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INSIGHTS INTO THE RIBOSOMAL, EXTRA-RIBOSOMAL AND

DEVELOPMENTAL ROLE OF L13A IN MAMMALIAN MODEL

RAVINDER KOUR

ABSTRACT

Ribosomal protein L13a plays an extra-ribosomal function in translational silencing 

of GAIT (IFN-gamma-activated inhibitor of translation) element bearing mRNAs 

encoding inflammatory proteins but the underlying molecular mechanism of translational 

silencing and ribosomal incorporation of L13a remains poorly understood. Also, our 

laboratory showed that L13a acts as a physiological defense against uncontrolled 

inflammation in macrophage-specific knockout (KO) mice. However, the consequence of 

a total knockout of L13a in mammals remains unexplored. Therefore, our current study is 

focused on (i) identifying the amino acid residue(s) of L13a essential for incorporation and 

translational silencing of target mRNAs and (ii) studying the consequences of systemic 

loss of L13a in a mouse model. To address the first question, we compared prokaryotic 

L13 structure with human L13a, which depicted the presence of an a- helical extension of 

~55 amino acids at the C-terminal end of human L13a. We observed that deletion of this 

helix impairs ribosomal incorporation and the translational silencing ability of L13a. We 

have identified the amino acids within this helix at position 159(K) and 161(K) that are 

essential for ribosomal incorporation. CryoEM studies of the human ribosome showed the 

interaction of the amino acids at position 185(V), 189(I) and 196(L) of L13a with RP L14. 

We found that mutating these residues abrogates the ribosomal incorporation of L13a. 

Importantly, we also showed that mutation of the amino acids at position 169(R), 170(K) 
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and 171(K) to Ala abrogate translational silencing activity, but not ribosomal 

incorporation, showing mutually exclusive ribosome incorporation and translational 

silencing domain. To address the second question, we generated heterozygous L13a mice 

(L13a+/-). However, the homozygous KO (L13a-/-) mice are embryonically lethal at an 

early stage. We have identified the KO embryos in the pre-implantation (morula) stage, 

suggesting an essential role of L13a in early embryonic development. Next Generation 

Sequencing (NGS) analysis of morula stage embryos harvested from L13a+/- heterozygous 

parents, identified several potential targets with altered expression. Together, these studies 

provide a comprehensive analysis of the amino acid residues of L13a essential for ribosome 

incorporation and translational silencing activity and its essential role in early embryonic 

development in mammals.
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CHAPTER I

INTRODUCTION

1.1 Ribosome Biogenesis:

Ribosomes have been described for the first time in 1955 by George E. Palade as 

small granular particles through microscopic observations of rat cells (Palade, 1955). 

Ribosomes are complexes of ribosomal RNA (rRNA) and ribosomal proteins (r-Proteins). 

Eukaryotic and prokaryotic ribosomes are different from each other because of divergent 

evolution. Prokaryotic ribosomes sediment as 70S particles and consists of a small subunit 

(30S) and a large subunit (50S). The small subunit is made of 16S rRNA and 21 ribosomal 

proteins whereas large subunit is made of two rRNAs, 23S and 5S rRNA and 33 ribosomal 

proteins. In eukaryotes, the 40S (SSU) small subunit contains 18S rRNA and 30-33 r- 

proteins while the 60S large subunit (LSU) contains three rRNA: 5S, 5.8S, and 25S (lower 

eukaryotes) or 28S (higher eukaryotes) rRNA as well as 40-50 r-proteins. 18S, 5.8S and 

28S are transcribed by Pol I and 5S by Pol III. Synthesis of ribosomes, also known as 

ribosome biogenesis, is a complex, multi-step and one of the most energy-demanding 

activity of all the cellular processes. The biogenesis of ribosomes is a tightly regulated 

activity and defects in the biogenesis process are associated with several diseases 

(ribosomopathies). During protein translation, the larger and smaller subunit assembles on 
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the mRNA in a sequential manner and scan for start codon and thereafter ribosomes decode 

the nucleotide sequence and catalyze the addition of amino acids into a growing 

polypeptide.

1.1.1 Ribosome biogenesis in prokaryotes:

The assembly and maturation of ribosomal subunits in prokaryotes is a co- 

transcriptional process that involves a series of events marked by rRNA processing, 

modifications, folding and ordered binding of ribosomal proteins to the nascent rRNA 

transcript as the RNA polymerase moves through the operon. The biogenesis process 

begins with the transcription of the 16S, 23S and 5S rRNA as a single primary transcript 

(figure1). Maturation of the transcript begins before the transcription is completed and 

ribosomal proteins start binding as the binding sites emerge on the transcript. RNAase III 

is the first endonuclease that cleaves the rRNA transcript and the products of this cleavage 

are precursor 16S rRNA, precursor 23S rRNA and precursor 5S rRNA (Jemiolo, D. K. 

1996). These precursor rRNAs undergo several processing events mediated by exo- & 

endonucleases such as RNAse P, RNAse T, RNAse E, RNAse G etc.(Li, Pandit and 

Deutscher, 1999). rRNAs (except 5S rRNA) undergo more than 80 chemical modifications 

like isomerization of uridine to pseudouridine or addition of carbonyl, methyl, amino, or 

thio groups during maturation. In 16S rRNA, some modifications are added to the nascent 

RNA while others are added during maturation of 30S rRNA. 23S rRNA undergoes 

chemical modifications mainly before maturation (DEL CAMPO, 2004). Some of these 

modifications in 23S rRNA (at least 17) are dispensable for both assembly and ribosomal 
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function (Green and Noller, 1996) 16S rRNA has three domains- I, II and III. Domain I is 

formed from the 5' end of the rRNA, domain II by central part and domain III by 3' end of 

the rRNA (Stagg, Mears and Harvey, 2003). Small subunit ribosomal proteins are divided 

into three groups- primary, secondary and tertiary binding proteins, wherein, binding of 

primary proteins initiates the nucleation of 30S subunit assembly and binding of secondary 

proteins. Binding of tertiary proteins require at least one primary and one secondary protein 

interaction for correct association (Powers, Daubresse and Noller, 1993). Ribosomal 

protein binding and assembly of the large subunit (50S) is much more complex than the 

30S subunit. Five ribosomal proteins-L4, L13, L20, L22, L24 and L3 are especially 

important for proper assembly (0stergaard et al., 1998). Proteins L5, L18 and L25 mediate 

the interaction between 23S and 5S rRNA(Kaczanowska and Ryden-Aulin, 2007)

Figure1: Schematic organization of one of the rRNA operon in Escherichia coli 

(Kaczanowska M et al., 2007): The primary transcript contains all three rRNA species (16S, 

23S and 5S), as well as one or more tRNAs transcribed from two promoters. The transcript is

1.1.2 Ribosome biogenesis in eukaryotes:
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Ribosome biogenesis in eukaryotes is highly regulated and more complex process 

as compared to prokaryotes, which begins in the nucleolus with the transcription of rDNA 

into large primary RNA transcript and continues until the ribosomes are exported to the 

cytoplasm to form mature 40S and 60S ribosomal subunits. All three types of RNA 

polymerases are involved in process of ribosome synthesis. RNA polymerase I synthesizes 

28S, 18S and 5.8S rRNA, RNA Pol III is dedicated for to the synthesis of 5S rRNA and 

small RNAs that are necessary for various steps of ribosome biogenesis. RNA Pol II 

synthesizes pre-mRNAs for (r-proteins) ribosomal proteins (Leary and Huang, 2001). The 

nucleolus that is the principle site for ribosome synthesis is subdivided into three 

compartments which are called Fibrillar Center (FC), Dense Fibrillar Component (DFC) 

and Granular Component (GC) respectively. The process of ribosome biogenesis starts 

with the transcription of ribosomal DNA (rDNA) repeats into a nascent 47S rRNA 

transcript (consisting of 18S, 5.8S, 28S) flanked by 5'and 3'extemal transcribed spacer 

(ETS) and two internal transcribed spacer (ITS) respectively (figure 2). It takes place at the 

borders of the FC and DFC region.

(i) . Regulation of rDNA transcription

Ribosomal DNA (rDNA) is organized into repeated sequences, about 200 copies in 

yeast and 400 copies in human cells. Several factors regulate the transcription of rDNA 

repeats like chromatin remodeling (modulation of methylation, acetylation of histones). 

Histone deacetylation and hypermethylation are associated with the silencing of rDNA. 

Several Pol I transcription factors like UBF and SL-1 initiate rDNA transcription upon
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acetylation. In addition, protein-protein interactions also play an active role in controlling 

transcription. Net1 is essential for positioning the Pol I at the transcription site. Net1 along 

with Sir2 and Cdc14 is required to maintain nucleolar structure and enhancement of rDNA 

transcription. Whereas binding of interferon-inducible protein p204 to UBF inhibits the 

transcription by preventing the transcription factor from binding to DNA by reducing 

DNA-binding affinity of UBF or by preventing the interaction between SL-1 and UBF. 

P53 is also known to bind to SL-1 and prevent SL-1 and UBF interaction, suppressing 

rDNA transcription.

a

Tandem rRNA 
gene repeats

Figure 2: Schematic representation of human ribosomal genes (Raska et al., 2004). a. tandemly

□ Promoter
□ External trascribed spacers
□ rRNA coding sequence
■ Internal transcribed spacers
□ External non-trascribed spacer

rRNA gene

rRNA gene 
transcript

repeated ribosomal genes (rDNA) are organized in transcribed sequences and intergenic spaces. b.

polycistronic rRNA transcribed from one gene of rDNA. C. maturation of rRNA leads to production

of 18S, 5.8S and 28S rRNA.
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(ii) . Formation of the 90S precursor ribosome

Nascent precursor rRNA is assembled into an 90S pre-ribosomal particle, which is 

then processed into 18S, 5.8S and 28S rRNAs respectively (Granneman, 2004). Packaging 

of precursor rRNA into a pre-ribosome particle is accompanied by transient association of 

numerous trans-acting factors including nucleolar proteins and rRNA processing endo and 

exo-nucleases which cleave the nascent pre-rRNA. Two types of nucleotide modifications: 

methylation and pseudouridylation take place in the 90S complex by two classes of 

modification enzymes- 2'-O-ribose methylation by conserved methyltransferases or C/D 

box small nucleolar ribonucleoproteins (SnoRNPs) and pseudo-uridylation by H/ACA box 

snoRNPs. Human rRNA contain 91 pseudouridines and 106 2'-O-methyl residues. In yeast, 

there are 43 pseudouridines and 55 methylations (Maden, 1990) (Tollervey and Kiss, 

1997)(Ofengand and Bakin, 1997)(Lafontaine et al., 1998). In addition to nucleotide 

modifications, several ribosomal proteins (known as early binding proteins) also 

incorporate early into the pre-ribosome complex. These ribosomal proteins are S1, S4, S6, 

S7, S8, S9, S11, S15, S17, S24, S28 and L1, L3, L4, L6, L7, L8, L9, L13a, L16, L18, L20, 

L32 and L33. These early ribosomal proteins most likely stabilize the local RNA secondary 

structure. L13a is known to be one of the early binding proteins. Studies from our 

laboratory have experimentally shown that ribosomal protein L13a incorporates into the 

90S precursor ribosome in the nucleolus. (Das et al., 2013).

(iii) Formation of mature 60S and 40S ribosome subunits
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Cleavage reactions by nucleases occur at positions A0, A1, and A2 in the 90S 

precursor ribosome complex. These cleavage events are well studied in yeast. These early 

cleavages result in the separation of the 20S pre-rRNA (precursor to 18S), which remains 

part of the early pre-40S particle and the 27S/32S pre-rRNA (precursor to 25S/28S and 

5.8S) moiety in yeast and higher eukaryotes respectively (Kornprobst et al., 2016). The 

majority of ribosomal proteins are also incorporated in a cooperative manner as 60S and 

40S pre-ribosomal particles move from the DFC to GC component of the nucleolus, 

traverse the nucleoplasm and exit the nucleus through nuclear pores to become mature 40S 

and 60S ribosomal subunits in the cytoplasm. The final steps of assembly occur in the 

cytoplasm and include the processing of 6S pre-rRNAs to mature 5.8S rRNAs and the 

assembly of few r-proteins, among them are L10, L24, L29 etc. (Espinar-Marchena et al., 

2018). Various steps of ribosome biogenesis in eukaryotes have been summarized in figure 

3.
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Figure 3: Eukaryotic ribosome biogenesis (figure adapted from Lafontaine et al., 2015).

Ribosome biogenesis encompasses six important steps (yellow boxes): (i) transcription of 

components (rRNAs, mRNAs encoding ribosomal proteins (RPs) and snoRNAs); (ii) processing 

(cleavage of pre-rRNAs); (iii) modification of pre-RNAs, RPs and RBFs; (iv) assembly; (v) 

transport (nuclear import of RPs and RBFs; pre-ribosome export to the cytoplasm); and (vi) quality 

control and surveillance. Three out of four rRNAs are transcribed in the nucleolus by Pol I as a 

long 47S precursor (47S pre-rRNA), which is then processed and modified to yield the 18S, 5.8S 

and 28S rRNAs that are assembled into the pre-40S (green) and pre-60S (orange) ribosomal 

subunits. 5S rRNA (pink) is transcribed by Pol III in the nucleoplasm and incorporated into 

maturing 60S subunits, forming the central protuberance (CP). 80 RPs, more than 250 RBFs and 

200 snoRNAs are transcribed by Pol II. Pre-40S subunits are exported to the cytoplasm more 

rapidly than pre-60S subunits, which require numerous nuclear maturation steps.
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1.2 Nucleolar Morphology and functions:

Nucleolus is the most prominent intranuclear structure in the cell, being the site of 

rRNA transcription, processing and ribosome assembly (Olson, Hingorani and Szebeni, 

2002). It assembles around the rDNA repeats during late telophase, persists throughout the 

interphase and disassembles when the cells enter mitosis. High density and ability to purify 

nucleoli makes it easier to study nucleolar protein composition using high-throughput 

mass-spectrometry based proteomic techniques. These studies have been conducted on 

human cells, continuously expanding the number of nucleoli proteins close to 700 

(Andersen et al., 2002) (Scherl et al., 2002) (Andersen et al., 2005). Studies have revealed 

that more than one-third of the nucleoli proteome is involved in different steps of ribosome 

biogenesis (Anderson et al., 2005). In addition, there are proteins that have no relationship 

with the classical nucleoli function i.e., ribosome synthesis. These proteins play a role in 

cell cycle regulation (3.5% of nucleoli proteome), DNA damage repair (1%) and pre

mRNA processing (5%), RNA editing, telomere metabolism, tRNA processing and 

regulation of protein stability ( (Olson, Hingorani and Szebeni, 2002)(Pederson, 1998) 

(Sansam, Wells and Emeson, 2003). This gives the idea that the nucleoli are the dynamic 

organelles that function beyond ribosome biogenesis.

1.2.1 Internal Structure and regulation of nucleolar assembly: 

a. Internal structure.

Nucleolus: a membrane-less structure in the cell is composed of filamentous and 

granular material. The internal structure of the nucleolus has been studied by both 
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transmission electron microscopy (TEM) and field-emission scanning electron microscopy 

(FESEM). Field-emission scanning electron microscopy has revealed the high resolution 

(~ 1 nm) view of the 3D contour of the nucleolar surface and the interface between the 

nucleolus and the nucleoplasm in HeLa cells (Lam, 2005). TEM studies have revealed 

three subcompartments within the nucleolus in higher eukaryotes- fibrillar center (FC), 

dense fibrillar centre (DFC) and granular center (GC) whereas, in lower eukaryotes (yeast), 

only FC and GC components are present in the nucleoli. FC and DFC are made up of 0.1 

to 1pm fibrils and GC is made of granules of 15-20 nm diameter. Each region has distinct 

protein compositions and functions. For example, FC contains RNA polymerase I, DNA 

topoisomerase I, and the transcription factor UBF(Scheer, Thiry and Goessens, 1993) 

(Zatsepina et al., 1993). Fibrillarin is the marker protein for DFC. This protein is known to 

be a part of the snoRNA methylation complex, involved in ribose 2’-O-methylation of 

rRNA during ribosome biogenesis (Tollervey et al., 1993). B23 accumulates in the granular 

center. Whereas, nucleolin can be seen throughout the GC and DFC regions. Hence, 

nucleolin serves as a marker for nucleolus (Schwarzacher and Mosgoeller, 2000).
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Figure 4: Schematic representation of the nucleolar ultrastructure depicting the 

respective functions (Figure adapted from Raska et al., 2004): fibrillar centers (yellow): 

rRNA genes are localized in this region, dense fibrillar components (green): site of rRNA 

synthesis and processing, and granular components (pink): rRNA processing and assembly of 

ribosomal subunits.

Usually nucleoli can be found in the central nuclear region but may also be close to 

the nuclear membrane. A nucleolus is built by a nucleolus organizing region (NOR) of a 

specific chromosome. NOR is known to contain the genes for ribosomal RNA subunits. In 

a diploid human cell, a total of 10 chromosomes (13,14,15,21 and 22) containing NORs 

exist. Therefore, in principal, 10 nucleoli per nucleus could be present. Usually, only one 

or two nucleoli are found, since NORs from several chromosomes build a common 

nucleolus (Hernandez-Verdun et al., 2010). rDNA transcription by RNA Pol I takes place 

at the boundary between the fibrillar center and dense fibrillar center (Dundr and Raska, 

1993). The early processing (formation of the 90S pre-ribosome particle and association 

with several ribosomal and non-ribosomal factors/proteins) occurs in the DFC and late 

11



processing (formation of 28S, 5.8S, 18S rRNA transcripts) takes place in the GC 

component of the nucleoli in a vectoral manner.

Fig 5: Nucleolar organization of eukaryotic cells (figure adapted from Smirnov et al 

2014). A. Visualization of nucleolar morphology: (a) Differential interphase contrast 

images of HeLa cells showing prominent nucleoli (white arrows). (b) Immunofluorescent 

labeling of HeLa cells with specific antibodies against proteins in the GC (B23 in green), 

DFC (Fbl in red) and FC (RPA39 in blue) (Boisvert et al., 2007). C. Schematic 

representation of nucleolus associated DNA. Nu nucleolus, Np nucleoplasm, RC 

chromosomes carrying ribosomal genes, Cen centromere, PR proximal flanking region, 

DR distal flanking region, NRC non-ribosomal chromosome. FC/DFC-rDNA 

transcription center consists of fibrillar center (FC) surrounded with dense fibrillar 

component (DFC). Green dots: granular component.

b. Regulation of nucleolar assembly

Cellular metabolic activity determines the size, number, and position of the nucleoli 

within the nuclear volume. In G1 and G2 phase, volume of the nucleoli increases and the 

number of FC (fibrillar center) doubles during G2 (Junera HR, Masson C and Hernandez-
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verdum D, 1995). In quiescent cells when ribosome biogenesis stops, ring-shaped nucleoli 

or nucleolar remnants are observed characterized by a clear area made up of chromatin and 

dense fibrils at the periphery. At the beginning of mitosis, rRNA transcription and 

processing machinery is repressed but remains attached with the rDNA within the NORs 

and activates only when the telophase is approached (Roussel, 1996). This repression is 

controlled in part by the CDK1-cyclin B-directed phosphorylation of components of the 

Pol I transcription machinery. Nucleoli assembly at the end of mitosis is accompanied by 

the resumption of Pol I activity, inactivation of CDK1-cyclin B and traffic of rRNA 

processing factors to the site of rDNA transcription.

1.2.2. Role of nucleolar proteins in ribosome biogenesis

Each nucleolar subcompartment has a subset of proteins that regulates rRNA 

transcription, processing, incorporation of ribosomal proteins, maturation and assembly of 

ribosome subunits (Chen and Huang, 2001). The two most abundant nucleolar proteins are 

nucleolin and fibrillarin.

Nucleolin is a ubiquitously expressed 100-110 kDa acidic phosphoprotein that 

represent as much as 10% of total nucleolar protein in CHO cells (BUGLER et al., 2005). 

It actively participates in the ribosome biogenesis by regulating chromatin structure, rDNA 

transcription, ribosome assembly and nucleo-cytoplasmic export(P. Bouvet et al., 1999). 

Nucleolin is one of the non-ribosomal proteins that transiently interact with rRNA and pre- 

ribosomal particles and is not detectable in the mature ribosomes. Structurally, nucleolin 

has three regions: N-terminal domain, central domain and C-terminal domain. The N- 

terminal domain is made up of highly acidic regions interspersed with basic sequences and 
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contain multiple phosphorylation sites for kinases such as Casein Kinase II (CK2), P34cdc2 

etc. (Caizergues-Ferrer et al., 1987). This phosphorylation of nucleolin by CK2 and p34cdc2 

regulates nucleolin function during the cell cycle. The central region has four RNA-binding 

domains called RBD and is involved in the association of nucleolin with 5’ ETS (external 

transcribed region) of nascent pre-ribosomal RNA in the DFC region of nucleolus (Herrera 

and Olson, 1986). The C-terminal domain is rich in glycine, arginine and phenylalanine 

repeats of variable lengths and is called the GAR or RGG domain. Studies have shown that 

this domain is involved in RNA-protein interactions during ribosome biogenesis, 

facilitating the binding of nucleolin RBD with rRNA (GHISOLFI et al., 1992)(Heine, 

Rankin and DiMario, 1993). In addition, nucleolin has a remarkable ability of shuttling 

between nucleus and cytoplasm, enabling nucleolin to act as a carrier of ribosomal proteins 

from the cytoplasm to the nucleolus, i.e. the site of incorporation of ribosomal proteins. 

Nucleolin interacts with 18 rat and 16 human ribosomal proteins (13 large subunit and 5 

small subunit r-proteins). Ribosomal protein L13a is one the proteins that shows an 

interaction with nucleolin. It has been shown that these proteins are among the initial 

proteins that assemble within the pre-ribosomal particles and remain tightly associated with 

the rRNA (Bouvet et al., 1998). This L13a-nucleolin association has been utilized in the 

previous studies in our lab to track the subcellular localization of WT/ mutant L13a protein 

and nucleolin in immunofluorescence-based studies, using nucleolin as a marker. These 

studies have further confirmed that L13a binds with nucleolin in vivo and can be seen co

localized with the nucleolin protein in the nucleolus (Das et al., 2013). Therefore, nucleolin 

serves an important role in the rRNA processing, r-proteins incorporation and dissociates 
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from ribosomes as evidenced by the absence of nucleolin in the mature cytoplasmic 

ribosomes.

Figure 6: Schematic representation of the Nucleolin structure (figure adapted from 

Sadhan Das, 2011). Showing three functional domains and target sites of posttranslational 

modifications known thus far are shown at the upper side of the protein structure. The 

phosphorylation sites are threonine residues 58, 75, 83, 91, 98, 105, 120, 128, and 219 and 

serine residues 143, 156, 187, and 209. Methylation sites are 655, 659, 665, 669, 673, 679. 

681, 687, 691, and 694 in the C-terminal GAR domain. Glycosylation sites are 317-319, 399

401, 403-405, 477-479, and 491-493. Two potential ATP binding sites have been also located 

in the RNA binding domains.
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Another essential nucleolar protein is fibrillarin that participates in ribosome 

biogenesis. This 34-36 kDa protein is primarily localized in the DFC compartment of the 

nucleolus. The structure and function of fibrillarin is conserved in yeast and human. Yeast 

Nop1 is 70% identical to fibrillarin in humans. A salient feature of fibrillarin is the presence 

of amino-terminal sequence of about 80 amino acids, consisting of glycine and arginine 

rich repeated motifs, similar to the other nucleolar proteins such as nucleolin (Jansen, 

1991). This high degree of structural conservation among eukaryotes suggest an important 

function for these proteins. The central domain of fibrillarin consists of approximately 90 

amino acids long RNA binding domain-like motif. The C-terminal consists of a small 

domain that forms alpha helices.

In DFC of the nucleolus, fibrillarin acts like a methyltransferase enzyme and is a 

part of C/D class of snoRNP (small nucleolar ribonucleoprotein) complex. Fibrillarin 

belongs to the superfamily of the Rossmann-fold-S-adenosylmethionine (SAM) 

methyltransferases (MTases). Within the snoRNP complex fibrillarin transfers the methyl 

group of SAM to the 2-hydroxyl group of ribose targets, that utilizes methyl donor S- 

adenosyl-L-methionine to carry out the 2’-O-methylation of the pre-rRNA in the 90S 

precursor ribosomes during ribosome biogenesis. These post-transcriptional modification 

sites lie within the functionally important regions of the ribosome and facilitate the folding 

and stability of rRNA. Previously published studies from our laboratory has shown that 

cells deficient in L13a showed significant reduction of ribosomal RNA methylation and a 

subsequent defect in cap-independent translation of Internal Ribosome Entry Site (IRES) 

element containing mRNAs such as P27, P53 and SNAT2 (Chaudhuri et al., 2007). We 
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have further shown that this inhibition of IRES mediated translation in L13a depleted cells 

result from lack of rRNA methylation. L13a as a part of fibrillarin and snoRNA containing 

C/D box snoRNP complex is essential to carry out rRNA methylation of 90S pre-ribosomes 

in the nucleolus of mammalian cells (Das et al., 2013).

Methyltransferase-like domain

1 8 
FIB full C

77 135 222 274 306 321

Spacer“^^^^^“^- Spacer 
GAR region 1 RBD region 2 alpha-helix 

domain domain domain

Figure 7: Structures of Fibrillarin (figure adapted from Yanagida M et al., 2004). The N- 

terminal glycine- and arginine-rich (GAR) domain, RNA-binding domain (RBD), and-helix 

domain are shaded in gray, and the spacer regions 1 and 2 are indicated. The methyltransferase- 

like domain is composed of the RBD, spacer region 2, and a-helix domain.

1.3. Translation mechanism and regulation.

Most of the biological activities are performed by the proteins. The 

information to generate a protein molecule is stored in the DNA molecule. This information 

is conveyed through messenger RNA (mRNA) and the process by which a protein is 

synthesized by the ribosomes from the information contained in the messenger RNA 

(mRNA) is known as translation. Protein synthesis involves the formation of peptide bonds 

that link the carboxyl group of one amino acid to the amino group of another to form a 

chain. Peptide bond formation is a chemical process that involves a nucleophilic attack by 
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an amino group of one amino acid on the carboxyl group of another. The synthesis of 

proteins in cells involves a very complex machinery comprising ribosomes, numerous 

RNAs and proteins, and amino acids. In eukaryotic cells, translation occurs in the 

cytoplasm. Three types of RNAs participates in protein synthesis: rRNA, mRNA, tRNA.

1.3.1. Steps in protein synthesis:

i) Initiation: The ribosomal subunit assembly happens with the help of a set

of proteins known as eukaryotic initiation factors (eIF). Some of these initiation factors are 

coupled to GTP and the hydrolysis of GTP to GDP provides a proofreading step to allow 

the next step in protein synthesis process to proceed only if the preceding step was correct. 

Additionally, phosphorylation of some of these initiation factors can block the translation 

process (Sonenberg and Hinnebusch, 2009). Formation of a pre-initiation complex (PIC) 

is the first step of translation initiation. The PIC is formed when the smaller subunit of 

ribosome (40S) associates with eIF3, eIF1A, and a ternary complex composed of 

eIF2.GTP.Met- tRNAi. The 5' m7G cap of the mRNA is bound by the eIF4 cap-binding 

complex which then associates with the PIC. The eIF4 complex is made up of different 

subunits: eIF4A (helicase activity during scanning), eIF4B (architectural role), eIF4G 

(binds to eIF3 in PIC), and eIF4E (binds to 5’ cap of mRNA). This complete association 

of PIC, eIF4 complex and mRNA is called an initiation complex. The multicomponent 

initiation complex (IC) then scans the mRNA in the 5’-3’ direction to find the start codon 

AUG. Recognition of the correct start codon leads to eIF2-GTP hydrolysis to GDP form 

(proofreading step) followed by dissociation of eIF1, 2, 3 and eIF4 complex. This is an 

irreversible step which prevents further scanning. The Kozak consensus sequence
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ACCAUGG facilitates the selection of the correct start codon. The small subunit unites 

with the large (60S) subunit in a process catalyzed by the eIF5B and 6, forming the 80S 

ribosome, accompanied by hydrolysis of eIF5-GTP to GDP (another proofreading, 

irreversible step). The whole complex is recruited to the P-site of the ribosome. This is the 

predominant form of eukaryotic translation initiation which depends on the m7G cap 

structure, present at the 5’end of the mRNA, known as cap-dependent translation initiation 

(figure 8).
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Figure 8: Initiation of translation. A) 40S subunit associated with eIF3 joins eIF1A 

and ternary complex of eIF2.GTP.Met- tRNAi to form a preinitiation complex (PIC). B) 

PIC binds to 5’cap structure of mRNA with the help of eIF4 complex. C) PIC scans for 

the start codon AUG. As the start codon is recognized correctly, there follows hydrolysis 

of eIF2-GTP to the GDP form. This is the first proofreading step which is irreversible. 

D) After the correct recognition of start codon and correct binding of Met- tRNAi to its 

complementary codon on mRNA, the 60s subunit associated with eIF6 unites with 40S 

subunit. This step is catalyzed by eIF5B-GTP which is hydrolyzed at the end of this 

reaction to eIF5B-GDP and dissociated along with eIF6 to form the ribosome.
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IRES-dependent initiation:

Studies of viral gene expression in the late 1980s led to the discovery of an 

alternative mode of translation initiation in eukaryotic cells that bypasses the requirement 

for cap-dependent scanning. This mode of translation initiation allows the 40S ribosome to 

be directly recruited to the vicinity of the initiation codon. The mRNA regions required for 

this direct recruitment of the small subunit were termed Internal Ribosome Entry Sites 

(IRESs) to emphasize that the process is independent of 5'-end recognition. The location 

of cellular IRES elements is within the 5'-UTRs immediately upstream of the initiation 

codon. Numerous IRES have been discovered in viruses(Jackson, Hellen and Pestova, 

2010). Importantly, IRES-containing mRNAs can also be translated by the cap-dependent 

mechanism, however how the switch between these two modes of initiation is regulated 

needs to be investigated further. Interestingly, it has been demonstrated that inhibition of 

cap-dependent translation by physiological, pathophysiological and stress conditions lead 

to a substantial increase in cellular IRES-mediated translation(Komar and Hatzoglou, 

2005). Such conditions include endoplasmic reticulum stress, hypoxia, nutrient limitation, 

mitosis and cell differentiation.

Previous studies in our lab have shown that ribosomal protein L13a is a component 

of a methyl transferase complex that catalyzes 2’-O-methylation during ribosome 

biogenesis (Das et al., 2013). Decrease of 2’-O-methylation leads to a decrease in IRES- 

dependent translation of a subset of mRNAs such as p53, p27 and SNAT2 while global 

translation is not affected (Chaudhuri et al., 2007).
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(ii) Elongation: chain elongation process requires the translation elongation factors (EFs). 

Based on the codon present in vacant A site, the second aminoacyl-tRNA (aa-tRNA) enters 

the A site of the ribosome as a ternary complex of aa-tRNA and eEF1A-GTP. This ternary 

complex enters the A site upon correct binding of aa-tRNA binds its anticodon in A site 

there occurs hydrolysis of GTP bound to eEF1A, another proofreading step which occurs 

only if the correct aa-tRNA bind to the A-site. As the initiating Met-tRNAi is at the P site 

and the second aminoacyl-tRNA is bound at the A site, amino group of second amino acid 

(at A site) forms a peptide bond with the methionine present on initiator tRNA (tRNAi). 

This reaction is catalyzed by rRNA of the large subunit. Following peptide bond synthesis, 

the ribosome is translocated along the mRNA a distance equal to one codon. This step 

requires eEF2A-GTP. Translocation is followed by the hydrolysis of eEF2A-GTP and 

release of eEF2A-GDP. This is an irreversible step which prevents backward movement of 

ribosome. This results in the shift of the second tRNA with a dipeptide in the P site. This 

leaves the A site vacant for the next aa-tRNA and empty tRNAi shift to E site (Dever and 

Green, 2012). At the end of the translocation, the A site is again vacant and ready to accept 

a new aa-tRNA (figure 9).

iii) Termination: Termination is the final stage of translation that requires a set of 

proteins knowns as release factors (RFs). Two types of RFs have been discovered: 

eRF1(similar in shape to tRNA) and eRF3 which is a GTP binding protein. eRF1 binds to 

the A site of the ribosome and recognizes stop codon. eRF3-GTP works in concert with 

eRF1 to facilitate the cleavage of the peptidyl-tRNA from ribosome and thus releasing the 

completed polypeptide chain (Hellen, 2018).
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eEF1a-aminoacyl-tRNA bond 
Exit of the deacylated tRNA

Figure 9: Translation elongation cycle. During the translation of mRNA, the 

ribosome first recruits an aminoacyltRNA in the A site and binds to the elongation 

factor eEF1A (green disc). Following this first crucial step, the tRNA hybridizes 

by complementarity its anticodon to the mRNA codon, releasing eEF1A. The 

peptide bond is transferred to the pre-existing polypeptide chains. The tRNA is 

translocated to the P sites after an intermediate hybrid state with the help of the 

eEF2 (brown disc). The deacylated tRNA located in the E site exits from the 

ribosomes and a new cycle begins
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1.3.2. IFN-y-activated inhibitor of translation (GAIT) pathway mediated regulation 

of translation.

Translational regulation can be global or mRNA specific. Global control of 

translation usually operates by regulating the phosphorylation or availability of initiation 

factors. Two of the most well-known examples are the regulation of eukaryotic initiation 

factor eIF4E availability by 4E-binding proteins (4E-BPs), and the modulation of the levels 

of active ternary complex by eIF2a phosphorylation. mRNA-specific translational control 

is driven by RNA sequences and/or structures that are commonly located in the 

untranslated regions (3' or 5') of the transcript (Mazumder et al., 2003) (Sonenberg and 

Hinnebusch, 2009). These features are usually recognized by heterogeneous nuclear 

ribonucleoproteins (hnRNP) and other pre-mRNA/mRNA-binding proteins (mRNP) or 

micro RNAs (miRNAs) that bind to the RNA through special RNA binding domains 

(Glisovic et al., 2008). One such transcript-specific translation control has been discovered 

and elaborated by our lab and a group of other researchers. This pathway is called Gamma

Interferon Activated Inhibitor of Translation mechanism or the GAIT pathway, which has 

possibly evolved as an endogenous mechanism to limit inflammation.

IFN-Y-activated inhibitor of translation (GAIT) pathway:

The IFN-y induced delayed translational silencing pathway was first studied in cells 

of myeloid origin, primarily monocytes and macrophages and related cell lines where it 

regulates the expression of several inflammatory genes e.g. chemokines and chemokine 

receptors. The GAIT complex is a multi-subunit protein complex which is composed of 
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four protein constituents: ribosomal protein L13a, glutamyl-prolyl-tRNA synthetase 

(EPRS), NS1-associated protein 1 (NSAP1) and glyceraldehyde-3 phosphate 

dehydrogenase (GAPDH) which results in delayed translational silencing of GAIT 

element bearing mRNA transcripts (Vyas et al., 2009) (Mazumder and Fox, 1999), 

(Sampath et al., 2003)(Mazumder et al., 2003)(Sampath et al., 2004) (Kapasi et al., 

2007)(Arif et al., 2011). This regulatory system of eukaryotic gene expression relies upon 

the presence of a minimal 29 nucleotide long structural element in the 3' untranslated region 

(3'-UTR) of the target mRNA, called the GAIT element made up of a 5-nt terminal loop, a 

weak 3-bp helix, an asymmetric internal bulge, and a proximal 6-bp helical stem (Sampath 

et al., 2003). In this pathway, the GAIT complex forms in two stages. An inflammatory 

trigger such as IFN-y treatment results in sequential phosphorylation (Ser886 and Ser999 

in the noncatalytic linker connecting the synthetase cores) mediated release of EPRS from 

the parent tRNA multisynthetase complex in the initial hours (2 hr) post IFN-y treatment. 

Ser886 phosphorylation is required for the interaction of EPRS with another GAIT 

component NSAP1 to form an inactive pre-GAIT complex (incapable of binding to the 

GAIT element in the 3' UTR of selective mRNAs). In the second step, after another 12-14 

hours, L13a is phosphorylated and released from the 60S subunit and joins GAPDH and 

then binds to the pre-GAIT complex to form tetrameric GAIT complex. Ser999 

phosphorylation of EPRS is essential for the conformationally correct interaction with 

phospho-L13a and GAPDH to generate the active GAIT complex that binds to the GAIT 

element in the 3’ UTR of target mRNA. Upon binding, the GAIT complex interacts with 

eIF4G of the translation initiation machinery and blocks the recruitment of 43S pre

initiation complexes, thereby inhibiting translation initiation (Arif et al., 2011)(Kapasi et 
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al., 2007). This blocking of formation of 48S initiation complex, requires circularization 

of mRNAs mediated via the eIF4E-eIF4G-polyA-binding-protein (PABP) interaction 

(figure 10). Such interactions between the 5‘ and 3 ‘ ends of mRNAs could provide a spatial 

framework for the action of regulatory factors like the GAIT complex that binds to the 3 ‘ 

untranslated region (Mazumder et al., 2003). This GAIT mediated translational silencing 

mechanism was first studied in monocytes expressing ceruloplasmin in response to IFN- y 

treatment.

A genome-wide approach identified a cohort of mRNAs encoding proteins having 

a role in inflammation and were identified to be the direct target of the L13a-dependent 

GAIT translational silencing pathway (Vyas et al., 2009). Most of these targets were 

identified as chemokines and chemokine receptors.
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Figure 10: L13a targets eIF4G for transcript-specific inhibition of translation (Kapasi P et al., 

2007). L13a in the 3‘ UTR bound GAIT complex targets eIF4G without cleavage of eIF4G or 

disruption of cap-binding eIF4F complex. Binding of the phospho-L13a to the eIF3 binding site of 

eIF4G blocks interaction of 43S ribosomal complex and represses translation initiation.

1.4. Ribosomal and extra-ribosomal function of RP L13a:

Mammalian ribosomal protein L13a is a member of conserved ribosomal L13 

protein family(uL13). L13a is a component of the 60S ribosomal subunit and is a 

component of the GAIT complex explained above. Many ribosomal proteins have been 

shown to possess ribosomal and extra-ribosomal functions. L13a is one of the ribosomal 

proteins which is known to play an essential extra-ribosomal function discussed below.

1.4.1. Extra-ribosomal function of L13a in inflammation resolution in macrophages.

After phosphorylation at Ser77 by DAPK/ZIPK pathway and release from 60S 

subunit, L13a binds GAPDH which shields and protects free L13a from degradation. L13a, 
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as a component of GAIT complex, can bind the translation initiation factor eIF4G and 

prevent the formation of 48S preinitiation complex thereby inhibiting the translation 

initiation of a subset of inflammatory proteins (Jia et al., 2012) (figure 11).

Figure 11: Assembly of L13a into the GAIT complex (Mazumder et al. 2003).

Phosphorylation mediated release and delayed assembly of L13a into pre-GAIT complex to 

form a functional GAIT complex, capable of binding to Cis-acting GAIT element in 3' UTR 

of target mRNA transcripts.

Infectious events are marked by the recruitment of monocytes and macrophages, 

key effector cells in an immune response, to the site of inflammation where synthesis of 

chemokines and cytokines serves as a weapon against the invading microorganisms. 

However, uncontrolled inflammation can have detrimental effects and inflamed tissues 

need to be restored back to the normal tissues. Based on the notion that GAIT-mediated 

translational silencing of several chemokines and its receptors could serve as an 

endogenous defense against inflammation and a deficiency of L13a in macrophages may 

promote uncontrolled inflammation, our lab generated a novel macrophage-specific L13a 

knock out animal model (L13a flox/flox LysMCre+) where impact of abrogation of 

ribosomal protein L13a-dependent translational silencing mechanism was studied in detail 
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by challenging the WT and KO animals with inflammatory stimuli such as LPS 

(lipopolysaccharide). These studies demonstrated that macrophage-specific L13a KO mice 

showed a lower survival rate, more invasion of myeloid cells in the peritoneal cavity and 

in the major organs suggesting signs of organ damage in comparison to the control mice. 

Moreover, macrophages harvested from these KO animals also showed elevated 

expression of several previously identified target proteins of GAIT pathway such as 

CCL22, CXCL13 and CCL8 etc., suggesting abrogation of inflammation resolution in KO 

animals in the absence of L13a-mediated GAIT complex assembly and translational 

silencing(Poddar et al., 2013). Subsequent studies have been conducted by our laboratory 

to understand the extra-ribosomal function of L13a and GAIT complex in inflammation 

resolution in several pathological conditions such as ulcerative colitis and atherosclerosis 

(Poddar et al., 2016) (Basu et al., 2014).

However, the mechanism of assembly of L13a into the GAIT complex remain 

poorly understood. As discussed earlier, arginine at position 68 is essential for ribosomal 

incorporation. However, L13a with arginine at 68 mutated to alanine still retains the ability 

to play its extra-ribosomal function i.e. translational silencing of GAIT element bearing 

mRNAs, suggesting existence of an independent ribosomal incorporation and translational 

silencing domain in L13a (Das et al., 2013). Therefore, our current study aims at 

identifying the specific domains of L13a essential for ribosomal incorporation and GAIT- 

mediated translational silencing activity.

1.4.2. Function of L13a within the ribosomes.
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As discussed above, a series of studies by our group has deciphered an important 

extra-ribosomal function of L13a. To gain insights into the role of L13a within the 

ribosome, we have shown that depletion of L13a by RNA interference (RNAi) in 

monocytic cells abrogates GAIT element-mediated translational silencing but, 

interestingly, it doesn’t affect rRNA processing, ribosome assembly and primary function 

of ribosomes i.e. protein synthesis. However, rRNA methylation and translation of several 

IRES (internal ribosome entry site) containing mRNAs such as P53 and SNAT2 requires 

L13a. Therefore, depletion of L13a compromises the translation of these mRNAs 

(Chaudhuri et al., 2007). Further, we have shown that L13a incorporates into the ribosomes 

in the 90S precursor ribosome in the nucleolus. This is the site where the L13a as a 

component of the methyltransferase complex and participates in the rRNA methylation. 

Previous studies have demonstrated that reduced translation of IRES containing mRNAs 

in L13a depleted cells is a consequence of reduced rRNA methylation (Das et al., 2013).

So far, we have shown that complete loss of L13a in cultured cells and tissue

specific loss of L13a in mammalian model (mouse) is tolerable and doesn’t interfere with 

the cell proliferation and survival of mice under normal condition.

Since we have studied the role of GAIT pathway in inflammation resolution in 

macrophage-specific knockout mice and we have demonstrated that depletion of L13a in 

cultured cells of myeloid origin is tolerable, we decided to investigate the consequences of 

L13a knockout at systemic level in mammals. For this purpose, we have generated the 

heterozygous L13a knock out (L13a+/-) mice which could be crossed to get L13a total 

knockout mice. Unfortunately, we didn’t identify any knockout genotypes among the new 

born pups. Interestingly, L13a heterozygous mice are breeding competent and show no 
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visible abnormality under standard animal housing conditions. However, the mice 

harboring the homozygous KO allele (L13a-/-) are found to be embryonically lethal as we 

failed to identify any knockout among offspring of L13a heterozygous parents. This 

suggests an essential role of this protein in embryonic development in mammals. In this 

regard, I shall discuss the role of ribosomal proteins in mammalian embryonic development 

and the process of pre-implantation embryonic development in mice to obtain a better 

understanding of the experimental strategies that we pursued further to study the role of 

L13a in the embryonic development of mice.

1.5. Role of ribosomal proteins in embryogenesis:

In addition to their essential roles in ribosome biogenesis and protein translation, 

ribosomal proteins are also known to play developmental roles in various organisms. e.g. 

mice homozygous for small subunit protein S19 shows defect in early embryonic 

development where the homozygous knock out zygote fails to transition into a blastocyst, 

suggesting a role of S19 in blastocyst formation. The role of ribosomal proteins in 

mammalian development is discussed further in chapter III.

1.5.1. Mouse: a model organism for embryology studies.

Mouse (Mus musculus) has been a model organism of choice for molecular 

biologists inclined to study the outcome of gene knockouts in mammals. Mouse is also the 

mammal of choice to understand how genes control growth and differentiation of the 

mammalian embryo because of its small size, resistance to infection, large litter size (4-14) 
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and their short gestation period, about 21 days. The genome of about 17 inbred strains has 

been sequenced. The most remarkable feature is the ability to experimentally manipulate 

the mouse germline either by genetic modifications of embryonic stem (ES) cells, 

spermatogonial stem cells or by direct injection of cloned DNA into zygotes.

Mouse development can be divided into preimplantation and post-implantation 

stages. Preimplantation stage embryos are not attached to the maternal tissue and can be 

located in the oviduct and uterus, whereas, post-implantation embryos are attached to the 

maternal tissue through placenta tissues. Mouse embryos are staged by days postcoitum 

(dpc).

1.5.2. Mouse embryonic development.

(i) Oocyte maturation and ovulation

Mouse oocyte are in the diplotene stage of the prophase of the first meiotic division. 

Therefore, they are diploid but contain four times the haploid amount of DNA (4C). 

Oocyte is surrounded by follicle or granulosa cells and are called primordial follicles. 

Primordial follicles are then recruited to differentiate into preovulatory or antral follicles. 

Gradually, zona pellucida starts developing between the follicle cells and the oocyte. Zona 

pellucida is made up of three acidic glycoproteins- ZP1, Zp2, Zp3 synthesized by growing 

oocyte and reaching about 7pm in thickness (Dean, 1992). Zp3 is required for acrosome 

reaction during fertilization. In response to LH (luteinizing hormone), follicles grow and 

acquire competence for ovulation by undergoing a first meiotic division to exclude one 

polar body. 8-12 eggs are released in a span of 2-3 hours. After ovulation follicular cells 

differentiate to form corpora lutea, which help to maintain pregnancy.
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(ii) Spermatogenesis

Seminiferous tubules are the site of spermatogenesis. Testes contain 

prospermatogonia in the mitotic arrest at the time of birth that develop into primary 

spermatocytes after a series of changes in size and transitions. These primary 

spermatocytes undergo meiosis to form secondary spermatocytes. Spermatids are formed 

after second meiotic division which differentiate to form mature spermatozoa.

(iii) Fertilization:

Fertilization occurs in the oviducts. Zona pellucida component ZP3 triggers the 

acrosome reaction in which the acrosome fuses with the plasma membrane of the sperm 

head. Fusion of the sperm head with the oocyte membrane is followed by a cascade of 

reactions known as fertilization. The head, mid piece and tail of the sperm enters the oocyte 

cytoplasm. Fertilization triggers a second meiotic reaction and extrusion of a second polar 

body. The fertilized oocyte is known as zygote.

(iv) Morulation:

Twenty-four hours post fertilization, the mouse embryo forms a two-cell stage in 

the oviduct and keeps moving towards the uterus. Four to eight cell embryos can be 

retrieved from the oviduct at 2.5 dpc. After pairing male and female, a vaginal copulation 

plaque is observed in the female next morning, it is counted as 0.5 dpc. The eigh cell stage 

is known as morula. The cells inside the embryo undergo cleavage divisions without cell 

growth, keeping the embryo volume constant. This results in increase in number of cells 

only. Each cell within the 2-cell to 8-cell stage embryo is equipotent, capable of giving rise 

to a blastocyst.
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(v) Blastocyst formation:

As the cleavage divisions reach the 16-cell stage, two distinct lineages are formed: 

the trophectoderm (TE) and the inner cell mass (ICM). At this stage the blastomeres flatten 

and increase their contact with each other, developing an apical and basal membrane and 

cytoplasmic domains. Inner cell mass arises from the cells that lie on the inside of 

compacted embryo, whereas the outer cells form trophectoderm. After about the fifth 

cleavage division, a fluid filled cavity appears, called the blastocoel cavity. As the 

blastocyst expands and forms a “fully expanded” blastocyst, the blastocoel cavity also 

enlarges. The blastocyst (32-80 cells) is made up of single layer of trophectoderm 

surrounding a fluid-filled cavity with a small group of cells called ICM, attached to the 

trophectoderm (TE) at one region. The TE overlying the ICM is known as polar TE 

(embryonic pole) and the cells surrounding the blastocoel constitute the mural TE 

(abembryonic pole). Blastocysts can be retrieved from the uterus at 3.5 dpc.

(vi) Implantation in the uterus:

A blastocyst is ready for implantation when it escapes or hatches from the zona 

pellucida. The first event of implantation is the adherence of the blastocyst to the uterine 

wall by its abembryonic pole, forming a uterine crypt and stimulates the uterine stroma to 

form a spongy cell mass known as the decidual tissue/decidumm. Usually implantation 

takes place at 4.5 dpc. The progression of pre-implantation embryos is summarized in 

figure 12.
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Figure 12: The preimplantation period of mouse embryo development (figure adapted from 

Aleksandar I et al., 2017): (a) The sequence of events throughout the preimplantation mouse 

embryo development with relevant embryonic stages and cell lineages generated through the first 

and the second cell-fate decisions. (b) Orientation of the embryonic-abembryonic axis in the late 

blastocyst stage (4.5 dpc). The position of mural and polar trophectoderm at abembryonic and 

embryonic poles of the embryo is shown. (c) A non-compacted 8-cell-stage embryo undergoing 

the first morphogenetic event (compaction) to develop into an early morula-stage embryo. 

Concomitantly, intracellular polarization is established as exemplified by the apical (green), and 

basolateral (purple) membrane domains of individual blastomeres.
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(vii) Post-implantation development:

Shortly after implantation, a differentiation event results in formation of a primitive 

endoderm and epiblast or primitive ectoderm from inner cell mass. Therefore, an 

implanted blastocyst is made up of three layers: trophectoderm, primitive endoderm and 

epiblast. A proamniotic cavity starts forming at around 5.5 dpc from epiblast cells. Cells 

of epiblast start dividing rapidly between 5.5-6.5 dpc from 120 cells to 660 cells (Snow, 

1977). This is the time when gastrulation begins, a process in which blastocysts transform 

into a multilayered embryo. Extra-embryonic mesoderm and definitive endoderm is also 

formed during gastrulation. This is followed by organogenesis marked by events like germ 

line origin, limb formation, sex determination, tail bud, neurulation, gut formation etc. 

Birth of fully formed pups takes place around 20-21st day of gestation. The different stages 

of mouse development are shown in the figure 13 below:
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a

b Mouse 
(GD) Event
0 Fertilization
1-2.5 Cleavage
2-4 Blastocyst stage
4.5-5 Implantation
6-14 Placentogenesis
14 Organogenesis complete

14-17 Fetal and
Placental growth

17-birth Accelerated Fetal Growth

19-21 Birth

Figure 13: (a) Time course of mouse development summarizing 0-19 DPC embryonic 

development. (b). The table based on the Theiller stages of mouse development (The House 

Mouse: Atlas of Mouse Development by Theiler Springer-Verlag, NY (1972, 1989).
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CHAPTER II

EXISTENCE OF MUTUALLY EXCLUSIVE RIBOSOMAL INCORPORATION 

AND TRANSLATIONAL SILENCING DOMAIN IN RP L13A

2.1 ABSTRACT

Ribosomal protein L13a is essential for transcript-specific translational silencing of 

mRNAs encoding several inflammatory proteins e.g. chemokines and chemokine 

receptors. A series of studies from our laboratory has shown that phosphorylation

dependent release of L13a from 60S ribosomal subunit and its assembly into the IFN- 

gamma-activated inhibitor of translation (GAIT) complex is essential for translational 

silencing of target mRNAs. Our current study is focused on identification of amino acid 

residue(s) essential for translation silencing of target mRNAs and the residue(s) important 

for ribosomal incorporation. Structurally, eukaryotic L13a differs from prokaryotic L13 by 

an a- helical extension of ~55 amino acids at the C-terminal end. Interestingly, we observed 

that deletion of this helix impairs the extra-ribosomal function of L13a i.e. translational 

silencing of inflammatory genes as well as its incorporation into the ribosomes. We have 

identified the amino acids within this helix at position 159(K) and 161(K) that are required 
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for nucleolar import of L13a and incorporation into the ribosome. Cryo EM studies of the 

human ribosome showed the interaction of the amino acids at position 185(V), 189(I) and 

196(L) of L13a with another ribosomal protein L14. We found that mutating these residues 

abrogates the ribosomal incorporation of L13a. Importantly, we also showed that mutation 

of the amino acids at position 169(R), 170(K) and 171(K) to Ala abrogate GAIT-mediated 

translational silencing, but not L13a incorporation into ribosomes. Moreover, we show that 

the C-terminal helix (149-203 amino acids) alone can silence translation of GAIT element

containing mRNAs. This demonstrates the presence of mutually exclusive domains for 

ribosome incorporation and translational silencing.
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2.2 INTRODUCTION

Ribosomes are complex ribonucleoprotein (RNP) complexes that catalyze the 

synthesis of the cell’s proteome. However, there are several unanswered questions about 

the mechanism of ribosome biogenesis and its regulation in concert with the role of 

ribosomal proteins (RP) and assembly factors. One of the important questions is: how and 

when do ribosomal proteins associate with rRNA and their roles as a part of functional 

ribosomes? In yeast, many ribosomal proteins are co-transcriptionally incorporated as soon 

as the nascent rRNA starts emerging from the RNA polymerase or in the nucleolus, some 

others incorporate late cytoplasmic pre-ribosomes. Many ribosomal proteins are known to 

play an important role in rRNA processing and ribosome biogenesis e.g. L33 in yeast 

(Martin-Marcos, Hinnebusch and Tamame, 2007). However, the functions of many RPs 

remain unexplored. Previous studies in our laboratory have demonstrated the ribosomal 

and extra-ribosomal functions of one of the large subunit (LSU) protein i.e. ribosomal 

protein L13a (RP L13a). A series of studies have shown that the arginine residue at position 

68 in human L13a is essential for L13a binding to rRNA and subsequent incorporation into 

the ribosomes. Arginine 68 was predicted to be a potential candidate for anchoring the 

protein to rRNA based on the yeast L16a where arginine at position 68 interacts with the 

cytosine at position 2988 (C2988). Yeast L16 is the structural homolog of human L13a. 

Arginine at position 68 is highly conserved among eukaryotes ranging from yeast, 

Drosophila, pig, mice, monkey and human. Furthermore, our group has experimentally 

shown that precursor 90S ribosome is the site of ribosomal incorporation of L13a. WT 

L13a but not the R68A mutant incorporates into the 90S pre-ribosome complex in the DFC 

region of nucleolus. Nucleolin is an important nucleolar protein which is known to interact 
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with several ribosomal proteins and nucleolar factors and acts as a shuttle for nucleo- 

cytoplasmic traffic. Based on this, it is believed that nucleolin might be involved in the 

import of ribosomal proteins to the nucleolus and act as an adaptor for binding of RPs to 

the rRNA. L13a has been identified as one the proteins that interacts with nucleolin (Bouvet 

et al., 1998). Therefore, the ability of WT and mutant L13a protein were tested for their 

ability to bind to nucleolin and translocate to the nucleolus (site of L13a incorporation). 

We have shown that ribosomal incorporation of a defective mutant R68A binds to the 

nucleolin, translocates to the nucleolus but fails to incorporate into the ribosomes, 

suggesting that successful nucleolar import of L13a doesn’t necessarily ensures its 

ribosomal incorporation. As aforementioned, L13a plays an extra-ribosomal function in 

translational silencing of GAIT element bearing mRNAs encoding inflammatory proteins, 

it was also tested if the ribosomal incorporation defective (R68A) mutant retains the ability 

to become phosphorylated at S77 residues and silence the translation of GAIT element 

bearing mRNAs in an in vitro experiment. Interestingly, mutation of arginine 68 to ala 

(R68A) doesn’t interfere with the S77 phosphorylation and translational silencing ability. 

Therefore, ribosomal incorporation of L13a is not a prerequisite for phosphorylation and 

extra-ribosomal function of L13a. Previous studies by our lab and other groups have shown 

that the DAPK-ZIPK pathway mediated phosphorylation at S77 and release of L13a is 

essential for its extra-ribosomal function (Mukhopadhyay et al., 2008). Moreover, our 

group has demonstrated that L13a is dispensable for ribosome biogenesis and the primary 

function of ribosomes (protein synthesis). Depletion of L13a in somatic cells doesn’t affect 

ribosomal RNA processing, polysome formation, global translational activity, translational 

fidelity, and cell proliferation. However, depletion of L13a caused significant reduction of 
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methylation of ribosomal RNA and of cap-independent translation mediated by Internal 

Ribosome Entry Site (IRES) elements such as p53 and SNAT2. Further, we have shown 

that the ribosome incorporation defective L13a mutant (R68A) but not WT L13a shows 

reduced rRNA methylation in the 90S precursor ribosome, suggesting that L13a is a part 

of rRNA methylation complex and ribosomal incorporation of L13a is essential for rRNA 

methylation (Chaudhuri et al., 2007)(Das et al., 2013).

So far, we know that arginine at position 68 is essential for ribosomal incorporation 

of L13a. Disrupting ribosomal incorporation of L13a by mutating R68 resulted in reduced 

rRNA methylation and translation of IRES-containing mRNAs. However, it doesn’t 

interfere with ribosome independent function of L13a i.e. the GAIT pathway mediated 

translational silencing.

Analysis of eukaryotic ribosome structure using X-ray crystal structures of the yeast 

80S ribosome at 3.0 A showed that bacterial and eukaryotic ribosomes evolved from a 

common structural (RNP) core with inclusion of extra rRNA (expansion segments) and 

additional ribosomal proteins enveloping the core on the solvent side of the ribosome. The 

80S yeast ribosome contains 79 proteins, of which 46 are eukaryote-specific and thirty- 

four proteins are conserved. Many of the conserved ribosomal proteins have evolved 

eukaryote-specific N-terminal and C-terminal extensions, the functional significance of 

which is largely unknown. It has been proposed that these eukaryote-specific extensions 

might have evolved to play a role in complex translation mechanisms in eukaryotes, 

involved in protein-protein interactions and/or specific extra-ribosomal functions. Several 

ribosomal proteins are known to possess N-terminal or C-terminal eukaryote-specific 

extensions. For example, ribosomal protein uS2 has eukaryote-specific N- and C-terminal 
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extensions and is known to play a role as cell surface receptor for laminin (Ghosh and 

Komar, 2015). N-terminal terminal extension of yeast L8 (eL8) protein is necessary for 

late nuclear stages of 60S subunit assembly (Tutuncuoglu et al., 2016).

In our current study, we have also identified a eukaryote-specific C-terminal 

extension in human ribosomal protein L13a. Structure and sequence alignment of 

prokaryotic L13 and human L13a protein has revealed the evolution of a C-terminal helix 

of ~55 amino acids long. We have investigated the role of this C-terminal extension in 

nuclear/nucleolar translocation of L13a, ribosomal incorporation and extra-ribosomal 

function.
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2.3 MATERIAL AND METHODS

2.3.1 Cell Culture

HEK 293T cells were grown in DMEM medium containing 4.5 g/L glucose 

supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine, 1% penicillin and 

streptomycin. The cell culture was maintained in an incubator at 37° C and 5% CO2. Sf9 

(insect cells) cells were maintained as adherent cells in Sf-900 II SFM (1X) serum-free 

media in a non-humidified incubator at 27° C. DMEM media was purchased from corning 

Cellgro (cat#10-017-CV), Sf-900 II SFM (1X) from Gibco (Cat#10902-096).

2.3.2 Generation of constructs

Hemagglutinin (HA)-tagged L13a plasmids were generated by cloning the human 

wild type L13a cDNA or its different mutant variants in-frame with the HA tag in the 

pcDNA3.1(+) mammalian expression vector (Invitrogen) using BamHI and NotI 

restriction sites. The resulting constructs were expressed HEK 293T cells for various cell

based assays discussed in this study. His-tagged recombinant L13a bacmid DNAs were 

generated by cloning human L13a cDNAs (wild type or different mutant variants) into 

pFastBac HT A vector using EcoRI and SalI restriction sites. The resulting recombinant 

his tagged bacmids were transformed into Max efficiency DH10bac competent E. coli cells 

using the Bac-to-Bac Baculoviral Expression System kit according to the manufacturer’s 

protocol (Invitrogen, Cat# 10359-016). Mutations in the HA-tagged and His-tagged 

plasmids were introduced by site directed mutagenesis using the Quick-Change II Site- 

Directed Mutagenesis Kit (Agilent Technologies, Cat# 200524). L13a deletion mutants
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were generated by PCR of different length L13a fragments using L13a specific primers 

flanking restriction site sequences of choice followed by cloning into pcDNA3.1(+) and 

pFastBac HTA vector. HA and (6X) His tags were placed at the N-terminus of the L13a 

open reading frame.

2.3.3 Ribosomal Incorporation assay

Wild-type (WT) and mutant variants of HA-tagged L13a proteins were tested for 

their ability to co-sediment with polyribosomes. HEK293T cells were transfected with HA- 

tagged pcDNA3.1(+) plasmids expressing either WT or mutant human L13a protein. 18 

hours post-transfection, polyribosomes were harvested from the transfected cells by our 

previously published method (Das et al. 2013). Briefly, transfected cells were treated with 

cycloheximide (CHX) (100ug/ml) for 15 minutes at 37° C, washed once and harvested in 

PBS containing CHX at 100ug/ml concentration. Cells were lysed in polyribosome buffer 

(100 mM KCl, 2.5 mM MgCl2, 1mM DTT, 10 mM HEPES pH 7.5, 100ug/ml CHX) 

containing 0.1% Igepal-CA630 (NP-40), 50 U of recombinant RNasin (Promega) and 

protease inhibitor cocktail (Roche). Cytoplasmic lysates (20 Optical density units) were 

layered over a 10-50% linear sucrose gradient in polyribosome buffer and then centrifuged 

at 17,000 RPM in a Beckman SW32.1 Ti rotor for 18 hours at 4° C. Gradients were 

fractionated to get lighter RNP fractions (40S, 60S and 80S) and heavier polyribosomal 

fractions using an ISCO Gradient Fractionation System by monitoring the continuous UV 

absorption profile at A254. The total protein in each fraction was recovered by TCA
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(trichloroacetic acid) precipitation and analyzed by SDS-PAGE (12% gel) followed by 

immunoblotting with a rabbit polyclonal anti-HA antibody (Abcam, cat#ab9110).

2.3.4 Analysis of nuclear and nucleolar localization of L13a by immunofluorescence

HEK 293T cells cultured on cover glass were transfected with pcDNA3.1(+)- 

constructs expressing HA-tagged WT or mutant human L13a. optimal confluency at the 

time of transfection of HEK cells for immunostaining and confocal microscopy is 60-65% 

to avoid overlapping/overgrowth of cells to get clear images. Approximately twenty-four 

hours post-transfection, cells were fixed with ice-cold methanol, permeabilized with 0.1% 

Triton X-100, and blocked in 1% BSA for1 hour at room temperature. Cells were then 

incubated with mouse monoclonal antibody against the HA tag (Abcam, Cat# ab18181) or 

rabbit polyclonal antibody against human nucleolin (as an endogenous marker of nucleoli; 

Abcam, Cat# ab22758) for 3 hours. Antibodies used were diluted (1:200) in 1x PBS 

containing 0.5% triton X-100. After incubation with the primary antibodies, cells were 

washed with PBS three times (five minutes each wash) and incubated with Alexa Fluor 

488 (green) conjugated donkey anti-mouse antibody (Cat# A21202, Invitrogen; for anti

HA stained cells) or Alexa Fluor 594 (red) conjugated donkey anti-rabbit antibody (Cat# 

A21207, Invitrogen; for anti-nucleolin stained cells) for 1 hour at room temperature in dark. 

All cells were co-stained with 4’,6-diamidino-2-phenylindole (DAPI, blue) to visualize 

nuclei. After washing three times with PBS, cover glass were mounted in a drop of prolong 

gold antifade reagent (Cat# P36930, Invitrogen) on glass slides. Next day, the antibody- 

stained cells were subjected to confocal microscopy using a Nikon TE inverted fluorescent 

microscope.
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2.3.5 Determination of the GAIT element-dependent translational silencing activity 

of L13a mutants

His-tagged recombinant WT and different mutant variants of L13a proteins were 

expressed in Sf9 (insect cells) using the Bac-to-Bac baculoviral expression system 

following manufacturer’s protocol (Invitrogen). Briefly, Sf9 insect cells were transfected 

with WT or mutant L13a bacmids to generate baculoviral stocks: P0, P1, P2. Baculoviral 

stocks were stored in -80° C after adding 2% FBS. Sf9 cells were further infected with the 

baculoviral particles, lysed at the time point optimized initially to obtain maximum protein 

yield. His-tagged L13a proteins were purified using HisPur Ni-NTA purification Kit 

(Thermo Fisher Scientific, Cat#88227) and tested by doing a Western blot using mouse 

anti-His antibody (Invitrogen, Cat#37-2900). Purified proteins were tested using an in vitro 

translational silencing assay. 200 ng GAIT element bearing chimeric RNA transcript 

containing a GAIT element (Cap-Luc-GAIT-PolyA) and a cRNA transcript encoding T7 

gene 10 (used as a loading and specificity control) were translated in rabbit reticulocyte 

lysate (RRL) in the presence of purified WT or mutant L13a proteins, 20 pM methionine- 

free amino acid mixture, 20 pCi translation grade [S35] methionine, and 40U of RNasin in 

a total volume of 50 pl reaction at 30° C for 1 hour. An aliquot was resolved by 10% SDS- 

PAGE. The gel was fixed, dried and radiolabeled bands were detected by autoradiography.

2.3.6 In vivo association of L13a with 28S rRNA

HEK 293T cells were transfected with pcDNA3.1(+) plasmids expressing HA- 

tagged WT or mutant L13a proteins. Twenty four hours post transfection, cell lysates were 
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prepared and subjected to immunoprecipitation using mouse anti-HA antibody coupled 

agarose beads (Sigma, Cat#IP0010-1KT) or non-antibody-coupled beads as a control in 

the buffer 150 mM NaCl, 1 mM EDTA, 1.5 mM MgCl2, 0.05% Triton X-100, 50 mM 

HEPES (pH 7.5) (Mazumder et al. 2003). Total L13a-bound RNA was extracted from the 

immunoprecipitates using TRIzol. The extracted RNA was reversed transcribed using 

random hexamers and reverse transcriptase (superscript) following manufacturer’s 

protocol (Invitrogen). The synthesized first-strand cDNA was subjected to reverse 

transcription-PCR (RT-PCR) using human 28S rRNA specific primer pairs. Forward 

primer sequence 5’-GAAGTTTCCCTCAGGATAGCT-3’ and reverse primer sequence 

5’-GCAGGTGAGTTGTTACACACT-3 ’ were used. The PCR product of 355 base pair 

was analyzed by agarose gel electrophoresis. Immunoblotting with anti-HA antibody was 

used to confirm presence of L13a in the immunoprecipitate.

2.3.7 In vivo association of L13a with nucleolin

HEK 293T cells were transfected with plasmids expressing HA-tagged WT or mutant 

L13a proteins. 24 hours post transfection, cells were lysed in lysing buffer supplied with 

the IP kit and 100 u.g of lysates were immunoprecipitated with mouse anti-HA antibody 

coupled agarose beads (Sigma, Cat# IP0010-1KT) or non-antibody-couple beads as a 

control in the buffer 150 mM NaCl, 1mM EDTA, 1.5 mM MgCl2, 0.05% Triton X-100, 50 

mM HEPES (pH 7.5). 10 ug of lysates before immunoprecipitation were used as an input 

for nucleolin. Total protein from the immunoprecipitates was subjected to SDS-PAGE, 

followed by immunoblot analysis with mouse monoclonal anti-nucleolin antibody 

(Millipore, Catalog# MABC587). An immunoblot with rabbit anti-HA antibody (Abcam) 
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was also performed to confirm the equal efficiency of immunoprecipitation in all the 

samples.

2.3.8 Structural and sequence analysis of human L13a with E. coli L13a and with 

east (L16A) and the molecular environment of the proteins on ribosome surface

Visualization and analysis of L13a and L14 structures were performed using 

CryoEM data of the human ribosome at 3.6 A resolution (Protein Data Bank code 5T2C) 

and X-Ray data of the yeast ribosome at 3.0 A resolution (Protein Data Bank code 4V88). 

Ribosome and protein structures were visualized and analyzed using Swiss-Pdb Viewer 

V4.1.0 and/or PyMOL v1.5.0.5. The PyMOL interface residues script was used to select 

interface residues involved in interaction between L13a and L14. Structural alignment of 

the human L13a and a yeast homologue (L16A) was done using interactive fit (all atom) 

alignment option of the Swiss-Pdb Viewer. Alignments of amino acid sequences of 

ribosomal proteins was done using Clustal Omega (1.2.4)

https://www.ebi.ac.uk/Tools/msa/clustalo/ that uses seeded guide trees and hidden Markov 

models (HMM) profile-profile techniques to generate alignments between three or more 

sequences. Structure alignment of E. coli L13 and human L13a depicted as ribbon 

diagrams was done using X-ray structure of the E. coli ribosome at 3.1 A (Protein Data 

Bank code 4v7u) and the CryoEM structure of the human ribosome at 3.6 A resolution 

(Protein Data Bank code 5T2C).
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2.4 RESULTS

2.4.1. Human L13a harbors a eukaryote-specific C-terminal extension

As aforementioned, previous studies in our lab have identified arginine at 

position 68 essential for ribosomal incorporation of L13a. This amino acid lies within one 

of the predicted RNA binding domains (aa 53-75) based on the homology modeling using 

crystal structure of yeast L16a (structural homolog of human L13a) as a template and a 

web-based server, RNABindR (http://einstein.cs.iastate.edu/RNABindR) . RNABindR 

predicts the probable candidate amino acids to contact RNA. This predicted RNA binding 

domain lies in the N-terminal globular domain of L13a. RNABindR also predicted one 

more RNA binding domain (aa 169-179) in the C-terminal region of L13a. In our present 

study, the sequence and structure alignment of prokaryotic L13 (homolog of mammalian 

L13a) and human L13a showed a conserved N-terminal globular domain, whereas human 

L13a has C-terminal extension that is not present in its prokaryotic homolog (Fig. 14). E. 

coli L13 is 142 amino acids long and has a histidine at position 80 at the tip of a protruding 

loop which shows Vander walls interactions with G2642 of the 50S rRNA. The C-terminal 

helix in human L13a is about 55 amino acids long (Tyr140-Val203 amino acids). Yeast 

L16 also has a C-terminal helix and its role in growth and ribosome biogenesis has been 

studied previously (Espinar-Marchena et al., 2016). However, in higher eukaryotes such 

as mammals, the evolutionary significance of this eukaryote-specific C-terminal helix 

remains unknown. Therefore, in this study, we did structural and functional analysis of C- 

terminal extension of human L13a using human cell lines as a model and in vitro assays. 

Interestingly, the other predicted RNA binding domain (aa 169-179) and the predicted 

nuclear localization signal (NLS) by NLStradamus 
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(http://www.moseslab.csb.utoronto.ca/NLStradamus/)] sequence also lies within the C- 

terminal extension spanning the sequence from Lys159 to Lys 188. Therefore, we 

hypothesized that this C-terminal domain could have evolved in eukaryotes to perform 

additional functions that are absent in their prokaryotic counterparts. It is important to 

mention here that in yeast, the C-terminal domain had been dissected at molecular level to 

show its important role in rRNA processing and stabilization of 60S particles. However, 

the role of this domain in higher eukaryotes like mammals is largely unknown.
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a CLUSTALO  O (1.2.4) multiple sequence alignment
RL13_ECOLI MKTFTAKPETVKRDWYWDATGKTLGRLATELARRLRGKHKAEYTPHVDTG0Y1IVLNAD 60
RL13A_HUMAN ------------------MAEVQVLVLDGRGHLLGRLAAIVAKQ-------------------------VLLGRKWWRCE 39

RL13_ECOLI KVAVTGNKRTDKVYYHHTGHIGGIKQATFEEMIARRPERVIEIAVKGMLPKGP-LGRAMF 119
RL13A_HUMAN GINISGNFYRNKLKYLAFLRKRMNTNPSRGPYHFRAPSRIFWRTVRGMLPHKTKRGQAAL 99

RL13_ECOLI RKLKVYAGNEHNHAAQQPQV-------- LDI--------------------------------------------------------------------- 142
RL13A_HUMAN DRLKVFDGIPPPYDKKKRMWPAALKWRLKPTRKFAYLGRLAHEVGWKYQAVTATLEEK 159

RL13_ECOLI -------------------------------------------------------------------------- 142
RL13A_HUMAN RKEKAKIHYRKKKQLMRLRKQAEKNVEKKIDKYTEVLKTHGLLV 203

C

Figure 14: sequence and structure alignments of E. coli ribosomal protein L13 and human 

L13a. (a) CLUSTAL O (1.2.4) sequence alignment; (b) Human L13a structure depicted as a ribbon 

diagram based on the CryoEM structure of the human ribosome at 3.6 A resolution (Protein Data 

Bank code 5T2C). The conserved globular core domain is shown in dark blue. Predicted NLSs 

(Arg84 to Met118 and Lys159 to Lys188) are shown in yellow. Predicted RNA-binding sites (Lys53 

to Ala75 and Arg169 to Lys179) are shown in red. The eukaryote-specific C-terminal extension 

(Tyr149 to Val203) is shown in sky blue. Side chains are shown as sticks for Lys53, Lys159, Lys179, 

Lys188, Ala75, Arg85, Arg169, Met118, Tyr149 and Val203. (c) Structure alignment of E. coli L13 

(red) and human L13a (blue) depicted as ribbon diagrams based on the X-ray structure of the E. coli 

ribosome at 3.1 A (Protein Data Bank code 4v7u) and the CryoEM structure of the human ribosome 

at 3.6A resolution (Protein Data Bank code 5T2C). The eukaryote-specific L13a C-terminal 

extension is shown in sky blue. E. coli His60 and human Arg68 residues previously shown to be 

important for ribosome incorporation are indicated. Structure alignment was done using Swiss-Pdb 

Viewer V4.1.0 iterative magic fit subroutine.
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2.3.2. Eukaryote-specific C-terminal extension is essential for nucleolar import and

incorporation of L13a into the ribosomes.

To understand the function of this C-terminal domain of human L13a, we 

started with deleting the whole C-terminal domain to investigate the ability of the 

remaining N-terminal globular domain to incorporate into the ribosomes. To accomplish

this objective, we made a construct expressing HA-tagged version of L13a 148A149-203

(amino acids 149 to 203 deleted).

Truncated L13a- 
(A149 -203AA)

Deletion of the human L13a C-terminal extension

10% Sucrose

HA-tagged L13a 
plasmid(WT/ mutant)

10-50% Sucrose 
gradient

« Polysome 
20% Sucrose Fractionation

30% Sucrose
UV absorbance

40% Sucrose (A254 nm)
precipitation

TCA mediated 
protein Immunoblot with 

Anti-HA antibody

Figure 15: Schematic representation of ribosome incorporation assay: (a) Immunoblot of HA- 

tagged WT and truncated L13a (A149-203 AA). (b) Ribosome profiling of HEK293T cells expressing 

HA-tagged L13a protein: Cell lysate of transfected cells was layered over 10-50% sucrose gradient. 

Ribosomal fractions were resolved by sucrose density gradient centrifugation, protein from each 

fraction was precipitated using trichloroacetic acid (TCA) followed by immunoblotting with anti-HA 

antibody to test the co-sedimentation of L13a variants with fractions corresponding to free fractions, 

40S, 60S, 80S and polyribosomes.

53



The ability of the plasmid to express truncated version of L13a was tested by 

Western blot using anti-HA antibody (figure 15 a). We expressed this truncated form of 

L13a in human cell line and performed ribosome incorporation assay (figure 15 b). Results 

show that HA tagged WT L13a (used as positive control) significantly incorporated in to 

the ribosome and was present in the translationally active polysomes. WT L13a was found 

to be co-sedimented with lighter fractions (40S, 60S and 80S) and heavier polyribosome 

fractions. Whereas, truncated form of L13a with c-terminal domain deletion failed to co

sediment with the polyribosomes. We could detect the truncated protein only in lighter 

fractions (figure 16a.)

Based on the previous studies where we have shown that translocation of L13a 

from cytoplasm to the nucleolus is essential. The nucleolus is the site where L13a 

incorporates into the 90S precursor ribosome during ribosome biogenesis. Next, to 

investigate whether the C-terminal domain is essential for translocation of L13a into the 

nucleus and nucleolus, we studied the subcellular localization of WT and truncated L13a 

protein lacking C-terminal extension. We followed our previously published approach 

where nucleolin was used a marker for the nucleolus to check the colocalization of L13a 

protein with the nucleolin. The results showed that WT L13a could successfully translocate 

to the nucleolus, evident by its localization with the nucleolin protein. L13a1-148A149- 

203 also successfully enters the nucleus but shows a defect in trafficking of the protein to 

the nucleolus- the site of ribosomal incorporation. This experiment suggested that one of 

the functions of evolution of C-terminal extension in human L13a might be in the 

trafficking of the protein from cytoplasm to the nucleolus and incorporation into the 

ribosomes. This coincides well with fact that ribosome biogenesis in prokaryotes has a
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different mechanism from eukaryotes where nucleolus is the main site of ribosome

biogenesis. This subcellular organelle is absent in prokaryotes (figure 16b).

a

Transfected with HA-tagged L13a (WT/ Truncated)
b

Anti-HA: Green; Anti-Nucleolin: Red; Nucleus: Blue

WT L13a L13a (1-148)A149-2O3

Figure 16: The eukaryote-specific C-terminal extension of L13a is essential for nucleolar 

translocation and ribosomal incorporation of L13a. (a) absorption profiles during ribosome

fractionation of WT L13a and L13a (1-148)A149-203 is shown. Density gradient co-sedimentation analysis 

of L13a WT/mutant protein was done by following ribosome incorporation assay elaborated in figure 15b. 

The sedimentation of 40S, 60S and 80S ribosome subunits and polysomes is indicated at the top of the 

figure. (b) Subcellular localization of L13a protein: HEK 293T cells were transfected with plasmids 

expressing HA-tagged WT or L13a (1-148) 149-203 protein. Cells were fixed, stained with anti-nucleolin 

(red), anti-HA (green) and DAPI (blue; to visualize nucleoli) and viewed under fluorescence microscope.
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We also tested the C-terminal domain alone (L13a 149-203A1-148) for its 

ability to incorporate into the ribosomes and nucleolar translocation. Surprisingly, the C- 

terminal L13a protein consisting of amino acid sequence of 149-203 doesn’t show any 

defect in the nuclear and nucleolar translocation but failed to incorporate into the 

polyribosomes (figure 17a and b). This protein behaved in a way similar to the R68A 

mutant (Das et al., 2013) that could accumulate in the nucleolus but failed to incorporate 

into the ribosomes.

Transfected with HA-tagged L13a

L13a (149-203) A1-138

Figure 17: Eukaryote-specific C-terminal extension alone retains the ability to translocate 

into the nucleolus but failed to incorporate into the ribosomes. (a). absorption profile of 

sucrose density ribosome fractionation of (HA-tagged C-terminal only) L13a 149-203 (A1-148). 

L13a lacking N-terminal domain fails to incorporate into the ribosomes. (b). Subcellular 

localization of L13a 149-203 (A1-148). Cells expressing HA-tagged L13a 149-203 (A1-148). L13a 

were fixed, stained with anti-HA (green), anti-nucleolin (red) antibody and nuclear stain DAPI 

(blue). Images were captured with confocal microscope to determine co-localization of nucleolin 

and L13a in the nucleolus.
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We have also tested the in vivo association of both N-terminal L13a protein (1- 

148A149-203) and C-terminal L13a protein (149-203A1-148) with 28S rRNA (constituent 

RNA of 60S subunit) to further confirm their inability to incorporate in 60S ribosomal 

subunits (see figure 30).

2.3.3. Eukaryote-specific C-terminal extension of L13a harbors ribosomal 

incorporation domain:

Previously, we have experimentally demonstrated that arginine (R) at 

position 68 within the predicted RNA binding domain (53-75) is essential for ribosomal 

incorporation and occupies the same position as His60 in E. coli and arginine 68 in yeast 

L16a i.e. the tip of protruding loop. According to current study, the C-terminal domain is 

also essential for ribosomal incorporation but the specific amino acid residue (s) critical 

for ribosomal incorporation within this extension are unknown. Since the second RNA 

binding domain lies within this C-terminal extension, we substituted several amino acids 

encompassing the whole C-terminal domain and performed ribosomal incorporation assay. 

We tested several point, double and triple mutants namely K159A-R160A-K161A, E186A- 

K187A-K188A, K172A, Q173A, M175A, R176A, L177A, K179A-Q180A and I166A- 

H167A-Y168A by expressing them in HEK293T cells followed by polysome fractionation 

and immunoblot to detect L13a co-sedimentation with polyribosomes. Surprisingly, L13a 

mutants E186A-K187A-K188A, K172A, Q173A, M175A, R176A, L177A, K179A- 

Q180A and I166A-H167A-Y168A co-sediment well with the polysomes just like WT 

L13a (figure 18). Therefore, mutating these amino acids doesn’t interfere with ribosomal 

incorporation. However, the triple mutant K159A-R160A-K161A failed to retain its ability 

to incorporate into 60S ribosomal subunits, 80S ribosomes and polyribosomes. Instead the 
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protein can be seen in free fractions only, suggesting a role of these amino acid residues in 

the ribosomal incorporation of L13a. To gain more insights, we made HA-tagged 

constructs harboring point mutation for each of these three amino acids followed by 

ribosomal incorporation assay. Mutant R160A retains ability to incorporate into the 

ribosomes. In contrast, L13a variants with single K159-A and K161A mutation entirely 

abrogated the ribosomal incorporation similar to the triple mutant K159A-R160A-K161A 

shown in figure 18. This experiment shows that in addition to R68, there are other amino 

acid residues of L13a that are indispensable for ribosomal incorporation.
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Figure 18: Amino acid residues Lysine 159 and Lysine 161 within the C-terminal domain

are essential for ribosomal incorporation of L13a. (a). absorption profiles of sucrose 

density ultracentrifugation-based ribosome fractionation of HA-tagged mutant L13a proteins 

are shown in this figure. Twelve fractions corresponding to 40S, 60S 80S and polyribosomes 

were collected followed by immunoblot with anti-HA antibody to detect co-sedimentation of 

L13a proteins with ribosomes. L13a mutants for lysine 159 and lysine 161 failed to 

incorporated into the ribosomes. (b). Schematic diagram of the human L13a amino acid 

sequence indicating residues Lys 159 and 161 (red-within the eukaryote-specific C-terminal 

extension of L13a) essential for ribosomal incorporation of L13a.
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2.3.4. Eukaryote-specific C-terminal extension mediated interaction between 

ribosomal proteins L13a and L14 is essential for ribosomal incorporation of L13a

Several ribosomal proteins are known to interact with each other 

resulting in the formation of complex networks of ribosomal protein interactions on the 

outer shell of the ribosome in eukaryotes. Cryo EM studies of the human ribosome showed 

the interaction of the amino acids at positions 185(Valine), 189 (Isoleucine) and 

196(Leucine) within the C-terminal extension of L13a with another ribosomal protein L14. 

The C-terminal domain of L13a forms a long a helix that bends and interacts with a long 

C-terminal helix of human ribosomal protein L14 (figure 19).

Figure 19: Modeling of the interaction between the C-terminal helices of human L13a 

and L14 protein. L13a (blue and sky blue) and L14 (red) protein structures are depicted as 

ribbon diagrams based on the CryoEM structure of the human ribosome at 3.6 A resolution 

(Protein Data bank code 5T2C). Side chains of L13a residues Val185, Ile189 and Leu196 

interacting with the L14 C-terminal helix are shown in yellow. Side chains of the L13a residues 

experimentally determined to affect L13a ribosomal incorporation (Arg68, Lys159, Lys161, 

Arg169, Lys170, and Lys171) are also shown.
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Figure 20: Amino acid residues of L13a (Val185, Ile189 and Leu196) within the C- 

terminal extension and involved in interaction with L14, are essential for ribosomal 

incorporation of L13a. (a). absorption profiles of ribosome fractionation of cells expressing 

HA-tagged Val185A-Ile189A and Val185A-Ile189A-L196A L13a mutants. Both the double 

and triple mutants failed to co-sediment with the polyribosomes. (b) Schematic diagram of 

amino acid sequence of C-terminal extension of L13a showing amino acids Val185, Ile189 

and L196 (red) essential for ribosomal incorporation of L13a.
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We proposed that this interaction could be important for L13a ribosomal 

attachment and mutating the indicated amino acids within L13a could interfere with the 

ribosomal incorporation or stability of L13a within the ribosomes. To further test the role 

of the residues involved in interaction between two ribosomal proteins of the large subunit, 

we have generated a double mutant (V185A-I189A) and a triple mutant (V185A-I189A- 

L196A), followed by ribosome incorporation assay.

Both the L13a variants (double and triple mutant) failed to incorporate into the 

polyribosomes (figure 20). It is noteworthy that a similar interaction between L14 and L16 

(homolog of mammalian L13a) exists in yeast.

2.3.5. Sub-cellular localization of ribosomal incorporation competent and defective 

L13a mutants:

In order to understand the molecular mechanism underlying the ribosomal 

incorporation and association of L13a with rRNA, it’s important to study the structural 

features of L13a that governs its trafficking from the cytosol to nucleus, nucleolus and 

hence into the ribosomes. Since nucleolus is the site of incorporation of L13a into rRNA, 

it is essential for the protein to traffic to this specific organelle. Therefore, we decided to 

test if ribosomal incorporation defective mutants K159A-R160A-K161-A and V185A- 

I189A-L196A can translocate to the nucleus and nucleolus. We followed previously used 

immunofluorescence-based assay in which we expressed L13a mutant proteins in a human 

cell line, followed by detection of the transfected HA-tag L13a and nucleolin with dye 

conjugated antibodies Alexa fluor-488 and Alexa fluor-594 respectively. We tested WT 
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and several other ribosome incorporation competent mutants such as E186A-K187A-

K188A, K172A, Q173A, M175A, R176A, L177A, K179A-Q180A and I166A-H167A-

Y168A etc. As expected, WT and ribosome incorporation competent L13a mutants can 

completely translocate into the nucleolus (data not shown). No protein was retained in the 

nucleus. Interestingly, all three ribosomal incorporation defective L13a mutants K159A- 

R160A-K161A, double mutant V185A-I189A and triple mutant V185A-I189A-L196A 

successfully translocated into the nucleus but failed to translocate into the nucleolus (figure 

21 and 22). Therefore, we showed that these incorporation defective mutants failed to 

incorporate into the ribosomes due to their inability to enter the nucleolus. We also tested 

the nuclear and nucleolar trafficking ability of single mutants K159A, R160A and K161A. 

K159A and K161A mutants failed to translocate to the nucleolus like the triple mutant 

K159A-R160A-K161A. whereas, R160A retains the ability to accumulate in the nucleolus 

(figure 23,24). Therefore, we concluded that the amino acid residues K159 and K161 are 

essential for nucleolar import and ribosomal incorporation of L13a. However, our previous 

studies have shown that the ribosome incorporation of the defective R68A mutant showed 

no defect in nucleolar trafficking, suggesting that nucleolar translocation is a prerequisite 

but not sufficient for incorporation of L13a into the 90S pre-ribosomes (Das. P et al., 2013).
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Transfected with HA-tagged L13a mutants

Anti-HA: Green; Anti-Nucleolin: Red; Nucleus: Blue

L13a K159A-R160A-K161A

Figure 21: Subcellular localization of ribosome incorporation defective triple mutant 

Lys159A-Arg160A-Lys161A: The nuclear and nucleolar localization of triple mutant 

Lys159A- Arg160A -Lys161A was studied by immunofluorescence-based analysis of HEK 

293T cells expressing HA-tagged triple mutant L13a. Twenty four hours post-transfection, cells 

were fixed and stained with anti-HA antibody (green), anti-nucleolin antibody (endogenous 

nucleolin protein: marker for nucleolus) and nuclear stain DAPI. Cells were viewed under 

fluorescent microscope (2 replicates).
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Transfected with HA-tagged L13a mutants

Figure 22: Subcellular localization of ribosome incorporation defective double mutant 

Val189A-Ile189A and triple mutant Val185A-Ile189A-Leu196A: The nuclear and nucleolar 

localization of double and triple mutant Val185A-Ile189A and Val185A-Ile189A- was studied 

by immunofluorescence-based analysis of HEK 293T cells expressing HA-tagged mutant L13a 

proteins (green in above images). Twenty-four hours post-transfection, cells were fixed and 

stained with anti-HA antibody (green), anti-nucleolin antibody (endogenous nucleolin protein: 

marker for nucleolus) and nuclear stain DAPI. Cells were viewed under fluorescent microscope 

(2 replicates of each mutant).
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Transfected with HA-tagged L13a mutants

Figure 23: Subcellular localization of ribosome incorporation defective mutants Lys(K) 

159A and Lys(K) 161A: The nuclear and nucleolar localization of the Lys159A mutant was 

studied by immunofluorescence-based analysis of HEK 293T cells expressing HA-tagged 

mutant L13a protein (green in above images). Twenty-four hours post-transfection, cells were 

fixed and stained with anti-HA antibody (green), anti-nucleolin antibody (endogenous nucleolin 

protein: marker for nucleolus) and nuclear stain DAPI. Cells were viewed under a fluorescent 

microscope.
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Transfected with HA-tagged L13a mutants

Anti-HA: Green; Anti-Nucleolin: Red; Nucleus: Blue

L13aR160A

Figure24: Subcellular localization of ribosome incorporation competent Argnine (R)160A 

mutant: The nuclear and nucleolar localization of single mutant R160A was studied by 

immunofluorescence-based analysis of HEK 293T cells expressing HA-tagged mutant L13a 

protein (green in above images). Twenty-four hours post-transfection, cells were fixed and 

stained with anti-HA antibody (green), anti-nucleolin antibody (endogenous nucleolin protein: 

marker for nucleolus) and nuclear stain DAPI. Cells were viewed under fluorescent microscope 

(2 replicates).
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2.3.6. Mutations in the predicted NLS sequences in C-terminal and N-terminal 

domains of L13a affect nucleolar, but not nuclear translocation of the L13a protein.

In eukaryotes, ribosome assembly requires an intricate trafficking of ribosomal 

proteins which are produced in the cytoplasm. The proteins first enter the cell nucleus and 

accumulate in the nucleolus before they associate into nascent ribosomes. Therefore, 

eukaryotic ribosomal proteins are thought to harbor nuclear/nucleolar localization signals 

(NLSs) which are usually short, predominantly basic stretches of amino acids that trigger 

active transport of proteins to the nucleus. Many conserved ribosomal proteins such as uL4, 

uL5, uL9 have evolved nuclear localization signals in their globular domains by 

undergoing structural rearrangements. These NLS sequences are absent in their prokaryotic 

counterparts, since ribosomal proteins in prokaryotes doesn’t need a NLS due to lack of 

nucleus/nucleolus (Melnikov et al., 2015).

The mechanism of trafficking of L13a to the nucleus/nucleolus and existence of 

NLS sequences for human L13a have not been explored yet. Therefore, we used two web

based programs to search for potential nuclear localization signals (NLSs) within L13a 

sequence: NLS mapper (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) 

and NLStradamus (http://www.moseslab.csb.utoronto.ca/NLStradamus/) . Both the 

programs identified separate NLS sequences, one in globular domain (Arginine 84 to 

Methionine 119), which we called NLS1 and the other one in eukaryote-specific C-terminal 

domain (Lysine 159 to Lysine 188), which we named as NLS2 (figure 25a).
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Figure 25: subcellular localization of L13a variants lacking predicted nuclear localization 

signal (NLSs): (a) Schematic diagram of the human L13a amino acid sequence with predicted 

NLSs (Arg84 to Met118 and Lys159 to Lys188) indicated. (b) nuclear and nucleolar localization 

of L13a variants (1-84+119-203)A85-118; predicted NLS1 deleted), (1-84)A85-118+119- 

148A149-203; predicted NLS1 and NLS2 deleted) analyzed by immunofluorescence-based 

assay. HEK 293T cells expressing HA-tagged L13a proteins (green in above images) were fixed 

and stained with anti-HA antibody (green), anti-nucleolin antibody and nuclear stain DAPI. 

Cells were viewed under fluorescent microscope.
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In order to experimentally validate these predicted NLSs, we generated HA- 

tagged L13a constructs: one with NLS1 internally deleted (1-84)A85-118+119-203 and the 

other one with both NLS1 and NLS2 deleted (1-84) A 85-118 + (119-148) A149-203. The 

ability of these specific deletion versions of L13a proteins to translocate to the nucleus was 

examined by the same immunofluorescence-based assay. Contrary to our expectations, 

both the mutant L13a proteins lacking either NLS1 or both NLS1 &2 showed no defect in 

nuclear import. We observed that no protein was retained in the cytoplasm, whereas, 

nucleolar import of L13a was compromised in both the mutants. Mutant L13a failed to 

translocate into the nucleolus and the defect is more severe in the L13a protein lacking both 

NLS1 and NLS2 as evident from the confocal microscopy pictures in the figure 25b.

Therefore, these studies show that the nuclear translocation of the human L13a 

protein is more refractory to the amino acid alterations as compared to nucleolar 

translocation.

2.3.7. R169-K170-K171 residues within the eukaryote-specific C-terminal extension 

are essential for GAIT-mediated translational silencing.

Our lab and other groups have demonstrated an important ribosome independent 

function of mammalian L13a elaborated in the introduction (chapter I). Briefly, 

inflammatory stimulus results in phosphorylation mediated release of L13a from the 60S 

subunit and incorporation into a cis-acting GAIT complex, which is known to inhibit 

translation initiation of GAIT element bearing target inflammatory mRNAs. While L13a 

is an important component of this GAIT complex, amino acid residue (s) of L13a critical 

for this extra-ribosomal function remains unknown. Previous studies have also shown that 

ribosome incorporation defective L13a mutant R68A retains the ability to silence the 
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translation of GAIT element bearing reporter mRNA (Das et al., 2013). Therefore, we have 

examined the importance of this C-terminal extension for its role in GAIT mediated 

silencing activity.

We have followed our previously established in vitro translational assay in which 

we tested the purified recombinant WT or mutant His tagged L13a protein for their ability 

to silence the translation of a GAIT-element bearing reporter luciferase mRNA (Cap-Luc- 

GAIT-PolyA) and a control T7gene10 mRNA (lacking the GAIT element) in rabbit 

reticulocyte lysate. We expressed WT or mutant versions of His-tagged L13a proteins 

(mutations confined to C-terminal domain) in insect cell lines, purified the proteins to be 

used in the in vitro translation assay. We tested the expression of full length and truncated 

purified protein by immunoblot with anti-His antibody (figure 26).

First, we compared translational silencing ability of WT L13a with different length 

truncations in the C-terminal extension: L13a 1-195A196-203, L13a 1-180A181-203, L13a 

1-62A163-203 and L13a 1-148A149-203. Results summarized in figure 27 show that 

deletion of the last 5 amino acids and 23 amino acids doesn’t interfere with translational 

silencing ability of L13a. Both of these truncated L13a proteins shows silencing ability 

equivalent to WT L13a, while deletion mutants L13a 1-162A163-203 and L13a 1- 

148A149-203 failed to silence the translation of the reporter mRNA. These results 

identified a region within the C-terminal extension ranging from Tyr149-Val203 as 

essential for translational silencing.
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Figure 26: Generation of His-tagged recombinant L13a WT/mutant proteins and in vitro 

translation assay: (a). Schematic representation of transfection of Sf-9 cells with bacmid DNA 

expressing L13a variants, protein purification. The purified recombinant L13a proteins were 

used in an in vitro translation assay of a luciferase reporter RNA (bearing GAIT element) and 

a control RNAT7 gene 10 (Lacking GAIT element) in cell-free (rabbit reticulocyte lysate) RRL 

system. The S35-radiolabeled translated proteins were visualized by 10% SDS-PAGE followed 

by autoradiography. (b) Immunoblot of His-tagged recombinant L13a variants with anti-His 

antibody.
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Figure 27: The eukaryote-specific C-terminal extension of L13a harbors amino acid 

residues (R169-K170-K171) required for GAIT element mediated translational 

silencing: (a) Effect of L13a variants on in vitro translation of luciferase reporter RNA and 

control RNA as described in the figure above. The L13a variants that do not induce GAIT 

element-dependent translational silencing are marked with a star (L13a (1-148)A149-203, 

L13a (1-162)A163-203 and R169A-K170A-K171A- these three amino acids critical for 

silencing activity are indicated by a box with a star at the bottom of the figure. (b) 

Schematic representation of L13a deletion constructs tested in translation silencing assay 

and a summary of results.
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We expressed various L13a mutant proteins by inducing point, double or triple 

mutations specifically targeting the amino acids between 149-203 region with the intention 

to pinpoint the amino acids critical for silencing activity. Various L13a mutants such as 

Y149A-Q180A, E162A-K163A, K172A, M175G, R176A, R178A, Q180A, K179A- 

Q180A and ribosome incorporation defective K159A-R160A-K161A and V185A-I189A- 

L196A, V185A-I189A showed translational silencing ability comparable to WT L13a. In 

contrast, the triple mutant R169A-K170A-K171A L13a failed to show translation silencing 

of the GAIT-element bearing mRNA transcript. In this assay, the translation of control 

mRNA (without GAIT element) remains unaffected in presence of L13a variants (figure 

27). The quantification of extent of translation inhibition of reporter mRNA by various 

L13a protein is presented in the figure 28 below.

This experiment has identified a short region of L13a (169-171 AA) as the 

translational silencing domain of L13a, that is essential for extra-ribosomal function of this 

ribosomal protein.
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Figure 28: Schematic illustration of quantification of translation silencing activity of

WT/mutant/truncated L13a proteins used in the in vitro translation silencing assay.
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2.3.8 Translational silencing domain of human L13a retains nucleolar translocation

and ribosome incorporation ability.

L13a (Green) Nucleolin (Red) Merge+ DAPI

Figure 29: Ribosomal incorporation and nuclear/nucleolar translocation assay of 

L13a mutant defective of translational silencing activity. (a) ribosome fractionation 

absorption profile and immunoblot of triple mutant R169A-K170A-K171A showing its 

co-sedimentation with polyribosomes. and (b)localization within the mammalian cells 

(translocation to the nucleolus and colocalization with nucleolin protein (2 replicates).
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In order to check if amino acid residues arginine169, lysine 170 and 171 are 

also essential for ribosomal incorporation of L13a in addition to their role in GAIT- 

mediated translational silencing pathway, we tested this triple mutant in nuclear/nucleolar 

translocation assay and ribosome incorporation assay.

Interestingly, the R169A-K170A-K171A mutant doesn’t show any defect in 

nuclear/nucleolar translocation. The protein can be seen colocalized with the nucleolin in 

the figure (figure29b). Also, this triple mutant successfully co-sediments with 

polyribosomes, suggesting successful incorporation into the ribosomes (figure 29a). This 

is further confirmed by RNA-immunoprecipitation assay to check the association of 

R169A-K170A-K171A with 28S rRNA (shown in fig30.).

2.3.9. Ribosome incorporation defective L13a mutants fail to associate with 28S rRNA 

in vivo.

The ribosomal incorporation assay used in this study is based on co-sedimentation 

of the WT or mutant L13a protein with the ribosomal subunits and polyribosomes. 

Therefore, we further tested the ability of various ribosome incorporation defective and 

competent mutants to bind 28S rRNA in vivo. In this experiment, we expressed HA-tagged 

WT, ribosome incorporation defective mutants, nucleolar translocation defective mutant 

(NLS mutant) and few ribosome incorporation competent mutants of L13a in HEK 293T 

cells followed by immunoprecipitation of L13a proteins using HA-antibody coated agarose 

beads.
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Figure 30: association of L13a and its mutant variants with 28S rRNA. Lysates prepared from 

HEK 293T cells expressing HA-tagged L13a (wild type or mutant as indicated above each lane) 

were used for immunoprecipitation with anti-HA-coated agarose beads (or non-antibody-coated 

blank beads as a control, 1st lane from left). (a) Total RNA was extracted from the 

immunoprecipitates and analyzed by RT-PCR with primers specific for 28S rRNA. RT-PCR 

products were visualized on an ethidium bromide stained agarose gel. (b) Equal volumes of the 

immunoprecipitate from each reaction were run on an SDS-PAGE gel and immunoblotted with 

anti-HA antibody to confirm the presence of equivalent amounts of HA-tagged protein. (c) 

Summary of results of ribosomal incorporation and association with 28S rRNA of L13a variants.
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Association of immunoprecitated L13a protein with 28S rRNA was confirmed 

by isolating the RNA from immunoprecipates and RT-PCR with 28S rRNA specific 

primers. we tested eight different L13a variants e.g. ribosome incorporation defective 

K159A-R160A-K161A, V185A- I189A-L196A, L13a (1-148) A149-203, L13a (149-203) 

A1-148 and previously tested R68A and WT L13a as controls (Das et al., 2013), 

incorporation competent R169A-K170A- K171A and I166A-H167A-Y168A and a single 

variant without predicted NLS-1 and NLS-2 (1-84) A 85-118 + (119-148) A149-203. 

Consistent with the results of the ribosomal incorporation assay, we have not detected 28S 

rRNA in the immunoprecipitates of K159A-R160A-K161A, V185A-I189A-L196A, L13a 

(1-148) A149-203, L13a (149-203) A1-148, R68A and of the variant without NLS-1 and 

NLS-2 i.e. (1-84) A 85-118 + (119-148) A149-203 (nucleolar translocation defective 

mutant (Fig.30a ). In the same experiment, we could detect 28S rRNA in the 

immunoprecipitates of ribosome incorporation competent L13a mutants R169A-K170A- 

K161A and I166A-H167A-Y168A. We also performed the Immunoblot analysis with anti

HA antibody of the same immunoprecipitates to confirm the equal efficiency of 

immunoprecipitation for different L13a variants (Figure 30b). The specificity of the 28S 

rRNA immunoprecipitation was confirmed by the absence of the PCR product from 28S 

rRNA obtained using HA-tagged wild-type L13a-transfected cells and beads without 

coupling with the antibody. Results of this experiment are summarized in figure 30c.

2.3.10. Testing in vivo association of L13a variants with nucleolin protein.

We have used nucleolin as a nucleolar marker in our previous as well as current 

study. Nucleolin is a protein abundant in the nucleolus and is known to play several 

important functions including ribosome biogenesis. Nucleolin has been shown to bind 
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several ribosomal proteins. However, the role of such interactions is not clear yet (Bouvet 

et al., 1998). In the results discussed above, we have found that the outcomes of our 

ribosome incorporation assay coincide well with nucleolar translocation assay. These 

results show that ribosome incorporation defective mutants K159A-R160A-K171A, L13a 

1-148A149-203, V185A-I189A-L196A also fail to translocate to the nucleolus except one 

mutant 149-203A1-148 which retains nucleolar retention ability but still fails to incorporate 

into ribosomes. Also, ribosome incorporation competent L13a mutants such as R169A- 

K170A-K171A, E186A-K187A-K188A, I166A-H167A-Y168A showed no defect in 

nucleolar translocation. In addition, a L13a mutant with NLS1 and NLS2 deletion (L13a 

(1-84) A 85-118 + (119-148) A149-203) also fails in nucleolar import.

We further confirmed the nucleolar colocalization of these L13a variants by 

testing in vivo association of L13a proteins with nucleolin protein. We expressed 10 HA- 

tagged L13a variants (including WT L13a) discussed above in HEK 293T cells followed 

by cell lysate preparation and immunoprecipitation with anti-HA antibody coated agarose 

beads. A Western blot using a part of immunoprecipitation input with nucleolin antibody 

was done to show presence of nucleolin protein in all the IP-lysates before HA-based 

immunoprecipitation shown in the figure 31.
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Figure 31: Immunoblot of IP lysates input using anti-nucleolin antibody. 10 pl of HA- 

tagged WT/mutant L13a expressing HEK 293T cell lysates were separated by SDS-PAGE 

followed by immunoblot with anti-nucleolin antibody, showing the presence of nucleolin 

protein in all the IP lysates.

The presence of nucleolin protein in the L13a immunoprecipitates was detected 

by immunoblot with anti-nucleolin antibody and used as a proof to show association of 

L13a and nucleolin protein. As expected, nucleolin was not detected in the K159A-R160A- 

K171A, L13a 1-148A149-203, V185A-I189A-L196A, L13a (1-84) A 85-118 + (119-148) 

A149-203 L13a immunoprecipitates. This is in agreement with the nucleolar translocation 

assay results. All these mutants failed to translocate to the nucleolus and incorporate into 
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ribosomes. Whereas, ribosome incorporation competent R169A-K170A-K171A, E186A- 

K187A-K188A, I166A-H167A-Y168A, WT L13a proteins were found to be associated 

with nucleolin. The C-terminal extension only (L13a 149-203A1-148) and R68A mutants 

also showed interaction with nucleolin protein. Both of these proteins successfully 

colocalizes with the nucleolin in the nucleolus but fail to incorporate into the ribosomes 

(figure 32a). An immunoblot of L13a immunoprecipitates with anti-HA antibody was also 

done to check for equal efficiency of HA-based immunoprecipitation (figure 32b). These 

results support the notion that nucleolar trafficking of ribosomal protein L13a is important 

for ribosomal incorporation but doesn’t ensure its incorporation as is the case with R68A 

and L13a 149-203A1-148 mutants.
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Figure 32: In vivo association of L13a and its mutant variants with nucleolin. Lysates of 

HEK 293T cells expressing recombinant HA-tagged L13a (wild type or mutant as indicated 

above each lane) were subjected to immunoprecipitation with anti-HA-coated beads (or non

antibody-coated blank beads as a control). (a) The immunoprecipitates were run on SDS-PAGE 

gels and immunoblotted with anti-nucleolin antibody and (b) anti-HA antibody. (c) Summary 

of results of in vivo association of L13a variants with nucleolin, compared with subcellular 

localization assay results.
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2.3.11. Conservation of translational silencing domain and ribosomal incorporation 

domain in L13a among eukaryotes.

To further gain insights into the evolution of C-terminal extension of L13a and its 

functional significance, we performed sequence alignment of L13a protein among 7

CLUSTAL 0(1.2.4) multiple sequence alignment
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Figure 33: Amino acid Sequence alignment of uL13 proteins -CLUSTAL O (1.2.4). Amino 

acid sequence alignment of 7 eukaryotic sequences is shown with the conserved ribosomal 

incorporation domains arginine 68 and Lysine 159 and 161 indicated by two boxes (red) and 

translation silencing domain arginine 169, Lysine 170 and 171 (blue box) shown in the above 

figure.
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eukaryotes namely, C. elegans, S. cerevisiae, P. mariana, D. melanogaster, M. musculus. 

H. sapiens and B. taurus.

We observed that N-terminal domain of L13a is more conserved than the C-terminal 

domain in eukaryotes except in higher eukaryotes i.e. human, mouse and bovine where C- 

terminal extension shows considerable conservation. Also, amino acid Arg68 previously 

identified as essential for ribosomal incorporation and amino acids K159, R160 and K161 

critical for ribosomal incorporation identified in this study are conserved among all seven 

eukaryotes. However, the translational silencing domain Arg169, Lys170 and Lys171 is 

conserved among only 3 higher eukaryotes H. sapiens, M. musculus and B. taurus, 

suggesting an essential role of evolution of c-terminal extension in higher eukaryotes in 

translational silencing of inflammatory proteins. Such an endogenous defense mechanism 

against uncontrolled inflammation has not been reported in the lower eukaryotes like yeast. 

The sequence alignment results are shown in figure 33.
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2.5 Discussion

Ribosome biogenesis in eukaryotes is much more complex than in their 

prokaryotic counterparts. The rRNA processing and assembly of ribosomes is facilitated 

by several cofactors, endo- and exonucleases(Chen and Huang, 2001), RNA helicases 

(O’Day, 1996), SnoRNPs (Ni, Tien and Fournier, 1997) and accessory proteins (Saveanu 

et al., 2003). The association of rRNA and ribosomal proteins with each other to form 

functional ribonucleoproteins (RNP) has been a challenging topic under investigation 

almost since the discovery of ribosomes (Nierhaus, 1980). Ribosomal proteins are 

important constituents of ribosomes. However, initial investigations were mainly focused 

on the processing of pre-rRNAs and characterization of the assembly factors involved in 

ribosome biogenesis, with less emphasis on r-proteins and their functions. Ribosome 

structure analysis has shown that the PTC (peptidyl transferase center) is devoid of 

ribosomal proteins and the process of peptide bond formation is catalyzed by rRNA, 

suggesting r-proteins don’t directly participate in the protein synthesis mechanism but 

might have more indirect roles to play such as rRNA processing and stabilization of 

ribosomal subunits. Studies in the last 10 years have witnessed an increase in understanding 

the role of r-proteins being a part of ribosomes in yeast and mammals. In vitro studies 

suggest that binding of individual r-protein to rRNA occurs in stages. The initial 

interactions are weak, but they strengthen as assembly proceeds. Ribosomes in prokaryotes 

and eukaryotes share a common conserved rRNA core and some conserved r-proteins 

while eukaryotic ribosomes have acquired eukaryote-specific rRNA extensions and r- 

protein. Some conserved r-proteins have also evolved N- or C-terminal extensions through 

the course of evolution. In this study, we also identified a eukaryote-specific C-terminal 
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extension of unknown function in ribosomal protein L13a by sequence and structure 

alignment of E.coli and human L13a. A series of previous studies from our laboratory have 

identified Arg68 in the N-terminal globular domain of L13a as essential for its ribosomal 

incorporation (Das et al., 2013). However, the role of the C-terminal domain in ribosomal 

incorporation or extra-ribosomal functions of L13a was never explored before. Studying 

the mechanism of incorporation of r-protein L13a into the 60S ribosomal subunit is 

important to improve our understanding of the complexities of ribosome biogenesis, role 

of L13a within the ribosome and it’s extra -ribosomal function in translational silencing 

and inflammation resolution (Mazumder et al., 2003). Since release of L13a from the 

ribosomal large subunit is essential for its extra ribosomal function, understanding how 

L13a incorporates into the ribosomes may also reveal the mechanisms regulating its release 

for translational silencing activity. In this study, we have done structural and functional 

analysis of a eukaryote-specific C-terminal extension (amino acids 149-203) in human 

ribosomal protein L13a. This extension harbors a predicted NLS (Lys159-Lys188) and a 

predicted RNA-binding domain (Arg169-Lys179). It also contains amino acids which are 

predicted to interact with another ribosomal protein, L14.

In eukaryotes, ribosomal proteins are translated in the cytoplasm and then 

imported into the nucleus and nucleolus, where incorporation into the precursor ribosomes 

takes place. The first question to be asked is how r-proteins are imported into the nucleus 

prior to their association with rRNA. Studies have shown that there are transporters that 

facilitate nuclear import of r-proteins by recognizing nuclear localization signals in r- 

proteins (Bange et al., 2013). In yeast, nascent NLS containing r-proteins are imported into 

the nucleus via binding to the P-karyopherins such as KAp123, Kap108 and Kap121 (Rout, 
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Blobel and Aitchison, 1997). Mammals also use similar transporters such as importin ß- 

related transporters e.g. Imp9a and Imp9b import rpS7, rpL18a (Jäkel et al., 2002). 

Importins recognize specific nuclear localization signals (NLSs) in the cargo proteins. The 

importins also interact with nucleoporins, which are components of the nuclear pore 

complex. This interaction allows a facilitated diffusive translocation of the importin-cargo 

complex through the nuclear pore. Once in the nucleus, the importins bind to Ran:GTP, 

which triggers cargo (protein) release. The importin-Ran:GTP complex then recycles back 

to the cytoplasm, where the GTP on Ran is hydrolyzed, and Ran:GDP dissociates from the 

importins. NLS sequences are usually short sequences of basic amino acids, e.g. the NLS 

of SV40 large T antigen is 5 amino acids long. However, many ribosomal proteins and 

other nucleic-acid binding proteins are known to carry longer NLS sequences. One such 

example is ribosomal protein L23a where importins recognize a domain of 43 residues. 

One reason for such longer NLSs in ribosomal proteins could be that the importins not only 

direct cargos to the nucleus but might shield basic proteins against undesired interactions 

during transit. This assumption goes well with the predicted NLS in L13a C-terminal 

extension which is also 29 amino acids long. To experimentally validate this predicted 

NLS, we tested a deletion version of L13a for its ability to traffic to the nucleus. 

Unfortunately, our study does not provide any evidence whether the predicted NLS of L13a 

plays any role in nuclear translocation as we do not see retention of L13a protein with NLS 

deletion in the cytoplasm of human cell lines. Most ribosomal proteins carry more than one 

NLS-like sequence. One striking example is human large ribosomal protein L7. Its 

sequence carries basic cluster NLS-like segments within the N-terminal region (within first 

54 amino acids) and another in the middle region (156-167 amino acids). NLS deletion and 

88



immunofluorescence-based studies showed that at least one NLS is sufficient for nuclear 

import of L7 protein (Ko et al., 2006). In silico programs NLS mapper and NLStradamus 

also predicted bipartite NLS in human L13a: one spanning the region from Arg84-Val115 

(NLS1) and the other in the C-terminal domain Lys159-Lys188 (NLS2). However, our 

immunofluorescence-based studies and deletion of either one NLS or both NLS failed to 

identify a functional NLS in the L13a. Interestingly, deleting both NLS1 and NLS2 impairs 

nucleolar import of the protein as well. These studies suggest that L13a may utilize a non- 

conventional mechanism to enter the nucleus like some other ribosomal proteins like L12, 

that do not rely upon the NLS for nuclear import. Ribosomal protein L12 uses a distinct 

nuclear import pathway mediated by importin 11 (Plafker and Macara, 2002). Future 

studies aimed at identifying the specific importers of human L13a may uncover the 

mechanism and/or specific sequence of L13a essential for its nuclear import.

The study covered in this thesis has demonstrated the role of C-terminal 

extension in the ribosomal incorporation of the L13a. Deletion of full-length C-terminal 

extension (149-203) not only impaired nucleolar import and incorporation into the 

ribosomes, but also impaired the translational silencing activity of L13a. This finding 

supports the notion that prokaryotes lack nucleus/nucleolus (site of ribosome biogenesis 

and ribosomal incorporation of L13a) as well as L13a mediated inflammation control 

mechanism, therefore, this eukaryote specific C-terminal extension might have evolved for 

its role in ribosome biogenesis to mediate the nucleolar translocation, ribosomal 

incorporation and translational silencing activity (extra-ribosomal function of L13a 

reported in higher eukaryotes). Studies in yeast have shown that the eukaryote-specific 

carboxy-terminal extension of L16 (homolog of mammalian L13a) is essential for growth 
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and rRNA processing (27S pre-rRNA to mature 25S and 5.8S rRNA). However, the 

ribosomal incorporation of L16 is not affected by the deletion of the C-terminal extension 

(Espinar-Marchena et al., 2016). In human L13a, we have identified amino acid residues 

within the C-terminal extension that are essential for ribosomal incorporation of L13a. 

These residues include Lys159, Lys 161, Val185, Ile189 and Leu196. Residues at position 

159(K) and 161(K) are essential for nucleolar translocation of the protein and subsequent 

incorporation of L13a into the ribosomes.

Eukaryotic ribosomes have an extensive network of protein-protein interactions, 

which involves eukaryote-specific ribosomal proteins or eukaryote-specific extensions of 

conserved ribosomal proteins. These interactions are thought to stabilize ribosomes. Amino 

acids Val185, Ile189 and Leu196 in the C-terminal domain of human L13a have been 

predicted to be involved in an interaction with another ribosomal protein L14. Such an 

interaction between yeast L16 and L14 also exists. L16 is located on the solvent-side of the 

60S subunit in close proximity to L14. While such an interaction is speculated to be 

important for uL13 incorporation into ribosomes (Klinge et al., 2011)(Ben-Shem et al., 

2011), other studies conducted in yeast doesn’t support this notion (Espinar-Marchena et 

al., 2018). The reason is that L16 incorporation is an earlier event than L14 which 

assembles in the nucleolus with pre-60S r-particles, whereas, L16 incorporates in 90S 

precursor ribosome in yeast. Therefore, L16 incorporation is not dependent on presence of 

L14 on the ribosome (Espinar-Marchena et al., 2018). However, conditions might differ in 

higher eukaryotes such as humans where there are considerable differences in 

characteristics of L13a and its yeast homolog L16. Structural alignment studies have shown 

that yeast L16 and human L13a share almost identical structures. However, the amino acid 
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composition of the eukaryotes -specific C-terminal extension is not identical (figure33). In 

addition, the molecular environment and the contacts that yeast L16 and human L13a form 

with rRNA also differs. This difference in contacts made with rRNA is more prominent in 

C-terminal extensions of both the proteins. Therefore, differences in the structure and 

function of yeast L16 and human L13a may in part explain the observed differences 

between the yeast and mammalian systems and outcome of interactions between L13a and 

L14 in human ribosome. Detailed study of L13a-L14 interaction may provide additional 

insight into the mechanism of ribosomal incorporation of L13a.

We also observed that all the ribosomal incorporation defective mutants namely 

K159A-R160A-K161A, V185A-I189A-L196A, L13a 1-148A149-203, except one L13a 

149-203A1-148 failed to translocate into the nucleolus. Proteins were seen retained in the 

nucleus. This suggests that multiple or shared amino acid sequences of L13a control its 

nucleolar import. This implies that nuclear import of ribosomal protein may be prerequisite 

for its incorporation but doesn’t ensure its nucleolar import and subsequent ribosomal 

incorporation.

An important extra-ribosomal function of L13a has been widely studied where 

L13a is an essential component of the GAIT protein complex that inhibits the translation 

of mRNAs encoding inflammatory proteins (Mazumder et al., 2003). However, the precise 

mechanism and L13a domain critical for this extra-ribosomal function of L13a has not been 

established yet. In this study, we explored the role of eukaryote-specific C-terminal 

extension of L13a in translational silencing activity and showed that this extension alone 

(L13a 149-203) is capable of supporting the GAIT-element mediated translation silencing 

pathway. Further we showed that amino acids Arg169, Lys 170, L171 within this extension 
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are essential for the extra-ribosomal function of L13a. Mutating these three residues 

abrogates silencing. These three amino acid residues are conserved among mouse, human 

and bovine species but not among lower eukaryotes such as yeast. (figure33). This is 

consistent with the fact that such this type of translational control has not been reported in 

yeast. Further, L13a sequence alignment among seven eukaryote species namely C. 

elegans, S. cerevisiae, P. mariana, D. melanogaster, M. musculus. H. sapiens and B. taurus 

(figure33) shows that the N-terminal globular part of L13a is more conserved than the C- 

terminal extension among all the seven species. Interestingly, the eukaryote-specific C- 

terminal extension is more conserved among the higher eukaryotes such as human, mouse 

and bovine. This supports the idea that this eukaryote-specific C-terminal extension has 

further evolved in higher eukaryotes to acquire additional and important functions in 

inflammation resolution in immune cells. This sequence alignment also showed that the 

translational silencing domain consisting of three amino acids Arg169-Lys170-Lys171 is 

also conserved among human, mouse and bovine but not in the lower eukaryotes such as 

yeast. Also, residues K159-R160-K161 (discussed in this manuscript) and R68 (Das et al., 

2013), essential for ribosomal incorporation of L13a, are highly conserved among all seven 

species (figure 33).

It has been shown previously that L13a phosphorylation at Serine77 mediated 

via DAPK-ZIPK pathway is essential for release of L13a from 60S ribosomal subunit and 

assembly into the GAIT complex (Mukhopadhyay et al., 2008). We have shown that C- 

terminal extension alone can silence the translation of GAIT-element bearing reporter 

mRNA transcript. The obvious question asked here is: How does the C- terminal L13a 

extension (Tyr149-Val203) assembles into the GAIT complex without the essential 
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phosphorylation (C-terminal extension lacks phosphorylation site S77) and what is the 

precise role of serine77 phosphorylation in the release of L13a from the ribosome and 

assembly into the GAIT complex? We proposed a hypothesis that serine phosphorylation 

has a role in changing the conformation of L13a on the ribosome in such a way that the 

residues (Arg68, Lys159-Arg-160-Lys161) making contacts with the rRNA could fail to 

anchor with the rRNA thus causing its release from the ribosome. Also, this conformational 

change could also mediate the assembly of L13a into the GAIT complex. Figure 34 shows 

the spatial proximity of negatively charged amino acids to serine 77. We proposed that 

phosphorylation mediated addition of negative charge to serine77 residues results in 

electrostatic repulsion from the negatively charged amino acids in the vicinity, leading to 

movement of C-terminal helix away from the N-terminal globular domain and this 

“opening up” of the protein could expose the triad of residues (Arg169-Lys170-Lys171) 

critical for L13a assembly into the GAIT complex. This hypothesis provides the possible 

explanation for inability of L13a expressed in bacterial cells to silence translation whereas, 

the C-terminal extension alone retains this ability, although proteins in both the cases are 

in unphosphorylated form. This hypothesis needs experimental testing in the future.
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Figure 34: Proposed model for phosphorylation-induced conformational transition of 

the L13a C-terminal helix. Ser77 of human L13a is located in the vicinity of negatively 

charged amino acid residues (Glu39 and Asp106), which in turn are surrounded by additional 

negatively charged residues (Glu144, Glu157 and Glu158). Therefore, the added negative 

charge resulting from phosphorylation of Ser77 may push the eukaryote-specific C-terminal 

helix extension away from the globular domain of the protein, which would expose the 

residues shown to be critical for GAIT element-dependent translational silencing in this study 

(Arg169, Lys170, Lys171). Human L13a is depicted as a ribbon diagram based on the 

CryoEM structure of the human ribosome at 3.6 A resolution (Protein Data Bank code 5T2C). 

Side chains (Van der Waals radii) of the negatively charged amino acid residues within the 

vicinity of Ser77 are shown.
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In this study we have identified the ribosomal incorporation domain (Lys159- 

Lys161 and Val185-Ile189-Leu196) and translational silencing domain (Arg169-Lys170- 

Lys171), which work independently. Results of ribosome incorporation assay and 

nucleolar translocation assay for various L13a mutants are presented in table 1. Our earlier 

work has demonstrated the physiological significance of L13a in inflammation resolution 

in macrophage-specific L13a knock out mice, where the lack of L13a resulted in failure of 

inflammation resolution and more severe immune response (Poddar et al., 2013)(Poddar 

et al., 2016). Importantly, it is not possible to study the consequences of the loss of GAIT 

complex-mediated inflammation resolution mechanisms in a systemic/total L13a knock 

out mice due to embryonic lethality (discussed in next chapter). Our finding that abrogation 

of the GAIT element mediated translation silencing by mutating Arg169-Lys170-Lys171 

without affecting the ribosomal incorporation presents the possibility of generating a whole 

body knock-in mouse model to further examine the physiological significance of L13a 

mediated translational silencing on a systemic level.
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Table1: Summarizing results of ribosome incorporation and subcellular localization of 

L13a mutants.

L13a variants Ribosomal
Incorporation

Nuclear & Nucleolar
Translocation assay

Nucleus Nucleolus

WT + - +

R68A + - +

1-148A149-203 - + -

149-203A1-148 - - +

V185A-I189A - + +

V185A-I189A-L196A - + +

K159A-R160A-K161A - + -

K159A - + -

R160A + - +

K161A - + -

R169A-K170A-K171A + - +

l-84+119-203(A85-118) N.D. + +

l-84+119-148(A85-118 &A149-203) N.D. + -

I166A-H167A-Y168A + - +

K172A + - +

Q173A + - +

M175A + - +

R176A + - +

L177A + - +

K179A-Q180A + - +

R59A-K60A-K61A - + +

LEGEND: + and - Indicate presence (+) or absence (-) of L13a protein in the given

subcellular organelle. N.D: Not done
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CHAPTER III

ROLE OF RIBSOMAL PROTEIN L13a IN EARLY EMBRYONIC 

DEVELOPMENT IN MICE

3.1 . ABSTRACT

Eukaryotic ribosomal protein L13a belongs to conserved universal ribosomal uL13 

protein family. Previous studies in our laboratory showed the essential role of L13a as a 

physiological defense against uncontrolled inflammation in macrophage-specific knockout 

mice. To study the consequence of total knockout of L13a, we generated mice harboring 

the heterozygous knockout (KO) allele for L13a (L13a+/-). These mice are breeding 

competent and show no visible abnormality under standard animal housing conditions. 

However, the mice harboring the homozygous KO allele (L13a-/-) are embryonically lethal 

at an early embryonic stage. Interestingly, we found the survival of the embryo in the pre

implanted morula stage. This suggests an essential role of this protein in early embryonic 

development. Next Generation Sequencing (NGS) analysis of the pre-implanted embryos 

and comparing the expression of Differentially Expressed Genes (DEG) with the regression 

scale of L13a transcript level, we have identified several potential targets showing altered 
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expressions. These studies also showed specific confinement of L13a in the nucleus only 

in the early embryonic stage but not in the embryonic fibroblast harvested from the more 

developed embryo from the uterus.

98



3.2 Introduction

In our current study, we have elaborated the role of ribosomal protein L13a in the 

early embryonic development in mammals. Ribosomal protein L13a is one of the proteins 

that incorporates into the ribosomes at an early stage during ribosome biogenesis in the 

nucleolus. Previously, we have shown that the loss of L13a in cultured cells of myeloid 

origin doesn’t affect ribosome biogenesis and the primary function of the ribosome (protein 

translation) (Chaudhuri et al., 2007). In addition, previous studies in our laboratory have 

also shown that the tissue specific knock out of L13a in macrophages abrogates the L13a 

mediated translational silencing of inflammatory proteins such as chemokine and 

chemokine receptors. This results in a more aggressive inflammatory condition in the 

macrophage- specific L13a knock out mice when challenged with inflammatory stimuli 

such as LPS, thioglycolate or administration of dextran sodium sulfate as compared to wild 

type (WT) mice. This severe inflammatory phenotype in the L13a knock out mice is 

associated with decreased survival and poorer chances of recovery due to failure of 

inflammation resolution mechanism in the absence of GAIT-mediated translational 

silencing pathway (Poddar et al., 2013)(Poddar et al., 2016).

Our next goal was a more detailed study about the ribosomal and ribosome

independent functions of L13a. The best way to address this goal was to knock out L13a 

at systemic level and study its impact on inflammation resolution mechanisms in 

experimentally induced inflammatory diseases. We generated a mouse heterozygous for 

the L13a allele by neomycin cassette flanked by LoxP, FRT sites to mediate knock out of 

one L13a allele. These L13a heterozygous mice are breeding competent, don’t show 
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morphological defects, suggesting that one allele for L13a is sufficient for survival and 

physiological functions. To study the outcome of systemic loss of L13a, we crossed L13a 

heterozygous mice to obtain mice homozygous for L13a knock out. To our surprise, L13a 

total knock out mice were not identified among the new borns as well as post-implantation 

embryos (6.5 dpc to 18.5 dpc) of the heterozygous parents. This implies an essential role 

of L13a in embryonic development at an early stage.

Therefore, we dissected the mouse embryos from preimplantation (2.5 dpc) to post

implantation (18.5 dpc) stages for immunostaining or isolation of nucleic acids to do 

downstream experiments focused on studying the role of L13a in embryonic development 

and survival.

In this study, we have proposed that ribosomal protein L13a plays a pivotal role in 

formation and survival of L13a -/- (homozygous knock out) blastocyst stage embryos (3.0 

to 3.5 dpc).
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3.3 MATERIAL AND METHODS

3.3.1 Generation of L13a heterozygous knock out (L13a+/-) mice

The targeting construct for L13a gene was designed by introducing Neomycin 

(Neo) cassette flanked by LoxP and FRT sites upstream of exon 2 and downstream of exon 

7 so that exons 2 to 7 of the L13a gene could be conditionally targeted. The Targeted iTL 

IC1 (C57BL/6) embryonic stem cells positive for the above construct were microinjected 

into Balb/c blastocysts. The Resulting chimeras with a high percentage black coat color 

were mated to C57BL/6 FLP mice to remove the Neo cassette. Tail DNA was analyzed for 

identification of mice with Neo deletion. Confirmed Somatic Neo Deleted Mice were set 

up for mating with C57BL/6N wild-type mice to generate Germline Neo Deleted mice.

3.3.2 Animal housing, breeding and setting up timed mating

All animals (C57BL/6 mice) were housed and bred according to the rules of 

National Institute of Health (NIH) and the Institutional Animal Care and Use Committee 

(IACUC) of Cleveland State University. They were supplied with regular drinking water 

and fed a normal chow diet. L13a heterozygous male and female mice (aged about 6-8) 

were paired to obtain new borns to maintain the line and to screen the pups for L13a total 

knock out mice. To screen the embryos for L13a total knock out genotype, timed matings 

were performed by pairing the L13a+/- male and female mouse after 5:00 PM. Next day, 

the females were examined visually for the presence of a vaginal plug, an indication of 

mating. The plug is made of coagulated secretions from the vesicular glands of the male. 

The females showing vaginal plugs were separated from the males and housed in separate 
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cages. This is counted as 0.5 dpc (mating is assumed to happened at 12:00 am). These 

females were scarified at the desired time points to obtain embryos for downstream 

experiments. Carbon dioxide was used as the euthanizing agent followed by cervical 

dislocation to confirm the death. This method is consistent with the recommendations of 

the Panel on Euthanasia of the American Veterinary Medical Association.

3.3.3 . PCR- based genotyping strategy

DNA extracted from the tail snipped of 11day old pups was used in a PCR reaction 

to confirm the targeted disruption of L13a allele mediated by Neo deletion. Tail (about 3 

mm) was digested in 150 pl DirectPCR Lysis reagent (Viagen Biotech;Catalog No: 101

T) and 5pl Proteinase K (ambion) for 12-14 hours. DNA samples were boiled at 85°C for 

45 minutes. 1 pl of DNA lysate was used in the PCR based genotyping assay. Primers 

NDEL1 and NDEL2 and WT1 were used to screen mice for deletion of Neo cassette. After 

Neo deletion, one set of LoxP-FRT sites remain (178 bp). Primer set NDEL1 and NDEL2 

yields a band with a size of 428 bp indicating Neo deletion. A band with a size of 1.68 kb 

with NDEL1 and NDEL2 primers indicates the wild type allele. The presence of the Neo 

cassette is not amplified by this PCR screening because the size is too great. Primers 

NDEL1 and WT1 gives a PCR product of 599 bp on WT allele. A PCR for each DNA 

sample was set up in a total volume of 25 pl reaction volume. Each PCR reaction included 

12.5 pl of EconoTaq Plus Green 2x Master Mix (Lucigen catalog# 30033-1), 11 pl ddH20 

.25pL of 1 pM each primer (sequences given below) and 1.0 pl DNA. After a 2 minute hot 
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start at 94oC, the samples were run using the PCR conditions given below in a 

thermocycler. The PCR product was run on a 2% gel with a 100 bp ladder as reference.

Primer Sequences:

NDEL1: 5’- CAA TAG GAA TCC TAT GCC TGC TGA GG -3’

NDEL2: 5’ - GTG GTG TGA AAA GAC ACA TGT CAG AGC -3’

WT1: 5’ - CCC TTG GAC CCA AGA GCA GAG CAG-3'

PCR parameters:

Step1: 94° C for 2 minutes

Step2: 94° C for 30 seconds, 60°C for 30 seconds, 72°C for 1 minute. (30 cycles)

4°C for œ

WT mouse yields band of 599 bp and 1.68 bp. Heterozygous L13a mouse shows bands of 

428, 599 and 1.68 bp. Whereas, a single band of 428 bp represents homozygous knock out 

genotype for L13a gene.

3.3.4 Post-implantation embryo harvest and genotyping assay

Embryos (post-implantation) to extract DNA for genotyping were harvested from the uteri 

of L13a heterozygous pregnant females crossed with L13a heterozygous males at desired 

time points (6.5 dpc to 18.5 dpc). Each embryo was washed twice in the phosphate saline 

buffer (1X PBS) to get rid of mother’s uterine tissues. A part of embryonic tissue was 
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digested in DirectPCR Lysis Reagent (Mouse Tail) (Viagen Biotech, Catalog No: 101-T) 

at 55° C for 12-14 hours. 1 ul DNA was used for PCR-based genotyping to screen for WT 

(L13a+/+), heterozygous (L13a+/-) and homozygous knock out (L13a -/-) embryos.

3.3.5 Induction of super-ovulation

Female mice can be induced to ovulate a greater number of eggs than normal 

through the administration of gonadotropins. WT and L13a heterozygous L13a female 

mice (23-25 days old) were injected interperitoneally (IP) with 100 ul (5 IU) of pregnant 

mare serum (PMS) between 2:00 and 4:00 PM on day 1. On Day 3, forty-two to fifty hours 

after the PMS injection, the mice received an IP injection of 100 ul (5 IU) of human 

chorionic gonadotropin (HCG). Immediately following injection, female mice were paired 

with the appropriate stud males of desired genotype of 8 weeks of age or older. Ovulation 

occurs approximately 12 hours after HCG injection, at which time the eggs can be 

fertilized. Females are examined for vaginal plugs on the day after HCG injection and 

mating. This is counted as 0.5 DPC (days post coitum). PMS was bought from Bio vendor 

(Cat# RP1782721000) and HCG from Sigma Aldrich (Cat# C1063). Both of the hormones 

were diluted with PBS/saline to give a final conc. of 5 IU in 100ul. The age of the female 

to be injected is critical for inducing superovulation depending on the strain of the mouse. 

In C57BL/6 mouse, 24-25 days old is the optimal age for hormonal injection.

3.3.6 Pre-implantation embryo harvest and genotyping assay

Pre-implantation embryos for PCR-based genotyping were harvested by dissecting 

pregnant females at 2.0, 2.5, 3.0 and 3.5 dpc to obtain early morula, compact morula and 

blastocyst stage embryos respectively. 2.0 and 2.5 dpc embryos were harvested by flushing 
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the oviducts with M2 media (cat# M7167; Sigma-Aldrich) under dissection microscope 

and 3.5 DPC embryos by flushing the uterine horns with M2 media in 10 mm cell culture 

dish. Each embryo was transferred to a drop of PBS and washed twice, followed by lysis 

in 10 pl of Cells-to-cDNA II Cell Lysis Buffer (Cat# AM8723) and heating the samples at 

75° C for 10 minutes. 4 pl of lysate was used in 25 pl PCR reaction for genotyping to 

identify homozygous L13a knock out embryos.

3.3.7 . Mouse embryonic fibroblast generation and culture

Mouse embryonic fibroblasts were generated from 13.5 dpc post implantation 

embryos harvested from L13a heterozygous and WT female to obtain WT and L13a+/- 

fibroblasts respectively. On thirteenth day of pregnancy, females were euthanized, 

disinfected with 70% ethanol and transferred to a sterile tissue culture hood. Uteri 

containing embryos were harvested and washed in PBS twice. Each embryo was washed 

once in PBS and transferred in 6-well plate with DMEM-10% FBS/PS/50uM P- 

mercaptoethanol. With a sharp blade, the head of each embryo was cut and transferred to 

an Eppendorf containing DirectPCR lysis buffer to extract DNA for genotyping. Red 

organs (liver/spleen) were removed with forceps followed by mushing the embryos inside 

6 cm-dish (5ml DMEM-10% FBS/PS/50uM P-mercaptoethanol) through sieve (BD Falcon 

Cell strainer 352350, 70 um Nylon) using a 5 ml syringe plunger. Cells were allowed to 

settle down and adhere overnight. The next day, cells were trypsinized and passaged in 

new 6 cm dishes (labelled as Passage 1) until the cells grow towards confluency. Cells 

were further passaged once or twice before doing immunofluorescence-based assay 

(primary MEFs can be used for experiments up to P5).
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3.3.8 Immunofluorescence assay of pre-implantation embryos and mouse embryonic 

fibroblasts

Pre-implantation embryos from 2-cell stage to blastocyst stage were harvested from 

oviduct and uterus after performing timed mating. Each embryo was washed in PBS, fixed 

in a drop of 4% PFA (Paraformaldehyde) for 10 minutes, permeabilized by incubating them 

in 0.1-0.2% TritonX-100 in PBS for 10 -15 minutes (approximately). Embryos were 

blocked with 3% BSA in PBS for 1 hour. Embryo were incubated in mouse anti-L13a 

antibody (Santacruz, Cat# SC-390131) and/or rabbit anti-L26 antibody (abcam; Catalog#a 

b59567) at a dilution of 1:50 in PBS, overnight at 4° C. The next day, embryos were washed 

with PBS three times (5 minutes each) and incubated with secondary antibodies Alexa 

Fluor 594 donkey anti-rabbit IgG (H+L) (cat# A21207 Invitrogen) and Alexa Fluor 488 

donkey anti-mouse IgG (H+L) (cat#A21202 Invitrogen) for 1-2 hour at room temperature 

at a dilution is 1:100 in PBS. All the steps from secondary antibody should be performed 

in dark at room temperature. Embryos were also incubated in PBS+DAPI to stain nuclei 

for 10-15 minutes, followed by washings with PBS (twice). Each embryo was mounted in 

a small drop of Prolong gold antifade reagent in the center of a glass slide. Prepared slides 

were stored overnight, and images were captured the next day using a Nikon confocal 

microscope.

3.3.9 RNA extraction and purification

Total RNA was extracted from individual embryos harvested from the intercross of 

heterozygous L13a mice. Each embryo was washed in PBS and transferred to 10 pl of 

Cells-to-cDNA II Cell Lysis Buffer (Cat# AM8723) and boiled at 75° C for 10 minutes.
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The nucleic acid lysates were centrifuged briefly and transferred immediately to the ice. 

RNA purification was performed using the PicoPure RNA Isolation Kit (Thermo Fisher 

Scientific, Catalog# KIT0214) following the user’s manual. The RNA was eluted in 15 ul 

of elution buffer supplied in the kit. The purified RNA samples were sent for next 

generation sequencing (NGS) to study the differential pattern of gene expression in WT, 

heterozygous and KO pre-implantation mouse embryos (morula stage: 3.0 dpc).

3.4 Results:

3.4.1 Generation of mice heterozygous for the disruption of RP L13a:

In order to evaluate the ribosomal and extra-ribosomal functions of L13a in 

mammals, a mouse model carrying only one allele for L13a was generated and ordered 

from InGenious Targeting laboratory. The design of the targeting construct is shown in 

Figure 35a. A neomycin cassette flanked by Lox P and FRT (flippase recognition target) 

sites was inserted targeting exon 2 to exon 7 of the mouse L13a genomic sequence to 

facilitate its removal. Embryonic stem (ES) cells from C57BL/6 mice were transfected with 

the L13a targeting construct and the recombinant embryonic stem (rES) cells were 

microinjected into Balb/c blastocysts. Resulting chimeras with a high percentage black coat 

color were mated to C57BL/6 FLP mice to remove the Neo cassette. Tail DNA was 

analyzed from pups with black coat using primer set NDEL1 and NDEL2 to screen mice 

for the deletion of the Neo cassette. After Neo deletion, one set of LoxP-FRT sites remain 

(178 bp). A band with a size of 428 bp indicates Neo deletion and a band with a size of 

1.68 kb indicates the wild type allele (figure 35c). The presence of the Neo cassette could 
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not be amplified by this PCR screening because the size of the full length neo cassette is 

too great to be amplified and visualized on the agarose gel. Once somatic Neo Deletion 

was confirmed, mice were set up for mating with C57BL/6N wild-type mice to generate 

Germline Neo Deleted mice. Resulting pups were genotyped using primer set NDEL1, 

NDEL2, and WT1 to screen mice for the deletion of the Neo cassette. A band with a size 

of 428 bp indicates Neo deletion. NDEL1 / WT1 amplifies a band with a size of 599 bp on 

the wild type allele, and NDEL1 / NDEL 2 amplifies band with a size of 1.68 kb on the 

wild type allele (figure 36d). The primers within the L13a genomic loci for somatic neo 

deletion confirmation (NDEL1 and NDEL2) and primers for germline neo deletion 

(NDEL1, NDEL2 and WT1), PCR parameters are shown in the figure 36b

Primer sequences:

NDEL1: 5’- CAA TAG GAA TCC TAT GCC TGC TGA GG -3’

NDEL2: 5’ - GTG GTG TGA AAA GAC ACA TGT CAG AGC -3’

WT1: 5’ - CCC TTG GAC CCA AGA GCA GAG CAG-3'
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Figure 35: Generation of L13a knock out mouse. (a). Schematic diagram of targeted 

disruption of L13a allele from exon 2 to exon 7 mediated by neomycin cassette flanked by loxP 

and FRT sites. (b). PCR Parameters for genotyping. (c). Identification of somatic Neo deletion 

by PCR-based genotyping. (d). Identification of Neo deletion in germline by PCR-based 

genotyping.
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3.4.2 Absence of L13a homozygous knock out mice among the new born pups from 

L13a heterozygous male and female intercross:

Previous studies from laboratory have demonstrated an important role of L13a in 

inflammation resolution in mammals and macrophage specific L13a knock out mice 

showed poor survival, more pronounced inflammatory disease symptoms in response to 

experimentally induced inflammatory diseases (Poddar D et al., 2013 and 2016).

In our current study, we wanted to investigate the consequences of total knock out 

of L13a in a mouse model. Therefore, we crossed mice heterozygous for L13a and screened 

new born pups by PCR-based genotyping using primers specific to L13a WT allele and 

knock out allele (neo deletion). Results showed that all the offspring from heterozygotic 

cross were either WT or heterozygous for L13a. Another important observation we made 

is the disruption of Mendelian distribution of offspring as demonstrated by more 

heterozygous pups among new born mice than WT. The number of mice screened, and the 

genotyping results are shown in the table 2 below:

L13a +/- parents Genotype Total number of
— Pups screened+/+ +/- 7-

New born pups 37 101 0 138

Table2: Screening of L13a+/- mouse intercross. Genomic DNA extracted from new 

borns’ tails was genotyped by PCR using primers specific for L13a KO allele and WT allele 

to identify total knock out (L13a-/-) mice.
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3.4.3 Absence of L13a homozygous knock out mice in post-implantation embryos 

from L13a heterozygous intercross:

The observation that no L13a total knock out mouse could be identified among the 

offspring from heterozygous cross clearly suggests that systemic loss of L13a results in 

embryonic lethality in mice. In order to get more insights, we considered the following 

possibilities: embryonic death during (i) post-implantation development (ii) pre

implantation development (iii) failure of egg-sperm fertilization or a defect in 

gametogenesis. We started with screening the post-implantation stages. The gestation 

period in mice consists of 20-21 days and implantation of blastocysts in the uterus takes 

place at day 4.5. To harvest post-implantation embryos, timed mating of L13a+/- 

heterozygous male and female mice were performed, females were sacrificed at different 

time points ranging from 18.5 to 6.5 dpc. For each time point, females were sterilized with 

70% ethanol followed by dissecting the abdominal cavity to locate the uterus and harvest 

embryos. Each embryo was washed twice in 1x PBS to remove contaminants (maternal 

tissue). A small part of embryonic tissue was digested in DirectPCR lysis buffer to isolate 

DNA for genotyping. L13a total knock out embryos were not identified during the 

screening of post-implantation embryos from 6.5 to 18.5 dpc, implying an essential role of 

L13a in early embryonic development (table 3). Also, the embryos don’t show 

morphological defects. We also looked for the resorption sites which are an indication of 

the embryonic death post implantation and formed as a result of embryo remnants being 

resorbed by maternal immune cells (figure 36).
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Figure 36: Screening uteri of L13a heterozygous females for resorption sites. (a) A 

reference image with appearance of resorption sites indicated by arrows. (b,c,d).L13a 

heterozygous pregnant females’ uteri of 6.5 (b), 9.5 (c) and 13.5 (d) dpc screened for 

resorption sites.
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Table 3 : Screening of Post-implantation embryos of L13a+/- mice intercross. Embryos 

from L13a heterozygote females were harvested at IS.5 dpc to 6.5 dpc. DNA extracted from 

embryos was used for PCR-based genotyping using primers specific to LI 3a WT and KO allele 

to identify LI 3atotal knock embry os.

Age (dpc) Number of mice embryos with 
indicated genotype

Number of 
resorptions

Total

♦/- -/-

18.5 4 13 0 0 17

13.S 4 12 0 0 16

10.S 2 8 0 0 10

9.5 3 10 0 0 13

6,5 5 11 0 0 16

The uteri of L13a+/- females crossed with L13+/- males don’t show resorption sites 

or signs of embryonic death post-implantation. This further implies that L13a total knock 

out embryos are not implanted in the uterus. We speculated that L13a might be essential 

for development of either early stage embryos and implantation or gametogenesis i.e. 

formation of ova and sperms.

3.4.4 Ribosomal protein L13a is essential for blastocyst formation/survival.

To further investigate the role of ribosomal protein L13a in embryonic development 

in mammals and to identify the specific stage of lethality due to complete loss of ribosomal 

protein L13a, we screened preimplantation embryos harvested from pregnant females at 
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different time point starting from blastocyst stage (3.5 dpc) and early morula stage (2.5 

dpc). Genomic DNA extracted from individual embryo was genotyped to identify L13a 

total knock out embryos. We have shown that morula stage embryos (2.0-2.5 dpc) 

homozygous knock out for L13a survive and don’t show morphological defects/changes 

from WT or heterozygous embryos when observed under the microscope as shown in 

figure 37a and b. Out of 81 embryos screened, 44 were heterozygous, 25 WT and 12 knock 

out for L13a as shown in table 4. However, homozygous knock out blastocysts could not 

be identified by genotyping. All the offspring genotyped showed WT (L13a+/+) or 

heterozygous (L13a+/-) genotype. These experiments suggest that ribosomal protein L13a 

may play an essential role in survival and implantation of blastocyst stage embryos (3.5 

dpc) or transition of morula stage into blastocyst stage in mice.

Table 4. Screening of pre-implantation embryos for L13a total KO embryos

Total No. of early
Morula embryos Screened 
(L13a^ parents

Heterozygous
(+/-)

WT Knockout {L13a -/-)

81 44 25 12
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Figure 37: Identification of L13a total KO embryos. (a) Agarose gel image showing 

PCR amplicons of 2.5-3.0 dpc embryos for KO allele (upper panel) and WT allele (lower 

panel). Embryo 6 and 9 showed PCR-amplification for KO allele only. (b). WT, 

heterozygous and KO 2-cell stage and early morula embryos are shown.

3.4.5 Ribosomal protein L13a is localized in the nucleus of pre-implantation 

stage embryos.

In our current study, we have successfully shown that ribosomal protein 

L13a is essential for the survival of early embryonic stages in mice. To further gain 

insights into the role of L13a in embryonic development, we performed 
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immunofluorescence-based assay to study the subcellular localization of L13a 

protein from 2-cell stage (1.5 dpc) up to the formation of mature blastocyst (3.5 

dpc). The embryos were harvested from the L13a heterozygotes cross at different 

time points followed by fixing and staining with mouse anti-L13a antibody and a 

secondary antibody Alexa Fluor 488 donkey anti-mouse IgG. Nuclei were 

visualized by staining the embryos with DAPI. The images captured by a confocal 

microscope showed localization of ribosomal protein L13a in the nuclei of all the 

pre-implantation stages (2.5 to 3.5 dpc), suggesting an important function played 

by L13a in the nucleus, shown in figure 38.

We also showed that this nuclear localization of L13a is exclusive for L13a 

protein only, whereas, another 60S ribosomal subunit protein L26 was seen 

localized in the cytoplasm. Immunostaining of morula and blastocyst stage 

embryos with antibody for another ribosomal protein L26 showed the localization 

of L26 in the cytoplasm only, further suggesting that ribosomal protein L13a might 

play an essential nucleus-specific role in early developmental stages in mammals 

(figure 39a). In addition, mouse embryonic fibroblasts generated from post

implantation 14.5 dpc WT and heterozygous L13a embryos showed the localization 

of L13a in both nucleus and cytoplasm (figure 39b). We did not see any difference 

in the sub-cellular localization of L13a in WT and heterozygous mouse embryonic 

fibroblasts (MEFs). This experiment showed that L13a is localized in the nucleus 

in pre-implantation stages and in cytoplasm and nucleus in post-implantation 

stages, suggesting an essential nuclear function being performed by L13a prior to 
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or during implantation of late blastocysts in the uterus. The results of 

immunostaining are shown in figure 39.

Figure 38: subcellular localization of L13a in pre-implantation embryos. Embryos 

from 2-cell stage to blastocyst stage were immunostained with mouse L13a antibody and 

a dye conjugated (green) anti-mouse secondary antibody. Nuclei were stained with DAPI 

(blue). All the pre-implantation embryos showed nuclear localization of L13a protein.
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L13a:Green; Nucleus: Blue; L26:Red

WT HET

Figure 39: Subcellular localization of L13a and L26 in pre-implantation stage embryos and 

L13a localization in (post-implantation embryonic cells) MEFs (a). Morula and early blastocyst 

stage embryos immunostained with L13a antibody (green) and L26 antibody (red). (b). Mouse 

embryonic fibroblasts (generated from 14.5 dpc) immunostained with L13a antibody (green) and 

nucleolin antibody (red). Nuclei are stained with DAPI (blue). L13a is localized in nucleus of pre

implantation embryonic cells and in the nucleus and cytoplasm in post-implantation mouse 

embryonic fibroblasts. L26 is localized in the cytoplasm of both morula and blastocyst stage 

embryos.
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3.4.6 Modulation of inflammatory pathways in pre-implantation embryos 

homozygous for L13a knock out.

Since we have shown that L13a is essential for survival and implantation of pre

implantation embryos in mice, the underlying mechanism by which L13a regulates the 

embryonic development at such an early stage needs to be investigated further. 

Interestingly, we observed that L13a protein is localized in the nucleus in all the pre

implantation stage embryos and as the embryos advance into post-implantation 

development, L13a is present in the nucleus and in the cytoplasm of the embryonic cells. 

Therefore, we speculated that L13a may play an important role in the nucleus during early 

development. To gain more insight, we harvested early morula stage embryos to isolate 

total RNA. Purified RNA samples were subjected to RNA sequencing. Due to the 

limitation of the amount of nucleic acid obtained from early stage morula embryos, we 

chose to do RNA sequencing of random embryos without doing PCR-based genotyping. 

First, cDNA libraries prepared from individual RNA sample were sequenced to generate a 

L13a regression scale depending upon the relative abundance of L13a mRNA transcripts 

(figure 40). The patterns of differentially expressed genes were compared with reference 

to the Regression scale of L13a (scale of 9 to 2) to identify the genes and underlying 

pathways modulated in response to L13a expression. The NGS results have shown that 

several genes show downregulation/upregulation in the absence of L13a when compared 

with the regression scale of L13a e.g. Ptma, HnrnPa1, Clta , unc50, Gm7056, E2f4, Syce2, 

CKS2, Wnk1 (figure 40). We also subjected our RNA sequencing data to pathway analysis, 

which showed L13a transcript abundance is correlated with the modulation of several 

pathways. One noteworthy pathway is the cytokine and inflammatory pathway. As the
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relative abundance of L13a decreases as represented by regression scale of L13a, this

pathway shows upregulation indicated by an arrow in the figure 41.

Figure 40: Alteration of gene expression in absence of L13a in early embryogenesis. RNA 

samples from individual early morula stage (L13a+/- parents cross) subjected to RNA 

sequencing. RNA sequencing results identified several potential targets modulating in absence 

of RP L13a in early embryonic stages. The gene expression was compared to the abundance of 

L13a transcripts (regression scale) and log FC (fold change) and P value is also indicated for 

each target gene.
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Figure 41: RNA sequencing data revealed a negative correlation between cytokine and 

inflammatory pathway (indicated by blue arrow in the figure) and the regression scale 

of L13a. RNA samples from individual embryo from L13a+/- intercross were subjected to 

NGS to see the relative abundance of mRNA transcript. RNA seq data subjected to pathway 

analysis identified the pathways modulated in response to L13a absence.
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3.5 Discussion:

Ribosomal proteins are well known to play extra-ribosomal functions in addition to 

their essential role in ribosome assembly and protein translation. Dysfunctions in most RPs 

induce developmental defects ranging from general translation impairment-related defects 

to tissue-specific phenotypes. In mammals, RP genes mutations are associated with several 

tissue-specific abnormalities such as the mouse Tail-short (Ts), Tail-short shionogi (Tss) 

and Rabotorcido (Rbt) mutants, showing skeletal abnormalities such as short, kinky tails 

and neural tube defects such as exencephaly, spina bifida and cleft palate etc.(Hustert et 

al., 1996). Recent studies have shown that the developmental defects in Ts (Tail-short) 

mutants are caused by mutations in Rpl38. Targeted disruption of small subunit ribosomal 

protein S19 has been shown to induce embryonic lethality in mice embryos at pre

implantation stage, suggesting an essential role of S19 in development of S19 homozygous 

knock out zygotes into blastocysts (Matsson et al., 2004). Another example of embryonic 

lethality in mammals is in ribosomal protein S6-heterozygous embryos, resulting in death at 

post-implantation stage (gastrulation stage).

The study covered in this thesis also demonstrates a similar role played by 

ribosomal protein L13a. This study suggests an essential role of L13a in the survival and 

implantation of L13a total knock out embryos. The RNA sequencing performed on 

embryos (WT, HET and KO) has identified several genes which are modulated in response 

to relative abundance of L13a mRNA transcripts. Since L13a as a component of GAIT 

complex plays a pivotal role in inflammation resolution, we performed pathway analysis 

using RNA sequencing data. Interestingly, cytokine and inflammatory pathway showed an 
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inverse correlation with the abundance of L13a mRNA transcripts. Recently, there have 

been several reports where the role of immune cells and inflammatory proteins have been 

investigated in blastocyst implantation and embryonic development (Dekel et al., 

2014)(Simon et al., 1998). Further studies need to be conducted to understand the role of 

L13a in embryogenesis in more depth. We have also observed that L13a is exclusively 

localized in the nucleus during pre-implantation development. However, it tends to be 

localized in cytoplasm in post-implantation stages. Therefore, we speculated an important 

role of L13a in the nucleus and that L13a may regulate the expression of a cohort of genes 

required for developmental progression during blastocyst implantation.

Future studies aiming at selecting and validating potential L13a targets from NGS 

results will shed more light on the mechanism underlying the role of L13a in mammalian 

embryogenesis. Since L13a is localized in the nucleus in pre-implantation stages, we also 

aim at testing the engagement of L13a in the chromatin isolated from morula stage embryos 

and mouse stem cells generated from inner cell mass based on the speculation that L13a 

could modulate the expression of target genes at the transcriptional or post-transcriptional 

level.
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CHAPTER IV

CONCLUSION

This thesis covers three main aspects of L13a: its ribosomal function (ribosomal 

incorporation mechanism), extra-ribosomal function (translational silencing mechanism) 

and its role in early embryonic development in mice.

Regulation of gene expression at the level of translation can occur by many means 

and adds considerable richness and sophistication to gene regulation. One of the most 

interesting features of this mechanism is: these translational regulations are usually 

reversible, as it is often mediated through reversible protein modifications such as the 

phosphorylation mediated activation/inactivation of initiation factors. The need for 

translational control is also apparent for systems where transcriptional control is not 

possible, such as cells which lack nuclei such as reticulocytes (Lackner and Bähler, 2008). 

We have demonstrated one such mechanism mediated by a specific domain within the 

eukaryote specific C-terminal extension of ribosomal protein L13a. Previously, we have 

shown that L13a, as a component of the GAIT complex, inhibits the translation initiation 

of target mRNAs, thereby, resolving the inflammation. It is generally considered that a 

regulated inflammatory response is beneficial to the host; but at the same time a 
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dysregulated response can result in an autoimmune attack and prove to be lethal for the 

host. Therefore, timely resolution of inflammation is critical. L13a mediated translational 

silencing of inflammatory genes has evolved as an endogenous defense against the 

uncontrolled inflammation. In our current study, we have identified the translational 

silencing domain (Arg169-Lys170-Lys171) in the C-terminal extension of human L13a 

protein. We have experimentally shown that mutating this domain abrogates GAIT

pathway mediated translational silencing activity of L13a. We also studied the role of 

eukaryote-specific C-terminal extension (149-203AA) of human L13a protein. Such 

eukaryotic-specific extensions are present in human L13a protein and its homologs from 

yeast to mammals. Deletion of this C-terminal extension results in the loss of ribosomal 

incorporation as well as the loss of translational silencing activity of L13a. Moreover, the 

amino acid sequence of the C-terminal helix compared amongst higher eukaryotes such as 

mouse, human and bovine is more conserved than lower eukaryotes such as yeast. 

Therefore, we proposed that this C-terminal extension in higher eukaryotes (mammals) has 

evolved to play an extra-ribosomal function in resolution of inflammation in the cells of 

myeloid origin, providing a physiological defense against inflammatory diseases. Such a 

mechanism is missing in lower eukaryotes. In addition, we have also identified amino acid 

residues within the C-terminal extension which are essential for ribosomal incorporation 

of L13a and its interaction with another ribosomal protein L14 on the ribosome surface.

Therefore, this study involving structure/function analysis of ribosomal protein 

L13a has identified a ribosomal incorporation domain (Lys159, Lys161) and translational 

silencing domain (Arg169, Lys170, Lys171) within the C-terminal extension of L13a. 

Interestingly, both these domains are mutually exclusive and work independently.
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In this study, we have observed that nuclear import of human L13a is resistant to 

the deletion of predicted NLS sequences and several other mutations encompassing long 

stretches of L13a sequence. Only nucleolar import was compromised. Therefore, we 

speculated that L13a might have some important nuclear role that remains unexplored yet. 

This study aimed at investigating the consequences of a total knock out of L13a in mouse 

has put forth an essential role of L13a in embryonic development. Systemic loss of L13a 

induces embryonic lethality at the morula stage (2.5-3.0 dpc). The observation that L13a 

is localized in the nuclei of mouse pre-implantation embryos further suggests an important 

role of L13a in the nucleus.

This interesting observation about the subcellular localization of L13a within the 

nuclei of human cultured cells and mammalian early embryonic cells needs to be 

investigated further to understand the diverse roles played by L13a.
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