
Bowdoin College Bowdoin College 

Bowdoin Digital Commons Bowdoin Digital Commons 

Honors Projects Student Scholarship and Creative Work 

2022 

Characterizing and Investigating the Electrophysiological Characterizing and Investigating the Electrophysiological 

Properties of the Plastic Cricket Auditory System in Response to Properties of the Plastic Cricket Auditory System in Response to 

Cooling Cooling 

Hannah Tess Scotch 
Bowdoin College 

Follow this and additional works at: https://digitalcommons.bowdoin.edu/honorsprojects 

 Part of the Cellular and Molecular Physiology Commons, and the Other Neuroscience and 

Neurobiology Commons 

Recommended Citation Recommended Citation 
Scotch, Hannah Tess, "Characterizing and Investigating the Electrophysiological Properties of the Plastic 
Cricket Auditory System in Response to Cooling" (2022). Honors Projects. 314. 
https://digitalcommons.bowdoin.edu/honorsprojects/314 

This Open Access Thesis is brought to you for free and open access by the Student Scholarship and Creative Work 
at Bowdoin Digital Commons. It has been accepted for inclusion in Honors Projects by an authorized administrator 
of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu. 

https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/honorsprojects
https://digitalcommons.bowdoin.edu/students
https://digitalcommons.bowdoin.edu/honorsprojects?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/70?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/62?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/62?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/honorsprojects/314?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu


 
 
 
 
 
 
 
 
 
 
 
 
 

Characterizing and Investigating the Electrophysiological Properties of the Plastic Cricket 

Auditory System in Response to Cooling 

 

 

An Honors Project for the Program of Neuroscience 

By Hannah Tess Scotch 

 

 

 

 

 

 

 

 

Bowdoin College, 2022 

© 2022 Hannah Tess Scotch  



 

 ii 

TABLE OF CONTENTS 

LIST OF FIGURES……………………………………………………………………..………iii 

ACKNOWLEDGEMENTS…………………………………………………………….………iv 

ABSTRACT………………………………………………………………………………………v 

INTRODUCTION……………………..………………..……………………………………….1 

The G. bimaculatus Auditory System………………………………………………………….1 

Cold-deactivation and Anomalous Intracellular Responses…………………………………....3 

Hypotheses about the Origin of DOPE……………..……………………………….……........4 

Behavioral Correlates: Negative Phonotaxis…………………………………………….……..5 

Study Overview………………………………………………………………………….……..6 

METHODS…………………………...…………………………...………...….………………...7 

RESULTS……………………………………………………………………...………………..14 

Physiological Results: Cooling Efficacy……………………………………………………...14 

Physiological Results: Across-cricket Analysis………………………………………………16 

Physiological Results: Within-cricket Analysis………………………………………………19 

Behavioral Results…………………………………………………………………………….23 

Correlating Behavioral and Physiological Results……………………………………………25 

DISCUSSION……………………………………………………………………...……………26 

Interpretation of Physiological Results……………………………………………………….26 

Interpretation of Correlational Results………………………………………………………..28 

Future Directions: Post-inhibitory Rebound………………………………………………….30 

Future Directions: Priming……………………………………………………………………30 

LITERATURE CITED………………………………………………………….………….….33 

  



 

 iii 

LIST OF FIGURES 

Figure 1: Circuitry of the prothoracic ganglion…………………………………………………...3 

Figure 2: Chirp and pulse stimuli.....................................................................................................8 

Figure 3: Experimental setup.........................................................................................................12 

Figure 4: Intracellular analysis parameters………………………………………………………14 

Figure 5: Characteristic intracellular AN-2 uncooled response……………………….…………15 

Figure 6: Characteristic intracellular AN-2 cooling response…………………………..……….15 

Figure 7: Intracellular injury discharge during cooling……………………………………….…16 

Figure 8: Across cricket delay time analysis……………………………………………...……..18 

Figure 9: Across cricket number of spikes analysis……………………………………………...18 

Figure 10: Across cricket spike frequency analysis……………………………………...………19 

Figure 11: 211022 time-course analysis…...……………………………………………….……20 

Figure 12: 210614 time-course analysis……………………………………...…………...……..21 

Figure 13: 210714 time-course analysis………………………………...……………………….22 

Figure 14: 211019 time-course analysis………………………………...………...……………..23 

Figure 15: Turning score histogram…………………………………………...…………………24 

Figure 16: Latency to turn………………………………..………………………………………25 

Figure 17: Correlation of Behavior and Physiology………………..……………………………26 

  



 

 iv 

ACKNOWLEDGEMENTS 

I would like to offer my deepest gratitude to Professors Hadley Horch and Patsy 
Dickinson for allowing me to work in their labs and under their guidance for the past two years. 
Both have taught me to love research in a way that I never previously have, and their continued 
patience and incredible knowledge have been instrumental in my success, both in and out of the 
lab. I have grown tremendously as a physiologist over the last two years, largely due to their 
support. When I first began, it was an accomplishment to even understand how to perform these 
experiments, and I could never have imagined the position where I find myself today. Their 
encouragement has truly been life-altering. 

I would also like to thank Lisa Ledwidge and Dan Powell for allowing lab to run so 
smoothly and for so many creative ideas. Thank you as well to my fellow lab mates, especially 
Thea Bell, Manny Coleman, and Warsameh Bulhan, for working through this year long process 
with me. Your support has been wonderful. A very special thank you to Lucy O’Sullivan and 
Sam Brill-Weil, without whom this research simply would not have been possible. Thank you to 
my readers, Hadley Horch, Patsy Dickinson, and Erika Nyhus, for providing such thoughtful and 
helpful feedback on my drafts. Thank you as well to Marko Melendy and the animal caretakers 
for keeping the cricket happy and healthy, and, of course, thank you to the many crickets 
themselves who sacrificed their ganglia (and often their lives) for this project. This research has 
been one of the defining aspects of my time at Bowdoin, and I am truly grateful to everyone who 
contributed to its (and my) success.  



 

 v 

ABSTRACT 

The auditory system of the Mediterranean field cricket (Gryllus bimaculatus) is capable 

of profound compensatory plasticity. Following deafferentation due to the loss of an auditory 

organ, the dendrites of intermediate auditory neuron Ascending Neuron 2 (AN-2) grow across 

the midline and functionally connect to contralateral afferents. The loss of the auditory organ can 

be mimicked with reversible cold-deactivation, in which cooled Peltier elements silence the 

auditory organ and its afferents. Though this would presumably prevent AN-2 from firing, 

cooling instead induces a novel firing pattern called DOPE (delayed-onset, prolonged-

excitation). In this study, intracellular physiological recordings were completed before, during, 

and after cooling in response to “chirp” and “pulse” sounds. Analysis was performed within and 

across crickets to characterize DOPE. Results revealed expected variability across individuals, as 

well as a wider spread of onset delay and a decrease in spike frequency and number of spikes per 

burst relative to baseline within individuals during cooling. Generally, subsequent warming only 

partially restored the neuronal responses to baseline as measured by all three parameters. This 

was particularly true in response to “pulse” stimuli. Future experiments will investigate if DOPE 

is caused by synaptic inputs or intrinsic properties of AN-2, as well as the role of inhibition in 

the circuit. Eventually, we hope to develop a complete model of the auditory circuit for future 

investigations of plasticity, with ramifications for treating human neuronal injury. 
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INTRODUCTION 

 Neuroplasticity has become an extensively studied area of neuroscience in recent 

decades, and although we have learned an enormous amount about the nervous systems of 

diverse creatures and how they can change in response to stimulus and injury, many details about 

the mechanisms driving such changes remain unknown. In humans, this is an issue of great 

importance, as the adult central nervous system is essentially not plastic, at least not on a large, 

morphological scale, and especially not in response to injuries. Electrophysiology provides an 

interesting avenue to study neural plasticity, as it allows us to determine how specifically a 

manipulation has affected a given circuit. In turn, this will allow us to explore that aspect of the 

circuit in greater detail to obtain a better sense of how these changes occur.  

The G. bimaculatus Auditory System 

An important strategy in furthering our understanding of compensatory plasticity in 

human injury scenarios, and doing so through the lens of electrophysiology, is to look to other 

species that are capable of profound change in response to injury. One such species is Gryllus 

bimaculatus, the Mediterranean field cricket. When these animals lose an auditory organ (a fairly 

common phenomenon given its placement on the animal’s foreleg), the system undergoes 

dramatic reorganization, presumably to account for the loss of the auditory organ (Nolen and 

Hoy, 1984; Horch et al., 2017). Following deafferentation due to the auditory organ’s removal, 

dendrites from the auditory neuron Ascending Neuron 2 (AN-2) sprout across the midline, a 

boundary they normally respect, and become connected to afferents from the contralateral 

auditory organ (Nolen and Hoy, 1984; Horch et al., 2017). This reorganization, which occurs in 

the animal’s prothoracic ganglion (PTG), allows the cell to once again maximally respond to 

high frequency sounds produced by predatory bats (~18 kHz) and is presumably integral to the 
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cricket’s continued mating and survival (Wohlers and Huber, 1982; Nolen and Hoy, 1984; Horch 

et al., 2017). Despite the obvious importance of AN-2’s ability to compensate dramatically after 

injury, little is known about the characteristics of the electrophysiological changes of AN-2 and 

the mechanism that drives them following deafferentation. According to our current (and perhaps 

incomplete) understanding of the circuitry of the auditory system within the PTG,  each side of 

the midline is a mirror image of the other, which is critical in allowing the cricket to localize 

sound (Wohlers and Huber, 1982). On each side, there are two ascending auditory neurons (AN-

1 and AN-2) that project anteriorly to the brain (Wohlers and Huber, 1982; Pollack and Hedwig, 

2017). AN-1 is tuned so that it responds maximally to the low frequency (~4.5 kHz) sounds 

produced by other crickets, and AN-2 is tuned so that it responds maximally to the high 

frequency (~18 kHz) sounds produced by predatory bats (Wohlers and Huber, 1982; Nolen and 

Hoy, 1984). An interneuron (Omega Neuron 1, or ON-1) on each side of the PTG, responds 

indiscriminately to low and high frequency sounds and provides inhibition to both of the relevant 

neurons on the other side of the midline, as well as reciprocal inhibition to its mirror image pair 

(Fig. 1) (Wohlers and Huber, 1982; Pollack and Hedwig, 2017). The specific inhibition from the 

ON-1 neurons helps bring about elevated bilateral contrast of auditory stimuli, aids in sound 

localization, helps with the recognition of auditory patterns, and contributes to the recognition of 

species-specific auditory stimuli (Wohlers and Huber, 1982; Zhang and Hedwig, 2019).  
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Figure 1: The current model of 
the circuitry of the cricket 
auditory system within the 
PTG, depicting the high 
frequency-tuned AN-2, low 
frequency-tuned AN-1, and 
broadly tuned ON-1. This 
model depicts the system prior 
to deafferentation (adapted 
from Pollack and Hedwig, 
2017). 

 
 

 
 

Cold-deactivation and Anomalous Intracellular Responses 

Though this simple model is appealing, past research has indicated that there is much that 

such a model does not account for. Primarily, intracellular recordings show that AN-1 and AN-2 

both still respond to frequencies outside of their maximal range, and there is notable variability 

in the strength and characteristics of such responses, even in the same neuron (Wohlers and 

Huber, 1982). More recently, research involving the honing of a reversible technique for 

deafferentation using cooled Peltier elements and a method of recording AN-2 intracellularly in 

the PTG has contributed to this complication (Zhang and Hedwig, 2019; Brill-Weil, 2020). 

Given that recordings of AN-2 are generally performed extracellularly, which provides less 

detail than intracellular recordings, this intracellular technique is hugely impactful (Kostarakos 

and Hedwig, 2017). Additionally, reversible cooling decouples the sides of the auditory system 

(by functionally removing half of the circuit at a time) and reveals which changes are 

impermanent (as those that are permanent will be reversed by warming), providing a clearer 

understanding of how the system’s physiology changes after injury. Unfortunately, there is still a 

dearth of data, which is made more important by the fact that Brill-Weil’s single intracellular 
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recording confirmed that an unexpected, novel response he had previously observed 

extracellularly was a legitimate facet of the system and not noise (Brill-Weil, 2020). 

The observed response was characterized by a delayed-onset and prolonged excitation, 

leading him to refer to it as DOPE (Brill-Weil, 2020). The presence of this response, even if only 

observed in a single intracellular recording, is surprising and warrants further research. Given 

that AN-2 in the deafferented (or cold-deactivated) condition receives input solely from 

contralateral auditory afferents and does not begin to show the impacts of the formation of new 

synaptic connections until 4-6 days after deafferentation (Brodfuehrer and Hoy, 1988), one 

would expect that cold-deactivation would immediately result in a silencing of AN-2. The fact 

that the DOPE response was found instead indicates that this circuit, as well as the plasticity seen 

therein, is potentially more complex than previously imagined.  

Hypotheses about the Origin of DOPE 

Given that ipsilateral cold-deactivation silences all but contralateral inputs that inhibit 

AN-2, it is possible that DOPE is the result of post-inhibitory rebound (PIR), in which sustained 

hyperpolarization of a neuron results in its immediate firing following the termination of the 

hyperpolarization. There is evidence that such a mechanism is, at least in part, responsible for 

maintaining the strict temporal regulation of auditory inputs in other organisms (Large and 

Crawford, 2002), so its involvement in the cricket auditory system is reasonable. Additionally, 

other examples of PIR have been recorded in the cricket nervous system, specifically as driven 

by the H current in the Giant Interneurons in the terminal ganglia (Kloppenburg and Hörner, 

1998). However, such a phenomenon has not been explored or characterized in the auditory 

system, and its possible presence warrants further analysis. 
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Behavioral Correlates: Negative Phonotaxis 

 While searching for prey during nocturnal flight, bats emit high frequency ultrasonic 

pulses, and the ability of prey such as crickets and moths to hear and respond to these pulses is 

integral in securing their continual survival (Roeder, 1962; The Earl of Cranbook et al., 1965; 

Simmons et al., 1975; Sansom et al., 2009). The fact that AN-2 is attuned to respond maximally 

to these high frequency stimuli means that it contributes dramatically to the behavioral response 

that allows for such avoidance, which is called negative phonotacic behavior, or negative 

phonotaxis. In this behavior, the cricket, upon hearing the sound, turns its abdomen away from 

the source of the sound, thereby creating drag and changing its flight pattern away from the 

predator (Moiseff et al., 1978; Huber et al., 1989). The success of this behavior is contingent 

upon the cricket’s ability to distinguish between the timing, frequencies, and patterns of different 

sounds, as these factors provide information as to the location of the predator (Moiseff et al., 

1978). Given the specific frequency-sensing capabilities of AN-2 and the fact that contralateral 

inhibition from ON-1 contributes to sound localization, it is clear that the auditory system in the 

PTG is integral in this process. Additionally, because the behavior is both so simple and 

necessary for survival, it should match the physiological responses in the cell very well. If there 

were many steps in between the sensing of the sound by AN-2 and the cricket’s response to it, 

the likelihood of survival would be decreased dramatically, so it seems unlikely that this would 

be the case.  

 In this way, we can use behavior as a correlate of physiology. If, for instance, a cricket 

responds well (quickly, effectively, and robustly) to sound, it would make sense that the response 

of AN-2 to sound stimuli would also be quick and robust. Correlational experiments between the 

two will not only provide a better sense of the role of AN-2 on a behavioral scale, but they will 
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also provide insight into the efficacy of correlational experiments generally. In a system as 

manipulable as the cricket, having the ability to make measurements on multiple different scales 

can generate deeper knowledge about the function of individual variability and the ways in 

which systems within a single organism work together to create more complex behaviors.  

Study Overview 

Ultimately, AN-2 is an integral player in the overall compensatory plasticity of the 

auditory system; however, the characteristics of its output and its role in the larger auditory 

circuit remain poorly understood. As such, in order to fully understand this plasticity, it is first 

important that we have a deeper understanding of the auditory circuit and of the characteristics of 

AN-2 itself. A main goal in this endeavor is determining whether the DOPE response is in fact a 

form of PIR and determining exactly what drives it.  

However, prior to determining the specific factors that contribute to such aberrant 

responses as DOPE, it is important to first characterize AN-2 under normal circumstances. This I 

worked to do through the implementation of field potential and intracellular recordings of AN-2 

in the PTG of control and cold-deactivated crickets. With these experiments, I characterized the 

delay time, spike number, and spike frequency of AN-2 in response to different sound stimuli, as 

well as how these parameters differ after cold-deactivation. I also performed correlational 

behavioral experiments that aimed to explore the relationship between physiological responses to 

high frequency sound and behavioral responses to the same aversive stimuli, with the goal of 

better understanding individual variability.  
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METHODS 

Animals 

 A colony of Mediterranean field crickets (Gryllus bimaculatus) was housed at Bowdoin 

College with 60-70% humidity at 26° C on a 12:12 hour light/dark cycle. Animals were fed cat 

chow and drinking water ad libitum (Horch et al., 2009). Both male and female crickets in their 

final molt were used in this study. Unless otherwise noted, crickets were isolated during the large 

wing-bud stage and were provided individual shelter, food, and water. They were monitored for 

growth, and 5-7 days after their final molt, they were used for experiments. The sex and morph 

type (black or brown) was noted for each insect. 

Auditory Stimuli 

 White noise, alternating “chirp” and “pulse,” and localizing stimuli were made using 

Audacity. The white noise stimulus consisted of repeating 200 msec long bursts of white noise 

separated by 1 sec. The localizing stimulus was a series of four 100 msec long tones separated by 

250 msec of silence and followed by 100 msec of white noise. The tones increased in frequency 

over time, going from 5 kHz to 20 kHz and increasing by 5 kHz with each tone.  

The combined chirp and pulse stimulus was made up of a combination of two distinct 

tonal stimuli. The pulse stimulus was a 200 msec-long tone, and the chirp was a series of four 

syllables, each 20 msec in duration and separated by 20 msec. The stimulus was presented at 

either 20 kHz (the frequency to which AN-2 maximally responds) or ~4.5 kHz. Although this 

lower frequency is below the optimal range for AN-2, it was used because it has previously been 

found to elicit DOPE better than other frequencies (Brill-Weil, 2020).  

In physiological experiments, the chirp and pulse tones alternated throughout the duration 

of the recording, separated by 250 msec of silence each time (Fig. 2). The chirp stimulus was 
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meant to mimic a natural stimulus, whereas the pulse stimulus, with no silence, served as a 

stronger stimulus, aimed at amplifying the response of AN-2.  

In behavioral experiments, stimulus presentation varied throughout the experiment both 

in terms of type of stimulus and direction of stimulus presentation, as there was a speaker located 

on each side of the cricket. The pulse stimulus was first presented in isolation (with 250 msec of 

silence between each pulse) from the left speaker for 3 minutes, followed by the same 

presentation 15 seconds later from the right speaker. After 15 seconds of silence, the same 

pattern was then repeated with the chirp/pulse combined stimulus, beginning with the left 

speaker. In both types of experiments, the stimuli were played from a speaker placed roughly 6 

inches away from the animal, as in previous research (Brill-Weil, 2020). 

 

Figure 2: The “chirp” and “pulse” stimuli. The chirp stimulus consisted of four 20 msec syllables separated by 
20 msec of silence. Each pulse stimulus was a single 200 msec-long tone. The silence between stimuli lasted 
for 250 msec, and the stimuli were presented at either ~ 4.5 kHz or 20 kHz. 
 

Behavioral Experiments 

 5-7 days after the insect’s final molt, each cricket underwent behavioral experiments 

(“flying”). In these experiments, the cricket was briefly anesthetized via cooling, the tips of the 

wings were clipped to expose the abdomen, and the thorax was then waxed, using a mixture of 

cello rosin and beeswax in a 50:50 ratio, to a plastic screw in the testing box. A standard house 

fan was placed opposite a hole in the back of the box covered by a plastic grate, so that a wind 

stream of about 1.4-1.6m/s was produced when the fan was active. Two speakers were mounted 
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on either side of the cricket at a distance of 11 inches to produce binaural stimuli. Crickets were 

observed to see when they assumed the flight position, with the hind legs extended and the two 

anterior sets of wings tucked close to the abdomen. Once this position had been assumed, a video 

recording was begun using a Panasonic HC-V700 video camera inside the box, and the sound 

file was played. Following the completion of the sound file, the video was stopped and saved for 

analysis. The cricket was then returned to its isolated container for later physiological testing. 

Behavioral Data Analysis 

Initially, the accuracy of the cricket’s turning was measured. It was defined as whether 

the cricket correctly turned away from the stimulus at the beginning of the stimulus presentation 

(since the 20kHz stimulus should result in negative phonotaxis). Those crickets who turned in 

the appropriate direction were denoted with a “+1,” those that did not respond were given a “0,” 

and those that turned towards the sound instead of away were given a “-1.” The average score 

across all four stimuli was then calculated for each cricket. Additionally, the latency to turn was 

measured, since this quality translates most directly to the physiological DOPE response. This 

was defined as the amount of time (in ms) between the onset of the stimulus and the initiation of 

the turn. Latency was calculated by counting the number of frames between the onset of the 

sound stimulus and the beginning of the turn, with the knowledge that the video was filmed at 64 

frames per second. 

Turning accuracy was measured once for each of the four stimuli, at the beginning of the 

stimulus presentation. Measurements of turning latency were made in response to the first 

stimulus, a stimulus in the middle of the presentation, and a stimulus at the end of the 

presentation in order to investigate the potential presence of habituation. As with the other 

parameters, these measurements were taken for both the chirp and pulse and pulse only stimuli.  
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Prothoracic Ganglion Exposure 

 No more than 24 hours after behavioral testing, crickets were removed from their cages 

and placed on ice for 1 hour for anesthetic purposes. The animals were then mounted ventral-

side-up on a clay surface attached to a ball-joint platform. Cut paper clips and staples were used 

to secure the neck, the thorax just above the middle set of legs, the posterior end of the abdomen, 

the middle and hind limbs at the second joint, and the forelimbs at the shoulder joint. The 

forelimbs were then waxed (with the same wax as in the behavioral experiments) to Peltier 

elements at a 45° angle on either side of the insect (Zhang and Hedwig, 2019). Special care was 

taken to ensure that the tympanic membranes were not covered or harmed during this process. A 

small pair of spring scissors was then used to cut open the thorax and expose the PTG (Fig. 3). 

Dental foam and Kimwipes were used to remove excess fat from the area. A small spatula, to 

which the silver reference electrode was secured, was then maneuvered between the two 

posterior connectives and underneath the PTG; the spatula was ultimately used to elevate the 

PTG without exerting excess pressure on the connectives. The reference electrode was placed 

inside the cavity of the thorax, and a Vaseline well was built around the perimeter of the cavity 

and filled with saline. 

AN-2 Intracellular Recording 

 A micropipette puller (Sutter Instruments P-97) was used to pull microelectrodes that 

were filled with Leech Cytoplasmic Fill (in mM: 7.6 NaCl, 1.4 Na2SO4, 10.0 HEPES, 112.0 

potassium gluconate, 0.2 MgCl2) to obtain a resistance of 30-50MΩ, as in previous research 

(Hooper et al., 2015; Zhang and Hedwig, 2019; Brill-Weil, 2020). The electrodes were lowered 

into the PTG, which was stimulated externally with pulses of white noise. Once the 

microelectrode had entered AN-2’s main dendrite or was directly above it, as indicated by a 
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response to the sound stimulus, the chirp and pulse stimulus was played (Fig. 3) (Brill-Weil, 

2020). Recordings were amplified with a computer-controlled microelectrode amplifier 

(Axoclamp 900A, Axon Instruments, Sunnyvale, CA), and data were collected with a CED 1401 

data acquisition device (Micro1401 mkII, Cambridge Electronic Design, Cambridge, UK) 

controlled by Spike2 (Version 7) at a 20kHz sampling rate. 

Cold-Deactivation 

After AN-2 had been located and the electrode was placed inside the cell, baseline 

(precooled) recordings were collected for 30 minutes at room temperature. At this point, the 

TackLife MCD01 power supplier connected to the Peltier element ipsilateral to the recorded AN-

2 was turned on. This supplied 2.3 A of current to the Peltier element, cooling it (Fig. 3). 

Thermistors were used to simultaneously monitor the surface temperature of both Peltier 

elements as they were gradually cooled to 7.2° C, consistent with previous research (Brill-Weil, 

2020). The temperature of the surface of the Peltier elements during the cooling process was 

measured using single-channel temperature controllers from Warner Instruments which were 

attached to the thermistors. Once this temperature had been reached, the recording was held for 

30 minutes (fully cooled), after which power was gradually reduced until the Peltier element 

reached its initial temperature (this was once again room temperature). A final recording was 

taken for 30 minutes at this temperature (postcool). 
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Figure 3: A schematic detailing the experimental setup. The cricket was placed on a clay surface ~ 6 in away 
from the speaker. Following exposure of the PTG and isolation of AN-2 via a microelectrode, the Peltier 
element ipsilateral to the AN-2 that was being recorded was activated. Figure adapted from Zhang and 
Hedwig, 2019 
 

Data Analysis 

 All recordings were analyzed post hoc in Spike2 using scripts designed by Dirk Bucher. 

The “mkbursts” script was used separately on both the recording of AN-2 and the recording of 

the sound stimulus to differentiate each spiking group (aligned with a sound stimulus) as its own 

burst and each chirp sequence (not syllable) or pulse as a distinct burst. The “phaseburst” script 

was subsequently used to compare the bursts of sound to the spike bursts.  

The analysis of the successful recordings explored three parameters: delay time, number 

of spikes, and spike frequency (which was defined as burst duration divided by number of 

spikes) (Fig. 4). Given that DOPE is characterized by an increase in the time between the 

stimulus and the initiation of AN-2’s response, delay time was the primary focus of this analysis. 

However, such a response would also presumably bring about a related decrease in both number 
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of spikes and spike frequency relative to baseline values. These trends were expected to be 

consistent both within and across individuals, with some variability across crickets.  

The data resulting from analysis of these three parameters was imported into Excel, and 

the chirp and pulse files were differentiated and analyzed separately. The average spike 

frequency, number of spikes, and delay of spiking onset was calculated for each burst of the AN-

2 recording, as were the standard error values for each parameter. Since the chirps were analyzed 

holistically (as opposed to measuring each syllable individually), the measures of spike 

frequency collected here are not true measures of the frequency of firing for a given period of 

time. Instead, this value is artificially deflated by the presence of silence in the stimulus. 

However, this measure is a relative value that is useful for comparisons of responses to the same 

stimulus across conditions. 

GraphPad Prism (Version 9) was used to depict these results, and the software was also 

used for statistical analysis. For the across-cricket analysis, a one-way ANOVA was performed 

on each parameter, so that the average from each condition (precool, cool, postcool) was 

compared with the average of every other condition for each parameter (delay time, number of 

spikes, and spike frequency).  
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Figure 4: Illustration of the parameters that were measured in the analysis of recording from AN-2. All three 
parameters were measured in response to both chirp and pulse stimuli prior to, during, and after cooling. Delay 
time (in red) was a measure of the time difference between the beginning of the sound stimulus and the 
beginning of AN-2 firing. Number of spikes (in blue) counted the number of action potentials in each burst of 
AN-2 firing (with each burst being defined as the firing associated with a sound stimulus), and spike 
frequency, which is burst duration (in purple) divided by number of spikes, measured the distance between the 
action potentials. Spike frequency was averaged across the entire stimulus, and each entire chirp was 
considered a single stimulus (rather than each syllable). 
 

RESULTS 

Physiological Results: Cooling Efficacy 

The response of ten AN-2’s to the chirp and pulse stimuli were analyzed; four of these 

were subjected to the ipsilateral cooling protocol. In all of these cases, the firing paired well to 

the sound stimuli in normal conditions (Fig. 5) In four cases, cooling was effective, and the 

neuronal response to the sound stimuli did not change dramatically as the temperature of the 

Peltier element dropped (Fig. 6). Unexpectedly, in the remaining six cases, cooling abolished the 

sound-based response entirely, and it was not recoverable after warming. Though it was initially 

unclear why this occurred, evidence from recordings support the conclusion that the cooling 

itself caused the cell to die. This may either be because the experience of cooling caused the 

cricket to move slightly, changing the location of the electrode, and possibly killing AN-2, or 

that the cooling itself resulted in a contraction of the muscles that similarly changed the location 

of the electrode and killed AN-2. Regardless of exactly why it occurred, the movement of the 

electrode seems to have punctured the cell membrane, resulting in an injury discharge (as 
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characterized by frequent, random firing). This was clearly seen in one recording, where such 

discharge began just after cooling was initiated and eventually became less and less frequent 

until the cell stopped firing entirely and did not return, indicating that it had died (Fig. 7). 

 

Figure 5: A characteristic intracellular response of AN-2 to chirp and pulse stimuli prior to cooling. The firing 
(at bottom) is clearly well-timed to the sound stimulus (at top), and the depolarizations that underlie the firing 
are large. This cell is notably hyperpolarized, but its function is not changed by this fact. 
 

 

Figure 6: A characteristic intracellular response of AN-2 to the chirp and pulse stimuli during cooling. Here, it 
is clear that as the temperature of the Peltier element (shown in °C in the top panel) decreases, the firing of 
AN-2 (in the bottom panel) remains well paired to the sound stimulus (in the middle panel), and no injury 
discharge occurs. 
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Figure 7: Injury discharge in response to the initiation of gradual cooling, when no such discharge was present 
prior to cooling. This eventually results in cell death (as shown through the lack of firing as time progresses). 
The temperature of the Peltier element (in °C) is shown in the top panel, the sound stimulus in the middle, and 
the firing of the cell in the bottom panel. The normal response for this specific cell is depicted in Figure 5. 
 

Physiological Results: Across-cricket Analysis 

 Due to the dramatic variability in response to sound, the across-cricket analysis revealed 

few notable trends. It was expected that cooling would increase the delay time but would 

decrease the number of spikes and spike frequency. After the removal of an outlier, it was 

revealed that this was in fact the case, as cooling slightly increased the average delay time from 

0.023 seconds (n=9) to 0.025 seconds (n=4) in response to chirp and pulse stimuli combined. 

Subsequent warming in the same animals had little effect on restoring this change, with the 

average remaining at 0.025 seconds (n=4) (Fig. 8). However, this effect was not significant 

(p=0.934). When the stimuli were separated out, similar trends were observed. In response to 

chirps alone, cooling increased the average delay time from 0.024 seconds (n=9) to 0.025 

seconds (n=4), and subsequent warming brought the average delay time to 0.027 seconds (n=4), 

which was also not significant (p=0.921) (Fig. 8). In response to pulses alone, the average delay 

time prior to cooling was 0.022 seconds (n=9), the average when cooled was 0.024 seconds 

(n=4), and the average after warming was 0.024 seconds (n=4), which was not a significant 

change (p=0.870) (Fig. 8). For spike frequency and number of spikes, changes across conditions 

were also very minor. In all conditions, spike number and frequency were higher in response to 
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pulses than chirps, which was expected because of the fact that each chirp includes silence (Fig. 

9, 10). With regard to spike number, cooling decreased the average number of spikes from 8.776 

(n=10) to 7.572 (n=4) in response to chirps and from 17.09 (n=10) to 15.27 (n=4) in response to 

pulses. Here, warming had little effect on the average spike number in response to chirps, with 

the average number of spikes increasing slightly to 7.842 (n=4). However, warming once again 

brought the average spike number in response to pulses to a higher level than what was found at 

baseline, with an average of 18.09 spikes per burst in the post-cool condition (n=4) (Fig. 9) 

However, none of these changes reached significance (for chips p=0.906, for pulses p=0.932). 

Cooling similarly decreased the average spike frequency from 55.68 (n=10) to 51.04 (n=4) in 

response to chirps and from 84.97 (n=10) to 76.38 (n=4) in response to pulses. Warming 

changed the average frequency to 54.23 (n=4) and 90.64 (n=4), respectively, indicating a 

restoration of initial levels in response to both stimuli, and an over-restoration in response to 

pulses (Fig. 10). Again, none of these changes were significant (for chirps p=0.930, for pulses 

p=0.930).  
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Figure 8: Comparison across crickets of the average delay time between stimulus presentation and firing onset 
for the combined stimuli (A), chirps (B), and pulses (C) prior to (n=9), during (n=4), and after (n=4) cooling. 
In all measures, the large standard error bars indicate a large amount of variability in response to sound, as is 
expected given previous research in the Horch Lab indicating great variability in the responses of individual 
crickets to sound. This makes it difficult to compare results across crickets. (A/B) On average, cooling 
increased the delay time in response to the combined stimuli and the chirps, neither of which were restored 
following warming. (C) In response to the pulse stimuli, cooling increased the delay time, and warming 
partially restored this result after warming. None of these changes were significant. 
 

 
Figure 9: Comparison across crickets of the average number of spikes per burst in response to the chirp (A) 
and pulse (B) stimuli prior to (n=10), during (n=4), and after (n=4) cooling. In both cases, cooling decreased 
the average number of spikes. (A) In response to chirps, warming did little to reverse the effects of cooling, but 
in response to pulses (B), the trend reversed. There were no significant differences across any of the 
conditions.   
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Figure 10: Comparison across crickets of the average spike frequency per burst in response to the chirp (A) 
and pulse (B) stimuli prior to (n=10), during (n=4), and after (n=4) cooling. In both cases, cooling decreased 
the average spike frequency, and subsequent warming restored the results to their initial values, though no 
changes were significant.   
 

Physiological Results: Within-cricket Analysis 

The within-individual analysis provided a much clearer picture of the ways in which 

cold-deactivation impacts the response of AN-2 to high frequency sound, though the results are 

still mixed. In four female crickets, regardless of baseline levels, the effects of cold-deactivation 

across all three parameters were highly variable. In two individuals, there was a pronounced 

difference, with cooling noticeably increasing delay time and decreasing both spike frequency 

and number of spikes (Fig. 11, 13). In one individual, cooling resulted in differential regulation 

of the three parameters (Fig. 12), and in one, cooling had a minimal effect across every measure 

(Fig. 14). Specifically with regard to delay time, the main parameter of interest for this study, 

cooling most often seemed to increase variability in the amount of time it took for the neuron to 

respond to the sound stimulus (Fig. 12, 13), but this was not always the case. In one individual, 

the effect on delay time was negligible (Fig. 14), but in another, it clearly increased the amount 

of time between stimulus presentation and neuronal response (Fig. 11). 

The results are further complicated when observing the “postcool” condition. Given that 

cold-deactivation is regarded as reversible, it was expected that subsequent warming would 
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always result in a return to baseline levels in every parameter and in response to both stimuli 

types (Zhang and Hedwig, 2019). However, warming also had mixed results. In most instances, 

warming resulted in a partial restoration to baseline levels (Fig. 11, 12, 13), but this result was 

generally confined to the pulse stimulus, while responses to the chirp stimulus remained at 

cooled levels (Fig. 12, 13). That being said, there was additional variability in this regard. In one 

individual, warming had essentially no effect on any parameter (Fig. 14), but in another, 

warming restored all parameters to baseline levels, or even more beyond these levels (Fig. 11).  

 
 

 
 
 
 
Figure 11: Field potential 
recordings (A) and analysis of 
the changes in delay time (B), 
spike number (C/D), and spike 
frequency (E/F) in cricket 
211022, a female, black morph 
cricket, throughout the 
experimental process. (A) A 
raw trace from the cooled 
portion of the experiment. (B) 
Cold-deactivation increased 
the delay time, and warming 
returned it to baseline levels. 
(C/D) Cold-deactivation seems 
to have decreased the number 
of spikes per burst in response 
to both stimuli. Warming 
largely returned spike number 
to baseline in response in both 
instances. (E/F) Cold-
deactivation also seems to 
have decreased the spike 
frequency in response to both 
stimuli, and warming restored 
this response equally in 
response to both. 
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Figure 12: Field potential 
recordings (A) and analysis of 
the changes in delay time (B), 
spike number (C/D), and spike 
frequency (E/F) in cricket 
210614, a female, brown morph 
cricket, throughout the 
experimental process, without 
analysis of the periods during 
cooling and during warming. 
(A) A raw trace from the cooled 
portion of the experiment. (B) 
Cold-deactivation resulted in an 
increase in the variability of the 
delay time, and warming the ear 
partially returned the delay time 
to baseline levels. (C/D) 
Cooling decreased the number 
of spikes in response to both 
stimuli but more so in response 
to pulses (C) than chirps (D), 
with a partial restoration of 
baseline levels after warming 
only in response to pulses. (E/F) 
Similarly, cold-deactivation 
decreased the spiking frequency 
in response to both sound 
stimuli, but more so in response 
to pulses (E) than chirps (F), 
with a partial restoration of 
baseline levels after warming 
only in response to pulses. 
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Figure 13: Analysis of the 
changes in delay time (A), 
number of spikes (B/C), and 
spike frequency (D/E) in cricket 
210714, a female, black morph, 
cricket throughout the entire 
experimental process. (A) Cold-
deactivation increased the delay 
time, and warming did not return 
it to baseline levels. (B/C) Cold-
deactivation decreased the 
number of spikes per burst in 
response to both stimuli, but 
especially in response to pulses 
(B). Warming partially returned 
spike number to baseline in 
response to the pulse stimulus 
(B), but it had no effect on the 
chirp stimulus (E). (D/E) Cold-
deactivation also decreased the 
spike frequency in response to 
both stimuli, but warming 
somewhat restored this response 
more so in response to pulses (E) 
than chirps (E). 
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Figure 14: Intracellular 
recordings (A) and analysis of the 
changes in delay time (B), spike 
number (C/D), and spike 
frequency (E/F) in cricket 211019, 
a female, black morph cricket, 
throughout the experimental 
process. (A) A raw trace from the 
cooled portion of the experiment. 
(B) Cold-deactivation had no 
noticeable effect on the delay 
time. (C/D) Cold-deactivation 
seems to have marginally 
decreased the number of spikes 
per burst in response to pulses 
(D), but not chirps (C). (E/F) 
Cold-deactivation also seems to 
have slightly decreased the spike 
frequency in response to pulses 
(F), but not chirps (E).  
 
  
 
 
 
 
 

Behavioral Results 

Similar to the physiological results, behavioral responses were also quite varied and 

inconsistent. Across crickets, the ability to respond effectively to the sound was variable, which 

is surprising given the relative simplicity of negative phonotaxis and its crucial role in survival. 

Nonetheless, only 6 out of the 9 total crickets responded in the correct manner at least half of the 

time (a score of 0.5 or higher) (Fig. 15). Even within a single cricket, the latency to turn varied 

dramatically both across and within stimulus presentations (Fig. 16). Although, in some 

instances, such as cricket 220214 G, the latency increased during the stimulus presentation 
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(which would be consistent with habituation to the stimulus), this is by no means universal. (Fig. 

16). For some crickets, like cricket 220218 G, the amount of time between the onset of the sound 

stimulus and the initiation of the turn actually decreased over the course of the stimulus 

presentation, and for others, there appeared to be no discernable pattern at all (Fig. 16). 

 

 
Figure 15: Histogram depicting the number of crickets with 
each turning score, from -0.5 (at least two incorrect turns and 
no correct turns) to 1 (all four correct turns). Of the 9 
crickets, most showed a generally correct response, with 
most scoring between 0.25 and 0.75, but there was still clear 
variability in response accuracy.  
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Figure 16: The turning latency for five crickets in behavioral experiments. The latency was recorded at three 
timepoints (the beginning, middle, and end) for each stimulus presentation. Since there were two stimuli and 
each was generated from each speaker, this led to a total of four stimulus presentations. Each timepoint is 
represented on the x axis. The latency to turn was capped at 313 msec, and times above this range were 
recorded as 313 msec. For each cricket, there is a large amount of variability in response, and, though some 
crickets appeared to habituate to the stimulus, this is not the case for every individual.  
 

Correlating Behavioral and Physiological Results 

 In relating behavioral and physiological responses, I had expected to see a correlation 

between the delay time of the physiological response and the turning accuracy and latency of the 

behavioral response. Given that the physiological response does not need to be sent to the brain 

and then the muscles, I expected there to be a substantial difference in magnitude between the 

two responses, but I expected that, if an AN-2 cell responded quickly to the sound stimulus, so 

too would the cricket. I did not find this to be the case. Although both behavior and physiological 

data were collected for only one cricket, that cricket did not show any sort of correlation between 

the two datasets (Fig. 17). The cricket exhibited some variability in physiological delay time, but 

much more variability in turning latency, and there was no relationship between the two in terms 
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of orders of magnitude (Fig. 17). Though this is a single cricket, it seems to be consistent with 

trends seen in other crickets. Across the board, there appears to be very little variability in delay 

time within a single cricket’s physiological responses, and a great deal of variability in a single 

cricket’s behavioral responses. The example of the individual shown in Figure 17 only serves to 

strengthen this observation.

 

Figure 17: (A) The delay time for a single cricket, without cooling. Though there is some variability in 
response, there is generally very little, with most responses occurring between 120 and 150 msec after the 
onset of the stimulus. (B) The latency response for the same cricket, which shows a great deal of variability in 
response time, with most turns occurring between 200 and 300 msec after the onset of the stimulus, regardless 
of stimulus presentation. Though there appears to be some degree of habituation for each stimulus, it is not true 
in every instance.  
 

DISCUSSION 

Interpretation of Physiological Results 

This study explored the firing of AN-2 in response to different sound stimuli as 

influenced by cold-deactivation. Analysis across ten crickets prior to cooling and four during and 

after cooling revealed great variability in individual responses to sound, with minimal trends 

developing as a result of cold-deactivation (Fig. 8, 9, 10). Although this may make it appear as 

though cold-deactivation is ineffectual, it is consistent with previous data found by the Horch 



 

 27 

Lab that, across behavioral, morphological, and physiological measures, crickets respond to 

sound with varying degrees of intensity and specificity (Edwards, 2021). In fact, investigating 

the molecular reasons for this individual variability presents an exciting avenue for further 

research, with implications for developing better individualized treatments in humans.  

 The within-cricket analysis, on the other hand, was more elucidating as to the specific 

effects of cold-deactivation. Although delay time was the main analysis parameter, it was a less 

consistent measure than spike number and spike frequency. In two crickets, delay time did not 

inncrease, but rather stayed the same on average, while increasing in variability (Fig. 12, 13). In 

another, the delay time barely changed (Fig. 14), but in the last cricket, the delay time did 

increase dramatically, consistent with the presence of DOPE (Fig. 11). However, none of the 

crickets exhibited the prolonged-excitation also indicative of the DOPE response. In every case 

but one, warming failed to return the delay time to pre-cooled levels (Fig. 12, 13, 14). Generally, 

cooling expectedly decreased both spike frequency and spike number in response to both sound 

stimuli, although this effect was greater in response to the pulse stimulus than the chirp stimulus 

for both parameters (Fig. 11, 12, 13). Similarly, responses to the pulse stimulus generally 

indicated some recovery after warming, though this recovery was incomplete in every case but 

one (Fig. 11, 12, 13). Although this differential recovery was unexpected, it makes sense that the 

pulse stimulus would show such changes earlier and to a greater effect than the chirp stimulus. 

This is due to the fact that the pulse stimulus is more intense than the chirp, which due to the 

silence it contains, does not stimulate the neuron as much as the longer, uninterrupted pulse. 

Given this difference, it is possible that AN-2 would be more sensitive to the pulse than the 

chirp, so such changes would be more noticeable in response to it.  
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 It is, however, still unexpected that there would be such little recovery after warming in 

most individuals. One of the primary advantages of cold-deactivation over traditional 

deafferentation (through the removal of the leg) is that its reversibility allows for the 

visualization of which changes within the system are permanent and which are not, so the fact 

that it was not entirely reversible in this case is concerning. Previous research has not maintained 

cooling for such an extended period of time (i.e. 90 seconds as opposed to the 30 minutes used 

here) (Zhang and Hedwig, 2019), but here we felt that a long period was necessary in order to 

fully examine the effects of cooling and determine whether or not DOPE was present. However, 

we found that such cooling causes irreversible damage in many crickets, even before the fully 

cooled temperature is established, though this was not the case for every cricket (Fig. 6, 7). This 

is inconsistent with previous results, which poses a methodological problem moving forward, 

unless measures can be taken to ensure that the electrode does not move through the cell 

membrane as the cell moves due to contraction of the PTG. That being said, the fact that some 

cells survived the entire cooling and warming process, and, in one recording, warming even 

returned all parameters to baseline levels indicates that cooling may not be an insurmountable 

obstacle as long as enough experiments are performed to account for the fact that many of them 

will not be successful.  

Interpretation of Correlational Results  

 Using this baseline characterization of the DOPE response as background, I then aimed to 

contextualize the DOPE response by comparing behavioral and physiological experiments. I 

hoped that such a comparison would specifically probe the variability found in physiological 

recordings and other experiments performed by the Horch Lab. The fact that AN-2 is tuned to 

the high frequencies emitted by predatory bats means that its activation mediates a conserved 
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survival response (negative phonotaxis), which, given its integral role in survival, would likely 

not be highly variable (Moiseff et al., 1978). Despite this, I expected that the great variability in 

physiological response would translate to some behavioral variability as well. I found that this 

was indeed the case, as there was a great deal of variability with regard to both turning accuracy 

and latency in behavioral experiments (Fig. 15, 16). However, unexpectedly, there was no 

relationship between the observed variability in physiological and behavioral responses in the 

one cricket for which this data was collected (Fig. 17). The fact that these results are both from 

an uncooled, control cricket further suggests that comparing physiological and behavioral results 

does not seem to yield additional insight. 

If, however, a similar dissonance were seen with correlated physiological and behavioral 

data, it would call into question the hypothesis elucidated previously that DOPE is caused by 

PIR. Given the hypothesis that crickets that exhibit a stronger DOPE response will also show 

stronger negative phonotaxis, because of the tightly regulated inhibition by ON-1, such results 

would suggest that DOPE may not be a result of ON-1 mediated inhibition, suggesting that it is 

not due to PIR at all. Alternatively, DOPE could still be a PIR-induced phenomenon, but some 

degree of higher order processing modulates this response in such a way that does not correlate 

with behavioral outcomes.  

 Regardless, these results problematize the potential power of correlational measures in 

crickets. This has huge ramifications for future research in the area of DOPE and other 

intracellular properties, but it also extends to other areas of research. If there is indeed no 

relationship between turning latency and delay time in response to these stimuli, it seems less 

likely that we can correlate behavioral and intracellular responses more generally. Unfortunately, 

this suggests that experiments that have been occurring in the Horch Lab, which aim to correlate 
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behavior, morphology, and physiology, may not show the expected relationships between these 

measures of analysis. This is not to say that such experiments are without value, but we should 

be cautious when considering the results that they produce.  

Future Directions: Post-inhibitory Rebound 

 Moving forward, I hope that this research can be used to definitively determine the 

origins of the DOPE response. I still hypothesize that DOPE is most likely a manifestation of 

PIR. However, the lack of correlation between physiological and behavioral data means that this 

relationship may not be best investigated through such correlational experiments. Ideally, 

successful experiments would instead induce DOPE in both cooled and uncooled crickets by 

injecting currents of various amplitudes that match the timing and duration of the sound stimuli. 

If the DOPE response can be successfully evoked, it would support the hypothesis that DOPE is 

a facet of PIR. Presumably, there would be some variability of response in this experiment (as 

with the sound-based stimulus), but responses consistent with those seen in this study would 

point to such an explanation for DOPE. Additional experiments could then be performed to 

determine the mechanism of action behind PIR (if present) in this system through the use of ion 

replacement and blockers.  

Future Directions: Priming 

The characteristics of PIR might be altered through cold-deactivation and other 

manipulations of the system, especially if it is driven by contralateral input. Of particular note is 

the instance of priming, a phenomenon that occurs in sensory systems throughout the animal 

kingdom in which a certain stimulus is able to bias the system towards a distinct response 

(Schacter and Church, 1992). In humans, for example, priming an auditory stimulus that is 

supposed to later be remembered with one spoken in the same pitch leads to greater recall than 
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when the priming stimulus is in a different pitch (Schacter and Church, 1992). In the cricket 

auditory system, priming with various stimulus intensities as well as directionalities has been 

shown to influence the animal’s behavioral response to stimuli mimicking bat ultrasound (Engel 

and Hoy, 1999). When low-intensity stimulation is used to prime the neuron’s response, this 

results in greater attenuation to the actual stimulus than when higher-intensity priming stimuli 

are used, and prior stimulation on one side of the animal encourages a response on the ipsilateral 

rather than contralateral side (Engel and Hoy, 1999). Additionally, the temporal pattern of the 

priming stimulation can affect the firing of auditory neurons (and particularly AN-2) (Samson 

and Pollack, 2002). For example, long trains of stimulation with little silence between the 

individual tones as a priming stimulus causes increased firing latency and a decreased number of 

spikes in response to each later recorded stimulus (Samson and Pollack, 2002). This means that 

the primed response is less acute than the initial response, indicating that temporal priming of 

this sort results in habituation on a scale as small and precise as the electrophysiological response 

of a single neuron. 

As such, it would be interesting to explore the impacts of priming with sound stimuli of 

different frequencies on this response. Given the frequency-specific responses of AN-1 and AN-

2, priming the stimulus with an equal stimulus of a different frequency both when cooled and in 

control conditions should help elucidate the role of contralateral inhibition on AN-2’s response. 

As such, one could perform an experiment in which the contralateral ear is cooled (which is the 

direct opposite of what has been shown here, where the ipsilateral ear undergoes cooling), 

thereby functionally removing the inhibition that AN-2 receives from ON-1. When such 

inhibition is removed through cooling, the effects of priming should be decreased, as the PIR 

mechanism would no longer be relevant. 
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Elucidating the origins of the DOPE response and the impacts of priming on AN-2 will 

help clarify models of the circuitry of the G. bimaculatus auditory system, and this expanded 

understanding of the circuitry and specific properties of the neurons within it will provide 

insights into how this auditory system is capable of such profound plasticity. Not only will this 

research help expand what is known about AN-2, but it will also provide a basis for further 

exploring the intrinsic properties of other neurons in the system, especially through reversible 

cooling and current injections. Ultimately, better understanding the mechanisms behind 

compensatory plasticity in G. bimaculatus from an electrophysiological perspective will expand 

opportunities to further explore such mechanisms in other species, potentially with notable 

ramifications for treatments for human neuronal injury. 

  



 

 33 

LITERATURE CITED 

Brill-Weil SG (2020) That’s DOPE: the delayed-onset, prolonged excitation response of a 
primary auditory interneuron in Gryllus bimaculatus. 

Brodfuehrer PD, Hoy RR (1988) Effect of auditory deafferentation on the synaptic connectivity 
of a pair of identified interneurons in adult field crickets. J Neurobiol 19:17–38. 

Edwards A (2021) Semaphorin-Induced Plasticity in the Nervous System of the Cricket, Gryllus 
bimaculatus. 

Engel JE, Hoy RR (1999) Experience-dependent modification of ultrasound auditory processing 
in a cricket escape response. Journal of Experimental Biology 202:2797–2806. 

Hooper SL, Thuma JB, Guschlbauer C, Schmidt J, Büschges A (2015) Cell dialysis by sharp 
electrodes can cause nonphysiological changes in neuron properties. Journal of 
Neurophysiology 114:1255–1271. 

Horch HW, McCarthy SS, Johansen SL, Harris JM (2009) Differential gene expression during 
compensatory sprouting of dendrites in the auditory system of the cricket Gryllus 
bimaculatus. Insect Molecular Biology 18:483–496. 

Horch HW, Pfister A, Ellers O, Johnson AS (2017) Plasticity in the Cricket Central Nervous 
System. In: The Cricket as a Model Organism (Horch HW, Mito T, Popadić A, Ohuchi 
H, Noji S, eds), pp 105–128. Tokyo: Springer Japan. Available at: 
http://link.springer.com/10.1007/978-4-431-56478-2_8 [Accessed January 15, 2020]. 

Huber F, Moore TE, Loher W eds. (1989) Cricket behavior and neurobiology. Ithaca: Comstock 
Pub. Associates. 

Kloppenburg P, Hörner M (1998) Voltage-activated currents in identified giant interneurons 
isolated from adult crickets gryllus bimaculatus. Journal of Experimental Biology 
201:2529–2541. 

Kostarakos K, Hedwig B (2017) Surface electrodes record and label brain neurons in insects. 
Journal of Neurophysiology 118:2884–2889. 

Large EW, Crawford JD (2002) Auditory Temporal Computation: Interval Selectivity Based on 
Post-Inhibitory Rebound. Journal of Computational Neuroscience 13:125–142. 

Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and 
ultrasound: Mate attraction and predator avoidance. Proceedings of the National 
Academy of Sciences 75:4052–4056. 

Nolen T, Hoy R (1984) Initiation of behavior by single neurons: the role of behavioral context. 
Science 226:992–994. 



 

 34 

Pollack GS, Hedwig B (2017) The Cricket Auditory Pathway: Neural Processing of Acoustic 
Signals. In: The Cricket as a Model Organism (Horch HW, Mito T, Popadić A, Ohuchi 
H, Noji S, eds), pp 155–167. Tokyo: Springer Japan. Available at: 
http://link.springer.com/10.1007/978-4-431-56478-2_11 [Accessed February 27, 2021]. 

Roeder KD (1962) The behaviour of free flying moths in the presence of artificial ultrasonic 
pulses. Animal Behaviour 10:300–304. 

Samson A-H, Pollack GS (2002) Encoding of Sound Localization Cues by an Identified 
Auditory Interneuron: Effects of Stimulus Temporal Pattern. Journal of Neurophysiology 
88:2322–2328. 

Sansom A, Lind J, Cresswell W (2009) Individual behavior and survival: the roles of predator 
avoidance, foraging success, and vigilance. Behavioral Ecology 20:1168–1174. 

Schacter DL, Church BA (1992) Auditory priming: Implicit and explicit memory for words and 
voices. Journal of Experimental Psychology: Learning, Memory, and Cognition 18:915–
930. 

Simmons JA, Howell DJ, Suga N (1975) Information Content of Bat Sonar Echoes: Recent 
research on echolocation in bats identifies some of the kinds of information conveyed by 
echoes of their sonar sounds. American Scientist 63:204–215. 

The Earl of Cranbook, Barrett HG, Yates F (1965) Observations on Noctule Bats (Nyctalus 
Noctula) Captured While Feeding. Proceedings of the Zoological Society of London 
144:1–24. 

Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the 
prothoracic ganglion of the cricket,Gryllus campestris L. J Comp Physiol 146:161–173. 

Zhang X, Hedwig B (2019) Bilateral auditory processing studied by selective cold-deactivation 
of cricket hearing organs. J Exp Biol 222:jeb210799. 

 

 


	Characterizing and Investigating the Electrophysiological Properties of the Plastic Cricket Auditory System in Response to Cooling
	Recommended Citation

	Thesis

