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Abstract: The hormones auxin and cytokinin regulate numerous aspects of plant development and
often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin
antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot
and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio
is essential for the survival of terrestrial plants because it allows growth adaptations to water and
mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an
increase in root growth leads to survival under drought stress and nutrient limiting conditions, it
was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance
and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the
cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation
affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin
suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other.
However, a growing body of evidence supports unidirectional regulation, with auxin emerging as
the primary regulatory component. This master regulatory role of auxin may not come as a surprise
when viewed from an evolutionary perspective.

Keywords: auxin signaling; cytokinin signaling; auxin/cytokinin signaling crosstalk; hormone
antagonism; drought stress; nutrient deficiency; shoot/root growth ratio

1. Introduction

Adaptive regulation of the shoot/root growth ratio is an evolutionarily conserved
developmental mechanism in terrestrial plants, which ensures maximal progeny production
under fluctuating environmental conditions. In growth conditions in which water and
mineral nutrients are not limiting, shoot growth is favored as it embodies traits that
support reproductive success and survival of the species, and root development is limited
to a level sufficient to sustain shoot development without the unnecessary depletion of
photosynthates [1]. Thus, under optimal water and nutrient conditions, plants are predicted
to have a high shoot/root ratio [1,2]. However, when water or mineral nutrient availability
decreases, the growth of the shoot—the main site for water loss and mineral nutrients
consumption—needs to be reduced in favor of the growth of a larger root system [3–5].

This review outlines the antagonistic roles played by cytokinin and auxin in control-
ling the shoot/root growth ratio and focuses on the link between this antagonism and
the adaption to drought stress and nutrient deficiency, two of the main environmental
challenges for terrestrial plants.

Int. J. Mol. Sci. 2022, 23, 1933. https://doi.org/10.3390/ijms23041933 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23041933
https://doi.org/10.3390/ijms23041933
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6067-4619
https://doi.org/10.3390/ijms23041933
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23041933?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 1933 2 of 15

2. Auxin- and Cytokinin-Dependent Control of the Shoot/Root Growth Ratio
2.1. Auxin and Cytokinin Signaling Pathways

Auxin signaling is essentially an inhibition–release mechanism (Figure 1). The main
components of this signaling pathway are the auxin resistant/indole-3-acetic acid inducible
(AUX/IAA) proteins, auxin response factor (ARF) proteins, and F-box proteins of the
transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) family [6]. F-box proteins
are substrate recruiting modules of SCF (SKP1-Cullin 1-F-box protein) E3 ligase complexes
and they initiate the degradation of the substrate by the ubiquitin/26S proteasome path-
way [7]. In the auxin signaling pathway, auxin acts as a ligand that promotes binding of
the AUX/IAA proteins with SCFTIR1/AFB which leads to the degradation of AUX/IAAs [6].
As a result, ARFs, which are inhibited by the AUX/IAAs, become activated and regulate
the expression of primary auxin response genes [8]. The AUX/IAAs genes themselves are
auxin-induced [9] and thus serve as negative feedback regulators of the auxin response.
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Figure 1. Simplified schemes of the auxin and cytokinin response pathways. Abbreviations:
AUX/IAAs, auxin/indole-3-acetic acid regulators; ARFs, auxin response factors; CHKs, cytokinin his-
tidine kinase receptors; HPTs, histidine phosphotransfer proteins; RRBs, type-B response regulators;
RRAs, type-A response regulators.

The cytokinin signaling pathway starts with the binding of cytokinin to histidine
kinase receptors (CHKs, [10–12]), which leads to receptor autophosphorylation (Figure 1).
The phosphoryl group is then transferred to histidine phosphotransfer proteins (HPTs),
which further relay the phosphoryl group to two groups of response regulators (RRs),
the type-B and type-A RRs. The phosphorylated type-B RRs are transcription factors that
regulate the expression of primary cytokinin response genes that include genes encoding
the type-A RRs, which function as cytokinin response inhibitors and, thus, as negative
feedback regulators of the cytokinin response [13–18].

2.2. Auxin and Cytokinin Control of the Shoot/Root Growth Ratio in Higher Plants

Pioneering tissue culture experiments have shown that callus can be generated from
explants using combined treatment with auxin and cytokinin, and that increasing the
auxin to cytokinin ratio promotes root development, whereas decreasing the auxin to
cytokinin ratio leads to shoot formation [19]. These experiments, now a cornerstone of basic
and applied plant research, were the first to show that auxin is a root growth-promoting
hormone, whereas cytokinin is a shoot growth promoter [19].

Subsequent work with mutant and transgenic lines provided unequivocal evidence
that auxin and cytokinin have opposite effects on root and shoot growth. Both root and
shoot growth are inhibited in Arabidopsis transgenic lines with a strong constitutive auxin
or cytokinin response [20,21]. Strong auxin or cytokinin resistance is also associated with
severe root and shoot growth inhibition [12,22,23]. However, studies with mutant and
transgenic lines that have weaker changes in hormone action, proved that auxin and
cytokinin antagonistically regulate the shoot/root growth ratio. For example, transgenic
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plants with lower cytokinin content have a smaller shoot and a larger root system than the
wild type [24,25]. The root phenotype of transgenic plants with lower cytokinin content
could be viewed as compensatory (more nutrients may be available for root growth if
shoot growth is reduced). This compensatory hypothesis was refuted by analyses of
Arabidopsis and tobacco plants in which cytokinin content was reduced only in roots [26].
These transgenic plants have an enlarged root system and a normal wild type-sized shoot,
proving that cytokinin directly represses root growth [26]. A shoot-growth promoting
effect of cytokinin was also described for a range of grass species that have increased
cytokinin content due to elevated expression of STENOFOLIA (STF), which encodes a
member of the WUSCHEL-related homeobox (WOX) family of transcription factors that
represses the expression of cytokinin oxidase/dehydrogenase genes [27]. Moreover, a
study with the aquatic plants Lemna gibba and Spirodela polyrhiza revealed that cytokinin
treatment promoted frond (i.e., shoot) expansion and duplication while suppressing root
elongation [28]. In addition, research on potato stem single-node cuttings revealed that
whereas cytokinin treatments increased, auxin treatments decreased the shoot/root growth
ratio [29]. These conclusions reached by analyses of cytokinin-treated plants and transgenic
lines with altered cytokinin content were confirmed by cytokinin receptor mutant studies.
The Arabidopsis histidine kinase receptor (AHK) double mutant ahk2 ahk3 has smaller
shoots and a larger root system [30], and gain-of-function AHK2 or AHK3 plants have
enlarged shoots and smaller root systems when compared to wild-type plants [31].

In contrast to cytokinin resistant mutants and transgenic lines with lower cytokinin
content, Arabidopsis auxin resistant (axr) mutants have an increased shoot/root biomass
ratio (Figure 2). The axr3, axr2, and axr5 mutants, which have decreased auxin sensitivity
because of the stabilization of auxin response repressor AUX/IAA proteins [32–34], have
been ranked based on the strength of their auxin resistance [35]. The strongest axr mutant,
axr3-3, has a nearly five-fold increase in shoot/root biomass ratio (Figure 2). However,
it could be argued that the overall growth retardation of axr3-3 plants precludes any
relevant comparison with the wild type. However, the shoot/root biomass ratio was also
increased in the medium-strength auxin insensitive mutant axr2 and the weakest mutant
axr5, indicating that a mild decrease in auxin action increases the shoot/root growth ratio
without causing the overall dwarfism that characterizes strong auxin resistant mutants such
as axr3-3 (Figure 2). Moreover, mutant plants defective in auxin biosynthesis also have an
increased shoot/root growth ratio, which confirms that auxin and cytokinin antagonistically
regulate the growth rate of aerial and root organs [36].
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Figure 2. Increased shoot/root growth ratio in Arabidopsis auxin resistant mutants. Nineteen-day-old
Col-0 wild type, axr5-1, axr2-1, and axr3-3 plants, grown on vertical plates containing half-strength
Murashige and Skoog medium, were dissected, and the fresh weights of shoots and roots were
measured. Data are presented as mean ± SD (n ≥ 12 pools of 8 plants each). The significance of the
difference between the wild type and the mutants is noted (****, p < 0.0001; two-way ANOVA with
Bonferroni’s multiple comparisons test) Kurepa et al., unpublished.
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2.3. Auxin- and Cytokinin-Dependent Control of the Growth Ratio of Shoot/Root Equivalents
in Bryophytes

Auxin and cytokinin play key roles in vascular system development and in part,
exert their effects on plant growth via vascular transport [37–43]. However, the antagonis-
tic actions of auxin and cytokinin on the shoot/root growth ratio are operational in the
earliest land plants, the non-vascular bryophytes, which suggests that it predates the emer-
gence of the vascular system. Key to the evolution of land plants was the establishment
of a program that controls the development of an upward-growing and photosynthe-
sizing shoot-like organ on the one hand, and downward-growing root-like cells on the
other [44,45]. Bryophytes have no shoots and roots but have developmentally equivalent
organs. In the liverwort Marchantia polymorpha, the thallus is the photosynthesizing part,
and it forms gemma cups, multicellular asexual buds, that can be considered the functional
equivalents of lateral shoots in higher plants [46]. The flat thallus has dorsal and ventral
parts, with the dorsal part responsible for gemma cup formation, while the ventral part
produces rhizoids that anchor the liverwort to the soil and take up nutrients and water [47].
Thus, in liverworts, the dorsal part of the thallus and its upward growing structures are
the shoot equivalent, and the ventral part of the thallus and the rhizoids are equivalent
to roots. Accordingly, an increase in the “shoot/root” growth ratio in M. polymorpha is
represented by an increase in the growth rate of the dorsal part of the thallus, combined
with an increase in gemma cup initiation and growth, which is a growth pattern that leads
to the development of an epinastic (i.e., downward-bending) thallus. A decrease in the
“shoot/root” growth ratio, resulting from increased growth of the ventral thallus combined
with increased rhizoid formation and growth, will cause hyponastic (i.e., upward-bending)
thallus growth.

Functional auxin and cytokinin signaling and biosynthesis exist in both the liverwort
M. polymorpha and the moss Physcomitrium patens (previously known as Physcomitrella
patens) [48–53]. The signaling and biosynthetic pathways in M. polymorpha and P. patens
have the same core components as Arabidopsis, albeit encoded by less complex gene
families [48–53]. Strikingly, hormone treatment studies and analyses of M. polymorpha
mutant and transgenic lines with altered hormone content or sensitivity, revealed that
auxin and cytokinin affect the growth ratio of the shoot and root equivalents in the same
manner as in higher plants: increased cytokinin action promotes gemma cup initiation
and causes epinastic thallus growth [46,49,54,55], and increased auxin action leads to
the formation of a hyponastic thallus with an increased number of larger rhizoids and a
decreased gemma cup initiation rate [46,50,51,56]. In the moss P. patens, the gametophores
and rhizoids that develop from the caulonema stage can be considered the equivalents of
shoots and roots in higher plants. The gametophore contains photosynthesizing leaves and
represents the P. patens reproductive phase, whereas the rhizoids anchor the moss to the
soil and take up nutrients and water [53,57]. Similar to higher plants and the liverworts,
auxin and cytokinin exert opposite effects on the development of gametophores and
rhizoids: auxin treatment suppresses gametophore development and causes the formation
of ectopic rhizoids, whereas exogenous cytokinin or a mutational increase in cytokinin
content increase gametophore development and inhibit rhizoid growth [58–64].

3. Auxin and Cytokinin Control of the Responses to Water and Nutrient Availability

The transition from an aquatic to a terrestrial habitat required the evolution of adaptive
mechanisms needed to overcome drought stress and mineral nutrient deficiency, two main
challenges associated with survival on land [65,66]. Auxin and cytokinin are essential
regulators of these adaptive mechanisms, not only because they mold the shoot/root
growth to a pattern that is favorable for a terrestrial lifestyle, but also because they regulate
physiological processes needed to alleviate and withstand drought stress and mineral
nutrient deficiency (Figure 3).
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3.1. Drought Stress

Drought is one of the most important environmental stresses and together with oxida-
tive stress, one of the most widely studied stress conditions in plant biology [67]. Drought
stress is often described as multidimensional, because it causes extensive changes in plant
morphology, physiology, and biochemistry [67]. Many of these changes are regulated by
cytokinin and auxin. The most essential cytokinin- and auxin-regulated morphological
change is a decrease in the shoot/root growth ratio, which effectively reduces the part
of the plant responsible for water loss and increases the part of the plant responsible for
water uptake. The most important physiological change is the antagonistic auxin- and
cytokinin-dependent control of abscisic acid (ABA) biosynthesis and ABA responses. ABA,
a hormone that regulates specific aspects of plant development (e.g., seed development
and germination), is required for drought stress responses and drought tolerance [68,69].

3.1.1. Auxin Promotes Drought Stress Tolerance

Although auxin remains best known as a growth regulatory hormone, its functions in
regulating drought stress responses are now well established [70]. Drought stress induces
auxin biosynthesis and alters conjugation, catabolism, transport, and response regulation,
with an overall effect of increasing auxin action [71–79]. In addition, auxin treatments
or transgenic increases in auxin content, promote drought stress tolerance in a range
of plant species [71–79], and loss of function of the auxin biosynthesis pathway causes
drought stress hypersensitivity [36,74]. Curiously, even some auxin-synthesizing and auxin-
secreting Pseudomonas and Rhizobium strains increase plant tolerance to osmotic stress, a
type of stress that also reduces water availability [79,80]. Reciprocal studies, including
analyses of drought stress responses in auxin gain- and loss-of-function mutants and
transgenic lines, confirmed that auxin positively regulates drought stress tolerance [36,74].

The auxin response pathway is required for auxin-dependent promotion of drought
stress tolerance, which suggests that auxin acts as a stress response signaling molecule [81–83].
Although a wide range of auxin-dependent responses to drought stress has been described,
all the responses ultimately impact water uptake and strengthen the protection against
dehydration damage. For example, a decrease in soil water content alters root growth
in an auxin-dependent manner, by increasing the initiation and growth of lateral roots
and promoting elongation of the primary root [82]. The increased lateral-root-growth
response to drought stress was shown to depend on auxin regulation at the biosynthesis,
transport, and signaling levels [82]. Moreover, osmotic stress was shown to inhibit leaf
expansion growth by increased auxin action via the ARF family of auxin response activators,
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indicating that auxin also mediates drought stress responses in the shoot [84]. Auxin may
also positively impact drought tolerance by limiting stomatal density and controlling
stomatal aperture [85].

Current research points to the auxin-inducible AUX/IAA genes as important regula-
tors of auxin-induced drought stress tolerance. Overexpression of AUX/IAA genes was
shown to promote drought tolerance in rice and tobacco plants [86,87], and in rice, this
was accompanied by increased expression of members of the YUCCA family of auxin
biosynthesis genes [86]. AUX/IAAs were also found to promote drought stress tolerance
by the regulation of glucosinate and the promotion of stomatal closure [88]. AUX/IAAs
are generally auxin response inhibitors [89,90], but their positive role in promoting auxin-
mediated drought stress tolerance suggests that they have a more complex role in auxin
signaling. Another family of auxin-inducible genes, the Small Auxin-Up RNAs (SAURs),
was also implicated in promoting drought (and salt) stress tolerance [91]. SAUR genes are
ABA-inducible, and they mediate, at least in part, ABA-induced stomatal closure and seed
germination [91]. Thus, the SAUR gene family is viewed as an auxin interaction point with
ABA signaling.

3.1.2. Cytokinin Negatively Regulates Drought Stress Tolerance

The link between cytokinin and drought stress tolerance was uncovered over the past
two decades [70]. Drought stress represses cytokinin biosynthesis and down-regulates the
expression of genes encoding cytokinin signaling components [92–94]. Further studies
using mutant and transgenic lines revealed that loss of function of components of the
cytokinin response pathway, cytokinin resistance or decreased cytokinin content are associ-
ated with increased drought stress tolerance, whereas increased cytokinin action causes
drought stress hypersensitivity [92,93,95–99], which confirmed that cytokinin negatively
affects drought stress tolerance.

A plethora of cytokinin responses that lead to a decrease in drought stress tolerance has
been described. Most notably, cytokinin increases water loss by promoting shoot growth
and limits water uptake by inhibiting root growth [25,26]. In addition, cytokinin suppresses
drought stress tolerance by repressing the expression of ABA-inducible genes [97]. On the
other hand, decreased cytokinin content was associated with increased membrane integrity
under drought stress conditions and increased ABA sensitivity [93]. While cytokinin
treatments have been shown to increase stomatal density in leaves, cytokinin is also known
to counteract the effect of ABA on stomatal closure [85,100]. Recently, it was discovered that
this cytokinin/ABA crosstalk regulates osmotic stress tolerance by regulating the global
control of protein synthesis rates [101]. Transgenic lines that have increased cytokinin
action due to increased activity of the Arabidopsis Type-B response Regulator 1 (ARR1)
are hypersensitive to osmotic stress [101]. This hypersensitivity is the result of an increase
in global protein synthesis, which is—at least partly—caused by the increased expression
of cytokinin-inducible RPL4A and RPL4D genes that encode ribosomal protein L4 (RPL4)
isoforms A and D [101]. ABA, a known repressor of protein synthesis [102], successfully
suppressed the osmotic stress hypersensitivity of ARR1 gain-of-function lines [101].

The salt stress and drought stress responses are closely related, which is not surprising
considering that salt stress leads to a reduction in water availability [103,104]. The mitogen-
activated protein kinases 3 and 6 (MPK3 and MPK6) play an essential role in the salt stress
response of plants, and they promote salt stress tolerance by promoting degradation of
Type-B RR cytokinin response activators [105]. It is still to be determined if MPK3- and
MPK6-dependent degradation of Type-B RRs plays a role in drought stress response, but if
it does, it will bring to light another mechanism of drought stress-dependent suppression
of cytokinin signaling.

In summary, the negative role of cytokinin in drought stress tolerance is now well
established and supported by cytokinin mutant studies and analyses of transgenic plants
with decreased cytokinin content or increased action [92,93,96]. Furthermore, as decreased
cytokinin content was also shown to promote drought stress tolerance in the moss P. patens,
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this negative effect of cytokinin on drought stress tolerance may be conserved through-
out the plant kingdom [106]. However, cytokinin treatments or transgenic increases in
cytokinin content have also been shown to promote drought stress tolerance [107–110]. One
possible explanation for these contradictory results involves the role played by cytokinin
in protecting the photosynthetic machinery under stress conditions [110–112]. Cytokinin
promotion of drought stress tolerance has been successful when cytokinin biosynthesis
was increased in response to drought stress and in senescing leaves of plants expressing a
cytokinin biosynthesis transgene from a senescence- or stress-inducible promoter [110–117].
These approaches circumvent the negative drought stress impact of cytokinin on devel-
oping leaves, wherein cytokinin promotes water loss by increasing stomatal density and
aperture [85,100]. Therefore, the timing of cytokinin treatment seems to be crucial for
promoting this type of drought stress tolerance.

3.2. Mineral Nutrient Availability

Since agricultural productivity is inseparably linked to nutrient availability, research
on nutrient uptake and responses to nutrient deficiency has been extensive and encom-
passed a myriad of research directions from soil chemistry to molecular studies of different
transporter proteins. The two main limiting nutrients in soils, nitrogen and phosphate, are
of particular interest here, as the antagonistic effects of cytokinin and auxin on their uptake
and the responses to their decreased availability has been well-documented.

3.2.1. Auxin Positively Regulates Nutrient Uptake

The nitrogen content of soils impacts auxin accumulation and auxin-dependent root
growth. Whereas severe nitrogen deficiency inhibits the growth of both the primary and
lateral roots [82], mild nitrogen deficiency increases auxin content and signaling, leading
to an increase in lateral root formation, lateral root growth, and elongation of the primary
root [118,119]. In Arabidopsis, this auxin-dependent promotion of lateral root formation
acts in an ion-dependent manner, with ammonium promoting lateral root branching and
nitrate promoting lateral root elongation [120–125].

Similar to nitrogen, phosphate deficiency triggers lateral root formation by increasing
auxin sensitivity and biosynthesis [126,127]. On the other hand, auxin induces the expres-
sion of Phosphate Starvation Response 1 (PHR1), a key activator of phosphate starvation
response genes, such as genes that encode phosphate transporters [126–130].

3.2.2. Cytokinin Is a Satiation Hormone

Cytokinin generally acts as a negative regulator of mineral nutrient uptake [131–134].
Nitrogen deficiency was shown to decrease cytokinin content by simultaneously inhibiting
cytokinin biosynthesis and promoting cytokinin degradation, thus increasing root growth
and mineral nutrient accumulation [135]. The opposite was also shown to hold true: in-
creased nitrogen availability promotes cytokinin accumulation and a concomitant reduction
in root growth [136–138]. Furthermore, the finding that cytokinin treatments repress genes
involved in nitrogen uptake adds to the understanding of the molecular mechanisms by
which cytokinin negatively regulates nitrogen uptake [131]. Cytokinin also suppresses
phosphate uptake by repressing the genes involved in the phosphate starvation response,
and this negative gene regulation requires the cytokinin response pathway [139,140].

Although cytokinin negatively regulates mineral nutrient uptake, it is important to
note that this regulation is only active in response to nutrient excess. As previously stated,
nutrient deficiency negatively regulates cytokinin action. Essentially, cytokinin serves as a
satiation hormone as it prevents nutrient accumulation to excessive and potentially toxic
levels [131].

4. Unidirectional Control of Auxin/Cytokinin Antagonism

The antagonistic auxin/cytokinin regulation of fundamental processes such as the
shoot/root growth ratio and water and nutrient uptake implies the existence of a check-
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point(s) or negative feedback loop(s) by which one hormone regulates the biosynthesis,
signaling, or transport pathway of the other (Figure 4). Auxin/cytokinin interactions have
been investigated in detail in both shoot and root apical meristems, where they play a key
role in the initiation of leaves and the priming of lateral roots and thus, determine shoot
and root architecture [141–146]. Inhibitory auxin/cytokinin interactions have also been
described for other phases of plant development (e.g., leaf development, shoot and root
elongation, and the branching of shoots and roots). These interactions control the shoot
to root growth ratio, and they are predominantly unidirectional, with auxin inhibiting
cytokinin, but not the other way around. Auxin-dependent negative control has been
described for cytokinin biosynthesis and signaling.
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4.1. Auxin Inhibition of Cytokinin Biosynthesis

The inhibitory control of auxin on cytokinin biosynthesis involves the canonical auxin
response pathway and is functional in whole plants and in specific organs (e.g., apical meris-
tems and stem internodes) [147–151]. In whole plants, auxin repression predominantly
involves inhibition of the isopentenyladenosine-5′-monophosphate-independent pathway
of cytokinin biosynthesis [150]. In contrast, cytokinin promotes auxin biosynthesis through-
out the plant [152–155]. For example, high-level expression of a gene encoding the cytokinin
biosynthetic enzyme isopentenyltransferase 8 was shown to increase auxin accumulation
in the shoot apex and in developing leaves and roots. In contrast, the downregulation
of cytokinin content, resulting from either overexpression of a cytokinin oxidase gene
or by the loss of function of cytokinin biosynthesis genes, decreased auxin content [152].
Cytokinin-induced auxin synthesis is—at least in part—promoted by cytokinin-dependent
upregulation of genes involved in auxin biosynthesis, and it requires the cytokinin re-
sponse pathway [152–155]. Considering that auxin is a cytokinin biosynthesis repressor, it
is tempting to speculate that cytokinin-induced auxin synthesis serves as a feedback control
mechanism that limits cytokinin accumulation and thus cytokinin action.

4.2. Auxin Inhibition of Cytokinin Signaling and Action

It was recently shown that whereas auxin inhibits cytokinin signaling in both shoot
and root organs, cytokinin does not negatively affect auxin signaling [35]. Auxin resistance
caused by the stabilization of AUX/IAA proteins was associated with increased cytokinin
signaling in a mutant strength-dependent manner [35]. Moreover, loss-of-function of the
auxin response activator gene ARF7 also combined auxin resistance with increased cy-
tokinin action [35]. In addition to a constitutive increase in cytokinin signaling, auxin
resistance was associated with a hypersensitive response to exogenous cytokinin, proving
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that auxin impacts cytokinin signaling along with cytokinin biosynthesis [35]. In contrast,
severe cytokinin resistance caused by the simultaneous loss of function of the ARR1, ARR10,
and ARR12 cytokinin response activators did not impact auxin signaling intensity [35],
indicating that this antagonistic auxin/cytokinin interaction at the signaling level is also uni-
directional. Two recent reports have provided further evidence for this conclusion [147,156].
These studies show that transgenic increase in endogenous auxin and auxin treatments of
potato plants, decrease cytokinin content and strongly repress cytokinin signaling genes,
whereas cytokinin treatment leads to an ambiguous and sucrose-dependent effect on auxin
signaling [147,156].

5. Evolutionary Implications and Future Perspectives

When viewed from an evolutionary perspective, the auxin/cytokinin antagonism
and the unidirectional control of cytokinin by auxin allow land plants to flexibly control
their shoot/root growth ratio, which is essential for survival in a terrestrial habitat. As
auxin and cytokinin also exert antagonistic effects on the growth ratio of shoot and root
equivalents in the bryophytes, it will be interesting to determine if the unidirectional auxin
inhibition of cytokinin biosynthesis and signaling is also functional in these earliest land
plants. In order to gain a better understanding of the mechanisms driving the evolution
of land plants, it will also be important to test whether the auxin/cytokinin antagonism
controls drought stress and nutrient deficiency responses in bryophytes. If this is the case, it
would be of interest to determine whether cytokinin biosynthesis and signaling developed
independently from auxin control and were connected to and restricted by auxin during
the evolution of land plants, or if they developed co-dependently, for example, as modules
of the original auxin response. The Charophyte green algae share their ancestral lineage
with land plants [157]. In some Charophytes, auxin and cytokinin have been detected,
and orthologues of auxin and cytokinin biosynthesis and response pathway genes have
been identified [158–160]. It will be of interest to determine whether auxin and cytokinin
pathways are linked or function independently in these land plant progenitors.
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