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CNN-Based Estimation of Sagittal
Plane Walking and Running
Biomechanics From Measured and
Simulated Inertial Sensor Data

Eva Dorschky ™, Marlies Nitschke', Christine F. Martindale, Antonie J. van den Bogert?,
Anne D. Koelewijn' and Bjoern M. Eskofier’

" Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander University
Erlangen-Ndmberg (FAU), Erlangen, Germany, 2 Mechanical Engineering Department, Cleveland State University, Cleveland,
OH, United States

Machine learning is a promising approach to evaluate human movement based on
wearable sensor data. A representative dataset for training data-driven models is crucial
to ensure that the model generalizes well to unseen data. However, the acquisition
of sufficient data is time-consuming and often infeasible. We present a method to
create realistic inertial sensor data with corresponding biomechanical variables by 2D
walking and running simulations. We augmented a measured inertial sensor dataset with
simulated data for the training of convolutional neural networks to estimate sagittal plane
joint angles, joint moments, and ground reaction forces (GRFs) of walking and running.
When adding simulated data, the root mean square error (RMSE) of the test set of hip,
knee, and ankle joint angles decreased up to 17 %, 27 % and 23 %, the RMSE of knee
and ankle joint moments up to 6 % and the RMSE of anterior-posterior and vertical GRF
up to 2and 6 %. Simulation-aided estimation of joint moments and GRFs was limited
by inaccuracies of the biomechanical model. Improving the physics-based model and
domain adaptation learning may further increase the benefit of simulated data. Future
work can exploit biomechanical simulations to connect different data sources in order to
create representative datasets of human movement. In conclusion, machine learning can
benefit from available domain knowledge on biomechanical simulations to supplement
cumbersome data collections.

Keywords: biomechanics, biomechanical simulation and analysis, gait analysis, musculoskeletal simulation,
inertial sensors, optimal control, machine learning, convolutional neural networks - CNN

1. INTRODUCTION

Due to technological advances in wearable computing, it is now possible to measure human
movement outside the lab, in the natural environment (Seshadri et al., 2019). This facilitates
a continuous monitoring of patients and athletes supporting medical diagnosis, performance
assessment in sports, prevention of falling or sport-related injuries, tracking of disease progression
and evaluating the efficiency of treatment. Extracting useful information from sensor data
remains challenging as uncontrolled natural conditions imply variations in sensor placement,
in data quality, and a wide range of movement patterns. Typically, only discrete variables are
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computed from sensor data, such as speed, stride length, and step
frequency (Hannink et al., 2017; Falbriard et al., 2018; Zrenner
et al,, 2018). However, a comprehensive biomechanical analysis,
which involves the evaluation of joint angles, joint moments,
muscle forces, and ground reaction forces (GRFs), would be
beneficial to gain a deeper understanding of the movement
mechanics and underlying causes.

However, low-quality sensor data and sparse measurements
make it difficult to achieve a comprehensive analysis that
is comparable to laboratory results, where optical motion
capture (OMC) systems and force plates are available.
Different methods were developed to address the challenge
of extracting the kinematic and kinetic parameters of
movements from sensor data, commonly inertial sensor
data. These methods can be divided into physics-based or
data-driven approaches.

Physics-based approaches use kinematic chain models or
musculoskeletal models in combination with Kalman filters or
global optimization to constrain the solution space (Roetenberg
et al, 2009; Koning et al., 2013; Kok et al., 2014; Miezal
et al., 2017; Karatsidis et al., 2018; Dorschky et al., 2019).
Physical models can act as a filter to the noisy sensor data.
Moreover, reconstructing the movement with a musculoskeletal
model yields a comprehensive analysis including muscle forces,
kinematics, and kinetics. In contrast to data-driven approaches,
no lab measurements are necessary to train the model.
However, global optimization methods require a relatively high
computation time (Kok et al., 2014; Dorschky et al., 2019) and are
thus less suitable for real-time applications. In addition, model
inaccuracies such as simplified ground contact lead to errors in
GRF and joint moment estimations.

Data-driven approaches can directly learn a mapping between
sensor data and target biomechanical variables based on lab
measurements (Wouda et al., 2018; Komaris et al., 2019;
Stetter et al., 2019; Zell and Rosenhahn, 2019). Machine
learning algorithms can reveal hidden relationships between
sensor data and biomechanical variables, in particular, deep
learning is a promising approach to model time series data of
human movement (Halilaj et al., 2018). Trained models can
be exploited in real-time to provide instantaneous feedback
to the patient, athlete, or coach. For example, an early
warning system monitoring the internal joint loads during
sports could potentially prevent catastrophic non-contact knee
injuries (Johnson et al., 2019). Furthermore, low-latency feedback
on joint moments could help gait retraining in osteoarthritis
patients to reduce the knee adduction moment (Preece
et al., 2009). However, training data-based models requires a
representative dataset, which is cumbersome to acquire as it
typically involves synchronized recordings of inertial sensors and
OMC systems. It is often impractical to collect a dataset large
enough to train deep neural networks. Variations in movement
patterns, different sensor positions, and movement or sensor
artifacts can lead to high generalization errors within data-based
models (Wouda et al., 2018).

Strategies like data augmentation and transfer learning
have been applied to improve robustness and generalization
of data-based models. Um et al. (2017) used label-preserving

transformations of the sensor data (e.g., rotations, permutations,
and time-warping) to augment the training dataset. This
improved the robustness of the model with respect to sensor
position and noise, but did not account for variations
in movement patterns as the target variables remained
unchanged. Veiga et al. (2017) and Johnson et al. (2019)
utilized pre-trained deep neural networks from the image
domain as a feature extractor. The former authors used
images showing line curves of sensor signals. However,
characteristic features of one dimensional inertial sensor signals
likely differ from photographic images extracted from the
ImageNet database. Johnson et al. (2019) transformed the
data of five accelerometers into two-dimensional images: one
dimension representing the sensor locations and the other
dimension the normalized time. The acceleration magnitude was
quantized to greyscale or RGB colorspace, what probably caused
information loss.

To learn from sufficient data and incorporate variations
of movement, Johnson et al. (2019) synthesized accelerometer
data via double-differentiation of marker trajectories from their
OMC archive. Huang et al. (2018) also synthesized inertial
sensor data from motion capture datasets using a 3D model
of the human body shape and pose (SMPL) together with a
virtual sensor model. Mundt et al. (2020a,b) used OMC data
from several studies of their lab together with a biomechanical
model to create a large simulated dataset, which was used
for training feedforward neural networks to estimate joint
kinematics and kinetics. One drawback of these approaches is
that additional datasets containing OMC data or SMPL poses
of the movement of interest were required. Notably, Huang
et al. (2018) reported that combining these datasets was non-
trivial. Moreover, each recorded motion trajectory led to only
one synthetic sensor trajectory. An infinite number of random
samples can be generated using statistical modeling. Norgaard
et al. (2018) synthesized inertial sensor data from random
vectors using a generative adversarial network. Their approach
did not include biomechanical constraints to extract physically
plausible samples.

Our goal is to use physical knowledge of biomechanics
to alleviate the issue of data limitation. We contribute a
new method to expand a training dataset via biomechanical
simulations created by solving optimal control problems. We
simulated musculoskeletal models to follow walking and running
trajectories which were randomly sampled from a “small”
measured training dataset. In principle, an infinite number of
simulations could be obtained with matching inertial sensor
data and biomechanical variables. The constraints in the optimal
control problem ensured that simulated motions were physically
possible and dynamically consistent.

We evaluated if learning on simulated data can decrease
generalization errors, how much simulated data is necessary,
and what happens in the case of even smaller training datasets.
Therefore, we trained convolutional neural networks (CNNs) to
map inertial sensor data of walking and running cycles to joint
angles, joint moments and GRFs. We compared the performance
of the CNNs for training on only measured data with training on
measured and simulated data.
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FIGURE 1 | We trained CNNs to estimate sagittal lower body kinematics and kinetics from accelerometer and gyroscope data from four inertial sensors which were
placed on the lower body. Therefore, we created simulated data based on the measured training dataset (described in section 2.1): we drew random samples from
measured joint angles, GRFs, and walking/running speeds (see section 2.2), which were then tracked by musculoskeletal models solving optimal control problems
(see section 2.3). Simulated movements yielded biomechanics with matching inertial sensor data using a virtual inertial sensor model.

2. MATERIALS AND METHODS

Figure 1 shows the overview of the proposed methods. We
trained CNNs (LeCun et al., 1989) to estimate sagittal lower
body kinematics and kinetics from accelerometer and gyroscope
data from four inertial sensors which were placed on the
lower body. Therefore, we created simulated data based on
the measured training dataset (described in section 2.1): we
drew random samples from measured joint angles, GRFs, and
walking/running speeds (see section 2.2), which were then
tracked by musculoskeletal models solving optimal control
problems (see section 2.3). Simulated movements yielded
biomechanics with matching inertial sensor data using a virtual
inertial sensor model. We explain the network architecture of the
CNNs in section 2.4 and the evaluation process in section 2.5.

2.1. Measured Data

We used the data recorded by Dorschky et al. (2019), which
consisted of data from 10 subjects (denoted by S01-S10) walking
and running at six different speeds with 10 trials each. The
walking speeds were: 0.9to 1.0ms™!, 1.2to 1.4ms™}, and 1.8 to
2.0ms !, The running speeds were: 3.1to 3.3ms"!, 3.9to
4.1ms™!, and 4.7to 4.9 ms~!. The dataset comprises 595 (valid)
walking and running cycles in total. It includes data from

seven custom-built inertial sensors (Portabiles GmbH, Erlangen,

DE) (Blank et al., 2015) including tri-axial accelerometers
(£16g) and gyroscopes (£2.000deg/s) sampled at 1.000 Hz.
Corresponding lower body joint angles, moments, and GRFs
in the sagittal plane were computed from data measured with
an OMC system with 16 infrared cameras (Vicon MX, Oxford,
UK) and one force plate (Kistler Instruments Corp, Winterhur,
CH), which were sampled at 200 and 1,000, respectively. The
speed was measured by two light barriers at a distance of 2
m. In order to analyze right-sided biomechanics, data from
four inertial sensors were used; located at the lower back,
the lateral right thigh, the lateral right shank, and over the
2nd to 4th metatarsal of the right foot. Sensor positions are
shown in Figure2. Sensor data was aligned with segmental
axes based on calibrating movements. Eight sagittal plane
biomechanical variables were used as a reference: the right-
side hip, knee, and ankle flexion angles and moments, and
the anterior-posterior (A-P) and vertical GRFs. Biomechanical
variables and sensor data were segmented into isolated segments
of data from initial contact to initial contact and resampled
to 100 time points using linear interpolation. For evaluation
in section 2.5, the data from three subjects (SO1, S02, and
S03) were left out for testing and the data of the remaining
subjects (S04-S10) were used for training the CNNs. Simulated
data was created from the measured biomechanics of the
training subjects.
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FIGURE 2 | Conceptual drawing of musculoskeletal model consisting of seven
rigid segments and 16 Hill-type muscles (blue) with seven virtual inertial
sensors (red). The muscles are drawn for the right leg only: 1—iliopsoas,
2—glutei, 3—hamstrings, 4 —rectus femoris, 5—vasti, 6 —gastrocnemius,
7—soleus, and 8 —tibialis anterior. The virtual sensors are drawn for the left leg
only simulating sagittal inertial sensor signals: anterior-posterior accelerations,
longitudinal accelerations, and medial-lateral angular velocities indicated with
red arrows. The figure is taken and modified from Dorschky et al. (2019).

2.2. Random Sampling

We estimated the joint distribution of measured joint angles,
GRFs, and walking and running speeds of individual training
subjects and drew random samples from these distributions.
To achieve this, we concatenated for each walking and running
cycle the 100 time points of right-sided hip, knee, and ankle
joint angle and the A-P and vertical GRF and the corresponding
speed. Thus, every walking and running cycle was described
by a vector of R For each subject S;, the vectors of
the (approximately) 30 walking and 30 running cycles were
stacked to matrices of R39*01 Zs, walking and Zs, running, Whose
rows represented observations of the random variable vectors
Z§; walking and Zzg; running, respectively. We assumed multivariate
normal distributions: z, walking ~ N(I'LS,-,walking’ X, walking) and
ZS;,running " N(’l'Si,running’ Z‘S,-,walking)~ Therefore, we Computed
the sample means g, yalking a0d K, running € R over the
rows of Zs, walking and Zg; running and the sample covariance
matrices X, walking and X, running € [R>01x501 estimating
the covariance between the random variables (the columns of
Zs, walking/ Zs;,running). We drew 1,000 random samples from
each distribution to serve as tracking data for the optimal

control simulation in section 2.3 using Matlab R2018a mvnr nd
function (Kotz et al., 2004). Random samples of z were
partitioned into joint angles, GRFs, and speed. Joint angles and
GRFs were parted in the middle such that they could be used as
tracking data for the right and left leg, as only a half symmetric
cycle was simulated.

2.3. Simulated Data

We created seven planar musculoskeletal models (Van den
Bogert et al., 2012), one for each of the training subjects. Each
musculoskeletal model consisted of seven rigid segments (trunk,
thighs, shanks, and feet) connected by six hinge joints (hip,
knee, ankle in each limb) resulting in nine kinematic degrees
of freedom. In addition, each model had 16 Hill-type muscles
which are shown in Figure 2. The segments of the model were
scaled using the bodyweight (BW) and bodyheight (BH) of each
subject according to Winter (2009). The multi-body dynamics
and muscle dynamics are described in previous publications (Van
den Bogert et al., 2011; Dorschky et al., 2019). The unknowns of
the model, which were the generalized coordinates and velocities,
the muscle activations, muscle lengths, and the contact state,
were summarized in state vector x(f). The control vector u(¢)
described the neural excitations of the muscles at time t. The
model was simulated to follow random trajectories m(t) of the
right and left hip, knee, and ankle angles and anterior-posterior
and vertical GRFs while minimizing average muscular effort. We
simulated a half walking/running cycle of duration T assuming
left-right symmetry, to speed up simulation. The simulation was
formulated as the following optimal control problem:

minimize J(x(t), u(t))
x(t),u(t)

T 10 2 16
1 1 (Sj(t)_mj(t)) Weffort ()2
-7/ <10j2_1 TP DL
0 = =

track random trajectories muscular effort

+ Wieg Treg (1a)
subject to

X, <X <Xy (1b)
u <u<uy (10)
f(x(1), (1), u(t)) = 0 (1d)
x(0) + vTe, — x*(T) = 0. (1e)

The objective function J(x(t), u(t)) consisted of a tracking, an
effort, and a regularization term with the weights Wego,x = 0.1
and Wyeg = 0.00001. The weighting was chosen empirically so
that tracking and effort term had about the same magnitude and
the regularization term was of lower magnitude. In the tracking
term, the quadratic deviation of simulated trajectory s(t) to the
prescribed trajectory m(t), normalized to the measured variance
o (t), was minimized. Average muscular effort, the mean squared
value of muscle excitations, was minimized to resolve muscle
ambiguity and to allow the model to deviate from the random
trajectories finding a more efficient and potentially more natural
movement path. In the regularization term, Jreg, the integral of
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TABLE 1 | Architecture of convolutional neural networks with tuned hyperparameters.

Layer Name Hyperparameter Search space Selected value Size of output
1 Convolution-RelLlU Kernel_size1, filters1 {3x1,5x1, 7x1, 3x3, 5x3, 7x3}x{8, 16, 32, 64, 128} 5x3, 64 100x12x64
2 Max-Pooling Pool_sizel {2x1,2x2} 2x2 50x6x64

3 Convolution-RelLU Kernel_size2, filters2 {3x1,5x1, 7x1,3x3, 5x3, 7x3}x{16, 32, 64, 128, 256} 5x3, 128 50x6x128

4 Max-Pooling Pool_size2 {2x1,2x2} 2x2 25x3x128

5 Flattening - - - 9600

6 Dense-RelLU - - - 100

7 Dense 12_reg {0.01,0.001,0.0001} 0.001 100

TABLE 2 | Hyperparameters related to training the convolutional neural networks.

Parameter Considered values Selected value
Batch size {32,64,128,256,516} 64
Learning rate {0.01,0.001,0.0001} 0.001
Number of epochs {600,1000,2000,3000} 1000

the sum of squares of the time derivatives of all state and control
variables was minimized helping the optimization to converge
more quickly.

Equations (1b) and (1c) were the lower (L) and upper (U)
bounds of the state vector x and the control vector u € [0, 5] [the
same bounds as in Dorschky et al. (2019)]. Dynamic equilibrium
was constrained in Equation 1d. To do so, the dynamic equations,
which were the multi-body dynamics, muscle dynamics, and
contact dynamics (Van den Bogert et al., 2011; Dorschky et al.,
2019), were formulated implicitly. In constraint Equation le,
we enforced symmetry of the right and left leg with a forward
translation in direction ey, where v is the randomly sampled
speed (see section 2.2) and x* is the mirrored state vector of the
right and left leg. The optimal control problem, Equation (1), was
solved using direct collocation. The state and control vector were
sampled to 50 time points using the Backward Euler method. We
used the open source optimizer IPOPT (Wichter and Biegler,
2006) and ran the simulations on a high performance cluster.

The simulation results were expanded to a whole symmetric
walking/running cycle with 100 time points. We used the
simulated biomechanics of the right leg for training the CNNs
in section 2.5. Given the simulated movements, we could extract
accelerometer and gyroscope signals at any position of the
models. In this work, we used the measured sensor position for
each subject from section 2.1 and calculated virtual inertial sensor
data as introduced in Dorschky et al. (2019). Gyroscope signals
were computed from global trunk orientation and relative joint
angular rates. Accelerometer signals were computed from the
segment accelerations adding gravity and centrifugal acceleration
dependent on sensor position.

2.4. Convolutional Neural Network

We trained CNNs to learn a mapping between inertial sensor data
and sagittal plane biomechanical variables for walking/running
cycle defined from initial contact to initial contact sampled

at 100 time points. The sampling was chosen to match the
simulated data. We trained eight separate CNNs, one for
each output variable, namely the right hip, knee, and ankle
angles and moments and A-P and vertical GRFs. As input,
we used the sagittal plane sensor data of the hip sensor, right
thigh sensor, right shank sensor and right foot sensor. We
used two accelerometer axes (A-P and longitudinal) and one
gyroscope axis (medial-lateral) of each sensor, resulting in an
input dimension of 100 x 12. We scaled the data using min-
max normalization.

The CNN architecture is based on previous work
performing gait analysis from inertial sensor data of segmented
strides (Hannink et al., 2017; Zrenner et al., 2018). They used
two or three 1D convolutional layers to extract temporal features
from accelerometer and gyroscope data. We found that 2D
convolutional layers filtering over time and sensor channels
were superior to 1D convolutional layers performing just
temporal convolutions. They estimated single spatio-temporal
gait parameters instead of biomechanical variables over gait
cycles. Thus, the number of output nodes was adapted to 100
time points in our work.

Table 1 provides an overview of the network, which consisted
of two convolutional layers for feature extraction with zero
padding, a stride length of one, and a rectified linear activation
function. After each convolutional layer, max-pooling was
applied. Two convolutional layers seemed to yield superior
performance in comparison to one or three convolutional layers
because underfitting occurred in the first case and overfitting
in the other case. The data was flattened before passing it to
two dense layers for non-linear multivariate regression. The first
dense layer had a non-linear rectified linear activation function
and 100 nodes. The output layer was a dense layer with linear
activation function and 100 nodes. To prevent the model from
overfitting, we used L2 kernel regularization. During cross-
validation (CV), we inspected the learning curves for overfitting
verifying that the validation error did not increase with the
number of iterations. We used the ADAM optimizer (Kingma
and Ba, 2015) and the mean squared error loss function to
train the CNNs. The batch size, learning rate, number of
epochs, and L2 regularization factor were empirically set based
on the measured training dataset considering specifically the
values in Table 2. The number of filters, kernel size, and max-
pooling were tuned using leave-one-subject-out CV within the
seven training subjects (S4-S10) testing the hyperparameters
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FIGURE 3 | Measured (black dotted) and simulated (green solid) accelerometer (acc) and gyroscope (gyro) data in the sagittal-plane of one subject running at fast
speed. The inertial sensors were located at the lower back, the lateral right thigh, the lateral right shank, and at the span of the right foot.

in Table 1. The network was implemented in Python using
Keras with Tensorflow backend (Chollet, 2015; Abadi et al,
2016). Our implementation of the CNN can be found in the
Supplementary Material.

2.5. Evaluation

The chosen hyperparameters were fixed for all further
evaluations. We trained every CNN with 10 random seeds
to test the robustness of results with respect to different random
samples of simulated data and random initializations of CNN
layers. For comparison purposes, we used the same random
seeds for all different training sets. First, we trained the CNNs
using only measured data of subjects S04-S10 (training dataset)
and tested them with the data of subjects S01-S03 (test dataset).
Then, we evaluated how simulated data influences the resulting
evaluation metrics. Therefore, we subsequently added simulated
data to the training dataset (418 samples) to obtain twice
(836 samples), four times (1,672 samples), eight times (3,344
samples), and 16 times (6,688 samples) the amount of training

samples. Simulated data was picked randomly and equally from
the 1,000 simulations of each training subject of the walking
and running simulations. Thus, the same amount of simulated
data was taken from each normal distribution in section 2.2. We
used the Python’s random module to randomly pick simulated
data (Matsumoto and Nishimura, 1998). As we trained every
CNN 10 times with different random samples, we made sure
that results were robust to random sampling. We trained the
networks jointly on simulated and measured training data, which
was randomly shuffled at each epoch.

Secondly, we evaluated the model when using less training
subjects. We used only four subjects (S07-S10) and two subjects
(S09 and S10) for training and tested it with the same three
test subjects (S01-S03). For each amount of training subjects,
we expanded the respective measured dataset to obtain twice,
four times, eight times, and 16 times the amount of training
samples. The simulated data was used from the training subjects
only: from four subjects (S07-S10) and two subjects (S09 and
S10), respectively.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

June 2020 | Volume 8 | Article 604


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www