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ABSTRACT 

Aluminum is environmentally ubiquitous, providing human exposure. Usual human exposure is 

primarily dietary. The potential for significant Al absorption from the nasal cavity and direct 

distribution into the brain should be further investigated. Decreased renal function increases human 

risk of Al-induced accumulation and toxicity. Brain Al entry may involve transferrin-receptor 

mediated endocytosis and a more rapid process transporting small molecular weight Al species. 

There appears to be Al efflux from the brain, probably as Al citrate. There is prolonged retention of a 

fraction of Al that enters the brain, suggesting the potential for accumulation with repeated exposure. 

Al is a neurotoxicant in animals and humans. It has been implicated in the etiology of sporadic 

Alzheimer's disease (AD) and other neurodegenerative disorders, although this is highly 

controversial. This controversy has not been resolved by epidemiological studies, as only some found 

a small association between increased incidence of dementia and drinking water Al concentration. 

Studies of brain Al in AD have not produced consistent findings and have not resolved the 

controversy. Injections of Al to animals produce behavioral, neuropathological and neurochemical 

changes that partially model AD. Aluminum has the ability to produce neurotoxicity by many 

mechanisms. Excess, insoluble amyloid β protein (Aβ) contributes to AD. Aluminum promotes 

formation and accumulation of insoluble Aβ and hyperphosphorylated tau. To some extent, Al 

mimics the deficit of cortical cholinergic neurotransmission seen in AD. Al increases Fe-induced 

oxidative injury. The toxicity of Al to plants, aquatic life and humans may share common 

mechanisms, including disruption of the inositol phosphate system and Ca regulation. Facilitation of 

Fe-induced oxidative injury and disruption of basic cell processes may mediate primary molecular 

mechanisms of Al-induced neurotoxicity. Avoidance of Al exposure, when practical, seems 

prudent.  

 

Running head: The toxicology of aluminum in the brain 

Key words: Aluminum, Alzheimers’s disease, amyloid-β protein, neurofibrillary tangle, neurotoxicity 
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 I. Aluminum is common in the environment.  

It is the third most common element and the most common metal of the earth's crust. 

Although most Al exists as insoluble aluminosilicates and Al oxides, it does present the opportunity 

for human exposure and provides ubiquitous contamination.  

 

II. Usual human exposure is primarily dietary.  

The primary Al sources for the human are food, water, antiperspirants and airborne 

contaminants. Foods with high Al content include tea, herbs and spices, grain products, processed 

cheeses and salt (Pennington, 1987). Typical adult dietary Al intake is ≈ 5-10 mg/day (Pennington 

and Schoen, 1995), nearly all from food. Drinking water provides about 1% of normal daily Al 

intake. It has been suggested that Al bioavailability from water is greater than from food, based on the 

presence of ligands in food that might complex Al, to possibly inhibit its oral absorption. However, 

one study suggests comparable Al bioavailability from food and water (Stauber et al., 1999). This 

needs to be more rigorously assessed. Recent studies in humans consuming 27Al in drinking water 

and rats dosed with 26Al under conditions that model drinking water consumption suggest oral Al 

bioavailability from water is ≈ 0.3% and is not influenced by food in the stomach or water 

hardness (Stauber  et al., 1999; unpublished results).  

To determine Al absorption from topical application of antiperspirants, 26Al was 

incorporated into aluminum chlorohydrate and applied to the underarms of two adults (Flarend et 

al., 2000). Approximately 0.02% of the applied 26Al appeared in the urine.  

Pulmonary Al absorption is dependent on particle size. Pulmonary Al absorption from small 

particles in an industrial setting was estimated to be 1-2% (Gitelman et al., 1995; Pierre et al., 

1995).  

 

III. It has been suggested that Al may be absorbed from the nasal cavity.  
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Substances in the nasal cavity might be absorbed into systemic circulation, into the perineural 

space surrounding the olfactory neuron, and directly into the brain through the olfactory neurons 

(Roberts, 1986). Many substances are well absorbed into systemic circulation from the nasal cavity 

(Landau et al., 1994), from which they could enter the brain through the blood-brain barrier (BBB). 

This would likely result in fairly uniform distribution throughout the brain. The perineural space that 

ensheaths neurons is continuous with the CSF compartment that surrounds the brain (reviewed by 

Jackson et al., 1979). Substances can rapidly appear in CSF after application to nasal mucosa 

(Czerniawska, 1970), and in the nasal cavity after introduction into CSF (Faber, 1937). Brain access 

via CSF would be expected to produce the highest concentration on the brain surface, at least initially. 

Olfactory neuron processes terminate in the nasal mucosa, where they have a naked cell membrane. 

This is the only site where the CNS is exposed to the environment. These neurons synapse with 

pathways in the olfactory bulb that subsequently connect with many brain regions (Tjälve and 

Henriksson, 1999), providing the opportunity for substances to enter the brain if they can enter the 

olfactory neuron and can then distribute across synapses. Absorption by this route would be expected 

to produce highest concentrations in the olfactory bulb initially with later increases in the brain.  

Inhalation or instillation of inorganic Cd, Hg and Ni into the rat nasal cavity resulted in their 

appearance in the olfactory bulb. Significant metal distribution was not seen into other brain regions. 

In contrast, Mn was found in several brain regions after its intranasal application, suggesting its ability 

to distribute across synapses. For a review see Tjälve and Henriksson (1999). 

Perl and Good (1987) implanted Gelfoam saturated with 15% Al lactate or 5% Al chloride 

into the nasal recess of rabbits. Neuropathological changes and elevated Al were seen in the olfactory 

bulb, pyriform cortex, hippocampus and cerebral cortex 1 month later, suggesting Al absorption and 

trans-synaptic distribution. Preliminary results using PIXE analysis revealed Al in brain stem nuclei in 

rats exposed to Al chlorohydrate by inhalation, but not in non-Al exposed controls, suggesting 

olfactory nerve uptake and trans-synaptic distribution (Divine et al., 1999). Rats exposed to a 

lipophilic Al species under conditions designed to maximize inhalation via the nasal-olfactory system 
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had elevated brain Al (Zatta et al., 1993). However, the Al distribution was not consistent with 

absorption by the olfactory nerve. The extent of brain Al uptake via the olfactory nerve should be 

determined.  

 

IV. Some humans are at increased risk of Al-induced accumulation and neurotoxicity. 

Aluminum is primarily excreted in the urine. Dialysis is a substitute for renal function. 

However, it does not efficiently clear phosphate. Phosphate excretion can be enhanced by Al, which 

forms insoluble Al phosphates in the gastrointestinal tract. However, when massive amounts of Al are 

consumed to bind phosphate, or as an antacid, in the absence of adequate renal function, Al 

accumulation and toxicity can result. Al accumulation can develop in renal-impaired people when Al 

is present in dialysis fluids or is given parenterally. The neurological manifestations of Al 

accumulation in renal-impaired humans are characterized by the dialysis encephalopathy syndrome 

(DES) (Alfrey et al., 1976). Al is significantly elevated in brain and neurons in DES (Alfrey et al., 

1980; Reusche, 1997). Neurofibrillary tangles (NFTs), senile plaques and cerebrovascular amyloid, 

which are seen in AD, are not routinely seen in DES. Although generally well recognized and 

avoided, DES still occurs due to contamination of dialysis fluid (Simoes et al., 1994; Berend et al., 

2000) and consumption of Al-containing drugs (Reusche, 1997). Aluminum-induced anemia and 

bone toxicity occur with lower, more prolonged, exposure.  

Toxicity does not appear to result from oral intake of massive amounts of Al by humans who 

have adequate renal function. However, neurotoxicity can occur in renal-intact humans after alum 

instillation into the urinary bladder to stop hemorrhaging (Phelps et al., 1999) and has been suggested 

to result from neurosurgical implants of Al-containing biomaterials (Renard et al., 1994).  

 

V. Brain Al entry may involve transferrin-receptor mediated endocytosis and a more rapid 

process transporting small molecular weight Al species.  

The primary site of distribution between blood and brain is the BBB (Pardridge, 1997). The 
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anatomical basis of the BBB is the tight junctions between the cells surrounding the microvessels that 

perfuse the brain (visit http://www.sfn.org/briefings/blood-brain.html). The predominant Al species 

in plasma is Al-transferrin. It has been suggested that Al enters the brain through the BBB via 

transferrin-receptor mediated endocytosis (TfR-ME) (Roskams and Connor, 1990). We administered 

iv 26Al-transferrin to rats and determined the brain and blood 26Al concentrations 1 day later 

(unpublished results). The amount of Al in the brain (0.005% of the dose) could have been transported 

into the brain by TfR-ME in < 1 hr if Al transfer clearance from blood to brain is the same as for Fe  

(Morris et al., 1992: Ueda et al., 1993). The primary small molecular weight Al species in plasma is 

Al-citrate. When Al-citrate was administered iv, the rate of brain Al appearance was too rapid to be 

due to diffusion or TfR-ME, suggesting another mechanism of brain Al entry (Allen and Yokel, 

1992). The mechanism of this influx is unknown.  

  

VI. Al appears to be actively effluxed from the brain, probably as Al citrate.  

When constant Al concentrations were achieved in blood and brain extracellular fluid (ECF), 

determined by microdialysis sampling, the brain/blood Al ratio was ~ 0.15 (Allen et al., 1995). This 

suggests a carrier-mediated process effluxing Al from brain ECF. It is unlikely TfR-ME mediates 

brain Al efflux, due to very low or no Al-transferrin in brain ECF and the inadequate rate of TfR-ME 

to mediate brain Al influx under these conditions, much less a more rapid efflux. The predominant Al 

species in brain ECF is probably Al-citrate, due to the much lower transferrin and higher citrate 

concentrations in brain than blood ECF. Transferrin free sites in CSF are ≤ 0.25 µM versus 50 µM in 

plasma. CSF citrate is 180 µM versus 100 µM in plasma (Martin, 1997). We suggested that 

monocarboxylate transporter isoform 1 (MCT1) mediates Al-citrate efflux from brain ECF (Ackley 

and Yokel, 1997; 1998). Recent studies do not support this (unpublished results).   

 

VII. A fraction of Al that enters the brain is retained for some time. 

The positive correlation between brain Al and human age (McDermott et al., 1979; 

http://www.sfn.org/briefings/blood-brain.html;
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Markesbery et al., 1984) suggests Al persistence in the brain. We assessed this by giving 26Al-

transferrin iv to rats and euthanizing them 0.2 to 128 days later. Brain Al did not significantly 

decrease, suggesting a rat brain Al  half-life > 100 days (unpublished results).  

 

VIII. Aluminum is a known neurotoxicant.  

The initial observation of Al-induced neurotoxicity was of Al tartrate-induced neuronal 

degeneration in rabbits and hindlimb weakness and convulsive movements in dogs (Siem, quoted by 

Döllken, 1898). Al phosphate injection intracerebrally or into the cisterna magna of rabbits produced 

ataxia, convulsions and neurofibrillary degeneration (NFD) approximately 9-14 days later (Klatzo et 

al., 1965). The route of exposure, abrupt onset, and profound convulsions do not mimic AD or its 

progression. Al-induced NFD is characterized by orderly bundles of 10 nm filaments; not modeling 

the paired, 10-nm wide, helix wound filaments found in AD, the amyotrophic lateral sclerosis 

parkinsonism dementia complex (ALS-PD), and other neurodegenerative disorders (Wisniewski et 

al., 1970). Some feel that the differences in neuropathology produced by intracerebroventricular 

(icv) Al versus those seen in AD disprove any link between Al and AD. However, repeated 

subcutaneous Al injection of rabbits also produced NFD (De Boni et al., 1976). Symptom onset was 

delayed, compared to icv Al, and was Al dose dependent, producing an animal model more 

amenable to prolonged study that more closely mimics AD. 

 

VIII. A. Aluminum has been implicated in the etiology of the amyotrophic lateral sclerosis 

parkinsonism dementia complex   

This syndrome has been reported in the indigenous residents of 3 Western Pacific rim 

islands. One theory attributes the cause to the high Al and Mn and low Ca concentrations in the soil, 

and presumably food and water of these people (Yasui et al., 1991). The syndrome produces early 

death, with NFTs that mimic AD, but not the senile (neuritic; amyloid) plaques or cerebrovascular 

amyloid seen in AD. 
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VIII. B. Aluminum has been implicated in the etiology of sporadic forms of Alzheimer's disease. 

 Alzheimer's disease is a progressive deterioration of brain function, characterized initially 

by cognitive deficits including loss of recent memory and impairment of orientation, language, 

problem solving and abstract thinking. The disease progresses, to include psychiatric and 

behavioral disturbances and eventually loss of the ability to perform activities of daily living. 

Hallmark neuropathological signs include NFTs and senile plaques, particularly in the hippocampus 

and temporal and parietal cortices, and cerebrovascular amyloid. Early onset AD is usually familial, 

due to one of several gene mutations which result in increased secretion of neurotoxic amyloid β 

protein (Aβ). Aβ is constituitively formed by normal cells, including brain cells, by cleavage from 

amyloid precursor protein (APP), a family of membrane proteins (Figure 1). Excessive Aβ protein 

can be neurotoxic, as discussed below.  

No specific gene mutations have been associated with late-onset/sporadic forms of AD (Price 

et al., 1998), which account for 85-95% of AD cases (Jones and Oorschot, 1998). Factors that 

increase the risk of AD include age, brain trauma with loss of consciousness, history of dementia in 

relatives, lower educational attainment and socioeconomic status, possession of the APO E ε4 allele, 

and apparently environmental factors. Environmental factors are likely to interact with other factors 

to cause this disease (Cotton, 1994). The main concern about Al accumulation is that it might 

contribute to AD. 

 

VIII. C. Some epidemiological studies showed a positive association between drinking water Al 

and Alzheimer's disease. 

There have been numerous reports from Norway, Great Britain, France, Canada and 

Switzerland investigating the association between AD, dementia and similar endpoints compared to 

the drinking water Al concentration where the subjects live. The water Al concentration data range 

from a single sample per location to 10 year records, but none overlap the lifespan of the subjects. Al 
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was most commonly quantitated by atomic absorption spectroscopy (Table 1). The results of most 

studies (Table 2) suggest a small non-significant increased risk of dementing illnesses for people 

living in areas of higher water Al concentration. There are several reports of negative studies. Two 

groups originally reported increased risk that their subsequent findings failed to support (Martyn et 

al., 1989 and 1997; Michel et al., 1990 and Jacqmin et al., 1994).  Further analysis of the data 

suggests an influence of fluoride, silicon and water pH on the risk (Jacqmin et al., 1994; Forbes et al., 

1995).  

Both the Canadian and United States governments are attempting to obtain further research 

data to help determine if guidelines for Al in drinking water should be established. In Canada, the 

body that sets national drinking water guidelines, the Federal-Provincial Subcommittee on Drinking 

Water, established operational guidance limits based on the precautionary principle. These are 100 

µg/l for conventional treatment plants using alum coagulation and 200 µg/l for a small number of 

plants that use lime softening or direct filtration (visit http://www.hc-

sc.gc.ca/ehp/ehd/catalogue/bch_pubs/dwgsup_doc/aluminum.pdf). Amendments to the 1996 Safe 

Water Drinking Act require the US EPA to publish a list of contaminants which are not subject to 

regulation in drinking water but are known or anticipated to occur in public water systems and which 

may require regulation under this Act.  Al is one of 50 chemicals that are the priority contaminants for 

EPA's drinking water program. Al was included because of new developments and research on Al 

epidemiology indicating a potential link between Al and adverse neurological effects. The EPA 

identified a need for further health and treatment research on Al (EPA, 1998).  

 

VIII. D. Studies have not consistently found an elevation of Al in Alzheimer's disease.   

Bulk brain Al has been reported to be ~ 0.018 mM (wet weight) in normal humans (Yasui et 

al., 1991: Lovell et al., 1993). It has been reported to be 0.10 mM in AD brain (Ward and Mason, 

1987), 0.18 in DES (Alfrey et al., 1980) and 0.34 in ALS-PD (Yasui et al., 1991). Al concentration 

in the cytoplasm of NFT-bearing neurons was reported to be 0.11 mM  (Lovell et al., 1993; and 
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Table 5). 

Numerous studies have been conducted to assess the observation that Al is higher in AD than 

age matched non-AD brains at autopsy (Crapper et al., 1973). Table 3 provides a summary of studies 

of bulk brain Al in AD, and some comparisons to control subjects. Some studies found higher brain 

Al in AD; some did not. These inconsistent findings contribute to the controversies concerning the 

role of Al in the etiology of AD and the possible ability of AD neuropathology to cause neuronal Al 

accumulation. Similarly, some microprobe studies have demonstrated the presence of Al in senile 

plaques and NFTs of AD (Tables 4 and 5). The results of some negative studies have not been 

published. There is considerable variability in the number of observations and completeness of these 

reports. They cannot all be considered scientifically equal. Unfortunately, these studies of Al 

concentration in AD brain, determined by bulk brain, microprobe and staining techniques, have 

yielded inconsistent results. One source of the inconsistencies might be the different detection limits 

of the methods used (Table 1). Another source of positive results is thought by some to be 

contamination. Some have interpreted the results as supporting a role for Al in AD; others have 

interpreted them as refuting that association. Even if brain Al is elevated in AD it would not prove a 

cause-effect relationship, as AD might produce plaques and NFTs that may then bind Al. These 

studies have failed to resolve this controversy.  

 

IX. Aluminum injections to animals produce effects that partially model Alzheimer's disease.  

A 5-fold elevation of brain Al was associated with NFD in the rabbit (De Boni et al., 1976), 

consistent with some reports of small elevations of brain Al in AD. Al given icv produced 

neuropathological changes in the rabbit that partially modeled those seen in AD brain (Forrester and 

Yokel, 1985: Katsetos et al., 1990). Repeated parenteral Al injections to the adult rabbit, which 

produce Al accumulation, resulted in decrements in eyeblink reflex acquisition (Yokel, 1983; 1989; 

Pendlebury et al., 1988). Similar behavioral deficits were seen in AD subjects (Woodruf-Pak et al., 

1990; Solomon et al., 1991; Yokel et al., 1994).  
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Al-induced NFD and AD NFTs positively respond to silver stain and SMI 31, an antibody to 

phosphorylated neurofilaments, suggesting some similarities in protein composition.  However, 

antibodies against tau and microtubule-associated protein 2 strongly stained AD brain, but not rabbit 

brain with icv Al chloride-induced NFD (Kowall et al., 1989), demonstrating differences between 

Al-induced NFD and AD.  

Aluminum can produce accumulation of Aβ protein and hyperphosphorylated tau protein, 

below, modeling changes seen in AD. Injection of Al chloride into the rat brain resulted in staining 

with Alz50 (an antibody raised against an AD-specific protein), although no staining of ubiquitin, tau 

or PHFs (Shigematzu and McGeer, 1992). However, Al maltolate injection into rabbit brain produced 

NFD that contained normal and phosphorylated tau protein and other proteins found in AD brain, 

including APP, Aβ, α1-antichymotrypsin, and ubiquitin (Savory et al., 1995; Huang et al., 1997).  

 

X. Aluminum produces neurotoxicity by many mechanisms. 

Many of the manifestations of Al neurotoxicity have been previously reviewed (Meiri et al., 

1993; McLachlan, 1995). Following is a review of selected neurotoxic actions of Al that may relate to 

neurodegenerative diseases.  

 

X. A. Aluminum promotes formation and accumulation of insoluble amyloid β protein. 

Various mechanisms have been reported to mediate Al-induced promotion of Aβ (Figure 1). 

Intracerebral administration of 0.04 µmoles Al increased brain APP (Shigamatsu and McGeer, 

1992), although Neill et al. (1996) found no change in APP mRNA and APP levels in Al-loaded 

cells and Al-injected rats. Based on the ability of Al to activate serine proteases, it has been 

suggested that it can increase formation of Aβ from APP (Clauberg and Joshi, 1993). Among 12 

metals, Al was the only one that caused APP aggregation at 1 mM (Chong and Suh, 1995), a 

supraphysiological Al concentration.  

Aβ is the 39-42 amino acid C terminus of APP. It is cytotoxic in mM concentrations. Aβ is 
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produced in most, if not all cells, and released as a soluble protein, in α-helical, random coil and 

other conformations. Amyloidosis is amyloid protein accumulation. In AD there is Aβ accumulation 

in blood vessels (cerebrovascular amyloidosis) and in the brain. Aβ is released from brain cells into 

brain extracellular space.  

Senile plaques are extracellular structures consisting of an Aβ core surrounded by 

degenerative and regenerating neuronal axons and dendrites that may contain paired helical filaments 

(PHFs), glial cells and perhaps aluminosilicates. Senile plaques occur in the brain of non-demented 

elderly humans, but are more abundant in AD brain.  

Soluble Aβ can be degraded by Ca-dependent metalloproteinases.  Al was found to inhibit 

Aβ degradation by erythrocyte lysates, apparently by displacing Ca, suggesting it could increase 

brain Aβ exposure (Banks et al., 1996). Several factors can increase the β-sheet conformation of Aβ, 

a polymer of Aβ filaments held together by hydrogen bonding which has a tendency to continue to 

aggregate. The β conformation is associated with amyloid aggregation and neurotoxicity. Al (≥ 50 

µM) decreased α-helix and β-sheet conformations (Exley et al., 1993), demonstrating its ability to 

change the secondary/tertiary structure of Aβ. Further studies showed Al, concentration dependently 

from 0-150 µM Al or at a 1-2 to 1 molar ratio of Al to Aβ, increased the β-sheet conformation and 

Aβ aggregation, (Vyas and Duffy, 1995; Fasman et al., 1995; Laczko et al., 1996). Aluminosilicates 

caused Aβ aggregation, suggesting they can serve as nucleation sites (Candy et al., 1992). Similarly, 

20 µM Al enhanced phosphate-induced formation of aggregated β sheets of an amyloid peptide 

fragment, suggesting Al phosphate may promote this process (Bondy and Truong, 1999). Al, 250 

µM, was one of a few cations that caused Aβ aggregation and its deposition on cell surfaces (Mantyh 

et al., 1993; Kawahara et al., 1994). 

A second protein in the plaque, non-Aβ component of AD amyloid, which appears to 

complex with Aβ, was found to be aggregated by Al. Its cleavage was inhibited by 1-4 mM Al (Paik 

et al., 1997), potentially disrupting normal protein turnover and producing abnormal protein 

degradation.  
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Aβ protein, presumably after it polymerized, formed a cation channel in an artificial 

membrane, which was blocked by 10-20 µM Al (Arispe et al., 1993). The 25-35 amino acid fragment 

of Aβ (Aβ 25-35) also formed an ionophore that allowed Ca influx. It was inhibited by 10 µM Al 

(Sanderson et al., 1997) and was believed to be different from that described by Arispe et al. These 

channels allow Ca influx into the cell, increasing intracellular free Ca, potentially producing 

cytotoxicity.  

Reactive oxygen species (ROS) increased Aβ aggregation (Dyrks et al., 1992). Aβ and Aβ 

25-35 increased ROS production (Hensley et al., 1994; van Rensburg et al., 1997). Aβ-induced ROS 

generation was increased by Fe plus 500 µM Al (Bondy et al., 1998). As discussed below, Al, in the 

presence of Fe, can increase ROS production. This raises the possibility that Al might cause Aβ 

aggregation by ROS production, augment the ability of aggregated Aβ to generate ROS, thereby 

enhancing Aβ aggregation to further promote amyloidosis-induced cytotoxicity.  

 

X. B. Aluminum promotes aggregation of hyperphosphorylated tau protein.  

Tau is a microtubule assembly protein in neurons that promotes tubulin polymerization and 

stabilizes microtubules. Abnormally phosphorylated tau is the principal protein subunit of the PHFs 

that comprise the NFTs of AD  (Singer et al., 1997; Drewes et al., 1998).  

In AD, there is formation of an abnormal, hyperphosphorylated tau. This forms aggregated, 

insoluble PHFs, which persist, suggesting resistance to dephosphorylation. These PHFs appear in the 

NFTs of AD (Figure 2).  

Aluminum has been shown to act on a number of processes that promote the formation of 

PHFs. Al-EDTA, 250 µM, promoted phosphorylation of tau in neuroblastoma cells (Guy et al., 

1991), although 200 µM AlCl3 did not produce this in cultured neurons (Mattson et al., 1993). 

Increased hyperphosphorylated tau associated with elevated brain Al was seen in renal dialysis 

patients (Harrington et al., 1994). Al, 50-300 µM, increased phosphorylated, aggregated tau protein in 

vitro (Abdel-Ghany et al., 1993; Scott et al., 1993; Shin et al., 1994; Savory et al., 1995), as well as 
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phosphorylated neurofilaments in vivo (Muma and Singer, 1996). This may result from Al inhibition 

of hyperphosphorylated tau proteolysis (Yamamoto et al., 1990; Shin, 1997).  It increased the 

antibody response to NFTs, including Tau-2, PHF-1 and Alz-50 (Jones and Oorschot, 1998; Savory 

et al., 1998). Alz-50 is believed to indicate conformational changes that precede or accompany the 

progressive modification and polymerization of tau proteins into PHFs. Murayama et al. (1999) 

provided evidence that Al binds to phosphorylated, but not dephosphorylated, tau protein.  Al 

produces NFD in the rabbit, composed of 10 nm filaments containing tau and abnormally 

phosphorylated neurofilaments, not the PHFs seen in AD (Singer et al., 1997). Several mechanisms 

have been reported to mediate the Al promotion of NFTs and NFD (Figure 2).  

The above effects of Al on Aβ and tau protein suggest mechanisms by which Al may 

contribute to AD.  

 

X. C. Alzheimer's disease is associated with deficits of cortical cholinergic neurotransmission, 

which are mimicked by Al.  

The primary neurotransmitter disruption in AD is a reduction of cholinergic function, 

although numerous other neurotransmitter systems are affected. A decrease in high affinity choline 

uptake appears to occur in some AD victims (Pascual et al., 1991) and was produced by 500 µM Al 

(Johnson and Jope, 1986; Zubenko and Hanin, 1989). A decrease in cortical choline acetyltransferase 

activity is seen in AD, and the Al-exposed animal (Beal et al., 1989; Gulya et al., 1990). Using 

microdialysis, acetylcholine release was found to be lower in Al-loaded rabbits before and during 

acquisition of the eyeblink reflex (Meyer et al., 1996). Each of these changes reflects effects 

detrimental to cholinergic neurotransmission.   

 

X. D. Aluminum increases iron-induced oxidative injury 

 Aluminum is not a transition metal and does not undergo redox reactions in vivo. Alone, it has 

usually been found to not increase oxidative injury. However, increased ROS in the absence of added 
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Fe was found and attributed to electron leakage due to Al-enhanced mitochondrial activity and 

increased electron chain activity (Campbell et al., 1999). Al, 100-400 µM, increased Fe-induced 

oxidative injury in vitro (Gutteridge et al., 1985; Toda and Yase, 1998) and in vivo (Fraga et al., 1990: 

Bondy and Kirsten, 1996). Brain oxidative injury is thought to contribute to neurodegenerative 

disorders, including AD (Christen, 2000). Aluminum increased generation of the hydroxyl radical, a 

ROS (Xie et al., 1995). ROS attack almost all cell components, including membrane lipids, producing 

lipid peroxidation, a form of oxidative stress. Al, 500 µM, increased Fe-induced oxidative stress in 

cultured rat hippocampal neurons, reducing their survival (Xie et al., 1996). It increased Fe-induced 

ROS, at 100 µM, and glutamate-mediated intracellular 45Ca and free Ca in cerebellar granule cells, at 

10 and 300 µM (Mundy et al., 1997). Aluminum and Fe promoted Aβ-induced ROS generation, as 

noted above (Bondy et al., 1998).  Aluminum enhancement of Fe-induced oxidative stress is of 

concern in light of Al and Fe co-localization in NFTs (Good et al., 1992a) and in Parkinson's disease 

(Hirsch et al., 1991). Recent observations of Al-induced oxidative damage and the Al uptake into 

neurons, astrocytes, oligodendrocytes and related cells suggest greater Al uptake by glial cells and 

greater glial than neuronal toxicity. This suggests glial cells may be the primary target of Al-induced 

neurotoxicity (Campbell et al., 1999; Golub et al., 1999; Suarez-Fernandez, et al., 1999).  

 

X. E. Aluminum toxicity to plants, aquatic life and humans may share common mechanisms.  

Mathematical modeling and studies with phosphatidylserine vesicles suggested Al would 

displace Ca from membrane surfaces (DeLeers, 1985). Al displaces Ca from the plasma membrane of 

dividing root cells of plants and from fish gills, causing membrane disruption (reviewed by Kochian 

and Jones, 1997 and Sparling et al., 1997). Al affects other neuronal Ca regulatory proteins, including 

Ca/Mg-ATPase (Mundy et al., 1994) and Ca currents (Koenig and Jope, 1987: Busselberg et al., 

1994). The inositol phosphate signaling system of plants and animals is adversely affected by Al. The 

primary manifestation appears to be inhibition of PIP2 hydrolysis (Shafer and Mundy, 1995; Kochian 

and Jones, 1997). A proposed mechanism of this inhibition is Al substitution at the Ca binding 
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domain on phospholipase C (Kochian and Jones, 1997), suggesting a basic mechanism of Al toxicity.  

 

X. F. The Al-induced increase in iron-induced free radical generation and disruption of 

calcium regulation may constitute some of the primary molecular mechanisms of Al-induced 

neurotoxicity. 

 The mechanisms of neurotoxicity for Cd, Pb, Hg, Mn, Hg and Sn involve multiple sites and 

insults to basic processes of cell function, such as ROS production and interference with Ca 

function (Atchison and Hare, 1994; Bressler and Goldstein, 1991; Koczyk, 1996; Silbergeld, 1992; 

and several chapters in Chang and Dyer, 1995). As elemental ions, this might be expected. It is 

likely that a metal would have multiple sites and mechanisms of toxicity, many due to disruption 

of some of the multiple functions of essential elements, such as Ca. It is less likely that metal 

toxicity would be at a specific receptor, disrupting specific processes, as seen with more 

structurally complex organic toxicants. It is probable that Al has multiple mechanisms of toxicity 

that impact on basic processes, rather than limited sites and mechanisms of toxicity. Therefore, it 

might be expected that these basic mechanisms of Al-induced toxicity occur over a wide range of 

animal and vegetable species. 

 

XI. Should aluminum be avoided?  

Al plays no essential role in mammals; therefore there is no risk of Al deficiency. It is 

harmful in those with reduced/no renal function, including the very young human and end-stage 

renal dialysis patient. It may be one of many factors contributing to non-familial AD and other 

neurodegenerative disorders, although this has not been satisfactorily demonstrated. As concluded 

by Health Canada and the United States Environmental Protection Agency, more research will be 

necessary to understand the potential of Al to cause neurotoxicity. Considering the potential for 

Al-induced neurotoxicity and the lack of a deficiency syndrome, it seems prudent to avoid Al 

exposure when practical.    
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Table 1. Aluminum detection methods 

METHOD DETECTION  
LIMIT 

Instrumental neutron activation analysis (INAA) 1 ppb  (µg/kg) 
Electrothermal atomic absorption spectroscopy (AA) 1 ppb 

Electron energy loss spectroscopy (EELS) > 500 ppm  (mg/kg) 

Energy dispersive (electron probe) X-ray microanalysis 
(EDX) 

> 20 ppm 

Proton probe nuclear microscopy  > 10 ppm 

Secondary ion mass spectrometry (SIMS) 1 ppm 

Laser microprobe mass spectroscopy (LMMS;  
LAMMA) 

1 ppm 

Solachrome azurine stain 20 ppm 
Morin stain ? ppb 
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Table 2. Studies of the relationship between drinking water Al concentration and dementias, 
including Alzheimer's disease. 

 
 

REFERENCEa 
ENDPOINT DRINKING 

WATER 
 [Al] in µg/l 

NUMBER 
OF 

SUBJECT
S 

RISK 

Vogt, 1986 Death from senile 
dementia 

200 vs 20 18,664 1.5* 

Wood et al., 
1988 

Mental test in hip 
fracture patients 

180-250 vs <50 386 N/D 

Martyn et al., 
1989 

Probable AD, based on 
CT scan 

>110 vs <10 1185 1.5 

Flaten, 1990 
 

Dementia on death 
certificate 

>200 vs <50 14,727 1.4 *†,  
females only 

Michel et al., 
1990 

Probable AD 100 vs 10 40 ≈ 4*† 

Neri and 
Hewitt, 1991 

Diagnosis of AD > 200 vs <10 2344 1.5* 

Wettstein et al., 
1991 

Mini Mental Status 
Exam (MMSE) 

98 vs 4 805 N/D 

Jacqmin et al., 
1994 

Cognitive Impairment 
(<24 in MMSE) 

100 vs 5 3777 1.35 @ pH 7 
0.5 @ pH 8.5 

Forster et al., 
1995 

AD vs controls >149 to <50 109 AD N/D 

Forbes et al., 
1995 

AD >336 vs <67 2191 2.4 

McLachlan et 
al.,  1996 

AD vs non-AD >100 vs <100 296 AD 1.7 

Martyn et al., 
1997 

AD vs non-AD 
radiological exam 

>110 vs <15 106 AD N/D 

 
a         in chronological order of publication 
*        statistically significant   
N/D   not statistically different 
†       an Al concentration dependent effect 
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Table 3. Al in the brain of Alzheimer disease subjects, determined by bulk brain analyses.  
 
 

REFERENCEa METHOD # OF SUBJECTS RESULTS 
AD CONTROL 

Crapper et al., 
1973 

AA 5 3 Heterogeneous distribution 
within subjects  
Some overlap of AD & control 
values 
Grand mean AD 4 times controls  

Crapper et al., 
1976 

AA 10 7 Continuation of above 
28% of AD values > 3 SD above 
control value mean 

Trapp et al., 
1978 

AA 4 4 Grand mean AD 1.4 times 
controls * 

McDermott et 
al., 1979 

AA 10 9 No difference AD vs control 

Crapper et al., 
1980 

AA   Al in nuclear and 
heterochromatin fractions of AD 
2 times control values 

Yasui, 1980 INAA 3 3  Non-significant, 1.4 times, 
elevation in AD 

Traub et al., 
1981 

AA 7 4 4 of 7 AD brains in control 
range, abnormal levels only 
minimally elevated 

Markesbery et 
al., 1981 

INAA 12 28 Mean and median of control 1.3 
times AD, maximum AD value > 
max control value 

Yoshimasu et 
al., 1985 

INAA 4 6 Significant elevation in AD 

Ward and 
Mason, 1987 

INAA 28 
 

30 

30 
 

30 

Canadian samples: mean AD 8-
10 times controls * 
UK samples: mean AD 3 times 
controls * 

Jacobs et al., 
1989 

AA 6 4 Control mean 2 times AD mean 

Lukiw et al., 
1991 

AA   Al in dinucleosome fraction 3 
times control values 

Xu et al., 1992 AA 10 10 Approx 2 times as much in 
hippocampus, inferior parietal 
lobule and temporal gyri of AD 
than control *  

Edwardson et 
al., 1992 

AA 8 8 Control mean 1.2 times AD 
mean 

Andrasi et al., 
1995 

AA 9 20 10 brain regions: AD 2.4-8.1 
times control, overall AD 3.8 
times control * 

Bjertness et al., 
1996 

AA 16 14 No difference 

a   in chronological order of publication 
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*  statistically significant 
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Table 4. Aluminum in plaques, determined by microprobe analysis and staining  

REFERENCE a METHOD # OF SUBJECTS RESULTS 

AD CONTROL 
Nikaido et al., 1972 EDX   Al not detected 

Duckett and Galle, 
1980  

EDX 18 3 Highest Al seen in plaques & 
lipofuscin granules in degenerating 
cells of all brains  

Masters et al., 1985 EDX   Al & Si in isolated, intact plaque 
cores 

Candy et al., 1986 EDX   Al & Si in plaques of AD and 
mentally normal - Al 4-19% of 
plaque core 

Candy et al., 1986 SIMS 3  Al in in situ plaque cores 
Stern et al., 1986 LMMS 3  Unable to see Al in purified plaque 

cores 
Mori et al., 1988 EDX   Modest increase in some plaque 

cores & rims 
Jacobs et al., 1989 EDX 7  Al not detected 
Larsson et al., 1990 Proton 

microprobe 
  Al not detected  

Moretz et al., 1990 EDX   No significant difference in AD 
brain 

Chafi et al., 1991 EDX   Al not detected  

Landsberg et al., 
1992 

Proton 
(nuclear) 

microscopy 
techniques 

5 2 <10% of plaque cores had Al, Al 
also detected in background and 
control tissue; Al not detected in 
plaque cores of unstained tissue 

Senitz and Bluthner, 
1990. 

Morin 3  Al detected in dense core of plaque 

Favarato et al., 1992 Morin 5  Staining of plaque core  

Kasa et al., 1995  Solachrome 
azurine 

10 5 Moderate-intense staining of core 
and/or rim of some, not all, plaques 

     

     a  in chronological order of publication 
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Table 5. Aluminum in neurofibrillary tangles, determined by microprobe analysis and staining 

REFERENCEa METHOD # OF SUBJECTS RESULTS 

AD CONTROL 
Terry and Peña, 
1965 

EDX 1  Al not detected 

Perl and Brody, 
1980 

EDX 3 3 Al seen in nucleus & cytoplasm of 
NFT-positive cells in AD (91 & 29%) 
and controls (90 & 11%), but not in 
non-NFT-bearing neurons (2 - 6%) 

Masters et al., 1985 EDX   Excessive Al seen 

Jacobs et al., 1989 EDX 7  Al not detected 
Stekhoven et al., 
1990 

EDX n=5 
LMMS 

n=3 

5  Al not detected 

Moretz et al., 1990 EDX 3  Unable to demonstrate significant Al 

Chafi et al., 1991 EDX 
SIMS 

  Al not detected  

Landsberg et al., 
1991 

Proton 
microprobe 

  Al not detected 

Good et al., 1992b LMMS 10 4 In neurons with NFTs, Al in NFTs > 
cytoplasm, nucleus & neuropil  

Sparkman, 1993 EDX   Al detected in NFTs, but not 
consistently in PHFs 

Lovell et al., 1993 LMMS 7 5 Grand mean [Al] AD cytoplasm of 
NFT-bearing neurons (2.9 µg/gm), 
non-NFT-bearing neurons (2.3); 
control neuron cytoplasm (1.85)   
[Al] > 3 σ above control means: AD 
neurons 9.6-14.3%, control  1.3-1.5%  

Bouras et al., 1997 LMMS 4 3 Al & Fe seen in NFTs in hippocampus 
and inferior temporal cortex, and nuclei 
of NFT-bearing and NFT-free cells of 
AD cases 

Reusche, 1997 LMMS   Al not detected 
Makjanic et al., 
1998 

Nuclear 
microscop

y 

  Al seen in neurons and neuropil of 
fixed, osmicated tissue 
Al not see in unstained, untreated tissue  

Kasa et al., 1995 solachrone 
azurine 

10 5 Weak staining of cortical and 
hippocampal NFTs 

 

a  in chronological order of publication  
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FIGURE CAPTIONS 

 

Figure 1. Amyloid β (Aβ) protein is derived from amyloid precursor protein (APP) in peripheral and 

central cells. It can aggregate and become incorporated into senile plaques, and form a Ca channel. Al 

can increase this process at several steps.  

 

Figure 2. Phosphorylated tau protein can aggregate and be incorporated into neurofibrillary tangles 

(NFTs) in the human and in neurofibrillary degeneration (NFD) in the rabbit. Al can increase this 

process at several steps. 
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FIGURE 2 
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