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Methane and nitrous oxide emissions from grazed grasslands 
 
H. Clark, C. Pinares-Patiño and C. deKlein 
AgResearch Ltd, New Zealand 
Email: Harry.Clark@AgResearch.co.nz 
 
Key points 
 
1. Emissions of methane (CH4) and nitrous oxide (N2O) from grasslands make a substantial 

contribution to total agricultural emissions of these two gases. 
2. At present practical mitigation options that relate to grazing ruminants and grazed pastures 

are limited. 
3. Research into agricultural greenhouse gas emissions is of low priority in most developed 

countries. 
4. Direct manipulation of the rumen ecosystem provides the best opportunity for large 

reductions in CH4 in the long term. 
5. Reducing the amount of nitrogen (N) excreted by grazing animals is a priority in N2O 

research, as this source of N2O constitutes almost 90% of the total global N2O emissions 
from grasslands. 

 
Keywords: greenhouse gas, climate change, ruminant, grassland mitigation 
 
Introduction 
 
In its third assessment report, the Inter Governmental Panel on Climate Change (IPCC) stated 
“The earth’s climate system has demonstrably changed on both global and regional scales since 
the pre-industrial era, with some of these changes attributable to human activities” (IPCC, 
2001a).  Human activities have increased the atmospheric concentrations of greenhouse gases 
(GHG) and the key anthropogenic gases (carbon dioxide (CO2), methane (CH4), nitrous oxide 
(N20) and tropospheric ozone (O3)), reaching their highest ever-recorded levels in the 1990’s 
(IPCC 2001a).  At the same time there is increasing evidence that the world’s climate is getting 
warmer and that, judged from the 1861-2000 instrumental record, the 1990’s were the warmest 
decade in recent history (IPCC 2001a).  Faced with this situation there is now a major 
international effort to reduce anthropogenic GHG emissions to the atmosphere through such 
mechanisms as the United Nations Framework Convention on Climate Change (UNFCCC) and, 
most notably, the Kyoto Protocol.  The latter treaty, which at present covers only the developed 
nations, is a landmark treaty in that those countries ratifying have agreed to legally binding 
reductions in GHG emissions compared to a 1990 baseline. 
 
The principal agricultural GHGs are CH4 and N2O, and it is estimated that agriculturally 
derived emissions account for >55% and >75% of the world’s anthropogenic CH4 and N2O 
emissions respectively (IPCC, 2001b).  On a mass basis, global anthropogenic emissions of 
CH4 and N2O are small compared to CO2 emissions, but because their global warming 
potentials are greater than CO2 (CO2 =1, CH4 = 23 and N2O = 296) they play an important 
role in the radiactive balance of the atmosphere (IPCC, 2001b). 
 
Since agriculture is an important source of GHG there has been considerable focus in the last 
decade on methods to mitigate CH4 and N2O emissions associated with agricultural activity.  
Ruminant livestock production systems have received particular attention since ruminant 
animals directly emit CH4 via the breath, and provide the substrate for CH4 and N2O 
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emissions arising from stored and pasture deposited animal excreta.  In addition, nitrogenous 
fertiliser applications, a further source of N2O emissions, have been a focus of mitigation 
studies as they are a feature of ruminant livestock production systems in many countries. 
 
In this paper, we will concentrate on the particular problem of mitigating GHG emissions 
from grazing animals and from extensively grazed pastures.  In these situations mitigation 
options have to be appropriate to systems where, in many cases, animals are handled 
infrequently, where there may be limited opportunities to manipulate or supplement the diet, 
where manipulations of the soil are constrained by terrain and accessibility and where 
synthetic nitrogenous fertiliser inputs are low or non-existent. 
 
Sources of methane and nitrous oxide from grazed livestock 
 
Methane 
 
The principle source of CH4 from ruminants is enteric methane arising as a by-product of the 
fermentation of feed in the rumen and, to a lesser extent, the large intestine.  The rumen 
contains a large and diverse population of microorganisms and these break down feed to 
produce volatile fatty acids (VFA’s), CO2 and CH4.  The VFA’s produced in the rumen are 
absorbed and used as an energy source, but most of the CO2 and CH4 are removed from the 
rumen by eructation.  Typically >80% of the CH4 is produced in the rumen and the rest in the 
lower digestive tract (Immig, 1996; Murray et al., 1976).  In sheep 98% of the CH4 produced 
is released via the mouth and 2% via the flatus (Murray et al., 1976).  The microorganisms 
responsible for the production of CH4 synthesise it from hydrogen, although they do have the 
ability to use other substrates (Miller, 1995).  The removal of hydrogen by methanogens helps 
maintain a low partial pressure of hydrogen in the rumen without which microbial growth and 
forage digestion are inhibited (Wolin et al., 1997).  As a percentage of the gross energy 
consumed, 2 - 15% can be lost as CH4 (Johnson & Ward, 1996), although in temperate 
forages the range is typically 3.5 – 7.5% (O’Hara et al., 2003). 
 
A secondary source of CH4 is that arising from voided faecal material.  In grazing animals 
where faecal material is deposited directly onto pastures, only small amounts of CH4 arise 
from this source.  For example, in New Zealand pastoral agriculture, 99% of CH4 emissions 
arise from enteric sources and only 1% from faecal material (New Zealand Climate Change 
Office, 2004).  In this paper only enteric sources of CH4 will be considered. 
 
Nitrous oxide 
 
Nitrous oxide emissions from agricultural soils arise from nitrification and denitrification 
processes (Figure 1).  Denitrification is the stepwise reduction of soil nitrate (NO3) (to 
gaseous nitrogen compounds, with N2O being one of the intermediate products (Haynes & 
Sherlock, 1986).  It is an anaerobic process that requires a NO3 substrate, a restricted oxygen 
supply and suitable pH and temperature conditions (Firestone, 1982; Mosier et al., 1996).  
Nitrification is an aerobic process, and in most soils is controlled by the availability of 
ammonium (NH4) (Schmidt, 1982). 
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Nitrous oxide 
↑ 

Ammonia →Nitrite→Nitrate→Nitrite→Nitric oxide→Nitrous oxide→Nitrogen 
  (gas) (gas) (gas) 

 
Figure 1  The production of nitrous oxide by nitrification and denitrification (adapted from 
O’Hara et al., 2003) 
 
 
There are two principle sources of nitrogen (N) substrate in grazed pastoral systems; recycled 
dietary N and applied synthetic fertilisers.  Ruminants are relatively poor converters of 
ingested dietary N into products, and the retention of N in meat, wool or milk ranges from 3 - 
25% of the N ingested (Whitehead, 1995).  As a result large quantities of N are re-cycled via 
excreta deposited directly onto pastures by grazing livestock.  The relative importance of 
these two sources of N substrate to nitrous oxide production is likely to vary markedly from 
country to country.  In New Zealand pastoral agriculture, where there is a strong reliance on 
the biologically fixation of N by forage legumes rather than synthetic fertiliser N, 
approximately 90% of N2O emissions arise from excreta N deposited by grazing animals 
(New Zealand Climate Change Office, 2004).  This may well be typical of many developing 
countries, although not necessarily northern Europe where N fertiliser use is much higher. 
 
How much agricultural methane and nitrous oxide are produced by the world’s 
grasslands? 
 
The IPCC publish estimates of global agricultural emissions of N2O and CH4, and data on a 
country-by-country basis are available from the UNFCCC (IPCC, 2001b; UNFCCC, 2004).  
In this section we present a 2003 inventory of CH4 and N2O emissions that relates solely to 
the grassland component of ruminant livestock diets. 
 
Methane 
 
Estimated CH4 emissions from grasslands for the year 2003 are shown in Table 1. 
 
 
Table 1  Estimates of methane production by ruminant livestock from grassland forage intake 
(Tg CH4/yr) 
  

Regions1 OECD O Dev EE+CIS CSA WANA SSA ASIA Total 
 
Dairy cows   2.0 <0.1   2.1   1.8 0.3   0.4   2.3   8.9 
Other cattle   6.4   0.4   1.2 11.6 0.2   1.6   5.0 26.3 
Buffalo <0.1 <0.1 <0.1 <0.1 0.1 <0.1   3.2   3.3 
Sheep and goats   1.3   0.2   0.4   0.5 0.3   0.5   1.5   4.6 
Camelids <0.1 <0.1 <0.1 <0.1 0.1   0.6   0.1   0.9 
Total   9.7   0.6   3.6 14.0 0.9   3.0 12.2 44.0 
  
1Regions: OECD, Organisation for Economic Cooperation and Development; O Dev, other developed countries 
(e.g. South Africa); EE+CIS, Eastern Europe and former URSS countries; CSA, Central and South America; 
WANA, West Asia and North Africa; SSA, Sub-Saharan Africa. 
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The methodology adopted to arrive at these estimates is consistent with IPCC good practice 
guidelines (IPCC, 2000).  Feed intake for different classes of livestock was estimated from 
performance and population data (FAOSTAT, 2003; GLIPHA, 2003) and converted into a 
CH4 output using a CH4 yield factor (% of gross energy (GE) lost as CH4).  The methods 
adopted were a combination of those of Wheeler et al. (1981); Hendy et al. (1995) and 
USEPA, (1995).  Briefly, livestock production systems were separated into nine different 
types, and the world into seven different geographical regions as described by Seré & 
Steinfeld, (1996).  Daily feed intake for each animal class was assumed to be a fixed 
proportion of liveweight.  The proportions used ranged from 1.4 – 3.6% depending on 
species, type of husbandry system and geographic region (Hendy et al., 1995).  To make the 
CH4 emissions specific to grasslands, non-grassland derived feed intake was subtracted from 
total feed intake.  The proportions of non-grassland derived feeds (e.g. crop residues, forage 
crops and concentrates) were taken from Bouwman et al., (2004).  The assumed gross energy 
(GE) content of forages ranged between 18.0 and 18.4 MJ/kg DM (Andrieu et al., 1988).  
Methane emissions were derived from the forage feed energy intake, assuming that in free 
ranging animals between 6.5 and 8% of the GE consumed is lost as CH4 (Johnson & Ward, 
1996; McCaughey et al., 1997; Lassey et al., 2002; De Ramus et al., 2003), and that 
concentrate supplementation below 40% of the diet does not greatly influence CH4 yield 
(Vermorel, 1995; Boadi et al., 2002).  The global estimate of 44 Tg CH4/yr from grassland 
derived feeds implies that compared to IPCC estimates (IPCC, 2001b) approximately 20% of 
all agricultural CH4 emissions, and between 40 and 55% of the total ruminant CH4 emissions, 
arise from grasslands.  For comparison with other IPCC estimates the methods used here 
estimated enteric CH4 emissions from feed sources to be 70.5 T g/yr. 
 
Nitrous oxide 
 
Estimating global N2O emissions from pastoral agricultural soils worldwide is extremely 
difficult as it requires detailed dietary information (quantity of feed consumed and protein 
content of feed), detailed information on manure management systems, the quantity of 
nitrogenous fertiliser used, and information on such things as the quantity of animal dung 
collected and burnt or used as a building material.  A lack of data ruled out a complex 
methodology and we adopted an IPCC Tier 1 approach.  This involved using the grassland 
feed intake data, calculated from the CH4 inventory, along with estimates of the N% in the 
diet (1.6 - 2.4%) and the N% retained in animal products (7 - 20%), to obtain an estimate of 
excreta N arising from grasslands.  Default IPCC emission factors (IPCC, 1996; 2000) were 
then used to estimate direct and indirect N2O emissions.  This estimate makes no attempt to 
differentiate between manure deposited directly onto pastures or managed in manure 
management systems, and uses the IPCC default emission factor of 2% of N deposited.  It 
also does not account for manure removed from pastures and used for other purposes.  Nitrous 
oxide emissions from N fertilisers were estimated using the grassland N fertiliser use 
estimates of the United Nations Food and Agriculture Organisation (FAO) (FAO, 2001) and 
IPCC default values. 
 
Estimated N2O emissions from grasslands for the year 2003 are shown in Table 2.  These data 
indicate that between 16 and 33% of the total estimated agricultural N2O emissions (IPCC 
2001b) arise from grasslands. 
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Table 2  Estimates of nitrous oxide (N2O) production by ruminant livestock from grassland 
forage intake (Tg N20/year) 
  

 N input to  Direct N2O  Indirect N2O losses from:  Total N2O  
  

 soil losses volatislised N leached N losses 
  

 (Tg N/yr)  (Tg N2O-N/yr) 
 
Nitrogen fertiliser   4.331 0.049 0.004 0.029 0.082 
Excreta nitrogen 34.812 0.696 0.070 0.261 1.027 
Total 39.143 0.745 0.074 0.290 1.109 
  

 
 
Mitigating methane and nitrous oxide emissions from grazing ruminants 
 
Mitigating CH4 and N2O emissions from grazing ruminants poses a particular challenge since 
solutions requiring frequent manipulation of the grazing animal, or changes in pasture and soil 
conditions, are likely to be difficult to implement in many livestock systems.  A second, more 
generic issue is that in the developed world, emissions from agriculture are generally minor 
compared to total CO2 equivalent emissions.  For example, in the EU in 2000 (and accepting 
that there are substantial differences between states), enteric CH4 emissions from the 
agricultural sector comprised 3.2% of total CO2 equivalent emissions (UNFCCC, 2004), 
down from 3.4% in 1990.  The situation is similar for N2O where emissions from agricultural 
soils in 1990 and 2000 comprised only 4.6% of total CO2 equivalent emissions (UNFCCC, 
2004).  There is therefore little incentive to give high priority to the agricultural sector when 
funding research into GHG mitigation. 
 
Methane mitigation 
 
Improving efficiency of the animal production system 
 
Improving the efficiency of livestock production as a route to reducing CH4 emissions from 
livestock systems is an area that has the capability to cause considerable perplexity.  Farmers 
continue to strive for improvements in the efficiency of production in order to survive in a 
competitive global market and, although improved production efficiency can influence CH4 
output, it is unlikely that efficiency increases by themselves will solve the CH4 problem.  For 
the purposes of this paper we will define improvements in efficiency as equating to increasing 
the amount of milk, meat or wool produced per unit of feed ingested.  Defined in this way, 
efficiency is closely related to the partitioning of feed intake between that required for 
maintenance and that required for production.  Viewed simplistically there will be a fixed CH4 
output associated with the maintenance portion of the diet, and a variable CH4 emission that is 
associated with the production portion of the diet.  As feed intake, and hence production 
increases, the proportion of total CH4 output associated with maintenance goes down, and 
CH4 output per unit of product declines (Table 3).  Thus for a fixed amount of product, it will 
be beneficial in terms of CH4 emissions to produce this from a smaller number of high 
producing animals than a large number of low producing animals. 
 
Unfortunately, although improvements in efficiency will reduce the amount of CH4 emitted 
per unit of product, they will not necessarily reduce the amount of CH4 produced in total.  A 
reduction in the total will only occur if the amount of product produced is static or rises at a 
slower rate than the rate of decline in CH4 emitted per unit of product.  For example, in New 
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Zealand the quantity of CH4 produced per unit of product has declined since 1990 for beef 
and milk, but CH4 emissions have increased in both sectors because of increases in the 
quantity of product produced (Clark & Ulyatt, 2002).  Methane emissions from the sheep 
sector have fallen, principally because sheep number declined by 30% between 1990 and 
2000, and increases in the quantity of sheepmeat and wool produced were small (Clark & 
Ulyatt, 2002). 
 
 
Table 3  An estimation of the proportion of methane (CH4) emission attributable to 
maintenance or milk production, in a 450kg grazing dairy cow at various levels of digestible 
DM intake (DDMI) 
  

DDMI  Milk yield  CH4  % CH4 associated with CH4/milk  
(kg/d) (kg/d) (kg/d)   (g/kg) 

  

   Maintenance Production 
 
  4.0   0 105 100   0  
  7.9 12 206   51 49 17.2 
10.5 20 272   39 61 13.6 
11.7 24 305   34 66 12.7 
  

Source: O’Hara et al., (2003) 
 
 
Improving herbage quality 
 
One of the principle aims of grassland management is to increase the quality of the forage 
ingested by grazing ruminants.  Methane production is highly correlated with fibre digestion 
in the rumen (Kirchgessner et al., 1995), and so it would be logical to assume that decreasing 
the fibre content of forages would reduce CH4 emissions.  Empirical evidence to support this 
comes from the work of Blaxter & Wainman (1964), who found with hay based diets fed at 
twice maintenance intake levels, that CH4 emissions increased from 3.5 to 7.0% of GE intake, 
as the crude fibre in the diet increased from 2.2 to 33.8%.  In a summary of 339 experiments 
with sheep and cattle (Blaxter & Clapperton, 1965), it was found that at intakes above twice 
maintenance, the percentage of GE lost as CH4 was reduced as digestibility increased.  Since 
fibre content and digestibility of forages are negatively correlated, and are responsive to 
management manipulation, at first site it appears that increasing the digestibility of forages 
could be an effective CH4 mitigation option for grazing livestock.  However, this may not be 
the case in many situations. 
 
Recent work using animals fed fresh, as opposed to dried, forage diets suggests that in C3 
grasses at least the percentage of GE lost as CH4 may be relatively insensitive to forage 
quality over the range of intakes found in grazing systems.  Pinares-Patiño et al. (2003a), 
working with Phleum pratense L. (timothy grass) at four stages of maturity spanning an 
organic matter digestibility of 56 – 78% and a neutral detergent fibre (NDF) content of 52–
76%, could find no relationship between digestibility or NDF and the percentage of GE intake 
lost as CH4 in cattle fed at 1 - 1.5 above maintenance.  Similarly Molano et al. (2003) working 
with Lolium perenne L. (perennial ryegrass) at two stages of growth and four levels of 
feeding, found no relationship between CH4 emissions per unit of DM intake and digestibility 
(Table 4). 
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Table 4  Methane (CH4) emission by sheep at four levels of voluntary feed intake, consuming 
Lolium perenne L. (perennial ryegrass) harvested at the vegetative and reproductive stage of 
growth 
  

 Reproductive   Vegetative  
    

Apparent  61.5 62.5 61.1 65.1 74.5 76.9 74.1 75.9 P<0.001 
digestibility (%) 
 
DMI kg/d   0.57   0.73   0.91   1.37   0.78   0.95   1.15   1.54 P<0.001 
CH4 g/day 11.5 17.7 24.3 31.9 15.6 22.7 27.4 35.9 P<0.001 
CH4 g/kg DMI 20.5 24.2 26.6 23.3 20.1 24.1 24.0 23.5 NS 
  

Source: Molano et al., (2003) 
 
 
A second issue related to forage quality is that even if it does not influence the CH4 yield, it 
can indirectly reduce CH4 emissions since it affects how much feed is needed to achieve a 
given level of production.  Increasing forage quality, could be used to decrease emissions per 
head simply because less feed is processed in the rumen to achieve a given level of 
production.  However, in practice, if feed quality is increased without any reduction in the 
quantity of feed available, the intake of individual animals and/or the number of animals kept 
per unit area will increase.  These would both tend to increase CH4 production either per 
animal or per unit area.  Therefore reductions in CH4 could only be guaranteed if the number 
of stock kept, or the amount of product produced was also controlled. 
 
Forage plants with low methane yield 
 
Forage species have been shown to influence CH4.  Waghorn et al. (2002) found in sheep, that 
legumes generally reduced the quantity of CH4 produced per unit of feed intake compared to 
C3 grasses.  The data of Kurihara et al. (1999) and O’Hara et al. (2003) suggests that C4 
grasses have a higher CH4 yield than C3 grasses.  However, some caution needs to be 
exercised since, with the exception perhaps of C4 grasses, the differences between forage 
species in CH4 emissions may in practice be small.  In an experiment with Trifolium repens L. 
(white clover) fed at varying proportions in the diet (Lee et al., 2004), it was reported that 
even when incorporated at 60% of a grass:clover diet (a quantity only likely to be achieved 
for short periods in grazed swards), the reduction in CH4 was only 16%.  When Trifolium 
repens was included at 15% of the diet (a more realistic figure in many practical situations), 
the reduction was only 4%. 
 
The difficulties surrounding plant solutions to CH4 mitigation are perhaps best exemplified by 
condensed tannin (CT) containing plants.  Plants containing CT have been found to reduce 
CH4 emissions in cattle (Woodward et al., 2001), and sheep (Waghorn et al., 2002; Pinares-
Patiño et al., 2003b).  In addition they have been found to increase liveweight gains and 
decrease the severity of gastrointestinal worm infestations (Min et al., 2003).  The 
disadvantage of CT containing plants in temperate pastures is that they do not compete well 
with other temperate species.  As pointed out by O’Hara et al., (2003), the benefits of CT 
containing plants have been recognised for over 30 years but to date we still do not have a 
competitive CT containing pasture plant. 
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Manipulation of the rumen microbial ecosystem 
 
A number of strategies for influencing CH4 production by direct manipulation of the rumen 
ecosystem have been promulgated (for a review see McAllister et al., 1996).  Some of them, 
notably the use of halogenated CH4 compounds such as chloroform and bromochloromethane, 
have been shown to be highly effective at suppressing CH4 production (van Nevel & 
Demeyer, 1996; McCrabb et al., 1997), but they are in many cases also unstable compounds 
which are potentially toxic to ruminants (Lanigan et al., 1978).  Similarly the control of 
protozoa (which live in symbiosis with methanogens), which can be responsible for up to 25% 
of rumen CH4 emissions (Newbold et al., 1995), can only be achieved by the use of 
potentially toxic chemicals.  Other strategies such as the manipulation of methanogens by 
bacteriophage and bacteriocins, and the promotion of acetogenesis as an alternative hydrogen 
sink are at an early stage.  Two strategies are much closer to being available and these are 
discussed in more detail below. 
 
Scientists working for CSIRO in Australia have developed animal vaccines that reduce 
methanogenesis by stimulating the production of antibodies in the host animal, which restrict 
the activity of rumen methanogens (Baker, 1999).  This work has progressed to the stage 
where vaccines have been tested in-vivo.  The limited data available show no clear evidence 
that the current formulations can consistently reduce CH4 emissions (Table 5).  However, the 
promising aspect of the Australian trial is that both vaccine formulations were able to boost 
antibody titres (IGa and IGg) in blood and saliva compared to control animals.  Clearly 
considerably more work is needed to develop a vaccine with proven efficacy but the approach 
is one that is highly attractive in grazing animals, since it holds out the promise of an effective 
mitigation technology allied to an infrequent and simple delivery mechanism. 
 
 
Table 5  Percentage changes in the quantity of methane (CH4) emitted per unit feed intake, 
compared to adjuvant only controls following vaccination with three different anti-
methanogenic vaccine preparations (AMG-v).  All data non-significant except for *, where 
P=0.51 
  

 Post-primary vaccination Post-booster vaccination 
    

 AMG-v1 AMG-v2 AMG-v3 AMG-v1 AMG-v2 AMG-v3 
 
Australia1 -6 Not used -1 -7.7* Not used +0.8 
New Zealand2 -4 +2 Not used +2 +9 Not used 
  

Source: 1Wright et al., (2004); 2Clark et al., (2004) 
 
 
Ionophores, particularly monensin, have been used routinely in animal production systems for 
many years as growth promoters.  There is evidence to suggest that they can reduce CH4 
through a combination of reduced voluntary intake, reduced acetate production and the 
inhibition of H2 release from formate (Goodrich et al., 1984; van Nevel & Demeyer, 1996; 
Tedeschi et al., 2003).  Slow release delivery devices are available, thus monensin is 
potentially suitable for use in grazing animals.  There are two principle issues surrounding its 
use as a CH4 mitigation tool.  First, there are doubts as to the duration of the direct CH4 
suppressing effect (Tedeschi et al., 2003).  However O’Kelly & Spiers (1992), working with 
steers fed Lucerne hay, found that 55% of the reduction in CH4 was attributed to the anorectic 
effect (reduced intake) and 45% to the direct effect on rumen fermentation.  This implies that 
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even in the absence of a direct effect on rumen methanogenesis, CH4 production would still 
be reduced in situations where ionophores reduce herbage intakes.  A second issue is that 
ionophores are classed as antibiotics and there is a strong move to phase out the routine use of 
antibiotics in livestock production systems.  Hence even if the efficacy of monensin as a long-
term CH4 inhibitor could be conclusively demonstrated, its routine use may not be readily 
acceptable to both consumers and regulatory authorities. 
 
Exploiting animal to animal variation in methane production 
 
Since the development of the SF6 tracer technique for estimating CH4 production in 
unconfined ruminants (Johnson & Johnson, 1995), it has been possible to simultaneously 
measure emissions from groups of animals consuming the same diet.  The vast majority of 
work with grazing animals fed fresh forage has been carried out in New Zealand.  A common 
finding is that there are large differences in emissions per unit of feed intake (Ulyatt et al., 
2002).  This phenomenon has been confirmed recently in a single experiment when CH4 
emissions were measured from 302 grazing dairy cows over a four-week period (Table 6).  In 
addition in sheep, differences between individual animals have been found to persist for up to 
five months (Pinares-Patiño et al., 2003c). 
 
 
Table 6  Methane (CH4) emissions from a herd of 302 Friesian x Jersey dairy cows measured 
between January 12 and February 6, 2003 
  

 Min Max Mean St. Dev Lower quartile Upper quartile 
 
CH4 g/day 213.9 478.8 332.1 38.1 285.6 381.0 
CH4 kg DMI/day-1   11.0   31.1   19.3   2.9   16.1   23.1 
  

Source: C. Pinares-Patiño & H. Clark (unpublished data). 
 
 
Since CH4 is produced by microbial fermentation in the rumen, the existence of animal-to-
animal variation suggests that there is an interaction between the animal and its microbes.  
This leads onto issues of whether this interaction is genetically based, and if it is a heritable 
trait?  In New Zealand, cows of a US genetic background have been found to have lower CH4 
emissions per unit of dry matter intake than cows of a New Zealand genetic background 
(O’Hara et al., 2003).  Similarly Ferris et al. (1999) found that the percentage of GE lost as 
CH4, was lower for high genetic merit than for medium genetic merit Holstein cows.  These 
two studies indicate that it may be possible to breed animals that have inherently low CH4 
emissions.  Although work on exploiting animal variation in CH4 emissions is at a preliminary 
stage, breeding low CH4 producing animals does offer an extremely attractive solution.  It has 
applicability across all types of production systems, exists for the life of the animal and is 
open to continuous improvement. 
 
Nitrous oxide mitigation 
 
Improving efficiency of the animal production system 
 
In a similar manner to that already discussed for CH4, improving the efficiency of production 
can reduce N2O emissions in situations where constraints are placed on product output.  If the 
productivity of each animal is increased, less total dry matter intake is needed to produce a 
given amount of product (see Table 3).  This in turn leads to a reduction in the total N being 
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recycled through the grazing animal for a given amount of product.  The quantity of N2O 
emitted per animal is therefore likely to be higher, but fewer animals are needed to obtain the 
quantity of product required.  Mitigating N2O (and CH4) by improving the efficiency of 
production does however imply that product output is restricted to some extent. 
 
Diet manipulation  
 
Decreasing either the total N content and/or the N degradability of ruminant diets will reduce 
the amount of N excreted during the grazing process (Kebreab et al., 2001).  This solution is 
most applicable to the dairy sector where there are more opportunities to manipulate the diet.  
Optimising fertiliser applications has an important role here since the N content of plants is 
directly related to N supply (Whitehead, 1995).  The replacement of high N content grass, 
with low N content high-energy feeds such as maize silage is a possibility in some 
circumstances.  For example, in New Zealand maize silage is commonly given as a 
supplement to grazing dairy cows.  Modelling studies by de Klein & Ledgard (2005), have 
shown that substituting fertilised grass with fertilised maize silage can reduce N2O emissions 
from the typical New Zealand dairy farm by 27% (Table 7). 
 
 
Table 7  Estimated nitrogen (N) fertiliser use, N excretion rates and nitrous oxide (N2O) 
emissions from an average dairy farm in New Zealand, under a ‘business-as usual’ scenario 
and when replacing fertilized grass with maize silage 
  

 Business-as usual Maize silage supplement 
 
N fertiliser use 
   On farm (t N/yr)     7.4     0 
   Off-farm (t N/yr)     0     1 
N excreted (kg N/ha/yr) 345 318 
N2O emissions (t CO2equiv/yr) 218 159 (-27%) 
  

Adapted from de Klein & Ledgard (2005) 
 
 
The quantity of N voided by grazing ruminants can also be influenced by the protein: 
carbohydrate ratio of the diet (van Vuuren & Meijs, 1987; Kebreab et al., 2001).  Studies at 
the Institute of Grassland and Environmental Research (IGER) in Wales have shown that 
feeding beef cattle, silage made from grass cultivars containing elevated concentrations of 
water soluble carbohydrates, increased the N use efficiency for microbial growth in the rumen 
from 46 to 68% (Merry et al., 2003).  Similarly, studies with dairy cows suggested that high 
sugar grasses reduced N excretion rates and, under some conditions, increased milk yield and 
milk protein yield (IGER, 2001).  However, recent New Zealand research suggests that the 
effectiveness of these grasses as a N2O mitigation strategy might be limited to cooler climates, 
as a warm-temperate climate may limit grass expression of high sugar content (Parsons et al., 
2004). 
 
Plants containing CT’s have already been discussed in relation to CH4 mitigation.  They also 
have the potential to influence N2O emissions from grazed pastures because of their ability to 
influence protein breakdown and absorption in ruminants (Min et al., 2003).  Unfortunately, 
as already discussed, the inferior agronomic characteristics of these plants limit their 
usefulness at present.  Similarly, the ionophore monensin, which can reduce CH4 evolution 
from ruminants, can also influence N retention (Tedeschi et al., 2003).  This can be directly 
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through increased N retention or indirectly through its anorectic effect.  However, as 
discussed previously, the widespread use of monensin to mitigate GHG emissions may not be 
readily acceptable in practice. 
 
Management of fertilisers and excreta deposited during grazing 
 
In general, practices that increase the efficiency of use of applied N will reduce emissions of 
N2O from soils.  Likewise, the timing, quantity and type of N fertilisers have all been shown 
to influence N2O emissions (for a review see O’Hara et al., 2003).  Slow release fertilisers, 
formulated to achieve a better synchrony between the demand and supply of N, have been 
shown to be effective at reducing N2O emissions (Smith et al., 1997).  Similarly, fertilisers 
containing, or applied in conjunction with, nitrification inhibitors such as dicyandiamide 
(DCD) have also proved to be effective at reducing N2O emissions by as much as 60% 
(Belastegui Macadam et al., 2003; Williamson & Jarvis 1997). 
 
Although improved management of synthetic fertilisers can help to reduce N2O emissions 
from grasslands, a more pressing problem is that of reducing emissions from animal wastes 
deposited directly onto pastures by grazing animals.  Options here are very limited.  A field 
study by de Klein et al. (2005) suggests that the strategic use of a feed pad can reduce total 
N2O emission by avoiding urine and dung being deposited during wet conditions when N2O 
emissions are likely to be high.  Their results suggested that for a typical dairy farm in the 
southern part of New Zealand, N2O emissions could be reduced by about 10%.  In addition, 
small reductions can be achieved by altering soil conditions e.g. liming, improving drainage 
and avoiding soil compaction (Clark et al., 2001).  However, the general applicability of these 
methods is limited.  Work with nitrification inhibitors to reduce N2O emissions from animal 
urine does however hold some promise.  Williamson & Jarvis (1997) reported reductions of 
over 70% in N2O emissions from urine applied to pasture in conjunction with DCD, compared 
to urine alone between 6 – 21 days after application.  In lysimeter studies Di & Cameron 
(2002, 2003) found that DCD reduced N2O emissions from urine treated grassland by about 
80% following spring and/or autumn applications of urine with or without DCD.  The 
addition of a nitrification inhibitor directly into the urine stream from an animal mounted 
dispenser has also been advocated, although no results are available to attest to the efficacy of 
this approach (Quin, 2004).  The research conducted so far does indicate that applying DCD 
to grazed pastures could be used as a practical method of reducing N2O from urine patches, 
although issues of toxicity (DCD has been shown to be exhibit phytotoxic effects to Trifolium 
repens (Belastegui Macadam et al., 2003), timing and longevity of the effect need to be 
assessed.  Additionally research needs to be conducted at the system level to determine the 
long-term effects of nitrification inhibitors on N cycling dynamics in the soil, plant, and 
atmosphere system.  For example, Belastegui Macadam et al. (2003), showed that DCD 
increased the N concentration in Trifolium plants, and this will influence the quantity of 
excreta N cycled through the animal. 
 
Conclusions 
 
Grassland ecosystems are major contributors to agricultural emissions of CH4 and N2O.  
Options do exist to mitigate emissions from grazed systems, but in general they do not have 
universal applicability and for many situations practical methods of reducing emissions do not 
exist at present.  Research into GHG emissions from agriculture is low priority in most 
developed countries, and this will need to be addressed if more rapid progress is to be made.  
Priority research areas need to be those that have high efficacy, and cost effective and simple 
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delivery mechanisms.  For the long term direct manipulation of the rumen ecosystem provides 
the best opportunity for large reductions in CH4 emissions.  This is a neglected area of 
research in most countries.  Breeding low CH4 emitting animals is an exciting prospect but 
more work is needed on the fundamental basis of animal-to-animal variation before breeding 
programmes are contemplated.  For N2O emissions the research priorities are two-fold.  
Firstly, studies should be conducted that focus on providing experimental evidence of the 
effectiveness of mitigation options.  In particular on options which focus on reducing the 
amount of N excreted by grazing animals, as this source of N2O constitutes almost 90% of the 
total global N2O emissions (Table 2).  Secondly, the development of accurate models is 
important.  Due to the high spatial and temporal variability of N2O emissions, accurate 
measurements at a whole systems level are near impossible.  Therefore, the development of 
systems models that utilise and link the experimental evidence of component studies to 
evaluate the effect of mitigation strategies at a systems level is a priority area. 
 
Such models should also have the ability to collectively assess all major GHG emissions.  In 
this paper, as in most others, N2O and CH4 have been considered separately.  In reality they 
are both emissions from the same production system and, in the short term at least, 
manipulations of the system as a whole may offer the best hope of reducing net GHG 
emissions from pastures.  This also means looking at both sources and sinks of GHG.  
Modelling studies by Lambert & Clark, (2005) have demonstrated that for beef and sheep 
farms in NZ it is possible to maintain farm incomes and reduce GHG emissions by a 
combination of the intensification of animal production and the planting of trees.  It would be 
surprising if opportunities for this type of system manipulation didn’t exist in other countries. 
 
Finally, although the aim of GHG mitigation technologies is to reduce actual emissions to the 
atmosphere, international treaty obligations mean that countries also have to be able to 
demonstrate in their GHG accounts that they have done so.  This means that national 
inventories capable of accounting for mitigation technologies need to be developed alongside 
measurement systems that can verify claimed emission reductions. 
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