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ABSTRACT OF DISSERTATION 
 
 
 

Immunoregulatory receptor genetics, expression, and splicing studies in 
Alzheimer’s Disease 

 
Microglia are the resident immune cells of the brain, undertaking many 

critical tissue maintenance functions such as immune surveillance and 
phagocytosis. Microglial dysfunction has recently been identified as a multi-stage 
signature of many neurodegenerative diseases, including late-onset Alzheimer’s 
Disease (LOAD). Genome-wide association studies (GWAS) have identified single 
nucleotide polymorphisms (SNPs) in over thirty genes that modulate risk of 
developing LOAD. In the central nervous system, roughly half of these LOAD-
associated genes are primarily expressed in microglia. The proteins encoded by 
these genes include cell surface receptors that contain either immunomodulatory 
tyrosine-phosphorylated activating motifs (ITAMs) or inhibitory motifs (ITIMs), 
including TREM2, CD33, and SIGLEC14. Here, I studied the molecular genetics 
underlying these three genes and their respective contributions to LOAD risk.  

First, I found that TREM2 undergoes extensive alternative splicing in 
multiple tissues, including brain. Total TREM2 expression is not different as a 
function of LOAD diagnosis (p = 0.1268), but TREM2 expression is increased by 
34% in tissues with higher National Institute on Aging/Reagan Institute (NIARI) 
scores (p = 0.0033). I also found that a novel TREM2 isoform lacking exon 2, D2-
TREM2, accounts for 11% of the total TREM2 mRNA in human brain, and that this 
splicing efficiency is not altered as a function of AD status (p = 0.4909) or brain 
pathology (p = 0.9502). I also found that the D2-TREM2 protein has similar 
subcellular localization to its parent TREM2 protein, as both are primarily retained 
in the Golgi apparatus.  

Next, I studied the exon 2-lacking CD33 isoform, D2-CD33. I developed an 
in vitro model to study the function of the D2-CD33 using a CRISPR-Cas9 
approach in the U937 human monocyte cell line. After validating this model with 
sequencing, qPCR, and flow cytometry, I found that a nearby pseudogene, 
SIGLEC22P, was used as a repair template in approximately 10% of edited cells. 
This finding also provided the highest resolution to date of the clinically relevant 
anti-CD33 P67.6 antibody clone, gemtuzumab.  



     
 

Finally, I combined a recent LOAD GWAS with a protein quantitative trait 
loci (pQTL) study to uncover SIGLEC14 as a potentially overlooked LOAD risk 
factor. I found that a previously described SIGLEC14 genetic deletion occurs within 
a 692 bp crossover region. I also found additional copy number variation not 
previously described using both qPCR-based and in silico assays, with copy 
numbers identified ranging from zero to four. While SIGLEC14 deletion does 
correlate well with a proxy single nucleotide polymorphism (SNP), rs1106476, 
additional SIGLEC14 genomic copies do not correlate with this SNP. Further, the 
SIGLEC14 genomic deletions correlate stepwise with decreased SIGLEC14 
expression (p = 0.0002), and also correlate significantly with decreased SIGLEC5 
expression (p = 0.0389).  

In conclusion, microglial cell surface receptors are heavily implicated in the 
risk of developing LOAD, and these studies advance the field by adding to the 
molecular mechanisms which underlie their risk contribution. Further studies will 
be needed to address whether these findings can be translated clinically to either 
potential druggable targets or biomarkers. 

 
KEYWORDS: Molecular genetics, Neurodegenerative disease, Genome-

wide association studies, functional genetics 
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CHAPTER 1.  INTRODUCTION 

1.1 Alzheimer’s Disease: A brief overview of pathophysiology and epidemiology 

1.1.1 Discovery of Alzheimer’s Disease 

Alzheimer’s Disease (AD) was first described in a 1906 lecture, 

subsequently published in 1907 by Dr. Alois Alzheimer (Alzheimer, 1907; Strassnig 

& Ganguli, 2005). The disease was characterized in a 51-year-old patient, Auguste 

Deter, presenting with a “rapidly worsening memory,” an “inability to navigate her 

way around her dwelling,” and “intermittently she is completely delirious.” Notably, 

Frau Deter was considerably younger than the typical dementia patient with an 

aggressive course of disease. Upon her death, less than five years after entering 

an asylum, her brain was sectioned and stained. Alzheimer noted “an evenly 

atrophic brain,” with “changes of neurofibrils,” and “miliar foci” (Alzheimer, 1907; 

Strassnig & Ganguli, 2005). These correspond to the loss of brain volume, 

neurofibrillary tangles, and amyloid plaques as we now know them. 

1.1.2 Pathophysiology of Alzheimer’s Disease 

Histologically, AD is characterized by the accumulation of neurofibrillary 

tangles (NFTs) and amyloid-β (Aβ) plaques (Figure 1.1) (Nelson et al., 2009). The 

NFTs typically include hyperphosphorylated tau, a microtubule associated protein, 

but occasionally also contain TAR DNA-binding protein 43 (TDP-43) in advanced 

AD (Smith et al., 2018). These NFTs are primarily intracellular, only released once 

the neuron degenerates. Aβ plaques are primarily extracellular and are initiated 

through cleavage of the amyloid precursor protein, first by β-secretase then γ-
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secretase, to release either Aβ40 or Aβ42 (Y.-W. Zhang et al., 2011). Of these two 

species, Aβ42 is more likely to oligomerize and seed plaques (Burdick et al., 1992). 

These plaques also contain other proteins and lipids, many of which are 

glycosylated (Kida et al., 1995; Martin-Rehrmann et al., 2005; McGeer et al., 

1994). This glycosylation may be an important factor in clearance of Aβ plaques 

(Salminen & Kaarniranta, 2009).  

Antemortem, these pathological hallmarks can be characterized using 

positron emission tomography (PET) imaging. Hyperphosphorylated tau 

aggregates can be detected using T807/AV1451, while Aβ plaques can be 

detected using Pittsburgh compound B (PiB) (Dickstein et al., 2016; Klunk et al., 

2004). These biomarkers have been incorporated into the A/T/N classification 

scheme to aid in diagnosis of AD when coupled with neuropsychiatric 

examinations (Jack et al., 2016). Briefly, the A/T/N scheme includes amyloid (A) 

as either amyloid PET imaging or CSF Aβ42 concentration, tau (T) as either tau 

PET or CSF phospho-tau concentration, and general neurodegeneration (N) as 

either [18F]-fluorodeoxyglucose PET imaging (FDG-PET) or CSF total tau 

concentration. FDG-PET is a useful metric for neurodegeneration as diseased or 

dead neurons will take up less of the FDG tracer. These three biomarkers are 

assigned either a positive or negative binary response based on established cutoff 

values. While these methods are considered quantitative and useful in diagnosis, 

postmortem methods are considered more definitive as there can be variable 

agreement between PiB labeling and histological measures (Bacskai et al., 2007; 

Sojkova et al., 2011). 
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There are several postmortem autopsy methods for evaluating AD. The first 

method to characterize NFTs was developed by Heiko and Eva Braak, with six 

stages increasing in pathological burden (Braak & Braak, 1991). These stages are 

independent of amyloid pathology, as the “size and shape of the deposits and their 

distribution vary from one individual to another,” while NFTs “exhibit a well-defined 

pattern” (Braak & Braak, 1991). Consortium to Establish a Registry on Alzheimer’s 

Disease (CERAD) criteria also incorporate Aβ plaques and age at autopsy along 

with NFTs (Mirra et al., 1991). Another commonly used postmortem 

characterization method is the National Institute on Aging/Reagan Institute (NIARI) 

Criteria (Hyman & Trojanowski, 1997; Khachaturian, 1985). The NIARI criteria 

combine the Braak scale with CERAD to generate a score which reflects the 

probability that the individual had AD. 

1.1.3 Epidemiology of Alzheimer’s Disease 

The prevalence of AD is estimated at 6.2 million Americans, with the 

incidence expected to increase year-over-year for at least the next four decades 

(Alzheimer's Association, 2021; Rajan et al., 2021). By 2030, this number is 

expected to reach over 8.3 million individuals. Overall, women have a greater risk 

of developing AD, with over two-thirds of all current AD patients being women, 

partially due to increased longevity over men (Alzheimer's Association, 2021). 

African-American individuals are also disproportionately more affected by AD than 

white individuals; 19% of African-Americans over age 65 have AD, compared to 

10% of white Americans (Alzheimer's Association, 2021). In fact, this disparity may 

actually be an underestimate, as a missed diagnosis of AD is more common 
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among elderly African-Americans than whites (Clark et al., 2005; Gianattasio et 

al., 2019). 

There are several risk factors outside of genetics which contribute to AD. 

By far, age is the best predictor for the development of AD, with risk doubling every 

five years after age 65 (Gollan et al., 2011; Henderson, 1988; Herrup, 2010). 

Higher education level and cognitive activity are protective against AD (Jonaitis et 

al., 2013; Solas et al., 2013). Lifestyle factors including alcohol use, lack of 

exercise, poor diet, and smoking all contribute to AD risk (Grant, 2014; Henderson, 

1988; Kirk-Sanchez & McGough, 2014; Rantanen, 2013; Scarmeas et al., 2006; 

Soininen & Heinonen, 1982). Medically, common comorbidities include obesity, 

high cholesterol, Type II Diabetes, and history of traumatic brain injury (Anstey et 

al., 2011; Leduc et al., 2010; Luchsinger, 2010a, 2010b; Matsuzaki et al., 2010; 

McKee et al., 2014; McKee et al., 2013; Mortimer et al., 1985; Tolppanen et al., 

2014). 

1.2 Familial Alzheimer’s Disease and Late-Onset Alzheimer’s Disease 

Familial AD (FAD) is the result of at least one genetic variation in the 

PSEN1, PSEN2, or APP genes (Bird, 1993). These are rare, dominant variants, 

where heterozygous individuals have strong penetrance for AD, but only account 

for approximately 1% of all AD cases (R. J. Guerreiro et al., 2012). APP encodes 

the amyloid precursor protein, which is cleaved by β- and γ-secretases to generate 

the fibrillogenic Aβ42. Mutations in APP increase either the Aβ42:Aβ40 ratio or total 

Aβ production, leading to increased Aβ42 deposition and plaque formation 
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(Holtzman et al., 2011). PSEN1 and PSEN2 encode presenilin proteins which are 

integral components of γ-secretase. Mutations in PSEN1 are the most common 

identified cause of FAD (Holtzman et al., 2011). Individuals with pathogenic 

mutations in one of these three genes typically develop AD by age 50, though 

variants in PSEN2 seem to be less penetrant (Jayadev et al., 2008). 

Late-onset AD (LOAD), by contrast, typically develops after age 65. The 

single greatest genetic risk factor for development of LOAD is homozygosity for 

APOE4, increasing risk by approximately 12-fold (Karch & Goate, 2015). APOE4 

was discovered as a risk factor for AD in 1993 (Corder et al., 1993). APOE2, 

conversely, is a protective haplotype (Corder et al., 1994). The APOE haplotype is 

a combination of two single nucleotide polymorphisms (SNPs) rs429358 and 

rs7412. These are both missense SNPs, encoding arginine to cysteine 

substitutions, and occur at residues 112 and 158, respectively (Huebbe & 

Rimbach, 2017). While APOE was discovered as an AD risk factor as early as 

1993, more recent studies have uncovered myriad genes which impact AD risk. 

1.3 Genome-wide Association Studies in Alzheimer’s Disease reveal microglia 
as a major contributing cell type to Late Onset Alzheimer’s Disease 

Genome-wide Association Studies (GWAS) represent a significant advance 

in the hunt for low penetrance risk variants. Since 2008, there have been at least 

nine GWAS for AD (Beecham et al., 2014; Bertram et al., 2008; Hollingworth et al., 

2011; Jansen et al., 2019; Karch et al., 2012; Kunkle et al., 2019; Lambert et al., 

2013; Naj et al., 2011; Wightman et al., 2021). These studies aggregate cohorts of 

subjects from around the world, with standardized inclusion criteria, and millions 
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of single nucleotide polymorphism (SNP) genotypes to uncover which SNPs are 

overrepresented in AD vs. control. Typically, hundreds of thousands of SNPs are 

genotyped directly—496763 in the case of Hollingworth, et al., 2011—then millions 

more are imputed based on patterns of coinheritance observed in genome 

sequencing studies. Jansen et al., 2019 analyzed over 13,000,000 SNPs in their 

study. The large number of samples in GWAS allow detection of low penetrance 

variants, such as that in CD33, rs3865444, with odds ratios reported between 0.84 

to 0.99, indicating the minor allele of rs3865444 is protective from AD (Beecham 

et al., 2014; Hollingworth et al., 2011; Jansen et al., 2019; Naj et al., 2011).  

These GWAS have identified variants in 38 genes, many with multiple 

independent signals, which are associated with AD risk (Wightman et al., 2021). 

The most well-validated variants are shown in Figure 1.2 (Karch & Goate, 2015). 

The majority of genes identified as associated with AD are expressed primarily, or 

exclusively, in microglia (Hansen et al., 2017; Srinivasan et al., 2016). Among 

these are the cell surface receptors CD33, TREM2, FCER1G, HAVCR2, and CR1; 

signaling mediator PLCG2; and actin-interacting protein ABI3 (Beecham et al., 

2014; Hollingworth et al., 2011; Jansen et al., 2019; Kunkle et al., 2019; Lambert 

et al., 2013; Naj et al., 2011; Wightman et al., 2021).  

1.4 TREM2 in Alzheimer’s Disease 

1.4.1 Discovery of TREM2 as an Alzheimer’s Disease risk factor 

TREM2 was first identified as an AD risk factor in 2013 (R. Guerreiro et al., 

2013; Jonsson et al., 2013). Both studies found a strong association (p < 10-8 in 
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both studies) of rs75932628, predicted to result in a p.R47H coding variation, with 

LOAD (R. Guerreiro et al., 2013; Jonsson et al., 2013). This finding was later 

replicated at the genome-wide level in multiple studies (Jansen et al., 2019; Kunkle 

et al., 2019; Lambert et al., 2013; Wightman et al., 2021). GWAS have also found 

that the TREM2 locus has multiple independent signals; specifically of note, 

rs143332484 which is predicted to result in a p.R62H coding variation. Thus, 

TREM2 variants have been repeatedly validated as genome-wide significant risk 

factors for AD. 

1.4.2 TREM2 structure and function 

TREM2 is a Type I transmembrane protein with an extracellular 

immunoglobulin V-set (IgV) domain which acts as the ligand binding domain. 

TREM2 is a receptor for both Apolipoprotein E (ApoE) and amyloid beta (Aβ) (Y. 

Zhao et al., 2018), and regulates Aβ phagocytosis (McQuade et al., 2020; Piers et 

al., 2020; Y. Zhao et al., 2018), transcriptional changes (Holtman et al., 2015), and 

microglial transition to a full disease-associated phenotype (Atagi et al., 2015; 

Keren-Shaul et al., 2017). TREM2 also contains an intramembrane lysine critical 

for salt-bridge formation to DNAX-activating protein of 12 kDa (DAP12). DAP12 

contains a cytosolic immunomodulatory tyrosine-based activation motif (ITAM) and 

is an obligate adaptor molecule for signaling (Gratuze et al., 2018; Peng et al., 

2010). Upon TREM2 stimulation, DAP12 is phosphorylated by Src family kinases. 

Phospho-DAP12 then recruits spleen tyrosine kinase (Syk) which auto-

phosphorylates and begins a signaling cascade ultimately leading to 

phospholipase C (PLC) activation, intracellular calcium flux, and mitogen-activated 
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protein kinase (MAPK) activity (Peng et al., 2010). TREM2 is also apparently 

necessary for a disease-associated microglia (DAM) phenotype based on 

transcriptome profile as murine Trem2-knockout microglia stall in an intermediate 

disease-associated phenotype when crossed with mouse models of AD (Keren-

Shaul et al., 2017). Interestingly, loss of function variants in DAP12 and TREM2 

are causative for Nasu-Hakola disease, characterized by bone defects and early-

onset dementia with death by age 60, further highlighting the role of TREM2 in 

brain function (Paloneva et al., 2002). 

TREM2 also undergoes proteolytic cleavage at the cell surface through 

ADAM10 or ADAM17 between p.H157 and p.S158 (Schlepckow et al., 2017; 

Thornton et al., 2017). This cleavage of the TREM2 ectodomain results in a soluble 

form of TREM2 (sTREM2) which may be beneficial in AD. Alternatively, sTREM2 

is also predicted to be generated from an alternative splice isoform 

(ENST00000338469) wherein exon 4 is skipped resulting in a frameshift mutation 

which abrogates the transmembrane domain (Del-Aguila et al., 2019). Notably, 

sTREM2 has been found in the plaques of humanized TREM2 mice crossed with 

the 5xFAD model, indicating sTREM2 retains its affinity for Aβ fragments (Song et 

al., 2018). TREM2 also has a high avidity for Aβ monomers and oligomers, and 

sTREM2 likely retains this avidity as well (Lessard et al., 2018). Higher 

cerebrospinal fluid (CSF) concentrations of sTREM2 inversely correlate with the 

rate of Aβ accumulation by PET imaging (Ewers et al., 2020). This study also found 

sTREM2 inversely correlated with tau accumulation by PET imaging, especially at 

lower Braak stages. Interestingly, sTREM2 in CSF correlated with total and 
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phosphorylated tau, but not Aβ42 (Piccio et al., 2016). The discrepancy between 

correlation of sTREM2 with Aβ deposition but not Aβ42 concentration may be due 

to an excess of sTREM2 binding Aβ plaques or normalization methods. Also, Aβ 

deposition rate in the Ewers et al. (2020) study may not be directly comparable to 

the Aβ42 concentration in the Piccio et al. (2016) study. Taken together, these 

studies suggest a protective role for sTREM2 in AD given the inverse correlation 

of CSF sTREM2 and Aβ deposition by PET or tau burden by PET or in CSF, though 

further validation of this is warranted. This also presents splicing modulation as a 

potential therapeutic avenue if sTREM2 is functional and protective. 

1.4.3 Molecular genetics of TREM2 in Alzheimer’s Disease 

This section will focus on three SNPs: rs75932628, rs143332484, and 

rs2234255. While a multitude of TREM2 variants are independently associated 

with AD, these are the most relevant to this work. These are missense mutations 

and are not known to affect expression nor splicing of the TREM2 mRNA. The 

rs75932628 and rs143332484 encode the p.R47H and p.R62H mutations, 

respectively. The p.R47H mutation reduces ligand affinity, resulting in a partial loss 

of function in TREM2 associated with increased amyloid burden (Atagi et al., 2015; 

Cheng et al., 2018; Cosker et al., 2021; Gratuze et al., 2020; Parhizkar et al., 

2019). Both the p.R47H and p.R62H mutations reduce Aβ uptake and NFAT 

signaling, with the p.R62H mutation having a lesser effect compared to p.R47H 

(Lessard et al., 2018). Consistent with this, both the p.R47H and p.R62H mutations 

appear to reduce microglial reactive signatures in human AD tissue, with p.R47H 
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having a greater effect than p.R62H (Zhou et al., 2020). Thus, both the p.R47H 

and p.R62H mutations result in at least a partial loss of function of TREM2. 

The rs2234255 is also a missense coding variant, resulting in a p.H157Y 

mutation, and increases TREM2 ectodomain cleavage (Thornton et al., 2017). This 

SNP has a much weaker association with AD; the Jansen et al. (2019) GWAS did 

not find a genome-wide significant association (p = 0.0095, uncorrected) while 

smaller studies focused on individual populations such as the Han Chinese found 

weak evidence of an increase in AD risk (p = 0.02) (Jiang et al., 2016). Since this 

SNP increases cleavage from the cell surface, it likely decreases functional, 

membrane-bound TREM2 and thus the apparent increase in risk is logical given 

what is known with regards to other TREM2 loss-of-function variants. The fact that 

this SNP has a profoundly weaker effect is perplexing then. Two possible 

explanations exist: either the ectodomain cleavage rate is not high enough to 

overcome replacement by newly translated TREM2; or, less likely but more 

interesting, that the sTREM2 generated is functional and protective as suggested 

above and this protective effect is counteracting the detrimental effect of losing 

signaling-competent, cell surface TREM2. 

1.5 CD33 in Alzheimer’s Disease 

[This section contains material adapted from a published manuscript: Estus, 

S., Shaw, B. C., Devanney, N., Katsumata, Y., Press, E. E., & Fardo, D. W. (2019). 

Evaluation of CD33 as a genetic risk factor for Alzheimer's disease. Acta 

Neuropathol. 2019 Aug;138(2):187-199. PMID: 30949760.] 
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1.5.1 CD33 in genome-wide association studies 

CD33 has appeared in AD GWAS with mixed results over the years. In 

2011, two genome wide association studies (GWAS) identified a single nucleotide 

polymorphism (SNP) located upstream of CD33, rs3865444, as associated with 

AD risk (Hollingworth et al., 2011; Naj et al., 2011). Naj et al, using AD Genetic 

Consortium samples, found a robust association between reduced AD risk and the 

minor allele of rs3865444 that reached genome wide significance when meta-

analyzed with subjects from the three other consortia that would later form the 

International Genomics of Alzheimer's Project (IGAP) (Naj et al., 2011). The 

complementary study by Hollingworth et al. was supportive of an association 

between rs3865444 and AD risk although the finding did not reach genome wide 

significance (p = 2 x 10-4) (Hollingworth et al., 2011). Quite recently, Jansen et al. 

reported on a very large-scale meta-analysis which incorporated an 

unconventional AD-by-proxy phenotype to gain statistical power. In this analysis, 

individuals that reported a parent with AD were considered to be AD risk carriers 

and hence scored as AD. This study totaled 71,880 AD samples and 383,378 non-

AD samples. Although subjects overlapped with IGAP, this study reconfirmed 

genome wide significance for the rs3865444 association with AD (p = 6.3 x 10-9) 

(Jansen et al., 2019; Lambert et al., 2013). In summary, currently available, very 

large studies support an association between rs3865444 and AD risk. The reason 

for the inconsistent association in some cohorts could reflect statistical power, 

variation in AD diagnostic accuracy or cohort risk, or, conceivably, inconsistent 

linkage disequilibrium between rs3865444 and the functional CD33 SNP, or cohort 
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variations in the allele frequency of SNPs in CD33-related genes that modulate the 

rs3865444 association with AD risk.  

1.5.2 CD33 structure and function 

CD33 is a member of the sialic acid-binding immunoglobulin-type lectin 

(SIGLEC) family. CD33 contains an amino-terminal, extracellular IgV domain 

which acts as the ligand binding domain, along with an immunoglobulin C2-set 

(IgC2) domain (Estus et al., 2019). The primary ligands are α2-3 and α2-6 linked 

sialic acids (Rodrigues et al., 2020). CD33 also contains a cytosolic 

immunomodulatory tyrosine-based inhibitory motif (ITIM) proximal to the 

membrane and an ITIM-like sequence near their carboxyl terminus (Paul et al., 

2000). The ITIM is phosphorylated by Src family kinases and, once 

phosphorylated, recruits phosphatases such as SHP1 and SHP2 which counteract 

ITAM activity. A prevailing concept is that SIGLECs, including CD33, are activated 

by “self-associated molecular patterns,” or SAMPs, to signal through their ITIM to 

induce immunosuppression (Varki, 2011), reviewed in Angata (2018); (Lubbers et 

al., 2018). Briefly, SAMPs including specific glycosylation patterns, i.e. sialic acid 

linkages, provide a self-recognition signal to suppress innate immune cells, much 

in the way that pathogen-associated molecular patterns (PAMPs) or “disease-

associated molecular patterns” (DAMPs) activate innate immune cells. This 

contact-dependent inhibition is thought to provide self-nonself discrimination in 

innate immune cells which do not undergo a selection process. These sialic acids 

are also commonly found in the ganglioside subclass of glycosphingolipids and as 

a common post-translational modification. Sialylated glycoproteins and 



13 
 

gangliosides are oftentimes especially abundant in pathophysiologic conditions 

such as cancer and inflammation, including AD amyloid plaques; their binding to 

CD33 has been suggested to inhibit plaque clearance (Ana Griciuc et al., 2013; 

Salminen & Kaarniranta, 2009).  

1.5.3 Molecular genetics of CD33 in Alzheimer’s Disease 

The primary AD GWAS SNP for CD33 is rs3865444, which is 372 bp 

upstream of the CD33 transcription start site. The minor allele of this SNP is 

associated with reduced AD risk (Hollingworth et al., 2011; Jansen et al., 2019; 

Naj et al., 2011). Griciuc et al. did not detect an association between rs3865444 

and CD33 mRNA expression and yet found reduced CD33 protein in rs3865444 

minor allele carriers (Ana Griciuc et al., 2013). Subsequently, the Estus laboratory 

previously found total CD33 mRNA was increased about 25% in AD and 

decreased modestly with the rs3865444 minor allele (Malik et al., 2013). Moreover, 

previous work found that a surprisingly common CD33 isoform in human brain was 

lacking exon 2 (D2-CD33, also known as CD33ΔV-Ig (Ana Griciuc et al., 2013) 

and CD33m (Perez-Oliva et al., 2011)). Skipping of exon 2 deletes the CD33 IgV 

domain, leading to an in-frame fusion of the CD33 signal peptide directly to the 

IgC2 extracellular domain (Perez-Oliva et al., 2011). When D2-CD33 is quantified 

in comparison to CD33 by using isoform specific qPCR primers, a striking 

correlation between rs3865444 and the proportion of CD33 mRNA expressed as 

D2-CD33 is observed (Malik et al., 2013). The working hypothesis was that 

rs3865444 was a proxy for a functional SNP because rs3865444 is in the promoter 

region of CD33. Indeed, sequencing and subsequent genotyping studies found an 
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exon 2 SNP, rs12459419, that is in perfect linkage disequilibrium with rs3865444. 

Minigene studies confirmed that rs12459419 is a functional SNP with the minor 

allele increasing the proportion of D2-CD33 (Malik et al., 2013). The finding that 

rs3865444 and its functional proxy, rs12459419, are associated with CD33 exon 

2 splicing efficiency was subsequently confirmed in several reports (Malik et al., 

2015a; Raj et al., 2014; Walker et al., 2015). The association between rs12459419 

and CD33 exon 2 splicing has also been documented by acute myeloid leukemia 

(AML) researchers, who are interested in CD33 as a target for antibody-based 

AML therapeutics (Lamba et al., 2017; Mortland et al., 2013). In fact, several, 

although not all studies, found a correlation between the rs12459419 major allele 

and increased efficacy of gemtuzumab-ozogamicin, which recognizes an epitope 

in the CD33 IgV domain (Lamba et al., 2017; Laszlo et al., 2018; Mortland et al., 

2013) reviewed in (M. Gbadamosi et al., 2018). The function(s) of D2-CD33, if any, 

have not been determined. Since loss of exon 2 does not alter the codon reading 

frame, D2-CD33 encodes a protein essentially identical to CD33 except for the 

loss of the IgV domain. Therefore, we and others originally hypothesized that D2-

CD33 is non-functional because loss of the IgV domain would result in an inability 

to bind sialic acid-based ligands (reviewed in (Malik et al., 2015b; L. Zhao, 2018)). 

We recently investigated the impact of a four bp insertion/deletion (indel), 

rs201074739, in exon 3 of CD33. The deletion is moderately rare with a ~2.4% 

minor allele frequency in European populations. The rs201074739 deletion causes 

a frameshift in the CD33 codon reading frame at amino acid 155. This results in 

aberrant amino acids at positions 156-159 and then a premature stop codon. 
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Hence, instead of CD33 as a 364 amino acid type-1 transmembrane protein, CD33 

containing this 4bp deletion is predicted to be a secreted protein consisting of the 

IgV domain and approximately 16 amino acids of the IgC2 domain. As such, this 

deletion would preclude both CD33 and D2-CD33. This was demonstrated in a 

very recent report by Papageorgiou et al. describing an individual that was 

homozygous for this deletion and had no detectable cell surface CD33 on their 

monocytes (Papageorgiou et al., 2019). Since the rs3865444 minor allele is 

associated with decreased full-length CD33 and decreased AD risk, we 

hypothesized that this indel would also be associated with reduced AD risk.  To 

evaluate this possibility, we used results from the most recent IGAP AD meta-

analysis (Kunkle et al., 2019).  As a positive control to assess whether CD33 

genetics are associated with AD, we examined the CD33 exon 2 splicing SNP, 

rs12459419, and found a significant association with AD risk (OR = 0.92 (95% CI: 

0.90-0.95), p = 4.5 x 10-7). This was a robust sample set of 21,982 AD cases and 

41,944 non-AD cases.  However, the 4 bp indel was not significantly associated 

with AD risk in these same data (p = 0.1337, OR = 0.90 (95% CI: 0.79-1.03).  While 

post-hoc power calculations have well-known limitations (Hoenig & Heisey, 2001), 

it is somewhat revealing that a dataset of this size (>60k individuals) confers 80% 

statistical power to detect an odds ratio as small as 0.90—comparable to the effect 

of rs12459419—for a variant with a minor allele frequency similar to this indel 

(2.4%).   
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1.5.4 Current Model for CD33 and Alzheimer’s Disease 

Based on our current understanding of CD33 genetics, AD risk and SNP 

actions, an interesting paradigm has emerged. The AD-associated SNP, 

rs3865444, acts through the linked SNP rs12459419 to primarily increase aberrant 

exon 2 splicing.  This results in a D2-CD33 increase at the expense of CD33.  

Reduced functional CD33 was hypothesized to mediate reduced AD risk. This loss 

of function hypothesis is derived from the demonstrated ability of ligand binding to 

the CD33 IgV domain to cause CD33 clustering and ITIM phosphorylation and 

overall lead to an inhibition in phagocytic-type activity. A decrease in CD33 

inhibition of microglial function was thought to increase microglial function, e.g., 

clearance of amyloid and cell debris and, over time, lead to reduced AD pathology. 

The conclusion in this loss of function hypothesis is that further reducing CD33 

protein via pharmacologic means (antibodies, small molecules, anti-sense 

approaches) would reduce AD incidence and severity (Malik et al., 2015a; L. Zhao, 

2018). This theory is now called into question because of the data regarding the 

rs201074739 indel variant. Although the indel is expected to cause a 50% reduction 

in CD33 in heterozygous individuals and to produce a complete loss of CD33 cell 

surface expression in homozygous individuals (Papageorgiou et al., 2019), this 

indel does not appear to modulate AD risk.  Considering CD33 genetic findings 

overall, we conclude that (i) an AD-protective splicing SNP, rs12459419, increases 

D2-CD33 and decreases CD33 but (ii) an indel that robustly decreases CD33 has 

no effect on AD risk.  While we recognize that future genetic studies may yield new 

findings, a parsimonious interpretation of available data is that AD protection may 
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well be mediated by the increase in D2-CD33, i.e., D2-CD33 represents a gain of 

function variant to protect from AD. Microglial function appears to be regulated by 

a homeostatic balance between ITIM and ITAM signaling, reviewed in detail 

elsewhere (Gratuze et al., 2018; Jay et al., 2017; Linnartz & Neumann, 2013; Shi & 

Holtzman, 2018). That both TREM2 and CD33 have genome-wide significant 

variants associated with AD is strong evidence that this pathway is critical in AD 

pathogenesis and thus a promising pathway to target for therapeutics. A full 

overview of the interaction between CD33 and TREM2 is presented as Figure 1.3. 

1.6 Involvement of other microglial receptors in Alzheimer’s Disease 

While GWAS clearly have substantial power, there are also limitations. 

Among these limitations is the power to detect signals from low penetrance 

variants especially from moderately rare (1-5% minor allele frequency (MAF)) and 

the focus on SNPs rather than other variants such as insertion-deletion variants 

(indels), complex repeated regions such as variable number of tandem repeat 

(VNTR) and short tandem repeat (STR) regions, and structural variations such as 

gene deletions (Ebbert et al., 2019; Tam et al., 2019). The TREM2-CD33 pathway 

has been repeatedly identified as important in AD, both in GWAS and preclinical 

animal and in vitro models (Bhattacherjee et al., 2021; Bhattacherjee et al., 2019; 

Bradshaw et al., 2013; A. Griciuc et al., 2019; Ana Griciuc et al., 2013; Hollingworth 

et al., 2011; Jansen et al., 2019; McQuade et al., 2020; Raj et al., 2014; Wightman 

et al., 2021). With this evidence, other targets, including receptors, in this pathway 

may be proposed as potential targets as well despite lacking genetic evidence of 

involvement. These proposed targets include SIGLEC14, SIGLEC5, LYN, BLNK, 
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and SYK (B. C. Shaw et al., 2021; Sierksma et al., 2020). SIGLEC14 couples to 

DAP12 for signaling, while SIGLEC5 is its paired receptor with an ITIM. LYN is a 

Src family kinase which regulates microglial activity, specifically through 

phosphorylation of ITIMs and ITAMs. BLNK is a scaffolding protein which stabilizes 

receptor-kinase interactions. Syk is one of the primary signaling proteins in the 

ITAM pathway, alongside PLC—itself a genome-wide significant risk factor for AD 

(Jansen et al., 2019; Kunkle et al., 2019). Thus, while GWAS have provided 

approximately 40 genes of interest in AD risk, we should expand our preclinical 

and clinical studies beyond GWAS to include targets within the pathway as well. 

1.7 Summary 

GWAS have drastically expanded our understanding the pathogenesis of 

AD yet. Our challenge now is translating these large-scale genetic studies into 

translational therapies to impact disease course. GWAS risk data combined with 

bioinformatics and molecular biology allow us to predict the direction of desired 

effect, i.e. activation or inhibition of a specific protein or pathway. Better 

understanding of the molecular genetics of each risk variant provides further 

context on directionality and possible alternative strategies such as splicing 

modulation. The TREM2-CD33 pathway has been studied extensively and 

monoclonal antibodies targeting each are currently in clinical trials. Overall, there 

remains substantial gaps in knowledge between the molecular genetics and 

protein effects to generate risk or protection. 
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Figure 1.1: Basic pathological features of AD. 

(A) Aβ plaques surrounded by degenerating neurons and (B) NFTs 

composed of intracellular, insoluble hyperphosphorylated tau protein are the 

hallmark histological features of AD. Adapted from Nelson, et al. 2009. 

Reproduced with permission. 
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Figure 1.2: Alzheimer’s Disease risk variants as a function of frequency in 
population. 

The frequency of the most impactful genetic variant for a given gene is 

plotted on the X-axis, while its impact on risk of AD is plotted on the Y-axis. Note 

that in the upper left corner, variants in APP, PSEN1, and PSEN2 are shown as 

“Causes Alzheimer’s” as these are FAD-associated genes. Other variants, such 

as those in TREM2 and CD33 are in the medium- to low-risk of AD.  
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Figure 1.3: TREM2 and CD33 act in opposing fashion. 

As noted above, signaling from TREM2 to DAP12 is mediated by a 

positively charged amino acid in the TREM2 transmembrane domain. Clustering 

of TREM2-DAP12 after ligand binding or antibody-based ligation leads to Src 

family kinase recruitment and phosphorylation of the tyrosines within the DAP12 

ITAM. This leads to downstream signaling via Syk, PLC, and phosphoinositde-3-

kinase, ultimately facilitating phagocytosis of Aβ for degradation. CD33 acts 

through its ITIM domain to recruit SHP1, and to a lesser extent SHP2, which 

dephosphorylates Syk and interrupts this signaling pathway, thus decreasing the 

phagocytic capacity of microglia.  
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CHAPTER 2. A NOVEL TREM2 SPLICE ISOFORM LACKING THE LIGAND 
BINDING DOMAIN IS EXPRESSED IN BRAIN AND SHARES LOCALIZATION 

[This section contains material adapted from a submitted manuscript: Shaw, 

B. C., Snider, H. C., Turner, A. K., Zajac, D. J., Simpson, J. F., & Estus, S. (2021). 

A novel TREM2 splice isoform lacking the ligand binding is expressed in brain and 

shares localization. bioRxiv. Submitted to J. Alz. Dis. Dec. 2021.] 

2.1 Introduction 

TREM2 is an activating receptor expressed on innate immune cells, and 

genetic variants in the TREM2 gene are associated with both Nasu-Hakola disease 

and Alzheimer’s Disease (AD) (R. Guerreiro et al., 2013; Jonsson et al., 2013; 

Paloneva et al., 2002). Genome-wide association studies (GWAS) have confirmed 

that variants rs75932628 and rs143332484, encoding the p.R47H and p.R62H 

variants, respectively, in TREM2 are strong risk factors for developing late-onset 

AD (LOAD) (Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; 

Wightman et al., 2021). These variants reduce TREM2 function (Cosker et al., 

2021; Dean et al., 2019; Gratuze et al., 2020; Piers et al., 2020). TREM2 is a 

receptor for both Apolipoprotein E (ApoE) (Atagi et al., 2015) and amyloid beta 

(Aβ) (Y. Zhao et al., 2018), and regulates Aβ phagocytosis (McQuade et al., 2020; 

Piers et al., 2020; Y. Zhao et al., 2018), transcriptional changes (Holtman et al., 

2015), and microglial transition to a full disease-associated phenotype (Keren-

Shaul et al., 2017). Murine models of AD suggest TREM2 may be beneficial early 

in the disease but detrimental later; Trem2KO or Trem2R47H mice crossed with 

amyloid-based AD models (APP/PS1 or 5xFAD mice) develop greater Aβ 
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pathology (A. Griciuc et al., 2019; Wang et al., 2015), but when crossed with the 

PS19 humantau-model, reduced tau pathology (Gratuze et al., 2020).  

TREM2 is a five-exon gene that has been reported to undergo alternative 

splicing (Del-Aguila et al., 2019; Numasawa et al., 2011; Yanaizu et al., 2018), 

wherein exon 3 (D3-TREM2) or exon 4 (D4-TREM2) are skipped, or exon 4 is 

extended to a include a 3’ portion of intron 3. Each of these three alternative 

splicing isoforms results in a frameshift mutation; exon 3 skipped has been 

associated with Nasu-Hakola disease as well (Numasawa et al., 2011; Yanaizu et 

al., 2018). Interestingly, though both isoforms encode proteins which lack a 

transmembrane domain and are expected to be secreted, the exon 4 variants have 

not been reported as associated with Nasu-Hakola disease possibly due to the 

lack of an identified causal genetic variant for this isoform. Modulation of TREM2 

splicing has been proposed as a potential therapeutic for Nasu-Hakola disease 

previously (Yanaizu et al., 2018), similar to the recent successes with spinal 

muscular atrophy (Finkel et al., 2017). Further TREM2 splice variants had not been 

reported until very recently (Kiianitsa et al., 2021), when an isoform lacking exon 

2 (D2-TREM2), which encodes the ligand binding domain, was identified. This D2-

TREM2 isoform maintains the reading frame and transmembrane domain but lacks 

the ligand binding domain. 

In this study, we sought to fully characterize TREM2 alternative splicing in 

brain. We identify many more alternative splice isoforms than previously reported, 

and report that this alternative splicing is not brain-specific as it is conserved 

across multiple tissues. Further, we show that the D2-TREM2 splice isoform is 
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translated into protein using overexpression paradigms, and that this D2-TREM2 

protein has similar compartment localization as the full-length (FL-TREM2) protein. 

We propose that modulating D2-TREM2 could be exploited to enhance TREM2 

function—by decreasing D2-TREM2 early, one could increase the then-beneficial 

functional TREM2; by increasing D2-TREM2 late in disease, one could inhibit the 

then-detrimental functional TREM2. 

2.2 Methods 

2.2.1 Preparation of DNA, RNA, and cDNA from human samples 

Human blood and anterior cingulate autopsy tissue from 61 donors were 

generously provided by the Sanders-Brown Alzheimer’s Disease Center 

neuropathology core and their characteristics and cDNA synthesis have been 

described elsewhere (Zou et al., 2007). All human subjects research was carried 

out in accordance with the University of Kentucky Institutional Review Board under 

protocol number 48095. The matched brain and blood samples were from 

deceased individuals with an average age at death of 82.4 ± 8.7 (mean ± SD) 

years for non-AD and 81.7 ± 6.2 years for AD subjects. The average postmortem 

interval (PMI) for non-AD and AD subjects was 2.8 ± 0.8 and 3.4 ± 0.6 hrs, 

respectively. Non-AD and AD samples were comprised of 48% and 55% female 

subjects, respectively. MMSE scores were, on average, 28.4 ± 1.6 for non-AD 

subjects and 11.9 ± 8.0 for AD subjects. Total RNA was prepared using a Qiagen 

RNeasy Lipid Tissue Mini kit (Qiagen #74804) according to manufacturer’s 

instructions. Reverse transcription was carried out using SuperScript IV (Invitrogen 
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#18091050) according to manufacturer’s instructions. For cross-tissue splicing 

comparison, fetal RNA libraries from various tissues were obtained from a 

commercial vendor (Stratagene) and their cDNA preparation has been described 

elsewhere (Burchett et al., 2011). 

Cell Culture 

The HMC3 human microglial cell line was obtained from American Type 

Culture Collection (ATCC CRL-3304). Cells were cultured in Eagle’s Modified 

Minimum Essential Medium (EMEM), ATCC modification (ATCC 30-2003) 

supplemented with 10% fetal bovine serum, defined (HyClone, GE Healthcare 

SH30070.03); 50 U/mL penicillin, 50 µg/mL streptomycin (Gibco 22400-089). Cells 

were maintained at 37°C in a 5% CO2 in air atmosphere. 

2.2.2 TREM2 splice isoform identification by PCR and sequencing 

The cDNA samples from the anterior cingulate samples were amplified 

using primers corresponding to TREM2 exon 1 (5’-

CCTGACATGCCTGATCCTCT-3’) and exon 5 (5’-GTGTTCTTACCACCTCCCC-

3’) with Q5 high-fidelity hot-start polymerase (NEB # M0493L). Thermocylcing 

parameters were as follows: 98°C 30 s; 98°C 5 s, 67°C 5 s, 72°C 45 s, 30 cycles; 

72°C 2 min, 25°C hold. PCR products were separated on a 8% acrylamide gel and 

imaged using a BioRad ChemiDoc XR. Bands were extracted for subsequent 

amplification as above and purification using a Monarch PCR Cleanup Kit (NEB 

T1030L). Purified products were sequenced commercially (ACGT; Wheeling, IL) 

and compared to the reference transcript NM_018965.4 to determine splicing. 
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2.2.3 Quantification of TREM2 transcripts 

Quantitative PCR (qPCR) was used to quantify expression of TREM2 

transcripts. Primers corresponding to sequences within exons 1 and 2 were used 

to quantify TREM2 exon 2 expression (forward, 5’-CCTTGGCTGGGGAAGGG-3’; 

reverse, 5’-TCATAGGGGCAAGACACCTG-3’), as well as primers corresponding 

to sequences at the exon 1–3 junction and within exon 3 to quantify the D2-TREM2 

isoform (forward, 5’-TTACTCTTTGTCACAGACCCC-3’; reverse, 5’-

GGGCATCCTCGAAGCTCT-3’). PCR was conducted using an initial 2 min 

incubation at 95°, followed by 40 cycles of 10 s at 95°C, 20 s at 60°C, and 20 s at 

72°C. The 20 µl reactions contained 1 µM each primer, 1X PerfeCTa SYBR Green 

Super Mix (Quanta Biosciences), and 20 ng of cDNA. Experimental samples were 

amplified in parallel with serially diluted standards that were generated by PCR of 

cDNA using the indicated primers, followed by purification and quantitation by UV 

absorbance. Results from samples were compared relative to the standard curve 

to calculate copy number in each sample. Total TREM2 expression was the sum 

of the copy numbers for TREM2 exon 2 present and exon 2 skipped. Assays were 

performed in duplicate and normalized to expression of Iba1 (AIF1) as the 

housekeeping gene, as TREM2 in the CNS is exclusively expressed in microglia. 

For cross-tissue comparison, the percent exon 2 skipping was calculated by 

dividing the exon 2 skipped copies by the sum of the exon 2 skipped and mean of 

exon 2 present copies without normalization. Data in the cross-tissue comparison 

reflect six technical replicates. 
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2.2.4 TREM2 transcript cloning 

The full-length TREM2 and D2-TREM2 transcripts were amplified from gel 

extracts as above and genomic DNA was amplified using the same primers as 

above. Amplification was performed with Platinum Taq (Invitrogen 10966034) with 

the following cycling parameters: 2 min at 94°C; 30 s at 94°C, 30 s at 60°C, 2 min 

at 72°C, 30 cycles; 7 min at 72°C, 25°C hold. All cloning was performed using a 

pcDNA 3.1-V5/His TOPO-TA cloning kit (Invitrogen K480001) per manufacturer’s 

instructions. Clones were verified by sequencing (ACGT; Wheeling, IL) and grown 

for midi-scale production and purification using a Qiagen Plasmid Plus Midiprep kit 

(Qiagen 12943).  

2.2.5 HMC3 Transfection 

HMC3 human microglia were transfected with Lipofectamine 3000 with Plus 

reagent (Invitrogen L3000001) per manufacturer instructions with 0.8 µL of 

Lipofectamine 3000, 1 µL Plus reagent, and 250 ng plasmid per well in 8 well glass 

chamber slides (MatTek CCS-8). Cells were incubated for 24 hours prior to 

processing for microscopy. 

2.2.6 Confocal Immunofluorescence Microscopy 

Transfected HMC3 cells were fixed with 10% neutral buffered formalin 

(Fisher Scientific SF100-4) for 30 minutes then blocked and permeabilized for 30 

minutes with 10% goat serum (Sigma S26-LITER), 0.1% Triton X-100 (Fisher 

Scientific BP151-500) in PBS (Fisher BioReagents BP665-1). Primary and 

secondary antibodies were diluted in the same blocking and permeabilization 
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buffer and incubated at room temperature for 90 minutes. Cells were washed three 

times in blocking and permeabilization buffer between primary and secondary 

antibodies, and three times in PBS prior to coverslip mounting with Prolong Glass 

with NucBlue mounting media (Invitrogen P36981) and high-tolerance No. 1.5 

coverglass (ThorLabs CG15KH1). Images were acquired using a Nikon A1R HD 

inverted confocal microscope with a 60X oil objective and NIS Elements AR 

software. 

2.2.7 Statistical Analyses 

Analyses were performed using GraphPad Prism 8.4.2. Quantitative data 

were first checked for normality by the D’Agostino & Pearson test. Normally 

distributed data were analyzed using a two-tailed t-test, while data not normally 

distributed were analyzed with a two-tailed Mann Whitney test and are noted along 

with p values. 

2.3 Results 

2.3.1 TREM2 undergoes extensive alternative splicing in human adult brain 
tissue 

To fully characterize TREM2 alternative splicing, we PCR-amplified TREM2 

cDNA from anterior cingulate cortex by using primers corresponding to sequences 

within exons 1 and 5. A gene map, including introns and encoded protein domains, 

is shown with forward and reverse primers (Figure 2.1, top). We observed 

substantial alternative splicing in both AD and non-AD individuals (Figure 2.1, left). 

The identity of each isoform was confirmed by direct sequencing (Figure 2.1, right). 
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This effort identified multiple novel TREM2 isoforms that have not been reported 

previously, including isoforms with multiple exons skipped. 

Since this assay suggested that the the isoform lacking exon 2 (D2-TREM2) 

is the most abundant variant, we next quantified TREM2 and this alternate D2-

TREM2 isoform in a series of brain samples. Since TREM2 is almost exclusively 

expressed by microglia in the brain, we normalized the TREM2 copy number to 

that of AIF1 (Figure 2.2A). While we do observe a trend toward higher TREM2 in 

the AD group, this difference is not significant (p = 0.1268, two-tailed t- test). There 

was an association between total TREM2 expression and neuropathology when 

parsed by National Institute on Aging/Reagan Institute (NIARI) scores, where low 

pathology was defined as NIARI < 3 and high pathology was defined as NIARI ≥ 3 

(Figure 2.2B; p = 0.0033, Student’s t-test). We next investigated whether exon 2 

skipping correlated with exon 2 inclusion and found a strong correlation 

irrespective of AD diagnosis (Figure 2.2C). We then investigated whether D2-

TREM2 occurred more frequently in AD vs. non-AD individuals. We found that 

exon 2 skipping correlates well with total TREM2 expression (Figure 2.2D), but 

observed no difference in exon 2 skipping frequency when parsed by AD diagnosis 

(Figure 2.2D; p = 0.4909, Mann Whitney test) or NIARI scores (data not shown; p 

= 0.9443, Welch’s t-test). 

2.3.2 TREM2 alternative splicing is conserved across tissues 

To test whether the observed alternative splicing is specific to brain, we 

subjected cDNA libraries from aorta, lung, kidney, heart, skeletal muscle, brain, 

and liver to PCR amplification with primers in TREM2 exons 1 and 5, as described 
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above (Figure 2.1). We observed each of the previous splice isoforms across 

multiple tissues, though each isoform was not present in all tissues (Figure 2.3). 

We also observed a high relative abundance of the isoform lacking both exon 2 

and 3 along with the isoform lacking exons 2 and 4. This may reflect PCR bias, 

where shorter fragments are amplified more efficiently than longer fragments and 

are overrepresented in relative abundance. Nonetheless, the D2-TREM2 isoform 

was an abundant alternative isoform across all tissues surveyed. We then 

quantified TREM2 exon 2 skipping frequency in these samples and found similar 

frequency of exon 2 skipping across tissues (Figure 2.4).  

2.3.3 D2-TREM2 protein localizes similar to full-length TREM2 

To test whether the D2-TREM2 protein isoform is trafficked similarly to the 

full-length isoform, we cloned each isoform into expression vectors and transfected 

HMC3 human microglial cells for confocal microscopy (Figure 2.5). We observed 

similar staining patterns from both the FL-TREM2 (Figure 2.5A) and D2-TREM2 

(Figure 2.5B), and this staining pattern is consistent with intracellular retention 

prevoiusly reported (Prada et al., 2006; Sessa et al., 2004). This implies the D2-

TREM2 protein maintains the localization pattern of its parent full-length TREM2. 

We confirmed the D2-TREM2 isoform is predominantly retained in the Golgi 

complex (Figure 2.5C) as has been previously reported for the FL-TREM2 and 

shown here (Figure 2.5D). 
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2.4 Discussion 

The primary findings of this report are that TREM2 undergoes far more 

extensive alternative splicing than has been previously reported (Del-Aguila et al., 

2019; Kiianitsa et al., 2021; Numasawa et al., 2011; Yanaizu et al., 2018), that D2-

TREM2 is a common variant that is not influenced by AD neuropathology, and that 

D2-TREM2 co-localizes with full-length TREM2. As such, this comprehensive 

analysis of TREM2 alternative splicing extends prior knowledge, noting that 

Ensembl lists only full-length TREM2 (ENST00000373113.8), exon 4 skipped (D4-

TREM2; ENST00000338469.3), and intron 3 retained isoforms 

(ENST00000373122.8) as known transcripts; NCBI only lists the full length 

(NM_018965.4) and D4-TREM2 (NM_001271821.2). Exon 3 skipping has been 

previously described in two small cohorts (Numasawa et al., 2011; Paloneva et al., 

2002). The D2-TREM2 isoform is not annotated in either the NCBI nor Ensembl 

database. The D2-TREM2 isoform in brain was recently reported (Han et al., 2021; 

Kiianitsa et al., 2021), and our brain quantitation data closely replicate their results 

(Figure 2.2C). In addition, we demonstrate that this splice isoform is expressed 

across multiple tissues (Figure 2.3) with roughly equal relative abundance (Figure 

2.4). We further extend these recent findings by demonstrating that isoforms exist 

with multiple exons skipped, such that all permutations of exons 2, 3, and 4 can be 

skipped individually or in combination (Figure 2.1), and that exon 2 skipping 

frequency is not different as a function of AD neuropathology. 

While TREM2 has well-described cell surface localization including receptor 

activity (Atagi et al., 2015; A. Griciuc et al., 2019; McQuade et al., 2020; Y. Zhao 
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et al., 2018), interactions with DAP12 (Peng et al., 2010), and proteolytic cleavage 

by ADAM10 (Schlepckow et al., 2017; Zhong et al., 2015), there also exists a 

considerable intracellular TREM2 pool (Prada et al., 2006; Sessa et al., 2004). Our 

localization studies support the hypothesis that D2-TREM2 localizes to the same 

compartment as FL-TREM2. Both appear to be predominantly localized to the 

Golgi complex (Figure 2.5C-D), replicating previous work with FL-TREM2 (Prada 

et al., 2006; Sessa et al., 2004). The recent D2-TREM2 report (Kiianitsa et al., 

2021) provided evidence of membrane-bound D2-TREM2 and FL-TREM2 by 

Western blots on subcellular fractions. Taken together, this suggests that 

TREM2—and likely D2-TREM2—resides in a transmembrane Golgi pool. 

Functionally, TREM2 seems to operate under a feed-forward mechanism 

which D2-TREM2 may act to inhibit. Experiments in vitro suggest that the 

transmembrane Golgi pool rapidly moves to the cell membrane in response to 

intracellular calcium flux induced by ionomycin (Prada et al., 2006; Sessa et al., 

2004). Ligation of TREM2 using monoclonal antibodies also elicits an intracellular 

calcium spike. Whether D2-TREM2 inhibits this feed-forward mechanism, where 

TREM2 signaling induces calcium flux and increases cell surface mobilization, is 

still unknown.  

TREM2 variants were some of the first genetic risk factors outside of 

APOE4 identified for LOAD (R. Guerreiro et al., 2013; Jonsson et al., 2013), have 

been replicated in multiple GWAS (Jansen et al., 2019; Kunkle et al., 2019; 

Lambert et al., 2013; Wightman et al., 2021), and have the highest odds ratios for 

LOAD after APOE4 (Karch & Goate, 2015). Variants encoding the p.R47H 
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(rs75932628) and p.R62H (rs143332484) disrupt ligand binding and are predicted 

to be partial loss-of-function mutations (Cosker et al., 2021; Dean et al., 2019; 

Gratuze et al., 2020; Piers et al., 2020). We hypothesize that the D2-TREM2 

protein is a functionally null receptor, as the ligand binding IgV domain is missing 

(Figure 2.1), though this has yet to be confirmed. In a similar case, CD33 has an 

isoform with relatively high abundance that is also lacking its ligand binding IgV 

domain (D2-CD33); however genetics (Estus et al., 2019), mouse models 

(Bhattacherjee et al., 2021), and in vitro studies with human pluripotent stem cell-

derived microglia (Jannis Wißfeld et al., 2021; J. Wißfeld et al., 2021) suggest the 

D2-CD33 protein may have a gain of function which acts independent of its loss of 

receptor activity. 

TREM2 remains a promising target in potential AD therapeutics, evidenced 

by the strong interest in preclinical TREM2 monoclonal antibody treatments 

including a Phase 2 trial of AL002a (Alector, NCT04592874). Modulation of 

alternative splice isoforms of TREM2 may represent a novel therapeutic pathway. 

The previously reported D4-TREM2 isoform lacks a transmembrane domain 

(Figure 2.1) and is likely secreted as soluble TREM2 (sTREM2) which may be AD-

protective (Ewers et al., 2020; Zhong et al., 2019). We posit that the D2-TREM2 

isoform acts similarly to the p.R47H and p.R62H variants by reducing TREM2 

function, and balanced with D4-TREM2, this forms a potentially druggable 

rheostat. Early in the disease, increased TREM2 function and sTREM2 secretion 

are apparently beneficial; increasing full-length TREM2 would promote functional 

TREM2 signaling and increased D4-TREM2 would promote increased sTREM2 
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secretion. Later in disease when inflammation may be detrimental, increasing D2-

TREM2 could provide a switch to decrease TREM2 activity and inflammation 

(Figure 2.6). 

We note one outlying point in our quantitation data (Figure 2.2C, AD subject, 

top) with substantially higher D2-TREM2 than the rest of our subjects. This subject 

may have an underlying genetic variant which regulates exon 2 skipping in cis, and 

current work seeks to better understand this outlier. Future studies will examine in 

greater depth using RNA sequencing methods whether this splice isoform is 

associated with any genetic variants, such as the p.R47H and p.R62H variants or 

other rare mutations. 
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Figure 2.1: TREM2 undergoes extensive alternative splicing 

Top: a schematic of the TREM2 gene is shown with introns and exons. 

Approximate locations of the forward (green) and reverse (red) primers are shown. 

Left: a representative image of the PCR amplification and gel electrophoresis of 

TREM2 cDNA from AD and non-AD brains. No differences in splicing patterns 

were noticed between AD and non-AD. Right: schematic of the splice isoforms 

identified after sequencing. Colors correspond to exons in the gene model, while 

frameshifts are shown in grey. A doublet appears in the lower transcripts on the 

gel in which the lower band corresponds to CES3 in addition to the identified 

TREM2 isoforms. All bands identified in Figure 2.1 have been confirmed by Sanger 

sequencing.  
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Figure 2.2: Quantification of TREM2 and exon 2 skipping in human brain tissue 

 (A): Total TREM2 expression normalized to the microglial marker AIF1 

expression. TREM2 expression is not significantly different between AD and non-

AD samples (p = 0.1268, t-test). (B) Total TREM2 expression normalized to 

microglial marker AIF1 expression, parsed by NIARI pathology state, where low 

pathology is defined as a NIARI score < 3 and high pathology is defined as a NIARI 

score ≥ 3 (p = 0.0033, Student’s t-test). (C) Expression of the isoform lacking exon 

2 correlates well with expression of the isoform containing exon 2. (D) Exon 2 is 
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skipped at an approximate frequency of 11%, with no significant difference 

between AD vs. non-AD (p = 0.4909, Mann-Whitney test) or NIARI pathology (p = 

0.9443, Welch’s t-test, data not shown). 
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Figure 2.3: Complex patterns of TREM2 alternative splicing are present in many 
tissues 

Human fetal cDNA libraries from multiple tissues were amplified using the 

same primers from Figure 2.1. The splice variants from Figure 2.1 are replicated 

across these six additional tissues. Differences in the relative abundance of each 

splice variant may be due to differences in developmental stage and/or splicing 

factor differences between tissues. 
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Figure 2.4: Quantification of TREM2 and exon 2 skipping across tissues 

Exon 2 is skipped at a frequency between 5.30 – 13.0%. Data points reflect 

technical, not biological, replicates from pooled cDNA libraries. 
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Figure 2.5: TREM2 and D2-TREM2 have a similar subcellular localization 

The HMC3 human microglial cell line was transfected with vectors encoding 

either full-length TREM2 (A,C) or D2-TREM2 (B,D). Both vectors have an in-frame 

V5 epitope tag. In A and B, cells were subsequently labeled with antibodies against 

a TREM2 epitope encoded by exon 2 (red) or V5 (green). The limited red 

fluorescent labeling and absence of yellow overlap in the D2-TREM2 transfected 

cells (B) is due to low endogenous TREM2 expression. In C and D, transfected 

cells were labeled with antibodies against the Golgi complex marker GM130 (red) 

and V5 (green). The intracellular pools of both TREM2 (C) and D2-TREM2 (D) 
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largely colocalize with GM130. Views represent the XY (main), XZ (bottom) and 

YZ (right) views in each panel. 
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Figure 2.6: Model to exploit alternative splicing in TREM2 as a potential AD 
therapeutic.  

Early in disease when Aβ pathology is developing, animal models suggest 

TREM2 signaling is protective. Hence, decreasing D2-TREM2 and increasing full-

length TREM2 may be helpful in this stage of the disease (Left). Animal models 

also indicate TREM2 deficiency is protective from tau-related pathology 

suggesting a detrimental role for TREM2 signaling in this later stage of the disease 

when hyperphosphorylated tau accumulates. At this point, increased skipping of 

exon 2 to promote the “dead receptor” D2-TREM2 and thereby inhibit TREM2 

signaling may be helpful (Right).  
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CHAPTER 3. ECTOPIC GENE CONVERSION OF CD33 AFTER CRISPR-CAS9 
EDITING LEADS TO AN IN-FRAME, CHIMERIC SIGLEC22P-CD33 PROTEIN 

[This section contains material adapted from a published manuscript: Shaw, 

B. C., & Estus, S. (2021). Pseudogene-Mediated Gene Conversion After CRISPR-

Cas9 Editing Demonstrated by Partial CD33 Conversion with SIGLEC22P. 

CRISPR J. 2021 Oct;4(5):699-709. PMID: 34558988.] 

3.1 Introduction 

The CRISPR–Cas9 system has revolutionized gene editing (Jinek et al., 

2012). In this process, a single-stranded guide RNA (sgRNA) directs Cas9 

endonuclease to cleave DNA at a sequence-specific site. The DNA cleavage 

results in a double stranded DNA break (DSB) that is repaired by either homology-

directed repair (HDR) or nonhomologous end-joining (NHEJ). The former results 

in targeted integration of DNA sequence while the latter typically results in gene 

disruption through the introduction of insertions or deletions (indels). To generate 

a targeted knock-in or knock-out, an HDR template of exogenous DNA is often 

supplied as part of the process (Renaud et al., 2016). Alternatively, endogenous 

HDR templates have been described, including HBD sequence being incorporated 

into HBB and sequence from one allele of HPRT being incorporated into the other 

allele (Javidi-Parsijani et al., 2020; Susani et al., 2018). However, to our 

knowledge, HDR directed by a pseudogene has not been previously reported.  

CD33 genetic variants, including rs124594919, have been associated with 

reduced risk of Alzheimer’s Disease (AD) in genome-wide studies (Hollingworth et 
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al., 2011; Jansen et al., 2019; Naj et al., 2011). We and others subsequently 

identified rs12459419 as a functional SNP that increases the proportion of CD33 

lacking exon 2 (D2-CD33) (Bradshaw et al., 2013; Ana Griciuc et al., 2013; Malik 

et al., 2015a; Raj et al., 2014; Schwarz et al., 2016). This exon encodes the ligand-

binding IgV domain of this member of the sialic acid-binding immunoglobulin-type 

lectin (SIGLEC) family (Estus et al., 2019). Hence, while the extracellular portion 

of CD33 normally includes an IgV and IgC2 domain, D2-CD33 encodes a protein 

with only the IgC2 domain (Malik et al., 2013). CD33 inhibits microglial activity 

through its immunomodulatory tyrosine inhibitory motif (ITIM) and ITIM-like 

domains, which recruit protein tyrosine phosphatases, SHP1 and SHP2, to impact 

intracellular calcium flux, phagocytosis, and microglial migration (Balaian et al., 

2003; Bhattacherjee et al., 2019; Bradshaw et al., 2013; Ana Griciuc et al., 2013; 

Hernández-Caselles et al., 2006; Paul et al., 2000; Perez-Oliva et al., 2011; Raj et 

al., 2014; Walter et al., 2008). 

Given that the AD-protective rs12459419 increases D2-CD33 at the 

expense of CD33, the prevailing theoretical mechanism has been that rs12459419 

reduces AD risk through decreased CD33 function. However, recent findings that 

a bona fide loss of function indel, rs201074739, is not associated with AD risk, has 

led to this hypothesis being revised to suggest that rs12459419 and its related D2-

CD33 isoform represent a gain of function (Bhattacherjee et al., 2021; Estus et al., 

2019; J. Wißfeld et al., 2021). The gain-of-function mechanism and localization of 

D2-CD33 protein remain heavily debated (Bhattacherjee et al., 2021; 

Bhattacherjee et al., 2019; Estus et al., 2019; Godwin et al., 2020; Ana Griciuc et 
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al., 2013; Humbert et al., 2019; Malik et al., 2015a; Perez-Oliva et al., 2011; Raj et 

al., 2014; Siddiqui et al., 2017; J. Wißfeld et al., 2021). 

Here, we sought to generate a model of physiologic D2-CD33 expression 

by using CRISPR-Cas9 to excise CD33 exon 2 in the U937 human monocyte cell 

line. During these experiments, we identified a subset of cells which apparently 

underwent HDR directed by the SIGLEC22P pseudogene, located 13.5 kb away 

from CD33. Although the SIGLEC22P pseudogene shares approximately 87% 

identity over 1800 bp with CD33, this gene conversion was detected because three 

nucleotides in SIGLEC22P differ from those within the targeted CD33 exon 2 and 

result in three missense amino acids in CD33, including p.N20K, p.F21I, and 

p.W22R. Hence, we report pseudogene directed gene conversion as a mechanism 

for unanticipated CRISPR mutations.  

3.2 Methods 

3.2.1 Cell Lines and Antibodies 

U937 and HEK293 cell lines were obtained from American Type Culture 

Collection (ATCC). U937 cells were cultured in RPMI 1640 with HEPES (Gibco 

22400-089) supplemented with 10% fetal bovine serum, defined (HyClone, GE 

Healthcare SH30070.03); 50 U/mL penicillin, 50 µg/mL streptomycin (Gibco 

15070-063); and 2 µM L-glutamine (Gibco A2916801). HEK293 cells were cultured 

in EMEM, ATCC formulation (ATCC 30-2003) supplemented with 10% fetal bovine 

serum, defined (HyClone, GE Healthcare SH30070.03); 50 U/mL penicillin, 50 

µg/mL streptomycin (Gibco 22400-089). Cells were maintained at 37°C in a 5% 

CO2 in air atmosphere. The U937 cell line has been reported as either diploid or 
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triploid at chromosome 19 which contains CD33 (Lee et al., 2002; Shipley et al., 

1988). Antibodies, concentrations, and CD33 domains targeted are shown in Table 

3.1.  

3.2.2 CRISPR-Cas9 Gene Editing 

All CRISPR reagents were purchased from Integrated DNA Technologies 

(IDT). Single-guide RNAs (sgRNAs) and Cas9 protein (IDT 1081059) were 

incubated at a 1:1 molar ratio (0.5 nmol each) at room temperature for 10 minutes 

to form ribonucleotide-protein complexes (RNPs). The sgRNA sequences 

targeting CD33 exon 2 were 5’-TCCATAGCCAGGGCCCCTGT-3’ and 5’-

GCATGTGACAGGTGAGGCAC-3’ (Humbert et al., 2019). U937 cells were 

washed three times in PBS (Gibco 10010-023) and resuspended in complete 

Nucleofector Kit C (Lonza Biosciences VCA-1004) media (106 cells per 

transfection) with 5 µL electroporation enhancer (IDT 1075916) and RNPs. Cells 

were electroporated using a Nucleofector IIb device (Lonza Biosciences) under 

protocol V-001 and immediately added to a 12 well plate with 1.5 mL complete 

media and cultured for two weeks. 

3.2.3 Cell Sorting and Flow Cytometry 

Edited U937 cells were washed in PBS with 5% heat-inactivated fetal 

bovine serum (Gibco 10082-147), resuspended at 106 cells/mL and then treated 

with Human TruStain FcX blocker (BioLegend 422302). Cell sorting was carried 

out in azide-free buffers; for flow cytometry, 0.02% sodium azide was included in 

all buffers. Cells were stained with HIM3-4-FITC and P67.6-BV711 for one hour on 
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ice, washed twice with HBSS, then stained with Fixable Viability Dye eFluor780 

(Invitrogen 65-0865-18). Cells were resuspended in HBSS (Gibco 24020-117) with 

5% heat-inactivated fetal bovine serum (Gibco 10082-147) for sorting. Viable cells 

were gated using scatter and viability exclusion stain, sorted as either HIM3-4+ 

P67.6+, HIM3-4+ P67.6-, or HIM3-4- P67.6- and collected in complete media. At 48 

hours post-sort, cells were split using limiting dilution into a 96 well plate at an 

average density of 0.5 cells/well and expanded until sufficient cell numbers for 

analysis were achieved, approximately 8 weeks. Clones were screened by flow 

cytometry again prior to PCR and sequence analysis. 

3.2.4 PCR Screening and Cloning 

Genomic DNA from CRISPR-edited U937 clones was isolated with a 

DNeasy kit (Qiagen 69506) per manufacturer instructions and amplified with Q5 

High-Fidelity DNA Polymerase (New England BioLabs M0439L) using forward 

primer 5’-CACAGGAAGCCCTGGAAGCT and reverse primer 5’-GAG 

CAGGTCAGGTTTTTGGA (Invitrogen). Thermocycling parameters were as 

follows: 98°C 1 min; 98°C 15 s, 66°C 15 s, 72°C 45 s, 32 cycles; 72°C 2 min, 25°C 

hold. PCR products were separated on a 0.8% agarose-TBE gel, purified using a 

Monarch gel extraction kit (New England BioLabs T1020L), and sequenced by a 

commercial company (ACGT, Wheeling, IL). The three missense mutations 

identified were introduced into a previously described pcDNA3.1-CD33-V5/HIS 

vector using a QuikChange XL kit (Agilent 200517) with forward primer 5’-GCACTT 

GCAGCCGGATTTTTGGATCCATAGCCAGGGCC-3’ and reverse primer 5’- 

GGCCCTGGCTATGGATCCAAAAATCCGGCTGCAAGTGC-3’ (Invitrogen) to 
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generate the pcDNA3.1-KIRCD33-V5/HIS vector, transformed into TOP10 E. coli 

(Invitrogen C404003), isolated using a Plasmid Plus Midiprep Kit (Qiagen 12945) 

and verified by sequencing (ACGT) (Malik et al., 2015a). 

3.2.5 Gene expression by qPCR 

Quantitative PCR (qPCR) was used to quantify expression of total CD33 

and D2-CD33 as previously described (Malik et al., 2013). Briefly, primers 

corresponding to sequences within exons 4 and 5 were used to quantify total CD33 

expression (forward, 5’-TGTTCCACAGAACCCAACAA-3’; reverse, 5’-

GGCTGTAACACCAGCTCCTC-3’), as well as primers corresponding to 

sequences at the exon 1–3 junction and exon 3 to quantify the D2-CD33 isoform 

(forward, 5’-CCCTGCTGTGGGCAGACTTG-3’; reverse, 5’-

GCACCGAGGAGTGAGTAG TCC-3’). PCR was conducted using an initial 2 min 

incubation at 95°, followed by cycles of 10 s at 95°C, 20 s at 60°C, and 20 s at 

72°C. The 20 µl reactions contained 1 µM each primer, 1X PerfeCTa SYBR Green 

Super Mix (Quanta Biosciences), and 20 ng of cDNA. Experimental samples were 

amplified in parallel with serially diluted standards that were generated by PCR of 

cDNA using the indicated primers, followed by purification and quantitation by UV 

absorbance. Results from samples were compared relative to the standard curve 

to calculate copy number in each sample. Assays were performed in triplicate and 

normalized to expression of ribosomal protein L32 (RPL32) as the housekeeping 

gene. 
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3.2.6 HEK293 Transfection 

HEK293 cells were seeded at approximately 70% confluency 24 hours 

before transfection. Cells were then transfected with Lipofectamine 3000 with Plus 

Reagent (Invitrogen L3000001) per manufacturer instructions, 250 ng plasmid per 

well in 8 well glass chamber slides (MatTek CCS-8) for immunofluorescence or 

1000 ng per well in 12 well plates (Corning 3513) for flow cytometry. Cells were 

transfected with either the previously described wild-type CD33 vector (pcDNA3.1-

CD33-V5/HIS), pcDNA3.1-KIRCD33-V5/HIS, or no vector control. Cells were 

incubated for 24 hours before analysis by flow cytometry or immunofluorescence 

and confocal microscopy.  

3.2.7 Confocal Immunofluorescence Microscopy 

Transfected HEK293 cells were fixed with 10% neutral buffered formalin 

(Fisher Scientific SF100-4) for 30 minutes then blocked and permeabilized for 30 

minutes with 10% goat serum (Sigma S26-LITER), 0.1% Triton X-100 (Fisher 

Scientific BP151-500) in PBS (Fisher BioReagents BP665-1). Primary and 

secondary antibodies were diluted in the same blocking and permeabilization 

buffer and incubated at room temperature for 90 minutes. Cells were washed three 

times in blocking and permeabilization buffer between primary and secondary 

antibodies, and three times in PBS prior to coverslip mounting with Prolong Glass 

with NucBlue mounting media (Invitrogen P36981) and high-tolerance No. 1.5 

coverglass (ThorLabs CG15KH1). Images were acquired using a Nikon A1R HD 
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inverted confocal microscope with a 60X oil objective and NIS Elements AR 

software. 

3.2.8 Statistical analyses 

Analyses were performed using GraphPad Prism 8.4.2. Gene expression 

data were analyzed by one-way ANOVA followed by Dunnett’s multiple 

comparisons to control (WT cells). 

3.3 Results 

3.3.1 CRISPR-Cas9-mediated CD33 Exon 2 deletion leads to loss of P67.6 
epitope 

To generate an in vitro model of D2-CD33, we targeted exon 2 for deletion 

by using guide RNAs corresponding to sequences in the flanking introns as 

previously described (Humbert et al., 2019). Cells were transfected, maintained for 

two weeks, and sorted according to Figure 3.1. Live cells were gated by light 

scatter (Figure 3.1A), singlet events identified (Figure 3.1B), and sorted into 

separate tubes based on CD33 phenotypes (Figure 3.1C) with unstained cells 

shown for reference (Figure 3.1D). CD33 immunophenotype was determined with 

antibodies P67.6 and HIM3-4, which target epitopes in IgV and IgC2 that are 

encoded by exon 2 and exon 3, respectively. CD33 domains targeted by each 

antibody used in this study are shown in Table 3.1. We found that, of the 396,789 

sorted cells, 91.7% fell outside of the unedited cell gate, and we presume these 

cells contain a CRISPR-mediated change in CD33 sequence. Clonal cell lines 

were established from bulk collection of the gates drawn in Figure 3.1C. These cell 

lines were subsequently re-examined by flow cytometry with the same P67.6 and 
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HIM3-4 antibodies. While unedited cells showed robust labeling by both HIM3-4 

and P67.6 (Figure 3.2A), edited cell lines showed strong labeling by HIM3-4 but 

not P67.6 (Figure 3.2B), or no labeling by either HIM3-4 or P67.6 (Figure 3.2C). 

Data are representative of three independently established cell lines for each 

phenotype. Since D2-CD33 protein is not readily apparent on the cell surface 

(Bhattacherjee et al., 2021; M. O. Gbadamosi et al., 2021; Godwin et al., 2020; 

Humbert et al., 2019; Malik et al., 2015a; Siddiqui et al., 2017), we expected that 

the latter cells (Figure 3.2C) were candidates for exon 2 excision, which was 

confirmed by a PCR product of the appropriate size (Figure 3.2D, right) and by 

sequencing. However, cell lines with robust cell surface HIM3-4 but not P67.6 

labeling were unexpected. Screening by the size of the PCR amplicon with primers 

corresponding to exon 1 and exon 3 suggested that exon 2 was still present (Figure 

3.2D, middle). Sequencing of this PCR fragment revealed that the HIM3-4+ P67.6- 

clones contained three apparent single nucleotide polymorphisms (SNPs) in exon 

2 compared to the unedited, wild-type (WT-CD33) U937 cell line. These SNPs 

have an identical minor allele frequency (MAF), 9.86 x 10-5 and are indexed as 

rs3987761, rs3987760, and rs35814802 (Karczewski et al., 2020). Introduction of 

these SNPs results in changes in three consecutive amino acids (p.N20K, p.F21I, 

p.W22R) which we refer to as KIR-CD33. The nonsynonymous amino acids are 

the 4-6th amino-terminal residues of the mature protein. EMBOSS and PSORT II 

predict cell surface localization for KIR-CD33 and no change in the signal peptide 

cleavage site (Nakai & Horton, 1999; Rice et al., 2000). Consistent with typical cell-

surface localization, HIM3-4 labeled both CD33 and KIR-CD33 in a similar fashion 
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(Figure 3.2A-B). Notably, total CD33 gene expression and exon 2 splicing in KIR-

CD33 cells does not differ from that of unedited cells (Figure 3.2E-F). CD33 

expression was increased in D2-CD33 cells (Figure 3.2E) which exclusively 

express the D2-CD33 isoform (Figure 3.2F). 

3.3.2 Validation of the CRISPR-induced in-frame disruption of the P67.6 epitope 

To rigorously demonstrate that the lack of P67.6 labeling was solely due to 

the KIR mutations, we introduced the KIR mutations into a previously described 

CD33 expression vector (Malik et al., 2015a). CD33 and KIR-CD33 vectors were 

transfected into HEK293 cells, which do not naturally express CD33, and the cells 

processed for flow cytometry (Figure 3.3) and immunofluorescent confocal 

microscopy (Figure 3.4). For flow cytometry, cells were labeled with P67.6 or 

WM53, each of which was conjugated to the same fluorochrome to facilitate direct 

comparisons (Figure 3.3). Importantly, these antibodies both target exon 2, are 

both mouse IgG1κ and have comparable degrees of labeling. In the CD33 HEK293 

cells, labeling with both WM53 and P67.6 correlated well with HIM3-4 (Figure 3.3A-

B). However, in the KIR-CD33 HEK293 cells, labeling with WM53 but not P67.6 

correlated with HIM3-4 labeling as P67.6 labeling was not apparent (Figure 3.3C-

D). Further gating on the HIM3-4+ cells shows that WM53 labeling is not affected 

by the KIR-CD33 mutation (Figure 3.3E), while P67.6 labeling in KIR-CD33 cells 

is comparable to non-transfected control cells (Figure 3.3F). These results were 

confirmed with immunofluorescent confocal microscopy using an array of anti-

CD33 antibodies (Figure 3.4). The CD33-transfected HEK293 cells showed 

consistent double-labeling between an antibody against a cytoplasmic epitope 
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(H110) and either WM53, P67.6, or PWS44 (Figure 3.4A-C). For the KIR-CD33 

cells, robust co-labeling was observed between H110 and WM53 or PWS44 

(Figure 3.4D, F). However, P67.6 labeling of KIR-CD33 cells was not detected 

(Figure 3.4E). We thus conclude that the residues identified—p.N20, p.F21, and 

p.W22—are necessary for P67.6 binding and that these changes are the reason 

that this antibody failed to label the CRISPR-edited cells. Although P67.6 has been 

humanized and used clinically, prior studies have not mapped its epitope at this 

resolution (Chauhan et al., 2019; Mortland et al., 2013; Perez-Oliva et al., 2011). 

3.3.3 Identification of SIGLEC22P as a homology-directed repair template for 
CD33 

The three nucleotide changes (Figure 3.5, red) are 23-27 bp away from the 

putative Cas9 cleavage site (Figure 3.5, scissors), were not consecutive, and were 

present and identical in each of the clones with the KIR-CD33 phenotype. Since 

this was unlikely due to chance, we hypothesized that this was due to HDR from 

elsewhere in the genome. A search of a 50 bp sequence centered on the KIR 

mutations revealed that this sequence occurs in the SIGLEC22P pseudogene 

which is located 13.5 kb away from CD33. Further investigation found an extended 

region of homology between CD33 and SIGLEC22P that flanked the Cas9 

cleavage site; indeed, the first 500 bp of the genes share 97% identity, including a 

143 bp region of otherwise complete identity centered on the KIR mutations (Figure 

3.5, underline). The SIGLEC22P pseudogene exon 2 contains 11 additional 

mutations as well as two intronic mutations relative to CD33. None of these 

mutations were detected in the CRISPR-edited cell lines, indicating the region 
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used for repair was limited to, at most, the 143 bp region surrounding the KIR 

mutations near the Cas9-induced double-stranded break. We interpret these 

results as indicating that, upon double-strand breakage at the beginning of exon 2 

in CD33 (Figure 3.5, blue), the SIGLEC22P pseudogene was used as a repair 

template because of the strong sequence homology to CD33 (Figure 3.5, 

underlined). In this process, three SIGLEC22P-specific mutations were introduced 

into CD33, resulting in missense mutations in three adjacent codons and thus KIR-

CD33. This indicates an in-frame, ectopic gene conversion using pseudogene 

sequence. Two lines of evidence indicate that the KIR-CD33 cell lines were 

homozygous for the KIR mutation. First, the DNA sequence chromatogram 

showed only clear single peaks through the KIR sequence (Figure 3.5, 

chromatogram). Second, cell populations with an intermediate level of P67.6+ 

labeling were not detected (Figure 3.1C). Further, sequencing of the SIGLEC22P 

region in the KIR-CD33 clones revealed that the CD33 sequence was not present, 

which we interpret to mean that SIGLEC22P was used as a repair template, rather 

than a crossover event. 

3.4 Discussion 

We show here that the DSB repair pathways initiated after S. pyogenes 

Cas9 cleavage can lead to ectopic gene conversion from a pseudogene in a mitotic 

human cell line. This gene conversion resulted in an in-frame chimeric protein, 

wherein less than 150 bp of sequence from a nearby pseudogene replaced the 

targeted gene sequence (Figure 3.5). Indeed, this distance is consistent with 

meiotic gene conversion events observed by Jeffreys et al., who showed that gene 
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conversion occurs through relatively short tracts with a mean length between 55-

290 bp (Jeffreys & May, 2004). Given that the SIGLEC22P locus in these KIR-

CD33 cells lacks any detectable CD33 sequence, we interpret this as further 

evidence of a gene conversion, rather than a mitotic crossover event. We 

speculate that this gene-conversion occurs in trans, i.e. from the intact 

chromosome, as a cis-mediated repair would more likely result in a gene fusion 

with intergenic deletion as has been previously reported (Borot et al., 2019; Kim et 

al., 2018). This type of deletion event also occurs naturally, in the absence of Cas9 

DSBs, as in the case of SIGLEC14 deletions (Yamanaka et al., 2009). Gene 

conversion in trans after CRISPR-induced DSBs has been demonstrated 

previously (Susani et al., 2018). We were surprised by the unexpectedly high 

frequency of conversion observed here; this pseudogene conversion occurred at 

approximately 1 in 10 edited cells. Exogenous double-stranded regions of 

homology as short as 58 bp have been used in vitro to introduce mutations through 

CRISPR-Cas9/HDR mechanisms (Renaud et al., 2016). Coincidentally, this 

ectopic gene conversion disrupted the epitope of a well-validated antibody, P67.6 

(Figure 3.6), known clinically as gemtuzumab. Using transiently transfected 

HEK293 cells expressing the chimeric protein, we demonstrated that these 

mutations are sufficient to abrogate P67.6 binding, providing the most precise 

epitope mapping to date of this clinically relevant antibody. 

The KIR-CD33 mutations—rs3987761, rs3987760, rs35814802—are 

indexed in dbSNP and gnomAD with MAF < 10-4, and roughly equivalent across 

populations (Karczewski et al., 2020). We considered the possibility that these 
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mutations, while rare, occur naturally and are clinically relevant. The SIGLEC 

family of genes are undergoing rapid evolution in many species, including humans 

(Padler‐Karavani et al., 2014). This rapid evolution has resulted in the 

pseudogenization of many SIGLECs, including the CD33 pseudogene 

SIGLEC22P. These same bases are indexed as SNPs in SIGLEC22P 

(rs997169007, rs1049597792, and rs1005338799), also have identical 

frequencies (MAF = 2.1 x 10-4) in the gnomAD database, and the major and minor 

alleles are the inverse of the KIR-CD33 SNPs (Karczewski et al., 2020). The region 

of homology identified here between CD33 and SIGLEC22P is 143 bp, 

substantially shorter than the 50 bp reads upon which the gnomAD and dbSNP 

databases are built (Lonsdale et al., 2013). While it is possible these are bona fide 

variants in CD33, the most likely explanation is that the SIGLEC22 pseudogene 

sequences have been mapped incorrectly to CD33 by algorithms. These missense 

SNPs are also not recorded in the BeatAML variant database, which records 

known AML-associated functional variants such as missense SNPs, further 

underscoring the low probability that these are true CD33 variants (Tyner et al., 

2018). 

Off-target editing is a frequent concern in gene editing workflows, including 

CRISPR-Cas9. However, gene conversion is often overlooked as a potential 

confound. For instance, within CD33, off-target editing of SIGLEC22P resulting in 

a 14 kb deletion and subsequent SIGLEC22P-CD33 gene fusion has been 

previously reported, which may have been the result of a mitotic crossover (Borot 

et al., 2019; Kim et al., 2018). Neither report noted a gene conversion between 
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SIGLEC22P and CD33. Mitotic crossover initiated by CRISPR-Cas9 cleavage has 

also been reported in the HPRT locus, resulting in a 36 kb crossover (Susani et 

al., 2018). Gene conversion via CRISPR-Cas9 between a 101 bp homologous 

region in HBD and HBB has also been reported; notably, these genes were also 

the first reported gene conversion event in humans (Javidi-Parsijani et al., 2020; 

Slightom et al., 1980). To our knowledge, this is the first report of pseudogene-

mediated gene conversion during the CRISPR-Cas9 editing process. Our results 

demonstrate the need for rigorous screening in studies which rely on gene editing, 

and analysis of the region flanking the expected cut site for homology and possible 

gene conversion. Since the human genome contains 8000-12000 pseudogenes 

and approximately 3400 genes in the human genome have known pseudogenes, 

pseudogene directed homology repair is a potentially considerable confound (Pei 

et al., 2012; Z. Zhang et al., 2006). Approximately 84% of putative pseudogenes 

are estimated to be located on a different chromosome than their parent gene, 

while the remaining 16% have a mean intergenic distance of 1.8 Mb (median of 

1.3 Mb) (Sisu et al., 2014). Whether the gene conversion described here occurs in 

cis or trans, or if this event is impacted by intergenic distance, is unclear. As 

pseudogenes are by definition nonfunctional, they may be overlooked as irrelevant 

during the design process. Given the pseudogene conversion described here, 

there is a clear need to analyze the sequence of the edit, rather than relying on 

gene or protein expression. This is especially relevant given that CRISPR-

mediated CD33 knockout allografts and autografts have been proposed as a 

potential AML treatment strategy in conjunction with chimeric antigen receptor 
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(CAR) T cells (Borot et al., 2019; Kim et al., 2018). In this strategy, autologous 

transplantation of CD33null hematopoietic stem and progenitor cells (HSPCs) would 

reconstitute the myeloid system, while engraftment of CAR-T cells would provide 

long-term surveillance against any surviving CD33+ AML cells. Mitotic gene 

conversion, and presumably the herein described pseudogene-mediated gene 

conversion, has been demonstrated after CRISPR-Cas9 editing in primary human 

cells between HBD and HBB (Javidi-Parsijani et al., 2020). Screening these 

HSPCs with the standard gemtuzumab antibody, however, could lead to 

engraftment of some KIR-CD33 cells as well. 

While off-target editing of a nonfunctional pseudogene may have limited 

impact on downstream results, incorporating elements from a nonfunctional 

pseudogene into a target gene may lead to deleterious mutations that abrogate 

function of the target gene entirely, for instance the introduction of a premature 

stop codon. This is especially important to consider for designs which incorporate 

unedited cells which have undergone sorting and single cell cloning as a control. 

We also speculate that this pseudogene-mediated repair will reduce the efficiency 

of creating a gene disruption if the disruption site has homology in a pseudogene. 

The breakage site may be repaired by a pseudogene with complete identity at the 

DSB, requiring more clones to be screened to find a gene disruption. By 

coincidence, our initial screen for editing included an antibody which overlapped 

the KIR sequence. This gene conversion, at the protein level, is masked when 

using an alternative antibody (WM53) targeting the same domain and is not 

apparent by PCR alone. Combining the data from Figures 3.2D-F and 3.3C, one 
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could reason that these cells were unedited as there are no apparent differences 

in PCR fragment size, gene expression, splicing, or cell surface protein expression, 

and thus incorrectly assume that sequencing is unnecessary. We conclude that, in 

addition to off-target Cas9-editing confounds, researchers should be aware of the 

potential for pseudogene-directed homology repair.
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Table 3.1: Antibodies used in Chapter 3. 
 

 

 

 

 

 

 

 

 

 

IF: immunofluorescence, FC: flow cytometry 

 

Clone Conjugate Vendor Catalog # Lot Dilution/Use CD33 domain  

P67.6 BV711 BioLegend 366624 B302694 2.5 µg/mL FC IgV 

P67.6 Unconjugated BioLegend 825601 B258818 5 µg/mL IF IgV 

WM53 BV711 BioLegend 303424 B253729 5 µg/mL FC IgV 

WM53 Unconjugated BioLegend 96281 B274701 5 µg/mL IF IgV 

HIM3-4 FITC BioLegend 303304 B284834 20 µg/mL FC IgC2 

PWS44 Unconjugated Leica NCL-L-CD33 6024275 2 µg/mL IF IgC2 

H110 Unconjugated Santa Cruz sc-28811 K2211 1 µg/mL IF Intracellular 

Goat anti-Mouse 

Polyclonal 

AlexaFluorPlus 

488 

Invitrogen  A32723 TF266577 10 µg/mL IF 

Goat anti-Rabbit 

F(ab)2 Polyclonal 

AlexaFluor 568 Invitrogen A21069 2087701 10 µg/mL IF 
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Figure 3.1: Sorting CRISPR-Cas9 CD33 exon 2-edited cells reveals to two cell 
surface phenotypes  

Gates are labeled in each panel and correspond to the following panel, with 

percent of parent gate shown. (A) Forward scatter (FSC) by side scatter (SSC) 

gating was used to gate out dead cells (FSC-low SSC-high). (B) Singlet events 

were selected along the FSC-Area by FSC-Height diagonal. (C) Populations were 

identified as either unedited (HIM3-4+ P67.6+), potential D2-CD33 or KO-CD33 

(HIM3-4- P67.6-), or KIR-CD33 (HIM3-4+ P67.6-). (D) Unstained control (blue) 
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shown on top of the sorted cells (red) for reference. This unexpected KIR-CD33 

population occurred at approximately a 1-to-9 frequency with respect to the D2- or 

KO-CD33 cells, or 10% of all edited cells. 
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Figure 3.2. CRISPR-Cas9 editing of CD33 exon 2 leads to loss of P67.6 epitope  

(A) Unedited U937 cells display robust P67.6 and HIM3-4 labeling. (B) 

Edited U937 clone that is robustly labeled by HIM3-4 but not P67.6. (C) Edited 

U937 clone that is not labeled by either HIM3-4 or P67.6. The depicted results in 

B-C are representative of at least three clonal cell populations established for each 

phenotype. (D) Genomic DNA PCR of CD33 exon 1 to exon 3 of the above cell 

lines. PCR products at 789 bp and 428 bp correspond to the expected sizes for 

the presence and absence of exon 2, respectively. (E) KIR-CD33 mutations do not 

affect total CD33 gene expression as determined by qPCR, but removal of exon 2 

increases total CD33 gene expression by 39.8%. (F) KIR-CD33 mutations do not 

affect splicing efficiency of exon 2 as determined by qPCR, but removal of exon 2 

at the genomic level increases exon 1-exon 3 junction to 100% of total CD33 
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expression. Data from E-F analyzed by one-way ANOVA followed by Dunnett’s 

multiple comparisons test to unedited control. ** p < 0.01; **** p < 0.0001. 
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Figure 3.3. Loss of P67.6 epitope is in-frame and preserves cell surface expression  

WT-CD33 (A, B) or KIR-CD33 (C, D) expressing HEK293 cells were labeled 

with HIM3-4 and either WM53 (A, C) or P67.6 (B, D). HIM3-4+ cells identified in 

the “Transfected” gate (A-D) were gated to show WM53 (E) or P67.6 (F) binding 

in transfected cells.   
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Figure 3.4. Loss of P67.6 epitope does not alter other common CD33 epitopes 

WT-CD33 (A-C) or KIR-CD33 (D-F) HEK293 cells were labeled with H110 

(red) and either WM53 (A, D; green), P67.6 (B, E; green), or PWS44 (C, F; green) 

and DAPI (blue). 
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Figure 3.5. Alignment of cell line sequencing data  
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Figure 3.5. Alignment of cell line sequencing data  

Unedited U937 cells at top, followed by KIR-CD33 sequence, D2-CD33 

sequence, and reference SIGLEC22P sequence. Cas9 cleavage site marked by 

scissor icons. Mismatches from the unedited CD33 sequence are denoted by 

either the differing base (KIR-CD33) or dash in the case of a gap (D2-CD33). Intron 

1 in black, exon 2 in blue. The SIGLEC22P region used as a repair template is 

underlined. Mutations introduced into CD33 in red. A representative post-PCR 

sequencing chromatogram from one clonal KIR-CD33 is shown at the mutation 

site with clear, single peaks demonstrating homozygosity. 
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Figure 3.6. Model of pseudogene repair mechanism and anti-CD33 antibody 
binding sites  

CD33 is normally a transmembrane, cell surface receptor with one IgV 

domain and one IgC2 domain. The KIR-CD33 mutation introduced by pseudogene 
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directed-repair abrogates P67.6, but not WM53, binding. IgC2 domain antibodies 

HIM3-4 and PWS44, and the intracellular domain H110 antibody bind both CD33 

and KIR-CD33. D2-CD33 is not readily apparent on the cell surface in CRISPR-

Cas9 edited U937 cells, implying that under physiologic expression, the D2-CD33 

protein is retained in an intracellular vesicle. Overall, pseudogene repair of a 

CRISPR-Cas9-targeted gene can disrupt the binding of well-validated antibodies 

without introducing a frameshift, and protein-level expression alone is not sufficient 

for knockout confirmation. Created with Biorender. 
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CHAPTER 4. ANALYSIS OF GENETIC VARIANTS ASSOCIATED WITH LEVELS 
OF IMMUNE MODULATING PROTEINS FOR IMPACT ON ALZHEIMER’S 
DISEASE RISK REVEAL A POTENTIAL ROLE FOR SIGLEC14 

[This section contains material adapted from a published manuscript: Shaw, 

B. C., Katsumata, Y., Simpson, J. F., Fardo, D. W., & Estus, S. (2021). Analysis of 

Genetic Variants Associated with Levels of Immune Modulating Proteins for Impact 

on Alzheimer's Disease Risk Reveal a Potential Role for SIGLEC14. Genes 

(Basel), 12(7).] 

4.1 Introduction 

Genome-wide association studies (GWAS) have identified a set of 

polymorphisms that modulate the risk of Alzheimer’s disease (AD) (Hollingworth 

et al., 2011; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Naj et 

al., 2011; Novikova et al., 2021). The pathways implicated in this process include 

innate immunity, cholesterol homeostasis, and protein trafficking (Jones et al., 

2010; Karch & Goate, 2015; Malik et al., 2015b). Four of these genes, TREM2, 

CD33, PILRA, and FCER1G, are members of the family of non-catalytic tyrosine-

phosphorylated receptors (NTRs), which function through immunomodulatory 

tyrosine-phosphorylated activating motifs (ITAMs) or inhibitory motifs (ITIMs). The 

underlying immunomodulatory pathway is further implicated by AD-associated 

variants in phospholipase C (PLCG2) and INPP5D which encode proteins acting 

downstream of these ITAM- and ITIM-containing proteins. Functional studies have 

informed the current hypothesis that the variants associated with AD in the 

ITAM/ITIM family modulate inflammation and phagocytosis (Bhattacherjee et al., 

2021; Bhattacherjee et al., 2019; Chan et al., 2015; Ana Griciuc et al., 2013; Malik 
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et al., 2015a; Malik et al., 2013; McQuade et al., 2020; Raj et al., 2014; Siddiqui et 

al., 2017). 

The ITAM family, including TREM2, recruit kinases such as spleen tyrosine 

kinase (Syk) and phosphoinositide 3-kinase (PI3K) to induce downstream 

signaling, while the ITIM family, including CD33, recruit phosphatases such as 

SHP-1 to dephosphorylate Syk and ITAMs, thereby counteracting ITAM activity 

(Estus et al., 2019). These ITAM and ITIM proteins are predominantly expressed 

in immune cells such as microglia. Overall, these and other studies have shown 

that microglia contribute to AD pathogenesis, a concept that has been reviewed 

recently (Efthymiou & Goate, 2017; Gandy & Heppner, 2013; A. Griciuc & Tanzi, 

2021). 

The critical barrier to progress in translating GWAS candidate genes to 

treatments is elucidating the actions of the functional variant at the molecular level, 

i.e., splicing (sQTL), gene expression (eQTL), or protein level (pQTL), to 

understand whether the pathway affected is detrimental or beneficial to disease 

risk. GWAS single nucleotide polymorphisms (SNPs) in AD are frequently 

identified as eQTLs in the brain (Allen et al., 2012). Sun et al. have used GWAS to 

identify pQTLs for the plasma proteome, including ITIM and ITAM-containing 

proteins (Sun et al., 2018). To investigate the hypothesis that these pQTLs may 

uncover additional AD-related genes that may have been overlooked in AD GWAS 

because of their stringent false-discovery rate controls, we examined the Sun et 

al. cis-pQTL data together with the Jansen et al. AD GWAS results. Parsing the 

proteins from the genome-wide significant cis-pQTL dataset by whether or not an 
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ITIM/ITAM domain was present, and then examining whether the associated SNP 

is nominally significant (p < 0.05) for AD association, found a significant 

overrepresentation of ITIM/ITAM encoding genes with nominal AD associations. 

Since one of these genes, SIGLEC14, has been reported to be deleted in some 

individuals, we investigated further and found that the pQTL and AD SNP, 

rs1106476, is a proxy for the previously identified deletion polymorphism 

(Yamanaka et al., 2009). We defined this deletion further by identifying additional 

SIGLEC14 copy number variants and by determining the effect of SIGLEC14 copy 

number on the expression of SIGLEC14 and the neighboring SIGLEC5. We 

conclude that variants in ITIM/ITAM family members, including SIGLEC14, 

represent underappreciated potential genetic risk factors for AD. 

4.2 Materials and Methods 

4.2.1 Preparation of gDNA, RNA, and cDNA from Human Tissue 

Human blood and anterior cingulate autopsy tissue from 61 donors were 

generously provided by the Sanders-Brown Alzheimer’s disease center 

neuropathology core and have been described elsewhere (Zou et al., 2007). The 

matched brain and blood samples were from deceased individuals with an average 

age at death of 82.4 ± 8.7 (mean ± SD) years for non-AD and 81.7 ± 6.2 years for 

AD subjects. The average postmortem interval (PMI) for non-AD and AD subjects 

was 2.8 ± 0.8 and 3.4 ± 0.6 h, respectively. Non-AD and AD samples were 

comprised of 48% and 55% female subjects. MMSE scores were, on average, 28.4 

± 1.6 for non-AD subjects and 11.9 ± 8.0 for AD subjects. These samples were 
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used for genotyping and gene expression studies. Three additional blood samples 

matched to whole-genome sequencing (WGS) data were obtained to confirm WGS 

observations of additional SIGLEC14 copies. DNA from these patients was 

prepared using a QIA-amp DNA Blood Mini kit (Qiagen, Germantown, MD, USA) 

per the manufacturer’s instructions. 

4.2.2 Genotyping and Copy Number Variant Assays 

Copy number variation in SIGLEC14 was determined using a TaqMan-

based copy number variant (CNV) assay (Invitrogen, Waltham, MA, USA; Catalog 

number 4400291, Assay number Hs03319513_cn) compared to RNAse P 

(Invitrogen, 4403326). Amplification and quantitation were performed per 

manufacturer instructions. Genotyping the rs1106476 SNP was performed with a 

custom TaqMan assay (Invitrogen). This assay discriminates rs1106476 and 

rs872629, which are in perfect LD. As coinherited SNPs, this variant is also known 

as rs35495434. 

4.2.3 Gene Expression by qPCR 

Gene expression was quantified by qPCR with PerfeCTa SYBR Green 

master mix as previously described (Malik et al., 2015a). SIGLEC14 was quantified 

with primers corresponding to a sequence in exons 3 and 5: 5′—

CAGGTGAAACGCCAAGGAG—3′ and 5′—GCGAGGAACAGGGACTGG—3′. 

SIGLEC5 was quantified with primers corresponding to sequences in exons 4 and 

5: 5′—ACCATCTTCAGGAACGGCAT—3′ and 5′—

GGGAGCATCACAGAGCAGC—3′. Cycling conditions for all qPCRs were as 
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follows: 95 °C, 2 min; 95 °C, 15 s, 60 °C, 15 s, 72 °C, 30 s, 40 cycles. Copy 

numbers present in the cDNA were determined relative to standard curves that 

were executed in parallel (Estus et al., 2019). 

4.2.4 WGS Data Analysis 

To investigate the frequency and range of SIGLEC14 CNV, we performed 

a read-depth analysis for WGS data. We obtained compressed sequence 

alignment map (CRAM) files from the AD sequencing project (ADSP) and AD 

Neuroimaging (ADNI). We extracted paired-end reads mapped to the SIGLEC14-

SIGLEC5 locus under Genome Reference Consortium Human Build 38 

(GRCh38/hg38), and then computed the depth at each position using the samtools 

depth function (Li et al., 2009). 

4.2.5 Statistical Analyses 

The association of cis-pQTL proteins containing ITIM/ITAM domains and 

AD-associated SNPs was calculated using a simple chi-square test. Gene 

expression was analyzed by using JMP14 Pro using one-way analysis of variance 

(ANOVA) followed by Tukey’s post-hoc multiple testing correction and graphed in 

GraphPad Prism 8. 

4.3 Results 

4.3.1 ITIM/ITAM pQTLs Are Overrepresented in AD GWAS Results 

To evaluate whether pQTLs for ITIM or ITAM-containing proteins were 

associated with AD, we compiled a list of ITIM and ITAM-containing proteins from 
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prior reviews (Barrow & Trowsdale, 2006; Dushek et al., 2012; Isakov, 1997; 

Ravetch, 2000). The resulting list contained 187 genes and is provided in the 

Appendix. The cis-acting pQTLs from Sun et al. and AD associations from Jansen 

et al. were then matched by chromosomal coordinates (Jansen et al., 2019; Sun 

et al., 2018). Both datasets were provided under Genome Reference Consortium 

Human Build 37 (GRCh37/hg19). Genes were then subset as either coding for an 

ITIM/ITAM gene or not and nominally significant (p < 0.05) for AD association or 

not. The SNPs which are associated with both ITIM/ITAM protein levels in plasma 

and AD risk are shown in Table 4.1. We found that pQTLs that affect ITIM or ITAM 

genes were significantly overrepresented in nominally significant AD associations 

(p = 6.51 x 10−5, χ2 = 15.95, Table 4.2). 

4.3.2 SIGLEC14 pQTL Is a Proxy for the Deletion Polymorphism 

Previous reports have identified a SIGLEC14 deletion (Yamanaka et al., 

2009). Given the strong pQTL signal from rs1106476 on SIGLEC14 reported by 

Sun et al., and the fact that rs1106476 is within the neighboring SIGLEC5 gene, 

yet has a cis-pQTL effect on SIGLEC14, we hypothesized that rs1106476 is a 

proxy for the SIGLEC14 deletion polymorphism (Sun et al., 2018). To test this 

hypothesis, we genotyped a set of DNA samples for rs1106476 and quantified 

genomic copy number variation (CNV). We found that the proxy SNP correlates 

with SIGLEC14 deletion well but not perfectly (p < 0.0001, χ2 = 38.40) (Table 4.3). 

To better understand this deletion, we then sequenced the region containing the 

SIGLEC14-SIGLEC5 fusion in five minor allele carriers (two homozygous for 

SIGLEC14 deletion and three heterozygous) (Yamanaka et al., 2009). Based on 
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these sequencing data, relative to reference sequences, we found a 692 bp region 

of complete identity between SIGLEC14 and SIGLEC5. Within this region, the 

deletion polymorphism sequence corresponds to SIGLEC14 at the 5′ end, but 

SIGLEC5 on the 3′ end, with respect to reference sequence data (Figure 4.1). 

Overall, this represents a 17 kb deletion. 

4.3.3 SIGLEC14 CNV Is Not Fully Captured by rs1106476 

As noted in Table 3, we found some individuals that had three copies of 

SIGLEC14 as detected by the CNV assay. To validate these findings, we 

leveraged the ADNI and ADSP WGS datasets and compared read depth in the 

SIGLEC14 locus with surrounding sequences (Figure 4.2). Both datasets 

contained individuals with SIGLEC14 copy numbers ranging from 0–3. The 

presence of three copies of SIGLEC14 was cross-validated between WGS data 

and CNV assay in three individuals. Further, the frequencies across populations 

are equivalent (Table 4.4; p = 6.76 x 10−12, χ2 = 69.30). Read depths for Caucasian, 

African American, and other populations are shown as Figure 4.3, Figure 4.4, and 

Figure 4.5, respectively. 

4.3.4 SIGLEC14 Is Expressed in Human Brain, and CNV Correlates with Gene 
Expression 

To test whether gene expression compensation may neutralize the effect of 

genomic SIGLEC14 deletion, we quantified SIGLEC14 expression relative to 

SIGLEC14 gene copy number in cDNA prepared from human brain samples. 

Consistent with RNAseq studies that show SIGLEC14 is expressed in microglia, 

SIGLEC14 expression strongly correlated with expression of the microglial gene 
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AIF1 (p < 0.0001, r2 = 0.409, Figure 4.6A) (Estus et al., 2019; Y. Zhang et al., 

2016). When SIGLEC14 expression is normalized to AIF1 expression, SIGLEC14 

expression was dependent in a step-wise manner with SIGLEC14 CNV (p = 

0.0002, F2,47 = 10.679, Figure 4.6B). Strikingly, individuals with one copy of 

SIGLEC14 have a mean SIGLEC14 expression of 54.6% compared to individuals 

with two copies. We interpret this to mean that there is no compensatory increase 

in SIGLEC14 expression in individuals heterozygous for SIGLEC14 deletion. 

4.3.5 SIGLEC14 Deletion Leads to Increased SIGLEC5 Expression 

To test whether SIGLEC5 expression changed with respect to SIGLEC14 

deletion, we quantified SIGLEC5 expression relative to SIGLEC14 CNV in these 

same brain samples. Since SIGLEC5 does not have its own promoter and there 

are no H3K27 acetylation peaks between SIGLEC14 and SIGLEC5, we 

hypothesized that an inverse relationship exists between SIGLEC14 CNV and 

SIGLEC5 expression, where a SIGLEC14 deletion brings SIGLEC5 closer to the 

promoter leading to increased transcription (Figure 4.7) (Fishilevich et al., 2017; 

Kent et al., 2002; The ENCODE Project Consortium, 2012). We found that 

SIGLEC5 expression significantly increases with respect to SIGLEC14 genomic 

deletions (Figure 4.8; p = 0.0220, F2,46 = 4.151). 

4.4 Discussion 

The primary finding of this paper is that pQTLs for ITIM and ITAM-containing 

proteins are overrepresented as being nominally significant for AD risk, suggesting 

that the ITIM and ITAM family of proteins may contribute to AD pathogenesis. This 
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adds to the current body of work which supports the hypothesis that AD is 

mediated, at least in part, by immune cell dysfunction (Hollingworth et al., 2011; 

Lambert et al., 2013; Mawuenyega et al., 2010; Naj et al., 2011). Indeed, 

transcriptomics and genomics studies have frequently identified genes 

predominantly expressed in microglia within the CNS as associated with AD risk 

(Holtman et al., 2015; Miller et al., 2013; Orre et al., 2014; Wes et al., 2014; B. 

Zhang et al., 2013). Within a pQTL study, variants that affect the expression of the 

ITIM/ITAM family of genes—which govern immune cell activation state—are more 

commonly associated with AD risk than variants for genes, not in this family (Table 

4.2). Although we hypothesized that variants that enhanced ITAM levels or 

decreased ITIM levels would be associated with reduced AD risk, this was not 

observed. This likely indicates that while some of these pQTLs may reflect 

increased functional signaling, others may involve alterations in splicing to 

generate soluble isoforms or may increase susceptibility to cleavage from the cell 

surface. Hence, an SNP that associates with increased plasma protein levels does 

not necessarily correlate with increased cell surface expression and signaling. 

SIGLEC14 was selected for further investigation based on its previously 

reported deletion polymorphism and close relationship to another AD-associated 

gene, CD33 (Jansen et al., 2019; Yamanaka et al., 2009). Since SNPs have 

previously been recognized as proxies for deletion of other genes (Abdollahi et al., 

2008; Hinds et al., 2006; McCarroll et al., 2008), and SIGLEC14 deletion has been 

previously reported (Yamanaka et al., 2009), we hypothesized that the strong 

pQTL signal from rs1106476 reported in Sun et al. (Sun et al., 2018) correlated 
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with SIGLEC14 deletion. Indeed, we found that rs1106476 is a proxy for 

SIGLEC14 deletion and the minor allele count corresponds to the number of 

SIGLEC14 deletions in 89% of cases in our dataset (Table 4.3). 

This proxy variant does not, however, predict copy numbers greater than 

two. For instance, we observed four individuals with three copies of SIGLEC14; 

two of these individuals were homozygous minor for rs1106476 and two were 

heterozygous for rs1106476 (Table 4.3). Additional copy number variation is also 

present in the ADSP and ADNI sequencing projects (Figure 4.2). These CNVs are 

equivalent across populations in these datasets (Table 4.4, Figure 4.3, Figure 4.4, 

and Figure 4.5). Based on these data and the recombination peak which spans 

from upstream of SIGLEC14 through exon 8 of SIGLEC5 (Figure 4.9), we 

hypothesize that the additional copies integrate from a deletion event, though far 

less frequently than the deletion itself (Machiela & Chanock, 2015). Across the 

3095 individual WGS dataset in ADSP, we found SIGLEC14 deletion has a minor 

allele frequency (MAF) of 0.2023, while insertion occurs at a MAF of only 0.0195, 

suggesting a 10-times lower rate of integration than deletion (Table 4.4). 

In the brain, SIGLEC14 is predominantly expressed in microglia, in keeping 

with its putative role as an immune receptor (Figure 4.6A). The SIGLEC14 deletion 

polymorphism also strongly correlates with SIGLEC14 gene expression (Figure 

4.6B). Due to the low frequency of the additional copy integration, we do not have 

sufficient samples with which to correlate SIGLEC14 expression to additional copy 

numbers, nor can we conclude whether additional SIGLEC14 genomic copies are 

transcribed in frame and subsequently produce protein. 
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We also find that SIGLEC14 deletion increases the expression of SIGLEC5 

(Figure 4.8). For individuals with at least one copy of SIGLEC14, the expression 

of SIGLEC14 is substantially higher than SIGLEC5. Coupled with the lack of an 

independent promoter or H3K27 acetylation peaks between the two genes in 

GeneHancer or Encode, respectively, we infer that expression of both genes is 

governed by a common promoter proximal to SIGLEC14, that the integrity of this 

promoter is preserved after SIGLEC14 deletion, and that SIGLEC14 deletion 

results in an increase in SIGLEC5 expression due to its closer proximity to this 

common element. The SIGLEC family of receptors bind sialic acids as ligands to 

initiate their signaling cascades, and sialylated proteins, as well as gangliosides, 

are abundant in amyloid plaques (Ariga et al., 2008; Salminen & Kaarniranta, 2009; 

Yanagisawa, 2007). This decrease in expression of SIGLEC14, an ITAM-coupling 

protein, and concomitant increase in expression of SIGLEC5, an ITIM-containing 

protein, may lead to a dampened microglial activation state or proportion of 

activated microglia in deletion carriers. We speculate that decreased SIGLEC14 

ex-pression and increased SIGLEC5 expression may decrease the phagocytic 

capacity in AD. This is similar to the inverse relationship between TREM2 and 

CD33, two well-known AD risk factors. Loss of the ITAM-containing TREM2 

decreases phagocytic capacity, while loss of CD33 increases phagocytic capacity 

(Bhattacherjee et al., 2019; A. Griciuc et al., 2019; Malik et al., 2015a). Since 

TREM2, which couples with DAP12, is critical for the transition of microglia into a 

full disease-associated phenotype, SIGLEC14 may also contribute to this 

transition (Keren-Shaul et al., 2017). Future studies could investigate whether at 
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the single-cell level SIGLEC14 CNV affects disease-associated microglial in-

duction. 

Copy number variation may represent a relatively unexplored source of 

genetic variation in AD (Ebbert et al., 2019). GWAS such as Jansen et al. rely on 

SNPs, which do not always capture the full range of variation (Jansen et al., 2019). 

Additionally, “camouflaged” genes such as SIGLEC5 and SIGLEC14 with high 

sequence identity due to gene duplication are challenging for WGS and WES 

technologies which rely on small fragments of DNA sequence, typically under 250 

bp reads (Ebbert et al., 2019). As such, variants which may have disease 

relevance and association may be overlooked with current methods. SIGLEC14 is 

an example of one such possibly overlooked risk contributor in AD. SIGLEC14 

encodes an ITAM protein and signals through DAP12 similar to TREM2, and 

deletion of SIGLEC14 is associated with increased AD risk, also similar to SNPs 

that reduce TREM2 function (Hollingworth et al., 2011; Kunkle et al., 2019; 

Lambert et al., 2013; Naj et al., 2011). Ligands for SIGLEC14, which include 

sialylated proteins, are commonly found within amyloid plaques similar to ligands 

for TREM2. We propose that the effect size and significance of association are 

masked through copy number variation not accounted for using the proxy SNP 

alone, i.e., loss of SIGLEC14 function likely increases risk, but the proxy SNP 

rs1106476 occasionally also marks the individuals with an extra SIGLEC14 copy, 

thus reducing the power of rs1106476 association with AD. We thus conclude that 

SIGLEC14 represents a potentially overlooked AD genetic risk factor due to 

complex genetics. 
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Table 4.1. Genes that are nominally significant for AD association with strong pQTL signal 
 
 

 

 

 

 

 

 

 

 

 

† The p-value in the analyzed summary statistics was reported as exactly 0. This does not impact our analysis, as 

our threshold was any cis-pQTL at p < 0.05. 

Gene SNP P (pQTL) β (pQTL) P (AD) β (AD) N (AD) ITIM/ITAM 

CD33 rs12459419 0 † −0.94 7.13 x 10−9 −0.01330 458,744 ITIM 

FCGR3B rs10919543 3.20 x 10−67 0.44 0.000317 0.00806 445,293 ITAM 

LILRA5 rs759819 2.50 x 10−111 −0.54 0.00186 0.00717 454,216 ITAM 

LILRB2 rs373032 7.60 x 10−146 −0.72 0.00227 0.00763 463,880 ITIM 

SIGLEC9 rs2075803 0† −1.23 0.00703 0.00576 466,252 ITIM 

SIRPB1 rs3848788 1.20 x 10−213 0.75 0.00942 0.00582 458,092 ITAM 

COLEC12 rs2846667 9.30 x 10−12 0.20 0.0177 0.00586 449,987 ITAM 

FCRL1 rs4971155 6.30 x 10−26 −0.26 0.0197 −0.00520 403,829 ITAM 

NCR1 rs2278428 1.10 x 10−15 −0.36 0.0249 0.00815 466,252 ITAM 

SIGLEC14 rs1106476 0 † −1.19 0.0284 0.00736 458,063 ITAM 

FCRL3 rs7528684 1.40 x 10−112 0.53 0.04 −0.00434 458,744 Both 

MRC2 rs146385050 1.30 x 10−11 −0.22 0.041 −0.00612 396,686 ITAM 

SLAMF6 rs11291564 2.60 x 10−12 0.20 0.042 −0.02450 17,477 ITAM 
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Table 4.2. Overlap of pQTL and AD signals 
pQTLs ITIM/ITAM (%) Not ITIM/ITAM (%) Total 

AD p < 0.05 13 (28) 54 (10) 67 

AD p > 0.05 34 (72) 488 (90) 522 

Total 47 (100) 542 (100) 589 
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Table 4.3. Evaluation of rs1106476 as a proxy for SIGLEC14 deletion 
SIGLEC14 

Copies 

rs1106476 

T/T 

rs1106476 

A/T 

rs1106476 

A/A 
Total 

0  0 1 1 2 

1  6 13 0 19 

2  39 0 0 39 

3  2 2 0 4 

Total 47 16 1 64 

 

Blue = predicted correlation of SIGLEC14 deletion vs. rs1106476. Each cell 

represents the number of DNA samples with the indicated SIGLEC14 copy number 

and rs1106476 genotype.
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Table 4.4 Summary of the SIGLEC14 CNV in the 3095 sample ADSP WGS dataset 
SIGLEC14 Copy Number Caucasian African American Other Total 

0 24 74 44 142 

1 304 348 316 968 

2 692 522 652 1866 

3 21 53 43 117 

4 0 1 1 2 

Total 1041 998 1056 3095 

Deletion MAF 0.1691 0.2485 0.1913 0.2023 

Addition MAF 0.0101 0.0276 0.0213 0.0195 

 

MAF: Minor allele frequency



87 
 

 

Figure 4.1. Identification of the SIGLEC14 deletion site  

Coordinates in both are for reference genome. Exons 1-3 of SIGLEC14 and 

SIGLEC5 are identical which confounds exact determination of the crossover 

event. The yellow region depicts SIGLEC14, the blue region depicts SIGLEC5, 

while the green region depicts the 692 bp region of complete identity where the 

crossover deletion occurs.
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Figure 4.2. SIGLEC14 CNVs detected in ADNI and ADSP cohorts  

Read depth shown by chromosomal position of whole-genome sequencing 

in a representative example of each CNV detected. Exon/intron maps for 

SIGLEC14 and SIGLEC5 at figure top for reference. Purple: copy number 

variation. Inset: expanded view of locus. Red dotted line: location of copy number 

variation assay. The dotted line in the insets shows the boundaries of the full-size 

image. 
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Figure 4.3: WGS read depth data from the ASDP in Caucasian population 

Whole genome sequencing (WGS) read depth data from the Alzheimer’s 

Disease Sequencing Project (ASDP) in Caucasian population (n = 1041) reveals 

copy number variation (CNV) in SIGLEC14, including deletions and duplications.  
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Figure 4.4: WGS read depth data from the ASDP in African American population  

WGS read depth data from the ASDP in African American population (n = 

998) reveals CNV in SIGLEC14, including deletions and duplications. Especially 

notable is the 4-allele carrier. Frequencies described in Table 4.4 
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Figure 4.5: WGS read depth data from the ASDP in all other populations 

 WGS read depth data from the ASDP in all other populations (n = 1056) 

reveals CNV in SIGLEC14, including deletions and duplications. Especially 

notable is the 4-allele carrier. Frequencies described in Table 4.
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Figure 4.6. SIGLEC14 expression correlates with microglial gene AIF1 and 
SIGLEC14 CNV  

(A) SIGLEC14 is expressed in microglia (p < 0.0001, F1,48 = 33.19, r2 = 

0.409). (B) SIGLEC14 CNV strongly correlates with SIGLEC14 gene expression 

(p = 0.0002, F2,47 = 10.679), Tukey’s post-hoc multiple comparisons test. ** p < 

0.01. We do not have statistical power to compare expression with CNV > 2, given 

its low MAF.
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Figure 4.7. The SIGLEC14 locus contains no H3K27Ac peaks nor regulatory elements between SIGLEC14 and SIGLEC5 

Expression of SIGLEC14 is approximately ten times higher than SIGLEC5 in individuals with both copies of 

SIGLEC14, while SIGLEC5 expression is higher in individuals lacking SIGLEC14 copies, in keeping with a common 

promoter or enhancer governing the single locus.
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Figure 4.8. SIGLEC5 expression inversely correlates with SIGLEC14 CNV 

SIGLEC5 expression increases with fewer copies of SIGLEC14, 

presumably due to proximity to regulatory elements (p = 0.0220, F2,46 = 4.151), 

Tukey’s post-hoc multiple comparisons test. * p = 0.0389. 
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Figure 4.9. SIGLEC5 and SIGLEC14 share a broad recombination peak 

Recombination peak is indicated by the grey line. Note that, since 

SIGLEC14 and SIGLEC5 are on the minus strand, these genes appear inverted in 

this figure and read right-to-left.   



96 
 

CHAPTER 5. DISCUSSION AND FUTURE DIRECTIONS 

5.1 Primary findings and summary of dissertation 

The primary findings of this dissertation are wide-ranging, given the breadth 

of topics covered. First, I found that TREM2 undergoes substantial alternative 

splicing, much more than previously reported. The D2-TREM2 alternative splice 

isoform, a novel isoform, did not correlate with any AD-associated SNPs in our 

dataset nor AD status or pathology but was detected across multiple tissues 

indicating this is not a brain-specific—and therefore not a microglia-specific—

isoform. This D2-TREM2 isoform is translated to protein and colocalizes primarily 

with the Golgi marker GM-130, similar to the full-length TREM2 protein, when 

overexpressed in the HMC3 human microglial cell line. 

I also found that CRISPR-Cas9 editing can lead to not only off-target edits, 

but gene conversions using pseudogenes as repair templates. This finding 

advanced the fields of molecular biology and acute myeloid leukemia therapeutics 

simultaneously, as this was a previously unreported phenomenon and provided 

the highest resolution of the gemtuzumab epitope to date. These studies were 

initially undertaken to generate a model of endogenous-level expression of D2-

CD33. Overexpression studies have shown previously that D2-CD33 protein is 

expressed at the cell surface, however this finding has not been replicated in 

physiologically relevant expression levels (Bhattacherjee et al., 2021; Malik et al., 

2015a; Siddiqui et al., 2017). Whether the D2-CD33 protein is made at all is still a 

matter of controversy. Humbert et al. (2019) employed a similar CRISPR-Cas9 

editing strategy and was unable to detect D2-CD33 protein at the cell surface by 
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flow cytometry but did not investigate intracellular expression. My flow cytometry 

results in multiple clones of well-validated edited cells replicated the Humbert et al. 

(2019) paper; I did not detect D2-CD33 protein at the cell surface. Bhattacherjee 

et al. (2021) found by intracellular flow cytometry and a custom-generated antibody 

that the D2-CD33 protein is expressed in transgenic mouse microglia, though 

personal communications with the group indicate they are struggling to see this 

protein using alternative methods. Siddiqui et al. (2017) reported that the D2-CD33 

isoform is particularly susceptible to degradation using Western blot techniques 

but was able to detect the isoform by immunofluorescence and found it colocalizes 

with peroxisomes. Notably, Siddiqui et al. (2017) used a custom-generated 

antibody and clone HIM3-4. Neither our laboratory nor the Macauley laboratory 

have been able to replicate the custom-generated antibody labeling even in 

transfected cells. The Macauley laboratory also has not been able to replicate the 

HIM3-4 labeling in their transgenic microglia expressing D2-CD33. Subsequent 

immunofluorescence and Western blot studies in our laboratory have not 

conclusively detected any endogenous D2-CD33 protein, implying that under 

endogenous conditions the mRNA is not translated into protein. 

Finally, I found that pQTLs which affect ITIM or ITAM genes were 

significantly overrepresented in nominally significant AD associations. This is in 

congruence with previous studies highlighting the importance of microglia in the 

pathogenesis of AD. During this study, I primarily focused on SIGLEC14 as there 

was a known deletion polymorphism with a proxy SNP (Yamanaka et al., 2009). 

This proxy SNP was nominally associated with AD in the Jansen study (p = 0.02) 
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with a strong pQTL signal (p < 10-10) (Jansen et al., 2019; Sun et al., 2018). I found 

that this proxy SNP, rs1106476, does not fully capture the SIGLEC14 CNV. 

Specifically, there was approximately 11% disagreement between the predicted 

and actual CNV based on the proxy SNP, and this proxy SNP also did not predict 

the novel additional genomic copies of SIGLEC14. Given that the proxy SNP was 

associated with both a loss of a genomic copy and drastically decreased protein 

expression, I hypothesized that this would also lead to a corresponding decrease 

in mRNA expression. We confirmed this using qPCR, showing that individuals with 

only one genomic copy of SIGLEC14 have 54.6% of the gene expression when 

compared with an individual with two genomic copies. 

In summary, I have studied AD genetics spanning the breadth of molecular 

biology—at the DNA, mRNA, and protein levels. I have discovered new splicing 

isoforms in TREM2, helped develop new theories behind the actions of the 

protective variants in CD33, and strengthened the existing evidence implicating 

microglia in AD pathogenesis. The following sections will describe the implications 

of my work and the new directions it has opened. 

5.2 Future Directions: TREM2 splicing modulation as a proposed therapeutic 
target for Alzheimer’s Disease 

As discussed in Chapter 2, there seems to be a window early in AD during 

which TREM2 activity is beneficial which later shifts to become detrimental. This is 

evidenced by AD mouse models crossed with Trem2-/- mice. In the 5xFAD model 

crossed with Trem2-/-, mice exhibited increased cognitive deficits and amyloid 

pathology indicating a critical role for TREM2 in limiting early-stage AD (A. Griciuc 
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et al., 2019; McQuade et al., 2020; Wang et al., 2015). By contrast, the PS19 tau 

model crossed with Trem2-/- exhibited less tau pathology indicating that TREM2 is 

actually detrimental during the late-stage disease (Gratuze et al., 2020). The 

alternative splicing of TREM2 is particularly relevant here: during the initial phase 

of AD when amyloid pathology is first detected, a CNS-directed splicing modulator 

to enhance exon 2 inclusion may increase TREM2 protein in microglia. Presuming 

the patient is followed in clinic with periodic biomarker imaging, clinicians will notice 

the initial formation of tau pathology after some years. At this point, the strategy 

may be shifted to enhance exon 2 skipping to increase D2-TREM2. Since D2-

TREM2 protein is missing its ligand binding domain, we hypothesize that this is a 

dead receptor as was the initial hypothesis regarding D2-CD33; increased 

expression of this dead receptor may decrease TREM2 activity. Strategies to test 

splicing modulators are currently under development in the Estus laboratory. I am 

currently working on the development of an expression vector which produces 

eGFP when exon 2 is included (i.e., typical splicing) but switches to dsRED when 

exon 2 is skipped (i.e., D2-TREM2). This vector can then be ectopically expressed 

in various cell lines for high-throughput screening of splicing factors and small 

molecule drugs using a flow cytometer and a ratiometric response between eGFP 

and dsRED expression to determine the shift in splicing efficiency when compared 

to a control sample. 

Another approach using TREM2 splicing modulation surrounds the D4-

TREM2 isoform. This may be useful in the earliest stages of AD, or even as a 

prophylactic in genetically at-risk individuals. As discussed in Chapter 1, sTREM2 



100 
 

retains its affinity and avidity for both Aβ and APOE. It is thus conceptually possible 

that sTREM2 acts to cap Aβ42 monomers and oligomers and preclude growth into 

large plaques. Further work is needed to determine if sTREM2 is beneficial in 

limiting plaque growth, however. If sTREM2 does in fact prevent Aβ deposition, 

very early (e.g., 10 years prior to the onset of neuropsychiatric symptoms or mild 

cognitive impairment) modulation to promote D4-TREM2 may prove beneficial in 

delaying the onset of mild cognitive impairment (MCI) and ultimately AD. This 

strategy with respect to sTREM2 is not limited to splicing, however. It is also 

conceivable that recombinant sTREM2 protein could be used similar to the recently 

approved yet controversial aducanumab, an anti-amyloid monoclonal antibody 

therapy. Given that sTREM2 is substantially smaller than an antibody, it may more 

readily cross the blood-brain barrier though other limitations such as 

hydrophobicity must also be considered. In summary, the alternative splicing 

isoforms of TREM2 have generated two potential avenues of translational research 

which could ultimately lead to therapeutics and a potential high-throughput 

screening mechanism for TREM2 exon 2 splicing modulators. 

5.3 Future Directions: CD33 gene editing and gain-of-function studies 

In Chapter 3, I detailed my work using CRISPR-Cas9 to generate an 

endogenous expression model of D2-CD33. During this model generation, I came 

upon the unexpected SIGLEC22P pseudogene-mediated gene conversion within 

CD33 and showed that this conversion disrupts the gemtuzumab epitope. This has 

interesting implications for AML research and treatment. Currently, a CRISPR-

Cas9 strategy is under consideration to hedge against relapses. The antibody-drug 
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conjugate gemtuzumab-ozogamicin couples the anti-CD33 antibody gemtuzumab 

to a calicheamicin, ozogamicin, which targets the minor groove of DNA in the cell 

and promotes strand scission. Upon gemtuzumab-CD33 ligation, the receptor-

antibody-drug complex is internalized and the ozogamicin is released into the cell, 

thus targeting only CD33-expressing cells. Researchers are currently investigating 

the use of CRISPR-Cas9 to generate CD33null hematopoietic stem cells for 

autologous transplantation after remission of AML. This would allow the use of 

gemutzumab-ozogamicin in the event of a relapse, but only targeted to the pre-

existing CD33-expressing cells responsible for the original AML. This approach 

relies on complete ablation of CD33 which is important for self-recognition, and 

thus may be deleterious if no longer expressed by myeloid cells. By contrast, one 

could instead simply target the three bases identified in Chapter 3 to generate 

hematopoietic cells which are not tagged by gemtuzumab and may still retain 

CD33 function. To date, we have not confirmed whether the KIR-CD33 is 

functional, but based on x-ray crystallography these three residues are not within 

the ligand binding domain and thus not predicted to disrupt signaling. Clearly more 

studies would be required to better understand the safety profile of such a mutation 

and its functional effects, but my data show equivalent expression levels as wild-

type CD33 on the cell surface. Since this KIR-CD33 retains cell surface localization 

and potentially function but is masked from gemtuzumab, this approach has a clear 

advantage over simply abrogating all CD33 expression. 

Shifting focus to AD, the generation of an endogenous expression model of 

D2-CD33 has provided needed clarity with respect to the protein expression and 
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localization. In my studies, I did not detect expression of the D2-CD33 protein at 

the cell surface by flow cytometry, intracellularly by confocal microscopy, or within 

cell lysates by Western blot using antibody clones recognizing multiple epitopes. I 

interpret this to mean that the D2-CD33 protein is either not translated or is 

unstable and degraded relative to full-length CD33. Also of note is the fact that D2-

CD33 protein is translated, stable, and trafficked to the cell surface using 

overexpression cDNA vectors, and readily recognized by numerous antibody 

clones in all three methods which failed under endogenous expression. This 

illustrates that the antibodies and methods are capable of detecting D2-CD33 

protein if it were present in these edited cells. If we then consider the gain-of-

function hypothesis, which I still hold as substantiated by genetic evidence, then 

we can rule out a change in protein function as the function gained. This presents 

more possibilities: the protein may be causing a misfolded protein response in the 

Golgi thus stressing the cell, or the mRNA itself has some activity. In the case of 

the former, it is possible that the misfolded protein response leads to induction of 

genes which promote degradation of proteins or generation of additional 

proteasomes and lysosomes, potentially aiding in the degradation of 

phagocytosed amyloid as well. In the latter case, it is possible that the D2-CD33 

mRNA acts as some sort of long non-coding RNA (lncRNA) to suppress 

expression of another unknown gene. These are both highly speculative, but 

interesting, hypothetical mechanisms by which D2-CD33 may have a gain-of-

function. I will note, however, that it is possible that the D2-CD33 gain-of-function 

hypothesis is incorrect and this isoform simply generates a dead receptor as has 
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been the prevailing hypothesis until the identification of the rs201074739 indel. 

Investigating the alternatives listed above is not without merit, though, as there is 

always something to be learned. After all, we would not have the clarity we do now 

regarding the gemtuzumab epitope nor the possibility of using KIR-CD33 edited 

cells in AML treatments without my current work on the gain-of-function 

hypothesis. 

5.4 Future Directions: Alternative microglial targets for Alzheimer’s Disease 

Finally, I will turn to the investigation of genes not significantly associated 

by GWAS as potential AD risk factors, but suggestive based on pathway analyses. 

I focused on SIGLEC14 in Chapter 4, identifying additional copy number variation 

and linking deletion of SIGLEC14, a DAP12-coupling protein, to increased 

expression of SIGLEC5, an ITIM protein. These are paired receptors with the same 

extracellular domain and, thus, the same ligands. As members of the SIGLEC 

family, they also recognize sialic acids which are abundant in post-translational 

modifications and gangliosides present in the heterogeneous Aβ plaques. The 

implication here is that loss of the activating SIGLEC14 with concomitant increase 

in inhibitory SIGLEC5 expression may lead to a more subdued microglial 

phenotype, possibly decreasing overall microglial activity. This also brings about a 

blind-side of GWAS—these studies are typically focused on SNPs, rather than all 

variations, and thus missing a substantial portion of human genetic variability. 

Notably, some small indels are captured in GWAS; for instance, the 4 bp 

rs201074739 indel within CD33 was captured in the recent Jansen et al. (2019) 

study. However, larger indels and structural variants, such as the 692 bp 
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SIGLEC14-SIGLEC5 gene fusion or variants within repeated regions such as in 

CR1, are missed in current GWAS. Including the full range of variation provides 

not only better coverage to identify risk factors but also improves our interpretation. 

The D2-CD33 gain-of-function hypothesis only came about due to the presence of 

the rs201074739 indel in the Jansen et al. (2019) summary statistics. This allowed 

us to reason that if a complete loss-of-function variant, such as a frameshift indel, 

is not genome-wide significant, then a partial loss-of-function with less of an effect 

also should not be significantly associated with disease; thus, any associated 

variants must have a gain-of-function. The full range of variation can add to our 

understanding of variants with limited information, or at least inform our 

experiments. Studies using whole-genome sequencing instead of SNP-based 

GWAS are currently underway. 

Looking broader, if we understand the directionality of the effect of a variant 

on disease, we can then infer whether to target its up- or downstream signaling 

partners. In the case of the TREM2-CD33 signaling pathway, the preclinical in vivo 

and in vitro models are clear that TREM2 promotes amyloid uptake, while CD33 

represses amyloid uptake. The consensus of the field is that, in the early stages of 

disease, targeting amyloid clearance is paramount. TREM2-activating antibodies 

are currently in clinical trials to facilitate this amyloid clearance. It thus stands to 

reason that targeting adjacent proteins may prove equally useful. Increasing the 

total or active Syk, BLNK, or PLCγ proteins through transcription factor activation, 

kinases, or bispecific antibodies (i.e., clustering TREM2 with other DAP12-

coupling proteins to facilitate DAP12 phosphorylation) may increase microglial 
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activity and amyloid phagocytosis. This highlights the importance of the big picture 

of using GWAS as a tool in translational research—this big-data style research is 

a means, not an end, to understanding the complexities of heritance in human 

disease and translating to therapies. Once a pathway is well-validated by big-data 

techniques, we should not limit ourselves only to those few risk factors identified 

in the dataset. Rather, we should be marrying big-data with basic cell and 

molecular biology to develop sound preclinical models surrounding a risk factor, 

targeting surrounding and ancillary proteins as needed for drug development. As 

a case-in-point, ABI3 has been identified in multiple GWAS as an AD risk factor. 

This is an intracellular protein, involved in regulating actin dynamics. Drugs 

targeting this molecule specifically will have to consider the active site of ABI3, in 

addition to being cell permeant and crossing the blood-brain barrier. Targeting 

upstream signaling which induces ABI3 expression may be a better option. 

Specifically, pharmaceutical companies are most interested in receptor and 

enzyme inhibitors, in addition to receptor activating ligands. Pathway analysis 

allows us to expand into these more easily targeted steps of the pathway. Thus, it 

is important to see the forest through the trees when considering the implications 

of GWAS in translational research. 

5.5 Closing Remarks 

In summary, I have uncovered new TREM2 alternative splicing isoforms, 

CRISPR-Cas9 repair mechanisms, and copy number variation in SIGLEC14. 

During the CD33 model generation, I also concluded that the D2-CD33 protein is 

not stably expressed at physiologic expression levels, thus calling into question 
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our current interpretations behind this gain-of-function mechanism. While I still hold 

this hypothesis, I now believe that the protein itself is not functional, but either the 

misfolded protein response or the mRNA is causing some change which leads to 

increased microglial activation. As is often the case with good scientific work, this 

dissertation presents more questions than it answers. My work has covered a wide 

breadth of topics which have served to advance the field of AD research and 

molecular biology as a whole, while also providing a firm foundation on which to 

begin a scientific career. 
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APPENDIX 

This table contains the list of all ITIM and ITAM containing, or DAP12-

coupling, proteins and their gene names used in Chapter 4. The “Name” column 

refers to a protein or gene name, while the “Alias 1” and “Alias 2” columns refer to 

alternative, common names for the same protein. 

NAME ALIAS 1 ALIAS 2 

CLEC1A 
  

CLEC1B 
  

CLEC2A 
  

CLEC2B 
  

CD69 CLEC2C 
 

CLEC2D 
  

CLEC2L 
  

CLEC3A 
  

CLEC3B 
  

CLEC4A 
  

CLEC4C 
  

CLEC4D 
  

CLEC4E 
  

CLEC4F 
  

CLEC4G 
  

ASGR1 CLEC4H1 
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NAME ALIAS 1 ALIAS 2 

ASGR2 CLEC4H2 
 

FCER2 CLEC4J CD23 

CD207 CLEC4K 
 

CD209 CLEC4L 
 

CLEC4M 
  

CLEC5A 
  

CLEC6A 
  

CLEC7A 
  

OLR1 CLEC8A 
 

CLEC9A 
  

CLEC10A 
  

CLEC11A 
  

CLEC12A 
  

CLEC12B 
  

CD302 CLEC13A 
 

LY75 CLEC13B CD205 

PLA2R1 CLEC13C 
 

MRC1 CLEC13D CD206 

MRC2 CLEC13E CD280 

CLEC14A 
  

CLEC16A 
  

CLEC17A 
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NAME ALIAS 1 ALIAS 2 

KLRA1 
  

KLRB1 CLEC5B NK1.1 

KLRC1 
  

KLRC2 
  

KLRC3 
  

KLRC4 
  

KLRD1 
  

KLRF1 CLEC5C 
 

KLRG1 CLEC15A 
 

KLRG2 CLEC15B 
 

KLRK1 
  

AGC1 
  

ATRNL1 
  

BCAN 
  

CD248 
  

CD72 
  

CD93 
  

CHODL 
  

CL-K1-IA 
  

CL-K1-IB 
  

CL-K1-IC 
  

CLECSF5 
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NAME ALIAS 1 ALIAS 2 

COLEC10 
  

COLEC11 
  

COLEC12 
  

CSPG3 
  

FCER2 
  

FREM1 
  

HBXBP 
  

LAYN 
  

LOC348174  
 

LOC728276  
 

MAFA 
  

MBL2 
  

MGC34761  
 

MICL 
  

MRC1L1 
  

OLR1 
  

PAP 
  

PKD1 
  

PKD1L2 
  

PLA2R1 
  

PRG2 
  

PRG3 
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NAME ALIAS 1 ALIAS 2 

REG1A 
  

REG1B 
  

REG3A 
  

REG3G 
  

REG4 
  

SELE 
  

SELL 
  

SELP 
  

SFTPA1 
  

SFTPA2 
  

SFTPA2B 
  

SFTPD 
  

SRCL 
  

THBD 
  

VCAN 
  

CD64 
  

CD32 
  

CD16A 
  

CD16B 
  

FCER1 
  

FCD23 
  

CD89 
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NAME ALIAS 1 ALIAS 2 

FCAMR 
  

FCRN 
  

FCRL1 
  

FCRL2 
  

FCRL3 
  

FCRL4 
  

FCRL5 
  

FCRL6 
  

FCRLA 
  

FCRLB 
  

KIR2DL1 
  

KIR2DL2 
  

KIR2DL3 
  

KIR2DL4 
  

KIR2DL5A 
  

KIR2DL5B 
  

KIR2DS1 
  

KIR2DS2 
  

KIR2DS3 
  

KIR2DS4 
  

KIR2DS5 
  

KIR3DL1 
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NAME ALIAS 1 ALIAS 2 

KIR3DL2 
  

KIR3DL3 
  

KIR3DS1 
  

LILRA1 
  

LILRA2 
  

LILRA3 
  

LILRA4 
  

LILRA5 
  

LILRA6 
  

LILRB1 
  

LILRB2 
  

LILRB3 
  

LILRB4 
  

LILRB5 
  

LILRB6 
  

LILRB7 
  

LILRA6 
  

LILRA5 
  

SIGLEC-1 
  

SIGLEC-2 CD22 
 

SIGLEC-3 CD33 
 

SIGLEC-4 MAG 
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NAME ALIAS 1 ALIAS 2 

SIGLEC-5 
  

SIGLEC-5 
  

SIGLEC-6 
  

SIGLEC-7 
  

SIGLEC-8 
  

SIGLEC-9 
  

SIGLEC-10 
  

SIGLEC-11 
  

SIGLEC-12 
  

SIGLEC-13 
  

SIGLEC-14 
  

SIGLEC-15 
  

SIGLEC-16 
  

SIGLEC-17 
  

SLAMF1 CD150 
 

SLAMF2 CD48 
 

SLAMF3 CD229 LY9 

SLAMF4 CD244 
 

SLAMF5 CD84 
 

SLAMF6 CD352 
 

SLAMF7 CD319 CRACC 

SLAMF8 CD353 
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NAME ALIAS 1 ALIAS 2 

SLAMF9 
  

NKP44 
  

NKP46 
  

NKP30 
  

PILRA 
  

PILRB 
  

CD28 
  

ICOS 
  

BTLA 
  

CTLA-4 
  

PD-1 
  

CD200R1 
  

CD5 
  

CD6 
  

LAIR1 
  

GPVI 
  

OSCAR 
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