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Abstract

The Nelder-Mead optimization method is a numerical method used to find the minimum
of an objective function in a multidimensional space. In this paper, we use this method to
study functions - specifically functions with three-dimensional graphs - and create images
of the basin of attraction of the function. Three different methods are used to create these
images named the systematic point method, randomized centroid method, and systemized
centroid method. This paper applies these methods to different functions. The first function
has two minima with an equivalent function value. The second function has one global
minimum and one local minimum. The last function studied has several minima of different
function values. The systematic point method is a reliable method in particular scenarios
but is extremely sensitive to changes in the initial simplex. The randomized centroid method
was not found to be useful as the basin of attraction images are difficult to understand. This
made it particularly troublesome to know when the method was working effectively and when
it was not. The systemized centroid method appears to be the most precise and effective
method at creating the basin of attraction in most cases. This method rarely fails to find a
minimum and is particularly adept at finding global minima more effectively compared to
local minima. It is important to remember that these conclusions are simply based off the
results of the methods and functions studied and that more effective methods may exist.

Keywords: Optimization, Nelder-Mead, Basins of Attraction, Sensitivity Anal-
ysis, Minimization, Simplex
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Chapter 1

Introduction

The Nelder-Mead optimization method is a numerical method used to find the minimum

of an objective function in a multidimensional space. In this paper, we use this method to

study functions - specifically functions with three-dimensional graphs - and create images of

the basins of attraction of the function. A basin of attraction is a collection of initializations

from which these approximations approach a given attractor, or in this case, a minimum.

Therefore, the basin of attraction images map out which minimum a particular initialization

finds.

One constraint of using the Nelder-Mead method is that the method requires an initial

simplex in order to find a minimum. There are many different ways to create the initial

simplex used to generate the basin of attraction images. The first method I’ll consider is

called the systematic point method. It involved assigning two points of the simplex and

cycling through the grid being studied to generate the third point. This third point is color-

coded in the basin of attraction images to show which minimum is found. The second method

studied is the randomized centroid method. The method randomly generates three points

to create an initial simplex and then finds the centroid of the simplex which is color-coded

to show which minimum was found. The last method we study is the systemized centroid

method. In this case, the initial simplex is found by creating a fixed triangle around every

1



Chapter 1 Shah

integer point in the grid being studied. The centroid of that simplex is used to indicate

which minimum is found in the basin of attraction images.

We use these three different methods of generating an initial simplex to study three

different functions with different numbers and types of minima. The first function has two

minima with an equivalent function value. The second function also has two minima but one

minimum is global and the other is local. The last function has several minima of different

function values. Each of these functions can help us to understand the Nelder-Mead method

and the basin of attraction images generated in different ways.

As will be shown in the following chapters, the first method, the systematic point method,

is useful in particular scenarios. This method is reliable but is extremely sensitive to changes

in the initial simplex. Since two points of the simplex are assigned, any changes in those

values can drastically shift the basin of attraction image. Therefore, this method can be

considered unstable if the user is not cautious with the starting conditions and doesn’t test

multiple simplices. In the first function studied, the method was effective at finding both

minima. However, in the second and third functions, the method often struggles to find the

global minima over the local minima as we would want it to.

The second method, the randomized centroid method, is unfortunately not as effective

as the systematic point method. Since the simplex of this method is created by randomly

generated points and only the centroid of the simplex is color-coded, it is extremely difficult

to use this method to better understand a function. The inability to know the initial simplex

means we cannot tell when the method is working effectively and when it is not. Therefore,

I did not end up using this method to study each function as it would not have provided

new insight into the focus of this paper.

The systemized centroid method appears to be the most precise and effective method at

creating the basin of attraction in most cases. We will see that this method rarely fails to

find a minimum. Also, when the fixed simplex is smaller in size, the structure of the basin

of attractions are closely related to the contour plots of the function. When we use this

2
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method to study the second and third functions we also see that it is adept at finding the

global minima more effectively compared to the local minima than any other method used

in this paper. In most cases, this method seems to create the basin of attraction images we

would expect to see and find the minima that we would want it to find.

3



Chapter 2

Basins of Attraction

2.1 What are Basins of Attraction?

Basins of attraction are studied to better understand dynamical systems, especially differen-

tial equations. Differential equations are dynamical systems where time is measured contin-

uously. To fully understand what a basin of attraction is, we must start by understanding

what an attractor is. An attractor is a vector approached by approximations generated from

a particular method or objective collective. A dynamical systems may have several attrac-

tors. For the purpose of this paper, we define an attractor to be the minimum points within

a function. The objective in this paper is to run the Nelder-Mead method with several dif-

ferent starting points, or as we’ll discover simplicies, in order to find minimums and be able

to create basins of attraction images.

A basin of attraction is a collection of initializations from which these approximations

approach a given attractor, or in this case, a minimum. This means that the qualitative

behavior of a system can be different depending on which basin of attraction the initial

condition lies in. Over the past year, my work has been leading towards generating images

of basins of attraction using the Nelder-Mead optimization method.

Figure 2.1 is slightly different from the images that will be shown in the following sections

4
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of the paper but helpful to understand before continuing further. This image shows a basin

of attraction for a differential equation where we see that the red and blue points are the

equilibrium points of the function. The blue arrows show how an initialization moves over

time and whether they move towards the equilibrium points or not. Throughout the rest of

the paper, I use this same imaging idea but in terms of optimization. Therefore, instead of

finding how initialization move with respect to equilibrium points over time, I looked at how

a particular initialization found the minima of a function.

5
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Figure 2.1: Basins of Attraction for a Differential Equation.
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Nelder-Mead Optimization Method

3.1 Nelder-Mead Method Overview

The Nelder-Mead method is a numerical method used to find the minimum of an objective

function in a multidimensional space. In this paper, we restrict our focus to finding minima

of three-dimensional functions. The Nelder-Mead method is a type of simplex method, and

in this paper the simplex always has three vertices. It is also a direct search method meaning

that it doesn’t require gradients as other optimization methods do. Therefore, it is extremely

useful for problems where the derivative can be hard to calculate.

One issue that is particularly troubling - and that we will study further in the paper - is

that Nelder-Mead is a heuristic search method and can therefore converge to non-stationary,

or non-minimum, points in certain cases. In addition, we cannot guarantee that the Nelder-

Mead method will always converge to the global minimum of a function if a local minimum

is present as well. In this paper, we mainly studied functions where we already knew the

minima - both global and local - to avoid issues that may arise from this feature and to

better understand our sensitivity tests.

To describe the Nelder-Mead method at a very high level, we first start with a triangle,

or three points, placed onto the surface of a function. In other words, three point are chosen

7
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from the function to form a triangle with the respective function values of those points. We

then study the function values of those trial points and work towards improving the worst

vertex, or the vertex with the highest value, by lowering the function value at each step. We

will discuss this method in further detail in the next few sections.

3.2 Outlining the Method

To start the Nelder-Mead method, we start by creating the simplex, or the original triangle,

that we will be further manipulating. The starting triangle is often chosen to be relatively

large as extremely small triangles tend to stall, fail, or converge to a non-stationary point.

To create this initial triangle, I used several different methods which I will discuss in further

sections.

After creating the initial simplex, the Nelder-Mead method begins to follow a pattern

which I will outline here:

1. Order vertices of the simplex

2. Calculate the center of the best side

3. Run testing to improve function value of each point in the simplex

4. Test to terminate. If testing fails, begin from step 1

Every iteration of the method will begin with the first step of this process until it passes

the termination testing in the last step. The following sections will discuss these steps in

more detail.

3.3 Step 1: Order Vertices of the Simplex

After creating the initial simplex, the vertices of the simplex are ordered from best to worst

based on the function value at their locations. When searching for minima, the lowest

8
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function value is considered the best and the highest function value is considered the worst.

This step is necessary so that we know which vertex has the highest function value and we

can work toward improving it to a lower function value in the following tests.

3.4 Step 2: Calculate the Center of the Best Side

After ordering the vertices, we must calculate the center of best side of the triangle. The best

side of the simplex is the side of the triangle built with the best and second-best points. We

take the average of the x-coordinates and the average of the y-coordinates in order to find

the center. For example, if the two best points were (1,1) and (3,3), the center of the best

side would be (2,2). This center is necessary to compute as it will be used in the following

testing.

3.5 Step 3: Testing to Improve Function Values of Sim-

plex

Reflection and Replacement

The first test carried out within the Nelder-Mead method is called the reflection step. This

process is seen in Figure 3.1. We reflect the worst vertex along the ray through the opposite

edge in an attempt to find a new point, called the reflected point, with a lower function

value than any existing point. We move in this direction as we are looking at a point in the

opposite direction of the point with highest function value. Therefore, we would expect to

find a lower value in this direction because the other points with a lower function value are

also located in this direction.

On the left hand side, we see the original simplex of the function. The vertex with the

highest function value in the simplex is labeled w, the vertex with the lowest function value

in the simplex is labeled b, and the previously mentioned center of the best side is labeled

9
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(a) Original Simplex (b) Reflected Point

Figure 3.1: Finding the Reflected Point

c. The unlabeled vertex of the triangle is the second best point and will be referred to as

”point sb” in this paper. To create the image in (b), we use point w and point c to calculate

the reflected point, labeled r, using the following formula:

xr = xc + α(xc − xw) (3.1)

Note that in the above formula α is a reflection coefficient and has a typical value of 1.

Once we have the reflected point, we evaluate how to move forward. If f(xb) < f(xr) <

f(xsb), then xr replaces xw to form a new vertex. In other words, if the function value of the

reflected point is lower than the function value of the second best vertex but higher than the

function value of the best vertex, then we replace the worst vertex with the reflected point

to create a new simplex. We can then start a new iteration of Nelder-Mead following the

outline in Section 3.2.

If this is not the case, we move onto the next testing method. The testing method used

is dependent on the function value of the reflected point.

3.5.1 Expansion

If the result of the reflection test was that f(xr) ≤ f(xb), then we attempt to expand past

the reflected point. This process is illustrated in Figure 3.2b by the black lines, while the

gray lines show where the previously calculated reflected point lies. While Figure 3.2 shows

10
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just a small step past the original reflected point, the expanded point usually stretches twice

as far from the reflected edge of the triangle. The reasoning behind testing the expanded

point is that if the reflected point produced progress towards the minimum of the function,

then a step even further in that direction might also be an improvement.

(a) Original Simplex (b) Expanded Point

Figure 3.2: Finding the Expanded Point

In order to calculate the expanded point, xe, we use the following formula:

xe = xc + γ(xr − xc) (3.2)

where γ is the expansion coefficient and is any value greater than 1. I typically set γ = 2.

In this formula, the expanded point is calculated by adding the center of the best side to the

difference of the best side and the reflected point multiplied by the expansion coefficient.

Since, we only run this test if the function value of the reflected point is better than the

function value of the best point, there are only two possible cases:

f(xe) < f(xr) or f(xe) ≤ f(xr)

If f(xe) < f(xr), then we replace the vertex with the highest function value, xw, with our

expanded point and start a new iteration. If the latter case is true, then we simply replace

the vertex with the highest function value with the reflected point and begin a new iteration.

11
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3.5.2 Outer Contract

If the function value of the reflected point was not between the function values of the best

and second-best point but rather between the function values of the worst point and the

second best point, then we test the outer contract point. The outer contract point is usually

half as far as the reflection edge of the triangle as illustrated by the black lines in Figure 3.3.

(a) Original Simplex (b) Outer Contract Point

Figure 3.3: Finding the Outer Contract Point

The rationale behind testing the outer contraction point is that the reflected point is not

a strong enough improvement to keep and update our simplex with. However, we recognize

that a smaller step in that direction may still be useful to find the minimum of the function.

The outer contraction point, labeled xoc is calculated using the following formula:

xoc = xc + β(xr − xc) (3.3)

Where β is the contraction coefficient and 0 < β ≤ 0.5. I typically used a β value of

0.5. Here, the center of the best side is added to the difference of itself and the the reflected

point multiplied by the contraction coefficient.

If the function value of the outer contract point is at least as good, if not better than the

reflected point, then we update the vertex with the lowest function with the outer contract

point and begin a new iteration.

If: f(xoc) ≤ f(xr), then: xw := xoc
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If the outer contract point is worse than the reflected point, we shrink the triangle, which

will be discussed in section 3.5.4, before beginning a new iteration.

3.5.3 Interior Contract

If the function value of the reflected point was higher than the function value of the worst

point in the function, f(xr) ≥ f(xw), then we test the interior contraction point. This point

is usually halfway inside the reflection edge of the triangle and is depicted by the black lines

in Figure 3.4b.

(a) Original Simplex (b) Interior Contract Point

Figure 3.4: Finding the Interior Contract Point

The rationale for this process is that the direction of the reflected point led to a result

that was in actuality the reverse from the effect we were looking for. Therefore, we want to

step away from that and we hope that a step in the opposite direction may lead us towards

the minimum point. Another possible rationale is that the minimum point may already be

inside our simplex and so we want to test points inside the simplex to see if they have a

lower function value.

We use the following formula to find the interior contraction point:

xic = xc + β(xw − xc) (3.4)

where β is the same contraction coefficient used to find the outer contraction point. In

this case, we use almost the same formula that we did to find the outer contraction point,
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however, we replace the reflected point, xr, with the worst point, xw, in order to find a point

inside of our simplex.

If the function value of the interior contraction point is better than the function value

of the worst point, then we replace the worst point with the interior contraction point and

begin a new iteration. Otherwise, we shrink the triangle and begin a new iteration.

If: f(xic) ≤ f(xw), then: xw := xic

3.5.4 Shrink

If outer or interior contraction fail, then we shrink our simplex towards the current best

vertex. To do this, we adjust two vertices, rather than just one. We often adjust the points

with the two highest function values towards the point with the lowest function value in the

simplex.

(a) Original Simplex (b) Shrink Point

Figure 3.5: Shrinking the Simplex

The reason that we carry this step out is because if outer and interior contraction both

fail, we can suppose that the minimum point may be inside of our simplex. Therefore,

shrinking towards the point with the lowest function value can help us find the minimum.

We use the following formula on the worst and second worst point, respectively:

xsp1 = xb + σ(xw − xb) (3.5)

xsp2 = xb + σ(xsb − xb) (3.6)
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σ is the shrink coefficient and is typically set at 0.5. To find the shrink points, the

best point is added to the difference between itself and the point we are looking to shrink

multiplied by the coefficient.

Once all the points are replaced, except for the best point, we begin a new iteration.

3.6 Stopping Criteria

Since Nelder-Mead is an iterative method, the method will continue running until it meets

a stopping criteria. Once we have narrowed down on a point that the method believes is a

minimum, we need to be able to stop the method from running further.

There are multiple ways to do this, but the method I chose to use is by measuring how

far the method is crawling over the function at each iteration. If the function was staying at

the same spot over several iterations, I would stop the method from running. The reasoning

for this is that if the function values were changing by an extremely small value, then that

typically means the method has continuously been shrinking on a single point. This single

point is most likely our minimum.

To do this, I would calculate the function value at the best point after every iteration

and subtract it from the function value of the previous iteration. I accumulated a list of

these differences. If the differences were below a stopping criteria for at least one hundred

iterations then we stop the method from running.

To ensure that the stopping criteria didn’t cause the method to stall early, I kept the

stopping criteria at an extremely low value. Most of the time, the stopping criteria was set

to a value of 1x10−300. In case the method stalled or never reached this stopping criteria, I

also forced the method to stop after 10000 iterations.
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Creating the Initial Simplex

4.1 Overview

As mentioned above, I utilized several different methods to create the initial simplex to start

the Nelder-Mead method. This allowed me to study how the basins of attraction for different

functions are sensitive to changes in the starting simplex. I used three different methods to

create initial simplices that I labelled as: systematic point, randomized centroid, and system-

ized centroid. However, as will be discussed, I mainly focused my further sensitivity testing

on initial simplices generated by the systematic point and systemized centroid method.

4.2 Systematic Point Method

The first method I used to create a simplex was by having two assigned starting points and

a systematically assigned integer third point. I usually changed the two assigned starting

points depending on which function I was using, but, mostly, any points could be used as long

as they didn’t cause the optimization method to fail, stall, or converge to a non-stationary

point. The third point was then assigned by running it through an iteration that ran through

every integer value on the grid that I was looking at.
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Assigning the third point in this way was extremely useful when creating images for

basins of attraction. When running several different simplices together, I could color the

systematically assigned point since every simplex shared the other two points. This made it

easier to interpret and understand the images that I generate.

Initially, I simply used a random number generator to assign the third point. However,

this was relatively inefficient and could potentially miss several points along the grid that I

was studying. For example, if the assigned point somehow ended up in the same place often,

the images created wouldn’t give me as much detail as if the randomly assigned points was

spread across the entire grid. Therefore, I switched over to choose the third point in a more

methodical manner.

One issue that I did run into with the method that I used is that occasionally the simplex

generated would fail to converge to a minimum. This could be occurring for various reasons.

For example, if the systematic point was too close to the two assigned points, the simplex

may be too small and could fail to converge to a minimum.

4.3 Randomized Centroid Method

Another method that I used to generate the initial simplex involved the centroid of the

triangle. To do this, I ran a random integer generator to assign all three points of the initial

simplex. I then plotted the centroids of each of these triangles and colored them based on

the minimum found.

However, this method had many troubling issues. One concern similar to the systematic

point method was if the assigned points all kept ending up in a similar spots, the images

would not give me a lot of detail to understand sensitivity tests from. This was particularly

concerning for this method as many of the centroids ended up towards the center of the grid

as it is much harder to have a centroid towards the outskirts of the grid. This did not allow

me a full picture of how this particular simplex found minima.
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This process is illustrated in Figure 4.1. The image shows the randomized centroid

method being used to create a basin of attraction for a function with a single minimum.

Each point, blue or green, is a centroid of the initial simplex that has been plotted. As

described above, we can see that the points are more densely gathered around the center

of the range we are studying. As we move away from the center, the density of the points

decreases greatly.

Figure 4.1: Randomized Centroid Test

As seen in Figure 4.1, this was also a very difficult method to understand from the

pictures generated. From the basin images generated, it was impossible to know what the

initial triangles looked like and therefore, impossible to decipher why certain centroids led

to respective minima. For example, it was often the case that two points in extremely close

proximity to each other found two different minima. Without knowing the simplex that
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led to both of those centroids, it was difficult to determine why that happened and run

sensitivity tests using that method.

4.4 Systemized Centroid Method

In order address unsystematic results that the random starting points entailed, I systemized

the process. Instead of feeding the code three completely random points, I decided to build

the simplices around given points in a structured fashion so the initial simplex would always

be apparent.

I started by feeding the method points on the range that I wanted to look at and then

built triangles of various sizes around it. Once I had a given point, I could create a simplex

by choosing points directly above, below and to the left, and below and to the right of that

point. I would add the value (0,1) to it to generate the vertex above. I would also add the

values (-1, -1) and (1, -1) to generate the vertices below and to the left and below and to

the right, respectively. For instance, if I started with a given point of (5,5), the final vertices

for the simplex would be (5,6), (4,4), and (6,4).

I could also manipulate the size of the initial simplex by multiplying the values added

to the specific point by a constant k. For example, to generate a bigger simplex I could set

k equal to 10 and then my values added to the given point would be (0,10), (-10,-10) and

(10,-10), respectively. Once again, if I started with a given point of (5,5), my vertices for the

simplex would be (5,15), (-5,-5), and (15,-5). This process is illustrated in Figure 4.2.

In Figure 4.2, the blue dot in both Figure 4.2a and Figure 4.2b represents the point (5,5)

from which the simplex was built. In Figure 4.2a, k=1 and so the simplex, shown by the

green triangle, has vertices of (5,6), (4,4), and (6,4). In Figure 4.2b, k=10 and so the simplex

has vertices of (5,15), (-5,-5), and (15,-5). The orange dot in both images shows the actual

centroid of the triangle that will be colored in further images.

To ensure that I didn’t encounter the same issues that I did with the randomized centroid
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method, I chose the given point by feeding the method points on a grid. I could then move

through the grid values and build simplices off of every integer point in the range that I was

looking at. This ensured that points across the entire grid were incorporated and I was also

given a much more informative picture of the results of how this particular way of generating

a simplex was of finding minima.
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(a) Initial simplex built around (5,5) with k = 1

(b) Initial simplex built around (5,5) with k = 10

Figure 4.2: Building a Simplex for the Systemized Centroid Method
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Mapping Minima and Tolerance

Levels

5.1 Procedure for Mapping Minima

To create the basin of attraction images, I primarily worked with functions with two global

minima. I also always knew the minima of my functions which made it easier to map them

and create these images.

I started by running several different simplices through my code and then saving all of

the minima found to a list. Then, I compared the minima found by my algorithm to the

actual minima of the function I was working with. However, occasionally the points did

not line up exactly to the actual minimum as they could be off by a few decimal points.

Therefore, I allowed a small tolerance level to match real minimum points to those found

by my code. Typically, I set this tolerance level to be 0.2. While this value may seem high,

when considering the range of [-10,10] used for most basin of attraction images, it is quite

small.

Based on the minimum that was found, I assigned the initial starting point a colored dot

on the basin of attraction image. If the Nelder-Mead method failed - such as not coming
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within the tolerance range of a minimum or reaching one hundred thousand iterations - I

used the a green dot to signify this. All other colors seen in the following images represent

minima found by the method.

5.2 Sensitivity of Tolerance Levels

While I will discuss the basin of attraction images in further detail in the following sections,

I first included some figures here to showcase how the basin of attraction images are sensitive

to the tolerance level used. For example, in Figure 5.1A, the tolerance level was set at 0.9

which is considered large. This means that the point that Nelder-Mead converged on after

stopping criteria were met was at most 0.9 units away from the real minimum. Since the

tolerance level is so forgiving, we can see that the image results in all blue and red points.

This means that for this particular function a minimum was always found with a large

tolerance level.

In Figure 5.1B, the tolerance level was set at 0.2. With a much tighter tolerance level,

we see that the function has trouble converging to a minimum of the function from certain

starting points - represented by the green dots. These points converged somewhere between

0.2 units and 0.9 units away from the actual minimum. By using a tighter tolerance level,

we create a more accurate portrait of the basin of attraction.

Using a tighter tolerance level ensures that we won’t color code a point that converges

further away from the known minima of the function. For example, having a low tolerance

helps guarantee that we don’t accidentally include a point that was actually converging

outside of our minimum to a point that just happened to be close to our minimum. It is

also extremely useful for when we map functions where there are multiple minima that are

really close to each other.

In the following basin of attraction images used within this paper, a tolerance level of 0.2

will always be used.
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(a) Loose Tolerance Level: Tolerance = 0.9 units

(b) Tight Tolerance Level: Tolerance = 0.2

Figure 5.1: Sensitivity of Tolerance Levels
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Function with Two Similar Minima

6.1 Understanding the Function

The first function that I studied was:

f(x, y) = 2x2 − 4xy + y4 + 2

This was a good starting point as the minima of the function both have the same function

value at the minima. The minima are located at (-1,-1) and (1,1) and have a function value

of 1 at these points. Figure 6.1 shows a graph of this function. These images, along with the

contour plots seen in Figure 6.2A and 6.2B help us to imagine what the basin of attraction

images might look like, if we had a perfect algorithm.

Figure 6.1: 3D Plot of f(x, y) = 2x2 − 4xy + y4 + 2
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(a) Zoomed Out Contour Plot

(b) Zoomed in Contour Plot

Figure 6.2: Contour Plots of f(x, y)
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Figure 6.2A shows the contour plot using axes with a range from x = −10, 10. This

matches the same axes that will be used for basin images. From this zoomed out contour

plot, we can see that there isn’t a deep well or sink for the two minima. This is further

reasoning for why the tight tolerance level is important. We want to ensure that our Nelder-

Mead method is finding the minimum points even with a shallow well before we run further

sensitivity tests on it.

Figure 6.2B shows a contour plot where the axes are zoomed in allowing us to see what

the plot looks like near the minimum points. The minimum points are labeled with green

dots. From these images, it appeared that the lower left triangle would be colored in a way

that indicated the simplices went to the minimum at (-1,-1) and the upper right triangle

would be colored in a way that indicated that they went to the minimum at (1,1).

6.2 Systematic Point Method

While using the systematic point method, we can generate many different images for this

function based on the two assigned starting points used in the simplex. In the simplices for

the following images, two points were assigned and the third point was pulled from the grid

previously mentioned. The basin of attraction images will also be colored to show which

minimum each simplex found. If the systemized point is colored blue, it means that the

simplex found the minimum at (-1,-1). If the systematic point is colored red, the simplex

found the minimum at (1,1). Lastly, if the systematic point is colored green, the simplex

failed to find a minimum.

Figure 6.3 shows one of the images generated by using this method. In this image, I

assigned fixed points of (0,0) and (2,-3) in the initial simplex. This image is extremely

interesting as it does not follow what we assumed the basin of attraction would look like.

Instead, the basin appears to be broken up into four different quadrants. The points in the

top right and bottom left seem to have found the minimum located at (-1,-1), while the

27



Chapter 6 Shah

points in the top left and bottom right appear to have found the minimum at (1,1). Also,

it appears that the simplex was unable to find any minima along the diagonal from the top

left to the bottom right.

Figure 6.3: Systematic Point Method for f(x, y) = 2x2 − 4xy+ y4 +2 with assigned simplex
points (0,0) and (2,-3)

I also created basins of attraction for this function with different assigned points creating

the initial simplex. Figure 6.4 shows the basin of attraction for the function with the two

assigned points being (0,0) and (2,3). Figure 6.5 shows the basin of attraction for the function

with the two assigned points being (0,0) and (-2,-3).

We can see that both of these basins of attraction have many differences from the basin

of attraction depicted in Figure 6.3. In Figure 6.4, the minimum (1,1) is found much more

often whereas in Figure 6.5, (-1,-1) is found more often. Also, the green points, where the

Nelder-Mead method was unable to find a minimum point, now stretches from the bottom
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Figure 6.4: Systematic Point Method for f(x, y) = 2x2 − 4xy+ y4 +2 with assigned simplex
points (0,0) and (2,3)

left to the top right. These images show how sensitive the basins of attraction are to the

initial simplex used in Nelder-Mead. The basins of attraction are especially sensitive to the

two assigned points of the simplex which will be important to note when studying different

functions later in the paper.

Also, of all three images, we can note that the method does a relatively good job of finding

a minimum at each point. There are only seven green colored dots within each image. This

means the Nelder-Mead method failed to find a minimum only approximately 2% of the time

in the grid that we were studying. So while the basin of attraction doesn’t follow the pattern

we would expect it to, it does narrow down on a minimum in almost every location of the

grid.
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Figure 6.5: Systematic Point Method for f(x, y) = 2x2 − 4xy+ y4 +2 with assigned simplex
points (0,0) and (-2,-3)

6.3 Randomized Centroid Method

After creating several different basins of attraction using the systematic point method, I

created a basin of attraction using the randomized centroid method. As mentioned previ-

ously, this method created an initial simplex using three random points and then colored

the centroid of that initial simplex based off of the minimum found. Once again, blue was

used to symbolize (-1,-1) being found and red was used to symbolize (1,1) being found.

Once again, several different basins of attraction can be created using this method as each

creation will result in different random points being selected to create the initial simplex.

Figure 6.6 shows one iteration of the basin of attraction created using this method. In this
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image, I plotted 1000 different triangles to create the basin of attraction with the boundaries

on the random points being between -10 and 10.

Figure 6.6: Random Centroid Method for f(x, y) = 2x2 − 4xy + y4 + 2

It’s easy to note that it is extremely difficult to see what is happening in Figure 6.6.

There does seem to be the appearance that we initially thought we would see where the top

right corner has more red dots, signifying it found the minimum at (1,1) more frequently,

and the bottom left corner has more blue dots, signifying it found the minimum at (-1,-1)

more frequently. The red and blue dots seem to have an equal presence on the image which

we confirm through their percentages. The minimum (-1,-1) was found approximately 47.2%

of the time whereas the minimum (1,1) was found approximately 50.7% of the time. A

minimum was not found 2.1% of the time.

While we mostly see the red and blue dots in their respective corners, we do see a
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scattering of the other colored dots as well. However, since we only used random points to

create the simplices, we are unable to figure out why this is the case. Similarly, it is almost

impossible to figure out why the green dots appear where they do and why the method failed

to find a minimum when that particular point was the centroid of the initial simplex.

Overall, this method gave us the image that we were expecting to see but also failed to

let us understand any of the results that we received. For this reason, we will not be using

this method while studying future equations but will instead use the systemized centroid

method, which will be discussed next, as it gives a much clearer picture on the basin of

attraction for a function.

6.4 Systemized Centroid Method

The systemized centroid method once again implements the grid system which helps to

make the basin of attraction images clearer and easier to read than the randomized centroid

method. As mentioned previously, this method creates a simplex systematically picking

points around a given point in the grid. I created simplices of various sizes by increasing

or decreasing the values added around the given point. The real centroid is then calculated

and colored in the final basin of attraction image.

Figure 6.7 shows a basin of attraction image using the systemized centroid method that

shifts around the given point by one unit in each direction. This method, similar to the

random centroid, shows us the image we expected to see with a bit more clarity. Most of

the points on the bottom left found the minimum at (-1,-1) and most of the points on the

top right found the minimum at (1,1). The minimum at (-1,-1) was found 53.29% of the

time and the minimum at (1,1) was found 46.71% of the time. There were also no points at

which the minimum was not found.

Just like the other methods, we notice that there are a scattering of red dots in the bottom

left and a scattering of blue dots in the top right. This is interesting considering how small

our initial simplex is. In a case like this, we would expect for there to be a complete diagonal
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split in the color of the dots. The best explanation for this is simply how the Nelder-Mead

method ”crawls” around the function to find it’s minima. With these simplices, the method

gets ”caught” while moving toward the expected minimum and finds a path towards the

other minimum instead.

Figure 6.7: Systematized Centroid Method for f(x, y) = 2x2 − 4xy+ y4 +2 Shifting by One
Unit

Figure 6.8 shows a basin of attraction for the same method but instead shifts around the

given point from the grid by five units. Similarly, Figure 6.9 shows a basin of attraction with

the simplices created by shifting around the given point from the grid by ten points. Notice

that the axes have changed for these figures as we must recalculate the centroids for each

simplex since they are now larger.

In both of these images, we see that the structure of the basin of attraction we saw in
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Figure 6.8: Systematized Centroid Method for f(x, y) = 2x2 − 4xy+ y4 +2 Shifting by Five
Units

Figure 6.7 is gone. The coloring of points across the basin of attraction is now much more

random. This is extremely interesting as we see that as our initial simplex gets larger, it

becomes harder to predict which minimum a given simplex will find.

It is interest to note, however, that the larger simplices do not favor either minimum more

than the other. When we shifted by five units, the minimum at (-1,-1) was found 50.34% of

the time and the minimum at (1.1) was found 49.66% of the time. Similarly, when shifting

by ten units, the minimum at (-1,-1) was found 51.02% of the time and the minimum at

(1.1) was found 48.98% of the time. Once again, neither instance caused the method to stall

or fail leading to zero green points on the basin of attraction image.
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Figure 6.9: Systematized Centroid Method for f(x, y) = 2x2 − 4xy + y4 + 2 Shifting by Ten
Units

6.5 Conclusions

Overall, we see that there are three methods that can be used to create basin of attraction

images. The systematic point method finds minima with a relatively high accuracy. However,

the minimum found in majority is extremely sensitive to the initial simplex that is used. In

comparison, the randomized centroid method and the systemized centroid method also find

minima with a high accuracy. Unlike the systematic point method, both methods manage

to find both minima with an equal frequency.

Looking further into each method, however, we recognize that the randomized centroid

method does not create basin of attraction methods that are easy to understand. We cannot
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tell which initial simplex creates the centroid that is color-coded and therefore cannot have

a deeper understanding of the image. Meanwhile, we can gain a deeper understanding of the

basin of attraction images from the systematic point method and systemized centroid meth-

ods. Using these two methods we can understand which simplices find particular minima.

This helps us to understand the function that we are studying better as well.

Overall, the systemized centroid method seems to have the most accuracy at finding

minima at the highest frequency and with an equal frequency for both minima. We noticed

that as the simplices became larger using this method, the structures of the basin of attraction

images were more loosely related to the contour plots of the function. However, despite the

simplex size, neither minimum was favored more heavily than the other which cannot be said

of the systematic point method. Therefore, the systemized centroid method seems to be the

most stable in consistently and accurately finding minima using the Nelder-Mead method.

In the next chapters, we test this against different functions to see if it continues to hold

true.
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Function with Global and Local

Minimum

7.1 Understanding the Function

The next function studied had both a global and local minimum to understand how well

the Nelder-Mead method could continue to find global minima when local minima were also

present. This was the function studied:

f(x, y) = (x2 + (y − 1)2)(x2 + (y + 1)2) +
1

4
(x2 + (y + 1)2)

There is only one global and one local minimum. The global minimum of this function

is located at (0,-1) and the local minimum is located at (0,0.85). The graph, Figure 7.1, of

the function helps to visualize it.

The following contour plots, Figure 7.2A and 7.2B also helps us to understand the func-

tion further. We can see that 7.2A shows the contour plot using the same axes we use to

create the basin of attraction images. From this image, it is difficult to note the two min-

ima. However, the zoomed in contour plot showed in Figure 7.2B helps us to see the global

minimum at (0,-1) and the local minimum at (0,0.85).
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Figure 7.1: 3D Plot of f(x, y) = (x2 + (y − 1)2)(x2 + (y + 1)2) + 1
4
(x2 + (y + 1)2)

Since we have a local and global minimum, we hope that the Nelder-Mead method finds

the ”true minimum”, meaning the global minimum. However, since the method will not

travel in an upward direction, it seems very likely that if the method finds the local minimum,

it will stop there. Therefore, we would expect the basin of attraction image to find the local

minimum when the initial simplex is near that point. Otherwise, we would expect to have

the simplex find the global minimum.

7.2 Systematic Point Method

We once again used the systematic point method to create the basin of attraction images.

We use the same method to create the initial simplices but change the two assigned initial

points used to build the simplex. In this case, we used initial points of (2,2) and (-2,-2).

The third point was once again assigned using the previous method described. In this case,

the color blue was used to denote the global minimum, (0,-1), and the color red was used

to denote the local minimum, (0,0.85). Green is still used to denote that the initial simplex

was unable to find a minimum.

Figure 7.3 shows images created using this method. We see that the graph has one again

split itself into different quadrants. The top left and bottom right mostly found the local
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(a) Zoomed Out Contour Plot

(b) Zoomed in Contour Plot

Figure 7.2: Contour Plots of f(x, y)

minimum whereas the bottom left and top right mostly found the global minimum. There

is also a diagonal line from the bottom left to the top right of green points - meaning those

points, when used as the systematic point in the initial simplex, were unable to find either

minimum of the function. One reason for this may be that the initial points are also on that

diagonal line and therefore the method may fail if the three simplex points are co-linear.

We see in this image, that we do not get the results we expected. The initial simplices

in this basin of attraction image seem to have found the local minimum more often than

the global minimum. The local minimum was found 63.04% of the time whereas the global
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Figure 7.3: Systematic Point Method for f(x, y) = (x2+(y−1)2)(x2+(y+1)2)+ 1
4
(x2+(y+1)2)

with assigned simplex points (2,2) and (-2,-2)

minimum was only found 32.2% of the time. An initial simplex did not find a minimum 4.76%

of them. While using Nelder-Mead we would want the method to find the ”true” minimum

which is the global minimum. In this case, we do not see that happening. However, this is

not the only basin of attraction we can create for this function.

When we change the initial assigned points to (0,0) and (-2,-2), there is a change in the

percentage of points that find the global minimum and the local minimum. This is seen in

image 7.4 where the global minimum was found 56.24% of the time and the local minimum

was found 39% of the time. A minimum was not found 4.76% of the time once again.

Comparing these images further shows how the basin of attraction images using the
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Figure 7.4: Systematic Point Method for f(x, y) = (x2+(y−1)2)(x2+(y+1)2)+ 1
4
(x2+(y+1)2)

with assigned simplex points (0,0) and (-2,-2)

systematic point method are sensitive to the initial simplex used. We can see how the

ability to find the global and local minimum changes after the assigned points used to

create the initial simplex changes. If we want to mainly find the global minimum using the

systematic point method, we have to use an initial simplex close to the global minimum.

Similarly, initial simplices close to the local minimum will mainly ”crawl” towards the local

minimum. Without carefully selecting our initial simplex, we cannot guarantee finding a

global minimum using the systematic point method and Nelder-Mead.
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7.3 Systemized Centroid Method

As previously mentioned, we will not be studying the randomized centroid method as it is

difficult to understand. Therefore, we study the systemized centroid method next. We once

again look into how often the basin of attraction finds the global minimum compared to the

local minimum using this method.

Figure 7.4 shows the image generated from using the systemized centroid method where

we create the centroid by shifting around the grid point by one unit. The first thing that

we note is that a minimum was always found in this basin of attraction as denoted by the

lack of green points. However, it also seems that in this case, there doesn’t seem to be any

pattern in how the local or global minimum was found. There are no quadrants or sections

artificially created by the red and blue points. However, we do note that the there do seem

to be more blue points than red points in this basin of attraction. This means that the global

minimum was found more often than the local minimum. In fact, the global minimum was

found 80.27% of the time whereas the local minimum was found 19.73% of the time.

When we generate images for the systemized centroid by shifting around the grid point

by five and ten units, we see a similar pattern. The basins of attraction created by shifting

by five and ten units is depicted in Figures 7.4 and 7.5, respectively. In Figure 7.4, the global

minimum was found 83.9% of the time and the local minimum was found 16.1% of the time.

Meanwhile in Figure 7.5, the global minimum was found 81.86% of the time and the local

minimum was found 18.14% of the time.

When using the systematic point method, we had to carefully create an initial simplex

to find the global minimum more often than not. However, that does not appear to be the

case with the systemized centroid method. It is quite reliable at finding the global minimum

no matter the size or location of the initial simplex. We notice that at almost every size of

the initial simplex, the global minimum was found approximately with the same percentage.

Therefore, in this case, it seems the systemized centroid method is more useful than the
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Figure 7.5: Systemized Centroid Method for f(x, y) = (x2+(y− 1)2)(x2+(y+1)2)+ 1
4
(x2+

(y + 1)2) Shifting by One Unit

systematic point method if we would like to find the global minimum.

7.4 Sensitivity Testing on the Function

In the previous section, we noted that the systemized centroid method was quite reliable at

finding the global minimum for this function. However, it is also important to test if this

would hold true if the function changed slightly. For example, if we kept the same global

and local minima but the shape of the function changed, then would the basins of attraction

also change?

We can use adjust the function we’ve been studying with coefficients in different ways as
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Figure 7.6: Systemized Centroid Method for f(x, y) = (x2+(y− 1)2)(x2+(y+1)2)+ 1
4
(x2+

(y + 1)2) Shifting by Five Units

seen below:

f(x, y) = (x2 + (y − 1)2)(5x2 + (y + 1)2) +
1

4
(5x2 + (y + 1)2)

In this adjusted formulas, a coefficient of five has been added to certain terms that change

the shape of the overall function but hold the same global and local minimum points. The

graph and contour plot in Figure 7.8 and Figure 7.9, respectively, shows how the image has

changed. While the graph may look similar to the original graph shown in Figure 7.1, we can

see the differences in the original and new contour plots. The new function we are looking

at is much narrower causing the function to have a steeper descent towards the minimum

points. This means that in our basin of attraction images we expect to see the Nelder-Mead
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Figure 7.7: Systemized Centroid Method for f(x, y) = (x2+(y− 1)2)(x2+(y+1)2)+ 1
4
(x2+

(y + 1)2) Shifting by Ten Units

method find the local minimum more often than the global minimum as it will be easier to

rapidly approach the local minimum at every step.

We can see this occurring in Figure 7.10 where we created a basin of attraction using the

systemized centroid method while shifting by one unit on the adjusted function. There still

does not appear to be a pattern between how the local and global minimum points are found,

however, we do see that there are more red points in this basin of attraction image than we

had previously seen in Figure 7.5. On the basin of attraction for the adjusted function, the

global minimum was found 46.49% of the time and the local minimum was found 53.51% of

the time. This means that the local minimum using the adjusted function was found 33.78%

more than the local minimum in the original function.
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Figure 7.8: 3D Plot of f(x, y) = (x2 + (y − 1)2)(5x2 + (y + 1)2) + 1
4
(5x2 + (y + 1)2)

We see this same phenomena occur when we create a basin of attraction for the adjusted

function using the systemized centroid method while shifting by ten units. The global

minimum is found 57.6% of the time and the local minimum is found 42.4% of the time.

This means that the local minimum was found 24.26% more with the adjusted function than

the original function. There is also an over 10% increase in the number of times the global

minimum is found when we use a large simplex. This could mean that when the function

has a steeper gradient of descent a larger simplex could help Nelder-Mead to find a global

minimum rather than a local minimum.

Overall, it appears that the ability for Nelder-Mead to find a global minimum versus a

local minimum is affected by the shape of the function. When we had a steeper function,

the Nelder-Mead method found the local minimum more often than with a flatter function.

It appears that the steeper descent forced the method to take larger steps in one direction

thereby ”trapping” it within the lower minimum rather than allowing it to crawl toward the

global minimum when possible.
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Figure 7.9: Contour Plot of f(x, y) = (x2 + (y − 1)2)(5x2 + (y + 1)2) + 1
4
(5x2 + (y + 1)2)
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Figure 7.10: Systemized Centroid Method for f(x, y) = (x2 + (y − 1)2)(5x2 + (y + 1)2) +
1
4
(5x2 + (y + 1)2) Shifting by One Unit
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Figure 7.11: Systemized Centroid Method for f(x, y) = (x2 + (y − 1)2)(5x2 + (y + 1)2) +
1
4
(5x2 + (y + 1)2) Shifting by Ten Units
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Function with Multiple Minima

8.1 Understanding the Function

So far, we have noticed that Nelder-Mead is mostly very stable with finding minima. It can

find any minimum a high percentage of the time and using the systemized centroid method

is effective at finding a global minimum compared to a local minimum. Therefore, we next

study a function that has multiple minima to ensure that the Nelder-Mead method remains

stable - or continues to find minima, specifically global minima. The function studied is

below:

f(x, y) = xsin(x) + ysin(y)

We can see two different graphs of this function in Figure 8.1. Figure 8.1A shows the

graph of the function on a plot with an x-range from [-10,10] and a y-range of [-10,10].

However, with these axes, the graph has certain maximums and minima near (0,0) but far

away from that only moves in the downward direction. Therefore, we wouldn’t have a global

minimum that we could use to test Nelder-Mead. In order to be able to artificially create a

global minimum, we create a smaller range as seen in Figure 8.1B.

In Figure 8.1B, we set an x and y domain of [-6,6]. Using this range, we have local
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(a) Zoomed Out Graph

(b) Zoomed in Graph

Figure 8.1: Graphs of f(x, y) = xsin(x) + ysin(y)

minimum at (0,0) for which the function value is 0. We also have local minima at (0,4.9),

(0,-4.9), (4.9,0), and (-4.9,0) for which the function value at these points is approximately

-4.81. The global minima for this function are found at (4.9,4.9), (-4.9,4.9), (4.9,-4.9), and

(-4.9,-4.9) with the function value at these points being approximately -9.63.

We can further understand this function by studying the contour plot shown in Figure

8.2. The function has many maximums and minima. We can see with the limited domain

how the minima fall at the corners of the graph. In the middle of the edges and the center

are the local minima of the graph.

Given the graph and the contour plot, we would hope that the a majority of the basin

of attraction images find the global minima in the corner. As we saw in the last chapter,
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Figure 8.2: Contour Plot of f(x, y) = xsin(x) + ysin(y)

the global minimum has a steeper gradient making it seemingly easier for Nelder-Mead to

be attracted to that minimum with the systemized centroid method. However, due to the

large number of global and local minima within this function, it would not be surprising for

the method to get ”stuck” within a local minimum.

As we will see in the next few sections, each minimum will be given it’s own color to

identify which basin is found. For the global minima: (4.9,4.9) is colored purple, (-4.9,4.9)

is colored orange, (4.9,-4.9) is colored yellow, and (-4.9,-4.9) is colored red. For the local

minima: (0,0) is colored blue), (4.9,0) is colored pink, (-4.9,0) is colored gray, (0,4.9) is

colored black, and (0,-4.9) is colored cyan. Green is still used to represent that a simplex

was unable to find a global or local minimum.
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8.2 Systematic Point Method

Once again, while using the systematic point method to create a basin of attraction, we must

assign new initial starting points for the simplex. To start with, we use the points (1,1) and

(-1,-1). The basin of attraction created by using these values to create the initial simplex is

shown in Figure 8.3.

Figure 8.3: Systematic Point Method for f(x, y) = xsin(x) + ysin(y) with assigned simplex
points (1,1) and (-1,-1)

While using this particular initial simplex method, we can see that the majority of the

time, the minima found is (0,0) - in fact, 31.25% of the time. This minimum was found

mainly when the systematic point was located in the center of the image. Around the edges,
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we can see different colored dots symbolizing that other minima have been found. Most of

the systemized points are colored the same as the minimum point they are closest to around

the edges. The minimum at (4.9,4.9) is found 11.11% of the time which is the second highest

percentage for a minimum being found. All other minima were found less than 10% of the

time with the minimum at (0,4.9) being found the least at only 6.25% of the time.

We can also note the differences in the number of times global minima were found com-

pared to local minima. Global minima were found 36.81% of the time. This means that

local minima were found 63.19% of the time. Therefore, overall, using the systematic point

method and these values for the initial simplex, we can see that the local minima are found

almost twice as often as the global minima. We can change our initial simplex to see how

that affects the number of global and local minima found.

In Figure 8.4, we have changed the assigned values of the simplex to be (3,3) and (-3,-3).

In this case, we see the same pattern as we did in Figure 8.3. Most of the systemized points

are colored according to the minimum they were found closest to. The minimum that was

found the most was once again (0,0) and was found 29.86% of the time. The minimum

found the least was still (0,4.9) along with (4.9,0) and both minima were found 6.25% of the

time. Overall, the global minima were found 40.96% of the time and the local minima were

found 59.02% of the time. Therefore, we see that this change in the initial simplex doesn’t

change how often the global minimum is found compared to the local minima. We can next

check to see if a more drastic change to the initial simplex will find the global minima more

frequently.

For Figure 8.5, we use assigned values of (-2,5) and (5,-2) to create the initial simplex.

Using this simplex, we can see that the basin of attraction image has changed drastically

from Figure 8.3 and 8.4. To begin with, we see that a minimum was not found from an

initial simplex at six different points. We also see that rather than the points mainly being

color coded based on the minimum they are closest too, there is a large uptick in the orange

and black points which correspond to the minima at (-4.9,4.9) and (0,4.9), respectively. The
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Figure 8.4: Systematic Point Method for f(x, y) = xsin(x) + ysin(y) with assigned simplex
points (3,3) and (-3,-3)

other minima are found more rarely in this basin of attraction image.

Overall, the minimum at (-4.9,4.9) was found the most at 39.58%. The minimum at

(0,4.9) was found 29.86% of the time. In this image, the minimum at (0,0) was surprisingly

never found which is different from the other basin of attraction images generated. Also, in

this case, the global minima were found 54.87% of the time whereas the local minima were

found 40.96% of the time. A minimum was not found 4.17% of the time. We can see that

the global minima were found more often in this case than the previous basins of attraction

images. Using this more drastic change in initial simplex, we are also able to find global

minima more than local minima for the first time.
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Figure 8.5: Systematic Point Method for f(x, y) = xsin(x) + ysin(y) with assigned simplex
points (-2,5) and (5,-2)

8.3 Systemized Centroid Method

As we saw in the last chapter, the systemized centroid method seemed to be more effective

at finding global minima in certain cases. We attempt to see if it can be more effective on

this function as well.

We start by creating the basin of attraction where we create the centroid by shifting

around the grid by one unit as seen in Figure 8.6. As we can see in the image, the color of

the points in this case are even more coordinated with the location of the minima they are

closest to. However, unlike the randomized point method, we do not see a majority of any

colors or minima found. The minimum found most was (-4.9,-4.9) and was found 17.36% of
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the time and the minimum found least was (0,4.9) and was found 6.25% of the time. We

can see that this is a much tighter range in finding each minimum than there appeared to

be within the systematic point method.

Figure 8.6: Systemized Centroid Method for f(x, y) = xsin(x) + ysin(y) Shifting by One
Unit

We can also compare the number of times global minima were found compared to local

minima using this method. Global minima were found 52.08% of the time meaning that

local minima were found 47.91% of the time. Therefore, the global minima were found more

often than the local minima when using a tight range. Note that the only slightly more

global minima were found than local minima which is not ideal. We also see that the four

global minima in this case were found with an approximately equal frequency. In Figure

8.5, when we used the systematic point method and found the global and local minimum at
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approximately the same rate, the rates were mainly due to certain global and local minima

rather than all of them. Therefore, we are finding the global minima we would expect to

find with more precision.

Figure 8.7: Systemized Centroid Method for f(x, y) = xsin(x) + ysin(y) Shifting by Three
Units

In Figure 8.7, we create the basin of attraction by shifting around the grid by three units

to find the centroid. In this case, we can see that the preciseness of the minima being color

coordinated according to location that we saw in Figure 8.6 is no longer present. Instead,

the color coordinated points are very loosely around the minimum we would expect them

to find. However, similar to Figure 8.6, in the basin of attraction depicted in Figure 8.7 the

minimum (-4.9,-4.9) was found the most at 20.14%. The minimum at (0,0) was found the

least, only 3.47% of the time. This makes sense as (0,0) is the shallowest minimum of this
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function and therefore that makes it easier for Nelder-Mead to not locate it as a minimum.

In this basin of attraction image, the global minima are found 50.7% of the time and the

local minima are found 49.3% of the time. We can see that when the simplex is created with

a larger shift, and is therefore larger itself, finding global and local minima becomes more

comparable. Both the global and local minima are found with an almost identical frequency.

We can test this out further by once again expanding the shift in points used to create the

initial simplex.

Figure 8.8: Systemized Centroid Method for f(x, y) = xsin(x) + ysin(y) Shifting by Six
Units

In Figure 8.8, we find the centroid of the initial simplex by shifting around the grid point

by 6 units. In this case, we can see that the color coordination of the points falls even more

loosely around the location we would expect them to - or than where they were located in
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Figure 8.6. In this case, the minimum most found was (0,-4.9) and was found 16.67% of the

time. This is the first time a method found a local minimum more than any global minimum.

The minimum least found was once again (0,0) at 3.47%. Therefore, we see that using this

method there is a larger range in finding local minima than there is global minima.

We also compare the number of times the global and local minima were found in Figure

8.8. The global minimum was found 52.78% of the time and the local minimum was found

47.21% of the time. Using the systemized centroid method and large initial simplices, we once

again find the global and local minimum a comparable amount, though the local minimum

is found slightly more often. While this isn’t ideal, we do recognize that the difference in

global and local minima found here is smaller than the difference in global and local minima

found in the systematic point method.

8.4 Conclusions

Using this function with multiple minima, we can further understand how the Nelder-Mead

method works. We understand that despite a large number of minima, Nelder-Mead remains

stable in the sense that it rarely stalls or fails to find a minimum given a simplex. We note

than in all of the basin of attraction images, in this chapter and previous ones, there were

only very few cases where an initial simplex was unable to find a minimum. This is an

important distinction from other methods that become unable to find minima reliably when

multiple minima are present.

Further, we once again note the differences between the systematic point method and

the systemized centroid method are what we have consistently seen in previous chapters.

The systematic point method does not find minima as we would expect it to based on the

contour plot image but rather based on the two assigned points used to create the initial

simplex. Even with several local and global minima, the systematic point method never

showed preference for the global minima unless the initial simplex was sensitive towards

them.
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Meanwhile, the basin of attraction image for the systemized centroid method with a small

initial simplex holds the same structure that we would expect it to based on the contour

image. As we increase the size of the initial simplex, the structure of the basin of attraction

image loosens and diverges from what we would expect to see. This method also finds global

minima more reliably and frequently. Even with a function that had more local than global

minima, the frequency of the global minima found was comparable to the frequency of local

minima found.

Therefore, we maintain the idea that in most cases the systemized centroid method gives

us the best understanding of the function from the basin of attraction image generated from

the methods we worked with in this paper. It is not as sensitive to the initial simplex as the

systematic point method and is easy to understand unlike the randomized centroid method.

The systemized centroid method rarely stalls and fails to find a minimum and is the most

precise at finding minima. It is the best, relatively, at finding global minima compared to

local minima.

However, it is important to remember that this method seems to be the most effective

of the ones we tested. There may be other ways to create the initial simplex or color code

the basin attraction images to make them even more effective than the systemized centroid

method. Also, the most effective method is relative to the function that we are studying.

With other functions, we may find that one of the other methods creates a better basin of

attraction image.
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