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Abstract

In the past decade, numerous datasets have been released with the explicit goal

of furthering non-intrusive load monitoring research (NILM). NILM is an energy

measurement strategy that seeks to disaggregate building-scale loads. Disaggre-

gation attempts to turn the energy consumption of a building into its constituent

appliances. NILM algorithms require representative real-world measurements which

has led institutions to publish and share their own datasets. NILM algorithms are

designed, trained, and tested using the data presented in a small number of these

NILM datasets. Many of the datasets contain arbitrarily selected devices. Likewise,

the datasets themselves report aggregate load information from building(s) which

are similarly selected arbitrarily. This raises the question of the representativeness

of the datasets themselves as well as the algorithms based on their reports. One

way to judge the representativeness of NILM datasets is to look for the presence of

outliers in these datasets. This paper presents a novel method of identifying outlier

devices from NILM datasets. With this identification process, it becomes possi-

ble to mitigate and measure the impact of outliers. This represents an important

consideration to the long-term deployment of NILM algorithms.
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1 Introduction

1.1 NILM Background

Non-Intrusive Load Monitoring (NILM) is the process of disaggregating building-

scale energy consumption readings in order to identify the energy use of specific

appliances. The primary motivator behind NILM research is evidence that suggests

that with more accurate forecasting and analysis of smart meter data, companies

can provide actionable feedback to consumers who can, in turn, improve energy

efficiency by up to 15% [1]. It has also been suggested that it may be possible

for energy providers to tailor a customer’s service plan to best support their own

needs while reducing overall grid load and better meeting environmental concerns

[2], [3]. Originally proposed by George Hart in 1985, NILM has seen a resurgence

in popularity coinciding with the increasing availability and use of smart meter

technology. Smart meters have seen deployment around the world in both residential

and commercial buildings [4].

With the resurgence of NILM research, numerous dedicated datasets have been

published, Table 1 details the basic information for the most popular of these

datasets. Alongside their stated purpose in NILM research, these datasets have

been adopted for numerous other applications. Some of the most notable lines of

inquiry, include consumption forecasting [5], [6], demand-side management [7]–[9],

consumer behavior analysis [10]–[12], and appliance anomaly detection [13].

Across the many areas where NILM datasets are used, there lies the common

issue of representativeness. Broadly, research is only valuable to the extent that it

can be generalized. This reality is even more important when the research concerns

NILM or other energy or behavior-related disciplines. For applications involving

NILM, behavior prediction, or energy forecasting to be effective, the algorithms be-

ing used need to be deployable on a broad scale. However, several issues persist

within many of the most commonly cited datasets. These issues bring the repre-

sentativeness of the datasets into question. Specifically, most major datasets suffer

from some combination of issues within three categories: 1) a limited number of

samples; 2) a seemingly arbitrary selection process; 3) a lack of description as to the

specifics of appliances measured.
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Dataset Houses Type

REDD (2011) 6 Non-event based
BLUED (2012) 1 Event-based

SMART* (2012) 3 Both
HES (2012) 251 Non-event based

AMPds (2013) 1 Non-event based
iAWE (2013) 1 Non-event based

UK-DALE (2014) 5 Non-event based
ECO (2014) 6 Non-event based

GREEND (2014) 9 Non-event based
SustData (2014) 50 Non-event based1

Dataport (2014) 722 Non-event based
DRED (2015) 1 Non-event based
PLAID (2017) 64 Both

ENERTALK (2019) 22 Non-event based
MORED (2020) 13 Both

Table 1: The most popular NILM datasets with the number of homes they contain
and the measurement type. 1 An extension of the dataset includes event-based readings.

1.2 Small Sample Size

While there is no inherent issue in the release of small-scale datasets, scientific

conclusions based on small datasets are more likely to suffer inaccuracies. NILM

datasets often contain measurements for only a small number of houses as a result

of practical and financial concerns. While individual meters are not prohibitively

expensive, the costs associated with the collection of large-scale datasets far exceed

the typical research budget [14]. For example, the budget for SMART*, of around

3000 dollars, was only enough to cover the metering of three homes. This reality

provides insight into why many relevant datasets contain fewer than 10 monitored

homes. Fortunately, of the three potential hurdles for NILM datasets, sample count

is the one area that has been most readily addressed. While older datasets with few

monitored houses remain in use, recently released datasets such as SustData and

Dataport are magnitudes larger than their predecessors (Table 1). Unfortunately,

the other two concerns—of sample selection process and data specificity—remain

largely unaddressed.
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1.3 Selection Process

The selection criteria for buildings monitored for the creation of NILM datasets is

important for numerous reasons. First, with little to no details being offered about

the selection process, studies prevent any form of true comparison. When datasets

are released without specifying the data sources, there is no method for researchers

outside of the original publishers to corroborate findings. While the studies based on

the released datasets may be reproducible, the datasets themselves must be taken

at face value. Some datasets provide a detailed description of monitoring equip-

ment and the metering setup itself, but there is no guarantee that the use of the

same protocols will yield comparable data when deployed in an entirely different

home. It is not uncommon for datasets to contain some buildings where every ap-

pliance is sub-metered and others where only some—or maybe no—appliances are

sub-metered. This can cause issues for future works relying on the data. In the best-

case scenario, future works must make some chain of assumptions to make use of the

buildings with less data; in the worst cases, researchers are forced to exclude cer-

tain buildings and further decrease the size of already small datasets. Though there

are valid privacy concerns which preclude the release of identifying information,

broad information such as economic standing, home size, and construction/reno-

vation year at least provide a rough picture of the participants. It is unlikely that

older appliances–perhaps more common in older homes–operate in the same manner

as newer appliances. Likewise, it cannot be assumed that participants who fall into

vastly different socioeconomic categories own appliances of similar make or energy

efficiency. Candidly, it is not obvious that those within the same socioeconomic

category can be expected to own comparable devices.

To this point, a second issue arising from the lack of a specified selection pro-

cess is behavioral profiles associated with different populations. When there is an

arbitrary selection process, generalizing to a broader population becomes difficult.

For example, the SMART* dataset notes that the monitored homes were those of

graduate students participating in research with the investigators [14]. Graduate

students are unlikely to have similar usage patterns to a family where adults work

from home or that of retirees. While the duration of usage is often presumed in-

significant to the representativeness of sub-metered loads, there is no guarantee that

certain appliances do not perform differently under more or less frequent operation.

It is also worth recalling that NILM datasets are also used for behavioral monitoring

where differences in occupancy are likely to have an even greater impact.
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Finally, geographic differences are likely to play a significant factor in appliance

load and use. Consider that countries have separate standardized voltages (United

Kingdom (230 V) and the United States (120 V)). There may be an underlying

difference between appliances designed for different locations. Even datasets from

within the same country or region are likely to show a great deal of variance with

regard to their operation. Datasets collected in the United States for instance could

contain data collected from diverse climates such as the cold and dry New England

region, the humid and hot Gulf Coast, the arid Southern Midwest, or the perpet-

ually rainy Northwest. In each of these environments, even participants who may

otherwise have similar lifestyles and occupancy patterns are likely to have vastly

different appliance usage. This is particularly true for HVAC units.

1.4 Appliance Description

The final concern potentially hampering the utility of algorithms based on NILM

datasets is the general lack of a description for the monitored appliances. The prob-

lems associated with not having a specific description of the appliances monitored

in each building are significant. Generally, the issues involve many of the same as-

sumptions discussed with regard to the selection process. More specifically, without

detailing the make, model, and condition of monitored appliances, it is unlikely that

research based on NILM datasets can mitigate their own assumptions. The fewer

details provided about the monitored appliances, the broader the hypothesis space.

As was seen with the absence of a selection criteria, failure to specify appliance

details makes any attempts at reproduction difficult. As was mentioned, a partic-

ipant living in an older home is unlikely to have the same type of refrigerator as

someone living in a recently built apartment building. As appliance technology has

evolved, numerous factors have contributed to an expected change in their load con-

sumption. Generally, it would be expected that energy efficiency will have increased

alongside broad efforts to conserve electricity. Energy efficiency ratings such as the

United States Government-run Energy Star program have incentivized the creation,

promotion, and use of appliances that meet certain levels of energy efficiency [15].

While the Energy Star programs’ specifications are not particularly rigorous, there is

likely a great deal of variance in the load patterns of appliances that fail to meet En-

ergy Star standards. An appliance may be just below the requirement threshold, or

it could be a massive power sink. Researchers behind the first public NILM dataset

note that: “generalization across homes and device categories make disaggregation
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much more complicated” [16].

Furthermore, even if a selection process was meticulously detailed with a dataset’s

release—including one that went so far as to denote the exact home—without spe-

cific appliance information, it would be difficult for researchers to verify findings or

collect additional data. Without device information, the researchers could not be

certain that a given appliance was the same one initially monitored. Most likely,

they would have to ask the occupant whether it was the same appliance which is an

unscientific means of verification at best. Such an approach would be vulnerable to

human error and prove impossible should the original occupants have moved.

Concerns about the specific appliances measured are not only limited to cases

where datasets may be using inefficient or outdated appliances. Even if all other fac-

tors are similar, there is no guarantee that two appliances of the same type perform

the same way. It is reasonable to imagine a scenario where one washing machine

performs significantly differently than another even when accounting for major fac-

tors such as which year they were made and where they are used. The obvious

solution to this issue would be to set a specific make and model for the appliances

used and only collect data from these devices. The issue with this solution is that

it effectively counteracts the progress made in expanding the number of samples.

If the goal is ultimately for datasets to be more representative, then restricting the

domain space to a small variety of specific appliances is counterproductive. Instead

of making findings more applicable to unseen cases, this would likely cause severe

overfitting [17].

Finally, there is a level of expected variance amongst samples even with all

other factors accounted for. Even if a dataset were to choose to focus on only

a single make and model of appliance (and also accounted for the numerous other

considerations listed thus far), there is still expected variation between one appliance

and another. Because there is no practical solution to the issue of selection criteria

or appliance description, it is important to be able to determine whether a dataset is

representative. One method of doing so which not require the full-scale deployment

of an algorithm is analysis of a dataset’s outliers. For this purpose, this paper

presents a novel method of detecting outliers within NILM datasets. Using this

strategy, it is feasible to quantitatively analyze the impact of outliers on algorithms

based on the datasets.

The remainder of this paper is structured as follows: Section 2.1 describes a

selection of the most popular NILM datasets. Section 2.2 discusses related clustering

5



work focusing on NILM datasets. Section 3 details the methods of analysis used.

Section 4 discusses the results of the empirical evaluation of the algorithm. Finally,

Section 5 offers insight into future applications of the proposed outlier detection

algorithm.

2 Related Works

2.1 NILM Datasets

The purpose of this section is to provide a cursory glance at a few of the most

popular NILM datasets. For each dataset, the location, notable features, and time

span are noted. Explicit values are provided for the number of citing works as

well as the number of times notable citing works (excluding other NILM datasets)

have themselves been cited. The purpose of this overview is to demonstrate the

prominence of NILM datasets within two degrees and the associated possibility for

unrepresentative findings.

1. REDD

The Reference Energy Disaggregation Data Set (REDD) was the first pub-

lished NILM dataset. Before its release, NILM research was conducted using

proprietary datasets which all but assured that findings were irreproducible.

The researchers behind REDD sought to rectify this and established REDD as

an open-source NILM dataset accessible to anyone looking to analyze energy

consumption. The REDD dataset contains data for 6 homes. For each home,

the researchers measured: “the whole home electricity signal recorded at a

high frequency (15kHz); up to 24 individual circuits in the home, each labeled

with its category of appliance or appliances, recorded at 0.5 Hz; [and] up to 20

plug-level monitors in the home, recorded at 1 Hz...” [16] The dataset spans a

period of several months and the homes are all located in the Greater Boston

area of Massachusetts. The REDD dataset has been cited 1319 times. Notable

publications based on the REDD dataset include: [18] with 666 citations; [19]

with 526 citations; [20] with 370 citations.

2. SMART*

The SMART* dataset publication goes into an extensive description of the

three homes its researchers measured, however, does not list the explicit ap-

pliances used. SMART* offers event tracking for numerous appliances and
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devices including wall switches and thermostats. The dataset contains both

real and reactive power consumption measurements. The publication makes

explicit mention of the size of each home as well as describes the relocation

of one of the home’s wind turbine. The homes are stated to be in Western

Massachusetts. The publication associated with SMART* has been cited 450

times[14]. Some notable citing works are: [21] with 241 citations; [22] 184

citations; and [23] with 164 citations.

3. UK-DALE

The UK Domestic Appliance-Level Electricity (UK-DALE) dataset contains

data from 5 homes collected over a period of up to 655 days. The researchers

state that “the subjects were either MSc students or Ph.D. students at Impe-

rial College. The subjects chose to do a research project with the authors...

The upper bound on the number of houses we could record from was set by a

combination of a limited financial budget, limited time to assemble the meter-

ing hardware, and a limited number of [volunteer students]”[24]. Numerous

works such as [25] with 228 citations, [26] with 210 citations, and [27] with

161 citations make use of the dataset in their research. UK-DALE’s associated

publication has been cited 565 times.

2.2 Clustering Research

In order to determine the novelty of this work, comparison can also be made be-

tween this research and other clustering work which focuses on NILM datasets.

In considering related works, there are three main categories that share similar

methodology to this study.

2.2.1 Short-Term Load Forecasting

The first category of research using clustering on NILM datasets is known

as Short-Term Load Forecasting (STLF). While STLF itself has been heavily

researched, the use of NILM data with STLF is relatively new. STLF research

is concerned with the supply-demand balance of consumers and demand-side

managers. Broadly, the goal of the research is to develop algorithms that

can effectively predict how much energy a given residence is likely to require
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at any given point in time. By accurately and efficiently forecasting energy

needs, energy providers can optimize their generation and delivery strategies.

As NILM datasets have become more common, STLF researchers have become

interested in using them to assist their research. Examples of STLF work which

incorporate clustering data from NILM datasets include: [28], [29], [30], and

[31].

Of these works, a typical example of NILM-based STLF is the work completed

by Dinesh et al. [30]. In this work, the researchers used aggregate energy read-

ings from NILM datasets such as REDD and AMPds2 (the revised version of

AMPds). The researchers then decomposed the aggregate data into individual

appliances before forecasting the individual future loads. They finally recom-

bined the future loads to calculate a building-scale prediction. In the case of

Dinesh et al., spectral clustering was used in order to predict which appliances

would be on at any given time. Their spectral clustering approach includes

several steps which are beyond the scope of this paper but the internal process

involved is an application of K-means clustering to the spectral representations

of an appliance’s correlation of operation with the other monitored appliances

[30]. As should be obvious, while STLF based on clustering NILM datasets

incorporates many similar techniques to this paper, the goals of the research

are quite different. Where STLF work seeks to predict the amount of energy

a given appliance and home may require, this work seeks to identify outliers

that may prevent algorithms based on NILM datasets from generalizing.

2.2.2 Energy Disaggreation

A second area of research involving clustering NILM datasets is the direct ap-

plication of clustering methods to disaggregate the aggregate energy readings.

This is likely the most obvious application of clustering of NILM datasets. In

this line of inquiry, clustering is used to identify the states of different appli-

ances. This information is then fed into a classification and load estimation

system. Examples of this particular application of clustering to NILM data

include: [32]; [33]; [34]; [35]; [36]; and [37].

A typical example of research focused on directly disaggregating NILM data

via clustering is represented by Barsim et al. [33]. In their influential re-

search, the authors use two clustering algorithms in order to disaggregate the
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BLUED dataset and achieve a 92% disaggregation accuracy and a 98% clus-

tering accuracy. As opposed to a traditional change-point detection method of

determining transient appliance states, the authors utilize grid-based cluster-

ing for this purpose. The researchers note that this allows them to determine

the exact time window of the transient states which in turn allows for the iden-

tification of appliance signatures from their transient behavior. Furthermore,

the use of grid-based clustering provides a computationally efficient method

of running the clustering-based event detection process. After identifying the

transient states, features are extracted from each identified transient state.

In order to cluster events, the researchers cluster based on the features ex-

tracted from the transient states. This is done with mean-shift clustering

which is a non-parametric clustering algorithm that has recently entered the

NILM spotlight. By using mean-shift clustering, the number of appliances

does not need to be known a priori. Furthermore, mean-shift clustering is in-

dependent of any distribution of appliances and has an implicit mode-seeking

function. Finally, the researchers conclude their disaggregation by using a

ground-state (the lowest steady-state) pairing process.

As with the case of NILM-based STLF, it should be obvious that while this

work uses clustering on NILM datasets, the application of clustering is ex-

tremely different from this study. In fact, the work of Barsim et al. would

likely benefit from knowing the extent to which BLUED and other NILM

datasets are believed to generalize.

2.2.3 Hybrid Disaggregation

A third and final type of research that involves clustering NILM data is hy-

brid energy disaggregation approaches. This third category of NILM-focused

clustering research has by far the most variety within it. Each publication gen-

erally takes quite different approaches to the use of clustering in the overall

task of disaggregation. These techniques use a clustering algorithm to analyze

or reason with features extracted from data by a different type of algorithm.

For example, [38] makes use of clustering to identify steady-states while using

a more traditional approach to identify transient-states. [39] however, clusters

on features which have already been processed by regression trees. Examples

of hybrid disaggregation approaches include [38], [39], and [40].
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Due to the variety of research within this category, it is difficult to point to a

single work as an exemplary piece. That being said, it should once again be

obvious that these works are not particularly similar to the research conducted

in this study. As was seen with the first two categories of NILM-focused

clustering research, the works associated with hybrid energy disaggregation

stand to benefit from the findings of this paper given the ultimate deployment

of NILM algorithms being the works’ implicit goal.

Ultimately, in all three cases of NILM-focused clustering research, the research

is not overly similar to this paper’s own work. Instead, the works are likely to

benefit from the outlier detection strategy proposed by this work. Using the

proposed algorithm, the researchers will be able to better assess the extent

their algorithms can be deployed.

3 Methods

This section details the development of the outlier detection algorithm as well

as the experimental framework. To reiterate the purpose of the algorithm: the

algorithm needs to be able to analyze a NILM dataset and identify anoma-

lous appliances within the different appliance categories. The algorithm is

intended to be used by researchers working with NILM datasets so that they

can measure the impact of outliers in the datasets on their final product.

3.1 Algorithm Overview

In order to provide a clear framework for the interweaving of the algorithmic

foundations of the outlier detection process, please refer to Figure 1.

Having provided a prose description of the outlier identification process, it is

now possible to further examine the specific components in detail. Specifi-

cally, the following subsections discuss the use of soft-Dynamic Time Warping

for the calculation of a similarity matrix, Timeseries K-Means Clustering for

the execution of the actual clustering sub-process, and the use of Barycenter

Averaging for a calculation of the typical load-signature within each cluster.
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Figure 1: The methodology of the clustering algorithm.

Inputs: timeseries
length (t), starting

cluster number (c), and
“ON” threshold (k).

Remove inactive appliances
below k, downsam-
ple time, and scale.

Use soft-DTW to create
a similarity matrix of
the scaled timeseries.

Run Timeseries K-
Means clustering for c
clusters using the soft-

DTW similarity matrix.

Do any clusters have
only one appliance?

Increment c

Is c > N
2 where N is

sample count?

Stop

no

yes

yes no
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3.2 soft-Dynamic Time Warping

The first foundation of the outlier detection algorithm is the use of soft-

Dynamic Time Warping (sDTW). sDTW is used to calculate the similarity

matrix which, alongside Timeseries K-Means Clustering, is used by the algo-

rithm to identify anomalous appliances. Dynamic Time Warping (DTW) is a

method of finding the ideal alignment between two time-dependent series of

values [41]. DTW uses dynamic programming to identify the minimized dis-

tances between the values in timeseries S = s1, s2, . . . sn and another timeseries

T = t1, t2, . . . tn [42]. As illustrated by Berndt and Clifford, DTW identifies

a “Warping Path” W = w1, w2, ..., wn such that when the weights of W are

applied to the values of S and T , the distance between S and T is minimized.

The distance to be minimized, δ, represents a hyperparameter. In this algo-

rithm, the distance is simply the euclidean distance between the two timeseries

after having been scaled. Using DTW, it is possible to create an N ×N ma-

trix where N is the number of instances of appliances. For example, if the

dataset has 14 homes with microwaves then Nmicrowave = 14. For each entry

in the N × N matrix, an optimized solution to the DTW problem is stored.

The optimized solution stored in each matrix entry (i, j) is the W(i,j) weights

which minimizes the sum of distances between points in the ith and jth time-

series. sDTW improves on the computational cost of true DTW by computing

the soft-minimum of the optimization problem. As a result, the loss function

is differentiable and can be computed in quadratic space and time complex-

ity [43]. sDTW replaces the original minimum calculation within DTW with

a soft-minimum calculation which is differentiable with the chain-rule, and

which results in less noisy Barycenter Average calculations.

3.3 Timeseries K-Means

Using sDTW as the distance metric, it is possible to perform Timeseries K-

Means clustering. As shown in Figure 1, the clustering process is used itera-

tively in order to detect anomalous appliances. For each iteration, the data is

clustered and then the clusters themselves are analyzed according to the three

end conditions listed below. Clustering was used as the method of outlier de-

tection because of the variability of different appliance types. While it would

be possible to define a normalized definition of an outlier, it is suspected that
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different appliance types have intrinsically different thresholds for atypical be-

havior. That is, while an outlier defined for fridges may be a fridge that is

less than 2% likely to be produced via kernel density estimation, a different

appliance type may inherently be more or less susceptible to anomalous be-

havior. As such, the threshold for the likelihood of generating a sample that

classifies it as an outlier may not be the same across categories. Clustering

approaches for outlier identification face no such limitation and can thus be

executed with the exact same hyperparameters for all appliance types. This

is imperative when considering the algorithm is intended to be easy to deploy

with little to no maintenance.

There are three end cases for the clustering algorithm as it attempts to identify

an outlier appliance: 1) No outliers could be found for numerous iterations of

the clustering process. It was considered reasonable to state that this method

of outlier identification could not detect any outliers if the number of clusters

was increased to more than N
2 where N is the number of active appliance

samples in the appliance DataFrame. When the number of clusters grew over
N
2 , there was necessarily going to be at least two appliances which were in their

own clusters so this result would not be indicative of anything meaningful. 2)

A cluster was formed in under N
2 iterations which had only a single appliance

would indicate that the most unusual or anomalous appliance had been found.

3) Multiple clusters were formed in under N
2 which had only a single appliance

in them. This situation could arise in the case where a cluster of two appliances

is split into two different clusters when the cluster count is incremented.

The implementation of the algorithm used in this research also involved visual-

ization of the Barycenter Averaging of the clusters. This allowed for convenient

visualization of the cluster constituents as well as the ‘typical’ scaled appli-

ance measurement within that cluster. An example of this technique is shown

in Figure 1. Barycenter Averaging calculates the center timeseries for each

cluster output by the Timeseries K-Means Clustering and is commonly used

in applications of DTW. Further, Barycenter Averaging is particularly valu-

able when analyzing NILM datasets as it provides a stand-in for the average

appliance load pattern of each cluster.
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Figure 2: The results of clustering the fridge for 12 hours. The red line represents
the Barycenter Average of the cluster. The blue lines represent cluster constituents.

4 Discussion

This section provides an overview of the process of empirical evaluation of

the outlier detection algorithm. The section is broken into two subsections.

Section 4.1 provides an overview of the dataset which was used during ex-

perimentation. It also offers a specific listing of the hyperparameter settings

used for experimentation. Section 4.2 discusses the results of the preliminary

clustering experimentation and outlier detection process. Finally. Section

4.3 details the results of experimental evaluation by analysis of the detected

outliers through comparison to random samples in the dataset.

4.1 Dataset Overview and Experimental Parameters

The process of empirical evaluation of the outlier detection algorithm made use

of a 50 home subset of the Pecan Street Dataport dataset. Using this subset,

the outlier detection algorithm was used to cluster 12 different submetered

devices and the house-wide consumption. The devices clustered include air

conditioners, electric vehicle chargers, dishwashers, garbage disposals, dryers,

freezers, fridges, furnaces, garage lights, microwaves, ovens, and stove ranges.

These devices were selected due to both the abundance of data for many of

them as well as some of the interesting properties featured with each. For in-
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stance, electric vehicle chargers represent a relatively new household commod-

ity and the researchers thought they may show more diverse load-signatures

due to manufacturing differences than other appliance types. Furthermore,

many of the selected appliances are relatively behavior independent mean-

ing that their usage patterns may correlate less to occupant behavior than

some other appliance types. The major exceptions to this are the oven, stove

range, and microwave. Appliances such as dryers, dishwashers, garage lights,

and disposals require occupant interaction to be turned “ON” or “OFF” but

likely have less direct behavioral differences then cooking equipment which is

manually set at different temperatures befitting cuisine.

Following the algorithm outlined in section 4.1, hyperparameters were set as:

t = 720, 1440, 4320, c = 2, and k = 20. The three values for t denote that the

process was repeated for three separate experimental scenarios. Clustering on

720 minutes, 1440 minutes, and 4320 minutes respectively. For the prepro-

cessing step, each appliance timeseries was downsampled inclusively (seconds

1→ 60 were included in each minute as opposed to 1→ 59) for 1 minute long

periods with each new entry representing the average of the minute. After

removing “OFF” appliances, the remaining samples were scaled using a stan-

dard scalar as recommended in Section 4.2. The clustering process loop was

then executed for each appliance and the total aggregate load.

4.2 Outlier Detection Results

The resulting outlier appliances are shown in Table 2. In the table, the outliers

for each appliance are shown to the right of the corresponding appliance name.

The columns labeled numerically indicate the number of minutes that the

clustering process was run on as outlined in Section 4.1.

The results of the outlier identification notably vary for some appliances dur-

ing different time lengths. This may at first seem unusual but is generally

explained by more appliances qualifying for the clustering algorithm by being

“ON” during the period and by appliances showing larger patterns of overar-

ching behavior over longer windows.

The introduction of new samples into the clustering pool with the increasing

time length deserves further consideration. When an appliance that is not

present in a short time length clustering trial is present in a longer period
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t(minutes): 720 1440 4320

Air Conditioner House 3039 House 3039 House 3039
Car Charger House 9053 House 9053, House 3000* House 9053, House 3000*
Dishwasher House 9019 House 1417 House 4031
Garbage Disposal House 3039 House 9922, House 3456 House 5587
Dryer House 9278 House 3996, House 9019 House 9053
Freezer House 1240 House 3000 House 142
Fridge House 5982 House 3700 House 4031
Furnace House 1240 House 8565 House 1240, House 5746
Garage House 6139 House 5997 House 27
Household House 2096 House 7951 House 1417
Heater House 1240* House 3700, House 5982 House 3700
Microwave House 1642 House 1642 House 661
Oven No outlier House 9922 House 3456
Stove Range House 5587 House 1222 House 1222

Table 2: The outliers identified for each appliance type.
* The outlier identified was the second such appliance in the same house.

it is worth pointing out that this means that the appliance is likely “OFF”

for a longer duration of the clustering window than the other samples being

clustered. This may artificially lead it to appear an outlier even when scaled.

Its behavior is expected to look different than other samples which were “ON”

for longer portions of the clustering window. While this is a valid concern,

there is a similar level of uncertainty in the smallest time-length clustering.

Without inverting the check to exclude any appliance that is ever “OFF”

during the window (something that would prohibit the clustering of all but

constant use appliances like refrigerators), there is going to be variance in the

portion of the time where each sample is “ON”.

Another noteworthy result of the clustering experimentation is the detection

of multiple outliers for a specific time length. In Table 2, this is shown as

two homes in the same column. This phenomenon occurs when a cluster that

had two samples within it, is separated further into two clusters with only one

sample each. For example, if the t = 1440, c = 3 iteration of the algorithm

identified a cluster with the dryer from House 3996 and the dryer from House

9019, the c = 4 iteration could split this two-sample cluster into two individual

clusters with one dryer each.
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4.3 Sample Comparison

After identifying the various device type outliers, it is possible to visually

affirm the functionality of the algorithm. By plotting outliers against random

subsets of their device class (all unscaled), outliers can be visually confirmed.

For example: Figure 2 and Figure 3. Figure 2 shows a comparison of the

identified outlier fridge–that of house 3700–and a random subset of the other

fridges present in the dataset. As can be seen, the outlier, plotted in the

dotted black line, shows atypical behavior as compared to the other samples.

A fridge is an example of an inductive load device, and the identified outlier

shows a much “flatter” load signature than the other samples in its category.

It is likely still identifiable as a fridge, due to their unique load pattern, but

it is clearly an outlier compared to the other samples.

A similar analysis is made in Figure 3 which shows a comparison of the outlier

furnace, again in the dotted black line, versus a random subset of the other

furnaces in the dataset. Again, the identified outlier is clearly anomalous as

compared to the other furnace samples in the dataset. A furnace is a type of

resistive load and is expected to show a “step” behavior as discussed in [44].

Again, the identified outlier is far “flatter” than the load signatures of the

other appliance samples.
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Figure 3: A comparison of the identified fridge outlier (black) versus a random
subset of other fridges.
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Figure 4: A comparison of the identified furnace outlier (black) versus a random
subset of other furnaces.
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A final evaluative step was taken to verify that the algorithm remains suc-

cessful across time lengths. As noted in Table 2 and its related discussion in

Section 4.2, it was not uncommon for the algorithm to identify different outlier

samples for the same appliance when clustering on different time lengths. In

order for the outlier detection algorithm to remain useful, it is important that

when comparing two different outliers of the same appliance type both are out-

liers. While it would be convenient if the same outlier was always identified,

what is important is that the identified samples are always anomalous. Figure

4 shows a second anomalous fridge, again in the dotted black line, compared

to a random subset of other fridges in the dataset. While the second fridge

clearly shows a different behavior pattern than the first outlier fridge shown

in Figure 2 (a far more rapid load pattern), it is still clearly an outlier for its

device category.

Figure 5: A comparison of another outlier fridge. Outlier (black) vs. random subset
of other fridges.
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5 Conclusion

5.1 Contributions

The algorithm proposed in this article is significant for its demonstration of

the ability of common, even simple unsupervised clustering techniques to ef-

fectively identify outliers in NILM datasets. This research was motivated by

an interest in determining the representativeness of commonly used NILM

datasets. As discussed, NILM datasets have a wide variety of applications

which necessitate that they contain representative real-world appliance data.

As an avenue to determine the representativeness of the data within the

NILM datasets, an outlier detection algorithm was constructed. The algo-

rithm was constructed from three main steps namely: soft-Dynamic Time

Warping, Timeseries K-Means Clustering, and Barycenter Averaging. In order

to evaluate the efficacy of the algorithm, outliers were detected for 13 different

appliance types using a 50 home subset of the Dataport NILM dataset. As

discussed in the previous section, the outliers identified by the algorithm were

compared to random subsets of the dataset used. This evaluation demon-

strated that the algorithm effectively identified atypical appliances.

Using the developed algorithm, there are numerous avenues for future research

and applications as discussed in the following subsection.

5.2 Future Work

Quantifying Outlier Impact Perhaps the most obvious future line of in-

quiry based on this algorithm is determining the extent to which the

outliers in NILM datasets matter. While the algorithm is clearly able

to identify anomalous appliances, it is not clear to what extent these

atypical samples impact NILM algorithms’ generalization capabilities.

In order to quantify this impact, future research could take an existing

NILM algorithm–trained on a publicly available NILM dataset–record

the reported statistics for the algorithm when the outliers remain in the

dataset, and then remove the outliers before rerunning the original ex-

perimentation to get new numeric values. For instance, if a NILM publi-

cation reports a 92% accuracy for disaggregating appliances, and states

it was trained on the SMART* dataset, it would be fruitful to remove the
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outliers from SMART* and retrain the same algorithm in order to gauge

whether its effectiveness increases or decreases as a result of removing

the outliers.

Demand-side Management A second application of the algorithm is its

deployment by demand-side management companies in order to provide

real-time similarity metrics for consumer appliances. Given the algo-

rithm’s current state, it is able to effectively identify several types of

anomalous appliance behavior. These anomalous behavior patterns can

be used with existing NILM techniques to allow demand-side manage-

ment to offer real-time behavior analysis of consumer appliances. This

could take the form of energy providers being able to inform customers

when their appliances’ behavior appears more similar to that of an outlier

device than a typical load.

Outlier Cause Analysis A third application of the outlier detection algo-

rithm is the identification of underlying outlier causes. Effectively re-

search into the causes of anomalous appliance behavior could be con-

ducted through identifying outliers and then comparing the outliers for

similar traits or faults. This application may elucidate further oppor-

tunities for hardware and manufacturing improvements as well as help

customers make informed purchases.

Beyond lines of inquiry that focus on the application of the algorithm as-is,

there are also promising opportunities for the improvement of the algorithm

itself. Some of these opportunities include:

Definitions of Outlier Behavior Due to the varied nature of consumer ap-

pliances, it is not obvious that formal mathematical definitions of an out-

lier would facilitate the successful identification of atypical devices. That

being said, as was shown, the current algorithm lacks a specific defini-

tion for outlier behavior and accordingly can identify outliers expressing

different behavior. By implementing a tested mathematical definition

of outlier behavior or through the construction of a semantic definition

of an outlier, it would be possible to direct the algorithm towards more

consistent identification of specific types of atypical devices.
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Comparison of Clustering Techniques The algorithm is currently imple-

mented using Timeseries K-Means Clustering, however, this is far from

the only clustering approach. To this point, there is again a great oppor-

tunity for future research which can analyze the appropriateness of dif-

ferent clustering techniques for the process of identifying outliers. While

easily interpreted and conducive to centroid analysis, Timeseries K-Means

does strictly partition clusters into a specified number of groups in a way

that does not allow for an appliance to be similar to multiple groups.

Other clustering approaches such as agglomerative clustering lack this

rigidity and may offer a better intuition into the overall behavior catego-

rization of different appliance samples. Furthermore, while it was previ-

ously mentioned that non-clustering approaches of outlier detection are

suspected to face challenges in the definition of global hyperparameters

for all appliance types, these approaches may still offer a more computa-

tionally efficient basis for outlier detection.

Beyond applications to future research, this paper outlines a novel approach

to the identification of outlier appliances in energy datasets. The purpose of

this contribution is to further improve energy conservation techniques as well

as offer an assistive hand to other researchers with like-minded queries.
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