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A B S T R A C T 

Gaia has revealed clear evidence of bending waves in the vertical kinematics of stars in the solar neighbourhood. We study 

bending waves in two simulations, one warped, with the warp due to misaligned gas inflow, and the other unwarped. We find 

slow, retrograde bending waves in both models, with the ones in the warped model having larger amplitudes. We also find fast, 
prograde bending waves. Prograde bending waves in the unwarped model are very weak, in agreement with the expectation that 
these waves should decay on short, approximately crossing, time-scales, due to strong winding. Ho we ver, prograde bending 

waves are much stronger for the duration of the warped model, pointing to irregular gas inflow along the warp as a continuous 
source of excitation. We demonstrate that large-amplitude bending waves that propagate through the solar neighbourhood give 
rise to a correlation between the mean vertical velocity and the angular momentum, with a slope consistent with that found by 

Gaia . The bending waves affect populations of all ages, but the sharpest features are found in the young populations, hinting that 
short-w avelength w aves are not supported by the older, kinematically hotter, populations. Our results demonstrate the importance 
of misaligned gas accretion as a recurrent source of vertical perturbations of disc galaxies, including in the Milky Way. 

Key words: stars: kinematics and dynamics – Galaxy: disc – Galaxy: kinematics and dynamics – solar neighbourhood – Galaxy: 
structure – galaxies: evolution. 

1  I N T RO D U C T I O N  

Early hints that the solar neighbourhood (SN) is vertically perturbed 
(G ́omez et al. 2012 ; Widrow et al. 2012 ; Carlin et al. 2013 ; Williams 
et al. 2013 ; Yanny & Gardner 2013 ; Faure, Siebert & Famaey 2014 ) 
have been dramatically confirmed with the Gaia data. Already by 
using just the Tycho –Gaia data release (DR) 1 astrometric solution 
(TGAS) data set (Gaia Collaboration 2016a , b ), Sch ̈onrich & Dehnen 
( 2018 ) (hereafter, SD18 ) found a linear increase in the mean vertical 
velocity, 〈 v z 〉 , with the azimuthal velocity, v φ , angular momentum, 
L z , and guiding radius, R g , of stars in the SN. Since the line of 
nodes (LONs) of the Galactic warp is only ∼17.5 ◦ ahead of the Sun 
(Chen et al. 2019 ), this linear increase is potentially the warp’s direct 
imprint on the local stellar kinematics. SD18 only used stars along 
narrow cones in the centre and anticentre directions to obtain v z and 
v φ without requiring radial velocity measurements, which the TGAS 

data set lacks. SD18 also noted the presence of a w ave-lik e pattern 
imprinted on the o v erall 〈 v z 〉 distribution, towards both the centre 
and anticentre directions. A smooth, monotonic w arp w ould not 
present such a signal; instead, SD18 obtained a good fit with a simple 
sinusoidal wave, as might be produced by a winding warp or by a 
bending wave. Subsequently, this pattern in 〈 v z 〉 was replicated by 
Huang et al. ( 2018 ) (hereafter, H18 ) using an ∼10 5 -star sample from 

the LAMOST–TGAS data. Unlike the TGAS sample, LAMOST–

� E-mail: astrotkh@gmail.com 

TGAS has full 6D phase-space measurements, which allowed H18 
to replicate the w ave-lik e pattern in 〈 v z 〉 versus L z and versus v φ
in the entire SN. With the release of Gaia DR2, the linear increase 
and w ave-lik e pattern in 〈 v z 〉 were again confirmed by Friske & 

Sch ̈onrich ( 2019 ). 
Subsequently, Gaia DR2 revealed a phase-space spiral in the ( z, 

v z ) plane. Antoja et al. ( 2018 ) selected ∼9 × 10 5 stars in the solar 
annulus of the Gaia DR2 radial velocity sample (RV), which contains 
the full 6D phase-space coordinates (Gaia Collaboration 2018 ), and 
projected them on to the ( z, v z ) plane. The result was a spiral with 
one complete wrap, with a trailing tail reaching up to ∼700 pc and 
∼40 km s −1 in | z| and | v z | , respectively. This phase-space spiral is 
particularly apparent when colour coded by the azimuthal velocity, 
v φ , implying a coupling between the in-plane and vertical motions. 
The presence of this phase-space spiral indicates that the SN is 
undergoing vertical phase mixing as a result of vertical perturbations 
(Antoja et al. 2018 ). The Gaia phase-space spiral was dissected by 
Li & Shen ( 2020 ), who showed that it is weaker for stars on radially 
hotter orbits. 

The cause of these vertical perturbations in the SN remains uncer- 
tain. In general, vertical perturbations in galactic discs propagate as 
bending waves (Hunter & Toomre 1969 ; Merritt & Sell w ood 1994 ; 
Sell w ood 1996 ; Sell w ood, Nelson & Tremaine 1998 ; Kazantzidis 
et al. 2009 ; Chequers, Widrow & Darling 2018 ; Bland-Hawthorn 
et al. 2019 ; Darling & Widrow 2019 ; Khoperskov et al. 2019 ) with 
many possible causes. Widrow et al. ( 2012 ) presented evidence for 
a w ave-lik e perturbation in the Galactic disc in the form of the 
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Galactic north–south asymmetry, speculating that it could have come 
about via satellite interactions. Feldmann & Spolyar ( 2014 ) used a 
high-resolution numerical simulation to study the interactions of 
dark matter substructure with the disc and observed that subhalo 
interactions resulted in distinct and coherent variations in the vertical 
velocities of disc stars. G ́omez et al. ( 2017 ) presented multiple high- 
resolution cosmological simulations of individual Milky Way (MW)- 
sized galaxies that develop significant vertical bending waves via 
satellite interactions. 

The Sagittarius dwarf galaxy (Sgr) is the most frequently invoked 
external cause of vertical excitation of the MW’s disc (Dehnen 1998 ; 
Ibata & Razoumov 1998 ; Laporte et al. 2019 ), due to its relatively 
recent ( ∼0.4–1 Gyr ago) passage through the disc and an orbit that 
is perpendicular to the Galactic plane (Ibata & Razoumov 1998 ; 
Laporte et al. 2019 ). Sgr has also been suggested to be the cause of 
the bending wave observed by SD18 and H18 . The analysis of the 
phase-space spiral led Antoja et al. ( 2018 ) to infer that the Galactic 
disc was perturbed in the past 300 –900 Myr , which matches current 
estimates of a pericentric passage by Sgr. Li & Shen ( 2020 ) presented 
further support for the Sgr scenario with a vertically perturbed test 
particle simulation. They estimated that the perturbation should have 
happened at least 500 Myr ago to observe the Gaia phase-space 
spiral in its current form. Ho we v er, other simulations hav e shown 
inconsistencies in the Sgr scenario. Binney & Sch ̈onrich ( 2018 ) 
produced a phase-space spiral in an SN population extracted from a 
distribution function fitted to Gaia DR2 RV and estimated that the 
spiral formed 400 ± 150 Myr ago. While their time-scale estimate 
is in some agreement with Antoja et al. ( 2018 )’s results, the mass 
and duration of the interaction required to produce similar phase- 
space spirals were significantly higher and faster, respectively. In a 
pure N -body simulation, Bland-Hawthorn & Tepper-Garc ́ıa ( 2021 ) 
have shown that the current mass estimate of the Sgr dwarf is 
too low to excite the phase spiral. Instead, Bland-Hawthorn & 

Tepper-Garc ́ıa ( 2021 ) suggested that the interaction had to have 
happened 1 –2 Gyr ago with the Sgr dwarf losing mass at a high 
rate. Additionally, Bennett & Bovy ( 2021 ) used one-dimensional 
(vertical) models of satellite–disc interaction and were unable to 
reproduce the observed asymmetry in the vertical number counts for 
any plausible combination of Sgr and MW properties. 

On the other hand, Chequers et al. ( 2018 ) showed that isolated 
galaxies can also self-excite bending waves. Their N -body simula- 
tions of isolated galaxies naturally develop bending waves not just 
when the halo is clumpy but also when it is a smooth distribution of 
a finite number of dark matter particles. The bending waves in both 
kinds of simulations have a similar morphology and frequencies, 
but differ in amplitude, with the clumpy halo exciting waves of 
higher amplitudes. In the smooth halo models, the bending waves 
were seeded by the random noise of the halo and bulge particle 
distributions (Chequers & Widrow 2017 ). In the clumpy halo models, 
instead, the subhaloes imprint local perturbations on the disc that then 
shear into bending wa ves. The b uckling of a galactic bar also induces 
bending waves in the disc. Khoperskov et al. ( 2019 ) presented a 
high-resolution N -body simulation that developed a bar that then 
buckled; i.e. it suffered a vertical bending instability of the bar (Raha 
et al. 1991 ; Sell w ood & Merritt 1994 ). The resulting bending waves 
propagated outwards in the disc and remained coherent for a long 
time, with the phase-space spirals still being distinguishable 3 Gyr 
after the bar buckled. Ho we ver, it is unclear whether the MW’s 
bar could have buckled this recently without scattering too many 
relatively young stars into the bulge (Debattista et al. 2019 ). 

An alternative mechanism for generating vertical bending waves 
comes from the observation that, in galaxy formation simulations, gas 

reaches the disc with a misaligned angular momentum (Binney & 

May 1986 ; Ostriker & Binney 1989 ; van den Bosch et al. 2002 ; 
Ro ̌skar et al. 2010 ; Velliscig et al. 2015 ; Stevens et al. 2017 ; Earp 
et al. 2019 ), regardless of whether it settles to the disc via hot or cold 
modes. Such angular momentum misalignments cause long-lived 
warps, as opposed to the transient warps excited by interactions 
(Ostriker & Binney 1989 ; Ro ̌skar et al. 2010 ; Aumer et al. 2013 ). 
In the presence of a live dark halo, the assumption of steady warp 
precession (Dekel & Shlosman 1983 ; Toomre 1983 ) fails as warps in 
N -body simulations rapidly wind up (Binney, Jiang & Dutta 1998 ). 
Ho we ver, e ven in the presence of a live halo, misaligned accretion 
could still create warps with amplitudes comparable to those of 
observed warps (Jiang & Binney 1999 ). These warps provide another 
mechanism by which the disc may be vertically excited, as shown 
by G ́omez et al. ( 2017 ), who found that some of their cosmological 
simulations had prominent vertical bends in discs with no recent 
satellite interaction. They argued that these bends are most prominent 
in the youngest stellar populations ( <2 Gyr ) and cold gas, and almost 
absent in the oldest stars. The MW’s H I disc has long been known 
to be warped (Kerr 1957 ; Weaver & Williams 1974 ; Levine, Blitz & 

Heiles 2006 ), with the warp reaching ≥4 kpc abo v e the mid-plane at 
R = 25 kpc . A warp has also been observed in the stellar component 
of the Galactic disc (Efremo v, Ivano v & Nikolov 1981 ; Reed 1996 ; 
L ́opez-Corredoira et al. 2014 ). Recently, with the help of the WISE 

catalogue of periodic variable stars (Chen et al. 2018 ), the stellar 
warp has also been mapped in greater detail in the young stellar 
populations (Chen et al. 2019 ). 

This paper uses N -body + SPH (smooth particle hydrodynamics) 
simulations to explore a scenario in which bending waves are induced 
by gas accreting along a warp. In Paper I (Khachaturyants, Beraldo 
e Silva & Debattista 2021 ), we used the same warped simulation to 
show that if the MW’s warp is formed by misaligned gas accretion, 
then stars formed in the warp could migrate inwards and be found 
in the SN. The paper is organized as follows: We describe a warped 
and a control unwarped simulation in Section 2 . The evolution of the 
warp is described in Section 3 . In Section 4 , we analyse the bending 
wav es that dev elop in both the warped and unwarped simulations, 
comparing and contrasting them. Lastly, we summarize our results 
in Section 5 . 

2  SI MULATI ONS  

We construct two simulations, one with and one without a warp, 
in order to study the effect of warps on generating bending waves. 
Hereafter, we refer to the simulations as the warped and unwarped 
models. 

2.1 The warped model simulation 

The warped model has the same initial conditions as the simulation 
used in Khachaturyants et al. ( 2021 ) and is produced via the method 
of Debattista et al. ( 2015 ), which constructs triaxial dark matter 
models with gas angular momentum misaligned with the principal 
axes of the halo. Aumer & White ( 2013 ) showed that inserting 
rotating gas coronae within non-spherical dark matter haloes leads 
to a rapid and substantial loss of gas angular momentum. To a v oid 
this catastrophic angular momentum loss, our approach includes 
adiabatic gas already while merging haloes to produce a non- 
spherical system. We merge two identical spherical Navarro–Frenk–
White (Navarro, Frenk & White 1996 ) dark matter haloes, each 
having a co-spatial gas corona comprising 10 per cent of the total 
mass. The mass and virial radius of each dark matter halo at z = 
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0 are set to M 200 = 8 . 7 × 10 11 M � and r 200 = 196 kpc , respectively. 
The gas is in pressure equilibrium within the global potential. Gas 
velocities are initialized to give a spin parameter of λ = 0.16 (Bullock 
et al. 2001 ), with specific angular momentum j ∝ R , where R is the 
cylindrical radius. Both the dark matter halo and the gas corona are 
comprised of 10 6 particles. Gas particles start out with masses of 
1 . 4 × 10 5 M � and softening ε = 20 pc , while dark matter particles 
have two different mass configurations (10 6 and 3 . 6 × 10 6 M �
inside and outside 200 kpc , respectively) and ε = 100 pc . The two 
haloes are placed 500 kpc apart and approach each other head-on at 
100 km s −1 . If the direction of the separation vector (and the relative 
velocity) is the x -axis and the haloes are rotating about their z-axes, 
a tilt about the y -axis is applied to one of the haloes so that the final 
system will be prolate with its long axis along the x -axis and a gas 
angular momentum tilted with respect to the symmetry axes of the 
halo. 

This simulation is evolved with the SPH code GASOLINE (Wadsley, 
Stadel & Quinn 2004 ), with a base time-step �t = 10 Myr . This 
time-step is refined for individual particles such that each particle 
satisfies the condition δt = �t/ 2 n < η

√ 

ε/a g , where a g is the 
acceleration at the particle’s current position, with η = 0.175. The 
opening angle of the tree code calculation is set to θ = 0.7. 

The result of this set-up is a dark matter halo with r 200 = 238 kpc 
and M 200 = 1 . 6 × 10 12 M �, and gas with λ = 0.11. These are the 
initial conditions of the warped simulation. At this stage, we turn on 
gas cooling, star formation, and stellar feedback using the blastwave 
prescriptions of Stinson et al. ( 2006 ). Gas particles form stars with a 
10 per cent efficiency if a gas particle has number density n > 1 cm 

−3 

and temperature T < 15 000 K and is part of a convergent flow. 
Star particles form with an initial mass that is one-third of 

the initial parent gas particles, corresponding to 4 . 6 × 10 4 M � at 
our resolution. The star particles all have ε = 20 pc . Once a gas 
particle loses 80 per cent of its initial mass, the remaining mass is 
distributed among the nearest neighbouring gas particles, leading to 
a decreasing number of gas particles. Star particles are represented 
by an entire stellar population with a Miller–Scalo (Miller & Scalo 
1979 ) initial mass function. The evolution of star particles includes 
asymptotic giant branch stellar winds and feedback from Type II and 
Type Ia supernovae, with their energy injected into the interstellar 
medium (ISM). Each supernova releases 10 50 erg into the ISM. 
The time-steps of gas particles satisfy the additional condition 
δt gas = h ηcourant / [(1 + α) c + β μmax ], where h is the SPH smoothing 
length, ηcourant = 0.4, α = 1 is the shear coefficient, β = 2 is the 
viscosity coefficient, c is the sound speed, and μmax is the maximum 

viscous force measured between the gas particles (Wadsley et al. 
2004 ; Springel 2010 ). The SPH kernel uses the 32 nearest neighbours. 
Gas metallicity is taken into account in the gas cooling process using 
the prescriptions of Shen, Wadsley & Stinson ( 2010 ); to prevent the 
cooling from dropping below our resolution, we set a pressure floor 
on gas particles of p floor = 3 G ε2 ρ2 , where G is Newton’s gravitational 
constant and ρ is the gas particle’s density (Agertz, Teyssier & Moore 
2009 ). 

2.2 The unwarped simulation 

The unwarped model is the M1 c b simulation described in Fiteni 
et al. ( 2021 ). Briefly, the model is similar to one of the spherical 
models we start with in the warped simulation, except that the 
initial gas angular spin is λ = 0.065 (Bullock et al. 2001 ). Feedback 
via supernova explosions again employs the blastwave prescription 
(Stinson et al. 2006 ). The main difference between this and the 

warped simulation (aside from the initial conditions) is that we use 
a gas particle softening of 50 pc , the star formation efficiency is 
5 per cent , and the feedback from supernovae is set to 4 × 10 50 erg 
per supernova. 

2.3 Pr e-pr ocessing the simulations 

Simulation snapshots are saved every 10 Myr and are processed 
through our custom PYTHON library suite (Khachaturyants et al. 
2021 ). The processing involves centring the galactic disc and then 
rotating it into the ( x , y ) plane based on the angular momentum 

of the inner stellar disc ( R < 5 kpc ) for both models. After this 
reorientation, the warped model is rotated such that the maximum 

vertical displacement of the tilted ring model (Briggs 1990 ), i.e. the 
warp’s major axis (WMA), is on the x -axis and, consequently, the 
LONs is on the y -axis. Lastly, the disc is rotated by 180 ◦ about the 
y -axis, which results in a sense of rotation (clockwise when viewed 
from the positive z-axis, hereafter the North Galactic pole) and warp 
orientation similar to that of the MW (Chen et al. 2019 ). We define 
an azimuthal angle coordinate φw , where φw = 0 represents the 
ascending node of the LON ( y < 0 axis), and increases in the direction 
of rotation. As a result, the gas warp in each snapshot reaches its peak 
ne gativ e value along the positive x -axis, i.e. φw = −90 ◦. In the case 
of the unwarped model, the process is repeated without the WMA 

reorientation, so we define φ = 0 as being along the x -axis. 
The rotation curves of the two models at 12 Gyr are presented in 

Fig. 1 . Potentials for both simulations were interpolated using the 
AGAMA software library (Vasiliev 2019 ) using a single multipole 
approximation for the stellar, gas, and dark particles combined. 
Rotation curves of the interpolated potentials are presented in Fig. 1 
as dashed red lines. As in the MW, the rotation curves of the two 
models are relatively flat, though the unwarped model has a higher 
stellar density in the centre and therefore a peak in the rotation curve 
at ∼1 kpc . 

3  WA R P  E VO L U T I O N  

The top row of Fig. 2 presents edge-on views of stars (colour) and the 
cool ( T g ≤ 50 000 K) gas (red contours) between t = 3 and 12 Gyr . 
Throughout the evolution of the warped model, gas is accreting on 
to the disc along an integral-shaped warp. By 12 Gyr , the gas warp 
extends up to 15 kpc above the plane at R ∼ 20 kpc . Because of 
our re-orientation of the disc, the major axis of the warp is along 
the x -axis and reaches a peak ne gativ e value along the x > 0 side; 
in reality, viewed from an inertial frame the disc is tilting slowly 
and continuously during this time (Binney & May 1986 ; Ostriker & 

Binney 1989 ; Debattista et al. 2015 ; Earp et al. 2017 , 2019 ) but we 
subtract this tilting. 

In order to study the evolution of the warp, we construct Briggs 
figures (Briggs 1990 ) for the warped and unwarped models. A Briggs 
figure represents warping by means of the spherical azimuthal and 
inclination angles, φJ and θ J , respectively, between the total angular 
momenta of concentric annuli and the z-axis. These are then plotted 
as the radial, ρ (for θ J ), and angular, ψ (for φJ ), variables of a two- 
dimensional polar plot. Because we reorient the discs into the ( x , y ) 
plane based on the angular momentum of the inner disc stars before 
we perform any analysis, the inner disc is at the origin of the Briggs 
figures, i.e. it has angular momentum along the z-axis. The bottom 

row of Fig. 2 shows Briggs figures for the warped model at the same 
time intervals. The figure presents the stars (in black) and the cool 
gas (in red) separately. The stellar and gaseous discs are divided 
into annuli of width �R = 0 . 5 kpc , and then we calculate the total 
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Figure 1. Rotation curves for the warped (top) and unwarped (bottom) 
models at 12 Gyr . Solid lines represent the rotation curves of each galactic 
component (computed for each family of particles using the PROFILE function 
of the PYNBODY library; Pontzen et al. 2013 ), while the interpolated total 
potential (computed with AGAMA; Vasiliev 2019 ) is represented by the dashed 
red lines. 

angular momentum of particles in each annulus. A warp is present 
in the gas component throughout the evolution of the warped model. 
The warp grows slowly with time; by 12 Gyr , it extends to almost 
40 ◦. The warp traces a leading spiral relative to the sense of rotation 
of the disc, in agreement with Briggs’s third rule of warp behaviour 
(Briggs 1990 ) that states that, beyond a certain radius, the LON lies 
along a loosely wound, leading spiral. On the other hand, the stellar 
component loses its large-scale warp after 6 Gyr , and only a small 
stellar warp remains. 

In contrast, a similar analysis on the unwarped model does not 
rev eal an y notable disc warping. In the top row of Fig. 3 , the edge-on 
views of the unwarped model present no stellar (colour) or gaseous 
(red contours) warps at any point in time. The bottom row of Fig. 3 
shows similar Briggs figures as in Fig. 2 but with significantly smaller 
θL upper limits to underline the lack of warping in the unwarped 
model. We observe no warping in the stellar component at all times 
and only minor tilting at R = 10 kpc at 6 and 9 Gyr for the gas. 

Fig. 4 presents cold gas and stellar profiles for both models at 
t = 12 Gyr in the surface density (top panel) and their inclination 
(bottom panel). The unwarped model exhibits a drop in the gas 
surface density at the edge (10 kpc ) while the inclination of both 
stellar and gas components remains flat throughout the disc and its 
outskirts. In the warped model, we observe a slower decline in the 
surface density of both components, with the stellar disc showing a 
weak increase in inclination, caused by newly ( ≤2 Gyr ) formed warp 
stars. The inclination of the gas disc rapidly grows from r ≥ 9 kpc 
and reaches θL ∼ 40 ◦ by r ≥ 15 kpc . 

4  BENDI NG  WAV ES  

4.1 The presence of vertical bends 

Fig. 5 shows the stellar distributions in the x –y (top) and R–φw 

(bottom) planes of the average height, 〈 z〉 (left), and the average 
v ertical v elocity, 〈 v z 〉 (right), in the warped and unwarped models 
(see top left annotation). The distributions highlight the presence 
of large-scale bends (coherent blue and red structures) in the disc. 
The warped model exhibits bends with amplitudes of ∼100 pc and 
∼3 km s −1 for 〈 z〉 and 〈 v z 〉 , respectively, that reach far inside the disc 
down to R 
 2 kpc . In agreement with Chequers et al. ( 2018 ), bends 
are also observed in the unwarped model, but are noticeably weaker, 
with amplitudes of ∼25 pc and ∼1 km s −1 , respectively. The bends 
in the unwarped model also reach far inside the disc reaching the 
very centre. At first sight, the structure of the bends in both models 
does not appear to have any distinct shape and wavelength, requiring 
a more in-depth spectral analysis of the surface 〈 z〉 distributions to 
probe for bending waves. 

4.2 Spectral analysis of bending waves 

Bending waves propagating in a kinematically cool galactic disc can 
be seen as the superposition of a ‘fast’ ( + ) and ‘slow’ ( −) waves 
circulating with frequencies ω = m �( R ) ± ν( R ), where �( R ) is the 
angular rotation curve, ν( R ) is the vertical frequency, and m -fold 
rotational symmetry is assumed. The inclusion of the disc’s self- 
gravity raises ν( R ), making bending waves more stable, i.e. stiffer 
(contrary to density waves) – see Binney & Tremaine ( 2008 ). The 
detailed inclusion of the disc’s self-gravity, ho we ver, defies simple 
theoretical modelling, since it depends on the mass distribution of 
the bending wave itself. Moreover, the halo strongly reacts to the 
perturbed disc (Binney et al. 1998 ), making it impossible to model 
an equation of motion for the disc alone. 

We are thus left with the conserv ati ve constraint that ignores self- 
gravity and, for a given rotation curve �( R ), bending waves can only 
propagate in regions that satisfy the condition 

m 

2 
[
�p − �( R) 

]2 ≥ ν2 
h , (1) 

where �p = ω/ m is the pattern speed and νh is the frequency of 
vertical oscillation contributed by the halo potential. This defines, 
for m = 1, a ‘forbidden’ region, � − νh < �p < � + νh , where 
bending waves cannot propagate (e.g. Nelson & Tremaine 1995 ). 

In flattened potentials, ν > �, so the ‘fast’ wave is prograde, with 
a frequency ω depending strongly on R for most radii, so differential 
rotation winds it up rapidly and it decays. The ‘slow’ wave, on the 
other hand, is retrograde and circulates with frequency only weakly 
depending on R for most radii. This wave is thus expected to wind 
up slowly and be long-lived. 

In order to investigate in detail the propagation of bending waves in 
our models, in this section, we employ the spectral analysis technique 
of Sell w ood & Athanassoula ( 1986 ), using a code based on that of 
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Figure 2. Top ro w: edge-on vie ws of the stellar and cold gas ( T g ≤ 50 000 K) distributions at four times in the evolution of the warped model. The colour 
represents the stellar surface density, while the red contours represent the cold gas column density. The times are labelled at the top right in each panel. A warp is 
present throughout the evolution of the warped model. The simulation is rotated so that the major axis of the warp is along the x -axis. The warp reaches heights 
| z| ∼ 15 kpc o v er this evolution. Bottom row: Briggs figures for the warped model showing the evolution of the stellar (black) and cool gas (red) warps at the 
same time. Markers represent annuli with �R = 0 . 5 kpc , equally spaced from 5 to 20 kpc , with the square markers indicating R = 15 kpc . Annuli containing a 
total mass that is ≤10 6 M � are not shown. The stellar disc is somewhat warped at t = 3 Gyr but becomes flatter throughout its evolution. 

Figure 3. Similar to Fig. 2 but for the unwarped model. In contrast to the warped model, there are no warps in either the gaseous or stellar components in the 
edge-on distributions. The Briggs figures have a reduced scale with max θ = 2.5 ◦ set as the upper limit, so even though we see some changes at different radii, 
both gas and stellar discs are quite flat throughout the model’s evolution. 

Ro ̌skar et al. ( 2012 ). This allows us to reco v er the spatial distribution 
and temporal evolution of pattern speeds. The code is applied to 
both the unwarped and warped simulations, first for the density 
distribution and then for the vertical distribution. 

At each snapshot, we start by selecting star particles in concentric 
annuli. In each annulus, we first expand the azimuthal angular 

dependence of the normalized mass distribution in a Fourier series 

μ( R, φ) = 1 + 

∞ ∑ 

m = 1 

c m 

( R)e −imφ, (2) 
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Figure 4. Profiles of the surface density, � (top), and θL , gas (bottom) in the 
warped (solid lines) and unwarped (dashed lines) models at t = 12 Gyr . The 
profiles are shown for both the cold gas (red) and stellar (black) discs. Only 
bins containing a total mass ≥7 × 10 6 M � are shown. 

with 

c m 

( R ) = 

1 

M( R ) 

N ∑ 

p= 1 

m p e 
imφp , (3) 

where the sum runs o v er particles inside the annulus, m p and φp are 
the mass and azimuth of particle p , respectively, and M ( R ) is the 
total mass within the annulus. We calculate the coefficients c m ( R ) for 
every snapshot in a given time interval (hereafter baseline) and then 
perform a discrete Fourier transform of this time series as 

C m,k ( R) = 

S−1 ∑ 

j= 0 

c m 

( R, t j ) w j e 
−2 πijk/S , (4) 

with k = −S /2,..., S /2, where S is the number of snapshots in the 
baseline. The associated frequencies are given by 

�k = 

2 π

m 

k 

S�t 
, (5) 

where � t is the time between snapshots, and we adopt the Gaussian 
window function 

w( j ) = e −( j−S / 2) 2 / ( S / 4) 2 . (6) 

Finally, the power spectrum is computed as 

P ( R , �k ) = 

1 

W 

| C m,k ( R ) | 2 , (7) 

where 

W = S 

S−1 ∑ 

j= 0 

w 

2 
j . (8) 

We perform this calculation for a time baseline S�t = 1 Gyr , result- 
ing in a resolution �� = 2 π/m km s −1 kpc −1 – see equation ( 5 ). We 
repeat this calculation for several time baselines, and the resulting 
power spectrum for the unwarped simulation is shown in Fig. 6 . 

In order to analyse the bending signal, similarly to equation ( 3 ) 
we define 

γm 

( R ) = 

1 

M( R ) 

N ∑ 

p= 1 

z p m p e 
imφp , (9) 

where z p is the vertical height of particle p , and we use equations ( 4 )–
( 7 ) mutatis mutandis. Note that now γ m ( R ) is given in kpc and the 
associated power spectrum is given in kpc 2 . 

Finally, after calculating the power spectra, equation ( 7 ), for both 
density and bending signals, we identify the pattern speeds �p as 
peaks in the radially integrated power spectra, which we refer to 
as total po wer. Ho we ver, while the disc surface density decreases 
exponentially with radius, the Fourier coefficients, equations ( 3 ) and 
( 9 ), are normalized by the annulus total mass M ( R ), giving ‘equal 
weights’ to power at small or large radii. Thus, to better appreciate 
the rele v ance of dif ferent pattern speeds to the disc dynamics, the 
total power is weighted by the annulus mass: 

total power ( �k ) = 

∑ 

M 

2 ( R ) P ( R , �k ) ∑ 

M 

2 ( R) 
, (10) 

with the sum running o v er radial bins. This total power is shown as 
curv es ne xt to the spectrograms in Fig. 6 . 

For the analysis in this section, we also compute the frequencies 
of circular motion �( R ) and radial oscillation κ( R ) produced by the 
total potential and the frequency of vertical oscillation produced by 
the halo νh ( R ), using AGAMA (Vasiliev 2019 ). These frequencies are 
computed in the middle of each 1 Gyr baseline. 

4.2.1 Unwarped simulation 

The two left-hand columns of Fig. 6 show, for the unwarped 
simulation, the power spectra obtained for m = 1 and 2 density 
perturbations (as indicated in the titles) in the ( �, R ) plane at different 
times (rows), from 5 to 12 Gyr. The m = 2 density signal shows 
multiple pattern speeds at all times, co v ering a large radial extent 
and revealing the presence of multiple spiral density waves. The 
thick dashed white lines show the rotation curves, �( R ), while the 
thin dashed white lines represent � ± κ/ m . 

The panels at the right of the spectrograms show the (mass- 
weighted) total power (light and dark red), equation ( 10 ) (on a log 
scale), whose peaks reveal the pattern speeds; prominent peaks for 
m = 2 are immediately distinguished. In an iterative scheme similar 
to that of Ro ̌skar et al. ( 2012 ), we identify the most prominent peak, 
fit a Gaussian function to it, and subtract this Gaussian contribution 
from the total power. Then, we identify the next most prominent 
peak and repeat the process, identifying pattern speeds and power 
in the interval −100 ≤ �/ km s −1 kpc −1 ≤ 100 up to a maximum of 
four peaks (horizontal lines, with length representing the power after 
the Gaussian subtraction of peaks previously identified). The m = 1 
density signal shows some significant power, but the peaks are not as 
prominent as those for m = 2. It is interesting to note a prominent m = 

2 retrograde peak at the final baseline (bottom row), with power in the 
very inner disc. We verified that this is associated with a tiny bar that 
must have a prograde rotation so fast that the algorithm misinterprets 
it as a retrograde motion, given the simulation cadence. This peak 
is enhanced by the mass-weighted normalization of the total power, 
equation ( 10 ), but it is not of interest for our results. 

Fig. 7 (left-hand panels) shows the identified m = 1 (top) and 
2 (bottom) density pattern speeds for several 1 Gyr baselines, with 
colours representing the total power for a given pattern speed (Fig. 6 ). 
Focusing on m = 2, this figure clearly shows the simultaneous 
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Figure 5. Distributions of the stellar mean height, 〈 z〉 (left), and mean vertical velocity, 〈 v z 〉 (right), for the warped and unwarped simulations (see top left 
annotation) at t = 11 . 7 Gyr in the x–y (top) and R –φw (bottom) planes. The sense of rotation is clockwise (top row) and to wards increasing φ (bottom ro w). A 

Gaussian filter has been applied to the colour distribution in each panel with a standard deviation of the Gaussian kernel set to σ = 1 pixel = 450 pc × 450 pc 
(top) and σ = 1 pixel = 250 pc × 7 . 5 ◦ (bottom). The solid black and cyan circles (vertical lines) represent the solar annulus, R = 8 . 18 kpc , and R = 10 kpc , in 
the x –y ( R –φ) plane, respectively. 

presence of multiple pattern speeds. The higher pattern speeds, at 
60 –75 km s −1 kpc −1 , decreasing in time are due to the presence of a 
slowing bar (see Fiteni et al. 2021 ). The other two prominent pattern 
speeds can be attributed to the propagation of spiral density waves. 
In this simulation, for the time interval analysed, the pattern speeds 
show some evolution, changing values and power amplitude, but not 
very vigorously transient behaviour. The most prominent patterns are 
at � ≈ 20 –25 and 40 km s −1 kpc −1 . As shown in Ro ̌skar et al. ( 2012 ), 
what is transient about these spirals is not necessarily their frequency, 
with some values seemingly preferred, but their amplitude, which 
continuously varies. We cannot exclude the possibility that certain 
modes are continuously being re-excited, most likely with random 

relative phases. 
The power spectra for the m = 1 and 2 bending signal in the 

unwarped simulation are shown in the two right-hand columns of 
Fig. 6 (see the titles). The panels to the right of these spectrograms 
again show the (mass-weighted) radially integrated power spectra 
(dark and light blue) with the peaks identified in the same way as 
before. The white thick dashed lines again show the rotation curve 
�( R ), while the shaded white areas between � ± νh / m represent the 
forbidden regions for bending waves – equation ( 1 ). Focusing on m = 

1, the most noticeable feature in these spectra is the ubiquitous pres- 
ence of a slow retrograde pattern at −15 � �/ km s −1 kpc −1 � −10 
and extending inwards to R ≈ 5 kpc , where � − νh (bottom thin 
dashed curves) starts to strongly depend on R and severe winding is 
expected for kinematic bending waves. 

The right-hand panels of Fig. 7 show the evolution of the pattern 
speeds identified for the bending signals of m = 1 (top) and m = 

2 (bottom) multiplicity. Focusing again on m = 1, we confirm the 
ubiquitous presence of the slow retrograde mode, while prograde 

bending waves are barely noticeable. This seems in accordance 
with the theoretical expectation that, no matter how the bending 
perturbation is produced, the associated slow retrograde wave is long- 
liv ed, while prograde wav es, if present, decay quickly . Interestingly , 
a prograde m = 1 bending pattern, at � ≈ 20 –25 km s −1 kpc −1 , is 
detected at some snapshots, located inside the forbidden region for 
bending waves, but with very small power (see Fig. 6 ). 

4.2.2 Warped simulation 

Fig. 8 shows the power spectra for the warped simulation (in 
this simulation, we stored outputs at high cadence already from 

2 Gyr, which permits us to perform spectral analysis from this 
point onwards), with the same scheme of density and bending 
m = 1 and 2 signals as in Fig. 6 . As in the unwarped model, 
the m = 2 density signal exhibits multiple pattern speeds present 
simultaneously, co v ering a large radial extent. The pattern speeds are 
not as sharply defined as in the unwarped simulation, which might 
be due to the perturbation from the warp. Alternatively, this could 
be due to the warped model being thicker: At 12 Gyr and between 
5 ≤ R/ kpc ≤ 10, the discs of the warped and unwarped models have 
root mean square (RMS) z, of 0 . 94 and 0 . 55 kpc , respectively. The 
left-hand panels of Fig. 9 show the time evolution of the pattern 
speeds identified in Fig. 8 for the m = 1 (top) and m = 2 (bottom) 
density signal. Note that no bar forms in this simulation. 

The right-hand panels of Fig. 8 show the spectrograms for the 
bending signals. The bending m = 1 wav es e xhibit a prominent 
peak at � = 0 km s −1 kpc −1 for almost all snapshots, which is the 
trivial signal of the warp itself. This peak is so prominent that it 
can visually hide nearby peaks, which our iterative peak finding 
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Figure 6. Power spectra for perturbations in the unwarped simulation at several time intervals (rows). The first two columns show the power spectra for m = 1 
and 2 density (bar + spiral) perturbations, with the mass-weighted radius-integrated po wer sho wn to the right of the spectrograms – see equation ( 10 ). The thick 
and thin white dashed lines show �( R ) and � ± κ/ m , respectively. The two right-hand columns show the power spectra for m = 1 and 2 bending perturbations. 
The thick and thin white dashed lines show �( R ) and � ± νh / m , respectively, and the white shaded areas between these curves represent the forbidden regions 
for bending wav es. F or m = 1, the e xpected long-liv ed slow retrograde motion is clearly visible, while the fast prograde pattern is weak. The total power peaks 
of the m = 1 (light red dotted lines) and m = 2 (dark red dot–dashed lines) density perturbations are repeated in the two right-hand columns. 

and Gaussian subtraction scheme allows us to detect (dark blue 
horizontal lines). The m = 1 peak due to the slow retrograde motion 
( � ≈ −15 km s −1 kpc −1 ) is detected at almost all time intervals. 
Additionally, significant power in fast prograde waves is now 

observed, at large radii, and peaking at 25 ≤ �/ km s −1 kpc −1 ≤ 50. 
The time evolution of the pattern speeds identified in Fig. 8 for the 

m = 1 (top) and m = 2 (bottom) bending signals is presented in the 
right-hand panels of Fig. 9 . As in the unwarped simulation (Fig. 7 ), 
we see the ubiquitous presence of a slow, retrograde m = 1 wave in 
the warped simulation, with substantially more power than in that 
model. 

The main difference between the warped and unwarped models 
is the presence of a strong, fast prograde motion in the m = 

1 bending signal, at 25 � �/ km s −1 kpc −1 � 50 in the warped 
system. These fast prograde patterns peak at large radii (see 
Fig. 8 ), thus a v oiding the forbidden region for bending waves. 
Note that the prograde bending waves are present at all times. 
This is due to the long-lived nature of the warp in this simula- 
tion. While fast prograde bending waves are expected to decay 
quickly, the warp continuously perturbs the disc, re-exciting these 
waves. 

The main conclusion from the analysis in this section is that 
slow retrograde bending waves are present in both the unwarped 
and warped models, throughout their evolution. On the other hand, 
only in the warped model are significant fast prograde bending waves 
detected, which must be persistently re-excited by the warp. 
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Figure 7. Pattern speeds in the unwarped model identified in Fig. 6 , for m = 1 (top) and m = 2 (bottom) density (left) and bending signals (right). Colours 
indicate the mass-weighted radially integrated po wer. Dif ferent colour scales are chosen to differentiate between the density and bending pattern speeds. For 
the m = 2 density signal, the gradual decrease of the highest pattern speed (upper points) is suggestive of a slowing bar (see the centre-left column of Fig. 6 ). 
The other two discernible patterns are associated with spiral density waves, with the most prominent ones at � ≈ 20 –25 and 40 km s −1 kpc −1 . The m = 1 
bending plot shows the long-lived presence of a slow retrograde pattern (at −15 ≤ �/ km s −1 kpc −1 ≤ −10) and (at some times) a very weak prograde signal 
at � ≈ 24 km s −1 kpc −1 . 

4.3 The source of the vertical perturbations 

In the previous section, we demonstrated the presence of bending 
waves in both the warped and unwarped simulations, with different 
properties. Bending waves in simulations of unwarped isolated 
galaxies were already reported by Chequers & Widrow ( 2017 ), 
who suggested shot noise in the dark matter halo as a source 
mechanism. Fast prograde bending waves are expected to dissipate 
rapidly and therefore be weak, as indeed we find in the unwarped 
simulation. Ho we ver, in the warped model the consistent power in 
the prograde bending waves indicates that the disc in the warped 
model is continuously being vertically excited. 

We now verify that the gas inflow along the warp is the source of 
these vertical perturbations. We start from the continuity equation: 

∂ρ

∂t 
+ ∇ · ( ρu ) = 0 , (11) 

where ρ and u are the density and velocity of the gas at a certain 
location, respectiv ely. Inte grating o v er a spherical volume of radius 
R , 

d M 

d t 
= −

—
ρu · d S , (12) 

where M is the total gas mass inside the volume and the last 
integral is e v aluated on the enclosing spherical surface, with 
d S = R sin θ d θ d ϕ . The flux can be measured in two different 

ways: (i) as (1 / 4 πR 

2 ) δM/δt , i.e. using the difference, between two 
snapshots, of the total gas mass inside the sphere (thus averaging 
o v er δt ); or (ii) estimating the integral on the right-hand side of 
equation ( 12 ) in a shell of small but finite thickness δR (thus averaging 
o v er δR ). The first method presents practical problems because, at 
the centre of the volume, a fraction of gas will form stars. Moreo v er, 
we are interested in the gas inflow along the warp, as opposed to total 
mass variation, which includes feedback-driven outflows. Finally, we 
are interested in the frequencies associated with the variation of the 
gas flux; thus, we opt to use single snapshots at each time, i.e. the 
second method. 

We compute the right-hand side of equation ( 12 ) via a Monte Carlo 
inte gration. F or this, we introduce the function f , which represents 
the underlying probability distribution from which particles in the 
shell are sampled, such that 

∫ 
f d S = 1. The right-hand side of 

equation ( 12 ) is estimated as 

I ≡ −
—

ρu 

f 
f · d S ≈ − 1 

N 

∑ 

i 

ρi u ri 

f i 
, (13) 

where we sum o v er gas particles in the shell ( N particles), ρ i is the 
density around particle i , u ri is its radial velocity component, and we 
select cool gas ( T g ≤ 50 000 K) particles with u ri < 0. The sampling 
function f is obtained marginalizing o v er the number density profile, 
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Figure 8. Similar to Fig. 6 , showing the power spectra at different times (rows) for the m = 1 and 2 density (left) and bending (right) perturbations in the 
warped simulation. The m = 2 density panels show the simultaneous presence of various pattern speeds between the Lindblad resonances. In the m = 1 bending 
panels, the most noticeable difference with respect to Fig. 6 is the strong peak at � ≈ 0 km s −1 kpc −1 , which is a trivial manifestation of the warp. As in the 
unwarped simulation, a slow retrograde motion is detected in the m = 1 bending plot. Significant m = 1 bending power is present for large � at large radii, i.e. 
a fast prograde motion a v oiding the forbidden region for bending waves, and peaking at 25 ≤ �/ km s −1 kpc −1 ≤ 50. 

n ( R , θ , ϕ), within the shell, 

f ( θ, ϕ| R ) = 

1 

N 

∫ R + δR / 2 

R −δR / 2 
n ( R 

′ , θ, ϕ) d R 

′ ≈ 1 

N 

n ( R , θ, ϕ) δR . (14) 

Substituting into equation ( 13 ), we finally estimate the flux as 

I 

4 πR 

2 
≈ − 1 

4 πR 

2 δR 

∑ 

i 

m i u ri , (15) 

where m i is the mass of particle i and we approximated the density 
around the particle by the smooth density profile e v aluated at the 
centre of the shell, i.e. ρ i ≈ ρ( R , θ , ϕ). 

The top panel of Fig. 10 shows the evolution of the inward mass 
flux of cool gas ( T g < 50 000 K) through a spherical shell with 
a thickness δR = 0 . 2 kpc and a radius R = 15 kpc . The flux of 
cool gas varies substantially, with long-term inflow modulated by 
rapid variations. Similar to the analysis in Section 4.2 , we apply a 
discrete Fourier transform to the evolution of the mass flux over 1 Gyr 
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Figure 9. Evolution of the pattern speeds identified in Fig. 8 , for the warped simulation. The m = 2 density panel reveals a more transient evolution, in 
comparison to the unwarped simulation. In the m = 1 bending panel, the darkest points (power � 10 −4 kpc 2 ) lying at � ≈ 0 km s −1 kpc −1 represent a trivial 
manifestation of the warp. As in the unwarped simulation (Fig. 7 ), a persistent slow retrograde m = 1 bending signal is detected. Unlike the unwarped simulation, 
a fast m = 1 bending prograde motion (25 ≤ �/ km s −1 kpc −1 ≤ 50) is detected with substantial power. 

baselines to derive the characteristic time-scales of the variations. The 
bottom panel of Fig. 10 shows the resulting frequencies of the mass 
flux. Most of the frequencies cluster between 0 and 20 kpc km s −1 , 
and reach to 40 kpc km s −1 . These results show that the disc 
is continuously perturbed by the irregularly accreting gas with 
a maximum amplitude of 5 . 8 × 10 6 M � kpc −2 Gyr −1 , and typical 
amplitudes of ∼10 6 M � kpc −2 Gyr −1 , which is comparable to recent 
estimates of the gas inflow in the MW (Fox et al. 2019 ; Werk et al. 
2019 ). These frequencies substantially o v erlap the frequencies of the 
bending waves, indicating a fa v ourable spectrum of perturbations for 
exciting the bending waves. We therefore propose that the irregular 
inflow of gas from the warp on to the disc is the source of the 
vertical perturbations that excite the bending waves in the warped 
model. 

To further demonstrate that cold gas accretion has direct impact on 
the vertical structure of the galactic disc, we analyse the evolution of 
the gas flux relative to the total vertical power at different annuli. We 
estimate the total vertical power by calculating 〈 z〉 in sectoral non- 
o v erlapping bins with �φw = 12 ◦ at each annulus and then taking 
the RMS across the azimuthal bins. 

Fig. 11 shows the evolution of the flux (black) and RMS( 〈 z〉 ) (red) 
at the solar annulus (dotted) and the outskirts of the disc (solid). 
Measuring the cross-correlation between the flux and RMS( 〈 z〉 ) 
shows that there is a lag of ∼200 and ∼250 Myr at the outer disc 
and solar annulus, respectively. The overall lag is expected as the gas 
flux is measured at R = 15 kpc , so it takes time to reach and impact 
the disc. The ∼50 Myr lag between peak in the outer disc and that at 

the solar annulus represents the time required for the excited waves 
to propagate from the outskirts to the solar annulus. Considering 
the distance �R ∼ 1 . 8 kpc , this signal propagates with a velocity of 
∼−36 pc Myr −1 (the minus sign indicating inward propagation). 

We can now link this velocity with the expected group velocity 
of bending wav es, d ω/d k . F or a simple estimate, we use the WKB 

dispersion relation for an m = 1 bending wave (Toomre 1983 ) 

[ ω − �( R) ] 2 − 2 πG�( R ) | k | − ν2 
h = 0 , (16) 

where k is the wavenumber and �( R ) is the surface density. The 
expected group velocity is then 

d ω 

d k 

∣∣∣∣
R 

= 

sgn (k) πG �(R) 

�p − �( R) 
, (17) 

according to which a ne gativ e group velocity can be associated with 
a leading ( k < 0) prograde wave or to a trailing ( k > 0) retrograde 
wave. The spectral analysis showed an o v erall larger power in the 
retrograde wave, and Fig. 5 suggests a trailing shape. Substituting 
the value �p = −12 . 8 km s −1 kpc −1 identified in Fig. 9 at late 
times, and � = 80 M � pc −2 and � = 18 . 6 km s −1 kpc −1 (values at 
R ∼ 9 . 1 kpc ), we obtain a radial group velocity of ∼−35 pc Myr −1 , 
in striking agreement with the value obtained from the measured 
time lag. This agreement is somehow surprising given all the 
approximations and simplifying assumptions involved, so it should 
be considered with caution. 
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Figure 10. Top: evolution of the inward mass flux of cold gas ( T < 50 000 K) 
through a spherical shell with R = 15 kpc and δR = 0 . 2 kpc . Bottom: 
frequencies derived from a discrete Fourier transform of the mass flux on 
1 Gyr baselines. The marker size indicates the amplitude with the values of 
the maximum and minimum amplitudes and their respective marker sizes 
shown in the legend. 

Figure 11. Evolution of the gas flux presented in Fig. 10 (black, left y -axis) 
and of the RMS of the mean vertical displacement, RMS( 〈 z〉 ) (red, right y - 
axis), at 7 . 18 ≤ R/ kpc ≤ 9 . 18 (solar annulus, dotted) and 9 . 5 ≤ R/ kpc ≤
10 . 5 (outer disc, solid). RMS( 〈 z〉 ) is calculated using the azimuthally binned 
〈 z〉 values in Figs 17 (left column) and 18 (top panel) for the outer disc 
and solar annulus, respectively. The gas flux and RMS( 〈 z〉 ) are averaged 
o v er 0 . 25 Myr intervals. A cross-correlation analysis of these different series 
reveals time lags, compared to the gas flux, of 200 and 250 Myr at the outer 
and inner annuli, respectively (see the main text for details). 

4.4 Vertical kinematics in the SN 

In Fig. 5 , the vertical bends are accompanied by non-zero 〈 v z 〉 . SD18 
and H18 observed an increase in 〈 v z 〉 with angular momentum | L z | , 
which they speculated was due to either an extension of the warp or 
to a bending wave. We test whether such signals arise in our models. 

Fig. 12 examines a simulated SN sample in the warped model 
at 11 . 4 Gyr , with plots similar to those of SD18 and H18. Three 
panels plot 〈 v z 〉 versus L z (top right), versus azimuthal velocity, 
v φ (bottom right), and versus cylindrical and guiding radii, R and 
R g (bottom left, the latter computed using AGAMA ; Vasiliev 2019 ), 
respectively. With the improved mapping of the MW’s warp, the 
Sun’s position relative to it is now clearer: the Sun is ∼17.5 ± 1 ◦

behind the ascending node of the warp (Chen et al. 2019 ). Our 
sample is contained within a sphere of radius 2 kpc at R = 8 . 18 kpc 
and azimuth φw = −17.5 ◦, where φw is the azimuthal angle along 
the direction of rotation measured from ascending node of the warp’s 
LON. The location of our sample is indicated in the top left panel 
of Fig. 12 , on top of a face-on map of 〈 v z 〉 . Although all of the 
binned 〈 v z 〉 variations have relatively larger errors (despite our bins 
being large compared with SD18 and H18), we observe a general 
increase of 〈 v z 〉 with −L z along with underlying wiggles, as in the 
MW. Following SD18, we fit a variety of functions to the 〈 v z 〉 versus 
L z distribution: 

〈 v z 〉 = b + aL 

′ 
z , (18) 

〈 v z 〉 = b + aL 

′ 
z + A sin (2 πL 

′ 
z /c + d) , (19) 

and 

〈 v z 〉 = b + aL 

′ 
z + A sin (2 πc/L z + d) , (20) 

where L 

′ 
z = L z − 1600 kpc km s −1 in the MW and a , b , c , d , and 

A are fitting parameters. For the warped model, we set L 

′ 
z = L z −

2000 kpc km s −1 based on the mean value of L z at R = 8 . 18 kpc , 
but note that in the fit of equation ( 18 ) the slope is independent 
of this pivot point. Assuming v z is normal distributed and using 
flat priors for all parameters, we sample the posterior distribution 
function with the EMCEE package (F oreman-Macke y et al. 2013 ). The 
best-fitting parameters for equations ( 18 )–( 20 ) are listed in Table 1 
(with uncertainties estimated as the interval containing 68 per cent 
of samples around the median), and we see that our linear fit is of the 
same scale as the one measured in the MW. The fits to equations ( 19 )–
( 20 ) present larger uncertainties and deviations from the values of 
SD18 and H18; thus, we mainly focus on the fits of the simple linear 
function. We also perform linear fits on the other 〈 v z 〉 distributions 
(versus v φ , R , and R g ), the slopes of which are presented in the bottom 

right corner of the respective panels. These additional fits are also of 
the same order as those measured in the SN (SD18; H18). 

SD18 argued that one possible interpretation of the non-vanishing 
slope of the 〈 v z 〉 –L z relation is that the stellar disc is warped at the 
solar cylinder. The slope of the relation in this scenario would vary 
smoothly with azimuth as cos ( φw + φc ) (where φc is some constant), 
which we can check in our model. In Fig. 13 , we plot the slope, a , 
of the linear fit of equation ( 18 ) as a function of φw , the azimuthal 
angle at which the sample is selected. This relation is plotted for a 
number of snapshots, with a time interval δt = 20 Myr to show the 
short-term changes in the slope. For this measurement, we use 12 
samples that consist of 2 kpc spheres. The spheres are equally spaced 
in azimuth to a v oid o v erlapping the samples. The slope varies in the 
range of [ −5 , 5] × 10 3 kpc −1 ; SD18 and H18 measure a slope of 
∼2 . 64 –3 . 21 × 10 3 kpc −1 , which is within the range we find. The 
results of these snapshots happen to be instances when the slope at 
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Figure 12. Top left: Distribution of 〈 v z 〉 in the stellar disc of the warped model at 11 . 4 Gyr . The smaller black circle indicates a region of radius 2 kpc to 
simulate an SN (azimuth indicated abo v e the colour bar). The larger solid black and cyan circles represent the solar annulus, R = 8 . 18 and 10 kpc , respectively. 
A Gaussian filter has been applied to the colour distribution with a standard deviation set to σ = 1 pixel = 260 × 260 pc . Top right: Binned distribution of 〈 v z 〉 
as a function of the angular momentum, L z , in the SN sample of the warped model. The shaded regions show the standard deviation of 〈 v z 〉 in each bin. There 
are three model fits present: linear (equation 18 , black), sinusoidal (equation 19 , red), and wrapping (equation 20 , green). The slope of the fitted linear model 
is shown in the panel’s bottom right corner, while the rest of the fit parameters for the linear and other models are presented in Table 1 . Bottom left: Binned 
distributions of 〈 v z 〉 as functions of cylindrical radius, R (blue), and guiding radius, R g (red), in the same SN sample. Each distribution has a fitted linear model 
(dashed lines). Bottom right: Binned distribution of 〈 v z 〉 as a function of v φ in the same SN sample, as well as the fitted linear model. The respective slope 
v alues are sho wn in the bottom right corner of each panel. The choice of time-step is not arbitrary; at 11 . 4 Gyr is the last moment the SN sample has a slope of 
a > 3 × 10 3 kpc −1 (see Fig. 16 for details). 

Table 1. Best-fitting parameters for the fitting models of equations ( 18 )–( 20 ) applied to the sample in Fig. 12 . The slope 
of the linear fit has been measured in the SN by SD18 (3 . 05 ± 0 . 25 × 10 3 kpc −1 ) and H18 (3 . 11 ± 0 . 70 × 10 3 kpc −1 ) that 
is within the range we find. 

Fit a b c d A 

( × 10 3 kpc −1 ) (km s −1 ) (kpc km s −1 ) (km s −1 ) 

Linear (equation 18 ) 3 . 11 + 0 . 59 
−0 . 58 2 . 72 + 0 . 24 

−0 . 24 – – –

Sinusoidal (equation 19 ) 2 . 96 + 0 . 89 
−1 . 4 2 . 41 + 0 . 51 

−5 . 6 3443 . 59 + 33 459 . 11 
−3073 . 73 0 . 73 + 1 . 10 

−1 . 72 1 . 24 + 6 . 89 
−0 . 80 

Wrapping (equation 20 ) 2 . 72 + 0 . 66 
−0 . 66 2 . 56 + 0 . 25 

−0 . 25 3601 . 17 + 151 . 99 
−323 . 90 −2 . 59 + 1 . 05 

−0 . 42 1 . 10 + 0 . 39 
−0 . 42 
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Figure 13. The slope of the 〈 v z 〉 –L z relation as a function of azimuth for 
samples at R = 8 . 18 kpc in the warped model. The value φw = 0 is defined 
as the azimuth on the ascending node of the warp’s LON (dashed line). 
Therefore, the descending node, similarly indicated by a vertical dashed line, 
is at 180 ◦. The sense of rotation is indicated abo v e the figure. In the MW, 
the Sun is located 17.5 ◦ before the ascending node (Chen et al. 2019 ), i.e. 
at φw = −17.5 ◦. The black and green dots represent the slope as measured 
by SD18 and H18, respectively (horizontally offset by ±2 ◦ for clarity). The 
panel shows five snapshots separated by 20 Myr . Waves are seen propagating 
in the direction of rotation, e.g. starting at 50 ◦ (dark blue) and reaching 110 ◦
(dark red). 

the solar azimuth is very similar to that observed in the MW. Note 
that a varies in a w ave-lik e manner as the peaks and valleys shift 
with time. As the warp is fixed at each snapshot (see Section 2.3 ), 
the positive slope in the 〈 v z 〉 –L z relation is not produced by the warp 
itself, but by a propagating bending wave, which suggests that the 
same may be happening in the MW. The phase of the wav e mo v es in 
the direction of increasing φw , i.e. in the sense of rotation. 

Fig. 14 plots the variation of 〈 v z 〉 with L z (top right), v φ (bottom 

right), and R and R g (bottom left) in the unwarped model. As 
the simulation is unwarped, the simulated SN is arbitrary, so we 
perform our analysis at R = 8 . 18 kpc in 30 different azimuths and 
present the sample with the largest recent slope. The relation is 
significantly shallower than in the warped simulation. Fig. 15 shows 
the variation of the slope with azimuthal angle at different times 
(top panel), similar to Fig. 13 . The variation of the slope with 
azimuth is less pronounced when compared to the warped model and 
barely reaches the MW values throughout the 2 Gyr interval, with 
| a| � 2 × 10 3 kpc −1 . The bottom panel shows the effect of small 
artificial tilts of the disc about the x (red) and y (blue) axes. These 
small (0.5 ◦) tilts barely change the slope, indicating that the large 
slope observed in the MW is not due to a misidentified disc mid- 
plane. 

Since the unwarped simulation lacks a LON to simulate an SN 

sample, as in the analysis of Fig. 13 , we measure the slope in 
12 azimuthally equally spaced 2 kpc spheres. Fig. 16 plots the 
slope values for these 12 samples (white points) o v er a 2 Gyr 
interval starting from t = 10 Gyr with δt = 10 Myr . The slope values 
oscillate about a = 0 kpc without reaching the SN values (green 
dotted line). In contrast, the evolution of the slope in the warped 
model’s SN sample (red solid line) shows strong oscillations about 
a ∼ 0 . 6 × 10 3 kpc −1 with more than half of the values being positive. 
There are multiple time intervals ( ∼15 per cent of time-steps) where 
the slope reaches and surpasses the SD18 and H18 values. 

The Sun is located behind the ascending node of the warp (Chen 
et al. 2019 ), which could have an impact on the L z versus v z relation. 
In order to explore how the Sun’s location relative to the LONs 
affects the measured slope, we measure the slope and its evolution 

in an ‘anti’ SN (anti-SN) sample. The sample is located behind the 
descending node of the warp, i.e. φw = 162.5 ◦ (blue solid line in 
Fig. 16 ). We observe that the slope at the anti-SN location oscillates 
about a ∼ −0 . 5 × 10 3 kpc −1 . More than half of the slope values are 
no w negati ve and the SD18 and H18 values are reached (or exceeded) 
in only a third of the time as the SN sample ( ≤6 per cent of time- 
steps). Ho we ver, when considering the negative of the slope in SD18 
and H18 (orange dotted line), the anti-SN sample reaches that value 
at the same rate as the SN sample reaches the real value. 

We conclude that the bending waves produced by misaligned gas 
accretion along the warp in the simulation are able to produce similar 
trends as found by SD18 and H18 in the MW. The large positive 
values of the slope found by SD18 and H18 are not unusual given 
the Sun’s position relative to the LONs of the warp. 

4.5 Propagation of the bending waves 

In Sections 4.2 and 4.4 , we established the presence of bending 
waves, their pattern speeds throughout the disc, and their conse- 
quences on vertical kinematics in a simulated SN. We now explore 
the time evolution of 〈 z〉 distribution of stars in cylindrical sectors. 
We use sectoral bins that are non-o v erlapping with �φw = 12 ◦ in 
each ring. This analysis is a counterpart of the frequency analysis 
but in real space, which aids in understanding the observational 
consequences of the waves found in Section 4.2 . 

4.5.1 Warped simulation 

For the warped simulation, the left column of Fig. 17 shows the 
evolution of 〈 z〉 in 1 kpc -wide rings from 5 . 5 to 10 . 5 kpc (rows), 
starting at t = 10 Gyr with time-steps δt = 10 Myr . The horizontal 
green line shows the location of the SN in the MW (Chen et al. 2019 ). 
The diagonal black lines are the most prominent frequencies of the 
bending waves taken from Figs 8 (bottom right) and 9 (right) for 
this time interval. The values of the frequencies are indicated in the 
legend at the top of Fig. 17 . 

The distributions of 〈 z〉 at any time are dominated by an m = 1 
angular dependence; i.e. at each annulus and time interval, 〈 z〉 has a 
single peak (red) and trough (blue). 1 Over time, the bend propagates 
in a retrograde direction, i.e. in the direction of decreasing φw . The 
pattern speed of the retrograde bending wave (solid, black line), 
identified in Fig. 9 , matches the slope of the m = 1 signal in the 〈 z〉 
distribution at all radii. This coincidence of slopes is in agreement 
with Fig. 8 , which shows that the �p ≈ −13 km s −1 kpc −1 bending 
wave is spread across those radii. 

Superposed on the o v erall m = 1 bending wave, we can also 
see individual bending wave packets (which we loosely refer to as 
‘ripples’ to distinguish their particular behaviour) that propagate to 
increasing φw , i.e. in the direction of rotation. These ripples are 
probably the result of constructive interference between the more 
prominent retrograde m = 1 bending waves and the less powerful 
prograde m = 1 and 2 bending waves. In Fig. 8 , we identify the 
prominent prograde m = 1 ( �p ≈ 43 km s −1 kpc −1 ) and m = 2 ( �p ≈
15 km s −1 kpc −1 ) bending wave pattern speeds and overlay them on 
top of the 〈 z〉 maps at each radius. The prograde pattern speeds appear 
to match the slopes of the ripples at each radial interval. Figs 8 and 
9 demonstrate that there are more frequencies present in the warped 

1 We remind the reader of the equi v alence of the angles 360 ◦ and 0 ◦, i.e. that 
the top end of each panel wraps back to the bottom. 
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Figure 14. Similar to Fig. 12 but for the unwarped model at 11 . 8 Gyr . Top left: Distribution of 〈 v z 〉 of the stellar disc. The small black circle indicates a 
region of radius 2 kpc to simulate an SN (azimuth indicated above the colour bar). The solid black and cyan lines represent the solar annulus, R = 8 . 18 and 
10 kpc , respectively. A Gaussian filter has been applied to the colour distribution with a standard deviation set to σ = 1 pixel = 260 × 260 pc . Top right: Binned 
distribution of 〈 v z 〉 as a function of the angular momentum, L z , in the SN sample of the unwarped model. The shaded region shows the standard deviation of 
〈 v z 〉 in each bin. There are three model fits present: linear (black line), sinusoidal (red line), and wrapping (green line). Bottom left: Binned distributions of 〈 v z 〉 
as functions of radii, R (blue lines), and guiding radii, R g (red lines), in the same SN sample. Each distribution has a fitted linear model (dashed lines). Bottom 

right: Binned distribution of 〈 v z 〉 as a function of v φ (blue lines) in the same SN sample. The distribution has a fitted linear model (black line). The slopes of the 
fitted linear models are shown in the bottom right corners of the respective panels. 

simulation that could contribute to the constructive interference, but 
due to their smaller power, we do not include them in the 〈 z〉 maps. 

4.5.2 Unwarped simulation 

We perform the same analysis on the unwarped model in Fig. 17 
(right) with an identical set-up of cylindrical bins and time interval. 
The diagonal black lines are the most prominent frequencies of the 
m = 1 and 2 bending waves taken from Figs 6 (bottom right) and 7 
(right) for the 10 –12 Gyr time interv al. The v alues of the frequencies 
are indicated in the legend at the top of Fig. 17 . 

The distributions of 〈 z〉 for the unwarped simulation show no 
dominant signal but a superposition of multiplicities with ampli- 

tudes that are weaker by a factor of 5 than those in the warped 
model (note the different colour scale). The most recognizable 
signals are a prograde m = 2 ( t = 10 . 5 Gyr ), a retrograde m = 

1 (11 . 0 Gyr ≤ t/ Gyr ≤ 11 . 5 Gyr ), and an m = 0 ( t = 10 . 25 Gyr ) 
signal. From Figs 6 and 7 , we determine the pattern speeds of 
the most prominent bending waves and o v erlay them on top of 
the 〈 z〉 distribution. The bending waves with the most power are 
the retrograde m = 1 (solid) and prograde m = 2 (dotted) with 
�p ≈ −13 and 12 km s −1 kpc −1 , respectively. These bending waves 
seemingly match the slopes of the m = 1 and 2 signals in the 〈 z〉 
distribution at all radii, e.g. at t = 11 . 0 and 10 . 2 Gyr , respectively. 
We observe additional bending waves in Figs 6 and 7 that have less 
power, e.g. the prograde m = 1 wave with �p ≈ 24 km s −1 kpc −1 . 
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Figure 15. Slope of the 〈 v z 〉 –L z relation with azimuth for SN samples in 
the unwarped model. Top panel: 5 times separated by 20 Myr (colours). 
Bottom panel: slope variation, for the unwarped model at 11 . 8 Gyr , when the 
largest slope is observed, with different artificial tilts about the x -axis (red 
lines), about the y -axis (blue lines), and without any artificial tilt (black line). 
Note that the range of the y -axis for both panels is almost a third of that in 
Fig. 13 . This demonstrates that if the mid-plane were defined inaccurately, 
the resulting small tilts would not produce the large slopes measured in the 
MW or in the warped model. 

Figure 16. Evolution of the slope of the 〈 v z 〉 –L z relation for all SN samples 
in the unwarped model (open circles) and SN samples in the warped model 
at φw = −17.5 ◦ (red) and φw = 162.5 ◦ (blue). The samples are spheres 
centred on R = 8 . 18 kpc and with r = 2 kpc . The green dotted line shows 
the SN slope value (SD18), while the orange dotted line is the ne gativ e 
of that value. In the unwarped model, the mean and o v erall slope values 
do not generally exceed 2 × 10 3 kpc −1 in the span of 2 Gyr and at any SN 

sample. In the warped model, the slope regularly matches, or exceeds, the MW 

value. 

When o v erlaying this pattern speed on top of the 〈 z〉 distribution, 
we observe some coincidences with the slopes of ripples. We again 
speculate that the visible signals in the 〈 z〉 distribution are caused by 
constructive interference. 

4.5.3 Bending waves in the SN 

After unco v ering the comple x bending signatures of the warped 
model in Fig. 17 , we test whether the peaks of the bending waves 
correlate with large slope values examined in Section 4.4 . Higher 
positi ve slope v alues are likely to manifest when a 〈 v z 〉 peak (red) 
of a bending wave is passing through the SN. In Fig. 18 , we use the 
same sectoral bins implemented in Fig. 17 to measure the evolution 
of 〈 z〉 (top) and the slope of the L z –〈 v z 〉 relation (bottom) in each 
azimuthal bin at 7 . 18 ≤ R/ kpc ≤ 9 . 18 (solar annulus). We indicate 
the SN and anti-SN samples with a shaded grey line centred on φw = 

−17.5 ◦ and 162.5 ◦ (Chen et al. 2019 ), respectively, with an azimuthal 
range of δφw = 25 ◦. At each time interval, we fit equation ( 18 ) to the 
L z –〈 v z 〉 distribution in each azimuthal bin; when the slope of the fit 
is greater than the one measured by SD18 and H18, the time interval 
is indicated with a black vertical line. 

The slope in the L z –〈 v z 〉 of the SN appears to exceed the SD18 and 
H18 values when the SN has a peak in 〈 v z 〉 . The slope distribution in 
the bottom panel demonstrates that the peaks correlate with a � 1 ×
10 3 kpc −1 . No time interval with a trough (blue) in the SN sample has 
a slope that exceeds the observed value, and they are mostly negative. 
The anti-SN has fe wer positi ve slopes and more regions with negative 
slopes that reach a � −3 . 05 × 10 3 kpc −1 (vertical magenta lines) 
with a similar frequency as the SD18 and H18 values are reached in 
the SN sample. Further analysis of earlier times indicates that this 
inversion is not present in both SN and anti-SN samples, but rather 
reaches the SD18 and H18 and their ne gativ e values at similar rates. 
The inversion at 10 ≤ t/ Gyr ≤ 12 is likely the result of gas flux 
variations between the North ( z > 0) and South ( z < 0) sides of the 
warp and not due to the location of our samples. 

The slope evolution demonstrates that regions of a � 3 . 05 ×
10 3 kpc −1 and a � −3 . 05 × 10 3 kpc −1 propagate through the entire 
solar annulus in a retrograde fashion, mirroring the dominant m = 1 
signal found in Fig. 17 . Additionally, the ripples in the 〈 z〉 (Fig. 17 ) 
and 〈 v z 〉 distributions (that we interpret as the result of constructive 
interference) are also present in the slope evolution. The results of 
this analysis can be interpreted as a direct link between the high slope 
values observed in SD18 and H18 and the bending waves manifesting 
from the warp’s perturbation. 

4.6 The effect of stellar ages 

The dispersion relation of equation ( 16 ) applies to WKB waves in 
kinematically cold discs, i.e. in the absence of in-plane velocity 
dispersion. In real discs, scattering at inner and outer Lindblad 
resonances and with giant molecular clouds increases the orbital 
eccentricity of stars, making populations kinematically hotter o v er 
time (see e.g. Sell w ood 2014 , for a re vie w). Toomre ( 1966 ) derived 
the dispersion relation of small-amplitude bending waves h ( x , t ) = 

H e i ( kx − ωt ) propagating in an infinite, thin slab of stars 

ω 

2 = 2 πG�( R ) | k | − σ 2 
x k 

2 , (21) 

where σ x is the in-plane velocity dispersion in the x -direction and 
� is the vertically integrated surface density of the slab. Similar 
to equation ( 16 ), the term 2 πG�( R ) | k | represents the gravitational 
restoring force brought on by the bend, while σ 2 

x k 
2 is a destabilizing 

inertial term. This dispersion relation demonstrates that disturbances 
with shorter wavelengths (large k ) are unstable as they outweigh the 
restoring force, which translates to an exponential growth of the h ( x , 
t ) distortion. 

The assumption of an infinite, thin slab of stars cannot be applied to 
real galaxies, but it provides a useful estimate of how the propagation 
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Figure 17. Evolution of the stellar mean height abo v e the mid-plane, 〈 z〉 , in the warped (left) and unwarped (right) simulations. The horizontal solid green line 
represents the solar azimuth relative to the ascending node of the warp’s LON (Chen et al. 2019 ). The diagonal black lines correspond to the most prominent 
retrograde m = 1 (solid) and prograde m = 1 (dashed) and m = 2 (dotted) bending pattern speeds present in the 10 –12 Gyr interval (see Figs 7 and 9 ). 

of bending waves is affected by the in-plane velocity dispersion. 
For the purpose of this analysis, we substitute σ x in equation ( 21 ) 
with the in-plane radial velocity dispersion, σ R . For a disc with a 
giv en σ R , bending wav es are able to propagate provided k is smaller 
than the cut-off value, which ensures that the right-hand side of 
equation ( 21 ) remains positive. As σ R rises, this critical k needs to 
decrease. While this holds for discs with different σ R , we might 
suspect that, within a given disc, kinematically hotter populations 
will not be able to support short-wavelength bending wav es. F or an y 
w ave pack et, which is constructed by the superposition of sinusoidal 
waves of varying wavelengths, the shorter wavelengths may only 
be supported by the kinematically coolest populations. As such, the 
w ave pack et might be expected to be sharper in cooler populations, 
and more gently varying in the hotter populations. As σ R rises with 
stellar age in a stellar disc, we test whether the bending waves are 
sharper in younger populations. 

The top row of Fig. 19 presents the distributions of 〈 z〉 at t = 

10 . 8 Gyr for populations separated by stellar age, in four equally 
populated bins. The distributions are presented for stars formed in the 
main disc only, in order to a v oid warp stars that can take up to ∼6 Gyr 

to fully settle and phase mix into the disc (Khachaturyants et al. 
2021 ). Besides the o v erall m = 1 bend, we observe strong bending 
waves, in the 〈 z〉 distributions (coherent red and blue structures). 
These bending waves reach as far inside the disc as R = 4 kpc in the 
youngest population, with amplitudes of ∼100 pc . More importantly, 
the bending waves, while strongest in the young populations, can be 
recognized in all populations. The bending waves in the youngest 
population are also the sharpest ones, whereas the waves in the older 
populations become less sharp at short wavelengths. Thus, in the old 
populations, Fig. 19 reveals a coherent large-scale signal but not so 
much the small-scale patterns present in the young populations. 

In order to aid in comparing with observational data, for which 
stellar ages have high uncertainties (Sanders & Das 2018 ), we split 
the stars formed in the main disc by their radial actions, J R . The 
radial action of a star characterizes the extent of radial oscillations of 
a star’s orbit and is thus a proxy for the in-plane velocity dispersion. 
The bottom row of Fig. 19 presents the distributions of 〈 z〉 separated 
by J R in bins containing an equal number of stars. Bending waves 
become less sharp with increasing values of J R , similar to the age 
cuts in Fig. 19 . 
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Figure 18. Evolution of the mean vertical velocity, 〈 v z 〉 (top), and the slope 
of the L z –〈 v z 〉 relation (bottom) in the radial interval 7 . 18 ≤ R/ kpc ≤ 9 . 18 
of the warped simulation. The horizontal shaded lines indicate a simulated 
SN ( φw = −17.5 ◦) and anti-SN ( φw = 162.5 ◦) samples in which the slope 
of the L z –〈 v z 〉 is measured at each time interval. The vertical black lines 
indicate where the slope of the L z –〈 v z 〉 relation is equal or exceeds the 
slope as measured by SD18 and H18. In the top panel, the vertical magenta 
lines indicate where the slope of the L z –〈 v z 〉 relation is equal or less than 
the ne gativ e of this observ ed value. We observ e that large positive and 
ne gativ e slopes are correlated with the peaks and troughs of bending waves, 
respectively. 

As the age and J R bins are equally populated, we expect similar 
levels of Poisson noise and therefore equally sharp bending waves 
if their sharpness was only noise limited; ho we ver, there is a 
clear difference between these populations. This implies that the 
kinematically hottest populations are unable to support the shortest 
wavelengths. 

F or a quantitativ e demonstration that bending wav es are sharper 
in kinematically cooler populations, we note that short wavelengths 
correspond to larger Fourier m terms compared to long wavelengths. 
Thus, bending wave power should be concentrated in lower Fourier m 

components in hot populations compared with cool ones. We analyse 
the Fourier amplitudes of the vertical displacement for the shaded 
populations in Fig. 19 . We calculate the amplitudes using equation ( 9 ) 
for m ∈ [1, 7] in 50 sequential snapshots, which corresponds to 
the time interval 10 . 5 Gyr ≤ t/ Gyr ≤ 11 . 0. The centre-left panel of 
Fig. 17 shows that a clear m = 1 bending wave is present in this 
region at this time. We a v oid larger m values since these mostly 
capture noise in the vertical distribution. In order to intercompare the 
different populations, the amplitudes are av eraged o v er the 500 Myr 
time interval and then normalized by their m = 1 amplitudes. In 
this way, the difference in the o v erall bending wave strength in the 
different populations is factored out. The variation of the normalized 
vertical displacement amplitudes, ̃  A z , with multiplicity is presented 
in Fig. 20 , with the shaded regions representing the standard deviation 
of ˜ A z . The amplitude of the vertical displacement decreases more 
rapidly with m for increasing age and J R populations, indicating 
that the bending wave power is restricted to large wavelengths in the 
kinematically hot populations and confirming that the bending waves 
are sharper in the cool, young populations and smoother in the hotter, 
old ones. This agrees with the visual impression of the waves given 
by Fig. 19 . We have repeated this analysis at a wide range of radii 
and times and have confirmed that in the vast majority of cases the 

power is restricted to smaller m in hot populations compared with 
cooler ones. 

5  SUMMARY  

In this paper, we have analysed the bending waves that appear in 
simulations with no recent interactions. One of these simulations 
develops a warp via continuous misaligned gas accretion. We 
demonstrated that both simulations exhibit bending waves. Ho we ver, 
the presence of the warp produced significantly stronger bending 
waves, as well as more substantial power in prograde bending waves. 

(i) The warped model produces both retrograde and prograde 
bending waves; the latter would normally decay rapidly, but are 
continuously re-excited throughout the model’s evolution. Bending 
waves in the unwarped model are significantly weaker in amplitude 
when compared to the warped model. The prograde waves are 
damped with time, while the retrograde waves are long-lived. The 
pattern speeds of the bending waves in both simulations are consistent 
with theoretically expected ‘forbidden regions’ for bending waves. 

(ii) The irregular gas inflow in the warped simulation is the source 
of the perturbations exciting the stronger bending waves, with the 
flux of cold gas correlated to the strength of the bending waves 
of the disc. The flux varies substantially o v er time and on a wide 
range of frequencies. Cross-correlation analysis between the flux and 
vertical power at two annuli revealed a lag indicative of an inward- 
propagating bending wave. The group velocity estimated from the 
time lag is very similar to the radial group velocity obtained from the 
WKB approximation. 

(iii) In the simulated SN sample of the warped model, the slope 
of the L z –〈 v z 〉 relation reaches and exceeds the values observed in 
the SN ( SD18 ). The slope shows a w ave-lik e dependence on azimuth 
with the wave propagating in a prograde direction. Since the warp 
is fixed in our analysis, this indicates that the slope is a result of 
propagating bending waves and not a direct imprint of the warp. 
In the unwarped simulation, the smaller bending wave amplitudes 
result in weaker slopes of the L z –〈 v z 〉 relation; ho we ver, the slopes 
still reach ∼60 per cent of the SD18 values. 

(iv) In the warped simulation, bending waves are present in stellar 
populations of all ages. The strongest and sharpest waves in 〈 z〉 are in 
the youngest populations, while older ones are less sharp. The same 
trends are observed when splitting populations by the radial action. 

(v) The azimuthal 〈 z〉 distribution in the warped model exhibits 
a strong, retrograde, m = 1 bend, extending inwards to at least 
R = 5 kpc . We also find localized prograde bending waves, which 
we term ripples. The o v erlaid frequencies from the spectral analysis 
match the slopes of m = 2 and 1 prograde ripples, suggesting that 
they are the result of constructive interference between the prograde 
waves and the long-lived retrograde m = 1 bending wave. 

In conclusion, our results demonstrate the role of misaligned gas 
accretion as a continuous source of vertical perturbations and the 
excitation of bending waves in galactic discs. This process may 
also contribute to the vertical perturbations and out-of-equilibrium 

features observed in the SN. 
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Figure 19. Cylindrical distributions of 〈 z〉 for populations in different age (top) and radial action, J R (bottom), ranges in the warped model at 10 . 8 Gyr (age and 
J R ranges annotated in the top left of each panel). The bottom left of each panel shows the radial velocity dispersion, σR , in the solar annulus sample of each 
age and J R cuts (shaded region). The sense of rotation is towards increasing φw , where φw = 0 ◦ represents the ascending node of the warp’s LON. A bending 
wave is visible in all populations but is strongest, and most clearly defined, in the youngest and low- J R populations. A Gaussian filter has been applied to the 
colour distribution in each panel with a standard deviation of the Gaussian kernel set to σ = 1 pixel = 570 pc × 570 pc . 

Figure 20. Relationship between normalized vertical displacement amplitudes, ˜ A z (see equation 9 ), and their respective Fourier multiplicities, m . The Fourier 
amplitudes are calculated for the different stellar populations presented in the shaded region of Fig. 19 . In order to reduce the effect of noise, the amplitudes are 
calculated for 50 sequential snapshots ( �t = 500 Myr ), averaged over the entire time interval, and finally normalized by ˜ A z ( m = 1). The shaded region shows 
the standard deviation of ˜ A z . 
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