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Abstract

This paper suggests numerical weights that a Major League Baseball (MLB) man-

ager may use when comparing player performance across multiple past performance

periods to predict future performance. By the end of the MLB regular season, cur-

rent season performance becomes more predictive than prior season performance for

pitchers but not hitters. After estimating weights for different past time periods of

performance, this paper compares the weights with how managers value performance

in high-stakes situations across these same time periods. I find that MLB managers

overreact to recent performance by both hitters and pitchers in postseason settings.
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1 Introduction

How do experienced actors make decisions when gifted with copious information? How

do these actors make decisions in scenarios with significant consequences for others and

themselves? As an actor gathers more information, does she update her beliefs in a Bayesian

manner? How optimal are her decisions? Is decision optimality quantifiable?

To better understand how actors make high-stakes decisions using past information, I

turn to the controlled setting of Major League Baseball (MLB). From April through August,

each of the 30 teams in the MLB contains 26 players on its active roster and one manager.

Beginning in September, the active roster size expands to 28. The manager is primarily

responsible for deciding which players on the active roster play each game. There are nine

positions and a manager must choose one player per position at any given time. Of these nine

players, one takes the role of pitcher and the others play in the field. Fielders are typically

evaluated primarily on their hitting performance, while pitchers are primarily evaluated on

their pitching performance (despite hitting occasionally). In the case of American League

(AL) games, the manager has the option to start a player as a team’s designated hitter (DH),

for a total of ten players playing simultaneously. The DH does not play in the field; instead,

he hits in the pitcher’s place. To distinguish between these types of players, I characterize

all players who are not pitchers as hitters.

The situation where 26-28 players compete for nine or ten available playing positions

introduces a scarcity issue. When such scarcity is considered, the manager’s decision con-

cerning which players to play (i.e. to take on the role of one of the available positions)

and which players to bench (i.e. to not take on a role of one of the available positions)

may be framed as a constrained optimization problem where the manager chooses players to

maximize the probability of winning of a championship [Leitch, 2022].

Often, a manager encounters the following situation. He has two players on his team

who play the same position who are relatively similar in ability. Perhaps one player has

played better in past seasons, but the other player has played better in the current season.

The manager may only start one player at a time. Which player should the manager start
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over the next few games to maximize his chances of victory? This scenario frequently arises

in high-stakes situations including winner-take-all playoff games. Here, the manager has

substantial information about each player and must efficiently use this information to make

an optimal decision. How should the manager optimally weigh player performance across

different time periods to make the best decision possible?

A manager must properly balance short-term winning with long-term player development

to maximize his team’s probability of winning a championship. Each team has its own time

horizon on which it expects and plans to win its next championship. Some teams believe

they have a relatively high probability of winning a championship in the current season,

while others believe they do not have the current ability to win a championship and shift

their focus to winning a championship multiple years into the future. Teams in the former

situation are more likely to focus on winning in the short-term, while teams in the latter

situation are more likely to prioritize winning in the long-term. Teams in these two situations

act differently by prioritizing long-term and short-term development to differing degrees.

Teams prioritize long-term success tend to emphasize developing young players who have

the potential to contribute to success multiple years in the future. On the other hand, teams

prioritizing short-term success more frequently play the players that give them the best

chance to win in the present. The MLB postseason is the time of season where teams most

clearly prioritize winning in the short-term. Once a team qualifies for the postseason, it has

a higher probability of winning a championship relative to its chances at other points in the

season1. After qualifying for the postseason, teams have fewer days and opponents between

them and winning a championship. At this point in the season, other teams have been

eliminated from championship contention and each game carries significantly more weight

than in the regular season. To qualify for the playoffs, a team must win a certain proportion

of their 162 regular season games. Losing a single game here carries less significance than

losing a playoff game. To win a championship, a team must win multiple best-of-seven game

series and so postseason games hold higher stakes than regular season games, where losing is
1Each season, 8-10 teams, out of 30, qualified for the MLB postseason from 2000-2019
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less costly. Here, I assume that prioritizing short-term winnings in the postseason is rational

manager behavior. While managers may give playoff experience to younger players at the cost

of short-term success, such a situation rarely occurs. Therefore, when evaluating manager

decision-making optimality with respect to subsequent player performance, I evaluate the

decisions of managers made between postseason games. In doing so, I assume that managers

aim to maximize individual player performance at each position to maximize overall team

performance.

In this paper, I conduct two distinct empirical exercises. First, I aim to determine how

much value a manager should place on player performance over various periods of time. Raab

and Gula [2004] describe the hot hand belief as "the belief that the performance of an athlete

temporarily improves following a string of successes". I am interested in determining the

existence of a season-level hot hand in baseball. More specifically, I aim to answer the fol-

lowing questions. How predictive is current season performance of future performance when

compared against all given information a manager knows about a player? Such additional

information includes previous performance and experience, age, recent performance, and op-

ponent ability. How well does prior career performance predict subsequent performance in a

given season relative to current season performance for different types of players at various

points in the season? How and why might these results vary by position? More rigorously,

I evaluate the validity of the hypothesis that after some point in the regular season, current

season performance is more predictive than prior career performance and I hypothesize that

current season performance adds predictive value when isolated from all other information

available to the manager, such as a player’s recent performance, his prior career performance,

age, and other factors discussed in section 3.

I find that prior career performance tends to be more predictive of subsequent perfor-

mance among hitters, while current season performance is more indicative of subsequent per-

formance for pitchers. Upon exploring the hot-hand, I find a slight short-term hot hand or

"short-term predictability in performance" effect consistent with Green and Zwiebel’s [2018]

findings that following strings of successes, a player experiences a temporary boost in per-
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formance.

The second empirical exercise pertains to manager decision-making optimality. I aim

to evaluate how well managers understand the predictive value of these variables, particu-

larly the predictive value of performance across multiple time periods. After estimating the

predictive value of multiple periods of performance, I compare these values to the weights

managers implicitly assign to each of these periods when managers make decisions. I aim to

answer the questions: How optimally do managers make decisions regarding which players

to give playing time? How identifiable are such decision-making inefficiencies? I examine

the possibility that managers overvalue or undervalue recent performance and undervalue

or overvalue prior career performance, evaluating each question with respect to hitters and

pitchers. I expect an overreaction to recent performance to be most likely and find results

consistent with my expectations.

1.1 Significance

The results of this study have direct significance to actors in baseball and the general

decision-making population. First, the results may inform decision-making tendencies and

beliefs of baseball managers, front office members, fans, and players. Managers may gain

direction concerning how to decide which players to start and which players to bench. Within

an MLB team’s front office, general managers and scouts may properly use prior information

to estimate player value. With accurate forecasts, front offices may better determine which

players to compensate and how much they should be paid. Fans may use the results to

identify market inefficiencies in fantasy baseball and gambling while opposing players may

adjust in-game strategy to account for the effects. After considering an opponent’s prior

performance over multiple time periods, pitchers and hitters may adjust how conservative or

aggressive they act when facing opposing players. For example, once recognizing an opposing

hitter is hot, a pitcher must determine how to appropriately act. Green and Zwiebel [2018]

determine that pitchers tend to overreact to the short-term hot hand by walking hot players

more frequently than what Green and Zwiebel [2018] consider optimal. This study aims to
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inform how pitchers react to longer periods of an opponent’s sustained success (or failure).

Anecdotal evidence of a season-long hot hand may appear most clearly in the case study

of Baseball Hall of Famer Cal Ripken Jr.’s 1991 season [Rosenfeld, 1995]. Over the 1988-1990

seasons, Ripken Jr. averaged roughly 22 home runs per season and an 0.257 batting average.

For context, 34 players hit more home runs that Ripken Jr. in 1990 and the MLB league

average batting average over this period was 0.258 [199, a], suggesting Ripken Jr. to be an

average hitter. In 1991, Ripken Jr. recorded 34 home runs and a 0.323 batting average,

good for 4th and 6th in the MLB, respectively [199, b]. Ripken Jr. performed well above

average, going on to win the AL Most Valuable Player award, maintaining above-average

play throughout the season’s duration. His play during the beginning of the season was

indicative of his play in the second half of the season, particularly when compared to his

poor prior performance (relative to the 1991 season). However, such strong performance was

short-lived: the rest of his career, Ripken Jr. hit no more than 24 home runs in a single

season. In the 1992-1993 seasons, his batting average regressed to 0.254. Such perplexity

in performance fluctuation motivates my research. Was Ripken Jr.’s success in 1991 simply

due to luck, or was he truly ’hot’ over the entire regular season?

While most academic scholars are not overly concerned with baseball outcomes, baseball’s

controlled, high-stakes setting provides interesting case studies concerning decision-making.

Stakes are high in multiple dimensions: each decision that a manager makes disseminates

throughout the public via media press releases. Team operate as business organizations,

paying managers multi-million dollar salaries each year to make decisions. These actions

imply that their decisions hold significant value. These decisions are actions that people

give ample attention. The MLB is a growing multi-billion dollar business with hundreds of

millions of fans [Ozanian and Teitelbaum, 2022].

Performance-based outcomes have significance outside of baseball. Successes and failures

achieved by individuals in various performance-based contexts including educational settings

and the labor market may affect individual confidence levels. Descamps et al. [2022] find that

a string of successes is more likely to follow an initial success than an initial failure. They
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find such strings to be "driven by an information revelation effect, whereby players update

their beliefs about their relative strength after experiencing an initial success" [Descamps

et al., 2022]. If a reset in statistical recording at the beginning of each MLB regular season

partially determine confidence levels influencing player performance, I may better under-

stand the role that confidence effects play in settings broader than the MLB. This sample

consists of managers who are (by definition) experienced actors with high stakes. Similar

actors appear in financial settings. Recently, economists have studied belief formation, over-

reactions, and underreactions to news in macroeconomic settings with respect to different

time periods. For example, Wang [2021] finds that U.S. Treasury bond market participants

overreact to new information when forecasting short-term interest rates. On the other hand,

these participants underreact to the same information when forecasting long-term interest

rates. Similarly, Bordalo et al. [2019] find that stock market participants and analysts over-

react to new information about a company when forecasting that company’s future stock

prices. The results of this study are relevant to Bayesian updating, decision-making, and the

optimality of belief formation in contexts similar to these that focus on compiling substantial

information to make accurate forecasts.

1.2 Additional related work pertaining to the hot hand

The short-term hot hand has been analyzed extensively in literature. Gilovich et al.

[1985] wrote the canonical hot hand paper by claiming that no hot hand exists in basketball

after analyzing the free throw attempts of college basketball players. However, advances in

technology, computing power, and statistical methods have enabled researchers to conduct

more rigorous analysis. After controlling for various exogenous factors, Miller and Sanjurjo

[2018] and Miller et al. [2014] disprove Gilovich’s claim by discovering a hot hand from

the same data collected in Gilovich’s original study. Stone [2012] finds measurement error

and disputes Gilovich’s claim, noting that by taking outcome-based approaches instead of a

priori probabilistic approaches, a hot hand effect may not be found even when a significant

hot hand effect exists. In light of these findings, Benjamin [2019] defines the hot hand
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bias more generally to be the belief in a hot hand even though outcomes are known to be

independent and identically distributed. Offerman and Sonnemans [2004] find evidence that

decision-makers exhibit hot hand bias, overreacting to the hot hand in sports betting and

stock market settings. On the other hand, Stone and Arkes [2018] discover an underreaction

to the hot hand by the NCAA men’s basketball selection committee when choosing teams to

include in the NCAA men’s basketball tournament and team seedings. In baseball, managers

may be susceptible to hot hand (recency) bias. Miller and Sanjurjo [2019] discover a recency

bias apparent in the decision-making of scientific researchers. They find that researchers

analyze results similar to individuals facing the famous Monty Hall problem, with decision-

making changing in light of recent streaks [see also Ayton and Fischer, 2004]. Game managers

may act in a similar manner.

However, a change in scenery may halt certain streaks. Dai [2018] finds a reset effect

after abrupt changes in scenery both generally and within baseball. More specifically, she

finds that when traded from the National League to the AL, or vice-versa, streaky players

reverse trends. Players who perform above their baseline previous performance before being

traded to another league start to perform below this baseline. Similarly, players who perform

poorly prior to being traded begin playing significantly better after being traded between

leagues. Dai found evidence of a reversal effect when a player switched leagues. When

the player stayed in the same league, however, the reversal effect was not found and the

player maintained his pre-trade performance. By entering a new league, a player may clear

his mind of poor prior performance. Once a player moves between leagues, his recorded

statistics are often started anew. A fresh statistics record may gift the player with a clean

slate, motivating him to take advantage of a new opportunity. Consistent with Dai’s [2018]

findings, I predict the start of a new season to act as a reset for player confidence and

performance. A confidence effect may be present; once a player begins to play well in the

new season, seeing above average statistics in the record books may give the player the

confidence to keep playing well throughout the rest of the season.

Thus far, the literature has focused on short-term streakiness in player performance.
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Season-long streaks of above and below average play have not been analyzed. The previous

aforementioned studies have yet to take advantage of the wealth of data recently made

available by increasingly frequent developments in sabermetrics and baseball analytics. This

paper aims to expand on the current literature by measuring streakiness in baseball on a

longer time scale than Green and Zwiebel [2018] use and evaluating how MLB managers react

to these measures of streakiness using advanced metrics to measure player performance.

Many metrics yielded by these developments have been shown to be more predictive of

subsequent performance than traditional statistics [Richards, 2019].

1.3 Organization of paper

The organization of this paper is as follows. In section 2, I describe the sample data I

use in the study and the criteria for a player to be included in a sample. In section 3, I

describe the modeling and methodology I use in my first empirical exercise, predicting sub-

sequent player performance, while section 4 displays my results and corresponding analysis

concerning estimations of prior performance value. Section 5 explains the methodology I use

to evaluate manager decision-making optimality and the corresponding results arising from

the methodology. Finally, section 6 summarizes my key findings and concluding remarks.

2 Data

I use game-level statistics provided by fangraphs.com from 1295 pitchers and 1302 hitters

playing in the 2003-2021 regular seasons. Each player has his own set of game logs which

includes information by game: the date of the game, the player’s team, opponent, number

of plate appearances (batters faced for pitchers) and relevant hitting and pitching statistics

to measure player performance. To explore manager decisions in the postseason, I collect

additional game-level data from the 2006-2021 postseasons from Baseball-Reference.com.

This data includes information concerning starting lineups and postseason player statistics.

Following the existing literature, I use expected fielding independent pitching (xFIP) to
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measure pitching performance and weighted runs created plus (wRC+) to measure batting

performance. The formula for xFIP is given below:

xFIP =

13·Fly balls
league average rate of HR per fly ball + 3(BB + HBP)− 2K

IP
+ FIP constant

Where ’FIP constant’ scales xFIP to the magnitude of earned runs allowed (ERA), a classical

measure of pitcher performance, and:

• BB: number of batters walked.

• HBP: hit-by-pitch, the number of batters a pitcher hits with the ball.

• K: number of strikeouts.

• IP: innings pitched.

wRC+ measures hitting performance. According to Slowinski [2010a], wRC+ controls

"for [ballpark] effects and the current season run environment. wRC+ is scaled so that the

league average is 100 and each point above or below 100 is equal to one percentage point

better or worse than the league average". wRC+ has controls that make it a better measure

of hitting ability than classical metrics such as batting average, runs batted in (RBI), on

base plus slugging (OPS), and weighted on base average (wOBA). wRC+ has a complicated

formula; I direct the reader to [Slowinski, 2010a] for a mathematical definition.

3 Predictive model

First I estimate the effect of current season performance, current, on a player’s subsequent

performance, next. I measure performance across any particular time period for hitters and

pitchers as described in section 2 and use multiple linear regression to evaluate current

season performance’s predictiveness concerning future performance over multiple periods
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throughout the MLB regular season. At each point in time, I estimate the following model:

next = β0 + β1last3 + β2current+ β3recent+ γcontrols+ µ (1)

where:

• next : player performance over the next m ∈ {25, 50, 75, 100} player observations.

• last3 : player performance over his previous three seasons.

• recent : player performance over his most recent r ∈ {25, 50} player observations.

• current : player performance in the current season, up to the recent period.

• controls : player age, home field effects, opponent average performance and season,

team, and season-team fixed effects.

• µ: error term

I use last3 as a proxy variable to represent a player’s baseline ability. By including three

seasons of player observations in the baseline measurement period, I hope to precisely mea-

sure a player’s baseline ability before the start of the current regular season. The more that

a player plays in past seasons, the more precisely a manager may quantify his expectations

regarding future performance. I measure last3 as a straightforward average of player perfor-

mance across his past three seasons. In appendix A.4 I show that my results do not change

when last3 = α1l1 + α2l2 + α3l3, where li is a player’s performance in the ith most recent

season and each αi is estimated by splitting last3 into three distinct performance periods

when estimating eq. (1).

I control for age, opponent average performance, home field effects, team fixed effects,

year fixed effects, and team-year fixed effects. Determining how to best control for age is

nontrivial because player improvement is nonlinear as a function of age. Younger players

improve with experience, while older players lose skill through aging. To control for age I

create a variable, dfpeak = |age − 27| which measures a player’s proximity to his peak age
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27 [Hakes and Turner, 2011] under the belief that the closer a player is to his peak age,

the better he plays, all else equal. For hitters, I measure opponent average performance as

the opposing team’s average xFIP in that year’s regular season. For pitchers, I estimate

opponent average performance to be the opposing team’s average wRC+ over that year’s

regular season. I control for a player’s percentage of home games in the current, recent, last3,

and next player observation periods to implicitly capture ballpark and home field advantage

effects [Jamieson, 2010]. I also include team, year, and team-year fixed effects. For a player

to qualify for a sample, he must record at least 324 observations (an average of 2 per game)

in each of the previous three seasons and at least n +m player observations in the current

season. Here, n is the number of player observations in the current season thus far. Table 1

shows each measurement period’s length with respect to m, n, and r.

variable first player observation last player observation
current 1 n - r
recent n - r + 1 n
next n + 1 n + m

Table 1: Variables representing player performance across various periods of the MLB regular
season, with accompanying visual. I list each period’s first and last player observation.

For pitchers, I measure player observations by batter faced (BF). For batters, I define a

player observation to be a plate appearance (PA). I estimate eq. (1) at multiple points in the

season by varying n ∈ {100, 125, 150, ..., 500, 525, 550}, r ∈ {25, 50} and m ∈ {25, 50, 75, 100}

with n, r, and m defined above. Each model I estimate can be represented by the parame-

terization (n, r,m), with separate estimations for hitters and pitchers.

To maintain simplicity, I hold r = 25 and m = 100 throughout this paper. I choose

r = 25 because this is the period over which Green and Zwiebel [2018] found a short-term

hot hand effect. I measure time by PAs and BFs instead of days to put players with varying

levels of playing time on the same scale. For instance, one player may reach the 100 PA

threshold in April while another may reach the same threshold in late June. If I measured
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periods using days, the model would estimate equal effects of current performance on the

subsequent performance of two players who have played vastly different amounts over the

same number of days. By using PAs (BFs), I aim to capture the effect of current season

performance n − r PAs (BFs) into the season. By estimating eq. (1) at myriad thresholds,

I aim to compare players who compete for playing time at the same position who have

played different amounts in the season. This measurement strategy allows me to compare

starters and substitutes, the latter of which may receive significantly less playing time than

the former over a full season. By using PA and BF to measure time and estimating eq. (1)

using samples with low thresholds of playing time, I aim to include substitute players in at

least one of the samples so that I may predict their subsequent performance.

I also vary the length of current to analyze its estimated effect on next relative to last3

at different points in the season. Longer periods include more player observations (by defini-

tion). Therefore, longer periods enable better estimations of player performance in that time

period as smaller sample sizes of player observations tend to have larger standard deviations.

Longer measurement periods help eliminate a proportion of this noise and give a more pre-

cise measure of player performance by increasing the amount of available information. For

example, a player’s performance over the first 500 PA of the current season should provide

more information about the player’s ability than his performance over the first 5 PA.2

Recall β1 and β2, the coefficients in eq. (1) corresponding to last3 and current, respec-

tively. I test the hypothesis H0 : β1 = β2 against the alternative hypothesis H1 : β1 ̸= β2

for each combination (n, r,m) to evaluate the effect of current season performance on subse-

quent performance relative to prior performance at different points throughout the season.

H0 states that a player’s current season performance and his performance over the last three

seasons hold the same predictive power when estimating the his subsequent performance.

Alternatively, H1 finds one performance period more predictive than the other.3

2Information gained from plate appearances is not additive. 500 PA should not provide 100 times more
information than 5 PA. I expect to gain an amount closer to

√
500/5 = 10 times as much information.

3This paper focuses on the relationship between current and prior season performance rather than recent
player performance. I refer the reader to Green and Zwiebel’s work for information concerning β3.
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3.1 Sample selection

The raw data includes game-level statistics on players from the 2003 to 2021 MLB seasons.

Hence, I define a model observation to be by player, by season, for one observation per

player per season. I restrict a player to have at most one model observation per season.

For example, when n = 100, I include a player who records 500 plate appearances in the

given season only once. The sample of players I use in my analysis varies for each (n, r,m)

parameterization defined in section 3. For a player-season combination to be included in

a sample, a player must record at least 324 (average two player observations per game for

162 games, the length of the MLB regular season) PA or BF in each of his previous three

seasons and enough PA or BF in the current season to calculate subsequent performance.

For example, for a hitter’s 2016 season to qualify for the (525, 25, 100) sample, he must have

recorded at least 324 PA in each of the 2013, 2014, and 2015 MLB regular seasons and at

least n+ r +m = 525 + 25 + 100 = 650 PA in 2016.

A direct consequence that follows from my sample selection methodology is that players

without sufficient playing time do not qualify for the sample. As the current season play-

ing time threshold increases, more players are excluded from the sample. Therefore, each

sample’s size decreases as the threshold increases. The sample (75, 25, 25), with a threshold

of 125 PA, includes 1857 player-season combinations while the sample (525, 25, 100), with

a threshold of 650 PA, includes 3994 (after accounting for missing values). Therefore, I

expect estimated coefficients to be less precise for smaller sample sizes. This expectation

is consistent with my findings. I show that estimated standard errors increase as sample

sizes decrease in section 4. To counter this increase, I estimate eq. (1) for various n and

demonstrate that when I hold the sample constant, my results do not change.
4See section appendix A.5 for summary statistics.
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4 Season-level hot hand results

4.1 Hitters

Before showing results, I clarify my choice of notation with an example by displaying

hitter regression results for (n, r,m) = (525, 25, 100). Since the model observations are

hitters, a player observation is a PA. The current player observation period includes PAs 1

to 525, the recent PA period includes PAs 526-550, and the next PA period includes PAs

551-650. I show relevant estimated coefficients in Table 2. The estimated coefficients on last3

and current imply that last3 and current hold similar predictive value at the specified point

in the season. These estimated coefficients appear in Figure 1: the right-most blue circle

represents the estimated coefficient on current and the right-most red square represents the

estimated coefficient on last3.

Table 2: Hitter regression results for (n, r,m) = (525, 25, 100). The first column describes
the independent variable. The second column represents the variable’s estimated coefficient
and corresponding heteroskedastic-robust standard error (in parentheses below). Additional
regression statistics lie below the estimated coefficients.

Dependent variable: next

last3 0.448∗∗∗
(0.126)

current 0.427∗∗∗
(0.109)

recent −0.018
(0.027)

Observations 399
Adjusted R2 0.167

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To be included in this regression, a player must have achieved at least 324 PA in each of

the previous three seasons and at least 650 plate appearances in the current season. There

are 399 player-season combinations that meet this threshold. The model explains 25 percent

of the variance in next and the difference between estimated coefficients β̂1 and β̂2 on last3
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and current is not statistically significant.

I plot the estimated coefficients on last3 and current, β̂1 and β̂2, in Figure 1 from regres-

sions performed throughout the season.
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Figure 1: Hitters: estimated coefficients of the current (as blue circles) and last3 (as red
squares) variables in eq. (1) by plate appearance. Error bars represent heteroskedastic-robust
standard errors.

The horizontal axis records n, the number of plate appearances recorded up to the point

of prediction in the current season. The next period has length m = 100 PA with recent

period length r = 25 PA.

Hence, Figure 1 shows the estimated coefficients as I vary n from 75 PA to 525 PA by

increments of 25 with parameters (n, r,m) = (n, 25, 100). Early in the season, prior career

performance has a strong effect relative to current season performance. For small n, a hitter’s

current season performance will be noisy. Under the assumption that the outcomes of plate

appearances are independent and identically distributed random variables, the weak law of

large numbers implies that player performance may vary significantly in the short-term before
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reflecting a player’s true ability. As the length of the current season grows, a player’s current

season performance should become a more reliable measure of the player’s ability. This

increase in reliability should be reflected in predicting his subsequent performance (which I

measure using next). In Figure 1, β̂1 ∈ (0.6, 0.8) and β̂2 ∈ (0, 0.2) from 1 ≤ n ≤ 425. When

n > 425, current gains predictive ability: β̂2 increases to nearly 0.4 by 475 plate appearances.

Similarly, β̂1 decreases to roughly 0.4 at t = 475 PA.

In Figure 1, I allow the sample selection threshold to vary across different values of

n to estimate eq. (1). I also aim to evaluate the effect of holding the set of player-season

combinations constant while changing the number of plate appearances thus far in the current

season. I hold the sample constant by requiring all player-season combinations to reach at

least 600 PA for all (n, 25, 100) samples and show the results in Figure 2.
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Figure 2: Hitters: estimated coefficients of the current (as blue circles) and last3 (as red
squares) variables in eq. (1) by plate appearance. Error bars represent heteroskedastic-robust
standard errors. Each coefficient is estimated on the same fixed sample of player-season
combinations with sufficient observation to qualify for the n = 500 sample.
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Similar to results shown in Figure 1, Figure 2 shows estimated coefficients on current and

last3 holding constant until roughly 400 PA. When a hitter reaches the 400 PA mark, the

predictiveness of current increases and the predictiveness of last3 decreases. These trends

are consistent with my original findings.

4.2 Pitchers

Keeping r = 25 and m = 100, I show pitcher regression results for models (n, 25, 100) for

n ∈ {75, 100, 125, ..., 500, 525} in Figure 3.
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Figure 3: Pitchers: estimated coefficients of current (as blue circles) and last3 (as red
squares) in eq. (1) by batters faced. Error bars represent heteroskedastic-robust standard
errors.

The horizontal axis records n, the number of batters faced up to the prediction point

in the current season. The next period has length m = 100 BF with recent period length

r = 25 BF. These are the same parameters I use to show hitting regression results. Once
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again, I use r = 25 to control for the hot hand effect that Green and Zwiebel [2018] find

players exhibit from their most recent 25 BF. Similar to the hitting regression results shown

in fig. 1, prior career performance holds more weight than current season performance early

in the season. β̂2 steadily increases from 0.174 at 100 BF to 0.658 at 475 BF. I also see a

steady decrease in β̂1 over the same period (0.736 to 0.147). After BF = 475, I find a trend

reversal. β̂1 decreases slightly while β̂2 increases slightly. Small sample sizes deriving from

a small number of players meeting the qualification criteria late in the regular season may

be an underlying factor causing this trend reversal. Therefore, I re-estimate eq. (1) at the

same points (n, 25, 100) for n ∈ (100, 125, ..., 500) using only players who record at least 600

BF in the current season. Therefore, the sample remains constant while the number of BF

varies. I show the results in Figure 4 and do not find any significant differences between the

results shown in Figure 3 and Figure 4.

The estimated coefficient on current rises and the estimated coefficient on last3 decreases

gradually as n increases. Both figures demonstrate that current holds significantly more

predictive value than last3 once a player has faced 500 batters in the current season. In other

words, previous season performance is significantly less predictive of subsequent performance

than current season performance late in the season.

4.3 Controlling for future performance

In evaluating player performance for predictive purposes, it is optimal for general man-

agers to differentiate between fundamental changes in baseline player ability and a long

stretch of streaky play. A player may be having a particularly strong season for (at least)

two reasons. On one hand, he may have improved his overall ability in which his statistics

accurately reflect this improvement. For example, he may be stronger, faster, or improved

his hand-eye coordination. On the other hand, he may be ’hot’ in the current season. When

predicting future performance, correctly distinguishing between these two causes gains im-

portance if the hot player cools down in-season. I control for improvement by adding future,

the player’s performance in the subsequent season, as an explanatory variable to equation
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Figure 4: Pitchers: estimated coefficients of current (as blue circles) and last3 (as red
squares) in eq. (1) by batters faced. Error bars represent heteroskedastic-robust standard
errors. Each coefficient is estimated on the same fixed sample of player-season combinations
with sufficient observation to qualify for the n = 500 sample.

1. If a performance fluctuations are caused by fundamental changes in ability, the estimated

coefficient β̂4 on future should be positive, as such a robust change in performance should

be reflected over substantial periods of time. On the other hand, if a change in performance

is caused by player streakiness that may reset at the season’s duration [Dai, 2018], future

performance should not add predictive information.

I present results with future as a control variable in Figure 5 and Figure 6. I compare Fig-

ure 5 and Figure 6 to Figure 1 and Figure 3 respectively and find no significant change in

estimating β1 and β2 for both hitters and pitchers.

Qualitatively, Figure 5 demonstrates the same dynamic trends: for hitters, β̂2 increases

and β̂1 decreases at the same points in the season as found previously. However, unlike

the results shown in Figure 1, β̂2 does not surpass β̂1 at any point in the regular season.
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Figure 5: Hitters: estimated coefficients of current (as blue circles) and last3 (as red squares)
in eq. (1) by plate appearances with future performance included as an explanatory variable.
Error bars represent heteroskedastic-robust standard errors.

Hence, when controlling for future season performance, current loses predictive value relative

to last3. Such a decrease in predictive value may imply that future performance is more

correlated with current performance than a player’s performance over his last three seasons.

These results are consistent with Dai’s [2018] findings regarding resets and their effects on

fluctuation in performance. The more resets that occur between performance periods, the

more likely one period’s performance is to substantially deviate from the other.

Figure 6 shows blue and red trend lines more difficult to identify than those shown

in Figure 3. However, β̂1 and β̂2 maintain decreases and increases over the course of the

season to values consistent with the estimated coefficients shown in Figure 3.

From the manager’s point of view, determining the cause of improved play as either

streakiness or intrinsic player improvement is unimportant in the short-term. Either way,

increased player performance is desired. As mentioned in section 1, this distinction may be
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Figure 6: Pitchers: estimated coefficients of current (as blue circles) and last3 (as red
squares) in eq. (1) by batters faced with future performance included as an explanatory
variable. Error bars represent heteroskedastic-robust standard errors.

useful for general managers who deciding which players to sign to high-paying contracts.

Paying a hot player likely to cool down the same as an improved player will be costly if the

two players performed similarly over the same time period. Distinguishing between these

two types of above-average play may be crucial to team success.

4.4 Selection bias

My sample selection methodology presents a bias problem. Certain groups of players

may not qualify for samples with high player observation thresholds. For example, managers

may bench players before they receive enough PA or BF to qualify for a sample because

these players play poorly early in the season. The sample may be biased towards an above-

average population, misrepresenting the MLB player population. The bias presents itseldf
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in each sample, particularly among hitters: the average wRC+ of each sample is higher

than the league average of 100 and increases as the season continues and the sample shrinks.

Therefore, I restrict my sample to ’above average’ players as characterized by fangraphs.com.

For hitters, a player may only be included in a sample if he reaches the threshold PA (as

defined in section 3.1) and averages a wRC+ greater than 115 over his last three seasons.

Similarly, pitchers must average an xFIP less than 3.5 across his last three seasons. I expect

above average performance in a player’s most recent three seasons recorded over a sufficient

number of player observations to establish a player as a steady starter and show the results

corresponding to the refined samples in Figure 7 and Figure 8.
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Figure 7: Restricted hitter sample: estimated coefficients of current (as blue circles) and last3
(as red squares) in eq. (1). Error bars represent heteroskedastic-robust standard errors.

As compared to results shown in Figure 1, last3 increases in predictive ability and current

decreases in predictive ability among hitters. Figure 7 shows that β̂1 > β̂2 at all points in the

season. These results support sustained player improvement over season-long streakiness.
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Furthermore, the average age of the steady starter sample is much higher than league average

(30.2 years vs. 28.2 years) [Eddy, 2021]. An experienced veteran is less likely to substantially

improve over the duration of a single season because he has already received ample playing

time.
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Figure 8: Restricted pitcher sample: estimated coefficients of current (as blue circles) and
last3 (as red squares) in eq. (1). Error bars represent heteroskedastic-robust standard errors.

Among pitchers, last3 follows a trend line that varies greatly from that shown in Figure 3:

β̂1 has large standard errors and fluctuates significantly. Figure 8 still shows a decrease in β̂1

over time while β̂2 follows a similar trajectory to that shown in Figure 3, however.

4.5 Isolating current performance

In addition to comparing the predictiveness of current and last3, I am interested in

determining whether current adds any additional information to a manager’s decision. More

specifically, I aim to determine whether a player’s current season is particularly predictive
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of his subsequent performance, given all available information. Therefore, I estimate an

adjusted version of eq. (1) where I replace last3 with a variable combine. combine measures

a player’s average performance over the last3 and current periods. For example, in the hitter

sample corresponding to (500, 25, 100), combine measures a hitter’s average wRC+ over his

previous three seasons and the first 500 PA of the current season. By including current as

an explanatory variable, I aim to evaluate whether a player’s current season performance

is particularly predictive after considering the player’s whole past performance. I show the

corresponding results in Figure 9 and Figure 10.
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Figure 9: Hitters: estimated coefficients of combine (as red squares) and current (as blue
circles)in eq. (1) where combine replaces last3, by plate appearances. Error bars represent
heteroskedastic-robust standard errors.

The trends shown in Figure 9 and Figure 10 are remarkably similar to those in Figure 1

and Figure 3, respectively. Among hitters, current does not add additional predictive value

until after the 400 PA mark. After this point, its estimated coefficient becomes significantly

positive. I find that among pitchers, current provides predictive value from the start. When
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Figure 10: Pitchers: estimated coefficients of combine (as red squares) and current (as
blue circles)in eq. (1) where combine replaces last3, by batters faced. Error bars represent
heteroskedastic-robust standard errors.

n = 100 BF, current ’s estimated coefficient is significantly positive. Consistent with Fig-

ure 3, the estimated coefficient corresponding to current rises and the estimated coefficient

corresponding to combine decreases (as with last3 in Figure 3) as the number of batters

faced in the current season increases.

4.6 Heterogeneity

I also group players by various characteristics to estimate eq. (1) using these subsets for

sample selection. I consider pools of older veterans and younger players. I also categorize

pitchers as strikeout pitchers or contact pitchers and starters or relievers. A pitcher is a

strikeout pitcher if he averages more career strikeouts per nine innings than the MLB league

average. Hitters are categorized by position and as either contact hitters or power hitters. I
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define a power hitter to be a player who averages a career isolated power (ISO) value greater

than the MLB league average, where ISO = SLG − BA, the difference between a player’s

slugging percentage and his batting average. Pitchers who are not strikeout pitchers are

characterized as contact pitchers and hitters who are not power hitters are characterized as

contact hitters. Despite regression results closely reflecting overall results, there are a few

informative exceptions. For power hitters, current season performance holds more weight

than it does in overall and contact hitter samples by the end of the season. Furthermore,

a higher percent of the variance in next is explained by the independent variables on the

power hitter sample as compared to the overall hitter sample (R2 = 0.306 vs. R2 = 0.2438).
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Figure 11: Power hitters: estimated coefficients of last3 (as red squares) and current (as blue
circles)in eq. (1) by plate appearances. Error bars represent heteroskedastic-robust standard
errors.

For strikeout pitchers, a similar effect arises: current season performance holds more

weight at the end of the season than it does in the overall and contact hitter samples. Fig-

ure 12 demonstrates this phenomenon. Compared to Figure 3, there are similar trajec-
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Figure 12: Strikeout pitchers: estimated coefficients of last3 (as red squares) and current
(as blue circles)in eq. (1) by plate appearances. Error bars represent heteroskedastic-robust
standard errors.

tories corresponding to last3 and current, but last3 ’s trajectory dips lower in Figure 12

than in Figure 3. Similarly, current ’s trajectory rises higher in Figure 12 than in Figure 3.

When n = 500 BF, the independent variables explain 42.52 percent of the variance in next

(R2 = 0.4252), a significant increase from R2 = 0.3494 evident in the full pitcher sample

population regression.5

These results may inform beliefs concerning the true predictive value of current and

recent performance. Both power hitter and strikeout pitcher performance outcomes are less

susceptible to chance than the average player performance. Putting a ball into play allows

for uncertainty in the play’s outcome; when a ball is put in play, the defense determines

the play’s outcome. If a pitcher gets batters out by striking out a large proportion of his
5I refrain from displaying results where BF ∈ {525, 550} because the samples collected in these settings

contain few player observations and the estimates are imprecise.
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opponents, the defense has less opportunities to add noise to measures of performance. For

hitters, a high ISO value reflects a high home run rate. Similarly, higher home run rates

result in less balls that the defense fields (compared to lower home run rates). Therefore,

I expect current and last3 to be more predictive of subsequent performance within these

subsets, compared to the overall player population. R2 values reflect this expectation. Since

current holds more weight within these subsets of players, these types of players may be more

susceptible to performance fluctuations between seasons performance and less susceptible to

midseason performance fluctuations.

5 Manager decision-making

I focus on manager decision-making in the postseason to capture scenarios where winning

in the short-term is of primary importance. As mentioned in section 1, I assume that in the

postseason, the manager’s aims to maximize the probability of victory in the current game.

To do so, I assume that the manager should start the players that give his team the best

chance of winning.

Hence, I use postseason data to evaluate manager decision-making. In each model, an

observation consists of variables containing information about a player’s regular season and

prior season performances (i.e. current, last3, and recent) obtained from the regular season

data described in section 2. Model observations also include variables that rely on the

postseason data described in section 2.

5.1 Pitchers

First, I analyze manager decision-making with respect to starting pitchers. Compared

to hitters, decisions concerning pitchers are easier to understand. A manager must choose

an optimal starter from a pool of options in the first game of a playoff series. To evalu-

ate manager decision-making optimality, I must first differentiate optimal and suboptimal

decisions. First, I predict player postseason performance for each possible starter at using
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regression from my estimations of eq. (1). For a player to qualify for inclusion in the pool

of potential starters, he must have sufficient rest and be of good health. I define a player

to be healthy if he plays at all in the postseason6 and define a player to have sufficient rest

if he has not played for the five consecutive days directly preceding the first game of the

playoff series. I only examine scenarios in which the manager chooses between (at least) two

players with ample amounts of previous playing time. For a player to qualify for a pool, he

must have recorded 600 BF in the current season and 324 BF in the previous season. Such

a high current season threshold aims to eliminate players returning from serious injury and

ensures the manager has significant information from current and previous seasons to make

his decision.

Upon filtering players by the aforementioned thresholds, I group players into platoons

by team and season. To summarize, each observation in eq. (2) represents the scenario in

which a manager has multiple options to choose from to start game one of a playoff series.

I eliminate platoons from the sample if the manager’s choice of starter does not qualify

for the sample. Such elimination may occur if a manager starts a player returning from

injury, a player who has not received sufficient rest, or a rookie. In platoons with two or

more players, the model predictions determine the optimal starter. The optimal starter is

the player from the platoon with the lowest predicted xFIP. All other players are considered

suboptimal starters. A platoon of size N includes N−1 observations when estimating eq. (2):

I compare the single optimal starter with each of the N − 1 suboptimal starters. I compare

the manager’s decision to the model optimal decision and categorize the manager’s decision

as a mistake if the decisions differ. I estimate the coefficients in eq. (2) using OLS regression.

mistake = β0 + β1dlast3 + β2dcurr + β3drecent + γC + µ (2)

where
6This assumption is not perfect. However, I assume a player to be healthy if he meets the strenuous

sample selection criteria. If a player records at least 600 BF in the regular season and a nonzero amount of
playing time in the postseason, he is likely to be healthy.
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• mistake is a dummy variable. mistake = 1 if a manager makes a mistake and 0

otherwise.

• dlast3 = suboptimal starter last3 - optimal starter last3, as measured by xFIP

• dcurr = suboptimal starter current - optimal starter current, as measured by xFIP

• drecent = suboptimal starter recent - optimal starter recent, as measured by xFIP

• C is a vector of controls that includes year and opponent fixed effects

• µ: error term

I use robust standard errors. Note that for dcurr, dlast3, and drecent, a positive value

implies that over the respective time period, the suboptimal player records a higher xFIP

than the model optimal starter. Since a higher xFIP reflects worse performance than a

lower one, a positive difference implies that the optimal starter played better in the specified

time frame. A negative difference implies that the suboptimal player played better over

the same period. Consider a negative coefficient βi on x ∈ {dcurr, dlast3, drecent}. Then,

when x is negative (the suboptimal player has played better over the specified time period),

βix > 0. Hence, the manager is more likely to make a mistake when the suboptimal player

has played better over the specified time period. When the optimal player outperforms

the suboptimal player over the time period defined by x, x will be positive and βix < 0.

Hence, a manager is less likely to make a mistake when the optimal player outperforms the

suboptimal player over the time period specified by x. Now, consider a positive coefficient βi

on x ∈ {dcurr, dlast3, drecent}. When x > 0, βix > 0. In this scenario, a manager is more

likely to make a mistake when the suboptimal player has played worse than the optimal

player in the specified time period. Such a scenario represents an underreaction to player

performance in the specified time period. βi may be positive if there are severe overreactions

to other variables. I show the corresponding results in Table 3.

Note that the estimated coefficient on drecent, β̂3, is significantly negative. As I explain

above, a negative estimated coefficient implies that a manager is less likely to make a mistake
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Table 3: Evaluation of decision-making with respect to pitchers: OLS regression results.

OLS with Robust SE

(1)

dlast3 −0.043
(0.081)

drecent −0.124∗∗∗
(0.026)

dcurr −0.059
(0.084)

Observations 170
Adjusted R2 0.156

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

when the optimal player has performed better recently. On the other hand, the manager

is more likely to start the suboptimal starter when the optimal starter has played poorly

relative to the suboptimal player recently. This result implies that managers overreact to

recent performance, exhibiting hot hand bias.

After finding that managers overreact to recent performance, I separate the optimal

starter’s statistics and the suboptimal starter’s statistics into distinct variables to estimate

their effects on the manager’s overreaction. When the manager overreacts to differences

in recent performance, is he reacting to the suboptimal starter’s stellar play, the optimal

starter’s poor play, or both? I use the same sample that I use to generate results in Table 3.

Instead of choosing dcurr, drecent, and dlast3 as explanatory variables, however, I use:

• ocurr : the optimal starter’s current value

• scurr : the suboptimal starter’s current value

• orecent : the optimal starter’s recent value

• srecent : the suboptimal starter’s recent value

• olast3 : the optimal starter’s last3 value
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• slast3 : the suboptimal starter’s last3 value

to quantify the estimated effect of each player’s performance across different time periods

on the likelihood of a manager mistake. I show the results in Table 4.

Table 4: Estimated coefficients of eq. (2) where each difference variable is split by optimal
and suboptimal starter. Dependent variable: mistake.

OLS with Robust SE

olast3 0.158
(0.100)

slast3 0.065
(0.104)

orecent 0.121∗∗∗
(0.046)

srecent −0.136∗∗∗
(0.035)

ocurr 0.028
(0.097)

scurr −0.080
(0.103)

Observations 170
Adjusted R2 0.161
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

I find an overreaction to recent performance consistent with my findings from Table 3.

The estimated effects of the suboptimal and optimal starter’s recent performance are nearly

identical in magnitude. I confirm this observation by running an F-test and find an insignif-

icant difference (p = 0.81) between coefficient magnitudes. Hence, managers react similarly

to positive recent play by the suboptimal starter and poor recent play by the optimal starter

when making decisions.

5.2 Hitters

I evaluate manager decision-making with respect to hitters in determining when, between

games, a manager should bench a starter in favor of another player at the same position. I

consider postseason performance for identical reasons expressed in the previous section. My
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setup is as follows. The manager starts a player at each position in Game 1 of a playoff series.

In each subsequent game of the series, the manager has multiple players that he may choose

to start. From each pool, he can only start one per position. For each player,estimations

of eq. (1) predict his subsequent performance based on his PA totals performance (as they did

in the previous section). The model determines the optimal player starter to be the one with

the highest predicted wRC+. From game data, I observe the true starter the manager chose

to play. Comparing the model’s choice to the manager’s decision, I consider the manager’s

decision a mistake if the two results differ. These mistakes can be categorized as one of two

kinds of mistakes.

1. The manager should have started the previous starter in the next game but benched

him in favor for a suboptimal starter.

2. The manager should have benched the previous starter in favor for the model optimal

starter (but did not).

I estimate eq. (3) to analyze manager decision-making tendencies with respect to player

performance across different time periods.

mistake = β0 + β1current + β2last3 + β3recent + β4scurrent+ (3)

β5slast3 + β6srecent + β7post+ γC + µ

where current, recent, and last3 are the previous starter’s statistics (defined in section 3) and

scurrent, srecent, and slast3 are the proposed substitute’s statistics (defined in section 3). I

define post to be the starter’s postseason performance up until the game before the starter

gets pulled, or up until the last game in the playoff series in the case where the starter starts

the entire series. More specifically, post is a player’s weighted on-base average (WOBA),

defined by Slowinski [2010b]. C is a control vector including year fixed effects.

I evaluate eq. (3) for each game in a playoff series, starting with the second game. I use

playoff series data from 2006−2021 to form platoons. I only consider platoons in which both
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the game one starter and his potential substitute reach at least 324 PA over the previous

three seasons and at least 125 PA in the current season to predict each player’s subsequent

performance from eq. (1)’s estimations. At each game, the manager either pulls the previous

game’s starter or he does not. If he does not pull the starter at all, then the starter starts

each game of the entire series. Given the two forms of mistakes possible, I partition the set

of decisions into two:

• A set where eq. (1) recommends not pulling the starter

• A set where eq. (1) recommends pulling the starter

First I estimate eq. (3) with decisions where the manager shouldn’t pull the starter. Here,

a mistake is defined to be a scenario in which the manager pulls the starter in favor of the

suboptimal substitute. Hence, there is at least one game in the playoff series where the

optimal starter does not start. I use robust standard errors and show the results in Table 5.

Note that wRC+ measures performance in the opposite direction of the pitching metric,

xFIP. For pitchers, recall that a better xFIP is a lower one; for hitters, a better wRC+ is

a higher one. Rather than using differences in player statistics as explanatory variables in

equation 3, as done with pitchers, I treat both the starter and substitute’s statistics as distinct

explanatory variables. The asymmetry of available information between substitutes and

starting players causes me to distinguish between starter and substitute statistics. Assuming

good health, it is reasonable to assume similar playing time between two starting pitchers.

Among hitters, since players do not typically operate as part of a regularly rotating platoon,

postseason playoff starters commonly obtain more regular-season plate appearances than

substitutes.

current and recent, the statistics of the previous game’s starter, have statistically signif-

icant and negative coefficients. Hence, the better the previous starter plays, the less likely

a manager is to prematurely bench a player for the suboptimal substitute. The estimated

coefficient on post is insignificant. This result may imply that managers react adequately to

very recent performance. However, the estimated coefficient on recent is significantly neg-
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Table 5: Evaluation of decision-making with respect to managers pulling starting hitters:
OLS regression results. Dependent variable = mistake, pulling the hitter earlier than optimal.

OLS with Robust SE

(1)

current −0.418∗∗
(0.182)

recent −0.173∗∗∗
(0.061)

last3 0.081
(0.221)

srecent 0.137
(0.085)

scurrent 0.156
(0.181)

slast3 0.154
(0.289)

post −0.049
(0.079)

Observations 165
Adjusted R2 0.191

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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ative and the estimated coefficient on srecent is significantly positive. These results imply

that a manager is more likely to prematurely pull a starter both when the starter has played

poorly and when the substitute has played well over recently. Hence, these results imply

that managers overreact to recent performance and are consistent my findings concerning

pitching decisions7.

In the second scenario, a mistake is defined as the decision to start the previous starter in

the next game when he should be pulled in favor of the substitute. I maintain one observation

per platoon by considering decisions by series. If the starter plays the entire series, a decision

is considered a mistake. Otherwise, the manager correctly pulls the starter at some point

in the playoff series. I regress eq. (3) on decisions where the model suggests benching the

starter. Once again, I use robust standard errors, include year fixed effects and display the

results in Table 68.

The refined pool includes few model observations, yielding large standard errors. Despite

this, the estimated coefficient on current deviates significantly from zero. Hence, I interpret

the manager to be more likely to make a mistake when the current game starter has been

playing well in the current season. Given that a player is playing well in the current season,

the manager continues to start the starter for longer than optimal. Similarly, the estimated

coefficient on post is significantly positive. Managers are expected to be more likely to

keep a starter in the series longer than optimal when he has played well in the postseason

thus far. The positive coefficient on post may imply that managers overreact to postseason

performance in addition to recent performance. Managers may weigh postseason performance

too greatly for multiple reasons, despite small sample sizes. For example, managers may

assign clutch factors to certain players who perform well in the early postseason and believe

that players who are clutch are more likely to continue playing well in the postseason than

those who are not clutch.
7Of the 165 decisions included in the sample, the model classified 41 as mistakes.
848 of the 83 decisions in this decision pool are considered mistakes.
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Table 6: Evaluation of decision-making with respect to hitters: OLS regression results.
Dependent variable = mistake, pulling a starting hitter later than optimal.

OLS with Robust SE

(1)

current 0.534
(0.324)

recent −0.230∗
(0.124)

last3 −0.107
(0.605)

srecent −0.119
(0.176)

scurrent 0.509
(0.317)

slast3 −0.417
(0.357)

post 0.363∗∗∗
(0.134)

Observations 83
Adjusted R2 0.140

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.3 Redefined mistake

In each of the two previous subsections, my methodology deems a manager’s decision to

be a mistake if an unselected player is predicted to outplay the chosen starter. The margin

for error here is small: if the unselected player is predicted to outplay the selected starter by

even an infinitesimally small amount, the methodology classifies this decision as a mistake.

Predictions of future performance are obviously noisy. The explanatory variables included

in eq. (1) only explain a fraction of the variance in player performance. Model predictions

are based on a subset of information available to the manager which may prove insignificant

relative to additional available information not captured by eq. (1). Managers have access

to both private information and information not reflected by previous player performance.

It follows that their decisions are not based exclusively on a weighting of a player’s current

season performance, recent performance, prior season performance and captured controls.

Therefore, I use a wider margin of error to evaluate whether a manager acts optimally.

I redefine a mistake to be a decision which differs substantially from the model optimal

choice. A decision is defined to be a mistake if the predicted performance of the optimal

player differs from the predicted performance of the suboptimal player by at least one stan-

dard deviation. For pitchers, a decision is considered a mistake if the manager-chosen starter

has a predicted xFIP at least one standard deviation higher than that of the model-chosen

starter. For hitters, a decision is considered a mistake if the manager-chosen starter has a

predicted wRC+ at least one standard deviation lower than that of the model-chosen starter.

Once again, I split decisions about hitters into two decision pools:

• situations where the manager should bench the previous game starter, and

• situations where the manager should not bench the previous game starter.

Mistakes are categorized as before. I estimate eq. (2) and eq. (3) using the updated pools.

I display the regression results obtained from the sample of pitching decisions using the

refined categorization in Table 7. As before, the estimated coefficient on drecent is negative,

further solidifying the claim that managers overreact to recent performance.
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Table 7: Pitching decisions: estimated coefficients of eq. (2) where each difference variable
is split by optimal and suboptimal starter. Dependent variable: mistake (the redefined,
rigorous version).

OLS with Robust SE

(1)

dlast3 −0.108
(0.086)

drecent −0.100∗∗∗
(0.029)

dcurr −0.035
(0.087)

Observations 156
Adjusted R2 0.095

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Refined hitter decisions: evaluation of decision-making with respect to managers
pulling starting hitters: OLS regression results. Dependent variable = mistake, pulling the
hitter earlier than optimal.

OLS with Robust SE

(1)

current −0.410∗∗
(0.159)

recent −0.107∗
(0.060)

last3 0.061
(0.190)

srecent 0.096
(0.072)

scurrent 0.104
(0.148)

slast3 0.033
(0.244)

post −0.067
(0.088)

Observations 219
Adjusted R2 0.141

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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I display regression results obtained from the samples of hitting decisions using the refined

categorization in Table 8. Note that the sample sizes of each regression have changed.

Recall that decisions are grouped by whether the model determines that a starter should

be benched. By redefining the criteria that determines when a player should be benched,

benching threshold increases in rigor. Hence, the model suggests that 219 players should

not be benched and 29 should be benched. Previously these suggestions were 165 and

83, respectively. The pool with a mere 29 model observations does not yield significant

results9. However, when the model suggests pulling the starter, my estimates are more

precise. As found originally, recent maintains a negative estimated coefficient. These results

solidify the claim that managers overreact to recent performance. Despite finding evidence

for overreactions to recent performance (which may signal implicit underreaction to other

performance periods), I do not find managers explicitly underreacting to previous player

performance over any of the defined time periods in any of the aforementioned scenarios and

regressions. While I find significant overreaction to recent performance in manager decision-

making with respect to hitters and pitchers, it is admittedly difficult to evaluate manager

performance based on limited numbers of player observations and incomplete information.

6 Conclusion

Managers should value current season performance more for pitchers than hitters when

comparing current season performance to a player’s performance over his previous three

seasons. This finding is consistent throughout the season. A player’s performance in the

current season increases in predictiveness over time from the 100 BF mark through his first

500 BF. Among hitters, current season performance carries roughly the same predictive value

through a player’s first 400 PA before increasing relative to his prior performance. By the

end of the season, a pitcher’s current season performance is significantly more predictive of

subsequent performance than his performance over his previous three seasons. This is not the
9The small sample size likely created significantly large estimated standard errors.
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case for hitters. Among hitters, I find no point in the regular season where a player’s current

season performance is more predictive of subsequent performance than his performance over

the previous three seasons. Hence, I conclude that future pitching performance is more

dependent on current season performance relative to hitters when predicting performance

over a single season’s duration.

Discovering that adding future season performance as a control variable does not signif-

icantly change estimated coefficients on current and last3 further justifies this conclusion.

In fact, upon adding future performance as a control, the high estimated coefficients on

current season performance and near-zero coefficients on a player’s performance in his prior

three seasons found at the end of the regular season may imply that for pitchers who do not

improve, current performance becomes an even more important indicator by the end of the

season. Significant current season predictive value, upon controlling for future performance,

provides key evidence of a season-long hot hand. If a player is performing at a certain level in

the current season because this performance level accurately reflects his baseline ability, such

a performance level (and baseline ability) should be maintained in future seasons. Hence, by

controlling for future season performance, I aim to isolate a season-long hot hand effect in

the current season. Such a control is not perfect, however: if a player improves (or worsens)

in baseline ability from season to season, his future season performance will fail to perfectly

capture his current season baseline ability. More evidence for a season-long hot hand surfaces

when I examine subsets of players. Current season performance is particularly predictive for

power hitters and strikeout pitchers, players with more control over their performances. This

finding is consistent with that of of Descamps et al. [2022]. A player’s initial success (or fail-

ure) in the current season is likely to affect a player’s subsequent performance. These effects

may be more visible among players with more control over their measures of performance.

With respect to manager choice, When aiming to maximize a team’s probability of im-

mediate victory, managers value recent pitcher play strongly. This phenomenon holds both

when managers are determining which pitcher to start out of a pool of potential starters and

when deciding how long the starting pitcher should continue playing within a game (see ap-
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pendix A.1 for details). The stronger a pitcher has played recently, the longer I expect a

manager to keep the starter in the game after controlling for performance within the game.

I characterize this behavior as an overreaction to the hot hand. Out of two players who per-

form similarly, managers tend to favor the one who has played better recently. Furthermore,

I find that when choosing a starting pitcher, managers tend to overvalue a player’s recent

performance. Holding all else constant, managers are less likely to start a player who has

performed poorly at the end of the regular season and more likely to start a player playing

well. While the estimation of eq. (1) demonstrates that the manager should value recent per-

formance to some degree10, I find that managers overvalue such recent performance. These

short-term overreactions are consistent with the literature [Bordalo et al., 2019, Wang, 2021]

and my hypotheses. These results provide additional evidence of short-term overreactions

by actors in high-stakes forecasting scenarios.

Managers tend to value a hitter’s current season performance strongly. The estimations

of eq. (1) and its corresponding predictions of subsequent hitting and pitching performance

causes my expectations to differ from the manager’s actions. Estimations of eq. (1) made

when players have high amounts of playing time (PA, BF > 500) imply that managers

should value current season performance more for hitters than for pitchers relative to prior

career performance. However, the weights placed on hitters may be more symmetric than

optimal. Managers appear to overvalue hitter current season performance when selecting

an optimal starter out of a candidate pool. As with pitchers, managers tend to overreact

to the hot hand. I find that managers have a shorter leash on starters than what eq. (1)

considers optimal when the substitute player has played well lately and the starter has not.

The manager is more likely to pull a starting hitter prematurely when he has played poorly

recently. Moreover, the manager is more likely to pull a starting hitter prematurely when the

substitute player has played well recently. While general microeconomic theory implies that

as a substitute good increases in value, it becomes more appealing relative to the original

good, I find that managers over-update their beliefs with respect to recent performance.
10Refer to appendix A.3 for estimated recent coefficients.
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I find no anchoring bias with respect to prior season performance within manager decision-

making tendencies. Specifically, I find no scenarios where the manager overvalues a player’s

prior season performance. However, my aforementioned finding concerning manager over-

reaction to current season performance may indicate a current season anchoring bias; if I

consider the start of the current regular season to be an opportunity for managers to re-

set their beliefs concerning player ability to some degree, as is consistent with Dai’s [2018]

findings, then perhaps the overvaluation of current season performance that a manager ex-

hibits when he pulls the starter later than optimal indicates anchoring bias. However, the

positive estimated coefficient on current season performance loses significance when I refine

my definition of a manager mistake. Therefore, I cannot conclude that managers overvalue

current performance in this scenario. Alternatively, I find an underreaction to current sea-

son performance when a manager decides to pull a starting hitter prematurely (although my

sample size is small). Upon increasing the threshold for eq. (3) to consider a manager’s deci-

sion to be a mistake, the negative estimated coefficient on current season performance loses

significance. Such inconsistent findings may imply that actors find it difficult to properly

weigh performance across multiple time periods when making decisions concerning future

performance.

6.1 Future work and extensions

Future work may include estimating eq. (1) using alternative criteria for sample selec-

tion. The criteria for player inclusion in these samples may allow for varying the threshold

criteria for previous player performance. For example, investigators may obtain a measure

for baseline player ability by measuring prior performance over one season instead of three.

Additional studies may partition the current season into discrete time periods of which man-

agers may assign predictive value rather than looking at current season performance as a

single entity (after controlling for recent performance). Additional data collection of post-

season performance and decisions made regarding hitters may provide more insight into how

managers react to hitter performance across various time periods. Rather than using contin-
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uous measures of performance, categorizing players into states based on recent performance,

such as hot and cold, may inform decision-making on a granular level. One may obtain

estimates of weights for periods of hot play and cold play separately rather than using one

estimate when determining how to weigh recent performance when predicting subsequent

performance. One may naturally extend this work by searching for a a hot-hand over a

wider time horizon than I do. Given performance in multiple distinct seasons, how much

weight should be given to each season when predicting player performance in subsequent

season (or seasons)? General managers must consider these factors when paying players to

join their teams. Admittedly, decisions here should most likely be taken on a case-by-case

basis. However, assigning weights to each season may provide a useful baseline estimate of

expected future performance.
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A Appendix

A.1 Manager decision-making: behavior

Before evaluating manager decision-making optimality with respect to player perfor-

mance over various prior playing periods, I identify a major behavioral trend within manager

decision-making. Stone and Arkes [2018] find that decision makers underreact to the short-

term hot hand in college basketball. In light of this finding, I evaluate to what degree

managers react to short-term streakiness when pulling starting pitchers by using OLS re-

gression on postseason data to estimate eq. (4). Each model observation is one player-game

combination instead of a player-season combination as used in eq. (1).

totBF = β0 + β1last3 + β2current + β3recent + β4inGame+ β5recent · inGame+ γC (4)

Here, inGame is a measure of pitcher performance in the current game, totBF is the

number of batters the pitcher faces in the current game, C is a vector of controls, and last3,

current, and recent are defined as before. I include year fixed effects and a pitcher’s average

batters faced per game in the regular season as controls.

I am interested in β5, the coefficient on the interaction between recent and inGame. β5 is

the coefficient of interest because it contains information about manager reactions to recent

player performance. I interpret a negative estimated coefficient to mean that a starting

pitcher to receive less playing time for a given single-game performance when he has played

poorly recently relative to a player who has been hot recently. My findings are consistent

with this theory: a manager is more likely to pull a player for poor in-game performance

when he has played poorly recently. This sign suggests that a manager has a shorter leash

on players who have been cold recently (high recent xFIP) and a longer leash on pitchers

who have been hot recently (low recent xFIP). I display the regression results in Table 9.

When using robust standard errors, I find that the sign on the interaction term between
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Table 9

OLS with Robust SE

(1)

inGame 4.101
(8.355)

recent 1.001
(0.779)

current −0.382
(0.501)

last3 −0.550
(0.556)

RegBFperGame 0.944∗∗∗
(0.158)

factor(game_year)2019 0.405
(1.056)

factor(game_year)2020 1.675∗
(1.008)

factor(game_year)2021 −1.217
(1.019)

inGame:recent −5.021∗∗
(2.191)

Constant 2.931
(5.653)

Observations 221
Adjusted R2 0.354

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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inGame and recent remains negative but the significance level decreases. Evaluating the

same regression model on a sample of middle relievers instead of starters, I find no significant

results. Relief pitchers average small numbers of BF per game and I attribute the lack of

significant results to this attribute.

A.2 Age

According to ESPN, the average MLB player’s peak performance period ends around age

32 [Schoenfield, 2020]. While perhaps not directly related to hot hand analysis, managers

may consider the effect of age on performance at various points in the season in conjunction

with other information to predict player performance for older (and younger) players. Hence,

I estimate equation eq. (1) on the pitching sample, restricting the sample to pitchers aged

32 and older. Since each of these players is older than 27, a player’s peak age [Hakes and

Turner, 2011], dfpeak = |age− 27| = age− 27. Since dfpeak is now a linear transformation

of age, I replace dfpeak with age in eq. (1). I am interested in the estimated effect of age

on subsequent player performance at various points in the season. I show the estimated

coefficients from OLS regression taken across n ∈ {100, 125, ..., 600} in Figure 13.

Note that for BF < 500 the estimated coefficient is positive. Hence, at the beginning of

the season, the results may imply that experience boosts player performance. However, the

estimated coefficient is negative when BF > 500. These results may imply a fatigue effect

for older players relative to the rest of the league in which this fatigue may harm player

performance more than experience boosts player performance.
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Figure 13: The estimated effect of age on subsequent player performance at various points
throughout the season. A positive age coefficient implies that greater player age increases
expected subsequent performance, while a negative age coefficient implies that greater player
age decreases expected subsequent performance.

A.3 recent and future estimated coefficients
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Figure 14: Hitters: estimated coefficients corresponding to recent on subsequent player
performance from eq. (1) by plate appearance. Error bars represent heteroskedastic-robust
standard errors.
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Figure 15: Pitchers: estimated coefficients corresponding to recent on subsequent player per-
formance from eq. (1) by batters faced. Error bars represent heteroskedastic-robust standard
errors.
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Figure 16: Hitters: estimated coefficients corresponding to future on subsequent player
performance by plate appearance. Error bars represent heteroskedastic-robust standard
errors.
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Figure 17: Pitchers: estimated coefficients corresponding to future on subsequent player
performance by batters faced. Error bars represent heteroskedastic-robust standard errors.
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A.4 last3 : season breakdown
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Figure 18: Hitters: estimated coefficients corresponding to l1, l2, and l3 on subsequent player
performance by plate appearance. Error bars represent heteroskedastic-robust standard
errors.
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Figure 19: Hitters; last3 as a weighted average, weighted by season: estimated coefficients
of last3 and current on subsequent player performance by plate appearance. Error bars
represent heteroskedastic-robust standard errors.
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Figure 20: Pitchers: estimated coefficients corresponding to l1, l2, and l3 on subsequent
player performance by batters faced. Error bars represent heteroskedastic-robust standard
errors.
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Figure 21: Pitchers; last3 as a weighted average, weighted by season: estimated coefficients
of last3 and current on subsequent player performance by plate appearance. Error bars
represent heteroskedastic-robust standard errors.
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A.5 Hitter example sample: summary statistics

Table 10: Summary statistics corresponding to the (550, 25, 100) hitter sample.
pH = percent home games, oSK = opponent skill.

Statistic N Mean St. Dev. Min Max

year 441 2011.036 4.713 2003 2019
last3 441 124.218 20.753 73.920 185.988
last 441 126.044 23.540 68.841 195.672
current 441 126.247 23.888 60.266 208.860
recent 441 127.594 72.693 −50.000 403.880
Next 441 127.216 40.277 22.740 262.825
age 441 29.773 3.004 23 39
dfpeak 441 3.249 2.480 0 12
lastpH 441 0.501 0.014 0.441 0.579
currpH 441 0.501 0.019 0.442 0.552
hotpH 441 0.475 0.333 0.000 1.000
nextpH 441 0.501 0.101 0.227 0.750
futurepH 419 0.497 0.315 0.000 1.000
lastoSK 441 4.205 0.230 3.668 4.600
curroSK 441 4.215 0.232 3.677 4.630
hotoSK 441 4.235 0.290 3.450 4.947
nextoSK 441 4.222 0.251 3.635 4.762
futureoSK 419 4.222 0.299 3.360 5.230
last3oSK 399 4.201 0.214 3.777 4.525
careerISO 441 0.169 0.053 0.000 0.275
careerBA 441 0.259 0.040 0.000 0.314

57


	Hot Boy Summer? Analyzing Managerial Reactions to Season-long Fluctuating Player Performance In Major League Baseball
	Recommended Citation

	Introduction
	Significance
	Additional related work pertaining to the hot hand
	Organization of paper

	Data
	Predictive model
	Sample selection

	Season-level hot hand results
	Hitters
	Pitchers
	Controlling for future performance
	Selection bias
	Isolating current performance
	Heterogeneity

	Manager decision-making
	Pitchers
	Hitters
	Redefined mistake

	Conclusion
	Future work and extensions

	Appendix
	Manager decision-making: behavior
	Age
	recent and future estimated coefficients
	last3: season breakdown
	Hitter example sample: summary statistics


