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1. Abstract

This project is an analysis of the effectiveness of five distinct optimization methods in their

ability in producing clear images of the basins of attraction, which is the set of initial points

that approach the same minimum for a given function. Basin images are similar to contour

plots, except that they depict the distinct regions of points–in unique colors–that approach

the same minimum. Though distinct in goal, contour plots are useful to basin research in

that idealized basin images can be inferred from the steepness levels and location of extrema

they depict. Effectiveness of the method changes slightly depending on the function, but is

generally defined as how closely the basin image models contour information on where the

true minima are located, and by the clarity of the resulting image in depicting well-defined

regions. The methods are tested on four distinct functions which were chosen to assess how

each method performs in the presence of various challenges. This project ranks the five

methods for their overall effectiveness and consistency across the four functions, and also

analyzes the sensitivity of the methods when small changes are made to the function. In

general, less sensitive and consistently effective methods are more applicable and reliable in

applied optimization research.

Keywords: Basins of attraction, sensitivity analysis, optimization, minimization,

Line Search, Newton’s Method
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Introduction

2. Basins of Attraction

In the mathematical field of dynamical systems, attractors are a set of states toward which

a system tends to evolve. Basins of attraction are visual representations of many simulations

of individual points and their evolution toward equilibria. Figure 1 below shows a dynamical

system of two equilibria, one at (0,1) and another at (.45, 1.2). The area of the basin shaded

in red represents the points that evolve toward (.45, 1.2), and the blue band on the left of

the image represents the points that evolve toward (0,1).

Figure 1. Basin of Attraction for a Differential Equation (Levy 2019, 25)

The application of basins of attraction to optimization research is relatively new and the

predominant focus of my research. The basin images I produce in my research are rooted in

optimization methods to find minima of functions. Thus, though distinct, basins of attraction

in dynamical systems are a useful analogy to motivate discussion about basins of attraction

in optimization research.

3. Overview of Optimization Methods: Effectiveness and Efficiency

Five optimization methods were chosen to form comparisons on how effectively each

method finds the minima of different types of functions. Effectiveness in optimization re-

search is highly subjective, yet there are several qualities of basin images that suggest that

some methods perform “better” or “more effectively” than others.

The most direct metric for basin effectiveness in this project is the ability of each method

to accurately color the areas that approach the same minimum in a clearly-defined manner.
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Contour plots are useful in that the ideal basin images for each function can be inferred from

the maxima, minima and steepness levels they depict.

For example, one function used to evaluate the methods is: sin(x) · cos(y) + cos2(y). Note

the shape of the contour plot zoomed out and in the range x ∈ [−4, 4] and y ∈ [−4, 4]:

Figure 2. Contour Plot for sin(x) · cos(y) + cos2(y)

Figure 3. Zoomed-in Contour Plot for sin(x) · cos(y) + cos2(y)

The function has infinite minima and maxima, and the distinct minima are found inside

each purple triangle. The below two figures are side-by-side comparisons of the basins of

attraction for the Steepest Descent Method (SD) and Gradient Descent with Momentum

Method (GDM), which will be referenced and explored in more detail throughout this pa-

per. The color of each point in the basin image corresponds to the minimizer that method

approached using the given method, a process which will be explored later in the paper. Note

the difference in clarity (mixed colors or undefined boundaries) of the distinct groupings of

colors around the minima shown in the contour plot:
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(a) Basin for Steepest
Descent

(b) Basin for Gradient
Descent with Momentum

In image A, points in similar regions seem to correspond to the same minima in a way

that mirrors the minima (purple triangles) in the contour plot. As previously mentioned,

the basin images will not directly resemble the contour plots because they are intended to

represent different patterns. However, in an ideal situation, the basin images would show

distinct, clearly-defined groupings of points that are near the same minimizers. Intuition on

where these areas are is provided by the contour plots, but in general, the better the basin

images follow the intuition given through the contour plots, the higher the accuracy of the

method.

Image B illustrates how the Gradient Descent with Momentum Method accurately finds

the distinct central minima and colors them uniquely, as each individual region near a mini-

mum should be colored differently. My research would thus classify GDM as a more effective

method for this function than SD.

A key aspect of my research is how the methods are affected by slight changes in the

functions. In general, if small changes to the function (that do not drastically affect where

the minima are) alter the basin image dramatically, the method would be classified as highly

sensitive. Further discussion will follow about the intersection of sensitivity and effectiveness,

but in general, highly sensitive methods are less effective at producing accurate basins.

Within individual runs of the optimization method, efficiency can be classified by the

number of steps taken to find the minimizer, and the degree of oscillation between steps.

In general, if a run of one method took many small steps, and a run of another took a few

larger steps to find the same minimizer, the second run would be deemed ‘more efficient’

than the first. For the sake of this project, however, efficiency only decreases the integrity

of the method if the run-time is significantly affected.
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4. Overview of Optimization Methods: Steepest Descent with the

Golden-Section Search

The first method chosen is the Steepest Descent Method with the Golden-Section Search

(SD). This method is an iterative procedure to generate a point from another using a step

of a certain length, α, in the direction of greatest descent.

Procedure: Define xk+1 as the point we are generating, and ∇f(xk) as the direction we

choose next, the negative gradient.

1) Start with an initial guess.

2) Update guess with the formula xk+1 = xk + α∇f(xk)

3) Repeat while absolute value of the negative gradient is larger than some tolerance value,

while replacing the initial guess.

The method gets its name from the step length, α, in the direction of greatest descent. Note

the following procedure which finds the optimal alpha using Golden-Section search.

Procedure to find the most optimal α:

First, consider the following image and description:

Figure 4. Golden Search Visual Representation (Wikipedia 2022)

The image above represents one run of the Golden-Section search, where the function

values at x1, x2 and x3 have already been evaluated. Because f2 is a smaller value than

f1 and f3, a minimum in this region necessarily falls between x1 and x3. The next step

in the procedure is to consider a new point, f4, which should lie in the biggest interval in
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consideration (here, because the interval [x2, x3] > [x1, x2], we place f4 in between x2 and

x3).

If f4 is larger than f2, as shown by f4a, then the minimum lies between x1 and x4. If f4

has a smaller value than f2, as shown by f4b, then the minimum lies between x2 and x3. This

process is repeated to produce guesses that are closer and closer to the true minimum.

Thus, the new search interval is either [x1, x4] with a length of a + c, or [x2, x3] with a

length of b. The algorithm requires that these intervals be equal, so b must necessarily equal

a + c. With manipulation, b = (a + c) becomes (x3 − x2) = (x2 − x1) + (x4 − x2) which is

the same as (x3 − x2) = x4 − x1 or x4 = x3 − x2 + x1.

Note that the original spacing of x2 between x1 and x3 matches the spacing of the triples

x1, x2, x4 or x2, x4, x3. By maintaining this same proportion, the point in consideration is

guaranteed to not be too close to either point on the boundary, and that the interval width

shrinks by the same proportion every time. With the mathematics fully worked out, the

ratio b
a
= 1+

√
5

2
, which is the golden ratio (Wikipedia 2022).

In the contour plot below, the blue lines represent the individual steps the method took to

find the minimizer, starting from a random point (the ‘x’ at about (-1.7, 0.25)). In addition,

note that when the method finds the lowest point in the direction of the negative gradient,

it turns 90 degrees to continue the process in a new direction. Here, the method approached

a true minimizer near the point (-1.6, 1.0). Using the above algorithm, the method makes a

turn when the step length is optimized in that direction.

Figure 5. One Run of Steepest Descent Method
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5. Backtracking with the Armijo-Goldstein Condition

The Backtracking Methods are iterative procedures to determine the amount to move in a

particular direction. Like the SD method, these methods use the negative gradient, but they

differ from SD in the amount they choose to move in the direction of the negative gradient.

Procedure:

While f(xk)−(f(xk−α∇f(xk))) -
α
2
(∥v∥)2 < 0 is true, repeatedly multiply α by β, effectively

halving the distance along the direction in consideration. Thus, the full procedure becomes:

1) Fix parameters α = 1 and β = 1/2 where α is the step rate, and β halves α after each

iteration.

2) While the condition f(xk)− (f(xk−α∇f(xk))) -
α
2
(∥v∥)2 < 0 is true, repeatedly multiply

α by β, effectively halving the distance along the direction in consideration.

a) If the condition becomes false, restart process in new direction.

3) Continue by repeatedly finding the new step length in each direction.

4) Stop the procedure when the gradients become small.

Note the frequency of small steps in the plot below:

Figure 6. One Run of Backtracking Method with Armijo Condition

With regard to the function being minimized here, the run-time of the Backtracking with

the Armijo-Golstein condition is not significantly affected by the decrease in efficiency of the

steps. As mentioned in the section on effectiveness, parameters for effectiveness on individual

runs of the method include the amount of steps it takes to approach the minimizer, and the

degree of oscillation of the steps. As compared to one run of Steepest Descent as show in

Figure 4, my analysis would classify this run of Backtracking as ‘less effective’, as more steps

are taken that oscillate at a higher rate.
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6. Backtracking without the Armijo-Goldstein Condition

Procedure:

1) Fix parameters α = 1 and β = 1/2 where α is the step rate, and β halves α after each

iteration.

2) While the condition f(xk)− (f(xk − α∇f(xk))) < 0 is true, repeatedly multiply α by β,

effectively halving the distance along the direction in consideration.

a) If the condition becomes false, restart process in new direction.

3) Continue by repeatedly finding the most optimal step length in each direction.

4) Stop the procedure when the gradients become small.

Note that the following plot shows how the method does not use the turn decision based on

the negative gradient:

Figure 7. One Run of Backtracking Method
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In Figure A below, the run takes fewer steps, but the steps oscillate more dramatically

than in Method B. The consistency of the steps in Method B, despite the frequency, may

make Method B more effective depending on the optimization problem in question and which

parameters are more or less important in different applied contexts.

Figure 8. Image A: One Run of the Backtracking Method

Figure 9. Image B: One Run of Backtracking Method with Armijo-Goldstein
Condition

7. Gradient Descent with Momentum Condition

Gradient Descent with Momentum is similar to SD, except that it uses a parameter called

the learning rate to determine the step size after each iteration. In addition, the momentum

value attempts to use information from the last guess in order to propel the method forward

(in general, it can help the method bypass plateaus or shallow local minima). While the code

has not exceeded the set maximum iterations, and the difference in function values between
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two successive iterations is not below a set threshold, the method continues to find the next

guess.

Procedure:

1) Start with an initial guess.

2) Update guess with the formula xk+1 = xkγ − ϵ∇f(xk), where γ is the momentum value

and ϵ is the learning rate

3) Repeat while absolute value of the negative gradient is larger than some tolerance value,

while replacing the initial guess.

Note the drastically high frequency of small steps in the following run, even compared to

Backtracking with the Armijo-Goldstein Condition:

Figure 10. One Run of Gradient Descent with Momentum

As compared to the Backtracking Method with the Armijo-Goldstein condition, this method

takes a large amount of steps due to the fixed, and very small, learning rate parameter.

When the learning rate of a method is too small, however, the efficiency of the method can

be compromised.

The optimal learning rate and momentum values for each function-method pair are different

as shown in the sensitivity analysis portion of this paper.

8. Newton’s Method

The general procedure for this method is similar to the other four, but has some significant

differences. The procedure is:
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1) Start with an initial guess.

2) Update guess with the formula xk+1 = xk−∇2f(xk)
−1∇f(xk). Note here that the inverse

Hessian, a square matrix of second-order partial derivatives, replaces the step length in the

SD Method.

3) Repeat while absolute value of the negative gradient is larger than some tolerance value,

while replacing the initial guess.

For this particular function, this method dramatically fails to converge to the proper minima.

There are a few possible reasons for this, which will be referenced throughout the remaining

sections:

1) This method does not favor minimizers over maximizers. Thus, with a function with

many maximizers as well as minimizers, the method will prioritize locating both.

2) The method cannot progress when the second derivative of f(x) is zero, or when the

determinant of the Hessian Matrix is zero.

3) The method does not work well when the function has many oscillations.

4) The random guess was not close to the minima.

9. General Research Procedure: Finding Minima in Python

Finding the minimum that an individual point approaches, and simulating this process

many times, is generalized through the following steps. A run is defined as the process

starting from the original, randomized point and ending at a minimum.

1) Start with a randomized guess in the (x,y) coordinate plane.

2) For the first run, record the minimum the point approached. Assign the random point a

unique color.

3) On the next run, if the new random point approached the same minimum as another

point within a set tolerance value*, color it the same. If not, create a new color to represent

the new minimum.

4) Simulate this process many times, creating a basin image that records all the randomized

points and the minima they approached, as indicated by the color of the points.

*A Note on Tolerance:

A run of the method is controlled by two tolerance values: the tolerance for the magnitude

of the gradient at the final point, and the tolerance for the similarity required of points to

be considered ‘the same minimum.’ If the gradient changes very little between the steps of

a run, it is likely, with exception, that the run is approaching a minimum. If the tolerance

is too constrictive, it may fail to recognize all points that should be considered the same

minimum. If the tolerance is not constrictive enough, however, the method may incorrectly

include inaccurate points as minima.
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The tolerance values were slightly adjusted throughout the analyses of the methods to

optimize the quality of the basin image. If a method did not respond more positively to a

slight tolerance change, a sub-optimal value was used to further illustrate the sensitivity of

the method.

Note the basin plot images for 10, 100, and 1000 simulations for the function sin(x) ·
cos(y) + cos2(y) using the Backtracking Method with the Armijo-Goldstein Condition:

Figure 11. 10 runs of Backtracking with Armijo-Goldstein Condition

Figure 12. 100 runs of Backtracking with Armijo-Goldstein Condition
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Figure 13. 1000 runs of Backtracking with Armijo-Goldstein Condition

Note that points of the same color approached the same minimum. The evolution of the

basin image from 10 points, 100 points and 1000 points shows the process of the method

finding a new minimum, coloring it a new color, and using that color for points that evolve

to the same minimum.

10. A Note on Basin Colors

This project uses colormaps to produce aesthetic color schemes that illustrate the locations

of the minima. Colormaps are accessed through the library Matplotlib, and are available

in several forms. This project relies on qualitative colormaps, which are mostly used in

cases where unique colors or color gradients are not important in mapping trends. For

example, a project that uses a colormap to illustrate the amount of air pollution in specific

neighborhoods of a city would not use a qualitative colormap, because the colors would

specifically be assigned to different levels of pollution. For this project, the colors themselves

do not hold any specific meaning. Rather, it is the distinct boundaries that the colors form

that are important in establishing the locations of the minima.

‘tab20c’ is the predominant colormap used in this project. Its unique range of colors are

shown below:

Figure 14. tab20c colormap

There are twenty distinct colors available through the ‘tab20c’ colormap. To produce a

new color, the algorithm uses on an arbitrary increment value. The increment value that is

set does not matter because qualitative colormaps automatically normalize the color values in

the range [0,1] depending on the amount of colors used. In the case where a method uses less

than the maximum amount of colors offered by a qualitative colormap, this normalization
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process will ensure that each minimum has a unique color. In the case where a method

requires more than 20 colors to illustrate where the minima are, colors will be repeated

even though they correspond to different minima. Even though this is the case, there is a

low probability that adjacent colors are the same. Even with this drawback of qualitative

colormaps, they are highly useful for their capacity to create images with highly distinct and

vibrant colors.

11. Functions Used to Evaluate the Methods

The following four functions were used to evaluate the methods in this research project.

These functions were chosen for a variety of reasons, predominately to show the strengths

and weaknesses of the different methods:

1) sin(x) · cos(y) + cos2(y)

2) 1
4
(1 + 4(x2 + (−1 + y)2))(x2 + (1 + y)2)

3) (x− 4− y)2

4) x sin(x) + y sin(y)

1. sin(x) · cos(y) + cos2(y) has a unique structure in that its minima and maxima form

a pattern that repeats indefinitely–every maxima is directly surrounded by 6 minima. For

reference, a limited range of its contour plot and a plot of the function are included below

(note again that the indivdiual purple triangles represent the minima, and the green ovals

represent the maxima):

Figure 15. Contour plot of sin(x) · cos(y) + cos2(y)

This function is useful to test how well a method works with a function of infinite minima

spread consistently around infinite maxima.

2) The function 1
4
(1+4(x2+(−1+ y)2))(x2+(1+ y)2) has two minima close together, one

local and one global. The true, global minimum is found at (0, -1), and the local minimum

is found near (0, .85).

Below are the functions’ contour plot and plot:
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Figure 16. Plot of sin(x) · cos(y) + cos2(y)

Figure 17. Contour plot of 1
4
(1 + 4(x2 + (−1 + y)2))(x2 + (1 + y)2)

Figure 18. Plot of 1
4
(1 + 4(x2 + (−1 + y)2))(x2 + (1 + y)2)

This function is useful to test how the methods respond to the presence of a local minimum

in close proximity to a global one. In this case, the methods are evaluated on how well they

pass through the local minimum to find the global minimum. Functions of this form (with

local and global minima in close proximity) are useful measures of effectiveness for the

methods. Ideally, a function’s random initial points would bypass the local minimum to find

the global one.
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3) The function (x− 4− y)2, like sin(x) · cos(y) + cos2(y), has infinite minima, which are

found at the bottom of a symmetric, half-pipe structure. Below is its contour plot and plot:

Figure 19. Contour plot of (x− 4− y)2

Note that the whitespace in the middle of the contour (between the purple lines) represents

the infinite minima that lie in the middle of the function. For reference, a plot of the function

is included:

Figure 20. Plot of (x− 4− y)2

This function is useful in evaluating how well the methods identify the infinite minima of

such a half-pipe structure. In the case of this function, when the ‘x’ is held constant, all the

points on each line approach the same minimum.

4) The function x sin(x) + y sin(y) has no global minima, but has a condense grouping of

local minima of varying depths around the origin. Note the structure of its contour plot and

plot:
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Figure 21. Contour plot of x sin(x) + y sin(y)

Figure 22. Contour plot of x sin(x) + y sin(y)

The contour plot reveals the 9 minima of varying depths in the range x ∈ [−6, 6] and

y ∈ [−6, 6]. This function is useful as a means to explore how the methods respond to many

minimizers in a limited range of differing depths. The methods are evaluated based on their

ability to distinguish the many minima in the small range.

12. Effectiveness of Methods on Function 1, sin(x) · cos(y) + cos2(y), and a

Discussion on the Order that the Methods are Run

To evaluate the effectiveness of the methods on Function 1, the following basin images

for the five methods are considered. However, first note the following important caveats of

the procedure for locating and coloring the minima. First, note that Steepest Descent on

its own is not as effective as Backtracking with and without the Armijo-Goldstein Condition

for this function. Because SD was coded before any other method, it stores information on
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the minima that affects the rest of the methods if they run in the same kernel. Examine the

following basin image from 3,000 simulations from the SD method:

Figure 23. Basin Image for x sin(x) + y sin(y)

The function has four main minima in the region x ∈ [−4, 4] and y ∈ [−4, 4], minima 1-4,

though some basins show nearby minima on the periphery. Note the following contour plots

for reference, the first of which was coded to match the rectangular aspect ratio of the basin.

The numbers correspond to distinct minima in the region.

Figure 24. Numbered Contour Plot for x sin(x) + y sin(y)

Figure 25. Numbered Contour Plot for x sin(x) + y sin(y)
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Note the following about SD’s effectiveness in finding the minima:

1) The method finds only one minimzer, not three, in regions 1, 3 and 10, though these

regions contain distinct minima. The method also finds only one minimizer in regions 2 and

4, though these regions also have distinct minima.

2) The regions are not all homogeneous in color, though the boundaries are relatively well-

defined.

3) Region 6 incorrectly shares a color with a different minimizer off-screen.

4) The top portion of the basin is homogeneous in color, though there are additional minima

off-screen near that region.

12.1. A Note on Order of the Methods as They Run in the Kernel.

Examine the following basin image from 3,000 simulations of the backtracking method,

with and without the Armijo condition:

Figure 26. Basin Image for Armijo-Backtracking for Function 1

Figure 27. Basin Image for Backtracking without the Armijo Condition for
Function 1

Because these are independent simulations, meaning that the kernel was cleared before

running the method, the color scheme will be different due to the randomized sampling,
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but the areas in which minima are held should be the same. These methods are more

clearly defined than SD, and locate the minima more effectively. Based on the parameters

for effectiveness as laid out in the earlier sections of the project, the Backtracking Methods

would be deemed more effective than SD for Function 1, assuming all methods are running

independently.

What information does SD store that causes the other methods to be less effec-

tive when they run in the same kernel for this function?

The other methods are less effective when SD runs first mostly due to the tolerance values

set to classify the endpoints of runs as preexisting minima. When the SD Method approaches

an endpoint, the method parses a preexisting list of endpoints, and matches points within a

set tolerance value. Specifically, the method will identify an endpoint as the same as another

if its x-coordinate is within some number of the x-coordinate of a preexisting endpoint,

and if its y-coordinate is within the same number of the y-coordinate that same preexisting

endpoint. If not, it will declare the endpoint as a new minimum, and assign a new color to

it.

When the Backtracking Methods run, the endpoints each run produces are classified based

on their proximity to the endpoints that SD produced, which may not be an accurate measure

of where the minima actually are. This is problematic not only because the Backtracking

Methods potentially use incorrect information to locate the minima, but also because even

small tolerance values can prevent the Backtracking methods from finding additional minima.

12.2. Dependent Basins. Note the pictures above for the independent simulations of the

Backtracking Methods. Now note the qualities of the basins when SD runs first, as well as

the SD basin, as shown below:

Figure 28. Basin Image for SD for Function 1
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Figure 29. Left: Dependent Basin for Backtracking with the Armijo-
Golstein condition; Right: Dependent Basin for Backtracking without the
Armijo-Goldstein condition

When the Backtracking Methods run first, they do not have a dramatic effect on the SD

basin:

Figure 30. Left: SD Basin when run alone; Right: SD Dependent Basin

The images are similarly undefined and amorphous, and show that if a method is inde-

pendently less effective than another, the order that the method runs is often negligible.

Furthermore, the Newton Method is also largely inaccurate for this function, so the order

that the methods are run has minimal effects on it. More discussion on order is to follow

for the remaining functions, as different methods are more effective for different types of

functions.

Below are the five basin images for Function 1 (all run independently because the first

method, SD, was not as effective as other methods):
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Figure 31. Basin Image for SD for Function 1

Figure 32. Left: Independent Basin for Backtracking with the AG Condi-
tion; Right: Independent Basin for Backtracking without the AG condition

Figure 33. Left: Independent Basin for Gradient Descent with Momentum;
Right: Independent Basin for Newton’s Method

Note the following about the methods:

1) As previously mentioned, Newton’s Method performs ineffectively when there are many

maximizers as well as minimizers, the second derivative at a random point is zero, and the

function has many oscillations. Function 1 exhibits these qualities, as its second derivative is

zero at an infinite amount of locations (in the transitions between low-spots and high-spots)

and the function has an infinite amount of oscillations that are very close together. Note

also that the ring structures seem to correlate with the areas where the second derivative is

zero.
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2) The Backtracking Methods and the GDM method are the most effective here. The

Backtracking Methods are highly effective because they decide the step length based on the

most optimized outcome. In addition, GDM performs well with this function because of the

low learning rate values chosen, which means that the steps between methods are small and

steady in the direction of the negative gradient. On the other hand, SD chooses based on a

predetermined ratio which can decrease precision, and Newton’s Method fails for a variety

of reasons due to properties of the function.

13. Effectiveness of the Methods on Function 2,
1
4
(1 + 4(x2 + (−1 + y)2))(x2 + (1 + y)2)

To evaluate the effectiveness of the methods on Function 2, the five basin images for each

method are considered. First, recall the function’s contour and plot, and note the location

of the two minimizers, minimizer 1 at (0, -1) and minimizer 2 at (0, 0.85):

Figure 34. Contour Plot with Numbers for Reference

Figure 35. Function 2 Plot

An important consideration when evaluating Function 1 is the order that the methods

are run, as SD does not locate as many minima as some of the other methods. In the
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case of Function 2, many of the methods find the same two minima, but differ in accuracy.

In running the code, the methods need only find the same minima for the order to not

significantly impact the performance of the method. For this function, dependent coloring

is preferable only to keep the coloring consistent (i.e., blue and gray will represent the same

minima when running different methods).

Consider the following basin images for Function 2. Note that the GDM Method is run

with the parameters that optimize the method’s effectiveness.

Figure 36. SD Basin Image for Function 2

Figure 37. Backtracking with the AG Condition Basin Image for Function
2

Figure 38. Backtracking Basin Image for Function 2
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Figure 39. GDM Basin Image for Function 2

Figure 40. Newton Basin Image for Function 2

When evaluating the basins, is important to consider that this function was primarily

chosen to evaluate the methods’ ability to bypass a local minimizer that is in close proximity

to a global one. In this image, the blue dots represent all the points that approached (0, -1),

and the gray dots represent all the points that approached (0, 0.85).

Right away, it is clear that the Backtracking Methods are the most successful methods at

bypassing the local minimizer, as the images are far more blue than the other basins. Both

SD and GDM seem to locate where the minima are, but the points closer the local minimum

for both methods have a more difficult time bypassing it. The SD basin, furthermore, shows

a small blue region in the midst of the gray portion of the basin, which corresponds to the

area where the negative gradient gets steeper as the points approach the local minimum. In

areas where the function is steeper, the negative gradient gets longer, and the function may

overshoot the closest minimum to some far away point. Here, the method is overshooting

to find the global minimum, but in general such overshooting causes the methods to be less

accurate in narrowing in on a minimum in a close region.

Furthermore, Newton’s Method again largely fails in its effectiveness in locating the min-

ima, which results primarily from two of the previously-mentioned reasons that Newton’s

Method fails. First, it was noted that the method does not work well when the function

has many oscillations, especially when they are close together. In the case of this function,

the local and global minima are in close proximity to one another, and thus it is likely that

the method would fail when trying to locate them. Because the minima are located close
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together near the center of the basin, it is likely that the points off-center are affected by the

distance from the minima.

In Summary:

1) Backtracking without the AG Condition performs the best for this function, as it is

minimally impacted by the presence of the local minimum. Backtracking without the AG

Condition performs slightly better than Backtracking with the AG Condition, as its basin

contains less gray.

2) The GDM and SD methods perform reasonably well here, but are more affected by the

prescence of the local minimum than the Backtracking Methods.

3) Newton’s Method largely fails here due to the the close proximity and high oscillations of

the mimima, as well as the distance of some of the guesses from the minima.

14. Effectiveness of the Methods on Function 3, (x− 4− y)2

The following basin images below illustrate the effectiveness of the various methods on

this function. First, however, recall the contour and plot of this function.

Figure 41. Contour Plot for Function 3

Figure 42. Function 3 Plot
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There are infinite minima for this function, which lie in between the two raised ends of the

function. Because of the limitations in the amount of colors offered by qualitative colormaps

in Python, some colors are repeated in the range shown in the basin images below. However,

because all three methods perform simiarly well, dependent running is preferred to keep the

color scheme consistent. When the range is smaller (also shown below), the method produces

less than 20 minima, and thus no colors are repeated.

The following basins illustrate how all the points along a line with the x-value held constant

lead to the same minima in the center of the half-pipe structure. Note that the lines on the

contour plot represent the varying heights of the plot. This means that the lines on the

basins themselves (that document all the points on the line that lead to the same minima)

will be shifted 90 degrees from the contour lines.

Figure 43. SD Basin for Function 3

Figure 44. Backtracking Basin with AG Condition for Function 3
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Figure 45. GDM Basin for Function 3

Figure 46. Zoomed-in Basin Plot for SD

The three basins shown above are consistent and accurate representations of the minima

locations, and that no one method drastically outperforms any of the others. Thus, SD,

Backtracking with the Armijo-Goldstein condition, and GDM perform well and relatively

equally for this function. The final basin, labeled ‘Zoomed-in Basin Plot for SD,’ shows how

the colormap reverts to its normal coloring scheme when there are less than 20 minima.

In other words, colors are only repeated when necessary–in the case where the method

identifies more than 20 minima. The varying widths of the color strips are a consequence of

the tolerance values and order in which the minima are found.

Backtracking without the Armijo-Goldstein Condition and Newton’s Method fail to pro-

duce basin images for this function. In the case of Backtracking without the Armijo-Goldstein

Condition, future discussion will explore how the steepness of the function impacts the ability

of this method to converge.

Newton’s Method also fails to converge here, due to the fact that Newton’s Method uses

the inverse of the Hessian matrix, a square matrix of second-order partial derivatives, to

compute the next step. The determinant for the Hessian matrix for this function is zero,

which means that it does not have an inverse. Thus, the method cannot compute a new

guess from an existing one.
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In Summary:

1) SD, Backtracking with the Armijo-Goldstein Condition and the GDM perform similarly

well for this function.

2) Newton’s Method fails here, as the determinant of the Hessian matrix is zero.

3) Backtracking without the Armijo-Goldstein Condition fails here due to steepness issues.

15. Effectiveness of the Methods on Function 4, x sin(x) + y sin(y)

In order to discuss the effectiveness of the function x sin(x)+y sin(y), first note its contour

plot and plot in the range x ∈ [-4,4] and y ∈ [-4,4]:

Figure 47. Numbered Contour Plot for Function 4

Figure 48. Function 4 Plot

The following basin images, in their varying levels of effectiveness, are shown below. Sim-

ilarly to Function 1, the order the functions are run matters. Specifically, when a lower-

performing method such as SD or Newton runs first, it decreases the effectiveness of the

other methods. The basins shown below are run independently, with the exception of Back-

tracking with the Armijo-Goldstein condition and GDM, which are high-performing methods

for this function. The consistent coloring scheme helps show the viewer that the methods
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are not only effective in finding the location of the minima, but also identify the same ones.

Note the varying effectiveness of the basins:

Figure 49. SD Basin for Function 4

Figure 50. Backtracking with AG Condition for Function 4

Figure 51. GDM Basin for Function 4
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Figure 52. Newton’s Method Basin for Function 4

The numbered contour plot above shows nine distinct minina in the range x ∈ [-6,6] and

y ∈ [-6,6]. Though the basin images are plotted in the range x ∈ [-4,4] and y ∈ [-4,4],

the slightly zoomed-out contour plot show the peripheral minima that Backtracking with

Armijo-Goldstein and GDM identify with high effectiveness.

Though Newton’s Method does not effectively locate the distinct minima, it is more ef-

fective than SD in that the basin is divided into nine regions, which means that the method

identifies unique behavior in these regions, but does not identify these points as minima.

Recall in Function 1 when the Newton Method failed when the function changed concavity:

Figure 53. Newton’s Method Function 1

The rings between the minima and the maxima are areas where Newton’s Method fails, as

the second derivative is zero in locations where the function changes concavity. In a similar

way, Newton’s Method fails around the nine regions in Function 4 where the function changes

concavity. The method is not effective at locating the distinct minima, but the locations the

method fails for both functions mirror the contour plot in interesting ways.

As mentioned in earlier sections, SD oftentimes fails to produce a clear basin when the

function is steep in certain locations, because the negative gradient gets larger and produces

less accurate guesses in these scenarios. The same is true for this function. In addition,

the Backtracking Method without the Armijo-Goldstein Condition fails completely for this

method, largely due to the large amount of minima in a limited range. This will be discussed
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in more detail in the sensitivity analysis portion of the paper, but, in general, Backtracking

without the Armijo-Goldstein Condition is sensitive to large amounts of minima in confined

spaces.

In Summary:

1) Backtracking with the Armijo-Goldstein Condition and the GDM Method perform simi-

larly and with high effectiveness for this function.

2) SD largely fails here, mostly because of the steepness of the function in this region.

3) Though Newton’s method also largely fails for this function, the locations where the sec-

ond derivative is zero reveal the locations of the minima, even though the method does not

recognize them as such.

4) Backtracking without the Armijo-Goldstein Condition fails due to the prescence of many

minima in a confined region.

16. Sensitivity Analysis

The next part of this project will discuss the effectiveness of the methods in a new way,

one that analyzes the consistency of the basins when a variety of changes are made to

the function. Preserving the consistency of the methods with such function changes is

important for different reasons, most notably due to the modeling process. When these

methods are used in an applied modeling setting, building a function to represent real-life

scenarios requires trial and error. It is advantageous for methods to not be sensitive to

changes so that the modeler can produce meaningful results without unreasonable precision.

In addition, methods with low sensitivity decrease the time costs of the estimation process.

The following sections will discuss the sensitivity of each method with the functions explored

in this project. Each section will detail the changes made to the function, the basin images

to illustrate the changes, and a discussion about the methods’ sensitivity.

17. Sensitivity of Function 1, sin(x) cos(y) + cos2(y)

The following tables illustrate how individual alterations to the function impact the perfor-

mance of the Steepest Descent Method with the Golden-Section Search. Note that changing

the coefficients or increasing the exponent on the last term to another even value does not

impact the location of the minima, but rather the steepness of the function in the areas sur-

rounding the minima. When the last term is changed to an odd number, however, it reduces

the amount of minima as well as the steepness of the function in the areas surrounding the

minima. Included are examples to illustrate how these changes do not impact the location

of the minima, but rather the amount of minima or the amplitude of the function directly
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surrounding them. Lastly, if an altered function drastically changes the location of the min-

ima, then it is not included in the sensitivity analysis. Note that if the number of minima is

changed without altering the rest of the contour, then it is not considered a drastic change.

Figure 54. Coefficient Changes. Left: 8 sin(x) cos(y) + 8 cos2(y) Plot; Right:
8 sin(x) cos(y) + 8 cos2(y) Contour Plot

Figure 55. Exponent Changes. Left: sin(x) cos(y) + cos(y)8 Plot; Right:
sin(x) cos(y) + cos(y)8 Contour Plot

Figure 56. Left: Original Contour Plot; Center: Contour with Odd Expo-
nent; Right: Contour Plot with Even Exponent

Function 1 Sensitivity Analysis: Steepest Descent with Golden-Section Search

For the sensitivity analysis portion of this project, each function and its respective changes

are run in different kernels so that they are not affected by the performance of any other.

Based on previous discussion, this means each basin will have unique coloring schemes. In
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general, and especially for this method, the matching of specific colors is not as important

as the basins showing similarly-defined regions with non-repeated colors.

Function Basin

Original Function

1
2
sin(x) cos(y) + 1

2
cos2(y)

1
4
sin(x) cos(y) + 1

4
cos2(y)

1
8
sin(x) cos(y) + 1

8
cos2(y)

2 sin(x) cos(y) + 2 cos2(y)



35

Function Basin

4 sin(x) cos(y) + 4 cos2(y)

8 sin(x) cos(y) + 8 cos2(y)

sin(x) cos(y) + cos3(y)

sin(x) cos(y) + cos4(y)

sin(x) cos(y) + cos5(y)

sin(x) cos(y) + cos6(y)
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These images show how the effectiveness of the SD Method is fairly sensitive to increases

or decreases in the coefficients, as well as increases in the exponent in the final term of the

function. Though the SD Method is not an effective method in and of itself, it is fairly

sensitive to even small changes to the function, which further decreases the effectiveness of

the method.

Function 1 Sensitivity Analysis: Backtracking with the Armijo-Goldstein

Condition

Function Basin

Original Function

1
2
sin(x) cos(y) + 1

2
cos2(y)

1
4
sin(x) cos(y) + 1

4
cos2(y)

1
8
sin(x) cos(y) + 1

8
cos2(y)

2 sin(x) cos(y) + 2 cos2(y)
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Function Basin

4 sin(x) cos(y) + 4 cos2(y)

8 sin(x) cos(y) + 8 cos2(y)

sin(x) cos(y) + cos3(y)

sin(x) cos(y) + cos4(y)

sin(x) cos(y) + cos5(y)

sin(x) cos(y) + cos6(y)

As compared to the SD Method, Backtracking with the Armijo-Goldstein condition is

not nearly as sensitive. Though its effectiveness decreases slightly with the changes to the

coefficients above, the method remains remarkably consistent in finding the locations of
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minima as compared to the SD Method. The method stays the most consistent with small

changes in both odd and even exponents. This method is ultimately a more consistent and

less sensitive method than SD with the Golden-Section Search for Function 1.

Function 1 Sensitivity Analysis: Backtracking without the Armijo-Goldstein

Condition

Function Basin

Original Function

1
2
sin(x) cos(y) + 1

2
cos2(y)

1
4
sin(x) cos(y) + 1

4
cos2(y)

1
8
sin(x) cos(y) + 1

8
cos2(y)

2 sin(x) cos(y) + 2 cos2(y)
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Function Basin

4 sin(x) cos(y) + 4 cos2(y)

8 sin(x) cos(y) + 8 cos2(y)

sin(x) cos(y) + cos3(y)
The method failed to con-

verge

sin(x) cos(y) + cos4(y)

sin(x) cos(y) + cos5(y)

sin(x) cos(y) + cos6(y)

As compared to Backtracking with the Armijo-Goldstein condition, this method performs

marginally less effectively. The method is not noticeably sensitive to decreasing the coeffi-

cients until the coefficients are decreased to 1
8
. However, when the coefficients are increased,

the basin images become cloudier than those of the Backtracking with the Armijo-Goldstein

condition. The method also fails to converge with the function sin(x) cos(y) + cos3(y), but

not sin(x) cos(y)+ cos2(y) or sin(x) cos(y)+ cos4(y), which is a consequence of the method’s

sensitivity to changes in steepness. For the function sin(x) cos(y)+cos3(y), the area between
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the minima and maxima is more plateaued than for the other methods, which suggests that

the method may stall if a random point was too close to the plateaus.

Backtracking without the AG Condition is ultimately a slightly less effective method than

Backtracking with the AG condition, though both perform drastically better than the SD

Method.

Function 1 Sensitivity Analysis: Gradient Descent with Momentum Method

The following basin images not only involve small changes to the function, but also tweaks

in the learning rate (LR) and momentum value (MV) parameters discussed in the introduc-

tion to the GDM Method. For each function, the LR and MV parameters were both chosen

from three possible values: 0.01, 0.34, and .99. The first five images are of the original

function with learning rate-momentum value (LR-MV) combinations of (.34-.34), (.34-.99),

(.34-.01), (0.01-.34) and (.99-.34).

Note the following about the basin images shown below:

1) The basins from the tweaked functions shown below have default LR-MV parameters of

(.34-.34) unless otherwise noted.

2) Any other basin from a non-original function shown below is pictured because its basin

deviates from that of the original function with the exact same parameters, or because its

pattern is drastically unexpected from functions with the same alterations but different LR-

MV values. For example, if an altered function with a LR of .10 and an MV of .34 produces

a basin that deviates drastically from the behavior of the basin of the original function with

an LR of .10 and an MV of .34, the basin of the tweaked function will be shown below.

3) If just the LR modification is made, assume that differing MV values did not drastically

change the image.

Reminder: If a basin with a particular LR-MV combination is excluded, it is because the

basin image resembles the behavior of the original function with the same parameters, or

the behavior of other images with the same function modifications, but different LR-MV

combinations. Ultimately, this section intends to illustrate the patterns and unexpected

tendencies of this process when LR-MV combinations are introduced.

Function Basin

Original Function, LR = .34,

MV = .34
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Function Basin

Original Function, LR = .34,

MV = .99

Original Function, LR = .34,

MV = .01

Original Function, LR = .01,

MV = .34

Original Function, LR = .99,

MV = .34

1
2 sin(x) cos(y) +

1
2 cos

2(y)

1
2 sin(x) cos(y) +

1
2 cos

2(y), LR

= 0.01

1
4
sin(x) cos(y) + 1

4
cos2(y)
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Function Basin

1
4 sin(x) cos(y) +

1
4 cos

2(y), LR

= 0.01

1
8
sin(x) cos(y) + 1

8
cos2(y)

1
8 sin(x) cos(y) +

1
8 cos

2(y), LR

= 0.01

2 sin(x) cos(y) + 2 cos2(y)

2 sin(x) cos(y) + 2 cos2(y), LR

= 0.01

2 sin(x) cos(y) + 2 cos2(y), LR

= 0.99

4 sin(x) cos(y) + 4 cos2(y)
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Function Basin

4 sin(x) cos(y) + 4 cos2(y), LR

= 0.01

4 sin(x) cos(y) + 4 cos2(y), LR

= 0.99

8 sin(x) cos(y) + 8 cos2(y)

8 sin(x) cos(y) + 8 cos2(y), LR

= 0.01

8 sin(x) cos(y) + 8 cos2(y), LR

= 0.99

sin(x) cos(y) + cos3(y)

sin(x) cos(y)+cos3(y), LR =

0.01



44

Function Basin

sin(x) cos(y)+cos3(y), LR =

0.99

sin(x) cos(y) + cos4(y)

sin(x) cos(y)+cos4(y), LR =

0.01

sin(x) cos(y)+cos4(y), LR =

.99

sin(x) cos(y) + cos5(y)

sin(x) cos(y) + cos5(y), LR =

0.01

sin(x) cos(y) + cos5(y), LR =

0.99
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Function Basin

sin(x) cos(y) + cos6(y)

sin(x) cos(y) + cos6(y), LR =

0.01

sin(x) cos(y) + cos6(y), LR =

0.99

Note the following about the performance of the functions and parameters:

1) As the coefficients are tweaked decreasingly and increasingly away from the original func-

tion, the method became less effective for all LR-MV values.

2) Most of the time, functions with high LRs perform effectively

3) The functions with exponent changes all performed similarly; LR values of .34 outper-

formed LR values of .01 and .99.

4) The MV has insignificant effects on the basins as compared to the LR.

The GDM Method ultimately performs relatively consistently for LR and MV parameters

of .34, and similarly in effectiveness to the Bactracking Methods. An advantage of the

GDM Method over the Backtracking Methods is that the LR and MV values can be scaled

to optimize the performance of the method for any given function. Thus, whereas the

Backtracking Methods work the same for all functions, the LR and MV parameters can be

tailored to optimize the performance of the method for different functions.
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Function 1 Sensitivity Analysis: Newton’s Method

Function Basin

Original Function

1
2
sin(x) cos(y) + 1

2
cos2(y)

1
4
sin(x) cos(y) + 1

4
cos2(y)

1
8
sin(x) cos(y) + 1

8
cos2(y)

2 sin(x) cos(y) + 2 cos2(y)

4 sin(x) cos(y) + 4 cos2(y)
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Function Basin

8 sin(x) cos(y) + 8 cos2(y)

sin(x) cos(y) + cos3(y)

sin(x) cos(y) + cos4(y)

sin(x) cos(y) + cos5(y)

sin(x) cos(y) + cos6(y)

As previously mentioned, Newton’s Method largely fails for this function, primarily be-

cause the function has many maximizers and minimizers, the second derivative is zero at

a high volume of random points, and the function has many oscillations. Though all of

the basin images are somewhat cloudy and largely fail to reveal the defined areas where the

minima are, the function performed worst with an increase in coefficients. As compared with

the rest of the other methods, Newton’s Method is ultimately the least effective for Function

1.
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Sensitivity Analysis Ranking: Function 1

Note the following effectiveness rankings of the methods on Function 1:

1) Gradient Descent with Momentum with learning rate and momentum values at .34

2) Backtracking Method with the Armijo-Goldstein Condition

3) Backtracking Method without the Armijo-Goldstein Condition

4) Steepest Descent with the Golden-Section Search

5) Newton’s Method

18. Sensitivity Analysis of Function 2, 1
4
(1 + 4(x2 + (−1 + y)2))(x2 + (1 + y)2)

As with the first function, the changes explored to Function 2 do not change the location

of the minima, but rather the behavior of the function surrounding the minima. In general

for Function 2, decreasing and increasing the front coefficient beyond 1
4
alters the steepness

of the function around the minima. When the exponent on the first x2 term is changed to x4,

it slightly widens the region containing the minima. When the final x2 term is changed to

x4, it decreases the steepness of the areas immediately surrounding the minima. In general,

however, none of the changes impact the locations of the minima themselves.

Steepest Descent with Golden-Section Search

Function Basin

Original function

1
8
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)
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Function Basin

1
10

(1+4(x2+(−1+y)2))(x2+(1+y)2)

1
2
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

2(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

4(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

8(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

1
4
(1+4(x4 +(−1+ y)2))(x2 +(1+ y)2)
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Function Basin

1
4
(1+4(x2 +(−1+ y)2))(x4 +(1+ y)2)

Note the consistency of the basins when the coefficients in the front of the function are

altered despite the emergence of the bands of gray when the coefficients are increased. Also

note the consistency of the strip of blue points in the top region of the image in all the

functions where the coefficients are altered.

When the exponents on the inside terms of the function are increased, the areas the minima

inhabit become marginally smaller. As a result, less points approach the gray minima and

instead approach the global minimizer. Though the majority of points approach the global

minimum and succeed at bypassing the local one, a large portion of the basin is still comprised

of points that fail to approach the true minimum.

Backtracking with the Armijo-Goldstein Condition

Function Basin

Original Function

1
8
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

1
10

(1+4(x2+(−1+y)2))(x2+(1+y)2)
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Function Basin

1
2
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

2(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

4(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

8(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

1
4
(1+4(x4 +(−1+ y)2))(x2 +(1+ y)2)

1
4
(1+4(x2 +(−1+ y)2))(x4 +(1+ y)2) The method fails to converge

As compared with the SD Method, these basins have less-defined regions separating the

local and global minima. In general, the more blue points appear on the basin, the better the

method performs at bypassing the local minimum to locate the global one. In the top portion

of the basin, where the local minimum is located, this method is more able to bypass the local

minimum than the SD Method, as shown by the greater number of blue points. In the bottom

portion of the basin, close to the location of the global minimum, the method has more mixed

results than with the SDMethod for many of the basins. In general, the Backtracking Method
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with the Armijo-Goldstein Condition performed with similar effectiveness to the SD Method,

though the basin images have different characteristics.

Backtracking without the Armijo-Goldstein Condition

Function Basin

Original Function

1
8
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

1
10

(1+4(x2+(−1+y)2))(x2+(1+y)2)

1
2
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

2(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)
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Function Basin

4(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

8(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

1
4
(1+4(x4 +(−1+ y)2))(x2 +(1+ y)2) The method fails to converge

1
4
(1+4(x2 +(−1+ y)2))(x4 +(1+ y)2)

The performance of this method is very similar to the Backtracking Method with the

Armijo-Goldstein Method, especially in the appearance of the gray rings surrounding the

minima. However, because these basins have a much lower proportion of gray as in the

previous method, this method is ultimately more effective. As in the case of the Backtracking

without the Armijo-Goldstein Method, this method greatly outperforms the SD Method.

Sensitivity Analysis for Function 2: Gradient Descent with Momentum

For this function, the LR that produces the most optimal basin images is 0.02. Learning

rates and momentum values of 0.009, 0.02, and .2 were also used to explore their effects

on this method. The basins following those of the original function will depict functions

with the typical alterations with a default LR of 0.02, and any other LR-MV combination

that yields a result different than that of the original function with the same LR-MV, or a

drastically different basin with similar LR-MV values. When a basin contains a color other

than gray or blue, the method locates additional minima elsewhere other than the two true

minima, since the colormap’s default colors for basins of two minima are blue and gray.
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Function Basin

Original Function, LR = 0.02,

MV = 0.02

Original Function, LR = 0.02,

MV = 0.2

Original Function, LR = 0.02,

MV = 0.009

Original Function, LR = 0.009, MV =

0.02

Original Function, LR = 0.2, MV =

0.02

1
8
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

1
10

(1+4(x2+(−1+y)2))(x2+(1+y)2)
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Function Basin

1
2
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

1
2
(1+4(x2+(−1+y)2))(x2+(1+y)2),

LR = 0.2, MV = 0.2

1
2
(1+4(x2+(−1+y)2))(x2+(1+y)2),

LR = 0.009, MV = 0.02

2(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

2(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2),

LR = 0.009, MV = 0.02

4(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

8(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)
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Function Basin

1
4
(1+4(x4 +(−1+ y)2))(x2 +(1+ y)2)

1
4
(1+4(x2 +(−1+ y)2))(x4 +(1+ y)2)

As compared with the previous methods, the GDM Method is highly sensitive to small

function changes. The basins of the original function modifications are comparable to, but

not as accurate as, the original basins of some of the other methods seen thus far. The method

quickly loses effectiveness when the coefficients increase and decrease, and the exponents

change value as they do in the final two functions. So far, the GDM Method is the least

effective method for Function 2.

Newton’s Method

Function Basin

Original Function

1
8
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

1
10

(1+4(x2+(−1+y)2))(x2+(1+y)2)
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Function Basin

1
2
(1+4(x2 +(−1+ y)2))(x2 +(1+ y)2)

2(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

4(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

8(1+ 4(x2 + (−1+ y)2))(x2 + (1+ y)2)

1
4
(1+4(x4 +(−1+ y)2))(x2 +(1+ y)2)

1
4
(1+4(x4 +(−1+ y)2))(x4 +(1+ y)2)

This method appears to be the least effective for this function, as it fails to find the minima

in any clearly-defined way. The most likely reason for this is the proximity of the minima to

one another, which creates close oscillations that cause difficulties for the minima to properly

distinguish between the minima.
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Sensitivity Analysis Ranking: Function 2

Note the following effectiveness rankings of the methods on Function 2:

1) Backtracking without the Armijo-Goldstein Condition

2) Backtracking with the Armijo-Goldstein Condition

3) Steepest Descent with the Golden-Section Search

4) Gradient Descent with Momentum

5) Newton’s Method

The Backtracking Methods continue to perform efficiently, and that the Newton’s Method

and the Steepest Descent with the Golden-Section Search continue to perform poorly. As

compared to the previous function, the Gradient Descent with Momentum Method has the

greatest (negative) change in performance.

Various functions require different LR-MV combinations to optimize the performance of

the method. In the case of Function 1, an LR of .34 optimizes GDM’s performance. For

function 2, an LR of .02 optimizes the performance of the method. Because of the proximity

of the oscillations in Function 2, a smaller learning rate is required to prevent overshooting

the minima. In addition, the method is far more sensitive to small changes in the LR because

of the close proximity of the minima. Thus, it appears that the GDM Method works best

with functions whose minima are more spread.

19. Sensitivity Analysis of Function 3, (x− 4− y)2

For the following methods, a tolerance value was chosen so that the basins show many

colors, with none repeated. Note again that the each function and its modifications are run

in different kernels, so the ordering of colors is different in each basin. The most important

point of comparison for this function is the matching of the size of each color-region, and

the clarity of the basin image.

When the middle term of the function, -4, is increased and decreased, it slightly shifts the

location of the the minima along the x and y axes. Below is a contour plot of (x− 4− y)2,

(x− 8− y)2 and (x+ 5 + y)2 to illustrate these changes.
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Figure 57. Contour Plot (x− 4− y)2

Figure 58. Contour Plot (x− 8− y)2

Figure 59. Contour Plot (x+ 5− y)2

Additionally, when the final exponent is increased to another even number, the steepness

of the contour drastically increases around the minima. Finally, when the coefficient in front

of the x or y in the function is increased or decreased, the angle of the strip of minima to

the axes changes. Note how the following function changes impact the performance of the

method.
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Steepest Descent with Golden-Section Search

Function Basin

Original Function

(x− 6− y)2

(x− 8− y)2

(x+ 2− y)2

(x+ 4− y)2

(x− 4− y)4 The method fails to converge

(x− 4− y)6 The method fails to converge

(2x− 4− y)2
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Function Basin

(x− 4− 2y)2

As previously stated, the thickness of each color depends on a set tolerance value. When

the tolerance value is small, the width of each color decreases, and vice versa. Again, a

moderate tolerance value is used to show many minima, but not enough to repeat colors.

This method is very consistent, and only fails when the steepness around the minima is

increased drastically.

Backtracking with the Armijo-Goldstein Condition

Function Basin

Original Function

(x− 6− y)2

(x− 8− y)2
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Function Basin

(x+ 2− y)2

(x+ 4− y)2

(x− 4− y)4

(x− 4− y)6

(2x− 4− y)2

(x− 4− 2y)2
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Most of the basins here have a similar effectiveness as those of the SD Method, where the

method performs similarly well with all function changes. Unlike the SD Method, however,

this method is still able to produce effective basins even with raised coefficients that increase

the steepness around the minima. Whereas the SD Method fails to converge with the func-

tions (x− 4− y)4 and (x− 4− y)6, the Backtracking Method is able to still produce effective

basins. Though the (x − 4 − y)6 basin repeats colors, a simple change in tolerance values

will produce basins of all unique colors. Altogether, the Backtracking Method with the

Armijo-Goldstein Condition is a more effective method for Function 2 than the SD Method.

Backtracking Method without the Armijo-Goldstein Condition

Function Basin

Original Function The method fails to converge

(x− 6− y)2 The method fails to converge

(x− 8− y)2 The method fails to converge

(x+ 2− y)2 The method fails to converge

(x+ 4− y)2 The method fails to converge

(x− 4− y)4

(x− 4− y)6

(2x− 4− y)2
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Function Basin

(x− 4− 2y)2

This sensitivity analysis reveals why Backtracking without the Armijo-Goldstein Condition

can fail in certain circumstances, but can begin working when modifications made to the

function increase the steepness around the minima. Note the steepness of functions (x− 4−
y)2, (x− 4− y)6, and (x− 4− 2y)2.

Figure 60. Left: (x− 4− y)2; Right: (x− 4− y)6

Figure 61. Left: (x− 4− y)2; Right: (x− 4− 2y)2

As shown in the plots above, an increase in the exponent or coefficient increases the

steepness of the function. Thus, it appears that the steeper the function, the easier it is

for the method to find the next guess with a low probability of cycling between guesses or

failing to converge. As shown in the conclusion to this section, though the Backtracking
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with the AG Condition and the SD Method locate minima in similar ways as Backtracking

without the AG Condition, certain characteristics make them better able to find minima.

This method’s limitations with steepness will be explored further in later sections.

Gradient Descent with Momentum

Like GDM’s performance with the other methods, this function has an optimal learning

rate value with which the function performs best, and an MV value with largely insignificant

effects. For this section, an LR of .2 is the default value. The effects of varying LR-MV

pairs are shown for the original function. Basins with varying LR-MV pairs are also shown

for other functions any time the change creates an unpredictable basin image.

For the original function, learning rates of .07, .2, and .5 are used.

Function Basin

(x− 4− y)2, LR = .2

(x− 4− y)2, LR = .07

(x− 4− y)2, LR = .5

(x− 6− y)2
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Function Basin

(x− 8− y)2

(x+ 2− y)2

(x+ 4− y)2

(x−4−y)4, LR = .2, (& .07

& .5)

(x−4−y)6, LR = .2, (& .07

& .5)

(2x− 4− y)2

(2x− 4− y)2, LR = .5
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Function Basin

(x− 4− 2y)2

(x− 4− 2y)2, LR = .5

The GDM Method is a very effective method when the learning rate is set to 0.02. When

this parameter is increased to .5, the method loses much of its effectiveness. In addition, the

previous method only produces basins when the function is very steep around the minima.

However, this method loses its effectiveness completely in extremely steep cases, as seen with

the basins for (x− 4− y)4 and (x− 4− y)6.

Relatively small changes to the momentum parameter continue to have largely insignif-

icant effects on the basin images. The learning rate, however, seems to largely drive the

effectiveness of the method.

Newton’s Method

As noted in previous sections about this method, Newton’s Method uses the inverse of the

Hessian matrix to compute the next guess. If the determinant of the Hessian matrix is zero,

it does not have an inverse, and the method therefore cannot progress. The original function

and its 8 modifications as shown in the above method sections produce Hessian matrices

whose determinants are zero. Thus, these functions stall the method.

This is a general limitation of Newton’s Method, and another reason it is less advantageous

than the other methods.
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Sensitivity Analysis Ranking: Function 3

Note the following effectiveness rankings of the methods on Function 3:

1) Backtracking with the Armijo-Goldstein Condition

2) Steepest Descent with the Golden-Section Search

3) Backtracking without the Armijo-Goldstein Condition

4) Gradient Descent with Momentum (with a learning rate of .2)

5) Newton’s Method

This ranking presents interesting nuances in the competition for the most effective method.

Thus far, the Backtracking Methods have outperformed the SD Method due to the ways the

Backtracking Methods produce the next guess. These two methods analyze the function

values along a line, and select a ‘better’ value than the current guess as the new guess. The

SD Method, however, uses the golden ratio to compute shrink the search interval to find the

optimal step length in a given direction.

Thus far, the Backtracking Methods have both performed more effectively than the SD

Method. However, the unique characteristics of Function 2 cause limitations for the Back-

tracking Method without the AG Condition. Because any point on the function necessarily

has a line that will lead to the center minima, the SD Method gains effectiveness. The

Backtracking Method with the Armijo-Goldstein condition works effectively for all function

modifications simply because its constrained condition for step size allows the method to

work even when Backtracking without the AG Condition fails, and because it works even

when the function is very steep around the minima (unlike the SD Method).

The GDM Method does not perform consistently for this function, and loses its effective-

ness when the area around the minima become steep. As previously mentioned, Newton’s

Method does not work for this function, as all of its modifications produce Hessian Matrices

with determinants of zero.

20. Sensitivity Analysis of Function 4, x sinx+ y sin y

In the region x ∈ [−6, 6] and y ∈ [−6, 6], there are nine main minima of varying depths,

but no single minima deeper than the rest. The most effective basins below find all nine

minima in clearly defined regions.

The sensitivity analysis of the function x sinx+ y sin y is limited in that only small coef-

ficient changes seem to preserve the location of the minima. All other changes, even slight

ones, drastically change the function’s contour. Many changes are then not useful to the

analysis, because the analysis aims at comparing the consistency of methods across function

changes that have minimal effects on the locations of the minima. The effects of coefficient
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changes, which increase or decrease the amplitude of the function, are shown in the analysis

below.

Recall Function 4’s contour plot for reference:

Figure 62. Function 4 Contour Plot

Steepest Descent Method with the Golden-Section Search

Function Basin

Original Function

2x sinx+ y sin y

4x sinx+ y sin y

8x sinx+ y sin y The method fails to converge

x sinx+ 8y sin y The method fails to converge

x sinx+ 2y sin y
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Function Basin

1
2
x sinx+ y cos y

x sinx+ 1
2
y cos y

1
4
x sinx+ y cos y

x sinx+ 1
4
y cos y

This method appropriately distinguishes nine regions, but fails to recognize distinct min-

ima, as each basin contains largely the same colors throughout. It seems, however, that a

general decrease in coefficients has a slight positive effect on the performance of the method,

as the nine regions are more clearly distinguishable. Note that the decrease in coefficients de-

creases the steepness around the minima. Compare this trend to the Backtracking Method

without the AG Condition for Function 3, which performed best with highly steep areas

around the minima.
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Backtracking with the Armijo-Goldstein Condition

Function Basin

x sinx+ y sin y

2x sinx+ y sin y

4x sinx+ y sin y

8x sinx+ y sin y

x sinx+ 8y sin y

x sinx+ 2y sin y
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Function Basin

1
2
x sinx+ y sin y

x sinx+ 1
2
y sin y

1
4
x sinx+ y sin y

x sinx+ 1
4
y sin y

As with the SD Method, this method becomes more effective when the coefficients are

decreased. This is because the functions with smaller coefficients tend to correspond with

more well-defined pockets of minima. When the coefficients are increased, the minima are

located in the same places, but the regions around them are less steep, and form poorly-

defined pockets. The steeper the area around the individual minima, the better this method

performs for functions that contain many minima close together.
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Backtracking without the Armijo-Goldstein Condition

The method did not converge for the original function or any of its modifications. To

review, the method works by finding a lower value along the negative gradient, and changing

direction when a new guess is more optimal than a previous guess. This function presents

particularly difficult challenges to the method, as it has many minima that are fairly close

together. The method may begin successfully by finding better guesses after each iteration,

but may eventually become stuck in an infinite cycle of bouncing back and forth from one

minimum to another. Whereas the Backtracking with the Armijo-Goldstein Method has

more control over finding minima because of a stricter step-size condition, this method

has less accuracy, and increases the chances of non-convergence, especially in the cases of

functions with many minima close together.

Gradient Descent with Momentum

This analysis is similar to the other GDM Method analyses, where specific LR-MV values

are used to explored the sensitivity of the function. Here, LR values of 0.0005, 0.05 and .5

and MV values of .2 and .9 are used.

Function Basin

Original Function, LR = 0.05,

MV = .2

Original Function, LR = 0.05,

MV = .9

Original Function, LR = 0.0005, MV =

.2
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Function Basin

Original Function, LR = 0.0005, MV =

.9

Original Function, LR = 0.5, MV = 0.2

Original Function, LR = 0.5, MV = 0.9

2x sinx + y sin y, LR = 0.05,

MV = .2 ( and .9)

2x sinx+y sin y, LR = 0.0005,

MV = .2

2x sinx+y sin y, LR = 0.0005,

MV = .9

2x sinx+y sin y, LR = 0.5, MV

= .2
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Function Basin

2x sinx+y sin y, LR = 0.5, MV

= .9

4x sinx+ y sin y, LR = 0.05, MV = 0.2

( and .9)

8x sinx+ y sin y, LR = 0.05, MV = 0.2

( and .9)

8x sinx + y sin y, LR = 0.5, MV = 0.2

( and .9)

x sinx+8y sin y, LR = 0.05, MV = 0.2

x sinx+8y sin y, LR = 0.05, MV = 0.9

x sinx+2y sin y, LR = 0.05, MV = 0.2

( and 0.9)
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Function Basin

1
2
x sinx+y sin y, LR = 0.05, MV = 0.2

( and 0.9)

1
2
x sinx+ y sin y, LR = 0.5, MV = 0.2

x sinx+ 1
2
y sin y, LR = 0.05, MV = 0.2

( and .9)

x sinx+ 1
2
y sin y, LR = 0.5, MV = 0.2

1
4
x sinx+y sin y, LR = 0.05, MV = 0.2

( and .9)

1
4
x sinx+ y sin y, LR = 0.5, MV = 0.2

x sinx+ 1
4
y sin y, LR = 0.05, MV = 0.2
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Function Basin

x sinx+ 1
4
y sin y, LR = 0.05, MV = 0.9

x sinx+ 1
4
y sin y, LR = 0.5, MV = 0.2

x sinx+ 1
4
y sin y, LR = 0.5, MV = 0.9

The GDM Method is very consistently accurate for this function with a learning rate of

.05. For some of the functions with different LRs, the momentum value has more significant

effects than with previous analyses of this method. In most cases, an MV value of .2 produces

more accurate basins than functions with MV values of .9.

Note again that momentum is useful in propelling the guesses forward so as to avoid

plateaus or local minima. Because the function lacks plateaus that would cause the method

to stall, a large momentum value would increase the likelihood that the method overshoots

the minima. Thus, a small momentum value is preferable to confine the guesses to a contained

region where a minimum is held.

Newton’s Method

Function Basin

Original Function
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Function Basin

2x sinx+ y sin y

4x sinx+ y sin y

8x sinx+ y sin y

x sinx+ 8y sin y

x sinx+ 2y sin y

1
2
x sinx+ y sin y

x sinx+ 1
2
y sin y
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Function Basin

1
4
x sinx+ y sin y

x sinx+ 1
4
y sin y

Compared to the other methods, the Newton Method does not perform effectively for this

function. This function exhibits many of the behaviors that may cause Newton’s Method

to fail; for example, Newton’s Method does not favor minima over maxima, which presents

problems for functions with a structure like that of Function 4. In addition, there are many

places where the function changes concavity, and the function has many close oscillations.

Sensitivity Analysis Ranking: Function 4

Note the following effectiveness rankings of the methods on Function 4:

1) Gradient Descent with Momentum (with LR of 0.05 and momentum of .2)

2) Backtracking with the Armijo-Goldstein Condition

3) Steepest Descent Method with the Golden-Section Search

4) Newton’s Method

5) Backtracking without the Armijo-Goldstein Condition

Concluding thoughts and discussion will follow about the trends in effectiveness across the

different methods, but note the following general conclusions for Function 4.

The Gradient Descent Method performs consistently well for only a specific learning rate,

and even its less-optimal LR-MV modifications produce more accurate basins than many

of the basins for the SD Method and Newton’s Method. Furthermore, Backtracking with

the Armijo-Goldstein Condition continues to perform effectively across all functions, while

Backtracking without the AG Method fails due to the high amount of minima in a small

region.



80

21. Conclusions

Note the following ranking for the methods across all four functions, where 1 represents

the highest effectiveness and 5 represents the lowest effectiveness across all the methods.

The most effective method for a particular function gains one point, and the least effective

method gains five points. The method with the least amount of points is the most effective,

and the method with the most amount of points is the least effective.

1) Backtracking with the Armijo-Goldstein Method

2) Gradient Descent with Momentum

3a) Backtracking without the Armijo-Goldstein Condition

3b) Steepest Descent with the Golden-Section Search

4) Newton’s Method

Unsurprisingly, Newton’s Method performs the least effectively across all functions, as

there are many reasons why the method fails to produce an effective basin, or even con-

verge. Functions 1 and 4 illustrate how many concavity changes in the function worsen the

effectiveness of the method. Furthermore, Function 2 illustrates how proximity of minima

affects the method, and Function 3 shows how a determinant of zero causes the method to

fail to converge. Because of the many reasons that Newton’s Method may fail, it is largely

inapplicable in many research settings.

The tie for third between Backtracking without the AG Condition and the SD Method is

an interesting display of how different trends and shortcomings of the methods can average

out over time. In general, the SD Method seems to produce mediocre results that are slightly

improved with lower-amplitude functions. Backtracking without the AG Condition, on the

other hand, performs very efficiently in many cases, but can completely fail to converge with

lower-amplitude functions or functions with many minima close together.

The GDM Method outperforms the other methods for Functions 1 and 4, but is not as

effective for Functions 2 and 3. Functions 1 and 4 are similar in that they contain many

minima and maxima close together in symmetric patterns. The Method does not seem

to perform effectively with local and global minima very close together (as in the case of

Function 2), or when a function is very steep around the minima (as in the case of Function

3). In general, low learning rates seem to optimize the performance of the method, and the

momentum value is largely inconsequential except in Function 4, which helps prevent the

method from overshooting the minima and converging to a different minimum elsewhere.

Overall, the Backtracking Method with the Armijo-Goldstein Condition performs the most

consistently throughout the functions. Though it produces effective results for all the func-

tions, it is especially effective for Functions 2 and 3, and less effective for Functions 1 and 4,

which is the opposite trend of the GDM Method. This suggests that the effectiveness of the
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method is limited with functions with many minima and maxima in a close range. However,

the method can handle a local minimum in the presence of a global one, as well as functions

with high steepness around the minima.

This type of analysis allows the methods to be challenged in a variety of circumstances

that may impact its reliability in applied contexts. For example, a method may produce

effective results for a function, but lose its integrity when small changes are made to the

objective function. In addition, this project’s focus on visual analysis communicates the

effectiveness of the methods, the shortcomings and successes of the methods in clear ways.

By testing the method with a wide variety of function behaviors, this analysis also attempts

to further prove the integrity of successful methods and further illustrate the shortcomings

of less effective methods.
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