Supplementary information for:

PpID is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides

Jeffrey S. Rush¹, Prakash Parajuli², Alessandro Ruda³, Jian Li¹, Amol Arunrao Pohane², Svetlana Zamakhaeva², Mohammad M. Rahman², Jennifer C. Chang⁴, Artemis Gogos⁴, Cameron W. Kenner², Gérard Lambeau⁵, Michael J. Federle⁴, Konstantin V. Korotkov¹, Göran Widmalm³, and Natalia Korotkova^{1, 2*}

¹Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA

²Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA

³Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden

⁴Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA

⁵Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France

*Correspondence and request for materials should be addressed to N.K. (email: <u>nkorotkova@uky.edu</u>)

Sugar residue	¹ H/ ¹³ C									³¹ P	Inter-residu	ue correlation
		1	2	3	4	5	6	α	β	PO ₄	NOE	HMBC ^b
→3)-β-∟-Rha <i>p</i> -(1→		4.89 {164}ª	4.18	3.65	3.50	3.43	1.33				H4, GlcN	C4, GIcN
		101.6	71.4	81.4	72.1	72.9	17.6					
→4)-α-D-GlcpN(1-P		5.54 {177}	2.89	3.94	3.69	3.77	~3.88			-1.35		H1, GIcN H2, GIcN
		96.4	56.0	72.9	77.7	73.6	61.5					,
<i>P</i> -6)-β-D-Mur <i>p</i> NAc-(1→		4.57 {167}	3.85	3.64	3.93	3.47	4.10, 4.20	4.37	1.41			H6a, MurNAc H6b, MurNAc
		102.4	55.9	80.4	75.9	75.0	64.4	79.2	19.0			

Supplementary Table 1. ¹H, ¹³C and ³¹P NMR chemical shifts (ppm) at 50 °C of the linker region from Group A Carbohydrate and inter-residue correlations from ¹H, ¹H-NOESY, ¹H, ¹³C-HMBC and ¹H, ³¹P-HMBC experiments.

^{a 1} J_{CH} values are given in Hertz in braces; ^b Refers to ¹H,¹³C-HMBC or ¹H,³¹P-HMBC experiments.

Supplementary Table 2. Binding of GFP-AtlA to the GAS sacc
--

	Total number of cells counted	Number of cells with GFP-AtlA ^{Efs} bound to the poles	Number of cells with GFP- AtlA ^{Efs} bound to the whole cell surface	Number of dividing cells	Number of dividing cells with GFP- AtlA ^{Efs} bound to the septal regions
Untreated	127	34 (26%) ^a	0	41	8 (19%) ^c
Treated with mild acid	183	129 (70%)	0	70	65 (92.9%)
Treated with nitrous acid	117	117 (100%)	117 (100%) ^b	47	117 (100%)

^a The percentage of cells with GFP-AtlA^{Efs} attached to the poles.

^b The percentage of cells with GFP-AtlA^{Efs} attached to the whole cell surface.

^c The percentage of dividing cells with GFP-AtIA^{Efs} attached to the septal regions.

	PDB: 6DQ3 ¹
Data collection	
Space group	P212121
Cell dimensions	
a, b, c (Å)	42.16, 78.43, 138.07
α, β, γ (°)	90, 90, 90
	Peak
Wavelength (Å)	1.2700
Resolution (Å)	39.69–1.78 (1.83–1.78) ²
R _{sym} or R _{merge}	0.065 (1.126) ³
[/σ]	13.04 (1.09)
Completeness (%)	99.3 (97.5)
Redundancy	3.8 (3.3)
Refinement	
Resolution (Å)	39.69–1.78
No. reflections (total / free)	84025 / 4297
Rwork / Rfree	0.180 / 0.216
No. atoms	
Protein	3597
Ligand/ion	37
Water	296
<i>B</i> -factors	
Protein	35.1
Ligand/ion	39.6
Water	38.1
Wilson <i>B</i>	33.5
R.m.s deviations	
Bond lengths (Å)	0.004
Bond angles (°)	0.685

Supplementary Table 3. Data collection and refinement statistics for PpID structure.

¹One crystal was used for data collection. ²Values in parentheses are for highest-resolution shell. ³Friedel pairs are treated as separate reflections.

Supplementary	Table 4.	Structural	homologs	of GAS	PpID.
---------------	----------	------------	----------	--------	-------

PDB ID	Z score	r.m.s.d.	Number of aligned residues	Total number of residues	Sequence identity, %	Protein function	Reference
4hd5	30.3	1.4	209	316	31	Bacillus cereus, polysaccharide deacetylase	1
4v33	30.1	1.5	211	316	30	Bacillus anthracis, polysaccharide deacetylase-like protein	2
6go1	29.2	1.7	211	318	27	Bacillus anthracis, polysaccharide deacetylase-like protein	3
4wcj	26.7	2.1	208	233	24	Ammonifex degensii, polysaccharide deacetylase	4
4u10	26.3	2.7	221	264	19	Aggregatibacter actinomycetemcomitans, poly-β-1,6-N-acetyl-D- glucosamine N- deacetylase	NP ^a
3vus	25.8	2.3	215	263	21	Escherichia coli, poly-β-1,6-N-acetyl-D- glucosamine N- deacetylase	5
4f9d	25.7	2.5	219	592	21	Escherichia coli, poly-β-1,6-N-acetyl-D- glucosamine N- deacetylase	6
5bu6	22.6	2.5	197	264	19	Bordetella bronchiseptica, poly-β-1,6-N-acetyl-D- glucosamine N- deacetylase	7
2c1g	11.7	2.4	140	384	26	Streptococcus pneumoniae, peptidoglycan GlcNAc deacetylase	8

^aNP – no publication.

Supplementary Table 5. Bacterial strains and plasmids.

Strain or plasmid	Description ^a	Reference
Bacteria		·
GAS NZ131	M49-serotype strain	9
GAS 5005	M1T1-serotype strain	10
S. mutans Xc	Serotype c strain	11
S. equi	S. equi subsp. equi CF32 was isolated from an	12
,	equine submandibular abscess.	
S. agalactiae A909	Human clinical isolate. Serotype la strain, ST-7	ATCC
S. agalactiae COH1	Clinical isolate obtained from an infected newborn	13
	with sepsis. Serotype III strain, ST-17	
S. thermophilus LMG	Isolated from vogurt manufactured in the United	ATCC
18311	Kingdom	
GASΔpadA	padA deletion mutant in the GAS NZ131 strain	14
, , ,	background (has a nonpolar kanamycin resistance	
	cassette replacing pgdA), Kan ^R	
GAS∆ppID	ppID deletion mutant in the GAS NZ131 strain	This study
	background (has a nonpolar kanamycin resistance	,
	cassette replacing <i>ppID</i>), Kan ^R	
GAS <i>AppIDApgdA</i>	<i>ppID</i> deletion mutant in the GAS $\Delta pgdA$ strain	This study
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	background (has nonpolar spectinomycin and	
	kanamycin resistance cassettes inserted in <i>ppID</i> and	
	<i>pgdA</i> , respectively), Spec ^R , Kan ^R	
GASΔ <i>ppID</i> :pppID	$GAS\Delta ppID$ is complemented with $pppID$ carrying	This study
	GAS WT <i>ppID</i> , Kan ^R , Cam ^R	
GASΔ <i>ppID:</i> pppID-	GAS $\Delta ppID$ is complemented with pppID carrying a	This study
H105A	catalytically inactive variant of GAS ppID-H105A,	
	Kan ^R , Cam ^R	
GAS∆pplD:p <i>pplD</i> -	GAS $\Delta ppID$ is complemented with pppID carrying a	This study
D167N	catalytically inactive variant of GAS pplD-D167N,	
	Kan ^R , Cam ^R	
GAS∆ <i>pplD:</i> p <i>pplD</i>	GAS $\Delta ppID$ is complemented with pppID carrying a	This study
H105A/D167N	catalytically inactive variant of GAS ppID-	
	H105A/D167N, Kan ^R , Cam ^R	
GASΔ <i>ppID</i> Δ <i>pgdA</i> :p <i>ppID</i>	GAS $\Delta ppID\Delta pgdA$ is complemented with pppID	This study
	carrying GAS WT <i>ppID</i> , Spec ^R , Kan ^R , Cam ^R	
GAS∆gacH	gacH deletion mutant in the GAS NZ131 strain	This study
	background (has a nonpolar chloramphenicol	
	resistance cassette inserted in <i>gacH</i>), Cam ^R	
GAS∆gacH:pgacH	GAS∆ <i>gacH</i> is complemented with p <i>gacH</i> _erm	This study
	carrying WT <i>gacH</i> , Cam ^R , Erm ^R	
GAS∆gacH:pgacH-	GAS∆ <i>gacH</i> is complemented with p <i>gacH</i> -T530A	This study
T530A	carrying a catalytically inactive variant of gacH,	
	Cam ^R , Erm ^R	
GBS∆ <i>pplD</i>	ppID deletion mutant in the GBS A909 strain	This study
	background (has a nonpolar spectinomycin	
	resistance cassette replacing <i>pplD</i>), Spec ^R	
GBS∆ <i>pplD:</i> p <i>pplD</i>	GBSAppID is complemented with pppID carrying	This study
	GAS WT <i>ppID,</i> Spec ^R , Cam ^R	

SMU <i>AppID</i>	ppID deletion mutant in the S. mutans Xc strain	This study
	background (has a nonpolar spectinomycin	
	resistance cassette replacing <i>ppID</i>), Spec ^R	
SMU∆ <i>pplD:</i> p <i>pplD</i>	SMUΔ <i>ppID</i> is complemented with p <i>ppID</i> carrying	This study
	GAS WT <i>ppID,</i> Spec ^R , Cam ^R	
SMU∆ <i>pplD:</i> p <i>pplD</i> -	SMU $\Delta ppID$ is complemented with pppID carrying a	This study
H105A	catalytically inactive variant of GAS pplD-H105A,	
	Spec ^R , Cam ^R	
SMUΔ <i>ppID:</i> pppID-	SMU $\Delta ppID$ is complemented with pppID carrying a	This study
D167N	catalytically inactive variant of GAS <i>ppID</i> -D167N,	
	Spec ^R , Cam ^R	
SMUΔ <i>ppID:</i> p <i>ppID</i> -	SMU $\Delta ppID$ is complemented with pppID carrying a	This study
H105A/D167N	catalytically inactive variant of GAS ppID-	
	H105A/D167N, Spec ^R , Cam ^R	
Escherichia coli		
DH5a	E. coli cells used for cloning	Invitrogen
Rosetta (DE3)	<i>E. coli</i> cells used for protein expression; Cam ^R	Novagen
Plasmids		
pHY304	A temperature sensitive <i>E.coli-Streptococcus</i> shuttle	15
	vector, Erm ^R	
pHY304∆gacH-NZ131	Derivative of pHY304 expressing a nonpolar	This study
	chloramphenicol resistance cassette flanked with	-
	GAS NZ131 gacH 5' and 3' regions, Cam ^R , Erm ^R	
pUC19BXspec	Derivative of pUC19BX expressing aadA (a nonpolar	16
	spectinomycin) with own rbs, Amp ^R	
pUC19BXspec-pplD	Derivative of pUC19BXspec expressing aadA	This study
	flanked with <i>ppID</i> 5' and 3' regions, Amp ^R	-
pHY304∆ <i>pplD</i> -NZ131	Derivative of pHY304 expressing a nonpolar	This study
	spectinomycin resistance cassette flanked with GAS	
	NZ131 <i>ppID</i> 5' and 3' regions, Spec ^R , Erm ^R	
pHY304∆ <i>ppID</i> -GBS	Derivative of pHY304 expressing a nonpolar	This study
	spectinomycin resistance cassette flanked with GBS	
	A909 <i>ppID</i> 5' and 3' regions, Spec ^R , Erm ^R	
pFED760	A temperature sensitive <i>E.coli-Streptococcus</i> shuttle	17
	vector, Erm ^R	
pOskar	Vector encoding kanamycin resistance cassette,	18
	Kan ^R	
pLR16T	Vector encoding spectinomycin resistance cassette,	19
	Spec ^R	
pDC123	<i>E. coli-streptococcus</i> shuttle vector, JS-3 replicon,	20
	chloramphenicol resistance cassette. Cam ^R	
p <i>ppID</i>	pDC123 derived plasmid expressing <i>ppID</i> . Cam ^R	This study
p <i>ppID-</i> H105A	pDC123 derived plasmid expressing pplD-H105A,	This study
	Cam ^R	-
pppID-D167N	pDC123 derived plasmid expressing pplD-D167N,	This study
	Cam ^R	-
ppplD-H105A/D167N	pDC123 derived plasmid expressing pplD-	This study
	H105A/D167N, Cam ^R	
pDCerm	pDC123 derivative with Erm (Erm of Tn916 Δ E)	21
	replacing chloramphenicol resistance cassette, Erm ^R	

p <i>gacH_</i> erm	pDCerm derived plasmid expressing <i>gacH</i> , Erm ^R	22
pgacH-T530A	pgacH_erm derived plasmid expressing a	22
	catalytically inactive of variant of gacH, Erm ^R	
pRSF-NT	A modified pRSF-Duet1 (Novagen) vector that allows	23
	the creation of N-terminus His-tagged proteins with a	
	TEV protease cleavage site, Kan ^R	
pKV1644	pRSF-NT derived plasmid for expression of GFP-	This study
	AtlA ^{Efs} . A C-terminal cell wall-binding domain of AtlA	
	from <i>E. faecalis</i> fused with GFP at the N-terminus.	
	GFP has a His-tag followed by a TEV protease	
	recognition site at the N-terminus, Kan ^R	
pCDF-NT	A modified pCDF-Duet1 (Novagen) vector for	24
	expression of the N-terminus His-tagged proteins	
	with a TEV protease cleavage site, Str ^R	
pCDF-PpID	pCDF-NT derived plasmid expressing ePpID fused	This study
	with N-terminal TEV protease cleavable His-tag, Str ^R	

^a Antibiotic resistance markers: Erm^R, erythromycin; Kan^R, kanamycin; Spec^R, spectinomycin; Cam^R, chloramphenicol, Amp^R, ampicillin, Str^R, streptomycin

Supplementary Table 6. Primers

Primer	Sequence ^{a,b}	Genetic
		manipulations
JC480	CATG <u>GAATTC</u> CCAGATTGAAGCACCAACC	GAS pplD
JC481	CATG <u>ACGCGT</u> TACTTGCTCCTTTTTTGATAT	deletion with a
		nonpolar
JC482	CATG <u>ACGCGT</u> CATCAATTTTTTTATCATTCCAAA	kanamycin
JC483	CATG <u>GAATTC</u> AACTTATTCAGTTCAAGACCTG	resistance
JC292	GCATG <u>ACGCGT</u> ATGGCTAAAATGAGAATATCACC	cassette
JC304	GCATG <u>ACGCGT</u> CTAAAACAATTCATCCAGTAAAATATAA	
PpID-BgIII-F	GCGTA <u>AGATCT</u> GTGATCATGAATCCATTCTAG	GAS pplD
PpID-Sall-R	CGCTGC <u>GTCGAC</u> GGGTTGACAATCAAATTAGC	deletion with a
PpID-BamH-	CGTCT <u>GGATCC</u> CAGTATGATTGATTTCTACAAC	nonpolar
F		spectinomycin
PpID-XhoI-R	GCGCG <u>CTCGAG</u> GACGTCTCCAAGAATAACAGC	resistance
0.1117		cassette
GacHNZ-	CGTCT <u>GGATCC</u> CGTTGGTCCCGCTAAAGCAATG	GAS NZ131
BamH-F2		gacH deletion
cm-gacHNZ-	GIGAATTTAGGAGGCCGTATATGATTGTTGCAAATATG	with a nonpolar
R1		
gacHNZ-	CAACAATCATATACGGCCTCCTAAATTCACTTTAG	resistance
Cam-F1		casselle
Cm-gacHNZ-	AATATGAGATAATGCGGTGATGAAGCATTGCTAGG	
FZ		
	CAAIGUTUAICACU GUAITATUTUATATATAAAAG	
	GCGCG <u>CTCGAG</u> CATAAGTCCCGCAGTTGTGC	
		S mutans pplD
Spac PolD		deletion with a
Spec-PpiD-		nonnolar
PolD_Smu_		spectinomycin
Spec-f1	G	resistance
Spec-PnID-		cassette
Smu-f2		
PolD-Smu-	CTGGATAAGCTATTGCTG GGATCCTTATAATTTTTTAAT	
Spec-r2	CTG	
PpID-Smu-	GGAAGAAATATGTTTGGAAGC	
Xhol-R		
PpID-GBS-	CGTCTGGATCCGTATTTATCTCTGTCACAAAG	GBS pplD
BamHI-F		deletion with a
Spec-PpID-	CTCACTATTTTGGTCGACGCTAAGAAGTAATATCCTTCC	nonpolar
GBS-R1		spectinomycin
PpID-GBS-	GATATTACTTCTTAGCGTCGACCAAAATAGTGAGGAG	resistance
spec-F1		cassette
Spec-PpID-	AAAATTATAAGGATCGATGATGGAAATGCCGATTTC	
GBS-F2		
PpID-GBS-	GGCATTTCCATCATCGATCCTTATAATTTTTTTAATCTG	
spec-R2		

PpID-GBS- Xhol-F	GCGCG <u>CTCGAG</u> TTGGCAGTGATTGCTATTG	
sfGFP_BspH	GAGA <u>TCATGA</u> GCAAAGGAGAAGAACTTTTCAC	Construction of
gfp-0799-R	GCCCCCAGTATTACCACCTCCACCTTTGTAGAGC	pKV1644
gfp-0799-F	ACAAAGGTGGAGGTGGTAATACTGGGGGGGGAAC	
0799-Hind	CAG <u>AAGCTT</u> AACCAACTTTTAAAGTTTGACCAATATAAAT TG	
PpID-Ncol-f	CGTGAGCCATGGAAACACCTGTCAAGATCCC	Construction of
PpID-XhoI-r2	GCGCGCTCGAGTTATGGTTCCATTGTTTGTAAAAG	pCDF-PpID
PpID-HindIII-f	CGCGCAAGCTTGTTACAATAGAGGTACTTATATC	Construction of
PpID-BamHI- r2	CGTCT <u>GGATCC</u> TTATGGTTCCATTGTTTGTAAAAG	pppID
PpID-GAS- check-f	CTTGGACCAAGCAAGAAACAC	Verification of GAS∆ <i>ppID</i>
PpID-GAS- check-r	CTTCCCATTTCGGTTAGTCC	
gacHNZ- check-F	CTGTGGATAGTTTTACTTGTC	Verification of GAS∆gacH
gacHNZ- check-R	CAACAGAAATAATTGTTCCC	
PpID-SMU- check-f	CCCATCCTGATTTATCTGCTTC	Verification of SMUΔ <i>ppID</i>
PpID-SMU- check-r	CCATCGTTAGCACTAGCTAGGC	
ppIDGBS- check-f	CCATGCTGTTCATGTTATGG	Verification of GBSΔ <i>ppID</i>
ppIDGBS- check-r	GCATTTGTTGAACGTTGAGG	
H105A F	CCCAATTTTAATGTATGCTGCTATTCATGTAATGTCC	H105A mutation
H105A_R	GGACATTACATGAATAGCAGCATACATTAAAATTGGG	in PpID, construction of p <i>ppID</i> -H105A
D167N_F	CGCCCTTAGACACGCTACCGCTACCAGATGGTAGAGCA AC	D167N mutation in PpID,
D167N_R	CAATCATACTGTCATTAAATGTTAGCCATACAAC	construction of p <i>ppID</i> -D167N and p <i>ppID</i> - H105A/D167N

^a Restriction sites are underlined. ^b Extensions complementary to the antibiotic resistance cassettes or GFP are in bold.

Supplementary Fig. 1. A proposed mechanism of GAC biosynthesis.

GAC biosynthesis is initiated on the inner leaflet of the plasma membrane by GacO which transfers GlcNAc from UDP-GlcNAc to undecaprenyl phosphate (Und-P) producing GlcNAc-P-P-Und ¹⁶. The lipid serves as a membrane-anchored acceptor for GacB-mediated transfer of the first sugar residue, L-Rha, from TDP-β-L-Rha to form Rha-GlcNAc-P-P-Und ²⁵. The GacC, GacF and GacG glycosyltransferases participate in the elongation step forming the polyrhamnose backbone and capping the structure with unknown sugar residue. Polyrhamnose is transferred to the outer leaflet of the membrane presumably by the GacD/GacE ABC transporter. In the inner leaflet of the membrane, GacI aided by GacJ produces GlcNAc-P-Und ¹⁶ which then diffuses across the plasma membrane to the outer leaflet aided by GacK. Subsequently, GacL transfers GlcNAc to polyrhamnose using GlcNAc-P-Und as glycosyl donor ¹⁶. GacH attaches GroP to the GlcNAc side-chains using phosphatidylglycerol as GroP donor ²². Lastly, protein members of the LytR-CpsA-Psr phosphotransferase (LCP) family presumably attach GAC to peptidoglycan. Several details of this biosynthetic scheme are still speculative. But the overall organization is consistent with other isoprenol-mediated polysaccharide pathways.

Supplementary Fig. 2. Illustration of reaction mechanisms for hydrolysis of sugar 1phosphates by 0.02 N HCI and deaminative cleavage of GIcN-1-phosphate by HONO.

(a) Acid hydrolysis of GlcNAc 1-phosphate (and hexose 1-phosphates) proceeds efficiently by protonation of the O1-oxygen residue, facilitated by the resonance-stabilized oxonium ion intermediate. (b) The positively-charged GlcN-ammonium ion destabilizes the adjacent formation of the oxonium ion intermediate, preventing resonance stabilization of the intermediate. (c) Nitrous acid (HONO) forms a diazonium salt at the 2-position of GlcN; intramolecular attack of the GlcN ring oxygen on the diazonium center leads to a bicyclic oxonium intermediate and loss of nitrogen gas. Attack by water on the phosphodiester breaks the C1-O1 bond with concomitant opening of the strained three-membered oxonium ring, resulting in the formation of 2,5-anhydromannose and release of the 6-phosphate MurNAc monoester ^{26,27}.

Supplementary Fig. 3. Release of GAC from the GAS cell wall by sequential treatment with either mild acid or HONO.

(a) GAC cell wall was subjected to HONO deamination, reisolated, and treated with mild acid. (b) GAC cell wall was subjected to mild acid hydrolysis, reisolated and deaminated with nitrous acid. Mild acid hydrolysis and nitrous acid deamination were conducted as described in Methods. The amount of GAC released from cell wall was estimated by the modified anthrone assay and normalized to total GAC content in cell wall. Symbols and error bars represent the mean and S.D. respectively (n = 3 biologically independent replicates). Source data are provided as a Source Data file.

Supplementary Fig. 4. Chemical yield of 2,5-anhydromannitol by HONO deamination of hexosamines.

HONO deamination reactions contained 0.2 N Na acetate, pH 4.5, 1.5 M NaNO₂, and 400 nmol of either GlcN (left column) or GlcN 1-phosphate (right column) in a total volume of 0.01 mL. After 90 min at room temperature, the reactions were stopped by the addition of NH₄OH and NaBH₄ to a final concentration of 1.5 M and 100 mg/mL, respectively. The reduction reaction was stopped after 2 h by the addition of acetic acid (5 μ L) and the reactions were dried repeatedly out of methanol/0.1 % acetic acid under a stream of air to remove borate. The reactions were dissolved in water (344 μ L) and an aliquot (5 μ L) was taken for analysis. Mannitol (5 nmol, internal standard) was added and the aliquots were dried under air, peracetylated and analyzed by GC/MS as described in Methods for alditol acetate analysis. GlcN-1-phosphate concentration was verified by total phosphate analysis using the malachite green procedure. The amount of 2,5-anhydromannitol formed was calculated as described in Methods using authentic 2,5-anhydromannitol as standard. Symbols and error bars represent the mean and S.D. respectively (n = 3 biologically independent replicates). Source data are provided as a Source Data file.

Supplementary Fig. 5. The domain organization of AtlA^{Efs} and the corresponding

fluorescent fusion probe GFP-AtIA^{Efs}. GH73 (cyan) denotes the catalytic domain; SP (yellow) indicates signal peptide.

Supplementary Fig. 6. Structure-based sequence alignment of extracellular domains of GAS PpID and S. *pneumoniae* PgdA.

Residues implicated in the catalytic mechanism are highlighted in blue. The secondary structure elements are indicated above (PDB ID 6DQ3) and below (PDB ID 2C1G) ⁸ alignment.

Supplementary Fig. 7. Incubation of GAS WT, GAS $\Delta ppID$, GAS $\Delta pgdA$, GAS $\Delta ppID\Delta pgdA$, with lysozyme.

Bacterial strains were grown to an OD_{600} of 0.5, centrifuged and resuspended in the same volume of sterile PBS with either 1 mg mL⁻¹ lysozyme, 62.5 U/ml mutanolysin (positive control) or no enzyme added (negative control). The bacterial suspension was incubated for 0, 1, 2, 3 and 18 h at 37°C. Lysis was monitored as the decrease in OD_{600} . Results were normalized to the OD_{600} at time zero (OD_{600} of 0.5). Data are mean values ± S.D., n = 3 biologically independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 8. Analysis of lysozyme sensitivity of GAS mutants deficient in *N*-deacetylases PgdA and PpID.

(a) Dot-blot analysis for the water-soluble form of GAC released from the WT GAS, GAS Δ *ppID*, GAS Δ *pgdA* and GAS Δ *ppID* Δ *pgdA* cells by lysozyme. GAS samples (OD₆₀₀ of 0.5) incubated for 0 and 18 h with or without lysozyme (1 mg mL⁻¹) were centrifuged (16,000 g, 3 min). The supernatant was concentrated using SpeedVac vacuum concentrator. 5 µl supernatant was spotted on a nitrocellulose membrane. GAC released to the supernatant was detected by anti-GAC antibodies as outlined in Methods. The experiment was performed independently three times and yielded the same results. Representative image from one experiment is shown. (b)

Immunoblot of the supernatant (representative image in Supplementary Fig. 8 **a**) collected after 0 (left panel) and 18 h (right panel) of incubation was quantified using ImageJ. Data are mean values \pm S.D., n = 3 biologically independent experiments. *P* values were calculated by two-way ANOVA with Tukey's multiple comparisons test. Source data are provided as a Source Data file. (**c**) Lysozyme sensitivity as tested in drop test assay using WT GAS, GAS Δ *ppID*, GAS Δ *ppdA*, GAS Δ *ppID* Δ *pgdA* and GAS Δ *ppID*:p*ppID*. Drop test assay experiment was performed at least three times.

Supplementary Fig. 9. Phylogenetic analysis of PpID homologs.

A phylogenetic tree was generated using the predicted extracellular domains of 86 PpID homologs. The extracellular domains were predicted using the TMHMM server (http://www.cbs.dtu.dk/services/TMHMM/)²⁸. There were a total of 234 amino acid positions in the final dataset. The Maximum Likelihood method and JTT matrix-based model ²⁹ were used for evolutionary analysis of PpID homologs. The tree with the highest log likelihood (-16354.06) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with

branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGA X ^{30,31}. Streptococcal species are shown in black, non-streptococcal species are depicted in purple. *S. pyogenes, S. mutans, S. agalactiae, S. equi* and *S. thermophilus* are shown in green. Sequences of PpID homologs are provided as a Source Data file.

	i	10	20	зö	4 <u>0</u>	5 Q	6 Q
S.agalactiae A909	MAHTPT	SHRKPRK	RSPWLAIASVI	FLLIALIGIE	FLFFNNRSKOF	IKTKTNASSH	RKIVTS
0.agalacilae COTT	MANIFI	SHKKFKK	KSPWLAIASVI	FEETALIGI	LIFFANKSKOL	I KIKINASSA	IKKIVIS
		7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	100	110	120
S.agalactiae A909 S.agalactiae COH1	IKKKKW	VKQKTPV	KIPILMYHAVI	IVMDPSEAASA	ANLIVAPDIFE ANI.IVAPDIFE	SHIKRLKKEG	YYFLAP
e.agaiaeilae e erri							
		130	140	150	160	17 <u>0</u>	180
S.agalactiae A909 S.agalactiae COH1	N E A Y R A N E A Y R A	LNENALP	EKKVIWITFDI EKKSHLDYF.	OGNADFYTKAS	YPILKKYKVK#	ATNNIITGFVQ	EGRESN
		100					
S.agalactiae A909	LNVOOM	ILEMKONG	200 MSFOGHTVTHI	219 PNLSLLTPELO	229 DTOEMTLSKLE	LDOKLSODTI	AIAYPS
S.agalactiae COH1							• • • • • •
		250	260	270	280	290	
S.agalactiae A909	GRYNPI	TLDIASQ	YYKLGLTTNEC	GVATKDNGLLS	SLNRVRILPTI	SDDDLIKTIN	Q
S.agalactiae COH1		• • • • • • • •	•••••			• • • • • • • • • • • •	•
	i	1 <u>0</u>	20	3 <u>0</u>	4 Q	5 Q	6 Q
S.thermophilus ASCC 1275 S.thermophilus LMG 18311	M T S Q K K M T S O K K	KTSQVKR KTSOVKR	KKLKLLLLVLI	NLVLLGLLAV	FMLNRPNQSTS	SNKQQNQTSQS	SKSTAKW
		2					
		7 <u>0</u>	8 <u>0</u>	9 Q	100	110	120
S.thermophilus ASCC 1275 S.thermophilus LMG 18311	KTYDDF •••••	PVQIPILM	YHAVHVMDPS1	EASNANLIVAI	PDNFEAQIKAN	4VDAGYYFLTF •••••	• E E A Y K A
S thormonbiluo ASCC 1275	DODNU	130		150	160	170	180
S.thermophilus LMG 18311	FSENVL	•••••••	LTFDDGNEDF:	·····		rgfvkkgnvgn	
S thermonhilus ASCC 1275	кемман	IGMSFOSH	200 TVNHPDI.SVTI	219 388 TOKDEL TI	ZZŲ NSTDFLEDKLI	230 1760 1760 1760 1760 1760 1760 1760 1760	240 GRYNOT
S.thermophilus LMG 18311					••••••		
		250	260	270	280	290	
S.thermophilus ASCC 1275	TLGLAK	KTYKLGL	TTNEGLASANI	DGLISLNRVRI	ILPTTTAKGLI	SKITTDNK	
S.thermophilus LMG 18311							

Supplementary Fig. 10. Frame-shift mutations in *ppID* homologs result in truncated protein products in some streptococci strains.

Supplementary Fig. 11. SDS-PAGE of ePpID purified from E. coli

ePpID was purified from *E. coli* Rosetta (DE3) cells carrying pCDF-PpID as described in Methods. Protein was separated on 4-12% Bis-Tris Precast gel (GenScript). Representative image from two independent experiments is shown. Uncropped gel image is provided as a Source Data file.

Supplementary references

- 1 Fadouloglou, V. E. *et al.* Structure determination through homology modelling and torsion-angle simulated annealing: application to a polysaccharide deacetylase from Bacillus cereus. *Acta Crystallogr D Biol Crystallogr* **69**, 276-283, (2013).
- 2 Arnaouteli, S. *et al.* Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis. *J Biol Chem* **290**, 13465-13478, (2015).
- 3 Andreou, A. *et al.* The putative polysaccharide deacetylase Ba0331: cloning, expression, crystallization and structure determination. *Acta Crystallogr F Struct Biol Commun* **75**, 312-320, (2019).
- 4 Little, D. J. *et al.* Structural basis for the De-N-acetylation of Poly-beta-1,6-N-acetyl-Dglucosamine in Gram-positive bacteria. *J Biol Chem* **289**, 35907-35917, (2014).
- 5 Nishiyama, T., Noguchi, H., Yoshida, H., Park, S. Y. & Tame, J. R. The structure of the deacetylase domain of Escherichia coli PgaB, an enzyme required for biofilm formation: a circularly permuted member of the carbohydrate esterase 4 family. *Acta Crystallogr D Biol Crystallogr* **69**, 44-51, (2013).
- 6 Little, D. J. *et al.* The structure- and metal-dependent activity of Escherichia coli PgaB provides insight into the partial de-N-acetylation of poly-beta-1,6-N-acetyl-D-glucosamine. *J Biol Chem* **287**, 31126-31137, (2012).
- 7 Little, D. J. *et al.* The protein BpsB is a poly-beta-1,6-N-acetyl-D-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica. *J Biol Chem* **290**, 22827-22840, (2015).
- 8 Blair, D. E., Schuttelkopf, A. W., MacRae, J. I. & van Aalten, D. M. Structure and metaldependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. *Proc Natl Acad Sci U S A* **102**, 15429-15434, (2005).
- 9 McShan, W. M. *et al.* Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. *Journal of bacteriology* **190**, 7773-7785, (2008).
- 10 Sumby, P. *et al.* Evolutionary origin and emergence of a highly successful clone of serotype M1 group a Streptococcus involved multiple horizontal gene transfer events. *J Infect Dis* **192**, 771-782, (2005).
- 11 Koga, T., Asakawa, H., Okahashi, N. & Takahashi, I. Effect of subculturing on expression of a cell-surface protein antigen by *Streptococcus mutans*. *Journal of general microbiology* **135**, 3199-3207, (1989).
- 12 Boschwitz, J. S. & Timoney, J. F. Characterization of the antiphagocytic activity of equine fibrinogen for Streptococcus equi subsp. equi. *Microb Pathog* **17**, 121-129, (1994).
- 13 Tettelin, H. *et al.* Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". *Proc Natl Acad Sci U S A* **102**, 13950-13955, (2005).
- 14 Gogos, A., Jimenez, J. C., Chang, J. C., Wilkening, R. V. & Federle, M. J. A Quorum Sensing-Regulated Protein Binds Cell Wall Components and Enhances Lysozyme Resistance in Streptococcus pyogenes. *J Bacteriol* **200**, (2018).
- 15 Chaffin, D. O., Beres, S. B., Yim, H. H. & Rubens, C. E. The serotype of type Ia and III group B streptococci is determined by the polymerase gene within the polycistronic capsule operon. *J Bacteriol* **182**, 4466-4477, (2000).
- 16 Rush, J. S. *et al.* The molecular mechanism of N-acetylglucosamine side-chain attachment to the Lancefield group A carbohydrate in *Streptococcus pyogenes*. *J Biol Chem* **292**, 19441-19457, (2017).

- 17 Mashburn-Warren, L., Morrison, D. A. & Federle, M. J. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. *Mol Microbiol* **78**, 589-606, (2010).
- 18 Le Breton, Y. & McIver, K. S. Genetic manipulation of *Streptococcus pyogenes* (the Group A Streptococcus, GAS). *Current protocols in microbiology* **30**, Unit 9D 3, (2013).
- 19 Rajagopal, L., Vo, A., Silvestroni, A. & Rubens, C. E. Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae. *Mol Microbiol* **56**, 1329-1346, (2005).
- 20 Chaffin, D. O. & Rubens, C. E. Blue/white screening of recombinant plasmids in Grampositive bacteria by interruption of alkaline phosphatase gene (*phoZ*) expression. *Gene* **219**, 91-99, (1998).
- 21 Jeng, A. *et al.* Molecular genetic analysis of a group A Streptococcus operon encoding serum opacity factor and a novel fibronectin-binding protein, SfbX. *J Bacteriol* **185**, 1208-1217, (2003).
- 22 Edgar, R. J. *et al.* Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides. *Nature chemical biology* **15**, 463-471, (2019).
- 23 Korotkov, K. V., Delarosa, J. R. & Hol, W. G. J. A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli. *Journal of structural biology* **183**, 354-362, (2013).
- 24 Korotkov, K. V. & Hol, W. G. J. Structure of the GspK-GspI-GspJ complex from the enterotoxigenic *Escherichia coli* type 2 secretion system. *Nat Struct Mol Biol* **15**, 462-468, (2008).
- 25 Zorzoli, A. *et al.* Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved alpha-d-GlcNAc-beta-1,4-l-rhamnosyltransferase. *J Biol Chem* **294**, 15237-15256, (2019).
- 26 Dmitriev, D. A., Knirel, Y. A. & Kochetkov, N. K. Selective cleavage of glycosidic linkages: studies with the model compound benzyl 2-acetamido-2-deoxy-3-*O*-β-Dgalactopyranosyl-α-D-glucopyranoside. *Carbohydrate research* **29**, 451-457, (1973).
- 27 Erbing, C., Lindberg, B. & Svensson, S. Deamination of Methyl 2-Amino-2-deoxy-alphaand -beta-D-glycopyranosides. *Acta Chemica Scandinavica* **27**, 3699-3704, (1973).
- 28 Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J Mol Biol* **305**, 567-580, (2001).
- 29 Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. *Computer applications in the biosciences : CABIOS* **8**, 275-282, (1992).
- 30 Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Molecular biology and evolution* **35**, 1547-1549, (2018).
- 31 Stecher, G., Tamura, K. & Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. *Molecular biology and evolution* **37**, 1237-1239, (2020).