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Abstract
Novel predator–prey interactions can contribute to the invasion success of non-na-
tive predators. For example, native prey can fail to recognize and avoid non-native 
predators due to a lack of co-evolutionary history and cue dissimilarity with na-
tive predators. This might result in a competitive advantage for non-native preda-
tors. Numerous lady beetle species were globally redistributed as biological control 
agents against aphids, resulting in novel predator–prey interactions. Here, we inves-
tigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) 
toward chemical cues of native lady beetles and non-native Asian Harmonia axyridis 
and European Coccinella septempunctata and Hippodamia variegata in North America, 
hypothesizing that cues of non-native lady beetles induce weaker avoidance behav-
ior than cues of co-evolved native lady beetles. Additionally, we compared aphid 
consumption of lady beetles, examining potential predation advantages of non-
native lady beetles. Finally, we compared cue avoidance behavior between North 
American and European pea aphid populations and aphid consumption of native and 
non-native lady beetles in North America and Europe. In North America, pea aphids 
avoided chemical cues of all ladybeetle species tested, regardless of their origin. In 
contrast to pea aphids in North America, European pea aphids did not avoid cues of 
the non-native H. axyridis. The non-native H. axyridis and C. septempunctata were 
among the largest and most voracious lady beetle species tested, on both continents. 
Consequently, in North America non-native lady beetle species might have a com-
petitive advantage on shared food resources due to their relatively large body size, 
compared to several native American lady beetle species. In Europe, however, non-
native H. axyridis might benefit from missing aphid cue avoidance as well as a large 
body size. The co-evolutionary time gap between the European and North American 
invasion of H. axyridis likely explains the intercontinental differences in cue avoidance 
behavior and might indicate evolution in aphids toward non-native predators.
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1  | INTRODUC TION

Predator–prey interactions shape ecosystems via density- and 
trait-mediated effects (Murdoch et al., 2003; Preisser et al., 2005). 
Density-mediated effects result in the elimination of prey individuals 
by a predator leading to reduced prey population densities (Murdoch 
et al., 2003). Prey adapt to the selection pressure of predators by 
evolving traits that increase the survival during predator attacks (i.e., 
antipredator behaviors). However, changes in these plastic traits 
can come at a fitness cost (i.e., non-consumptive effects; Lima & 
Dill, 1990; Peacor & Werner, 2000). Fitness costs of trait-mediated 
effects can reduce prey population densities to a similar extent as 
density mediated effects (Preisser et al., 2005). Both, density- and 
trait-mediated effects can expand into adjacent trophic levels (i.e., 
trophic cascades or trait-mediated indirect interactions; Ohgushi 
et al., 2012; Terborgh & Estes, 2010).

Predator-induced changes in prey behavior (i.e., antipredator be-
havior) can enhance prey survival upon predator attacks, interfering 
with the detection, encounter, and/or capture of prey (Lima, 1998). 
Prey species have sensory mechanisms to detect and recognize cues 
of co-evolved predators, to effectively respond to a predator attack 
(Lima & Dill, 1990; Rosier & Langkilde, 2011). Predator cues serve 
as sensory information for prey, to recognize co-evolved predators 
and induce antipredator behaviors. Cues that are involved in inter-
specific communication can be visual, vibrational cues, and olfactory 
cues (Fischer et al., 2001; Hermann & Thaler, 2014). Chemical cues 
left by predators persist for some time in nature and can be an indi-
cator of predator presence and predation risk (Bucher et al., 2014). 
Missing co-evolution of predator and prey can lead to a lack of de-
tection and recognition mechanisms of predator cues by prey (Cox 
& Lima, 2006). Non-native predators can therefore benefit from a 
novelty advantage due to lacking or inappropriate antipredator re-
sponse by prey, leading to higher predation pressure (Sih et al., 2010). 
Non-native predators can consequently have stronger consumptive 
effects and weaker non-consumptive effects on prey populations, 
compared to co-evolved predators. If cues of non-native and native 
predator species are similar then a similar response can be expected 
by prey, regardless of predator origin (Sih et al., 2010). Cue sim-
ilarities between predator species can therefore lower the impact 
on prey densities compared to dissimilar non-native predators (Sih 
et al., 2010). In addition, cues of closely genetically-related species 
tend to be more similar compared to cues of distantly genetically re-
lated species, for example, chemical cues within lady beetle genera 
are more similar than between genera (Magro et al., 2010).

Lady beetles leave species-specific chemical cues on the plant 
tissue, which are persistent and long-lasting (Dixon and Dixon, 
2000). The species-specific chemical cues left in the tracks of lady 
beetles consist of cuticular hydrocarbons (Kosaki & Yamaoka, 1996) 
that serve for water proofing (Menzel et al., 2019) and mediate intra- 
and interspecific communication (Doumbia et al., 1998; Hemptinne 
et al., 1998; Menzel et al., 2019; Ninkovic et al., 2013). Recent stud-
ies revealed that the presence of lady beetle chemical cues on host 
plants can induce avoidance behavior in herbivores; for example, 

the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae) (Seo 
et al., 2018), the bird cherry-oat aphid Rhopalosiphum padi (Ninkovic 
et al., 2013), as well as the pea aphid Acyrthosiphon pisum (both 
Hemiptera: Aphididae) (Ünlü et al., 2020).

The pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) 
consists of numerous distinct biotypes, being adopted to host plants 
in its local range (Peccoud et al., 2009a; Peccoud, et al., 2009b). 
Originally of Palearctic origin, North American populations of pea 
aphids co-evolved in agricultural fields with native predators for 
over a century (Thomas, 1878).

Lady beetles (Coleoptera: Coccinellidae) have a history of being 
globally introduced as biological control agents for decades (Harmon 
et al., 2007). Lady beetles are predators of several pest species (e.g., 
aphids and coccids), thus providing a valuable ecosystem service 
in agriculture (Caltagirone & Doutt, 1989; Obrycki & Kring, 1998). 
Among the introduced lady beetle species, the European species 
Coccinella septempunctata and Hippodamia variegata have been re-
leased for biological control of aphids in North America (Angalet 
et al., 1979; Ellis et al., 1999). The earliest establishment of C. 
septempunctata in North America dates back to 1973 (Angalet & 
Jacques, 1975). The establishment history of H. variegata began in 
1984 in North America (Gordon, 1987). Similarly, the Asian Harmonia 
axyridis was introduced as a biological control agent in North 
America and Europe (Tedders & Schaefer, 1994; Trouve et al., 1997). 
The introduction of the Asian H. axyridis in North America started 
in 1916 (Gordon, 1985), but its earliest establishment was in 1988 
(Chapin & Brou, 1991).

In Europe, H. axyridis was introduced in 1995 and the establish-
ment period started in 2000–2001 (Brown et al., 2011). Coccinella 
septempunctata and the Asian H. axyridis are relatively large and 
highly voracious compared to common native aphidophagous 
species (Elliott et al., 1996; Hoki et al., 2014; Ünlü et al., 2020). 
Moreover, both species interfere with native trophic interactions as-
sociated with a lady beetle species decline in the non-native range, 
due to resource competition and intraguild predation (Alyokhin & 
Sewell, 2004; Ware et al., 2009), absence of natural enemies (Roy 
et al., 2011), high abundance (Horn, 1991; Koch, 2003) and high fe-
cundity (Kajita & Evans, 2010) and are therefore classified as inva-
sive species (Roy & Brown, 2015). The contribution of cue avoidance 
behavior of aphids confronted with non-native and native chemical 
lady beetle cues to the invasion success of non-native lady beetles 
remains to be examined.

In this study, we deployed a multi-species approach to compare 
differences in cue avoidance behavior of a North American popu-
lation of pea aphid (Acyrthosiphon pisum) confronted with chemical 
cues of the Asian lady beetle species Harmonia axyridis, the European 
lady beetle species Coccinella septempunctata and Hippodamia var-
iegata and three North American lady beetle species, Coleomegilla 
maculata, Coccinella novemnotata and Hippodamia convergens. Our 
species set consisted of two native and non-native species of the 
same genus Coccinella and Hippodamia, referred to as congeneric, 
expecting similarities between chemical cues (Magro et al., 2010). 
In addition, we compared aphid consumption rates between all lady 
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beetles tested. We hypothesized (a) missing avoidance behavior of 
A. pisum confronted with cues of the non-native H. axyridis, inter-
mediate avoidance behavior confronted with cues of congeneric 
non-native species (Coccinella septempunctata and Hippodamia var-
iegata), due to potential cue similarities and strongest avoidance 
behavior toward native lady beetle cues. (b) We expected higher 
aphid consumption of the larger non-native lady beetle species H. 
axyridis and C. septempunctata compared to smaller lady beetle spe-
cies, regardless of origin. In addition, cue avoidance and consump-
tion experiments were conducted in Europe, using a European pea 
aphid population as prey and non-native H. axyridis, native Coccinella 
septempunctata and Hippodamia variegata as predators. We sub-
sequently compared cue avoidance behavior and consumption of 
North American and European pea aphids confronted with lady bee-
tle species occurring on both continents. We expected (c) missing 
avoidance behavior toward H. axyridis cues in North America and 
Europe. Moreover, we expected the avoidance behavior of European 
pea aphids toward cues of C. septempunctata and H. variegata to be 
stronger in the native European range compared to avoidance be-
havior of North American aphids. (d) We expected no differences in 
aphid consumption of H. axyridis, C. septempunctata, and H. variegata 
between North America and Europe, due to body size-related food 
demands.

2  | MATERIAL AND METHODS

2.1 | Study species North America

The North American pea aphid Acyrthosiphon pisum (Harris) 
(Hemiptera: Aphididae) colony consisted of individuals maintained in 
a colony, which started in 1985 at Iowa State University, Ames, Iowa, 
USA and individuals collected in Lexington, Kentucky in 2003. The 
colony was maintained in the laboratory (at Iowa State University 
and the University of Kentucky) on broad bean plants (Vicia faba, 
variety Windsor). They were kept in cages with six to eight pots 
containing five plants each. Plants were replaced weekly to guar-
antee a fresh food supply for aphids. Aphids were maintained in the 
laboratory in climate chambers (22°C ± 1 and a photoperiod of light 
16 hr: dark 8 hr) and in a climatized laboratory (22°C ± 1 and a pho-
toperiod of light 16 hr: dark 8 hr). The lady beetle species Coccinella 
septempunctata and Colleomegilla maculata were collected in April 
2018 in alfalfa fields and in field margins at an agricultural research 
field station of the University of Kentucky in Lexington, Kentucky, 
USA. The overwintering generation of Hippodamia convergens was 
obtained from Rincon Vitova Insectaries, Ventura, CA, USA, in April 
2018 and stored at low temperatures (5°C). Female and male bee-
tles of these species were subsequently paired in 0.24-liter paper 
cartons, provided with water and fed ad libitum with pea aphids, 
and frozen Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) eggs 
(Beneficial Insectary, Redding, CA, USA). Egg clusters laid by individ-
ual females were collected and placed into a Petri dish. When larvae 
hatched, they were separated into glass vials, sealed with cotton, 

provided with water and fed ad libitum with pea aphids and frozen 
E. kuehniella eggs until pupation. Individuals of Harmonia axyridis 
were field collected in the pupal stage in May-June and kept in Petri 
dishes (circumference: 9.4 cm × height: 1.6 cm) until the adult bee-
tles emerged. Hippodamia variegata individuals were collected from 
an alfalfa field in Le Roy, IL, USA in May/June. In June, C. novemno-
tata was purchased in the larval stage (Lost Ladybug Project, Cornell 
University, Ithaca, New York 14,850), since no individuals were 
found in Kentucky and separately kept in glass vials (see above) until 
they developed to adults. The adult lady beetles were subsequently 
sorted by species and stored in plastic boxes. They were provided 
with water and fed ad libitum with pea aphids, A. pisum and frozen E. 
kuehniella eggs and kept at 22 ± 1°C, at a photoperiod of light 16 hr: 
dark 8 hr. Voucher specimens were preserved in Ethanol (70%) and 
stored under −7 ± 1°C at the Department of Entomology (Animal 
Pathology Building), at the University of Kentucky.

2.2 | Study species Europe

The European pea aphid colony was obtained from the Julius-Kühn 
Institut in Braunschweig, Germany, which had been maintained in 
the laboratory since at least 2007. The aphids were reared on broad 
bean V. faba (v. Sutton Dwarf, Kings Seeds, Manchester) in plastic 
containers (10.0 × 13.5 × 6.5 cm) covered with gaze for aeration 
in climate chambers (20 ± 1°C, L:D 16:8 and 65% relative humid-
ity). Aphids were supplied with fresh plants, weekly. The lady beetle 
species H. axyridis and C. septempunctata were collected in June-
September 2017 and H. variegata in 2018 in grasslands around 
Marburg, Germany. Ladybeetles were kept in small groups, sepa-
rated by species, in Petri dishes (circumference: 9.4 cm × height: 
1.6 cm), fed ad libitum with A. pisum and were kept at (20 ± 1°C, L:D 
16:8 and 65% relative humidity). The data for the European preda-
tion and cue avoidance experiments used for the intercontinental 
comparison are a subset of the European comparison published by 
Bertleff et al. (2020).

2.3 | Cue avoidance experiments

Beetles were sexed prior to the experiments, to ensure a gender-
balanced design (ten male and ten female beetles). Lady beetles 
were sexed by the morphological differences on the terminal 
sternites of females and males (Costopoulos et al., 2014; Harmon 
et al., 2008; Hurst et al., 1999; Nichols & Neel, 1974; Riddick & 
Schaefer, 2005; Stellwag & Losey, 2014). Double leaflets of Vicia 
faba were cut in two halves, one control and one treatment leaf-
let, and separately placed into round Petri dishes (circumference: 
3.5 cm × height: 1.0 cm). A single lady beetle adult was placed on 
the treatment leaflet in the Petri dish for cue deposition (e.g., foot-
prints, feces) and subsequently removed after 12 hr. The control 
leaflet remained without a lady beetle. The control and the treat-
ment leaflet were randomly assigned and placed into the center 
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of each half of a round Petri dish (circumference: 9.4 cm × height: 
1.6 cm); the treatment leaflet was placed into one half of the Petri 
dish, while the control leaflet was placed into the opposite half. 
Ten adult aphids were released into the center of each Petri dish, 
which were capped to prevent aphids from leaving the experimen-
tal arena. The duration of the preparation of the experimental set-
up (between removal of the lady beetle from the treatment leaf 
and the release of aphids) was 60 min. The number of aphids on 
the control and treatment leaflet was counted after 0.25, 0.5, 1.0, 
1.5, 2.0, and 3.0 hr. Twenty replicates were conducted per species 
in the laboratory under 25.10 ± 0.20°C and artificial lightning. The 
leaf choice experiments in Europe were identical except that lady 
beetle individuals were not sexed prior to the experiments, but 
randomly chosen.

2.4 | Predation experiments

Lady beetles were sexed by morphological differences prior to 
the experiments, accounting for potential intraspecific preda-
tion differences of female and male beetles. A single lady bee-
tle adult was subsequently placed into a small round Petri dish 
(circumference: 3.5 cm × height: 1.0 cm) and starved for 24 hr 
prior to the experiment. Thirty pea aphids (second to third nymph 
stage) were counted and placed with a brush into a round Petri 
dish (circumference: 9.4 cm × height: 1.6 cm). A single lady beetle 
was randomly assigned to a Petri dish containing aphids, which 
was capped. Aphid predation was quantified by counting the re-
maining aphids in the Petri dish after 6 hr. In North America, we 
freeze-killed (−7 ± 1°C) lady beetle individuals after the experi-
ments and measured body width (widest horizontal distance of 
closed elytra) and body length (elytral apex to pronotal apex) of 
all beetles used for the predation experiments under a stereomi-
croscope. We followed the procedure of Obrycki et al. (1998) to 
obtain elliptical body area for individual beetles (body area 
(mm2) = (π × 0.5 × body length (mm) × 0.5 × body width (mm)). 
Overall, 20 replicates (ten females, ten males) were conducted per 
species, in the laboratory under 25.41 ± 0.19°C and artificial light-
ning. The predation experiments in Europe were identical, except 

that lady beetle individuals were randomly chosen and not sexed 
prior to the experiments.

2.5 | Statistical analysis

For the cue avoidance experiments in North America and the 
intercontinental comparison, aphid counts on each leaflet were 
analyzed as proportions (aphids on control leaf versus treatment 
leaf). We only considered aphids that made a distinct choice of 
control or the treatment leaflet. We applied a GLMM with a bino-
mial error distribution to analyze differences between cue donator 
species identity (i.e., different lady beetle species) on aphid leaf 
choice. We included cue donator species identity as fixed effects 
and experimental unit (Petri dish identity) and an observation 
level random effect (OLRE) as random effects (to account for re-
peated measurements and overdispersion). We obtained statisti-
cal parameters for the fixed effects via ANOVA (χ2-test) from the 
R-package car (Fox & Weisberg, 2019). Pairwise differences be-
tween cue donator species identity were analyzed with a Tukey's 
contrast test for comparison of means with a Holm correction, to 
account for familywise error rates, using the glht-function from 
the multcomp R-package (Hothorn et al., 2008). We subsequently 
tested for equal distribution of aphids on control versus. treat-
ment leaf (i.e., if aphids avoid lady beetle cues of the respective 
cue donator), by applying a GLMM with binomial error distribu-
tion. Our fixed effects included species identity and experimental 
unit (i.e., repeated measurements) and ORLE (accounting for over-
dispersion) as random effects.

Differences of predation rates in North America after 6 hr and 
body area were respectively analyzed with a Games–Howell post 
hoc test, following a Welch's ANOVA (F test) accounting for het-
eroscedasticity. To test the effects of lady beetle species identity, 
gender and body area on predation rates, we conducted a GLM 
with lady beetle species identity, gender and body area as fixed 
effects with a quasi-poisson error distribution. Statistical parame-
ters for the fixed effects were obtained via ANOVA (χ2-test). The 
intercontinental predation differences between lady beetle spe-
cies were analyzed with a Games–Howell post hoc test, following 

F I G U R E  1   Proportion of pea aphids 
on cue-free control leaflets (mean ± SE) 
in North America. Pea aphids avoided 
leaflets with chemical cues of the native 
lady beetle species (unfilled symbols) 
Coccinella novemnotata (C9), Coleomegilla 
maculata (C. mac), Hippodamia convergens 
(Hipc) and the non-native lady beetle 
species (filled symbols) Harmonia axyridis 
(Hax), Coccinella septempunctata (C7) 
and Hippodamia variegata (Hipv) (p ≤ .02, 
respectively)
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a Welch's ANOVA (F test). All statistical analyses were performed 
with the statistical software R, Version 3.4.0 (R Development Core 
Team, 2017).

3  | RESULTS

3.1 | Cue avoidance in North America

Aphid leaf choice did not differ between cues of the different lady 
beetle species (GLMM; χ2 = 5.80, df = 5, p = .33). Aphids avoided 
leaves previously occupied by all species (Figure 1; H. axyridis: 
z95 = 4.03, p < .01; C. septempunctata: z95 = 4.89, p < .01; C. novem-
notata: z95 = 3.13, p < .01; Col. maculata: z95 = 4.63, p < .01; H. con-
vergens: z95 = 2.72, p < .01 and H. variegata: z95 = 2.35, p = .02).

3.2 | Aphid consumption by lady beetles in 
North America

The number of aphids consumed after 6 hr differed among lady bee-
tle species (Welch's ANOVA; F = 26.13, df = 5, p < .01). Aphid con-
sumption by C. septempunctata and H. axyridis did not significantly 
differ (Games–Howell post hoc test (GH); p = .97; Figure 2). There 
were no differences in aphid consumption between C. novemnotata 
and H. axyridis (GH, p = .48); Aphid consumption of C. novemno-
tata was lower compared to C. septempunctata (GH, p = .03). Aphid 
consumption of C. septempunctata and H. axyridis was respectively 
higher compared to H. convergens, Col. maculata, and H. variegata 
(GH; p ≤ .02).

Body area differed between lady beetle species (Welch's 
ANOVA; F = 248.34, df = 5, p < .01). There were no body area differ-
ences between C. septempunctata and H. axyridis (p = .11; Figure 2) 

The remaining species (C. novemnotata, H. convergens, Col. maculata, 
and H. variegata) were respectively smaller than C. septempunctata 
and H. axyridis (GH; p < .01).

Hippodamia convergens, Col. maculata, and H. variegata were 
smaller than C. novemnotata, (GH; p < .01). There were no size dif-
ferences between H. convergens and Col. maculata (GH; p = 1.00). 
Hippodamia variegata was smaller than Col. maculata and H. conver-
gens (GH; p < .01). Consumption rates of lady beetles can be ex-
plained by species identity (GLM; χ2 = 23.18, df = 5, p < .01), beetle 
gender (GLM; χ2 = 26.32, df = 5, p < .01), and beetle body size (GLM; 
χ2 = 6.23, df = 5, p = .01).

3.3 | Intercontinental comparison of aphid 
cue avoidance

Avoidance behavior of local pea aphids differed between cues of 
different lady beetle species (GLMM; χ2 = 30.56, df = 5, p = .01). 
Avoidance behavior of European aphids was weaker when con-
fronted with H. axyridis cues compared to avoidance behavior of 
North American aphids, C. septempunctata cues from both conti-
nents, and North American H. variegata cues (Tukey's contrasts test 
(TCT); p < .01, respectively; Figure 3). Avoidance behavior was mar-
ginaly higher when confronted with European H. variegata cues com-
pared to European H. axyridis cues (TCT; p = .08). No differences of 
avoidance behavior were observed between the remaining species 
(TCT; p > .29, respectively).

In Europe, A. pisum showed no avoidance confronted with cues of 
H. axyridis (z95 = −1.12, p = .26; Figure 3), but avoidance of C. septem-
punctata cues (z95 = 5.31, p < .01) and H. variegata cues (z95 = 2.59, 
p < .01). In North America A. pisum showed avoidance to H. axy-
ridis cues (z95 = 4.429, p < .01), C. septempunctata cues (z95 = 3.85, 
p < .01), and H. variegata cues (z95 = 2.44, p < .01).

F I G U R E  2   Number of pea aphids consumed after 6 hr (mean ± SE) and body area (mm2; mean ± SE) of native (unfilled symbols) and non-
native lady beetle species (filled symbols): Different uppercase letters indicate statistical differences of aphid consumption and different 
lowercase letters indicate statistical differences in body area between species based on a Games–Howell post hoc test (p < .05, same 
letters do not differ significantly). Dotted regression line (y = 0.8133x − 0.4305; R2 = 0.54) shows the linear relationship between aphid 
consumption and body area
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3.4 | Intercontinental comparison of lady beetle 
consumption rates

Predation rates differed among lady beetle species (Welch's ANOVA; 
F = 42.38, df = 5, p < .01). North American H. variegata consumed 
significantly fewer aphids than North American and European C. 
septempunctata (GH; p < .01, respectively) and North American and 
European H. axyridis (GH; p < .01, respectively). Moreover, European 
H. variegata showed lower consumption rates compared to North 
American and European C. septempunctata (GH; p < .01, respec-
tively) and North American and European H. axyridis (GH; p < .01, 
respectively). European and North American aphids were consumed 
to a similar extent by H. axyridis from North America or Europe 
(GH; p = .52). Moreover, consumption rates did not differ between 
European C. septempunctata and North American C. septempunctata 
(GH; p = 1.00) as well as between European H. variegata and North 
American H. variegata (GH; p = .10). Coccinella septempunctata and 
H. axyridis consumption rates did not differ significantly in North 
America (GH; p = .97) and in Europe (GH; p = .94; Figure 4).

4  | DISCUSSION

North American pea aphids avoided chemical cues of all lady beetle 
species tested, regardless of lady beetle origin. In contrast to North 
American pea aphids, European pea aphids did not avoid cues of the 
non-native H. axyridis. Consumption rates were strongly correlated 
with body size of lady beetles. On both continents, C. septempunc-
tata and H. axyridis were the largest species tested and consumed 
the most aphids.

Pea aphids in Europe and North America avoided chemical 
cues of native lady beetles. These findings are in line with previous 
studies on predator–prey interactions showing that chemical cues 
of predators induce avoidance behavior in herbivores (Ninkovic 
et al., 2013; Seo et al., 2018; Ünlü et al., 2020). Chemical cues of 
predators can persist in the environment and indicate potential pre-
dation risk of a nearby predator (Kats & Dill, 1998). By avoiding sides 
with chemical cues of predators, prey can increase its survival (Lima 
& Dill, 1990). According to the “landscape of fear,” prey shifts to sites 
with low predation pressure by avoiding sites with high predation 
risk (Laundré et al., 2001). A previous study on the avoidance be-
havior of the Asian citrus psyllid, Diaphorina citri, toward lady beetle 
trail chemicals demonstrated that chemical cues of lady beetles can 
not only interfere with the feeding activity of prey but additionally 
reduce oviposition (Seo et al., 2018). Another study confirms that 
prey can discriminate between risky and suitable feeding sides by 
demonstrating that the Colorado potato beetle, Leptinotarsa decem-
lineata reduces feeding on potato leaves covered with predator cues, 
compared to a cue-free control (Hermann & Thaler, 2014). Moreover, 
prior studies showed that disturbances in pea aphid behavior in-
duced by predator cues can lead to increased searching behavior for 
suitable feeding sides and consequently decreased feeding times, 
resulting in reproductive costs (Nelson, 2007; Nelson et al., 2004). 
However, predator cues, covering the surrounding area, can lead 
to aphid dispersal to sites with less predator pressure and conse-
quently reduce survival costs through immediate predator consump-
tion (Roitberg et al., 1979). Chemical cues deposited by lady beetles 
were trail chemicals and feces. According to Ninkovic et al. (2013), 
a similar avoidance response of aphids was observed, when feces 
were excluded from the experiments and only the trail chemicals of 

F I G U R E  3   Proportion of aphids on 
cue-free control leaflets (mean ± SE) in 
North America (unfilled symbols) and 
Europe (filled symbols). Asterisk indicates 
significant avoidance behavior of leaflets 
with chemical cues of lady beetle species 
(p < .05). Different letters indicate 
statistical differences between species 
based on Tukey's contrast test (p < .05)

F I G U R E  4   Number of pea aphids 
consumed after 6 hr (mean ± SE) of lady 
beetle species in North America (unfilled 
symbols) and Europe (filled symbols): 
Different letters indicate statistical 
differences of aphid consumption of 
different lady beetle species based on 
a Games–Howell post hoc test (p < .05, 
same letters do not differ significantly)
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lady beetles were considered, suggesting that the effect of feces on 
the avoidance behavior of aphids is negligible (Ninkovic et al., 2013). 
Thus, our findings suggest that chemical lady beetle cues can equally 
repel aphids and might subsequently serve as a signal for predation 
risk. Future field studies should target the effects of lady beetle cues 
on aphid dispersal and the reproduction of aphids, to shed light on 
the non-consumptive effects on aphid populations.

The avoidance of non-native H. axyridis cues by North American 
pea aphids might be explained by the strong selection pressure 
by non-native predators on native prey, leading to the evolution 
of antipredator behaviors (Carthey & Blumstein, 2018). In a mari-
time system, for example, the intertidal snail Littorina obtusata 
responded to the increasing predation pressure of the intertidal 
crab (Carcinus maenas), which was expanding its range, with rapid 
morphological change of shell forms (Seeley, 1986). Moreover, re-
search on cue avoidance behavior in mammals showed that native 
common ringtail possum (Pseudocheirus peregrinus) recognized and 
subsequently avoided olfactory cues of the invasive European red 
fox (Vulpes vulpes), within a few generations of co-evolution (Anson 
& Dickman, 2013).In addition, our results show that H. axyridis is 
among the largest and most voracious predators tested; since large 
predators can pose a greater thread for prey, this can result in stron-
ger antipredator responses by prey (see Binz et al., 2014).

The cue avoidance experiments in North America and Europe 
revealed differences in avoidance behavior toward cues of the 
non-native H. axyridis. In contrast to North America, the European 
pea aphids showed no avoidance behavior toward H. axyridis cues, 
indicating predator–prey naïveté (sensu Cox & Lima, 2006, Sih 
et al., 2010). North American and European pea aphid populations 
used for the experiments were maintained for more than 10 years 
in the laboratory and were expected to have experienced only low 
densities of established non-native lady beetle species in the field. 
However, pea aphids and non-native lady beetles coexisted prior 
to the establishment of non-native lady beetle species in North 
America (Gordon, 1985; Harmon et al., 2007). According to regional 
studies, H. axyridis was first reported in 1992 in Kentucky (Cottrell 
& Yeargan, 1998). In contrast, pea aphids have a longer history in 
Kentucky, for example, a study on the parasitation rate of the 
non-native parasitoid Aphidius smithi on pea aphids was conducted 
from 1967 to January 1970 confirming the pest status of pea aphids 
in agricultural environments (Pass & Parr, 1971). Although the re-
gional co-occurrence between H. axyridis and A.pisum might not ex-
ceed 10 years, the migration history of non-native H. axyridis as well 
as pea aphids throughout North America must be considered (Brown 
et al., 2011; Lamb & MacKay, 1979), suggesting prior co-evolutionary 
history in agricultural sides beyond Kentucky. Specifically, in North 
America, H. axyridis was released in multiple agricultural landscapes 
starting in 1916 (Gordon, 1985) and was repeatedly reintroduced 
as a biological control agent to control agricultural pest species 
(Gordon, 1985; Lombaert et al., 2014; Tedders & Schaefer, 1994). 
Thus, the frequency of predator–prey encounters and the length of 
co-evolutionary time since introduction can be decisive for the evo-
lution of antipredator behaviors (Gérard et al., 2014; Nelson, 2007). 

In North America, we suggest that North American pea aphid pop-
ulations might have evolved cue avoidance behavior toward H. 
axyridis during the longer co-evolutionary time spend in shared ag-
ricultural fields (Gordon, 1985). In contrast, co-evolutionary history 
of A. pisum is shorter with H. axyridis populations in Europe, com-
pared to that of North American populations (Brown et al., 2011; 
Gordon, 1985). In Europe, H. axyridis was introduced in the 1990s 
and the establishment period ranged from 2000–2007 (Brown 
et al., 2011; Klausnitzer, 2002). The European aphid laboratory col-
ony was established, when spread and establishment of H. axyridis 
started in Central Europe (Brown et al., 2011). Consequently, the 
European aphid colony has experienced low H. axyridis densities, 
if any. Our results thus provide a snapshot of initial interactions be-
tween pea aphids and H. axyridis in Europe. To enhance our com-
prehension of evolutionary changes in non-native predator–prey 
interactions, long-term studies are required, starting with the initial 
introduction of the non-native predator (Anton et al., 2020; Mallon 
et al., 2015).

The repelling substances within the chemical cues of lady bee-
tles, inducing cue avoidance behavior in pea aphids, are unknown 
and remain to be identified. It might be possible that rather than 
evolutionary changes, cue similarities between chemical cues of H. 
axyridis and native lady beetles might have resulted in avoidance be-
havior of A. pisum when H. axyridis was introduced to North America. 
However, in Europe, chemical cues of the non-native H. axyridis were 
not avoided, indicating dissimilarity to cues of native lady beetle spe-
cies. Thus, similarly to chemical cues of H. axyridis in Europe, chem-
ical cues of H. axyridis might differ from cues of native lady beetle 
species in North America.

In North America, pea aphids avoided chemical cues of 
non-native C. septempunctata and H. variegata to a similar extend 
as cues of the congeneric native C. novemnotata and H. conver-
gens. Chemical cue similarities between congeneric non-native C. 
septempunctata and H. variegata and native C. novemnotata and 
H. convergens in North America might contribute to the equally 
strong avoidance behavior in pea aphids. Here, cues of non-native 
and native lady beetle species of the same genera can be similar 
(Magro et al., 2010) and consequently a similar response can be 
expected in prey, regardless of predator origin (Sih et al., 2010). 
However, the degree of cue similarity between the tested lady bee-
tle species remains open and needs further attention. In addition, 
according to the “multipredator hypothesis,” prey retains evolved 
antipredator behaviors toward extinct predators in the presence 
of remaining predators (Blumstein, 2006). Pea aphids in Europe 
avoided chemical cues of the co-evolved C. septempunctata and 
H. variegata to a similar extent, as pea aphids in North America. 
Thus, in North America chemical cue avoidance toward non-native 
European C. septempunctata and H. variegata might be a retained 
innate antipredator response of pea aphids, which evolved prior to 
the introduction of pea aphids to North America in the beginning 
of the 19th century and remained due to the presence of conge-
neric native predators with potentially similar cues (e.g., C. novem-
notata and H. convergens). Overall, the “multipredator hypothesis” 
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in combination with chemical cue similarities of congeneric spe-
cies might explain cue avoidance of congeneric non-native C. 
septempunctata and H. variegata and native C. novemnotata and 
H. convergens in North America, as well as the similar strength of 
avoidance behavior between European and American pea aphids. 
Still further studies are required to evaluate retained antipredator 
behaviors in non-native insect species beyond their native range. 
Next to H. axyridis, C. septempunctata was the largest and most 
voracious non-native lady beetle species in North America tested. 
The regional co-occurrence of pea aphids and C. septempunctata 
used in the experiments might exceed 10 years, since, for exam-
ple, Buchele et al. (1992) reported C. septempunctata appearing in 
research plots in Kentucky in 1987. Similar to H. axyridis, the intro-
duction and establishment of C. septempunctata in North America 
dates decades back (Angalet & Jacques, 1975; Kajita et al., 2012). 
This alternatively suggests that avoidance behavior of pea aphids 
toward chemical cues of C. septempunctata might have newly 
evolved in North America, due to the increased predation pressure 
by this large and voracious predator (see Binz et al., 2014).

In North America, the non-native C. septempunctata and H. axy-
ridis were the largest lady beetles tested and consumed the most 
aphids, compared to smaller lady beetle species. Food consumption 
increases with body mass, due to increasing metabolic requirements 
(Brose et al., 2008), confirming the positive relationship between 
lady beetle body area and aphid consumption rates. The successful 
establishment of a large predator can depend on, that is, predator 
size and prey availability (Crookes et al., 2019). In North America, C. 
septempunctata was primarily considered as a non-native biological 
control agent on pest species, due to large size and voraciousness 
(Elliott et al., 1996). Predation advantages of invasive H. axyridis 
over the smaller native lady beetle species Cycloneda sanguinea on 
shared pest species were attributed to a dominance in intraguild 
interactions, wider dietary range, higher voracity, and larger size 
(Michaud, 2002). Moreover, we found that the smaller sized, non-na-
tive H. variegata consumes a lower number of aphids, compared to C. 
septempunctata and H. axyirids in North America. Thus, asymmetric 
competition advantages over smaller native and non-native species 
can benefit the larger non-native H. axyridis on both continents and 
non-native C. septempunctata in North America (Hoki et al., 2014; 
Michaud, 2002). Furthermore, a recent study found that the effi-
ciency of resource utilization was comparatively higher in invasive 
H. axyridis than in native H. convergens, when allometric scaling was 
considered. In addition, aphid handling time was lower and maximum 
consumption rate was higher in H. axyridis, compared to native H. 
convergens, indicating that the invasive H. axyridis is the dominating 
competitor (Crookes et al., 2019). Additionally, C. septempunctata 
and H. axyridis are both successful intraguild predators of native coc-
cinellids in their invaded range (Pell et al., 2008; Snyder et al., 2004), 
which is not only beneficial in dietary terms, but also reduces 
competition on shared resources (Yasuda et al., 2004, Dixon and 
Dixon, 2000). Overall, body size and correlated physiological and/
or behavioral traits of invasive species can significantly contribute 
to a competition advantage toward native and non-native predators 

(Hemptinne et al., 2012; Kajita & Evans, 2010; Michaud, 2002; 
Obrycki et al., 1998).

Based on the current status of H. axyridis and European lady bee-
tle species in North America, the two larger species H. axyridis and C. 
septempunctata have spread all over the United States within few de-
cades, compared to the smaller H. variegata, Propylea quatuordecim-
puncata, and Adalia bipunctata, which kept a more local distribution 
in the North East (and North West for A. bipunctata; Gordon, 1985, 
Lost Ladybug Project 2020: www.lostl adybug.org). Among other 
characteristics, we argue that a large body size can contribute to the 
invasion success of lady beetles due to increased food demands and 
thus stronger competition. Analyzes of a 24-year dataset in south-
western Michigan revealed only significant declines in the relatively 
small Col. maculata and A. bipunctata (Bahlai et al., 2015). Likewise, 
A. bipunctata showed stronger declines in the presence of H. axy-
ridis compared to other native lady beetle species, in Europe (Roy 
et al., 2012). In contrast, C. novemnotata maintained an ecological 
foothold in the face of invasion by the equally sized C. septempunc-
tata (Evans, 2017). Thus, we suggest that lady beetle body size might 
be a good predictor for their invasion potential in areas beyond their 
native ranges.

In contrast to body size, differences in predator avoidance can 
diminish with time. Here, North American aphids but not European 
aphids avoided cues of the Asian H. axyridis. Such evolutionary adap-
tations can contribute to so called “boom-bust dynamics”: invaders 
go through an initial outbreak before declining to a lower population 
size (Simberloff & Gibbons, 2004; Strayer et al., 2017). So far, evi-
dence for a decline in H. axyridis populations is restricted to micro-
satellite effective population estimates (Sethuraman et al., 2018). In 
the long term, the adaptations of antipredator behaviors by aphids 
toward non-native predators might result in a stable co-existence 
within the native community and may consequently lead to a more 
harmless situation relative to the current impact of H. axyridis. 
Evolutionary responses to non-native predators have important 
consequences for ecological studies aiming to elucidate the under-
lying mechanism of biological invasion such as a lack of avoidance 
behavior: Although lacking avoidance behavior toward non-native 
predators during early stages of biological invasions benefits the 
non-native predator, the mechanisms might no longer be detectable 
at later stages due to co-evolution. Our results in concert with lady 
beetle distribution data in North America and in Europe indicate that 
relative lady beetle body size is a key predictor of the invasion suc-
cess of non-native lady beetle species, but also for native lady beetle 
species that are at particular risk if they co-occur with non-native 
lady beetles.

5  | CONCLUSION

Missing avoidance behavior of European pea aphids toward chem-
ical cues of non-native H. axyridis suggests that non-native preda-
tors can benefit from chemical cue novelty resulting in a lack of 
antipredator behavior of prey, during early stages of biological 

http://www.lostladybug.org


13342  |     ÜNLÜ et aL.

invasions. In contrast, North American pea aphids showed avoid-
ance behavior toward H. axyridis cues, suggesting adaptations 
of avoidance behavior against voracious, non-native predators. 
Overall, predation advantages of non-native predators due to 
missing antipredator behaviors of prey might diminish with time, 
whereas body size-related competition advantages over smaller 
native and non-native predators could sustainably benefit large, 
non-native predators.
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