
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Internal Medicine Faculty Publications Internal Medicine 

1-5-2022 

Tracking Sentiments toward Fat Acceptance over a Decade on Tracking Sentiments toward Fat Acceptance over a Decade on 

Twitter Twitter 

Sadie Bograd 
Paul Laurence Dunbar High School 

Benjamin Chen 
Paul Laurence Dunbar High School 

Ramakanth Kavuluru 
University of Kentucky, ramakanth.kavuluru@uky.edu 

Follow this and additional works at: https://uknowledge.uky.edu/internalmedicine_facpub 

 Part of the Internal Medicine Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Bograd, Sadie; Chen, Benjamin; and Kavuluru, Ramakanth, "Tracking Sentiments toward Fat Acceptance 
over a Decade on Twitter" (2022). Internal Medicine Faculty Publications. 281. 
https://uknowledge.uky.edu/internalmedicine_facpub/281 

This Article is brought to you for free and open access by the Internal Medicine at UKnowledge. It has been 
accepted for inclusion in Internal Medicine Faculty Publications by an authorized administrator of UKnowledge. For 
more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/internalmedicine_facpub
https://uknowledge.uky.edu/internalmedicine
https://uknowledge.uky.edu/internalmedicine_facpub?utm_source=uknowledge.uky.edu%2Finternalmedicine_facpub%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1356?utm_source=uknowledge.uky.edu%2Finternalmedicine_facpub%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/internalmedicine_facpub/281?utm_source=uknowledge.uky.edu%2Finternalmedicine_facpub%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Tracking Sentiments toward Fat Acceptance over a Decade on Twitter Tracking Sentiments toward Fat Acceptance over a Decade on Twitter 

Digital Object Identifier (DOI) 
https://doi.org/10.1177/14604582211065702 

Notes/Citation Information Notes/Citation Information 
Published in Health Informatics Journal, v. 28, issue 1. 

© The Author(s) 2022 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 
License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, 
reproduction and distribution of the work without further permission provided the original work is 
attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-
access-at-sage). 

This article is available at UKnowledge: https://uknowledge.uky.edu/internalmedicine_facpub/281 

https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://uknowledge.uky.edu/internalmedicine_facpub/281


Original Research Article

Health Informatics Journal
2022, Vol. 28(1) 1–16
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/14604582211065702
journals.sagepub.com/home/jhi

Tracking sentiments toward fat
acceptance over a decade onTwitter

Sadie Bograd

Paul Laurence Dunbar High School, Lexington, KY USA

Benjamin Chen
Paul Laurence Dunbar High School, Lexington, KY, USA

Ramakanth Kavuluru
Department of Internal Medicine, University of Kentucky, Lexington, KY, USA

Abstract
The fat acceptance (FA) movement aims to counteract weight stigma and discrimination against in-
dividuals who are overweight/obese. We developed a supervised neural network model to classify
sentiment toward the FA movement in tweets and identify links between FA sentiment and various
Twitter user characteristics. We collected any tweet containing either “fat acceptance” or “#fa-
tacceptance” from 2010–2019 and obtained 48,974 unique tweets. We independently labeled 2000 of
them and implemented/trained an Average stochastic gradient descent Weight-Dropped Long Short-
Term Memory (AWD-LSTM) neural network that incorporates transfer learning from language
modeling to automatically identify each tweet’s stance toward the FA movement. Our model achieved
nearly 80% average precision and recall in classifying “supporting” and “opposing” tweets. Applying this
model to the complete dataset, we observed that the majority of tweets at the beginning of the last
decade supported FA, but sentiment trended downward until 2016, when support was at its lowest.
Overall, public sentiment is negative across Twitter. Users who tweet more about FA or use FA-related
hashtags are more supportive than general users. Our findings reveal both challenges to and strengths of
the modern FA movement, with implications for those who wish to reduce societal weight stigma.
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Introduction

The fat acceptance (FA) movement challenges the prevailing stigma against individuals with fat
bodies by questioning claims about the negative impacts of increased body weight on health 1–7 and
by promoting respect for and acceptance of individuals who are overweight or obese, including self-
respect and self-acceptance.1–9 Claims made by various members of the FA community include that
body weight is a relatively immutable condition wherein obesity is a form of natural variation; that
weight stigma is more harmful than obesity itself; that weight loss efforts are futile, damaging, or an
expression of internalized weight stigma; and that people can be healthy at every size (HAES).1–
7,10–13

The FA movement has existed for decades in various forms, with some historians dating its
inception to 1967 protests in New York and related grassroots organizing.2,4 Over the past five
decades, the FA movement has exhibited a number of manifestations and strategies, such as the
creation of organizations like the National Association to Aid Fat Americans (now called the
National Association to Advance Fat Acceptance) and the Fat Underground,1,2,4,6,7,14 the distri-
bution of zines,1,2,4,6,15 advocacy for legislative changes that prohibit weight discrimination,4 and
the emergence of fat studies in the world of academia.2,4,14,16 The FA movement has been in-
creasingly active in the so-called “Fatosphere,” a network of blogs that express pro-FA
viewpoints,1,4,6,7,12,17,18 and in general social media.2

FA is considered by many to alleviate the harmful effects of weight stigma, here defined as
negative attitudes toward (e.g., stereotypes that people with obesity are lazy) and actions against
(e.g., exclusion and size discrimination) people who are overweight/obese.19 Weight bias and
stigma have been documented across genders,20–23 body weights,21–23 and ages22,24 and in nu-
merous institutions and mediums, including among health professionals25–31 and dietitians.32 Prior
research indicates that such stigma has significant negative ramifications. Apart from the numerous
ethical dilemmas it raises, weight stigma and the internalization of weight bias have been found to be
harmful to both mental33–44 and physical health.31,33,35,36,40,42–46 Such stigma can also cause
discrimination against overweight or obese individuals in various areas,47,48 including in em-
ployment,49–52 and has particularly pernicious effects in the healthcare industry, resulting in poorer
standards of care for individuals with fat bodies.25–28,31,32,36

Empirical studies and theoretical discourse indicate that participation in the FA movement
increases feelings of empowerment, body esteem, and other positive mental health outcomes,
especially for overweight or obese women, helping address the deleterious impacts of weight
stigma.5,6,8,11,17,53 Participation in FA communities, especially online, may help individuals
“understand, negotiate and, at times, reject” a marginalized identity.18 Beyond the individual
benefits of participation in the FA movement, the spread of FA ideologies may counteract the
societal harms of widespread weight stigma, for example, in the healthcare sector. However, the FA
movement is not well-studied and has generated significant backlash among the general public.13,54–
56

Given that one goal of the FA movement is the spread of FA sentiment to a larger segment of the
population (i.e., in order to facilitate the inclusion and acceptance of fat bodies in a wide variety of
spaces, FA ideologymust extend beyond the current members of the FAmovement), and that FA has
numerous ethical, sociological, and public health implications, it is critical that we have an un-
derstanding of how people outside of specific activist user groups feel about the movement. As with
any other social movement, understanding what proportion of individuals support or oppose a given
movement and how individuals with various stances tend to talk about a movement can lead to rich

2 Health Informatics Journal 28(1)



insights that are valuable in and of themselves and that can inform FA activists, researchers, medical
professionals, and policymakers.

However, despite the potential impact of the movement and the significant volume of media
discussing it, there appears to be no widespread analysis of current sentiment on the FA movement.
Although some limited research has been conducted on discussions of obesity in social media
(SM),57 there has been no research on societal perceptions of the FAmovement specifically, nor any
attempt to classify individual SM posts/users as supporting or opposing this movement or to identify
common characteristics among pro- and anti-FA posts. This lack of research limits our under-
standing of how FA has changed over time and what challenges individuals may face in joining and
participating in FA; understanding societal perceptions of FA is a crucial first step to encouraging
support for FA and reducing weight stigma among the general public.

Our study aimed to remedy this dearth of quantitative research by classifying FA discourse on
Twitter, a widely used SM site. We employed an Average stochastic gradient descent Weight-
Dropped Long Short-Term Memory (AWD-LSTM) neural network trained with language
modeling-based transfer learning methods to efficiently analyze large volumes of Twitter data. By
doing this, we were able to develop a broad understanding of the evolution of sentiment on Twitter
regarding the FA movement and of common user/post characteristics of pro- and anti-FA discourse.

The use of computational methodologies in general, and sentiment analysis in particular, to analyze
social media discourse is not novel. Stance detection, or the automatic classification of a text as
supporting/opposing a given subject, is a fairly widespread suite of techniques58 that has been used to
analyze SM users’ opinions on everything from e-cigarettes59 to politics.60 Stance detection methods
include support vector machines, logistic regression, decision trees, and recent advances in deep neural
networks, including convolutional neural networks and long short-term memory networks. That said,
we emphasize that this study is unique in its focus on the FA movement, an under-studied movement
with significant implications for the mental and physical well-being of millions of overweight in-
dividuals. Our goal was to analyze the evolution of public FA discourse on SM so that any derived
insights can inform the development of social media-based strategies to reduce weight stigma.

Materials and Methods

Our project was completed using Python, along with various APIs and packages. Twitter’s premium
API service was used to download all tweets from Jan 1, 2010 to December 31 2019 that matched
the phrase “fat acceptance” or tag #fatacceptance. We removed those tweets that contained fewer
than five words (not counting URLs and hashtags). After removing those, we ended up with 84 192
tweets (48 974 not counting retweets). 3959 of these tweets contained media (images, videos, or
GIFs) and 33 240 contained links (including retweets). 36 445 of the unique tweets came from users
who had fewer than 10 FA-related tweets, while 12 529 came from users with 10 or more FA-related
tweets. This is the final dataset that is explored in the rest of this effort. Before we proceed, we
disclose that during the process of obtaining funding that helped execute this project, the insti-
tutional IRB deemed that this type of research does not meet the definition of human subjects and
thus does not require additional IRB review based on these two criteria: (1) The data is publicly
available; and (2) there is no interaction or intervention with subjects. Nevertheless, we only report
aggregate metrics in the manuscript without referring to any particular tweets or users.

Our goal was to classify each tweet as supporting the FA movement, opposing it, or holding an
unclear/neutral opinion toward it. Our overall objective was to use this classification scheme to
study trends across time and characterize messages that belong to the supporting and opposing
groups. Manual annotation of nearly 85K tweets is impractical, and hence we set out to build a semi-
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supervised machine learned model that was first trained to perform language modeling on unlabeled
data, then fine-tuned to classify from annotated data and predict on unseen instances. This way, we
were able to scale the annotation through the model.

At this juncture, we needed to build a smaller annotated dataset to train the model. After a manual
examination of the dataset, we developed guidelines on what tweet traits constitute (1) supporting,
(2) opposing, or (3) neutral tweets, so that we could independently label the tweets with minimal
disagreement (Table 1).

Table 1. Labeling guidelines created and followed for the annotation process.

Label Guidelines for annotating FA-related tweets Example Tweets

Supporting Explicitly states support for fat acceptance (or
health at every size) movement. OR

Implicitly expresses support for movement by:
arguing that obesity is not unhealthy, that
dieting is unproductive, or that fat shaming is
immoral/unhelpful without qualifiers; OR

criticizing public figures, media, etc., that promote
dieting or perceived fat shaming, or that
practice fat acceptance “wrong”; OR

advertising lectures, blogs, products, events, etc.,
about body positivity, intuitive eating, anti-
dieting, HAES, and related topics; OR using
(numerous) pro-fat acceptance hashtags like
#allbodiesaregoodbodies #bodyposi
#intuitiveeating #haes

Finding fat acceptance was so integral to
rebuilding my mental health and my will to
fucking LIVE. I was close to the brink, back
then

Progress to date - stopping painting now as
eyes hurt!! Work in progress -
“Unapologetically Yours”, [name],
watercolour, 770mm x 570mm, 21/06/19
#fatpositive #bodydiversity
#fatacceptance #fatandbeautiful
#bodypositive #bodypositivity
#bodyconfidence

@[name] The women who started the
nonprofit “The Body Positive”. Total
erasure of fat acceptance work going back
decades

Opposing Argues that fat/obese people are gluttonous, lazy,
or otherwise morally lacking. OR

Believes that fat acceptance encourages fatness/
discourages people from trying to improve
their health. OR

Expresses that fat shaming is bad, but that being fat
is still unhealthy/fat acceptance is similarly
unproductive. OR

Shares links to articles, videos, and other media
that criticize the movement. OR

Makes jokes about fat acceptance being “the only
movement without movement,” fat acceptance
activists dying/becoming ill, etc.

I hate fat acceptance, and I’m fat, that’s why
I’m trying to lose weight. Keep me shamed
so it will help me lose lbs [link]

I liked a @YouTube video [link] Why I Hate
‘Fat Acceptance’

Let me start by saying that both fat
Acceptance and fat shaming is bullshit.
#fatshaming #fatacceptance

Unclear/
neutral

Discusses the perspectives of others on fat
acceptance without taking a stance themselves.
OR

Appears to be attemptedly objective/genuinely
unsure about the movement and expresses
desire to discuss or learn more about it. OR

Describes an event that is pro-fat acceptance
without expressing a view on it, especially for
larger news organizations. OR

Is only tangentially related to fat acceptance, uses
incomprehensible language, or is clearly a bot

“Huge” is advance for fat acceptance in
Hollywood [link]

Doctors warn that spin the bottle can cause
fat acceptance in those under 15

Probably because you don’t really see
anorexia being promoted by the general
public, but more of an unfortunate
consequence of the way most models
look. You have a fat acceptance
movement, but you don’t have an
anorexia acceptance movement
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To increase the diversity of the annotated dataset, we decided to make the dataset from unique
tweets by excluding retweets. However, retweets were included in the final analyses, given that
retweets quantify the amplification of particular themes. Among unique tweets, we (first and second
authors) selected a random set of 100 tweets from the dataset to independently label them into the
three categories. Using these two sets of 100 labels, we calculated Cohen’s kappa and came to an
agreement on the disagreeing labels, using these to refine our labeling guidelines. We repeated this
process until we achieved a Cohen’s kappa >0.7, which took four rounds of labeling. Finally, we
took a random sample of 2000 unique tweets and labeled them individually, reaching a Cohen’s
kappa of 0.81; we subsequently consolidated the label disagreements via a face-to-face discussion.
As per rules of thumb for inter-annotator agreement, kappa of 0.81 indicates “almost perfect”
agreement.61

We experimented with a set of machine learning algorithms and chose a state-of-the-art AWD-
LSTM recurrent neural network-based model, ULMFiT (Universal Language Model Fine-tuning
for Text Classification),62 that relies on language-model-based transfer learning to train classifiers.
ULMFiT leverages a language modeling-based objective (based on the AWD-LSTM) to come up
with better contextualized representations of words in an input document to aid in downstream
classification tasks. This essentially handles ambiguities associated with polysemy and homonymy
and imbues more contextualized signals into the prediction task. We compared the ULMFiT model
with more traditional linear (logistic regression, support vector machines) and nonlinear (random
forests, nearest neighbors) baseline classifiers.

The full annotated dataset was split into 1400 training tweets, 300 validation tweets, and 300 test
set tweets. We reserve the test set tweets until the very end to ensure performance is assessed on
unseen tweets. Using the fast.ai package provided by the authors of the ULMFiT paper, we trained a
language model on all 48 974 unlabeled tweets (not counting retweets) in the dataset. Then, we
created a classifier using that language model, trained on the 1400 training tweets,* and checked the
validation error using the 300 validation tweets. We tweaked the number of epochs, the learning
rate, dropout rate, and the weight decay of the language model and classifier to reach the lowest error
rate possible on the validation dataset. Then, we took that model and tested it with the 300 test tweets
to get the performance metrics (accuracy, precision, recall, and F-score†) of the model. We did this
experiment 60 different times with different random train/validation/test splits of the dataset to
arrive at confidence intervals for the metrics reported. Figure 1 provides a visualization of this
process.

The classifier built with the full annotated dataset was then applied to the full dataset of nearly
85k tweets (including retweets). We grouped tweets on a weekly and yearly basis to study pro-
portions of supporting and opposing messages across time over a decade (from 2010 to 2019). We
used a Python script to determine the presence of various links, images, and hashtags to examine
how the percentage of supporting/opposing tweets changed among tweets with specific media or
hashtags. We also calculated the average number of likes and retweets for supporting and opposing
tweets. Taking advantage of a Twitter user’s account creation date, for each user in our dataset, we
computed the ratio of the number of stance-expressing tweets (opposing or supporting) to the count

* Our model also appended the tweeter’s biography to each of their tweet’s contents as the biography seemed to contain
complementary signals that helped with the classification process (based on validation experiments).

† Precision is the percentage of tweets that the model predicted as belonging to a class are in fact from that class based on
ground truth labels. Recall is the percentage of tweets belonging to a class in the input that were correctly identified as such
by the model. F-score is the harmonic mean of the precision and recall. Accuracy is the proportion of correctly classified
tweets among all input tweets.
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of the neutral tweets they authored. Our goal was to assess if users take more opposing/supporting
stances as they stay longer on Twitter. To this end, we binned users based on the account age in years
(time between account creation and first FA-related tweet) and examined the rate of stance-
expressing tweets in each bin. We also grouped users based on the frequency of their FA-related
tweeting activity to assess if tweeting more (or less) correlates with a particular stance. We identified
the frequency with which certain terms/phrases appeared in specific years; these terms were
identified during the manual labeling process as potentially representative of shifts in FA discourse.

Results

Before conducting analyses of the entire database of FA tweets, we tested our model’s performance
on the 300 test tweets. The ULMFiT model achieved a 95% confidence interval for accuracy of
75.86% ± 0.60%. Other tested algorithms achieved lower accuracies (Table 2), and as such we do
not discuss them further. However, accuracy is not very informative when all classes are not equally
relevant. As we care about the opposing and supporting classes more than the neutral class, ex-
amining class-level metrics is more important. These results are as shown in Table 3 for the ULMFiT
model. We compute precision (positive predictive value), recall (sensitivity), and their harmonic
mean (popularly called F-score) for each class. If we focus exclusively on the opposing and
supporting classes, the scores are better: the mean macro average of precision of the two classes is

Figure 1. High level flowchart of dataset creation and FA sentiment model evaluation.
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78.73%, and the mean average recall is 80.02%‡. This aligns with what we see in the confusion
matrix (Figure 2): supporting and opposing tweets were barely ever labeled as neutral, while neutral
tweets were commonly mislabeled as supporting or opposing. This explains the performance
improvement we see after disregarding the neutral class. However, it is not entirely clear why the
classifier struggles with the neutral class.

Having ascertained the accuracy of the models, the ULMFiT model was applied to the broader
dataset of 84 192 tweets (including retweets) to determine changes in FA sentiment on Twitter over
time and among user groups.

Overall, 60% of tweets were identified as opposing the FA movement (or negative), 33% as
supporting the FA movement (or positive), and 7% as unclear/undetermined. On a yearly basis, the
overall percentage of tweets identified as negative increased from 2010 (21.3% negative) to 2016
(73.7% negative) (Table 4), then decreased to approximately 64% negative in the following years.
Since 2014, more tweets are labeled by the model as negative than as positive. Additionally, the
number of FA tweets per year increased over time: 2773 tweets were collected from 2010 as
opposed to 22 643 from 2019 (Table 4), and of the 102 weeks in which more than 250 tweets were
collected, only one occurred before 2014 and only four before 2015 (Figure 3).

On a week-by-week basis, of the 522 weeks for which tweets were collected, there were
18 weeks in which >500 tweets were collected. Of those 18 weeks, 12 were predominantly negative

Table 3. Average performance metrics of the ULMFiT model for the supporting, opposing, and neutral classes
based on 60 random dataset splits.

Precision Recall F-score

Supporting 85.64% ± 1.09% 66.58% ± 1.42% 74.68% ± 0.86%
Opposing 71.82% ± 0.73% 93.46% ± 0.80% 81.16% ± 0.49%
Unclear/neutral 77.64% ± 3.32% 33.73% ± 1.82% 46.28% ± 1.86%
Avg. of supporting and opposing 78.73% ± 0.54% 80.02% ± 0.70% 77.92% ± 0.64%

Table 2. Initial performance metrics for all models with a single run.

Model Accuracy F1 (macro)

Stratified guess 0.373 0.282
Decision tree 0.557 0.504
AdaBoost 0.663 0.585
K nearest neighbors 0.717 0.638
Random forest 0.720 0.638
Logistic regression 0.740 0.646
Support vector machine (RBF) 0.757 0.657
Support vector machine (SGD) 0.757 0.681
ULMFiT 0.842 0.782

‡ Averaging of class-specific metrics (precision, recall, F-score) of certain classes of interest is often called macro averaging
because it gives equal weight to each constituent class in the average. This is in contrast with micro averaging where errors
are grouped in a single confusion matrix across all classes leading to a weighting scheme that aligns with class sizes.

Bograd et al. 7



(i.e., the majority of the tweets posted that week were labeled as negative by the model), five were
predominantly positive, and one was predominantly neutral. Of the 102 weeks in which more than
250 tweets were collected, 82 were majority negative and 18 were majority positive. Additionally,
all of the weeks in which there were over 250 tweets and the majority were positive occurred during
or after 2017 (Figure 3).

36.3% of non-neutral tweets that included links were labeled by the model as supporting the FA
movement, while 63.7% were labeled as opposing. Of the non-neutral tweets that included links,

Figure 2. Confusion matrix of errors in 3-way classification of tweets used in our analyses.
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Table 4. Sentiment distribution of tweets per year.

Year % supporting % opposing % neutral/unclear

2010 36.4 (n = 1008) 21.3 (n = 592) 42.3 (n = 1173)
2011 63.0 (n = 1221) 28.5 (n = 552) 8.6 (n = 166)
2012 58.2 (n = 1529) 34.7 (n = 913) 7.1 (n = 187)
2013 50.4 (n = 1656) 37.6 (n = 1235) 11.9 (n = 392)
2014 43.2 (n = 2311) 51.0 (n = 2729) 5.7 (n = 306)
2015 21.4 (n = 2834) 64.2 (n = 5787) 4.3 (n = 391)
2016 20.1 (n = 1750) 73.7 (n = 6392) 6.1 (n = 526)
2017 31.4 (n = 3927) 62.8 (n = 7852) 5.8 (n = 726)
2018 30.3 (n = 4665) 64.2 (n = 9879) 5.5 (n = 850)
2019 30.6 (n = 6929) 64.5 (n = 14602) 4.9 (n = 1112)

Figure 3. Weekly distribution of FA tweets split across sentiment classes.

Table 5. Sentiment distribution by elements within tweets that indicate a supporting/opposing view.

Tweet content elements % supporting % opposing

Links (n = 33240) 36.3 63.7
Media (images, videos, GIFs) (n = 3959) 16.4 83.6
YouTube (n = 7006) 14.2 85.8
Tumblr (n = 328) 69.0 31.0
#haes (n = 1868) 66.5 33.5
#fatacceptance (n = 13807) 55.3 44.7
“fat acceptance” (n = 64447) 30.7 69.3

Bograd et al. 9



14.2% of those that linked to YouTube were labeled positive and 69.0% of those that linked to
Tumblr were labeled positive. Additionally, 16.4% of non-neutral tweets that included media
(images, videos, and GIFs) were labeled as positive. Tweets that included the hashtag #haes
(meaning “health at every size”) or #fatacceptance were more likely to be labeled positive than those
that simply included the term “fat acceptance” (66.5% and 55.3% positive, respectively, vs. 30.7%
positive) (Table 5).

Users who tweeted more about FAwere more likely to support the movement. 27% of users with
fewer than 10 FA tweets supported the movement, while users with 10 or more FA tweets supported
FA 59% of the time (Figure 4). Pro-FA tweets also tended to be slightly more popular. On average,
supportive tweets had 2.46 likes and 0.65 retweets, while opposing tweets had 2.06 likes and 0.47
retweets. Furthermore, users who had been on Twitter longer had more polarized opinions, insofar
as the likelihood of supporting or opposing FA as opposed to feeling neutral generally increased as
the age of a user’s account increased. For example, the ratio of supportive tweets to neutral/unclear
tweets for users whose accounts had existed for <1 year was 1.95:1. For users whose accounts had
existed for 10 years, this ratio was 21.6:1. Similarly, the ratio of negative opinions to neutral/unclear
opinions went from 5.4:1 for accounts existing for <1 year to 18.2:1 for accounts existing for
10 years (Table 6).

Manual examination of the dataset indicated that the release of the television show Huge in 2010
might have contributed to an increase in neutral tweets during that year, as many news organizations
tweeted some variation of “Huge marks advance for fat acceptance in Hollywood.” Computational

Figure 4. User stances about FA based on tweet activity on the topic.
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analysis of the dataset appeared to confirm this impression. 867 tweets from 2010, or 31.3% of all
FA tweets that year, included the word “Huge” (capitalization-sensitive). 380 tweets from 2010, or
13.7% of all FA tweets that year, included the specific phrase “huge marks advance” (not
capitalization-sensitive). The latter number likely does not capture all tweets related to the TV show
due to variations in formatting; as such, the true number of tweets related to the show is likely
between 380 and 867.

We also conducted a straightforward location-based analysis of our dataset. There were 860
unique tweets that provided a location in our full tweet dataset. 256 were foreign, and 604 were
from the US. Taking the tweets from the US, then subtracting opposing tweets from supporting
tweets gave a net sentiment score for each state. That net sentiment was then compared to adult
obesity rates (https://stateofchildhoodobesity.org/adult-obesity/) by fitting a linear regression
model. A negative correlation was found (β = �0.312, p < 0.05). Interestingly, this implies that
the more a state supports the FA movement, the lower that state’s obesity rates. This lends some
credibility to the idea that the FA movement may be more effective than fat shaming at
preventing obesity. Given that location information is only available for 604 US tweets (1.2%
of the full dataset), one could argue that this sample is too sparse to reliably assess correlations
of this nature. Unfortunately, this is a limitation of Twitter, as users must opt in to provide their
locations, meaning the proportion of tweets with location data attached is always extremely
low.

Discussion

The application of our model to the broader database of FA tweets revealed multiple insights.
Ultimately, although positive communities exist online, specifically in blogs (which comprise the
so-called “fatosphere”), the results of our model indicate that there is no broad acceptance of the fat
acceptance movement on Twitter, a space where a multitude of views can be expressed. Nuanced
debates about the fat acceptance movement are typically outweighed by more extreme anti-FA
discourse, especially in recent years in our dataset; since 2014, the majority of FA tweets every year

Table 6. Ratio of supporting/opposing to neutral/unclear tweets by account years on Twitter.

Twitter account age
(years)

Supporting/unclear or
neutral

Opposing/unclear or
neutral

Supporting + opposing/Unclear
or neutral

0 1.95 5.44 7.39
1 3.19 6.44 9.63
2 3.27 5.93 9.21
3 5.30 9.78 15.09
4 9.08 17.03 26.11
5 8.55 15.01 23.56
6 9.87 16.40 26.27
7 11.53 19.02 30.55
8 14.98 19.69 34.67
9 12.99 14.25 27.24
10 21.64 18.16 39.81
11 13.15 8.50 21.65
12 40.50 21.50 62.00
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were labeled “opposing” by our model. Our findings suggest that various “spikes” in FA discourse
on a week-by-week basis could be attributable to specific events; for example, the release of FA-
related TV show Huge appears to have caused the increase in neutral tweets in 2010 (n = 1173
tweets were neutral, or 42.3% of all FA tweets in 2010), as 380 tweets from 2010 referenced the
phrase “Huge marks advance for fat acceptance in Hollywood” and 867 tweets used the word
“Huge” (capitalization-sensitive). However, we cannot speculate on the reasons for this general shift
in FA discourse without further research. Whatever the cause of these changes in sentiment, the
model strongly indicates that the majority of Twitter users discussing the FAmovement are opposed
to it. Although we are unable to determine whether users tweeting about FA are representative of all
Twitter users or the American public, our findings align with current research into the prevalence of
weight stigma.

These findings about popular sentiment toward the FA movement have some negative impli-
cations for people who would benefit from being part of the FA movement. They indicate that
difficulties may exist for overweight or obese individuals who would benefit from locating a
supportive pro-FA community. This is true not only because the majority of FA tweets are negative
but also because the amount of new anti-FA content is more likely to spike on a week-by-week basis,
as suggested by there being significantly more weeks in which there were over 250 or 500 new
negative tweets than weeks in which there were over 250 or 500 new positive ones. Such results
could suggest that the average Twitter user is less likely to find pro-FA content without intentionally
seeking it out. While the FAmovement was created to combat weight stigma and bias, and to foster a
positive community for people who experience discrimination in their daily lives, discussions of FA
on Twitter largely take the form of further anti-fat criticism—there appears to be more content on
Twitter about why the FA movement is bad than there is content created by members of the FA
movement itself.

That said, the use of hashtags appears to have assisted in the development of pro-FA com-
munities, as tweets referencing #fatacceptance and #haes are mostly positive (55.3% and 66.5%
positive, respectively). These percentages may be even higher for less-used or more niche hashtags.
Furthermore, users who tweet more about FA are more likely to support the movement. This could
suggest that a significant portion of the positive FA discourse on Twitter comes from FA activists
and others who are highly involved in the movement, whereas negative FA discourse may come
from people who are less invested in the subject. Pro-FA tweets also tend to receive more likes and
retweets than anti-FA tweets, highlighting that pro-FATwitter users often find a receptive audience
within the FA movement, even as they are subject to general anti-fat criticism from other SM users.
This all indicates the existence of reliable sources of pro-FA content for individuals looking for
supportive content and communities so long as they know how to find them, even if the majority of
all FA content is negative.

People seeking to find supportive communities and raise support for FA may experience more
difficulties on YouTube and fewer on Tumblr, as the majority of tweets linking to YouTube were
labeled negative (85.8%), and the majority linking to Tumblr were labeled positive (69.0%). As a
general concept, this discrepancy could be indicative of the different user bases of these social media
sites. However, further speculation about the cause of this discrepancy is outside the scope of this
study and presents a potential site for further research.

This research has some limitations. We constructed a dataset using only two annotators and 2000
tweets. As such, the training dataset may not have been sufficiently large to reflect the diversity of
our dataset of 48 974 different tweets (excluding retweets). The average model precision and recall
were around 80% and an ideal classifier would have had results in the high nineties. However, on
nuanced tasks such as sentiment analysis, this is inherent in the nature of machine learning methods
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that are indispensable to scale predictions to thousands of instances.§ Therefore, while we believe
the general trends discovered by the model to be accurate, the exact percentages of tweets in support
of and opposition to FA may be subject to some minor variations. In addition, the community of
regular Twitter users cannot be taken as a proxy for the general public, and it is unclear in this
specific instance how reflective the opinions expressed by FA-related tweets are of those of broader
society.

Still, our model offers insight into common perspectives on the FAmovement, and may be useful
for FA activists and supporters, medical experts, policymakers, and all others with an interest in the
FA movement or in combating weight stigma. This study highlights that the FA movement has not
yet achieved widespread societal acceptance, and that often-fatphobic anti-FA content is more
common than pro-FA content; at the same time, it demonstrates that members of the FA movement
have been able to create generally supportive communities through the use of hashtags and FA
activist accounts. Both of these findings have implications for future efforts to reduce weight stigma.
Independently, too, the development of this model displays the powerful potential of the application
of machine learning methods to social science questions.
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