power demand at most buses went high. Both the minimum, 25% percentile, median,

75% percentile, and maximum values for the with control case were lower.

The shed event occurred at 7:00, and the bus voltage went higher as power demand

reduced. At 9:00, the 75% percentile values were lower, indicating the rebound for

some EWHs, which were also observed in Figs. 3.21 and 3.22. The rebound effect

was strong at 10:00 when the shed event ended and large power demand from EWHs

brought the voltage down.

During the load up event starting at 11:00, most of the buses had lower voltages.

The lower whisker was higher than the without control case due to the rebound effect

at 10:00, which prevented some EWHs to be turned On at 11:00. The rebound effect

at 10:00 and load event at 11:00 antedated the water heating process of most EWHs.
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Figure 3.30: The side-to-side comparison of bus voltages with and without DR control.
All the bus voltages were kept within the 5% tolerance during the DR events.

Therefore, at 12:00, less EWHs were On and the voltages on buses went higher with

DR control. A similar cycle was observed at 13:00, 14:00 (antedated operation) and

15:00 (less EWHs were On) during the load up event. At 13:00 and 14:00, the median

of voltages were lower, indicating more EWHs were On.

The voltages increased in general during the shed event in the evening from 17:00.

Also observed is the rebound effect at 19:00 when the shed event ended. The DR

controls shown above caused the violation of the voltages for all buses within the

±0.05p.u. tolerance.
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Figure 3.31: The illustration for shifting the water heater load to operate on the
average power. The COP = 3.4 is calculated based on of the two average powers. With
the reference to the average power, the EWH and HPWH could shift approximately
14% and 17% of their corresponding daily electricity usage, respectively.

3.5 Optimal DR Studies at Aggregated Level

3.5.1 Constant Power Operation Using Load Shifting

In the ideal case, the aggregated water heater loads can be kept constant by

shifting the peaks, as illustrated in Fig. 3.31. The electricity used at peak load

period, which is above the average power and marked with “●” can be shifted to the

time when the power is low, as the areas marked with “▲”. In this study, for the

EWH, 3.1 p.u. of energy, which was 14% of daily electricity usage, could be shifted

with the reference to the average power. For HPWH, the numbers are 1.1 p.u. and

17%.

By preheating and shedding, both EWH and HPWH can work on the constant

powers, which are the average powers. It is assumed that both EWH and HPWH have
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Figure 3.32: The relative values of EWH and HPWH generic load power compared
with their corresponding average value. The HPWH has larger variation.

the same amount of input energy for water heating. Therefore, the portion between

the two average powers is regarded as the COP for the aggregated HPWH, which is

3.4.

The absolute power of the aggregated HPWHs is lower in general when the num-

bers of EWHs and HPWHs are the same. However, further inspection reveals that

the power profile of HPWHs has a larger variation with the reference to the average

power (Fig. 3.32). In communities where HPWHs are widely installed, shifting the

water heater loads can reduce the peak power demand significantly.

The water heater digital twins were used to calculate the average water tempera-

ture in the tank and monitor the user comfort. The hot water flow remains unchanged

as the user behavior will not change. The preheating and shedding procedures change

the hot water temperature in the tank. When the aggregated water heater powers
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Figure 3.33: The average temperature for EWH and HPWH, which were calculated
using the same water draw and the corresponding constant power. The input energy
for EWH and HPWH were the same all the time. After the starting point, the HPWH
always had lower tank temperature because of higher heat loss.

were constant, the average water temperatures in the tank were calculated according

to (3.23) and presented in Fig. 3.33. For both EWHs and HPWHs, the tank temper-

atures were above the minimum required 115F when the aggregated heating power

was constant. Due to the COP, the input energy for heating the water were the same

for both EWH and HPWH at any moment even the HPWH used less electricity. The

average tank temperature for HPWH was always lower because of higher standby

losses to ambient. It is worth noting that even the HPWHs have higher standby

losses to ambient, their overall efficiency is much higher than that of the EHWs due

to the COP.

Measuring the temperature in the water tank requires sophisticated techniques as

water with different temperature is stratified and is not mixed evenly. Water heaters
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that are CTA-2045 ready can monitor the devices with the readable quantities related

to energy. According to the Energy Star specification, the “energy content of the

stored water” for water heater, EW , is calculated as (3.2). The energy take between

two time points is calculated as (3.4). In this chapter, the energy take at one time

point was defined as the difference between the “energy content of the stored water”

in that time point and that of the zero (0) time point.

The energy take for EWHs and HPWHs under constant power is shown in Fig.

3.34. The negative values in the early morning indicate the preheating procedure,

during which energy was put into the water tank instead of being taken out. The

energy take for HPWHs was higher due to higher heat loss. Because of the COP, the

corresponding electricity for HPWHs had a much lower value, as presented in Fig.

3.34.

3.5.2 Load Shifting for Morning and Evening Peaks

The objective of DR is to shed the EWH load at critical time, and recover during

the midday, as follows:

PD(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

PT , if t ∈ TD

PO(t) + PR(t), if t ∈ TR,
(3.27)

where PD is the aggregated EWH load with DR; PT , the target aggregated power;

PO, the original aggregated EWH load without DR; PR, the shifted power; TD, the

set of time when DR is required; TR, the set of time when the power is shifted to.

CTA-2045 provides energy take as an alternative to temperature control. The

most useful value, i.e., the amount of energy that can be stored, is provided to the
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Figure 3.34: The energy take for EWHs and HPWHs for the same water draw and
the corresponding average power. The energy take for HPWHs was more than that
of EWHs when they had the same amount of input energy due to higher heat loss.
The HPWHs use less electricity to heat the water because of their COP.

utility, and details of temperature control can be avoided. Adjusting the temperature

bounds of the water heater can maximize the energy storage capability. However, for

the concerns regarding safety and user comfort, the residences are not encouraged to

change the set points, which are defined by the manufacturers with specific knowledge

of tank geometry and sensor readings [67]. The case studies in this chapter represent

the utility-controlled DR load type, instead of consumer-incentive DR control. Similar

to industrial shedding, an extreme scenario was carried in this chapter to evaluate

the potential of energy storage capacity of EWHs and HPWHs.

In this study, the generalized characteristics of residential PV was considered and

the EWH and HPWH reserved the energy storage capacity for the afternoon. The

aggregated power for an example DR with TD = [5 ∶ 30,7 ∶ 00]⋃[18 ∶ 00,20 ∶ 00],
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Figure 3.35: Example DR for aggregated EWH based on the generic load. This
approach demonstrates how the peak demand of aggregated EWH load at the morning
and evening peaks can be shifted to midday, when solar generation is relatively high.

TR = [9 ∶ 00,16 ∶ 00] and PT = 0 for EWH is shown in Fig. 3.35. In this extreme

example case, the loads at morning and evening peaks were entirely shifted to the

afternoon. The same shedding periods were selected for HPWH for comparison and

results are shown in Fig. 3.36.

The electricity usage for both EHW and HPWH are shown in Fig. 3.37 and 3.38,

respectively. For both EWH and HPWH, during the shedding periods, the electricity

usage remained unchanged. In the DR case, the electricity usage increased faster due

to the shifted load starting from 9am. For both with and without DR case, the total

electricity usage was the same at the end of the day.

The aggregated power profiles for EWH and HPWH under DR control are shown

together in Fig. 3.39. The fixed hot water flow from Fig. 3.19 was used for the DR

study for both EWH and HPWH. During the shedding period in the morning, which
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Figure 3.36: Example DR for aggregated HPWH based on the generic load. The
shedding periods for the HPWH were selected as the same as that of the EWH case
for comparison.

Figure 3.37: Accumulated electricity usage of the aggregated EWH. Both cases used
the same amount of total electricity at the end of the day, which was 21.4 p.u. In the
DR case, the electricity usage remained unchanged during the morning and evening
peak shedding period. The electricity usage for the DR case increased fast in the
afternoon due to the shifted electricity.

112



Figure 3.38: Accumulated electricity usage of the HPWHs. During the morning and
evening peak shedding period, the used electricity remained unchanged in the DR
case. More electricity was used in the afternoon due to the load shifting. Both cases
used the same amount of electricity at the end of the day, which was 6.3 p.u.

stands for the maximum load reduction case scenario, the water temperature in the

tank dropped significantly, as shown in Fig. 3.40. The water temperature for HPWH

dropped even below the minimum 115F under the extreme shedding case. A practical

home energy management would put the customer comfort as priority and avoid the

tank temperature being too low. The high water temperature in the afternoon was

feasible due to the implementation of mixing valve technology.

The corresponding energy take is shown in Fig. 3.41 for the DR case. For both

EWHs and HPWHs, the shedding in the morning led to high energy take, leaving

large reserved energy capacity for absorbing the surplus PV generation. The energy

take went negative in the afternoon, indicating that the water was heated by the

shifted load. The peak-to-peak values of the energy take in this example were 4.8
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Figure 3.39: The aggregated power for EWH and HPWH with DR control. The
morning and evening peaks for both EWH and HPWH were shifted to the afternoon
when the PV had surplus generation.

Figure 3.40: The average hot water temperature in the tank for both EWH and
HPWH with DR control. The example shows a significant reduction in tank temper-
ature in the early hours for the extreme condition when all the water heaters were
turned Off. The recovery around midday means the water heaters can be used as
storage for surplus PV generation.
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Figure 3.41: The energy take for both EWHs and HPWHs with DR control. The
energy take was high during the shedding periods because there was no energy input.
In the afternoon, the energy take was negative, indicating the preheating process
and higher water temperature in the tank. The corresponding electricity usage for
HPWHs was lower due to the COP. The reserved capacities for both EWHs and
HPWHs were approximately 22% of the corresponding daily electricity usage.

p.u. and 1.4 p.u., for EWH and HPWH, respectively. Given that the daily electricity

usage for EWHs and HPWHs are 21.4 and 6.3, the reserved electric energy capacity

for both EWHs and HPWHs were approximately 22% of their daily electricity usage.

For a community with 1,000 EWHs, a total 2,500kWh energy can be stored in the

water heaters in the example DR case. If the water heaters are all HPWHs, the

number is approximately 730kWh.

3.6 Conclusion

The multi-physical models for EWH and HPWH were created with the ability to

calculate the water heating power, hot water flow, water temperature in the tank,

115



and energy take for any number of water heaters. A generalized approach to energy

storage that enables all such systems and devices, not only batteries but also EWHs

and, in principal, HVAC systems, to be controlled with the same variables, namely

“energy capacity” and “energy take”. Such controls comply with the specifications

of Energy Star and CTA-2045, which can ensure a platform for industrial and utility

adoption. It was found that the example BESS and EWH are comparable when

considering their energy content as generalized energy storage with occupant safety

from high water temperatures guaranteed through a mixing valve solution.

A distribution system with 353 residences was simulated using the IEEE 123-

bus feeder with experimental user data and realistic hot water flow data from the

California Building Energy Code Compliance (CBECC). DR complying to CTA-2045

specifications was implemented to all the EWHs. Peak power during the shed event

in the morning was reduced by 28%. With the defined energy take levels in this study,

the average energy take value was 1,388Wh at maximum. With the selected hot water

draw profiles and number of different house types, each residence had 7 minutes more

time during which user comfort requirements were not maintained. These results

were achieved while keeping the variation of the bus voltages within 1±0.05 tolerance

throughout the power system.

The proposed aggregated generic curves for residential water heaters, which use

a minimal amount of data points, are the first of its kind to the best of the authors’

knowledge. The aggregated generic curves for EWH and HPWH were obtained based

on large-scale projects. The experimental data for EWH generic curve was collected
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from approximately 800 users during a period of two years by the industrial collabo-

rator, A. O. Smith. The experimental data for HPWH generic curve was provided by

the BPA from the project involving 300 heat pump CTA-2045 enabled water heaters

in the pacific northwest.

The peak power for the aggregated EWH load was approximately 3 times that

of the HPWH and changing all EWH to HPWH reduces the daily electricity usage

by approximately 70%. Case study results show that when referring to the average

power, approximately 14% daily electricity usage for EWH could be shifted. The

HPWH still maintained the opportunity to shift approximately 17% of the daily

electricity usage. The EWH could reserve the energy storage capacity equal to 22%

of its daily electricity usage in the case study. Changing to HPWHs reduces the

electric storage capacity because HPWHs use less electricity than EHWs in general.

However, HPWHs still reserved capacity equal to 22% of their daily electricity usage

when the peaks were shifted to the afternoon.
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Chapter 4

Virtual Power Plant Operation for
Large Residential Communities
including HVAC and Energy
Storage

4.1 Introduction and Problem Formulation

The smart home concept facilitates the participation of all power generation enti-

ties and is an enabling idea for future power system sustainability. Futuristic smart

homes both integrate information technology and provide opportunities for incorpo-

rating other innovative technologies, such as solar photovoltaic (PV), smart devices,

and energy storage. With such technological advancements, smart homes can en-

hance energy efficiency, and improve both stability and reliability by allowing owners

to regulate electricity usage [35–37]. They can also change the operations of utilities

by minimizing both energy usage and peak demand in residences[38–41].

Smart homes reduce energy usage by reducing heating, ventilation, and air-conditioning

(HVAC) demand via improved building insulation and usage of intelligent control

techniques to automatically turn Off idle devices [157–160]. Furthermore, smart
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homes have the authority to control the appliances according to the utility com-

mands [161]. Such load control capability is increasingly important as local solar PV

penetration grows and progressively more smart homes begin to act as distributed

energy resources (DERs) by participating in the energy market [162–164].

Some technical challenges are associated with the high penetration of PV in res-

idences, one of which is the “duck curve”. This phenomenon occurs when the net

power demand fluctuates with a large deviation within a short period, typically dur-

ing the hours between the afternoon and the evening [4]. For ensuring local voltage

support, it is necessary to maintain a minimum generation of electricity by utility

plants. Hence, the reliability of the power system is compromised when the genera-

tion of power is minimized during the mid-day to allow high PV generation [61]. To

match with the fast increasing power demand in the evening, high-cost high-ramp

rate generators are required when PV generation becomes unavailable [62].

Ancillary services, such as those described in [84], are provided in order to enhance

the capabilities of the electric power system. The addition of energy storage can

alleviate the “duck curve” through load shaving, peak shifting, and self-consumption

of the local PV generation. Smart homes can be used as virtual energy storage by

utilizing various thermal components, such as the HVAC systems and electric water

heater (EWH), for circumventing peak demand [85]. Residences can support the

ancillary services through energy flexibility, which depends on factors including the

capacity of the HVAC system [86]. Aggregated HVAC systems can be employed to

improve power quality and efficiency in demand response (DR) [87]. At the aggregated

level, HVAC systems may be controlled sequentially to reduce the peak demand while
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maintaining the user comfort [85].

EWHs are also capable of providing ancillary services due to the large thermal

mass of the water tank, as well as their presence in most households [65, 66]. The

EWH can preheat the water to a much higher temperature while assuring the safety

with the help of mixing valve technology [165]. Most EWH manufacturers provide the

CTA-2045 modules in their new products or offer refurbishments to enable real-time

communication and control [68, 69]. In previous research, EWHs were used to regulate

the frequency in an electric power distribution system [166]. Another research study

showed that the aggregated EWH load can be controlled to contribute to shifting

the system peak load [70]. Communities with large penetration of controllable EWH

have, in principle, the potential for providing ancillary services.

HVAC systems use the highest percentage of energy within typical residences and

dominate the house energy usage and contribute the most to the peak power demand

at the aggregated level [167]. To accommodate for large fluctuations in demand over

the course of a day, expensive infrastructure must be installed to meet the maxi-

mum demand. Utilizing HVAC systems as DR devices has great opportunity to yield

significant energy savings, especially at an aggregated level. A grey-box resistance-

capacitance (RC) model provides accurate results for the indoor temperature with

proper values for R and C [168, 169]. Aggregated modeling for a community of air

conditioning loads has been proven effective for the study of large-scale DR implemen-

tation [15]. Commercial HVAC system modeling employs statistical methods that are

also highly accurate [16].

The DR studies with residential-level HVAC models, however, are more recent and
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have yet to reach this degree of confidence due to the strong link among HVAC energy

use, random user behavior, and external weather conditions. The effect of weather

induces more variation in energy and is more difficult to capture at the residential

level. Current research proposes various methods to develop residential HVAC energy

models, such as power-temperature modeling through disaggregation of smart meter

data [170], or employing whole building energy simulators like EnergyPlus [171], or

eQUEST [93].

To ensure adequate thermal comfort, the HVAC control follows Standard 55

of the American Society of Heating, Refrigerating and Air-Conditioning Engineers

(ASHRAE), in terms of external and internal temperature, relative humidity, indi-

vidual metabolic rate, etc. [17]. The ASHRAE Standards quantify the comfort of the

space using a numerical scale called the Predicted Mean Vote (PMV) that was derived

from survey results where participants ranked their comfort from -3, very cold, to 3,

very hot. This allows for an association between a range of environmental conditions

to a comfortable status within a home that can be calculated as a PMV between -0.5

and 0.5, which may be used to control heating and cooling systems without affecting

thermal comfort.

HVAC systems are widely perceived as solely energy-consuming in the power grid.

This view is being re-assessed in the field of home energy management (HEM) as re-

cent research from the Oak Ridge National Laboratory (ORNL) demonstrates that

the HVAC system can be regarded as an equivalent energy storage device and be con-

veniently controlled by a similar charging/discharging procedure [12]. For example, a

commercial building with multiple zones can be modeled to operate as an equivalent
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energy storage device and can be controlled by adjusting zonal airflow rates [13]. As

claimed in [14], the round trip efficiency of the HVAC-based equivalent energy storage

can be near 100%.

A research gap remains as most HVAC system models require parameters that are

challenging to acquire [172]. It becomes increasingly difficult for aggregated HVAC

load modeling considering additional parameters for the multiple buildings. Some al-

ternative methods for aggregated HVAC load modeling may only monitor the average

room temperature for multiple buildings, ignoring the thermal comfort of individual

users [97, 173].

In this chapter, smart homes were operated as DERs in a distribution system

for peak reduction and the alleviation of the “duck curve”. The long term total

load profile for the residential community was forecasted considering the trends of

increasing percentages of smart homes and the PV penetration. It was demonstrated

that with an appropriate HEM system, the “duck curve” at the power system level

can be alleviated even when PV penetration is fairly high.

The smart homes successfully operated as DERs and the experimental data was

available from the Smart Energy Technologies (SET) project in Glasgow, KY. The

similar VPP operation for the distribution power system was realized by batteries and

EWHs, respectively. Controlling the EWHs could achieve different peak reduction

targets while guaranteeing the user comfort. The minimum participation rates for

EWH are calculated and compared with that of the BESS.

The problems addressed in this chapter include the VPP control using residences

as DERs and the development of aggregated HVAC power at large scale. Each of the
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problems are defined in the subchapters: the VPP control using residences as DERs

in section 4.2, and development of aggregated HVAC power at large scale in section

4.4.

In this chapter, the comparability between the HVAC system and a typical battery

BESS was studied and demonstrated. A centralized sequential DR control method for

the reduction of the ramping rate and peak power was elaborated in this work. The

HVAC system was controlled by changing the thermostat set point, which was justified

to ensure human comfort according to ASHRAE standards. Cases for different hot

days, and for one day with different residence participation were studied.

This chapter is substantially based on the following journal papers:

• H. Gong, et al., “Peak reduction and long term load forecasting for large resi-

dential communities including smart homes with energy storage,” IEEE Access,

Vol. 9, pp. 19 345–19 355, 2021.

• H. Gong, et al., “Virtual power plant control for large residential communi-

ties using HVAC systems for energy storage,” IEEE Transactions on Industry

Applications, Vol. 58, No. 1, pp. 622-633, 2022.

4.2 Smart Homes as DERs for VPP

4.2.1 Technology Demonstrator and Analysis Framework

This study utilizes the experimental data from the Smart Energy Technologies

(SET) project in Glasgow, KY, a city for which utility services are provided by the
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Figure 4.1: Aerial view of Glasgow, KY, the location of the studied SET, along with
pictures of smart devices for home energy management: thermostat, EWH and BESS,
which are programmable and enabled by WiFi or Ethernet. The data acquired has a
resolution of up to 1 minute and is available for both home owners and the utility.

municipal Electric Plant Board (EPB) in partnership with the Tennessee Valley Au-

thority (TVA) [174]. Currently, this project is one of the largest rural field demonstra-

tors in the US with high efficiency. The proposed software framework is implemented

to model this entire advanced community that includes residential, business, and in-

dustrial sectors. The model incorporates a HEM system that allows regulating the

residential EWH, HVAC, and BESS to reduce the peak demand and energy usage.

Building upgrades along with controllable and highly efficient devices are employed

by the residential homes studied in this SET project (Fig. 4.1). According to the

current data, over 300 homes out of around 5,000 from Glasgow, KY, are participating

in the project. As a result, approximately 600,000 kWh of energy is saved annually.

All the residences participating in this SET project receive measures to improve

energy efficiency, such as efficient HVAC systems, better insulation, etc. Due to

such improvements, energy usage is reduced in some of the SET homes, although
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Figure 4.2: The proposed system model includes five types of SET homes, each type
being representative of thousands of individual houses. In the study, the load data
for the business and industrial sectors is provided by experimental measurements.

all of them are single-family houses with comparatively larger space. Furthermore,

programmable WiFi-enabled thermostats, heat-pump EWH, and a residential BESS

allow the SET homes to perform real-time HEM.

Although the total power demand of the Glasgow EPB service includes business,

industrial, and residential sectors, the system modeling presented in this study mainly

emphasizes the residential sector and the aggregated effects of regulating single SET

homes. The residential community includes five types of houses: non-SET conven-

tional homes, residences with HVAC, EWH, and BESS control (HEB), the HEB

house with improved Insulation (HEB I), and the HEB, HEB I house with local solar

PV panels (HEB PV, HEB I PV), respectively, as illustrated in Fig. 4.2.

Apart from Non-SET conventional homes, the rest of the four types are SET
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Figure 4.3: Schematic representation of the INSPIRE+D proposed simulation soft-
ware framework, solely based on freeware, capable of running thousands of house
energy models in parallel and concurrently performing power flow optimization.

homes. The residences in the SET project work as controllable loads with the inte-

gration of smart devices, bi-directional communications, and integrated management.

It allows the houses to interact with the grid dynamically, and improves the coordina-

tion; leading to load shifting, peak demand reduction, and energy saving. The ultra

smart home (USH) with the Solar Integration System (SIS) monitor the residential

power flow and upload real-time data. The available data from 148 USHs includes

the net power flow from the grid, the power and state-of-charge (SOC) of the BESS.

Another set of data with the daily power profile for more than 5,000 residences is

provided by the utility. The data includes the electricity usage at 15-minute intervals

for each individual home on example summer and winter days. The data serves as

the baseline case, which presents typical power demand for the distribution system

where most of the residences are conventional houses without PV. For the purpose
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Figure 4.4: The proposed home energy management scheme for the SET homes. Solar
PV and BESS are integrated into a Solar Integration System (SIS). HVAC and EWH
load demands are controlled through temperature set points.

of the computational study, the solar PV system for each house is sized in order to

meet the NZE requirements, i.e., the energy used over one year must be equal to the

energy generated by the PV system.

The simulation for the power system formed by the SET community including

over 5,000 homes is realized by an innovative, first of its kind, software frame-

work ‘Integrated Network simulation for Smart Power-flow In Residences using

EnergyPlus and OpenDSS’ (INSPIRE+D), as shown in Fig. 4.3. INSPIRE+D incor-

porates freeware such as EnergyPlus, BEopt, OpenDSS, and Python, and is capable

of both power flow analysis at the system level, and house energy modeling along with

HEM at the single house level [11]. Its scalability allows the simulation of thousands
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of different house models in parallel, utilizing a high-performance computing (HPC)

system with thousands of cores.

4.2.2 Home Energy Management Design

The net load for a residence with HEM I PV is the result of the combined power

for HVAC, EWH, other loads, BESS, and PV, as illustrated in Fig. 4.4. The net load

for a HEM house at time t is calculated as:

P t
H = P t

E + P t
HV AC + P t

O + P t
B − P t

PV , (4.1)

where PH is the residential net power flow; PE, PHV AC , PO, PB and PPV are the

powers of the EWH, the HVAC system, other loads, the BESS and PV, respectively.

It may be noted that for the BESS, positive and negative powers indicate charging

and discharging, respectively.

The water tank temperature is limited as follows,

T t
S −∆TD ≤ T t

E ≤ T t
S, (4.2)

where TS is the set point of the EWH; ∆TD, the dead band of the EWH, which is set

to 18F, T t
E the temperature of water in the EWH tank. T t

E is updated automatically

by the house energy model. The water heater power is decided by the nominal power

and its status from the following,

P t
E = PE,N ⋅ St

E, (4.3)

where PE,N is the nominal power of the EWH. The status of EWH, St
E, is decided by

the water temperature in the tank, set points and the dead band as per the following,
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St
E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = Off, T t
E > T t

S,

1 = On, T t
E < T t

S −∆TD,

St−1
E , other.

(4.4)

The set point, T t
S, for the EWH determines the required On and Off switching and

the resultant power flow according to (4.2) – (4.4).

The high specific heat capacity of water, negligible heat loss, and mixing valves

enable advanced controls, e.g., postponed electric heating load while sustaining the

comfort of the consumers [175]. The effect of the EWH controls are exemplified in Fig.

4.5 for three EWH working schemes and their corresponding tank temperatures. Peak

power due to EWH operation occurs in the morning without adopting any control

mechanism. To avoid this morning peak, EWH is controlled to operate in the early

morning and at midnight in the HEB-type homes without any PV generation system.

The residences that include PV shift the EWH load to the afternoon to absorb the

surplus PV generation.

The HVAC power is represented as a function of the thermostat set point tem-

perature change by the following,

P t
HV AC = f(∆T t

R). (4.5)

Consumer comfort is taken into account by limiting the heating and cooling set

points:

T t
H ≤ T t−1

R +∆T t
R ≤ T t

C , (4.6)

where TR, TH , and TC stand for the room temperature, set points for heating and
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Figure 4.5: Water temperature in the tank and instantaneous power of EWH. HEB
homes shift the EWH load to the morning and the evening. When equipped with
solar PV, SET homes shift the EWH load to the afternoon to absorb surplus PV
generation.

cooling, respectively. Previous research works show that the room temperature is

influenced by factors including outdoor and ground temperatures, floor space, human

activities and the heat radiation from indoor appliances [89].

The EnergyPlus software is employed to model the houses and quantify the results

of the HVAC and EWH control. It may be noted that the user can over-ride the HEM

controls if desired. The SET homes with the HEM system have lower HVAC loads

on both the studied summer and winter days due to the improved insulation. The

example control of HVAC in a winter day is presented in Fig. 4.6. By adjusting the

mid-day temperature set point to a lower value, the HVAC power of the HEM house

decreased significantly. In the afternoon when the SET house owner is away, the

thermostat set point (TS) is set low in order to reduce the HVAC load. TS is changed
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Figure 4.6: Simulated HVAC power demand for a typical home on an example winter
day. A house of the conventional type (denoted by a suffix ‘C’) without HVAC control
has higher HVAC power in the afternoon. In a HEB-type home, the capability of
changing the heating set point (TS), leads to lower HVAC power in the afternoon
when the owner is away.

back at 17:00 before the house owner returns home.

The net power flow of the NZE house is thus defined as a function of the HVAC

set points, water heater set point, and the BESS power, as below,

P t
H = f(P t

B, T
t
S, T

t
H , T

t
C). (4.7)

Based on the previous equations (4.1)-(4.7), and substantially following the con-

cepts described in [176], a HEM algorithm has been developed and implemented at

residence level in order to meet the power limit set forth by the system operator util-

ity via control signals during a DR event. Power in excess of the limit is firstly to be

supplied, if available, by a BESS. Should such required supply exceed the maximum

power of the BESS or should its state of charge be lower than admissible, appliances

will be controlled to sequentially contribute to the power demand reduction, as briefly
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Figure 4.7: Simulated net power demand for a single-family house. The demands for
HEB and HEB+PV houses are shaped by controlling the HVAC, EWH and BESS.

described in the following.

The energy used by the EWH will be reduced during DR by lowering the cor-

responding set point as exemplified in Fig. 4.5. In case the instantaneous power

demand still exceeds the limit, the HVAC energy use is reduced by changing the set

point for heating or cooling, depending on the season, as shown in Fig. 4.6. Changes

may be performed incrementally until the utility-set upper power limit is met and

making sure, as a priority, that the minimum user comfort requirements are met.

The controllability of BESS provides enhanced flexibility to the HEM system

because the charging and the discharging operations do not impact the comfort of the

residents. The example effect of the BESS control from Fig. 4.7 illustrate the HEM

functions for smoothing the residential energy demand and reducing peak power.
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Table 4.1: Case studies with different percentage distributions of house types in the
community power system

Cases
Conv
(%)

HEB
(%)

HEB I
(%)

HEB PV
(%)

HEB I PV
(%)

BL >94 <3 <3 0 0
2 50 25 25 0 0
3 50 0 0 25 25
4 20 20 20 20 20
5 0 25 25 25 25

4.2.3 Long Term Impact of Technology Penetration

In Table 4.1, case studies based on different penetration of technologies, i.e., house

types, are demonstrated. The experimental data provide the baseline case (BL) and

stands for the current field situation where only around 300 out of approximately 5,000

homes are SET, and do not possess PV installations. In the second case, HEM control

is not included. The net power flow curves of both the aggregated and the baseline

case are similar, which validates the model. The improved insulation increases the

efficiency of HEM I homes, which causes a reduction in the total energy usage for

case 2. Cases 2 to 5 present the gradual shift to futuristic high energy efficiency

and distributed PV generation community. The simulation of the distribution power

system for each case study was performed based on a modified IEEE 13-node test

case, and solved by OpenDSS.

The case studies were performed on two preselected representative days in Glas-

gow, KY—1/19/2017 (Winter) and 7/20/2017 (Summer). It is shown in Fig. 4.8 (a)

that the aggregated residential power demand peaks in the morning and the evening

on the winter day. On this winter day, the residential load drops in the afternoon

because of the solar irradiance, which brings heat into the room through walls and
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(a) (b)

Figure 4.8: Aggregated residential net power flow without HEM for the studied (a)
winter and (b) summer day, respectively. A high penetration of solar PV exacerbates
the ”duck curve”.

windows. The net power flow decreases in the afternoon due to high PV penetration,

leading to a prominent “duck curve” profile (Fig. 4.8 (a)).

The HEB I type homes with improved insulation contribute to residential load

reduction. From Fig. 4.8 (a), it can be seen that even when as few as 25% of the houses

are of the HEB I type, power reduces substantially. From Fig. 4.8 (b), a similarity

can be observed for the studied summer day as well. The SET homes function like

thermal and electrical energy storage systems with the proposed HEM control, which

reduces the peak power flow in the morning and the evening in both cases as shown

in 4.9 (a)). HEB I homes featured in case 2, have lower energy usage compared with

the baseline case, even though they do not accommodate any PV generation. Case

2 with 50% penetration of SET homes, allows the opportunity to shift the peaks

and bring down the ramp rates due to the combined operation of the BESS, and the

controllable HVAC and EWH loads. On the other hand, 50% penetration of SET

homes having the energy storage capacity supported by controllable loads and BESS
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(a) (b)

Figure 4.9: Aggregated residential net power flow with HEM for the studied (a) winter
and (b) summer day, respectively. The proposed HEM reduces the peak demand and
alleviates the “duck curve” effect.

is not sufficient for case 3 to absorb all the surplus PV generation and supply the

total evening demand. Hence, case 3 demonstrates a significant “duck curve” effect.

In case 4, the “duck curve” effect is alleviated to a certain extent due to the combined

effects of a higher percentage of SET homes and reduced PV penetrations.

The PV generation from case 5 is similar to case 3, however, case 5 requires

100% SET homes in the power system. It is noteworthy that, the power usage,

peak demand, and peak to peak value for case 5 features the lowest values. The

study carried out on the summar day (7/20/2017) can also be explained by applying

similar observations, as shown in Fig. 4.9 (b). The above results clarify that high

PV penetration would not form any challenges for the utility grid with the usage of

appropriate HEM systems.
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4.3 Control for Batteries and EWHs for VPP Op-

eration

4.3.1 Operation of Battery and EWH at Aggregated Level

The data from all 148 USHs on an example summer day includes the power and

SOC of BESS, and the net power flow from the grid for each house at 1-hour time-

steps. In Fig. 4.10, the BESS measured power plotted during an example day is

adapted to the typical use of electricity in the Southeast region [177], and includes

charging periods at night, when the load is typically low, and discharging periods in

the afternoon, during typical high demand. The experimental SOC data presented

in Fig. 4.11 shows a maximum of 94% for all BESSs. There is only one single data

point that is below 20%. Therefore, in this work, the maximum and minimum SOC

of all the BESSs are regarded as 94% and 20%, respectively.

The SOC of most BESSs remained at the maximum until around 2pm. Corre-

sponding to the BESS discharging operation, the SOC dropped to the minimum at

6pm. The BESSs were fully charged late at night, completing the operation cycle for

a typical summer day. Based on the measured power and SOC for the BESS, BESS

energy capacities for all 148 USHs are calculated and the average is 16.2kWh. The

measured net power flow from the grid for each USH house in Fig. 4.12 shows that

during the typical peak hours in the afternoon, almost all the USHs achieved near

zero power due to controlled battery discharge operation. Also observed is the high

power in the early morning and late night. Thus, it can be concluded that the BESS

operation has a great impact on the net power flow at the system level.
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Figure 4.10: The BESS charging power for all the 148 ultra smart homes (USHs) on
the example summer day. The negative value in the afternoon indicates the BESSs
are discharging. BESSs were charged in the middle of the night.

Figure 4.11: The SOC of BESSs from the 148 USHs on the example summer day. The
measured data shows the SOC could be regarded within [20%, 94%]. The BESSs were
charged in the middle of the night and maintained at the maximum SOC until around
2pm. The BESSs discharged for the afternoon peak and the low SOC remained until
9pm. The BESSs were charged afterwards for the next day.
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Figure 4.12: The net power from the grid for all the 148 USHs on the example summer
day. The experimental data shows low net power at around 2pm–5pm. The power in
the midnight was high due to BESS charging.

The measured net power and BESS charging power for each of the USHs were

added together to produce corresponding aggregated curves, as shown in Fig. 4.13.

The curve labeled as Ref loads USHs represents the difference between the net grid

power and BESS charging.

A new load aggregated curve corresponding to resistive EWHs was calculated and

later used in the study to replace the experimental heat pump water heater loads.

The aggregated resistive EWH load typically has morning and evening peaks, with an

average peak power of around 1.5kW [82]. The aggregated EWH power-time curve

can be substantially defined by its major turning points for which the mathematical

derivative, i.e., ramping rate, changes drastically. In the example shown in Fig. 4.14

these turning points occur at approx. 5, 7, 12, 15, 19 and 22 o’clock.

For example, a morning peak was exhibited around 7am, and a evening peak 7pm.
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Figure 4.13: The aggregated power for all the 148 USHs based on the experimental
data. The negative BESS charging power indicates the discharging operation at the
peak hours. The aggregated net grid power at midnight was increased by the BESS
charging.

Figure 4.14: The power draw for EWH schemes including preheating and load shav-
ing for different peak reduction targets labeled as percentage. The same amount of
electricity for water heating was allocated at different times for the example day. The
load shaving control was applied only to reduce the total evening peak.
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The BL aggregated EWH curve from Fig. 4.14 stands for the aggregated EWH power

for all 148 USHs without power shaving. A white noise with signal-to-noise ratio of

20 was added to the BL curve. This value is based on the typical results reported

by previous studies [82], which considered the naturally random user behavior on 75

different water heaters, which is approximately half the number of the units considered

in our study.

Mixing valve technology allows the water temperature in the tank to be as high

as 145F, increasing the thermal capacity of the EWHs. The hot water at the EWH

outlet is mixed with cold water in order to provide the user expected comfortable

temperature. Four power shaving schemes were studied for different peak reduction

targets and are shown in Fig. 4.14. The EWHs under all the schemes used the same

amount of daily electricity and the same daily hot water draw. The peak shaving was

realized by shifting the electricity used by EWH from the evening to the morning. It is

worth noting that when the peak reduction target was 20%, the minimum aggregated

EWH power was zero, meaning all EWHs were turned Off during the peak period. It

is possible that the 20% peak reduction target was not achieved even when all EWHs

were turned Off.

It was assumed that the average tank temperature for the BL case is 125F at all

time. With known power P (t) and tank temperature θT (t) from the BL case, the

daily hot water draw W (t) is calculated by solving (3.16). The same daily hot water

draw is used to calculate the average tank temperature for different water heating

schemes shown in Fig. 4.14. The results in Fig. 4.15 show that when the water was

preheated to a higher temperature in the morning, the EWH had more standby loss

140



Figure 4.15: The average tank temperature of all the EWHs for different water heating
schemes. Preheating in the morning led to higher temperature in the tank, resulting
in more standby loss and lower tank temperature at the end of the day when the same
amount of electricity was used for heating. Results show that the proposed heating
schemes maintain the water temperature within the comfort and safety tolerances.

and lower temperature in the tank at the end of the day. Considering the benefits from

peak reduction, the heat loss from preheating is worthwhile. In the case of 20% peak

power reduction, the maximum average temperature reached approximately 140F,

which can be realized through mixing valves. The lowest tank temperature for all the

cases was 119F, which is satisfactory according to a study from the Department of

Energy [178].

4.3.2 Reduction of Peak Power

In order to achieve higher peak power reduction, it is considered that all the heat

pump EWH in the homes are replaced by equivalent resistive EWH. The Ref load

USHs with the resistive EWH were calculated by subtracting the heat pump water
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Figure 4.16: The aggregated EWH and residential loads. The experimental heat
pump water heater load in the Ref load USHs curve was replaced by the BL aggregated
EWH curve. The curve of USH loads with EWH stands for the aggregated residential
loads where all USHs used purely resistive EWHs.

heater load from the measured load data (Fig. 4.16). The heat pump load was

estimated as a constant value of 20kW. The USH loads with EWH which represent

the aggregated load for a community where all houses have resistive EWH, were

calculated by adding the estimated equivalent aggregated resistive EWH load to the

Ref load USHs curve from Fig. 4.16.

The EWH power was shaved in the evening in order to reduce the peak demand,

as shown in Fig. 4.17. The USH loads incl. EWH curve represents the baseline case

where no peak reduction was applied. With peak reduction, the power in the evening

was shifted to the morning. The aggregated water heating loads for different peak

reduction targets were calculated in the previous section and presented in Fig. 4.14.
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Figure 4.17: The aggregated total USH loads with different water heating schemes.
Peak reduction was realized by shifting the water heating load in the evening to the
early morning. It is worth noting that shaving the EWH loads reduced the peak
demand by approximately 18% maximum in this example, missing the real target of
20%.

USHs can provide ancillary services by turning Off the EWHs. The minimum par-

ticipating rate of EWH was estimated with the average EWH power of 1.5kW during

the peak time. The minimum participation rates for USHs to turn Off EWH were

17%, 32%, 48%, 62%, for 5%, 10%, 15%, 20% peak reduction targets, respectively,

as listed in Table 4.2. In the extreme case for 20% peak reduction target, even all

the EWHs were turned Off at the critical hour, the power was only reduced by 18%,

missing the 20% target. This is due to the fact that EWH can only shave its own

power but can not supply other loads, unlike BESS. With all the EWHs turned off,

further reduction in peak power is not feasible. Even with these limitations, EWH is

still an attractive candidates for providing ancillary services due to its near ubiquity

and low additional cost.

143



Table 4.2: The minimum requirement for USH participation
Peak reduction
target (%)

Shaved power
target (kW)

BESS
PART. (%)

EWH
PART. (%)

5 35 6 17
10 70 11 32
15 105 15 48
20 141 21 62

The same peak reduction was achieved by the BESS and results are shown in Fig.

4.18. All the BESSs were charged during the late night and early morning. When

the load shaving control process started, all BESSs had the maximum SOC. In Fig.

4.18, only the discharging power is plotted. With the BESS controlled to provide

ancillary services, both the maximum power and available energy were taken into

consideration. The BESS power was estimated 4.8kW with the nominal voltage of

48Vdc and charging rate of 100A. The average BESS energy capacity was 16.2kWh

and the SOC can vary from 94% to 20%. Therefore, the BESSs have the capability

to provide approximately 12kWh energy on an average.

With the peak reduction target set to 5%, a total energy of 12kWh and a maximum

power of 30kW were needed to be provided by the BESS. At least seven USHs were

required to provide a peak power of 30kW, even one BESS would be enough to

provide the required energy of 12kWh. The shaved energy during the peak hour were

12kWh, 49kWh, 114kWh, 210kWh for 5%, 10%, 15%, 20% peak reduction targets,

respectively. Meanwhile, the shaved power levels were 35kW, 70kW, 105kW, 134kW

for the same peak reduction targets. Therefore, the minimum participation rates of

BESS were decided by the shaved power as 6%, 11%, 15%, 21% for the peak reduction

targets, respectively, as listed in Table 4.2.
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Figure 4.18: The aggregated total USH loads with peak reduction achieved by BESS.
Only the discharge operation of BESS are shown.

It is shown that both BESS and EWH can provide ancillary services. Higher

participation rates of EWH were required to realize the same peak reduction target.

In this chapter, the maximum peak reduction achieved by the EWHs was 18% on the

example summer day.

4.4 Modeling of HVAC Systems in Large Residen-

tial Communities

4.4.1 Experimental Results and Derivation of House Ther-

mal Model Parameters

Beginning in 2008, TVA funded and managed a robotic house project with techni-

cal support from the ORNL. The robotic houses were constructed in a suburb of Knox

County, TN in which the habitation of a family was physically emulated (Fig. 4.19).
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Table 4.3: Parameters for the thermal model of the reference house
Parameter Value
Thermal envelope area Ar 354 m2

Coefficient of thermal resistance cR 350 ○C ⋅m2/kW
Coefficient of thermal capacitance cC 0.011 kWh/(○C ⋅m2)
Coefficient of heat transfer rate cP 0.040 kW/m2

This project developed an analytical base for energy optimization and new technology

implementation at the individual house level. A different initiative, the SET project

based in Glasgow, KY, provided a testbed for the optimization of power flow at the

community level. In the TVA robotic house, energy usage for different components,

including the HVAC, was measured on an hourly basis. The experimental data from

SET had a 15-minute resolution.

The equivalent model that represents a typical residence, which was defined by

parameters such as thermal envelope area, thermal resistance, thermal capacitance,

and heat transfer rate, was derived from the TVA robotic house experimental data.

The thermal envelope area is the only independent variable for the equivalent model.

Other parameters for the equivalent thermal model were calculated using the thermal

envelope area and coefficients, as follows:

R = cR
Ar

, C = cC ⋅Ar, PH = cP ⋅Ar, (4.8)

where R, is the thermal resistance; C, the thermal capacitance; and PH , heat transfer

rate. The other parameters are specified in Table 4.3.

The heat transfer function of the residential thermal model is described as follows:
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(a)

(b) (c) (d)

Figure 4.19: The reference house (a). TVA robotic devices are controlled by computer
programs to mimic realistic human behavior. Also shown is a shower emulator (b),
automated dryer and washer (c), and a refrigerator with programmed arms (d) that
activate according to automatic schedules.
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C
dθI(t)
dt

= 1

R
(θO(t) − θI(t)) − S(t) ⋅ PH , (4.9)

where θI is the indoor temperature; θO, the outdoor temperature; S, the On/Off

status of HVAC, defined as:

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if S(t − 1) = 1 & θI(t) ≤ θL(t)

1, if S(t − 1) = 0 & θI(t) ≥ θH(t)

S(t − 1), otherwise,

(4.10)

where θL and θH are the lower and upper band of the thermostat set point, of 70F

and 74F, respectively for the TVA robotic house.

The data provided by the robotic house project has a resolution of 1-hour. Data

from July of 2010 was used for the calculation of the parameters and the validation of

the equivalent thermal model. The thermal resistance R was calculated assuming that

the indoor temperature rate of change remained constant for every two consecutive

hours, i.e., dθI(t) = 0 in (4.9) through the whole month. Only hourly data for 12:00-

16:00 of each day in July was used to estimate the coefficient of thermal resistance

cR, as during these times it is likely that the HVAC would be working, i.e., S(t) = 1

in (4.9). The calculated coefficient of the equivalent resistance based on the robotic

house data is shown in Fig. 4.20. The solar heat gain as well as the latent and

appliance heat gains were lumped together in the thermal resistance term.

The HVAC system for the reference house was modeled with fixed parameters

(Table 4.3). The envelope area was calculated according to the floor plan. The coef-

ficient of thermal resistance cR was selected according to its relationship to outdoor
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Figure 4.20: Analysis of the cR equivalent thermal resistance coefficient for the refer-
ence house. Data corresponds to 5 hours during the time interval of direct interest for
DR studies of each day in July 2010. Data was fitted with a 90% confidence interval,
and only 2 points were outside the bounds.

temperature and justified with a confidence interval (Fig. 4.20). The cC and cP were

adjusted based on the envelope area and recommended values [179]. With a cooling

capacity of 4 tons and a Seasonal Energy Efficiency Ratio (SEER) of 13.5, the HVAC

system had a constant input electrical power of approximately 3.6kW when it was

On (Fig. 4.21). The developed HVAC model was simplified to have 1 stage process

and only cooling is considered in the study.

For most of the days in Fig. 4.22, the outdoor temperature was high in the

afternoon. The daily HVAC electricity usage for the experimental and simulated

data are compared and presented in Fig. 4.23. Apart from the first few days and the

last day when the outside temperature was relatively low, the simulation had highly

satisfactory results.
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Figure 4.21: The daily simulation example of the HVAC system for the reference
house. With a cooling capacity of 4 tons and a SEER of 13.5, the HVAC has approx-
imately 3.6kW of constant electric power during operation.

Figure 4.22: The outdoor temperature in July 2010 Knox County, TN. The temper-
ature of this month was used for the calibration of the residential thermal model.
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Figure 4.23: The daily HVAC electricity usage of the TVA robotic house in July,
2010. The simulation results were calculated using the proposed residential thermal
model and parameters. The experimental data was retrieved from the robotic house
project supported by TVA and ORNL.

Further study found that the proposed residential thermal model resulted in lower

electricity daily usage for the HVAC when the outdoor temperature was both low and

measured on an hourly basis. This occurred due to the cessation of HVAC operation

during higher temperatures that were artificially reduced by the hourly temperature

measurements. For example, if the thermostat set point was 75F and the outdoor

temperature was 70F for half the hour and 80F for the other half, the experimental

data would have the HVAC On for only the half hour. However, the averaged hourly

based temperature data would be 75F, under which case the modeled HVAC would

be Off the entire hour.

4.4.2 Modeling of Aggregated HVAC Load

Every single residence in this study was modeled separately based on (4.9) and
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(4.10) with distinct sets of parameters. Each residential thermal model updates the

indoor temperature dynamically considering the outside temperature, thermostat set

points, and the DR signals. The aggregated HVAC power was calculated as:

PA(t) =
1

SEER

N

∑
i=1

Si(t)P i
H , (4.11)

where N is the total number of studied HVAC systems; P i
H the heat transfer rate of

house i in Btu/h.

The parameters of the thermal models across the community of residencies were

selected to be either a specific constant value, normally distributed, or uniformly

distributed (Table 4.4). The values for some parameters of the residential thermal

models were the same for all considered houses, i.e., the coefficients cC and cP , and

the lower limit set point θL. The upper limit set points θH of all the houses without

DR control were randomly generated to represent different user preference, noted as

uniform distribution U(74F,78F ). The initial indoor temperatures were randomly

generated within the lower limit of thermostat set point, 70F, and the lowest of the

upper limit set points, 74F, noted as uniform distribution U(70F,74F ). Therefore,

the initial temperature for all residences were bounded to the lower and upper set

points.

The distribution types and parameters related to the house construction, AR and

cR, were selected so that the simulation results matched the experimental data from

the SET project. The AR and cR for the considered HVAC system models were subject

to normal distributions and noted as AR ∼ N (354,2002) and cR ∼ N (350,2802). The

daily electricity usages for each of the 10,000 HVAC systems in the example case were
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Table 4.4: Thermal model parameters distributed values for the large amount of
residences considered

Parameter Value (distribution)
Coefficient of thermal capacitance cC 0.011 kWh/(○C ⋅m2)
Coefficient of heat transfer rate cP 0.040 kW/m2

Lower limit set point θL 70F
Upper limit set point θH U(74F,78F )
Initial indoor temperature θI(0) U(70F,74F )
Thermal envelope area AR N (354,2002)
Coefficient of thermal resistance cR N (350,2802)

calculated and summarized into a histogram with a box size of 1kWh (Fig. 4.24).

Both the experimental data and the simulation results were fitted to a nonparametric

kernel-smoothing distribution and their probability density function (PDF) curves

are presented in Fig. 4.24 as well. The comparison between the PDF curves of the

simulated data and that of the experimental data demonstrates satisfactory results.

Algorithm 4.1 Calculate the energy storage capacity of the HVAC system

Set θO(t) = θO,F , θI(0) = θmax, m = 0
while θI(m) > θmin do

m =m + 1;
S(m) = 1;
calculated θI(m) in (4.9);

end
The energy capacity EC = PH/COP ⋅∆t ⋅m

The energy storage capacity for each of the 10,000 HVAC systems was decided

by their distinct sets of thermal model parameters, as described previously, and was

calculated separately using the methods introduced in Algorithm 4.1. The results

were summarized into a histogram (Fig. 4.25) to represent the community. The av-

erage energy storage capacity for the 10,000 HVAC systems is approximately 11kWh.

Given that the typical energy consumption for HVAC systems is calculated at around
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Figure 4.24: The distribution of daily HVAC electricity usage on a typical summer
day for 10,000 houses in a large community case study. The experimental probability
density function (PDF) is estimated based on daily residential electricity usage from
the SET project on the same day. The average electricity usage is approximately
21kWh based on the simulation.

21kWh, the HVAC system as an energy storage device was charged/discharged ap-

proximately two rounds on the typical summer day in this study.

The simulated working status for the 10,000 participating HVAC systems without

DR are shown in Fig. 4.26. In the early morning, even though the outdoor temper-

ature was higher than the set point, not every HVAC turned On due to the thermal

inertia of the house. At approximately 9:00, many HVACs started to turn On as the

outdoor temperature increased quickly and the homes installation and shading could

not prevent or slow heat transfer any longer.
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Figure 4.25: The distribution of the energy storage capacities of the HVAC systems
for 10,000 houses in a large community case study. The energy storage capacity of
each residence was calculated separately according to its own set of parameters. The
average equivalent energy capacity of the HVAC systems is approximately 11kWh.

Figure 4.26: The working status for the simulation of 10,000 participating HVAC
systems without DR. Most of the HVAC systems started turning on around 9:00 due
to the increase in outdoor temperature.
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4.5 VPP Control for Large Residential Communi-

ties using HVAC Systems as Equivalent En-

ergy Storage

4.5.1 HVAC System as Equivalent Energy Storage

For uniform control of various devices and appliance in typical residences, the

HVAC system may be described as equivalent energy storage, and its equivalent SOC

is defined as:

SOC(t) = θmax − θI(t)
θmax − θmin

, (4.12)

where the θmax and θmin are the maximum and minimum room temperature, respec-

tively. In this study, the lower thermostat set point always has the same value as

the minimum room temperature. The upper thermostat set point varies for different

user preferences, and is set to the maximum room temperature only under the DR

control.

The concept of equivalent SOC of the HVAC system is illustrated in Fig. 4.27.

When the HVAC system is operating in the cooling mode, the maximum and mini-

mum room temperature correspond to the equivalent SOC of 0% and 100%, respec-

tively. The room temperature increases due to the higher outside temperature when

the HVAC is Off, and this is the equivalent procedure of discharging the energy stor-

age. When the HVAC is On, the room temperature decreases in most of the normal

cases and correspondingly, the equivalent SOC increases.

The energy capacity of a HVAC system is defined as the input electricity needed
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Figure 4.27: The HVAC system as energy storage when cooling. The maximum and
minimum room temperature correspond to the equivalent SOC of 0% and 100%, re-
spectively. When the HVAC is On, the room temperature decreases, as the equivalent
of charging procedure of the BESS. On the contrary, the equivalent BESS “discharges”
as the room temperature increases when the HVAC is Off.

to change the room temperature from the maximum to the minimum with a fixed

outside temperature. The pseudocode for the calculation is shown in Algorithm. 4.1.

The energy capacity of the HVAC system for each house is calculated with its own

set of parameters.

In this study, the outside temperature θO,F for the calculation of the HVAC energy

capacity is fixed to 86F, as this is the average outdoor temperature in Glasglow, KY

during the month of July when this DR study takes place [180]. The lower thermostat

set point is fixed to 70F for all the HVAC systems.

The maximum room temperature θmax, was selected to be 81F as this is the

highest indoor temperature that results in a comfortable PMV rating under typical

conditions for July as calculated by the online CBE Thermal Comfort Tool that

follows ASHRAE Standard 55 [181]. A typical relative humidity of 54%, clothing
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level of 0.5 clo representing common indoor summer wear, an air speed of 0.1 m/s,

and metabolic rate corresponding to sitting were used to verify that 81F results in

a PMV rating of 0.46 PMV. This is classified as acceptable as it is less than 0.5

PMV, meaning that 90% of people on average would be comfortable according to the

ASHRAE Standards. The operative temperature was assumed equal to the indoor

temperature or slightly lower, indicating the occupant would either be by a neutral

or cool surface such as an interior wall out of sunlight or piece of furniture.

First in the equivalent energy storage study, the initial room temperature is set

to the maximum and the HVAC is kept On until the room temperature reaches the

minimum. The required number of steps is recorded and used together with the heat

transfer rate and the simulation resolution to calculate the energy capacity of the

HVAC system. It is worth noting that the energy capacity is defined as the required

electricity, therefore, the HVAC electric power, which is calculated as PH/COP ,

is used for the calculation. The coefficient of performance (COP) and SEER are

interchangeable.

The equivalent SOC of the HVAC system in the daily simulation example (Fig.

4.21) is shown in Fig. 4.28. In the morning, the HVAC was Off and the room tem-

perature increased until around 8:00, and the equivalent SOC decreased accordingly.

When the HVAC was On, the room temperature was decreased until it reached the

lower thermostat set point. As a result, the equivalent SOC increased to 100%. The

equivalent SOC did not drop below 60% in this example, indicating the potential to

deepen “discharge” of the HVAC system through a control scheme.

The upper thermostat set point was set to the maximum room temperature during
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Figure 4.28: Illustration of the relationship between room temperature and equivalent
SOC based on the results shown in Fig. 4.21. The equivalent SOC was 100% when
the room temperature reached the lower thermostat set point. The lowest equivalent
SOC could be as high as 60% with a fixed upper thermostat set point, indicating the
potential of deeper “discharge”.

11:00–16:00 for the DR control and the results are shown in Fig. 4.29. The equivalent

SOC reached 0% as the room temperature became the maximum. The house could

shed the HVAC power for a longer period of time by “discharging” the equivalent

SOC to 0%.

4.5.2 Optimal Control of the HVAC Systems

Two objectives were considered for VPP controls. The first is to reduce the peak

power in the afternoon during 12:00 to 16:00:

Minimize Pmax =max(PA(t)), t ∈ [12 ∶ 00,16 ∶ 00]. (4.13)
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Figure 4.29: The room temperature and equivalent SOC for the HVAC system with
the sequential DR control. The equivalent SOC of the HVAC system could reach 0%
by changing the upper thermostat set point to the maximum room temperature.

The second is to reduce the ramping rate of the aggregated HVAC power for the

entire day:

Minimize ∆Pmax = max(PA(t +∆t) − PA(t)
∆t

) , t ∈ [0 ∶ 00,24 ∶ 00]. (4.14)

The objectives are realized by central control system that could be operated by

a utility and generates the DR signals for each residence according to one-day ahead

weather forecasting data. The DR control signals for each house include the upper

limit thermostat set point, θH,DR. When the DR event occurs in this study, the upper

limit thermostat set point of the committed residence was changed to θH,DR = 73F

for precooling and 81F for peak reduction.

In this study, residences committed to the DR control will not overwrite the signals

from the utility, for three reasons. First, residences committed to DR control enjoy
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financial rewards and are bounded by contract [92]. Second, under the DR control,

the room temperature would still be kept comfortable for most of the users according

to ASHRAE standards as described in the previous section. Third, the DR signals

from the utility will only be implemented at each house for short durations of time.

Houses are divided into multiple groups, and each group has its own scheduled

time to apply the DR control by changing the upper limit thermostat set point. The

HVAC systems in the same group apply the DR control for the same period of time.

The next group of HVAC systems apply the DR control after a fixed time gap. The

behavior of HVAC systems during a DR event is described as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1
H(t1) = θH,DR, t1 ∈ [TS, TE]

θ2
H(t2) = θH,DR, t2 ∈ [TS +∆TS, TE +∆TE]

...

θn+1
H (tn+1) = θH,DR, tn ∈ [TS + n∆TS, TE + n∆TE],

(4.15)

where n is the group number; θn
H , the upper limit thermostat set points for all houses

in group n; TS and TE are the times when the 1st group starts and ends the DR,

respectively; ∆TS, ∆TE are the time gap between two groups to start and end DR,

respectively.

In the example case, the 10,000 houses committed to DR control were divided

into 100 groups, and each of their upper limit thermostat set points are shown in

Fig. 4.30. The horizontal stripes indicate different customer preferences for indoor

temperature. Two DR events were applied by changing the upper limit thermostat

set points as shown by the blue and red vertical lines. The first DR event occurred in

the morning as the upper limit thermostat set points of the first group were reduced
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Figure 4.30: The upper limit thermostat set points for all the 10,000 HVAC systems
within the proposed sequential DR control. The different set points indicate the
various user preferences. The values were set to low in the morning for precooling,
and set to high in the afternoon to reduce the peak, both in a sequential way.

to 73F from 7:00 to 8:00. Other groups followed sequentially by reducing their set

points after a fixed time gap of 3 minutes between control adjustments, i.e., group

two 7:03–8:03, group three 7:06–8:06, etc. Since there are 100 groups, the last batch

of residences were precooled from 12:00–13:00.

The second DR event occurred in the afternoon for peak reduction between 12:00

and 16:00 (Fig. 4.30). Starting from 11:00, the first group of the HVAC systems

increased the upper limit thermostat set point to 81F. Other groups increased their

set points at a fixed time gap of 3 minutes, in a sequential way. The first group

reverted to the original set points at 16:00 and other groups followed with a fixed time

gap of 2 minutes, in the proposed staggered pattern. The time gaps to implement the

DR control and to resume the original set point of the user are intentionally different
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to demonstrate the flexibility of the proposed sequential control.

It is worth noting that the DR signal for precooling and peak reduction in this case

overlapped between 11:00 and 13:00, for three reasons. First, the precooling was for

the reduction of ramping rate. Therefore, if the duration of precooling DR is short,

the ramping rate would be large as many HVAC systems are turned On in a short

period of time. Second, if the precooling starts very early, the natural process of heat

transferring from outside to the residence will start before the temperature outside has

risen to an uncomfortable level, leading to unnecessary additional electricity usage.

Third, the overlapping structure provides a buffer time to avoid sudden drops in the

aggregated HVAC power.

4.5.3 Results and Analysis for VPP Operation

The time step for the simulations in this section is 1-minute. The simulation results

were integrated to 15-minute resolution, which is the conventional time interval used

by utilities in metering, to calculate the ramping rate. When 100% of the 10,000

residences participated in the DR control, the working status of the HVAC systems

are shown in Fig. 4.31. The proposed sequential DR control resulted in three clear

stripes of HVAC state changes, namely, the one starting at 7:00, the one at around

noon, and the one starting at 16:00. The HVAC systems were turned On and Off in

a sequential way in order to avoid sudden changes of the aggregated power when the

thermostat set points were changed by the DR control.

The same 10,000 HVAC systems were simulated using the same outdoor tem-

perature both with and without DR control. The outdoor temperature and average
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Figure 4.31: The working status for the simulation of 10,000 HVAC systems in a DR
study with centralized controls. HVAC systems were turned On/Off in a sequential
way, reducing the ramping rate and the peak load.

indoor temperatures for both cases are shown in Fig. 4.32. Also shown are the sim-

ulated indoor temperatures of individual houses with the DR control. In the study,

the lower limit thermostat set point was fixed to 70F for all the houses. The upper

limit thermostat set points for all the 10,000 houses were uniformly distributed in the

range of [74F, 78F] in order to represent various user preferences.

When the DR signal arrived in the afternoon, the upper limit thermostat set points

for the batch of houses under control were set to 81F. In Fig. 4.32, only the highest

value of the upper limit thermostat set point from all the residences at each time step

was plotted. For example, when there was no DR signals, the upper limit thermostat

set points for all houses are between 74F and 78F (θH ∈ [74F,78F ]). When there was

DR signal for precooling in the morning, θH ∈ [73F,78F ], and where the DR signal

was for peak reduction, θH ∈ [74F,81F ]. The θH in the plot was 81F when there was
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Figure 4.32: The outdoor temperature and average indoor temperatures of the 10,000
simulated HVAC systems. For the DR program, indoor temperature was allowed to
be higher but still acceptable according to ASHRAE standards.

DR control for peak reduction in the afternoon, and 78F for other durations.

The selection of the maximum allowed indoor temperature, which is 81F for the

illustrated example, is based on a combination of human comfort regulations, as per

ASHRAE Standard 55-2017, and user behavior preferences, as expressed through en-

rollment in different DR schemes that trade comfort controls versus unitary electricity

cost [17]. It should be noted that the average temperature for all homes does not

exceed 75F at any time and that only very few homes, which selected a minimum

electricity cost DR program option, reach the 81F maximum temperature after 17:00,

and even then, only for a very short duration of time.

The indoor temperature of all 10,000 residences were presented with a sampling

frequency of 30-minute in boxplot (Fig. 4.33). When the residences were precooled

(bottom), their indoor temperatures were lower at around 9:00, which allowed more
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Figure 4.33: The indoor temperature variations of all 10,000 residences (top: without
DR control, bottom: with DR control). The effect of precooling can be spotted
around 9:00, and the effect of peak reduction can be observed in the afternoon.

HVAC systems to stay Off and reduced the ramping rate. In the afternoon, the

maximum indoor temperature of some residences reached 81F under the DR control,

which was the highest temperature still acceptable for most users under the condi-

tions explained in the previous section. Even so, given any time point, the indoor

temperature for 75% of the residences was no more than 78F, which appeared at

16:00.

The equivalent SOC for the houses without DR is shown in Fig. 4.34. The HVAC

systems operated as energy storage devices were “discharged” at different levels due to

the various upper limit thermostat set points. None of the houses were “discharged”

thoroughly to 0% without DR control.

Some of the HVAC systems were thoroughly “discharged” to 0% at the critical

166



Figure 4.34: Simulation results of the equivalent SOC for the 10,000 HVAC systems
studied without DR control. None of the houses were “discharged” thoroughly during
the peak hour.

hours due to the DR control, as shown in Fig. 4.35. The sequential control imple-

mented in this study avoided “discharging” all the HVAC systems to 0% at the same

time, in order to avoid the large rebound ramping rate afterwards. The aggregated

SOC started to decrease from 12:00, indicating the equivalent “discharging” process

as use of stored energy. This demonstrates that the HVAC systems could operate

comparably with the batteries.

The proposed sequential DR control strategy is exemplified by this study that

successfully results in a very large reduction of the peak power from 12:00 to 16:00

through temporarily allowing higher temperatures inside the participating homes.

The indoor temperatures in Fig. 4.32 were the results for 100% participation of

10,000 residences on an example summer day. The corresponding aggregated HVAC

power and equivalent SOC are shown in Figs. 4.36 and 4.37 with different residence
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Figure 4.35: Simulation results of the equivalent SOC for the 10,000 HVAC systems
with DR control. Houses were fully “discharged” as the equivalent SOC reached 0%
at different period of time. The aggregated equivalent SOC did not reach 0% because
not all the houses were fully “discharged” at the same time. The sequential DR
control was implemented to avoid the large rebound ramping rate afterwards.

participation for the same day. The simulation results for different residence partic-

ipation levels are summarized in Table 4.5 where it can be seen that the ramping

rate and total daily electricity usage are decreased with more participation. The resi-

dences participating in the simulated DR program were selected based on their house

ID in ascending sequence in this study.

The aggregated HVAC power from Fig. 4.36 shows that, under normal operation

Table 4.5: Summary of simulation results for different residence participation
Participation
[%]

Pmax

[MW]
∆Pmax

[MW/15-min]
Daily Elec.
[MWh]

0 (w/o DR) 21.3 36.2 213
25 20.1 31.6 211
50 18.9 29.7 208
75 18.1 25.3 206
100 16.8 23.4 203
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Figure 4.36: Simulation results of aggregated HVAC power for the 10,000 houses
studied on 7/14 with different residence participation. The legends stand for the
residence participation in DR control. Detailed simulation results are summarized in
Table 4.5.

Figure 4.37: Simulation results of the aggregated equivalent SOC for the 10,000 HVAC
systems studied on 7/14 with different residence participation.
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without DR controls, the ramping rate around 8:00 was large due to many HVAC

systems starting around the same time, and the peak power from 12:00 to 16:00

was high due to high outdoor temperature. The ramping rate, peak power in the

afternoon, and the total daily HVAC electricity were reduced under the proposed

sequential control, even with low residence participation. When the participation

rate is high, e.g., 100%, the peak power period for the DR case was shifted to a later

time as a consequence of indoor temperature recovery, and in addition, the ramping

rate was greatly reduced.

The aggregated equivalent SOC of the 10,000 HVAC systems shown in Fig. 4.37

demonstrates the effectiveness of the proposed sequential DR control scheme, which

provided benefit to the utility as described while still resulting in a near 65% aggre-

gated equivalent SOC as was the same as on the day before DR was applied. Another

important note is that the total energy storage capacity for the 10,000 residences was

fixed because the energy capacity of each HVAC system was fixed, as explained in

Section 4.5.1. The equivalent precharging process, which started from 7:00, avoided

significant power draw at 12:00 and large ramping rate starting from 9:00. The peak

power in the afternoon from 12:00 to 16:00 was reduced by the equivalent discharging

process. The proposed sequential DR control managed to postpone the equivalent

charging process to 18:00.

The outside temperature is stochastic and, therefore, the DR control scheme for

the simulation of aggregated HVAC power as an energy storage resource was repeated

on two additional different hot days in the summer (Fig. 4.38). In this study, the

proposed sequential control was demonstrated in the hot days because the fuel for
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Figure 4.38: Outside temperature of example days selected from the experimental
data from Glasgow, KY, in the year of 2017. The proposed sequential control was
tested on the days with high outside temperatures when the HVAC systems tend to
have high cooling power demand.

space cooling is 100% electricity, and the peak reduction is only needed when the

HVAC systems have high power. The proposed sequential control was not shown for

cold days as some of the residences might use fuels other than electricity for heating

[182]. Therefore, the results of the sequential control for cooling are directly related

to the number of residences participating in the DR control, while for heating, the

portion of electricity-heating houses must be considered.

The simulation results for different summer days are presented in Fig. 4.39 and

summarized in Table 4.6. In this comparison, the DR control participation was con-

sidered 100%. The case study for w/o DR and 100% participation in Fig. 4.36 and

Table 4.5 is referred as “Day: 7/14” (middle).

The case “Day: 7/7” (top) represents a slightly cooler summer day. The proposed
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Figure 4.39: Simulation results of aggregated HVAC power for the 10,000 houses
studied on different hot days (top to bottom: 7/7, 7/14, 7/22). The ramping rate
in the morning, as well as the peak power in the afternoon from 12:00 to 16:00 were
reduced. Detailed simulation results are summarized in Table 4.6.

sequential control reduced the already low ramping rate by precooling and peak power

by turning On the HVAC systems in batches during a longer time span. The total

daily electricity usage was increased by 2% under the proposed DR control due to

the precooling. This happened because lower temperature in the morning resulted in

more heat transferring into the houses.

The case “Day: 7/22” (bottom) represents a very hot day when the ramping rate

and peak power of the aggregated HVAC power without DR control were high. The

proposed sequential control reduced the maximum ramping rate by 35% and the peak

power during 12:00 to 16:00 by 16% while the total daily electricity maintained nearly

the same.

The aggregated equivalent SOC of the 10,000 residences for the three different days
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Table 4.6: Summary of simulation results for different days

Day
Participation
[%]

Pmax

[MW]
∆Pmax

[MW/15-min]
Daily Elec.
[MWh]

7/7
0 (w/o DR) 17.7 30.7 125
100% 14.2 17.9 128

7/14
0 (w/o DR) 21.3 36.2 213
100% 16.8 23.4 203

7/22
0 (w/o DR) 27.4 34.4 349
100% 23.0 22.3 347

are shown in Fig. 4.40. For the 7/7 case (top), the equivalent SOC was maintained

higher starting from 9:00 because of the precooling to avoid high ramping rate for

“charging” starting from around 10:30. For the 7/14 case (middle), the precooling

started from around 7:30, avoiding high ramping rate starting from around 9:00.

For the 7/22 case (bottom), the precooling moved the equivalent “charging” process

from 6:00 to early morning, reducing the ramping rate. For all the cases, the lower

equivalent SOCs in the afternoon demonstrate the HVAC system can “discharge” as

energy storage to reduce the peak power.

4.6 Conclusion

One of the largest rural field demonstrators for smart energy technologies, which is

situated in Glasgow, KY, US, was analyzed in this chapter. The community comprises

more than 5,000 residential homes with 300+ smart homes along with additional

business and industrial sectors. The simulated and the experimental data obtained

from the case studies presented in this chapter demonstrate the declining trend of total

power demand with the long-term growth of high PV penetration in smart homes.

Smart homes operated as DERs with an aim to reduce residential peak demand
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Figure 4.40: Simulation results of the aggregated equivalent SOC for the 10,000
HVAC systems on different hot days (top to bottom: 7/7, 7/14, 7/22). With the DR
control, the equivalent precharging process in the morning reduced the ramping rate.
The HVAC systems as energy storage discharged deeper in the afternoon under DR
control and reduced the peak power.

by carrying out a combined optimal control of the EWH and HVAC set points in

coordination with BESS. The aggregated residential load in long term is predicted in

this chapter based on different penetrations of smart homes in a community.

The capability of EWH to provide ancillary services was studied based on the

experimental data from 148 smart homes, including the net power flow from the grid,

power and SOC of BESS for each house. The EWHs achieved peak reduction at

the aggregated level by shaving the water heating load while maintaining the tank

temperature at acceptable levels. The minimum participation rates of EWH and

BESS were calculated and compared.

The example building model and its equivalent circuit parameter values were val-

idated against the field measured data. Also proposed was an aggregation technique
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for the modeling of HVAC systems in large communities that is based on the robotic

house project managed by the Tennessee Valley Authority (TVA). An equivalent en-

ergy storage model for HVAC systems was developed, and it was demonstrated that

HVAC systems can be controlled by a charging/discharging procedure similar to a

typical battery at both individual and aggregated levels. A VPP sequential control

scheme that temporarily allows higher indoor temperatures up to values that are still

considered acceptable for typical preferences and standard regulations of user comfort

was applied. The results based on 10,000 HVAC systems show that, on a very hot

summer day, when the DR participation was 100%, the peak power in the afternoon

and the ramping rate were reduced by approximately 16% and 35%, respectively while

the daily energy usage was almost the same.
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Chapter 5

Modeling of EVs in Charging
(G2V), V2H, and V2G Operation

5.1 Introduction and Problem Formulation

The increasing penetration of electric vehicles (EVs) in residential communities

has created a phenomenon known as the “dragon curve”. Many EVs begin charging

at around the same time in the evening as house owners return home. Rooftop

photovoltaic (PV) for residences can provide electricity to charge these EVs, but the

mismatch between high PV generation and EV charging times results in an even more

severe “duck curve” at the distribution power system level. Time-of-Use (ToU) rates

are one of the efforts that helps to guide the behaviors of house electricity usage [144].

For an individual house, a residential energy storage system (RESS) is essential to

realize the response for different price signals.

The data from the National Travel Household Survey (NHTS), which was most

recently updated in 2017, has been used in the past for the modeling of EV charging

power [183]. Even though the random nature of human behavior dominates the

individual EV performance, the aggregated EV charging load is subject to probability
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distributions according to the data. Previous research has modeled the aggregated EV

charging load based on EV arrival time, arrival state-of-charge (SOC), and charging

finish time [184, 185].

The distribution power system can be modeled by software such as GridLAB-

D, OpenDSS or MATPOWER. GridLAB-D provides an integrated power system

model that includes the residences. Each residence can be further defined with details

for an inverter, a PV system, an EV, or a RESS [186]. The power system can be

modeled by OpenDSS at the community distribution level and with EnergyPlus at

the residential level. Efforts have been made to realize the dynamic communication

between OpenDSS and multiple EnergyPlus threadings [11].

EV batteries provide large energy storage [187], enabling vehicle-to-vehicle (V2G)

services which interact with the power system to provide ancillary services with re-

spect to peak power reduction and power reserve. With V2G service, the virtual

power plant (VPP) framework was enabled in a power system to smooth wind power

output [188]. EVs increased the resilience for microgrid with its own renewable gen-

eration and different types of loads [189]. The V2G service could also provide reactive

power compensations, which in [190] potentially reduced the electric power losses up

to 95%.

The CTA-2045 specifies the communications with residential devices and provides

a standard interface for signals to facilitate home energy management (HEM). The

CTA-2045 standards has been used for the uniform control of residential battery,

electric water heater, heating, ventilation, and air conditioning (HVAC) systems,

and EVs. Laboratory evaluations for V2G operation was reported in [191] by the
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Electric Power Research Institute (EPRI) to address the compatibility and capability

of the system. The travel behavior of the American public is published in the NHTS

[183]. The details in personal and household travel were reported including the daily

mileage, travel purpose, arrival home time, etc.

In the rapidly evolving electric power system, wherein new renewable and dis-

tributed energy resources are being connected and fossil fuel based generators are

being retired at a growing rate, it is increasingly more important to ensure a contin-

ued and reliable supply of electricity. For example, approximately 8,000 MW may

need to be imported to avoid blackouts in California by filling in gaps caused by

renewable energy generation variability and increased power demand. Another ma-

jor threat to energy supply reliability are large natural disasters, such as, in recent

years, wide-spread wild fires [18]. In 2020, there were more than 8 thousand fires in

California alone resulting in almost 1.5 million burnt out acres and significant power

system damage [19]. In a winter storm in 2021, approximately 2 million homes suf-

fered power outages in Texas which substantially increased electricity demand due

to record-breaking low temperatures [20]. Worse still, about 34,000 MW of renew-

able wind generation capability within Texas was lost during this storm as freezing

temperatures forced power plants offline in quick succession [21]. It is very impor-

tant to ensure power system reliability through whatever means possible under such

conditions to protect residents from environmental health risks.

Residences equipped with rooftop solar PV panels and battery energy storage

systems (BESS) turn into prosumers with generation capability to supply their own
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on-site demand [192]. The increasing trend of independent PV producers is repre-

sentative of the possibility of decentralized power generation and distribution [193].

Solar PV panels can achieve the best performance when its material is suitable for the

external condition as measured by matrices including energy payback time (EPBT),

energy production factor (EPF) and life cycle conversion efficiency (LCCE) [194]. The

thermal and chemical treatment based end-of-life (EOL) method reduces the cost for

recycling PV system waste material making PV generation even greener [195]. Solar

PV systems may be considered a reliable distributed energy resource (DER) only

when it is coordinated with BESS [196]. In-home BESS can store variable renewable

generated energy allowing it to be used whenever needed by the user but often have a

limited energy capacity due to its hefty initial investment [197]. When advanced ther-

mal management is implemented, BESS can charge and discharge with large power

while maintaining operational safety [198].

The growing trend of EV provides the potential to boost the energy capacity of

residential energy storage systems (ESS) [199]. Hence, research towards the devel-

opment of smart energy management in residential houses using home ESS and EV

battery systems is in progress [22, 23]. Residences with EV can help to improve the

load factor in communities, reducing costs related to the maintenance of transformers,

feeders, etc. [24] A previous study using data from the NHTS found that most cars

commute around 20 miles daily, resulting in 90% of SOC remaining on average for

EVs when they return home [25].

Recent research shows that EV batteries can operate as a voltage source or offline

uninterruptible power supply (UPS) for a home in an outage [98, 99]. A well managed
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energy storage system with BESS and EV support could provide good performance

during both transient and steady-state operation, considering the voltage waveform

and current harmonics distortion [100]. Different operation modes of EV in smart

homes have been proposed and explored, and it was shown that depending on the

usage preferences of the user, EV batteries can act as a power source to feed resi-

dential appliances during a power outage [98]. When energy not supplied (ENS) or

system average interruption duration index (SAIDI) is taken into consideration, the

participation of a EV connected to the home improved resilience the most [101].

The vehicle-to-home (V2H) capability of EV realizes the outage management and

cost reduction for a smart home [102, 103]. EV systems can potentially adopt the

same method introduced in [104] allowing the battery system to switch between input

PV energy harvesting mode and output V2H mode for emergency situations. V2H

functionality also improves power system resilience factors including load restora-

tion, reactive power supply, and peak reduction, etc. [105–109]. Bidirectional wire-

less power transfer will further facilitate V2H applications by enabling higher power

transfer and easing the barrier to entry for the consumer [110].

Depending on the user preferences and applications of the EV, the additional

energy storage can expand the residential ESS, but may not be available at the

residence when the outage occurs. For example, according to recent reports, the

very large 90kWh battery installed on the most recent EV model of the Ford F-150

truck can be controlled to supply up to 10 days of electricity for a connected home

[26]. Other factors including user behavior regarding residential load, the capacity

of the residential ESS, renewable energy generation, etc., should all be taken into
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consideration for systematically quantifying building resilience.

The problems addressed in this chapter include the development of total EV charg-

ing power, optimal control of V2G and G2V operation, and building resilience. Each

of the problems are defined in the subchapters: the development of total EV charging

power in section 5.2, optimal control of V2G and G2V operation in section 5.3, and

building resilience in section 5.4.

In this chapter, the aggregated EV charging power was modeled based on the

NHTS 2017 data, considering the arrival home time and daily mileage. The optimal

charging scheme for BESSs and EVs was proposed for the best financial benefits.

EVs was connected to the IEEE 123-bus feeder system and DR signals complying to

CTA-2045 were applied.

The metrics for building resilience was quantified considering different time oc-

currences for power outages. The building resilience for residences with varying elec-

tricity usage, PV generation capability, and BESS capacities was analyzed in order

to provide a reference for all types of house owners. This chapter focuses on minute-

based simulations of power flow and energy use with building resilience studied by

monitoring the energy balance on the demand and supply sides. The quantifica-

tion of building residence provides utilities with a basis for better planning of rolling

blackouts and power restoration, and guide house owners when sizing their localized

residential power system.

This chapter is substantially based on the following papers:

• H. Gong, et al., “Optimization of aggregated EV power in residential communi-

ties with smart homes,” 2020 IEEE Transportation Electrification Conference
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& Expo (ITEC), pp. 779–782, 2020.

• H. Gong, et al., “V2G Operations for Community as VPP Complying to CTA-

2045 Standards Based on Stochastic EV Power Modeling,” 2022 IEEE Trans-

portation Electrification Conference & Expo (ITEC), (Submitted in Jan, 2022).

• H. Gong, et al., “Improving the power outage resilience of buildings with so-

lar PV through the use of battery systems and EV energy storage,” Energies,

Vol. 14, No. 18, p. 5749, 2021.

5.2 Optimal EV Charging at Aggregated Level

5.2.1 Modeling of EV Charging Power Based on NHTS 2017

Data

The proposed system comprises of residences with PV systems, RESSs, and EVs

(Fig. 5.1). The residential load can be generated by GridLAB-D. Solar power can be

calculated based on given weather data. It should be noted that the residential load

might be negative due to the generators in the smart homes. This will reverse the

direction of power flow.

The factors to impact the total EV charging loads in the distribution system were

simplified to three variables: charging finish time, arrival time, and arrival SOC. In

this study, the charging finish time was set to 6:00 in the morning. The arrival time

and arrival SOC were estimated from the NHTS 2017 data [183].

The arrival time is categorized into 15-minute intervals from the NHTS 2017

data. Its probability density function (PDF) was estimated using the kernel density
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Figure 5.1: The scheme for the distribution system modeling. Residences with PVs,
EVs, and RESSs were considered. Other loads and PV data were obtained with
measured data from local utilities.

estimation (KDE). With this, the distribution of arrival times for 1,000 EVs was

generated (Fig. 5.2). The KDE function is defined as follows:

f̂(t;h) = 1

N

N

∑
i=1

K(t − ti;h), (5.1)

where f̂(t;h) is the estimated KDE; K, the kernel function, which is triangular in

the study. The bandwidth was set to 0.2 in the study.

The daily driving distance from the NHTS 2017 data was used to estimate the

arrival SOC for the EVs. The distribution of daily driving distance less than 120 miles

was shown (Fig. 5.3). The distribution was fit as a lognormal distribution [200], as

follows:

f(d) = 1

dσ
√
2π

exp(−(lnd − µ)
2

2σ2
) , (5.2)

where d is the driving distance, the mean of lognormal distribution µ=3; and the
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Figure 5.2: Distribution of EV arrival home time. The PDF was calculated by the
KDE based on NHTS 2017 data. The histogram is the estimated distribution for
1,000 EVs.

deviation σ=1.12 in the study.

The PDF of arrival SOC for EVs is related to the daily driving distance and was

described as follows:

f(SOCa
i ) = (1 −

d

dM
) × 100%, (5.3)

where dM is the maximum driving distance allowed by the EV battery energy capacity.

In the study, The effective cost per mile was set to 0.46 [201]. Assuming that each

EV battery energy capacity is 90kWh, the dM used in the study was 196 miles. The

estimated PDF and distribution of arrival SOC for 1,000 EVs are shown (Fig. 5.4).

The individual EV power was calculated with the arrival time, arrival SOC, and

charging finish time. The energy required for an EV is subject to the following:

∫
tf,i

ta,i
P t
E,idt = Ei −Ei × SOCa,i, (5.4)
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Figure 5.3: Distribution of daily mileage for EVs based on NHTS 2017 data. Daily
driving distances of more than 120 miles are excluded in the study. The PDF for the
distribution is described as a lognormal function.

Figure 5.4: Distribution of SOCs for EVs when they arrive home. The PDF was
calculated based on the KDE of daily mileage. The histogram is the estimated dis-
tribution for 1,000 EVs.

185



where ta,i, the arrival time subject to (5.1); tf,i, charging finish time which was fixed

to 6:00 in the morning; P t
E,i, EV charging power of house i at time t; Ei, the EV

battery energy capacity; SOCa,i, arrival SOC subject to (5.3).

5.2.2 EV and BESS Scheduling

The main objective for the study is to minimize the daily utility charge for elec-

tricity usage of the entire distribution system, described as follows:

Min
n

∑
1

UCt, (5.5)

where UCt is the utility charge for the entire distribution power system at time step

t.

The utility charge at time step t is calculated as:

UCt = ∫ (Et
b ⋅ rtb −Et

s ⋅ rts)dt, (5.6)

where Et
b is energy purchased from the utility at time t; rtb, utility charge rate at time

t; Et
s, energy sold to the utility at time t; rts, the rate utility pays to buy back energy

at time t.

The constrains include the power balance of the community:

P t
G = P t

PV + P t
E + P t

RESS + P t
R, (5.7)

where P t
G is the power purchased from the grid; P t

PV , the PV generation; P t
E, the

charging power of EVs; P t
RESS, the charging power of RESSs; PR, other residential

power usage.

The energy capacity for RESSs is described as:

20% ⩽ SOCt
RESS ⩽ 100%. (5.8)
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The EV and RESS power values are defined as independent variables with their

ranges given as follows:

P t
E,i ⩽ PE,i,max, (5.9)

∣P t
RESS ∣ ⩽ N ⋅ PRESS,max, (5.10)

where PE,i,max, the maximum charging power of EV in house i; N , house numbers;

PRESS,max, the rated power for an individual RESS.

The ToU electricity rate indicates that most EVs arrive home during the peak

charging period [144]. Therefore, the charging of EVs must avoid the high ToU

rates to minimize utility charges. EVs that were available when there was surplus PV

generation were charged with maximum power to consume the local solar power. EVs

were charged with minimum power after the high ToU period. The EV scheduling is

described as follows:

P t
E,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

PE,i,max, 1 ≤ t ≤ ToUs

0, T oUs ≤ t ≤ ToUe

PE,i,min, t ≤ n,

(5.11)

where ToUs, ToUe stand for high ToU start and end time, respectively; PE,i,min is

the minimum power required to charge EV at house i to 100% at the last time step.

The individual EV charging power is shown (Fig. 5.5). In this aggregated study, the

location of the EV during charging and discharging is not specified, for example, at

midday, the EV maybe assumed to be in an office parking and connected to a public

charger. EVs were charged to 100% SOC at 6:00 the next morning (Fig. 5.6).

The RESS of the distribution system was considered as a large battery. It started

with a SOC of 50%, was charged to 100% before high ToU period, discharged to 20%
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Figure 5.5: The charging power for all EVs in the distribution system. The EVs
were charged at maximum and minimum power before and after the high ToU time,
respectively. During the high ToU time, no EVs were charged.

Figure 5.6: The SOCs for all EVs in the distribution system. The SOCs were regarded
as 0 before EVs arrived home. EVs were guaranteed 100% SOC at 6:00 the next day.
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during the high ToU period, and recharged to 50% afterwards, as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
ToUs

1 P t
RESSdt = 50%, 1 ≤ t ≤ ToUs

∫
ToUe

ToUs
P t
RESSdt = −80%, T oUs ≤ t ≤ ToUe

∫
n

ToUe
P t
RESSdt = 30%, t ≤ n.

(5.12)

5.2.3 Case Studies

The residential community being studied had 1,000 houses, each of which with a

single EV. The residential load was from one typical summer day in Glasgow, KY

and averaged to represent 1,000 homes [85]. The PV data is from LG&E KU and was

scaled to the ratings of 5kW for each house [202]. The RESS is rated 9.8kWh/5kW

and started with a SOC of 50%. The EV SOCs and arrival time are subject to the

distribution (Fig. 5.4 and Fig. 5.2). The EVs were not allowed to discharge in the

study. The resolution for the study was 1-minute.

The aggregated power of EVs, RESSs, and net metered power for the residential

distribution system on the example summer day are shown (Fig. 5.7). In this case

all of the houses had a PV system and a RESS. The EVs were only charged when the

ToU is not high (Fig. 5.5).

The RESSs were charged when the PV generation was high and discharged during

the high ToU period. After high ToU period, the RESSs were charged to 50%. The

proposed schedule reduced the electricity usage during the high ToU time, therefore,

it reduced the total utility charge for the entire community. The entire residential

community also served as a virtual power plant (VPP) for coordination of EVs and

RESSs. As a VPP, the system managed to keep net metered power stable for a long

period of time.
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Figure 5.7: The aggregated power at distribution level. The EV curve was decided
by the charging schedule. The RESS was first charged when the PV generation is
high, discharged during high ToU period, and was charged to 50% afterwards. The
metered curve shows that the community sold less electricity to the utility when PV
generation was high and reduced usage during the high ToU period.

Simulation results for residential communities with different penetrations of EVs

and RESSs are shown (Fig. 5.8). The 0% curve represents the baseline case without

PVs or RESSs where the optimal scheduling of EVs avoided the high ToU. With the

increase in PV penetration, solar generation became higher. In the case of 100%,

houses had to sell electricity back to the utility in the afternoon.

Higher RESS penetration means larger total capacity. Therefore, the higher the

penetration, the lower the aggregated net metered power during the high ToU period,

and the lower the utility charge. The averaged total cost per house for 0%–100% are

$17, $15, $13, $11, $10, respectively. The 100% penetration has the advantage of

peak reduction during high ToU time. The high solar generation also means that
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Figure 5.8: Metered powers for different penetrations of EVs and RESSs under opti-
mal schedules. Percentage shows the penetration of residences with a PV system and
RESS. The 0% case stands for the baseline. Higher penetration leads to more PV
generation in the afternoon and lower electricity usage during the high ToU period.

residences must sell electricity back to the grid at a low price. Charging of RESSs

after high ToU time did not increase the peak demand.

5.3 V2G Operations for Community as VPP Com-

plying to CTA-2045 Standards

5.3.1 CTA-2045 Concept and EV Operations

The CTA-2045 can be applied to EV service equipment (EVSE) for the compat-

ibility with other smart devices which can be used for HEM [191]. For a level-2

charger, the EV power is defined by the current as the voltage is fixed at 240V under

ideal condition. The current for EV charging can be changed to respond to control
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Figure 5.9: The performance test results for CTA-2045 EV supply equipment pub-
lished by Electric Power Research Institute (EPRI)[191]. Shown are the EV for test-
ing, visual indicators and controls on EVSE, and results for different control signals.

signals from the grid. The example results from the EPRI report (Fig. 5.9) show

the EV power responding to different control signals, which typically include normal

operation, shed, critical peak, grid emergency, and variable. In this chapter, the V2G

control was enabled by adding the control signal with negative current.

Knowledge of the availability for EV battery energy is essential to plan for V2G

service. At the community level, the aggregated behavior for EV owners is highly

predictable as the randomness of individuals is averaged out. The data from the

NHTS provides daily information for vehicles of hundreds of thousands households,

including the arrival home time and daily driving mileage [183]. The Gaussian Kernel

Density Estimator was used for the estimation of the distribution of arrival home time

and arrival SOC, as presented in Section 5.2.1.
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Figure 5.10: A total of 353 residences were randomly generated with the newly proce-
dure described and connected together with associated EV as spot loads to a modified
IEEE 123-bus feeder test case.

5.3.2 DR Program and Distribution Power System

The power distribution system for a community with EVs was modeled using the

IEEE 123-bus feeder test (Fig. 5.10). For each phase of all the nodes, every 10KW

was replaced by a residence including the corresponding EV. For example, phase-2 of

bus-2 has active power of 20kW, therefore, two residences were connected to phase-2

of bus-2. Based on the test case values [118], a total number of 353 residences were

connected. All the 353 residences have their distinctive load data, which was from

the smart energy technologies (SET) project [22]. For all the buses, the power factor

was fixed to 0.95 in the study.

All available EVs with more than 50% participated the DR event and worked on

V2G mode, with a current of -50A, i.e., discharging power of 12kW. Two cases were
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Figure 5.11: A purposefully exaggerated case scenario in which the EVs with SOC
excess of 50% provide V2G resulting in a negative net power flow with absolute value
much larger than the typical residential load.

shown in Fig. 5.11 for long and short term V2G services. For the short term service,

the example DR signals were from 17:00 to 19:00 and all the available EVs were

discharging at 12kW . At the beginning, all the available EVs supplied approximately

2,000kW to the grid. The discharging power increased as more EV arrived home. For

the long term service case, the total power flow at the distribution system level was

kept constant.

Details for the short term service including SOC for all EVs, available energy in

the power system, and bus voltages were analyzed. No SOC was recorded before

the first EV arrived home. During the DR period for short term service, the average

SOC decreased, and increased afterwards as EVs with higher SOC arrived. Therefore,

even without charging, the average SOC for all EVs increased after the DR period.

EVs with low SOC could be charged during the work day when public charging is
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Figure 5.12: The total available energy from EV batteries, which increased as more
EVs arrived home. The available energy still increased even when the EVs were
discharging under control.

available, or at home when no DR events happen. The total available energy from

all EV batteries increased during the example day as more EV arrived home, even

during the DR period (Fig. 5.12).

5.3.3 Case Studies

The preliminary results of the short term service were analyzed. In the extreme

scenario of this chapter, EVs provided large negative net power flow with absolute

value much larger than the typical residential load (Fig. 5.11). The voltage on all

buses were within the variation tolerance of 5% for the entire simulated day (Fig.

5.13). The comparison for the bus voltages during the DR period of the short term

service is presented in Fig. 5.14. The reverse large power flow caused by EVs resulted

in larger variation as expected.
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Figure 5.13: The voltage for all buses on the simulated day for top: without DR,
bottom: with DR. Samples were taken for every 30 minutes. There were virtually no
violation for the simulated daily case.

Figure 5.14: The voltages for all buses in the power system for selected hours. The
high reserved power flow from EV discharging caused more voltage variation. Virtual
no violation was observed as all voltages values are within the 5% tolerance.

196



With the coordination among EVs, the entire community can operate as a VPP,

providing constant power for a long period of time, as the long term service case in

Fig. 5.11. To achieve this, when the DR started at 17:00, the aggregated EV power

needed to provide approximately -1,800kW, which was possible as the maximum

power available by all EVs was approximately 2,000kW More details for the long

term service will be presented in future study. The details will include the control of

EVs, the monitoring of SOC, available energy, and bus voltage.

5.4 Improving the Power Outage Resilience of Build-

ings with Solar PV through the Use of Battery

Systems and EV Energy Storage

5.4.1 Energy Model for the Reference House

The main parameters for the reference house considered in the study are summa-

rized in Table 5.1. The use of batteries for power flow and energy studies are based on

results from the EnergyPlus software and the INSPIRE+D co-simulation framework

[11]. The framework realizes the dynamic communication between the power system

simulator and the building model, based on a prototype EnergyPlus model released

originally by the Pacific Northwest National Laboratory (PNNL) [203]. The weather

data for the studied Burbank area in California Climate Zone 9 was publicly avail-

able as a typical meteorological year (TMY) [204]. The California climate Zone 9 is

very mild and has reduced HVAC energy usage, represents a best scenario that has

been selected as part of an industry-led government-sponsored research program case
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Table 5.1: Main specifications for the electricity usage model of the reference house
Parameters Value
Conditioned area 223 m2 (2,401 ft2)
House type 4-bedroom, 3.5-bathroom
Location Burbank, CA, Zone 9
PV rating/annual generation 7.2kW/11,316kWh
Annual electricity usage w/o EWH 13,628kWh
Annual electricity usage of EWH 4,233kWh
EWH rated electric power 5kW
BESS energy capacity/maximum power 11kWh/5kW
Initial BESS SOC 100%
Minimum BESS SOC 20%
EV battery energy capacity/maximum power 90kWh/10kW
EV battery SOC when EV arrives home 90%
Minimum EV battery SOC 20%

study. The outputs of the EnergyPlus model include energy usage and generation

with a 5-minute resolution and detailed usage for appliances including HVAC, water

heater, etc.

In the schematic representation and graphs from Fig. 5.15, the dark blue area

in the middle of the annual electricity usage graph corresponds to power flow from

the house to the grid caused by surplus PV generation. Variations in the blue area

was caused by the pool pump, which operates during 9:00–15:00. The yellow strip at

around 21:30 stands for evening demand peaks of power flow into the house.

The electric water heater (EWH) was modeled and its typical high and relatively

short power draw corresponds to the red dots in Fig. 5.15. The electricity usage and

power profile of the EWH are determined by the water draws, quantified according to

the California Building Energy Code Compliance for Residence (CBECC-Res) [80].

The rated electric power of EWH is 5kW, and the calculated annual electricity usage

of the EWH is 4,233kWh.
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Figure 5.15: Illustrations for the example reference home: location in California zone
climate 9 (left); HEM, PV, battery, EV, and appliances diagram including major
energy users HVAC system and EWH (center); and power flow during a year (right).
The negative power flow during daytime is due to surplus solar PV generation. The
very high power draw marked with red dots and occurring mostly in the evening and
at night is due to the EWH.

The stationary BESS introduced to the home is a Li-ion battery rated as 11kWh/5kW

in the following studies, and is assumed to have 100% SOC when the power outage

occurs. The EV battery is rated as 90kWh for the reference house. The most recent

level 2 charger allows the EV to be charged/discharged at a maximum power of 10kW

with a lower limit of 20% for the EV battery [205]. The EV is scheduled to leave

home at 6 am and return at 6 pm every day with an SOC of 90%, given the fact that

most daily driving mileages are less than 20 [25].

The example topology published in patent [206] includes inverters for connections

to EV and other components (Fig. 5.16). Such a multifunctional system can ensure

V2H operation, providing support during grid power outages and increased resilience.

Residential power system components are represented as nodes or individual elements

that interact with a central power management system connected to the cloud for

long-distance control and capable of multi-function operation. The central system

includes a smart power integrated connected to power grid, BESS , PV cell and
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Figure 5.16: Example of a residential power and energy management system, based
on the concept described in a US patent [206]. Such a multifunctional system can
ensure V2H operation, providing support during grid power outages and increased
resilience.

EV. Communication can be realized via Ethernet, WiFi, cellular connection, or any

available communication protocol. The smart power integrated node (SPIN) provides

DC charge and discharge capability to EV via an EV cable in this embodiment. The

SPIN may incorporate functionalities such as service setup, display & control, and is

capable of receiving transit information from remote server or user interfaces. The

operating procedure defined by the user is employed by its many DC/DC, DC/AC

switching components.

5.4.2 Method for Calculating the Self-sustainment Duration

for a Reference House

Power outages or blackouts may occur at any time throughout the entire year, and

in such conditions, the house loses electricity supply from the grid. In the following

studies, residential loads are supplied by the BESS and PV generation when the
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blackout occurs, and the resulting performance is analyzed for the following 24 hours.

The total electricity provided by the BESS after the power outage occurs is defined

as:

EB,t =
t

∑
i=0

PB,i ⋅∆t, (5.13)

where i is the simulated time step, with i = 0 indicating the time origin when the power

outage occurs; and PB,i, represents the power of BESS. During a power outage, the

BESS supplies the total house demand to provide full building resilience. Therefore,

PB,i = PH,i, (5.14)

where PH,i is the net power flow of the residence. When PH,i is larger than the

maximum power rating of the BESS, the residential load has to be curtailed.

The self-sustainment performance is measured as the duration when the BESS

can supply the residential loads. At one instance, e.g., time step s, when the power

outage occurs, the BESS was discharged down to the minimum acceptable SOC. The

self-sustainment operation duration Ts for this instance is defined as:

∃i = Ts ∶ EB,i ≤ EC ∧EB,i+1 ≥ EC , (5.15)

where EC , the maximum available energy of the residential ESS:

EC = ηB ⋅EC,B, (5.16)

where ηB is 80% in the study, as the maximum SOC for BESS is 100% and minimum

is 20%; EC,B, the rated energy capacity of BESS. When the SOC is 100%, the surplus

PV generation is curtailed. After calculating the following 24 hours for step s, the

same procedure is applied to step s+1, and up to the last time step smax. Every time
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Figure 5.17: Systematic procedure for the evaluation of building resilience. Simulation
is performed for each time step, corresponding to instances for which power outage
occurs. The self-sustainment duration is calculated for each instance.

step has its own corresponding self-sustainment operation duration Ts. The procedure

for calculating the self-sustainment operation duration is illustrated in Fig. 5.17.

The constraints are the maximum BESS power:

∣PB,i∣ ≤ Pmax. (5.17)

Residential power must be curtailed if it is too high during a outage. On the other

hand, the PV generation input needs to be curtailed if the negative net power flow is

too high.

Simulation results in Fig. 5.18 show that the time of the power outage has a

great impact on the self-sustainment duration from the reference house. When the

power outage occurred at the midnight as shown on the left, the reference house

self-sustained approximately 17 hours (Fig. 5.18 (a)). The BESS SOC in this case

dropped in the early morning, increased in the midday, and decreased in the evening

until it was 20%. This happened because the BESS was charged by the surplus

202



(a) (b)

Figure 5.18: An example of the daily self-sustain case for the reference house when the
power outage occurs at (a) midnight and (b) 3 pm. The BESS covers the residential
load in the morning and was charged by surplus solar PV generation throughout the
day. As PV power rapidly declined and no longer met the residential load, the BESS
discharged until falling to the minimum SOC of 20%. The reference house tends to
self-sustain longer when the power outage occurs in the early morning because the
BESS could be charged by PV generation during the daytime hours.

PV generation in the midday and discharged to power the loads for the rest of the

time. On the same example day, however, when the power outage occurred at 3 pm,

the house self-sustained for approximately 5 hours, as shown in Fig. 5.18 (b). The

house self-sustained a significantly shorter amount of time because the BESS was not

charged for that day when PV generation faded away in the evening.

With the simulation time step of 5-minutes, there are 12 × 24 × 365 = 105,120

instances throughout the entire year when the power outage could occur. Corre-

spondingly, there are 105,120 calculated self-sustained operation durations which are

represented as different colors in Fig. 5.19, with each cell indicating a 5-minute in-

crement. The two instances in Fig. 5.18 are represented in the corresponding colors

for the 17 and 5 hours for their two cells. Self-sustained operation duration trended

towards being longer if the power outage occurred in the early morning because the

BESS was charged in the midday by surplus solar PV generation. The self-sustained
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Figure 5.19: Self-sustained operation duration of the reference house for power outages
occurring at different times. All 105,120 instances of varying days and times for power
outages were calculated throughout the year. The self-sustained operation duration is
longer if the power outage occurs in the morning because the BESS could be charged
during the day with surplus solar PV generation.

operation duration around 6 pm was short because of both the evening residential

load peak and lower solar PV generation.

The simulation results of self-sustained operation duration for the entire year were

summarized with an interval of 1-hour in Fig. 5.20. If the self-sustained operation

duration of the house falls into the interval of (t1, t1 +1], it can self-sustain any hours

within [0, t1]. The building resilience is defined by the cumulative probability curve

presented in Fig. 5.21, which indicates that after a power outage occurrence, the

reference house will self-sustain virtually at 100% load for up to 3 hours, and has a

50% probability of self-sustainment up to 10 hours.

The cumulative curve, which stands for the building resilience, was fitted and
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Figure 5.20: The distribution of residence self-sustained operation duration for all
105,120 instances. All instances were binned into duration categories with a time
interval of 1-hour.

Figure 5.21: The cumulative probability curve, which defines the building resilience
for self-sustained operation duration of the reference house. Regardless of the timing
of the power outage inception, the reference house will self-sustain virtually at 100%
load for up to 3 hours, and has a 50% probability of self-sustainment up to 10 hours.
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Figure 5.22: An example of a self-sustained case with residential load, except for the
electric water heater, curtailed to 50% of the reference value. The self-sustainment
duration was 21 hours, 4 hours longer than the reference house because of the lower
electricity usage.

represented explicitly with a 4th order polynomial equation, as follows:

f(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

100, t ∈ [0,3)

p1t4 + p2t3 + p3t2 + p4t + p5, t ∈ [3,24],
(5.18)

where the coefficients for the reference example are p=[-0.0017, 0.0934, -1.5743,

3.7379, 99.1833].

5.4.3 Study for Different Home Load and BESS Energy Ca-

pacities

Curtailing the load can reduce the electricity usage and prolong the self-sustained

operation in a power outage. The load in Fig. 5.22 was reduced to 50% after the

power outage occurred at the midnight. Reducing the load in this scenario enabled
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(a) (b)

Figure 5.23: Self-sustained operation duration of the house with 50% of the reference
residential load presented as a (a) heat map and (b) distribution. The likelihood of
the house self-sustaining for more than 24 hours is approximately 31%.

the house to self-sustain for approximately 21 hours, 4 hours more than the reference

house at the same instance, as shown in Fig. 5.18 (a).

Curtailing the residential load increased the self-sustained hours for all 105,120

instances throughout the entire year (Fig. 5.23 (a)). The house load, except for EWH

power, was curtailed to 50% while other parameters had the same values from Table

5.1. The distribution with 1-hour interval bins in Fig. 5.23 (b) shows the probability

to self-sustain more than 24 hours was increased to approximately 31% when the

residential load was curtailed to 50%. Meanwhile, the reference house without load

curtailment has a near 0% chance to self-sustain for more than 24 hours (Fig. 5.21).

A BESS with larger capacity could store more surplus energy from solar PV

generation and sustain the house for a longer time when a power outage occurs. When

the house was connected to a BESS with a capacity of 27kWh, the self-sustained

operation duration was prolonged to 22 hours, as shown in Fig. 5.24, 5 hours more

than the reference house case in Fig. 5.18 (a).

Larger BESS capacity increased the self-sustained operation duration for all 105,120
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Figure 5.24: An example of self-sustained operation for a house with an increased
BESS rating of 27kWh. In this case, the self-sustained operation of approximately
22 hours was 5 hours longer than the reference case.

instances throughout the entire year (Fig. 5.25 (a)). When the reference house was

equipped with a BESS rated at 27kWh, it could self-sustain at least 24 hours for

approximately 72% of all instances (Fig. 5.25 (b)). The self-sustained operation du-

ration was extended in general with larger BESS capacity, as cases with longer time

intervals increased compared to the reference house case shown in Fig. 5.20.

The effect of combining partial load and BESS capacity modifications on self-

sustained operation duration were studied and for each combination, only the prob-

ability of self-sustaining for at least 24 hours was recorded. For example, the com-

bination of 50% load percentage and 11kWh BESS resulted in a 31% likelihood of

self-sustaining for at least 24 hours, as shown in Fig. 5.23. The simulation results for

other combinations were summarized in Fig. 5.26. The load percentages from 50% to
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(a) (b)

Figure 5.25: Self-sustained operation duration of the house with a BESS rating of
27kWh is presented as a (a) heatmap, and (b) distribution. The probability that the
house can self-sustain for more than 24 hours is approximately 72%.

300% covered are representative of the power profiles of residences with different user

behaviors and house types. BESS capacities studied were between the range of 10

to 60kWh. The colors represent the probabilities for residences with combinations of

different load percentages and BESS capacities to self-sustain for more than 24 hours.

In Fig. 5.26, the horizontal trend indicates the case for different residential loads

with a fixed BESS. The case studies for curtailing the reference house from Fig. 5.23

can be referred as the BESS=11kWh horizontally. When the residential load of the

reference house curtailed from 100% to 50%, the probability to self-sustain more than

24 hours was increased from virtually 0% to 31%, as shown in Fig. 5.23. For a BESS

capacity larger than 40kWh, the probability for a house with 100% residential load

to self-sustain more than 24 hours is almost 95%. With a larger BESS of 60kWh,

the probability for the house to self-sustain at least 24 hours is more than 90% even

when the load is 150%.

In Fig. 5.26, the vertical trend indicates that for a fixed load percentage, the

probability of the residence self-sustaining for more than 24 hours increased, in line
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Figure 5.26: Results of a case study examining varying combinations of BESS capac-
ities and home load percentages in self-sustainment duration of 24 hours or greater.

with the expectations, as the BESS capacity increased. The case study for increasing

the BESS capacity to 27kWh from Fig. 5.25 can be referred to as the Load = 100%

case vertically. When the BESS capacity was increased from 11kWh to 27kWh,

the probability for the house to self-sustain for more than 24 hours increases from

virtually 0% to 72%. For a house load percentage of less than 250%, increasing the

BESS capacity significantly increases the residence self-sustainment duration.

5.4.4 EV Participation

The reference EV battery considered in the study is rated 90kWh/10kW with the

returning SOC of 90%, as summarized in Table 5.1. Within this study, the EV is

scheduled to leave and return home at 6 am and 6 pm, respectively. The EV can

interface with the HEMS and supply residential loads when the EV is at home. When

supplying power to the home, the total capacity of the residential ESS is expanded
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and the total energy capacity defined in (5.15) becomes:

EC = ηB ⋅EC,B + ηE ⋅EC,E ⋅BE, (5.19)

where ηE is 80%. the maximum range of the EV battery SOC (20%–100%); EC,E, the

energy capacity of the EV battery; BE, Boolean results for 1 represent EV at home,

0 otherwise.

Two types of EV discharging scenarios considering whether or not the BESS was

charged by the EV battery were explored in this study. In the first scenario, the EV

was discharged to supply the residential load when it arrived home and the BESS

stopped discharging, as shown in Fig. 5.27 (a). As a result, the BESS SOC remained

the same until the EV left home at 6 am the next morning. In the second scenario,

the EV supplied the residential load and charged the BESS (Fig. 5.27 (b)). In this

case, the BESS was left with 100% SOC when EV left home. The residence can

self-sustain for more than 24 hours under both EV discharging scenarios compared to

self-sustaining approximately 5 hours in the reference case without EV discharging,

as shown in Fig. 5.18 (b).

Load percentage and BESS capacity effects on self-sustainment were studied and

results are shown in Fig. 5.28. For both EV discharging scenarios, the probability

to self-sustain more than 24 hours was increased to more than 90% for the refer-

ence house, which can be located as (Load=100%, BESS capacity=11kWh) in the

heatmap shown in Fig. 5.28. Enabling EV to interface with HEMS increases house

resilience significantly compared with the case shown in Fig. 5.26. Furthermore, self-

sustainment duration increased when the BESS was able to be charged directly by
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(a) (b)

Figure 5.27: An example of a self-sustained case for the reference house with EV
contributing to (a) supply the residential load only, (b) supply the residential load
and charge the BESS. Assuming that the EV arrived home every day at 6 pm with a
SOC of 90% and left home at 6 am the next day.

(a) (b)

Figure 5.28: Case study for combinations of different load percentage and BESS
capacities with an EV participating to (a) supply the residential load only, (b) supply
the residential load and charge the BESS.

the EV battery, especially when the load percentage is high. For example, when the

BESS capacity is 11kWh and load percentage is 150%, the results for the two EV

discharge scenarios are between [50%, 60%] and [60%, 70%], respectively.

In some extreme power outages, such as those caused by extended wildfire, the

power supply may only be restored after a few days. In such cases, the EV is expected

to stay home and BE = 1 in (5.19). The battery can be incorporated to expand the
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Figure 5.29: An example self-sustain case for the house with the EV staying at home.
Shown is the case with an EV battery rated at 20kWh. The capacity of the energy
storage system (ESS) was expanded dramatically by incorporating the EV battery.

residential ESS capacity, which is defined according to (5.19) as:

EC = ηBEC,B + ηEEC,E. (5.20)

The simulation results from Fig. 5.29 show that when the EV battery rated

20kWh was incorporated in the ESS, self-sustained operation duration was increased

to approximately 20 hours. Introduction of the EV battery increased the total RESS

capacity significantly, and since the duration of self-sustainment drastically increased,

all instances with an interconnected EV were analyzed for 72 hours following an

outage.

The results for all 105,120 instances are shown in Fig. 5.30. When the EV with a

battery of 20kWh stayed at home, the house could self-sustain longer in general and

at least 72 hours for approximately 10% of the instances (Fig. 5.30 (b)).
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(a) (b)

Figure 5.30: The self-sustained operation duration of the house with an EV at home
for the duration of 72 hours presented as a (a) heatmap, and (b) distribution. The
EV battery was rated 20kWh in this case. The probability that house can self-sustain
for at least 72 hours is approximately 10%.

With a 20kWh EV battery staying at home during the outage, building resilience

of the residence improves significantly. The probability of the residence self-sustaining

for at least 12 hours is almost 100%, as shown in the cumulative probability curve

in Fig. 5.31. In this example, the probability that the house could self-sustain at

least 24, 48, and 72 hours are approximately 80%, 26%, and 10%, respectively. The

cumulative distribution of building resilience for varying scenarios was fitted and

represented explicitly with a 4th order polynomial equation, as follows:

f(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

100, t ∈ [0,12)

p1t4 + p2t3 + p3t2 + p4t + p5, t ∈ [12,72],
(5.21)

where the coefficients are p=[-0.0000097, 0.0022765, -0.1557, 1.8578, 95.7078]. It is

essential to keep the resolution of the first two coefficients 7-decimal to maintain the

accuracy.

The effect of different EV battery ratings were studied and results are shown in

Fig. 5.32. All parameters apart from the EV energy capacity are kept the same as

the reference house (Table 5.1). The probability shown in Fig. 5.31 is represented
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Figure 5.31: The cumulative distribution for the self-sustained operation duration of
the house withan EV at home rated for 20kWh. Building resilience was analyzed over
a duration of 72 hours.

by the case of fixing the x-axis at 20kWh. At this value, the colors show that there

exists approximately 80%, 26%, and 10% probability for self-sustainment duration

of 24, 48, and 72 hours, respectively. EV battery capacities of 30kWh, 60kWh, and

90kWh give the residence a 100% probability to self-sustain approximately 12, 30,

and 45 hours, respectively. The probabilities for residence with EV battery capacities

of 30kWh, 60kWh, and 90kWh to meet a given duration target, e.g., 48 hours, are

approximately 60%, 92%, and 98%, respectively.

5.4.5 Discussion

In this chapter, the resilience of a building was quantified as the probability to

self-sustain for a specified duration of time following a power outage, which can occur

at any time throughout an entire year. Factors including the electricity usage of the
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Figure 5.32: Building resilience heatmap for the house with an EV staying at home
and providing additional energy storage. The effect of different EV capacities on
building resilience was evaluated.

house, renewable generation, the capacity of the residential energy storage system

(ESS), and the availability of a EV with its associated battery have been studied.

The results show that the reference house considered could self-sustain up to 3 hours

in almost all instances.

The probabilities for a house to self-sustain for at least 24 hours were summarized

for combinations of different home loads, which range from 50% to 300%, and BESS

capacities, which range from 10kWh to 60kWh. For a residence with a fixed BESS

capacity, of 40kWh, the quantified results, which are the probabilities for the house to

self-sustain for at least 24 hours are 100%, 95%, and 60%, for home load percentages

of 50%, 100%, and 150%, respectively. For the example residence with 100% full load,

the quantified results, which are the probabilities for the house to self-sustain for at
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least 24 hours are 0%, 25%, and 95%, for BESS capacity of 11kWh, 20kWh, and

40kWh, respectively. The quantified results provides the utility and house owners

with the basis for planning rolling blackout, power restoration, and for sizing the

residential ESS.

This chapter explored the possibility of utilizing an EV during a power outage by

incorporating its charged battery into the residential ESS. Considering fixed times for

the EV departure from and return to the residence, building resilience increased for

all cases even when the EV is away and not available in the daytime. The probability

of a reference house with a BESS of 11kWh, home load percentage of 100%, and a EV

battery of 90kWh to self-sustain for at least 24 hours is approximately 90% in such

cases. When the house owner opts to keep the EV at home all the time during an

extreme power outage, building resilience increased significantly even without load

curtailment. The results show that incorporating the EV battery into residential

ESS substantially increases self-sustainment duration. With EV battery capacities of

20kWh, 50kWh, and 90kWh, the probability for the house to self-sustain 24 hours

is, 85%, 100%, and 100%, respectively. With the same capacities, the probability to

self-sustain for 48 hours is, 30%, 90%, and 98%, respectively.

The effect of different PV ratings was studied with PV rating being changed

from 5kW to 10kW with increments of 0.1kW. Results show that, with the ratings

considered and all other parameters fixed, this has a negligible impact on building

resilience as minor changes in self-sustained duration were noted. This indicates that

the capacity of the BESS and that of an additional EV battery system provided have

some of the largest impact on improving building resilience.
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5.5 Conclusion

The distribution of arrival time and daily driving mileage were estimated according

to NHTS 2017 data. The arrival SOCs for EVs were calculated based on the daily

driving mileage. An EV charging schedule was proposed in which the high ToU period

was avoided to achieve the most financial benefits and a 100% SOC was guaranteed

at 6:00 in the morning on the next day.

The influences of different penetrations for RESSs and PVs on the aggregated

power and daily utility charge were studied. Simulation results show that the coordi-

nation of RESSs and EVs resulted in the reduction of daily utility charge. The entire

residential community can work as a VPP under the proposed schedule for RESSs

and EVs.

A power distribution system for a example community was modeled with resi-

dences having EVs to provide V2G services complying to the CTA-2045 standards.

Without dedicated controls, the spike in the reverse power flow from EV to grid may

be significant, resulting in potential overload in the main feeder transformer. Even

Under this extreme studies, voltage regulation is not reported as a major issue as

virtually no violation was observed. The energy capacity of EVs is extremely large,

substantially exceeding the load of the community, and could provide community long

time support for load shifting, in this case through the entire night. In future work,

the control for EVs will be proposed and verified to make the entire community a

virtual power plant to have constant net power flow for a long time.

A procedure was developed to quantify the building resilience considering the load

218



percentage, capacity of BESS and EV battery. A reference house from California, with

an annual electricity usage of 13,628kWh and a BESS with capacity of 11kWh, was

used as the baseline for developing the building resilience model. The probability for

the reference house to self-sustain for more than 3, 10, and 24 hours was found to be

100%, 50% and 0%, respectively. For the reference house, when the BESS capacity

was increased, for example, to 40kWh, the probability for the house to self-sustain for

at least 24 hours increased to 95%. When the load of the reference house was reduced,

for example, to 50%, while other parameters were kept the same, the probability of

self-sustaining for 24 hours increased to 31%. When an EV with a battery capacity of

90kWh was incorporated in the HEM system, the probability for the reference house

to self-sustain at least 24 hours increased to 90%. If this same EV was parked at home

all the time, the probability to self-sustain 24 hours was 100%, and the likelihood of

self-sustaining for 48 hours increased to 98%. When the EV battery capacity was

20kWh, the results for 24 and 48 hours were 85% and 30%, respectively.
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Chapter 6

Forecast of Community Total

Electric Load and HVAC

Component Disaggregation

through a New LSTM-based

Machine Learning Method

6.1 Introduction

According to the Energy Information Agency, the residential sector accounted for

22% of the total U.S. energy portfolio [207]. In residential communities, which are

the focus of this chapter, heating, ventilation, and air-conditioning (HVAC) systems

are the largest energy users and major contributors to the peak power [34, 167, 208].

For perspective, the approximately 45% of the residential sector energy use from

HVAC systems [209], represents 10% of the total U.S. grid’s demand. The accurate
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estimation and forecast of the total and electric power components provides utilities

with planning and control opportunities for optimal energy generation and use, and

for avoiding large demand fluctuations.

Together with the specific thermal inertia of the building, an HVAC system may

support temporary demand response (DR) controls and a provide distributed energy

resource, including virtual energy storage capacity, without affecting occupancy ther-

mal comfort [88, 96]. Previous research shows that HVAC systems in a residential

community may be controlled by a similar charging and discharging procedures as

electric batteries [64]. More recently, transactive energy approaches were proposed for

automated HVAC controls and enabled the reduction of total electricity cost, while

maintaining user comfort [210]. Another application of HVAC controls, based on

Stackelberg game theory, contributed to reducing the mismatch between residential

energy usage and renewable generation by more than 40% in a best case scenario [90].

Provided that the data for the total residential load is available, the HVAC power

may be identified, in principle, based on the observation that it is the component most

sensitive to outdoor weather conditions. An example previous study into HVAC load

disaggregation at the individual residence level was conducted using 30 minute data

representative of smart meter data for 85 homes [211] utilizing daily average outdoor

temperature. The authors propose an hourly linear regression based method including

subtraction of average baseload profiles per season, that is found to have an error of

approximately 8% across different buildings. Recent work by our group of authors,

based on systematic experimental data from a individual residence, smart home,

reported good results for total forecasts and isolation of baseload and HVAC power
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components, by characterizing weather conditions through both outside temperature

and irradiance [212].

Other previous work into individual residence HVAC load disaggregation includes

a random forest machine learning model training procedure and pipeline optimiza-

tion with detailed automated feature selection considering weather, calendar based,

pattern-based, statistical, etc [213]. The model was tuned using the 182 homes and

tested on 10 all from the Pecan Street experimental database with an overall R2

of 0.905 over eight days. Additionally, an hourly Multi-sequence Non-homogeneous

Factorial Hidden Markov Model (MN-FHMM) performed with an average error of

22% with a dataset of over 100 homes. A common factor between this model and an

additional one described in [214], is that temperature was used as the only weather

input. In practice, the effect of the solar irradiance on the building heating maybe sig-

nificant, as previously discussed for a computational and experimental study of smart

“robotic” homes [94]. One set of authors combined both multiple weather parameters

including solar irradiance with frequency components ascertained from Fourier Series

Analysis of high resolution minutely data to disaggregate both heating and lighting

loads [215], but this resolution data is not wide spread and efforts into smart meter

disaggregation are further needed.

Fewer studies into aggregated HVAC load separation of entire distribution circuits

including hundreds to thousands of homes were found. The linear regression based

method from individual homes in [211] was replicated by the authors in [216] at the

aggregate level of a residential community of 400 homes with verification against a

Gridlab-D model of the community. Also at the community level, the authors of
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[217] improved another traditional multiple regression method using time of year,

weather data, holidays, and varying cut off temperatures to calculate total hourly

load with an error of approximately 5% and disaggregate heating and cooling portions

from over 80,000 residencies and 8,000 commercial buildings located in Canada. The

authors call for further validation of the method and approach to hourly temperature

selection points for heating and cooling as ground truth sub metering HVAC data is

not available at this wide scale, which is explored further in our chapter.

The current chapter brings additional novel contributions specific to community-

level applications addressing a research gap in HVAC load analysis. Specifically, a

procedure for identification of an outside temperature range for which the HVAC

systems across the community do not operate from hourly ”V-curves“ of total power

to outdoor temperature. Key temperatures from the identified range are used in a

novel two-step machine learning (ML) method employing long short-term memory

(LSTM) algorithms for the HVAC separation. Under zero irradiance and identified

key TmHVAC temperature conditions, the baseload is estimated by the LSTM model

and used to disaggregate of the HVAC power component.

The chapter is organized in multiple sections with the next one being devoted

to the problem formulation and the introduction of the experimental big data and

its preliminary analysis for a representative residential community with all electric

air conditioning in the summer and mixed natural gas and electricity heating supply

in the winter. The proposed method for forecast and disaggregation is presented,

together with a pseudo-code algorithm and flowchart, and example results, in the third

section. A fourth section further analyzes case study results, selection of parameters,
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and demonstrates low for errors for the the total power forecast. A comparison with

conventional linear-regression results is presented in the fifth section, indicating the

advantages of the proposed method both in term of automated analysis and improved

accuracy. The sixth section includes discussions on the validity of the separation

method based on statistics and human behavioural patterns for the baseload and

fundamental physics for the influence of outdoor weather conditions. Finally, the

conclusions summarize the main findings, original contributions and advantages of

the proposed ML method.

This chapter is substantially based on the following paper:

• H. Gong, et al., “Community level total load forecast and HVAC disaggregation

through a new LSTM method,” Energies, 15p, 2021, (Submitted in Dec, 2021)

6.2 Problem Formulation and Experimental Data

A main objective of the study described in this chapter is to use systematically-

collected historic data for electric power and weather conditions, i.e., outside temper-

ature and solar irradiance, to produce a day-ahead forecast of the total electric load

demand at community level and to separate, i.e., disaggregate, out of it the power

component corresponding to the HVAC heating and cooling systems. The newly de-

veloped algorithms are based on ML models, which are of the black-box data-driven

type, and therefore require “big data” consisting of very large time series.

A real-life case study for a representative suburban community from Kentucky,

which is also relevant for a wider region of the US, is considered throughout the
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Figure 6.1: The 2020 experimental data for weather and total electric power for
the community considered in the study. All 1810 buildings employ electric air-
conditioners for cooling during the summer, but only 53% of them are using electric
heat pumps for heating during the winter.

chapter. The electric power experimental data for the four years, 2017 to 2020,

inclusive, as measured at the main circuit feeder of the Liberty Rd. area served by

the Louisville Gas and Electric and Kentucky Utilities (LG&E and KU) distribution

system in Lexington, KY, has been collected with a one minute time resolution. The

weather data is provided with five minute resolution by the National Oceanic and

Atmospheric Administration (NOAA) (Fig. 6.1.)

Within this aggregated community there are 1810 buildings, mostly houses used

as family homes and residences. Space cooling in the summer is provided for all

buildings via HVAC air conditioners. For heating in the winter, 966 of the buildings

employ electric heat pump HVAC systems, and the rest use natural gas furnaces. This

equipment deployment, together with the weather conditions, contribute to explaining

the electric power pattern and the peak usage illustrated in Fig. 6.1c, which is in line

with expectations for communities with dual heating supply/fuel.

The daily load demand for the total electricity used by the analyzed combined

community measured at the main feeder in years 2017-2019 circuit has specific sea-

sonal profiles, depicted as box plots in Fig. 6.2). The minimum, 25th, 50th also known
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Figure 6.2: Hourly box plots show the distribution of the measured total electric
power in 2017-2019 for the example residential community considered in the study
across an entire day for all four seasons. The expected impact of season on total
electricity used is illustrated, hence inclusion of weather parameters in modeling.

as the median, 75th percentiles and the maximum power usage are shown as the bot-

tom of the dotted line, edge of the lower box, middle black line, edge of the top box,

and top of the dotted line. The distributions shown per hour of the day change with

the season. The magnitude of the maximum load and time of day at which it occurs

are particularly affected with the median maximum usage for the summer falling in

the afternoon at approx. 4.5MW. In comparison, the winter is bimodal with the

maximum load across the day happening in the early morning with outliers reaching

to more than 7MW, due to extreme instances of cold.

Such variations are common and are typically considered through categorical vari-

ables in quantile regression models such as the Vanilla Benchmark Model [218]:

y(t) = β0 + β1Mt + β2Wt + β3Ht + β4WtHt + f(Tt) (6.1)
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where t is the time variable [min], y(t) the load [min], Mt denotes the month [1-12],

Wt the week [1-4], Ht the hour within the day [1-24], and f(Tt) is another quantile

regression function relating the temperature [C or F] at t to the categorical time of

year variables. This model was originally employed as the basis for global forecasting

competitions [219], and has been later improved to include the regency effect, i.e., the

impact of temperatures at previous times [113].

These established relationships between time of year, weather, temperatures at

previous time increments, and the total load have been further studied and identified

in other chapter relating to HVAC load separation and forecast. For example, an

aggregated residential total load forecast that considers the time of year through

one hot encoding, the day of the week, and previous sequences of energy usage was

reported in [114].

Another study, by a different group of authors, identified a time lag between an

outdoor temperature increase and the resulting larger HVAC load, corresponding to

the previously mentioned regency effect [220]. This referenced study included the

influence of solar heat gains from sunlight in the HVAC model. For such reasons,

the authors of this chapter have selected sequence inputs of the previous load power,

outdoor temperature, and solar irradiance, as well as future weather inputs to forecast

the day-ahead future load for use in a HVAC disaggregation case study. The data has

also been split to include summer and winter months as separate datasets in order to

account for the categorical time of year influence.

By accounting for the influence of previous and future weather in the model, the

patterned portion of the load can be calculated with high confidence because the
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Figure 6.3: Daily V-curves for power (a) and energy (b) with linear regression, con-
fidence interval, and box plot example representations for the studied community.

community level HVAC disaggregation conducted in this chapter has less uncertainty

from weather variability. The impact of stochastic human-behavior based portions of

the total load is minimized at the community level as the randomness of individual

schedules and decisions are smoothed. The aggregate effect on human behavior is

seen in large scale experimental studies of community level wide air-conditioning,

lighting, dishwasher, and clothes washer/dryer loads utilized by U.S. Department of

Energy Building America Program and the National Renewable Energy Laboratory

(NREL) [221]. This know phenomenon was used by our group in [222] to produce

equivalent aggregated water heater models for community-wide Virtual Power Plant

(VPP) control studies.

For analysis of key features or inputs used in our case study, the total power and

weather data has been averaged on a daily basis and also integrated to calculate

energy. The graphical results shown in Fig. 6.3 are typically referred to a daily “V-

curve“. The spread of data, which is influenced not only by temperature, but also by

irradiance and other factors, is exemplified through the 95% confidence interval for

power in cooling mode and a box plot representation for energy. It should be noted
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that extremely high or low values for the hourly temperature maybe averaged out in

the daily calculations, and may contribute to the relatively low number of outliers

for power and energy. The proposed hourly model described in the following section

accounts for these extreme temperatures by forecasting for each hour of the following

day using the key weather parameters identified in this section.

6.3 Proposed Method for Forecast and Disaggre-

gation

The proposed method, which is described in this section, is a combination of

multi-step machine learning algorithms based on big data sets, and of a physical

engineering observation of the weather conditions under which the operation of the

HVAC system is not required, i.e., stand by, and hence its corresponding component

electric power draw is substantially zero. To quantify these conditions, as accurately

as possible, the ”V curve” has been derived using the extensive hourly data rather

than the traditional daily averages (Fig. 6.4a).

In line with expectations, the data spread in this case is larger than for the daily

values, but the V-profile is still similar with two edges for heating and cooling, re-

spectively, and an in-between region in which the total electric power is minimum,

as it substantially covers only the ”baseload”, i.e., the sum of all other load com-

ponents, apart from the HVAC. Such conditions may occur, for example, at night,

when the irradiance is zero and the outside temperature is close to the set point for

the indoor temperature, which has a typical 20°C value, or during the day in the so
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Figure 6.4: Hourly V-curve for electric power together with linear data fits corre-
sponding to different values for the outdoor temperature key indicator, TmHVAC,
for cooling and heating, respectively (a). Parametric study for the R-square goodness
of the linear fit as a function of the considered TmHVAC.

called ”shoulder months” of spring and fall when due to the combined effect of mild

temperature, irradiance, and building thermal insulation there is no need for heating

nor cooling.

As a first step of the method, two outdoor temperature key indicators, denoted

by TmHAVC, one for heating and one for cooling, are introduced to identify the

minimum and the maximum temperature, respectively, for which the HVAC systems

are on stand-by and not using virtually any electricity. The proposed mathematical

procedure to select the TmHVAC points is described in Algorithm 6.1. A wide range

from 10 to 18°C was considered for the TmHVAC heating point, and 16 to 22°C

was studied for the TmHVAC cooling point. Within these ranges, the hourly data

was divided into subsets, and linear fitting was performed as illustrated in grey in

Fig. 6.4a. The temperatures corresponding to the highest values for the coefficient

of determination, or the R2 goodness of the fit, which for the example community

study are 15.5 to 17.5°C, are shown in Fig. 6.4b and may be recommended for further

use. As it will be later discussed, the selection of TmHVAC may also consider the
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data spread, for example at very low temperatures due to gas heating for part of the

community, and the need to achieve a better fit particularly at high loads, in order

to ensure that the demand is fully met under extreme conditions.

Algorithm 6.1 Mathematical process for TmHVAC temperature selection.

Prepare year of total power and outdoor temperature data
Select range of potential cooling TmHVAC options, e.g., 16-22 C
Select range of potential heating TmHVAC options, e.g., 10-18 C
Iterate for each TmHVAC cooling option

• Select temperatures above the TmHVAC cooling option and the corresponding
total powers

• Fit the curve by linear or polynomial regression

• Calculate the coefficient of determination (R2)

Repeat iteration procedure with temperatures below the TmHVAC heating options
Select TmHVAC cooling and heating points with the highest R2 value

In the second step of the method, a ML black box model based on a sequence-

to-sequence encoder-decoder LSTM algorithm of the type previously introduced by

the authors for home-level applications [212] was adapted for community-level studies

and employed for the forecast of the total electric power load. This ML model was

trained using hourly integrated power and weather data for the example community

over the winter and summer for three years, 2017 to 2019.

The input data, ML gate, was structured in series of consecutive 72 hours, i.e., 3

full days, and an additional 24 hours array for the day-ahead weather forecast. The

weather factors were simplified to the two most important: outdoor temperature and

solar irradiance. It is assumed that the houses are tightly sealed and wind driven

infiltration is not a major factor. The results, ML gate, are represented by 24 hours

of total electric power forecast. The model was tested over the year with the most
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Figure 6.5: Total load measured and forecasted for 2020 example weeks starting on
June 4th (a) and January 27th (b). Also plotted and illustrative of the correlation are
the weather conditions, which are specified in the p.u.system with a reference outdoor
temperature of 40°C and a solar irradiance of 1000W/m2, which is used throughout
the chapter unless specified otherwise.

recently available data, which is 2020, by providing instead of a weather forecast the

actual data.

The comparison between the forecasted and the measured total electric power

was satisfactory, as illustrated by the example summer and winter weekly profiles

included in Fig. 6.5. The last day in the week shown has a decreased load caused

by extremely low irradiance. The model accounts for changes in weather conditions

and resulting impact on total power demand across the community and was able

to predict the reduced load. Utilities would benefit from the proposed day-ahead

forecast to schedule generation needed on days outside of typical weather such as very

hot summer days and very cold winter days. It is also important to note that the

specific neighborhood selected has a near constant occupancy level as construction

is completed and no new houses are to be added. Scaling to account for a 1.25%

growth rate could be applied to the final forecasted result from the proposed model

to account for the increase in population but was not considered for this case study.

232



Figure 6.6: HVAC electric power component dissagregated as the difference between
the total forecasted power from Fig. 6.5 and the estimated baseload power from Fig.
6.7 for summer (a) and winter (b).

In a third step of the method, the previously established and trained LSTM model

that employs 72 hour data series, was employed/tested, in an innovative engineering

type approach, with constant TmHVAC values, selected for the cooling and heating

season, respectively, and with zero irradiance. The electric power results constitute

the estimated baseload for the community and correspond to the situation in which

the HVAC systems are on stand-by and hence not using virtually any electricity.

In the fourth and final step of the method, the HVAC load component is dis-

aggregated, i.e., separated, through the subtraction of the estimated baseload from

the total electric power. The results for the previously considered example weeks

are shown in Fig. 6.6. During the summer, the effect of the thermal inertia of the

buildings, all of which operate electrically powered HVAC air-conditioners, is notice-

able and provides reassurance that the proposed ML method is consistent with the

expected physics-based behaviour.

The overall procedure is summarized through the combined pseudo-code for the

following Algorithm 6.2 and the flowchart from Fig. 6.8. Also included in this figure
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Figure 6.7: Baseload power estimated for summer (a) and winter (b) example weeks
plotted for reference together with the total measured power and the weather condi-
tions from Fig. 6.5. The difference between the two powers provides the component
corresponding to the HVAC load.

are the 2020 test year results for forecasted total power and baseload and HVAC com-

ponents, showing that during the summer the baseload maintained a fairly repetitive

load profile and the HVAC variations are dependent of weather conditions. Unless

specified otherwise, the values used for TmHVAC throughout the chapter study are

12 and 18°C for heating and cooling respectively, for rationale later explained in a

discussion section.

Algorithm 6.2 Total and baseload forecast and disaggregation of the HVAC power
component.

Prepare the data for training the LSTM model

• Input gate: Total power for previous 3 days, weather data for previous 3 days,
and weather data for the next day

• Output gate: Total power for the next day

Train the LSTM model
Forecast the total power using the LSTM model
Estimate the baseload power component using the LSTM model

• Input: weather data for the next day is replaced by TmHVAC and
zero irradiance

Estimate the HVAC power component.
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6.4 Case Study

6.4.1 Results

The overall winter seasonal results obtained by applying the method to the studied

community are plotted in heatmap format in Fig. 6.9 similarly to the results provided

for the summer in Fig. 6.8b. A specific winter pattern of bi-modal daily peaks in the

morning and evening, which corresponds to weather conditions and typical human

behaviour aggregated at community level is noticeable. For this community, in the

winter the contribution of the base load is expected to be more substantial, especially

when considering that approximately half of the buildings are heated with natural

gas furnaces. The summer daily specific profile, has only one typical peak in the late

afternoons into the evenings, when all buildings are electrically air conditioned and

most people are expected to be at home.

The overall performance of the LSTM model was analyzed and quantified sepa-

rately for the summer and winter (Fig. 6.10). The residual for the summer results has

a mean of -137kW and a standard deviation of 361kW. The corresponding values for

the winter results are 33kW and 302kW, respectively. The mean residual percentage

errors are 2.3 and 0.5% of the maximum forecasted community load, which is 5.965

and 6.051MW, in the summer and winter, respectively. The Mean Absolute Percent

Error (MAPE) across the entire test periods is 9.5% for the summer and 7.3% for the

winter. Based on the trends observed and on the error analysis, the LSTM model for

the community total electric power forecast can be considered as satisfactory.

The proposed LSTM model is satisfactory as its MAPE is comparable with other
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Figure 6.8: Flow chart of the proposed LSTM-based method for forecasting
and dissagregation. Also included are the total (a), baseload (b), and sepa-
rated/dissagregated HVAC power component (c) for the example community during
the 2020 summer.

Figure 6.9: Winter case study for 2019/2020 for forecasted total power (a), estimated
baseload (b), and disaggregated HVAC component separated thorugh the difference
between total and baseload (c).

236



Figure 6.10: Distribution of errors for the total electric power load forecasts in the
summer (a) and winter (b) with a box size of 100kW. The mean residual is -137kW
with a standard deviation of 361 kW in the summer and 33kW with a standard
deviation of 302kW in the winter, which represent small fractions of the forecasted
maximum load of approximately 6MW.

recent studies on day-ahead hourly forecasts at the aggregate level on residential dis-

tribution circuits such as about 8% in [114] and 11% [223]. Improvement to the state

of the art forecasting accuracy at the distribution level would assist in generation

purchasing and reduce use of expensive fast responding generation scheduled by util-

ities only as needed during the day. It is important to note that as machine learning

models improve the proposed 2-step HVAC disaggegation method in this chapter, can

be still be utilized as the engineering insight utilizing TmHVAC values as a general

input to a trained model for baseload forecasts is universal.

The TmHVAC key outdoor temperature indicator was introduced and defined

with respect to Fig. 6.4. The results for the total power forecast are independent

of TmHVAC, but the separation of baseload and HVAC component is not. For

the example community in the winter, the selection of TmHAVC, as the minimum

temperature above which the HVAC system is assumed to be in standy-by zero electric

power mode, is challenging because approximately half of the buildings employ natural
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gas furnaces. In this case, a value of 12°C was preferred for TmHVAC on additional

considerations including those related to the parametric linear study depicted in Fig.

6.4, in order to obtain a better fit for very low temperatures and high total electric

loads, and ultimately ensure that the demand is meet under critical conditions.

Further reassurance for the selection is provided by the analysis of the energy for

the HVAC community component as a percentage of the total. The daily values have

been calculated through the time integration of profiles such as those illustrated in

Figs. 6.5, 6.7, and 6.6, and for this example week the HVAC energy from the total

ranges in between 8 and 24%. When considering the fact that half of the houses do not

use electricity for heating, the results at individual residence level may be considered

as consistent with reports based on larger-scale surveys [167]. Another approach,

which may be considered for the future, when large numbers of smart meters are

expected to be deployed in the field at individual house level, would be to statically

determine TmHVAC for the community based on experimental big data.

For the summer, a parametric study was conducted considering TmHVAC values

between 16 and 20°C and the disaggregated results for the HVAC load component

for an example day are plotted in Fig. 6.11. The daily profiles for HVAC and for

its complementary estimated baseload maintain their specific curve shapes but the

peak values may change. The in-between value of 18°C, is recommended not only

as a trade off. Furthermore, this value is well supported by the correlation study

from Fig. 6.4 and also on the basis of considering regional specifics for the building

thermal insulation, and relatively high likelihood of simultaneous occurrence of mild

temperature and high solar irradiance that may contribute to natural heating.
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Figure 6.11: Parametric study for TmHAVC influence on the HAVC disaggregated
electric power component on an example summer day example. Temperature and
irradiance are reported in p.u. with reference to base values of 40 deg C and 1000
W/m2.

6.4.2 Comparison with Conventional Approaches

Traditional models for load forecast are based on linear regression (LR), e.g., [218].

Such an LR model, typically referred to as power per cooling degree, was implemented

and employed for a summer study of our example community based on the optimal

linear data fit for the total electric power previously discussed in Section 6.2 and

shown in Fig. 6.3. The LR results from Fig. 6.12a were purposefully selected to

illustrate a fortunate situation of satisfactory agreement between measurements and

forecast throughout the week with the notable exception of the second day.

A systematic overall analysis of the LR results shows that the good agreement

may be rather occasional because there is wide spread of the residual over the entire

power range, pointing out to the disadvantages in terms of accuracy of traditional
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Figure 6.12: Example week following June 20, 2020 using a conventional linear regres-
sion (LR) model for the relationship between outdoor temperature and total electric
power (a). The error distribution of LR model for total power is widely spread out,
unlike the corresponding results for the newly proposed LSTM-based method shown
in Fig. 6.10a.

analysis versus the newly proposed ML method based on LSTM-type ML algorithms

(see Fig. 6.12b and Fig. 6.10b).Yet another advantage of the ML method is that it

is fully automated on a numerical computer and virtually eliminates the reliance on

the analyst experience, as it is typically the case for LR studies.

A baseload profile, detailed for 24-hours and invariable from day to day, was esti-

mated also based on the hourly V-curve for power. The temperature range for which

the HVAC system is considered to be on stand by at zero power was approximated

as 12 to 18°C. Due to the fact that there are not enough data points within this tem-

perature range during the daytime in the months of June to August in 2017, 2018,

and 2019, the data set has been extended to include the month of May, under the

assumption that human behaviour is comparable in late spring and summer. The av-

erage value of the resultant baseload compares satisfactorily with the corresponding

value from the proposed LSTM-based method and has rather similar profile variation.

This provides additional confidence in the new ML method. It further means that
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the errors noted for the LR estimation of total power are passed on to the HVAC

power component disaggregated through difference, and that the new ML method is

advantageous in this respect as well.

6.4.3 Discussion

The baseload forecasted and the HVAC power component disaggregated with the

proposed ML method can be, in principle, experimentally validated against measure-

ments. While for the total electric power such validation was performed at aggregated

community level as part of the study, as previously discussed, for the power compo-

nents, the process requires information at individual building power supply level.

Although dedicated intrusive load monitoring (ILM) equipment and methods are

available [34], the cost and the effort associated with the field deployment for equip-

ment specific instrumentation within thousands of buildings is currently prohibitive

and limits verification of the proposed approach. More specifics into the current state

of energy monitoring in the United States are included in Section 1.

Steps towards the validation of the community level components for baseload and

HVAC power are described in the following by comparing calculations with data

trends from experiments and alternative models that are already established. In a

previous section of the chapter, such a comparison has been already discussed with

favorable conclusions versus the summer baseload estimated using more traditional

LR methods.

Additional satisfactory verification of this summer typical baseload was conducted.

In principle, a day with a constant temperature of 18°C, equal to the recommended

241



Figure 6.13: Baseload hourly profiles for summer days estimated with the proposed
method and based on the experimental total load at approx. 18°C considering data
for May to August (Avg. Meas. summer) and for all months (Avg. Meas.) during
2017-2019.

TmHVAC for cooling, would provide the experimental baseload as the HVAC will

be in stand-by zero-power mode. In reality, such a full day does not exist as the

temperature varies and tends to be substantially higher in the afternoon. Instead,

synthetic data for a summer day of constant temperature was produced for each hour

by averaging the power data within one degree range of the specified 18°C with the

averages plotted in Fig. 6.13 considering suitable data from the extended summer of

May to August, inclusive, or throughout the entire year, respectively.

The HVAC electric power component disaggregated with the proposed ML method

follows weather variations, as expected based on fundamental physics rules. For

example, in Fig. 6.6a the latency of HVAC power with respect to temperature, due

to building thermal inertia, is clearly illustrated. Furthermore, within this example
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summer week, the daily integration of the total electric power and its components,

yields the percentage of the HVAC energy from the total to be in between 30 and

46%, such values being consistent with reports based on larger-scale surveys [167].

Yet another verification that the new method aligns well with sound scientific

fundamentals is through favorable comparison of the results with those provided by

models scaled up from representative buildings. One such medium-size 3-bedroom

house of the conventional type, equipped with a standard SEER 13 HVAC system,

and considered representative for the region, has been developed as part of another

experimental project with support from Tennessee Valley Authority (TVA) [224]. The

house has been modeled with the widely used EnergyPlus software [94].

The representative building physics-based white box model includes details of

the HVAC system, and physical parameters, such as surface area, windows, wall

thickness, roofing, thermal insulation, etc, and the results include HVAC electric

power. This can be scaled up to community level using, for example, the advanced

techniques proposed in [97]. For simplicity, in the current study the scaling has been

performed through direct multiplication with the total number of 1810 buildings

from the community. For an example day of June 7, 2020, the p.u. results with a

3.35MW base are plotted in Fig. 6.14 together with the HVAC power component

disaggregated with the proposed ML method indicating satisfactory agreement and

providing further confidence in the new method.

The proposed ML method is well suited for short-term day-ahead forecasts, which

enables utilities to optimize generation dispatch plans in advance of load, an thus

lowest cost units can be prioritized and insufficient capacity day to day could be
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Figure 6.14: Example day variations for the HVAC power component at community
level disaggregated with the proposed ML method and scaled up from an EnergyPlus
model of a representative house.

avoided. Additionally, because the proposed scheme disaggregates the HVAC power

component, it can support detailed studies to further the economic benefit to utilities

by estimating the effect, and cost reductions, of smart HVAC load management and

demand curtailment of HVAC, which can reduce further capacity needs, distribution

and transmission system upgrades, as well as facilitate the incorporation of addi-

tional intermittent renewable resources by syncing HVAC loads with the available of

renewable power.

For the summer, the detailed HVAC based studies may include establishing the

available energy and optimal timing for DR programs, during which large groups of

individual HVAC air-conditioners are controlled on and off as an aggregated VPP in

order to shift and possibly reduce the peak electric load [96]. For the winter, they

may include extremely low temperature condition and the accurate prediction of the
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HVAC and total power load, in order to make sure that available generation may

fully meet the demand and hence reliably ensure the thermal comfort through all the

buildings in the community.

Studies for long-term HVAC technology evolution and field deployment may also

be supported. As HVAC systems with higher Seasonal Energy Efficiency Ratio

(SEER) may be gradually introduced for more efficient summer air conditioning,

reduced cost of energy use, and to comply with new industry requirements, e.g.,

[225], the corresponding HVAC load component is expected to reduce. The associ-

ated forecasted profile can then be combined with the estimated baseload to derive

the predicted total load requirements, which is useful for planning purposes. The ap-

proximate half-and-half split in between winter heating with natural gas furnaces and

electric heat pumps for the community analyzed, provides a good basis for long-term

future studies in which new HVAC systems are deployed based on the evolution of

technology, fuel type availability and cost, and possibly new environmental regula-

tions, e.g. [226]. The improved HVAC specific forecasts and long-term development

studies could allow utilities to better estimate capacity expansion needs and could

lead to prevention of economic loss due construction of excess generation capacity. It

could also lead to retirement of unnecessary or under-used generation facilities.

6.5 Conclusions

The ML-based method proposed in this chapter addresses at the community level

the timely topic of day-ahead forecast with a view at enabling optimal energy con-

trols and utility planning. A first advantage of the method is that it only requires

245



minimal historic hourly information, represented by the total power as measured at

a main distribution line, which includes the summation of all loads on the branch, as

well as weather characteristics for outdoor temperature and solar irradiance that are

typically available from public databases. The method is shown to be superior to tra-

ditional linear-regression approaches in terms of combined automated operation and

higher accuracy. This has been demonstrated for total power through satisfactory

comparison and an MAPE error below 10% with respect to experimental data from

a suburban community in Kentucky representative for a wider US region.

Another advantage of the proposed method is that it separates the baseload and

the HVAC components out of the total power. This is possible through the intro-

duction of new key temperature indicators corresponding to the stand-by zero-power

operation for the HVAC systems for summer cooling and winter heating and an inno-

vative additional run of the trained LSTM model with such constant temperature and

zero irradiance. The validity of the components estimation and disaggregation is sup-

ported by favorable findings, in line with expectations based on fundamental physics,

statistics, and human behavioral patterns. Furthermore, the economic benefits of

the proposed 2-step HVAC disaggregation model include lower costs for generation

planning, use of more intermittent renewable generation resources, and cost benefit

assessment of HVAC load management and controls.
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Chapter 7

Conclusion

In this final chapter, the conclusions and contributions of the dissertation are

summarized. Future research is recommended with a view at possible further progress

in the subject area.

7.1 Summary and Conclusions

A new co-simulation framework, named INSPIR+D, was developed for the mod-

eling of electric power distribution systems, individual buildings, and smart devices.

A modified IEEE 123-bus test system with 353 homes was proposed as representative

for a typical residential community with loads based on simulated and measured data.

Simulation results include bus voltages and power flow throughout the circuit.

The energy usage models for buildings were developed and validated based on the

California Building Energy Code Compliance Residential (CBECC-Res) Standards,

and experimental data from southern Kentucky, within the co-simulation framework.

A proposed hybrid energy storage system employed batteries and water heaters to alle-

viate example cases of the “duck curve” phenomenon that is caused by non-coincident

solar generation and load demand. A methodology for the sizing of the residential

247



power balance system was proposed based on multi-objective differential evolution.

The objectives include the energy capacity and power ratings of the battery energy

storage system (BESS), and the fluctuation of the net metered power. Results show

that the same grid power flow can be achieved with a 30% smaller battery through

the use of the proposed hybrid energy storage system.

Aggregated generic curves for electric water heater (EWH) and heat pump water

heater (HPWH) using a minimal amount of data points were obtained from large-

scale field demonstrators. The experimental data was artificially aggregated in time

and space and results showed that the aggregated HPWH load had its daily power

peak appear later than that of EWHs in both the morning and evening. The study

illustrates that changing all EWH to HPWH would reduce the daily electricity usage

by approximately 70%.

For this study, the potential of EWH and HPWH as energy storage was evaluated.

When referring to the average power, approximately 14% daily electricity usage for

EWH could be shifted. The simulation indicated that the HPWH has the capability

to shift approximately 17% of the daily electricity usage. Both EWH and HPWH

could reserve the energy storage capacity equal to 22% of its daily electricity usage

in the case study.

Digital twin models for EWH and HPWH were created with the ability to cal-

culate the water heating power, hot water flow, water temperature in the tank, and

energy take for individual and multiple water heaters. A generalized approach to

energy storage that enables EWH, HPWH, and heating, ventilation, and air condi-

tioning (HVAC) systems, to be controlled with the same variables, namely “energy
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capacity” and “energy take” was proposed. A total of 353 EWHs were simulated to

represent a realistic community user behavior based on hot water draw from CBECC-

Res data. Simulation results show that when all the residences from the subdivision

react to the same DR signal at the same time, the total power at the main distribu-

tion feeder changed drastically, but the voltages for all buses were maintained within

an acceptable range of 1±0.05.

Virtual power plant (VPP) operation for a residential community was proposed

by controlling the smart homes as distributed energy resources (DER). Generalized

energy storage (GES) definitions were developed and provided so that they may be

applied in a uniform control method for batteries, EVs, HVAC systems, and EWHs

in smart homes. The long term aggregated residential load was predicted based on

different penetrations of smart homes in a community. Battery and EWH as energy

storage devices were compared and results show that EWHs with approximately 3

times the participation rates achieved the same peak reduction targets.

An equivalent energy storage model for HVAC was developed and a charging/discharging

procedure similar to a typical battery at both individual and aggregated levels was

applied. An aggregation technique for the modeling of HVAC systems in large com-

munities that was based on the robotic houses built and monitored by the Tennessee

Valley Authority (TVA) was proposed. The VPP operation was realized by sequen-

tial control, which temporarily allows higher indoor temperatures up to values that

were still acceptable for typical preferences and standard regulations of human com-

fort. The results based on 10,000 HVAC systems show that, on a very hot summer

day, when the DR participation was 100%, the peak power in the afternoon and the
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ramping rate were reduced by approximately 16% and 35%, respectively, while the

daily energy usage was almost the same.

A Kernel Density Estimation technique was developed and applied for the mod-

eling of aggregated EV charging power, based on the arrival time and daily driving

mileage from the National Household Travel Survey (NHTS) 2017 data. EVs were

charged with control signals complying to the CTA-2045 standards. An EV charg-

ing schedule was proposed in which the high time-of-use (ToU) period was avoided

and a 100% SOC was guaranteed at 6:00 in the morning on the next day. Another

case shows that the energy capacity of EVs is extremely large, substantial exceeding

the load of the community, therefore, can enable the entire residential community to

operate as a VPP under control.

A procedure was developed to quantify the building resilience considering the PV

generation, load percentage, capacity of BESS and EV battery. The probability for

the reference house to self-sustain for more than 3, 10, and 24 hours was found to

be 100%, 50% and 0%, respectively. When an EV with a battery capacity of 90kWh

was incorporated in the home energy management system, the probability for the

reference house to self-sustain at least 24 hours increased to 90%. If this same EV

was parked at home all the time, the probability to self-sustain 24 hours was 100%,

and the likelihood of self-sustaining for 48 hours increased to 98%. When the EV

battery capacity was 20kWh, the results for 24 and 48 hours were 85% and 30%,

respectively.

An ML-based method addressing the timely topic of day-ahead forecast with a

view at enabling optimal energy controls and utility planning at the community level
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was proposed and employed. The method is highly advantages in that it only requires

minimal historic hourly information, represented by the total power as measured at

a main distribution line, which includes the summation of all loads on the branch,

as well as weather characteristics for outdoor temperature and solar irradiance that

are typically available from public databases. Another significant advantage of the

proposed method is that it separates the baseload and the HVAC components out of

the total power, representing a significant novel contribution.

The method is shown to be superior to traditional linear-regression approaches in

terms of combined automated operation and higher accuracy. This has been demon-

strated for total power through satisfactory comparison and an MAPE error below

10% with respect to experimental data from a suburban community in Kentucky

representative for a wider US region. New key temperature indicators corresponding

to the stand-by zero-power operation for the HVAC systems and an innovative addi-

tional run of the trained LSTMmodel with such constant temperature and zero irradi-

ance were introduced. The validity of the components estimation and disaggregation

was supported by favorable findings, in line with expectations based on fundamen-

tal physics, statistics, and human behavioral patterns. Furthermore, the economic

benefits of the proposed 2-step HVAC disaggregation model include lower costs for

generation planning, use of more intermittent renewable generation resources, and

cost benefit assessment of HVAC load management and controls.

7.2 Original Contributions

The major contributions of the Ph.D. dissertation research include:
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1. Newly developed co-simulation framework for dynamic modeling and control

for power system and building energy. Further development of the EPRI DER

testbed to include model-in-the-loop capabilities for EWH and HVAC systems.

(Chapter 2)

2. An innovative hybrid energy storage system comprising of BESS and EWH,

systematically sized using a specific differential evolution method. (Chapter 2)

3. First of the kind, generic load curves for EWH and HPWH at aggregated level.

A novel method to evaluate the energy storage capacity of water heaters and

scale results to thousands of units. (Chapter 3)

4. A virtual electric power plant with optimal coordinated controls for HVAC,

EWH, and BESS, considering smart homes occupant comfort and ambient tem-

perature, a feature typically absent from other prior-art techniques. (Chapter

4)

5. A newly developed aggregation technique for HVAC loads in large communities

with results validated against field measured data from TVA robotic houses and

the SET project, one of US’ largest rural smart grid demonstrators. (Chapter

4)

6. Statistical KDE model for the aggregated EV charging power developed based

on the latest National Household Travel Survey data. (Chapter 5)

7. Proposed metrics for the quantification of building resilience with case studies

for EV battery support in V2H and V2G mode. (Chapter 5)
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8. A new generalized approach for energy storage modeling suitable for EWH,

HVAC, BESS, and EV and the latest CTA-2045 concepts. Demonstrative case

studies on a large di stribution circuit include ancillary services for energy stor-

age and power flow. (Chapters 3, 4, 5)

9. A new machine learning LSTM model for the forecast of total power and dis-

aggregation of the HVAC and baseload components. (Chapter 6)

7.3 Recommendations for Future Research

Based on the results of this Ph.D. dissertation and recent research, possible further

work may include the following;

1. An extension of the building modeling capabilities to include reactive power

should be considered. At current work, a constant power factor of 0.95 was

assumed to all building loads in the study for the simulation of distribution

power system. Further studies may investigate the relationship between the

power factor and building active power loads, considering the contributions of

typical appliances.

2. The mixing valve technology allows water temperature in the tank to be high,

potentially increasing the energy storage capacity of water heater. Once the

water temperature is already very high, the EWH might not need to further

heat the water for a very long duration. Further research could examine the

scenarios where water temperature is allowed to be very high for weekly and

longer time frame.
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3. Further studies of the aggregated EV charging power may consider the rela-

tionship between EV departure time and EV arrival time for each vehicle. The

conditional probability of EV departure time given the arrival time may be

calculated, in order to improve the estimation of EV charging power, and the

potential of V2G services. Other distributions, e.g., joint Gauss, and exponen-

tial may also be employed.

4. The typical meteorological year (TMY) data, which summarizes historic aver-

age and might miss the extreme conditions, was used for the building energy

modeling and evaluation of building resilience. Future work should consider

using the multiple years of actual weather data or the weather year for energy

calculations (WYEC) data set.
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