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Abstract. – With growing energy usage, power outages affect millions of 

households. This case study focuses on gathering power outage historical data, 

modifying the data to attach weather attributes, and gathering ERCOT energy 

market conditions for Dallas-Fort Worth and Houston metropolitan areas of Texas. 

The transformed data is then analyzed using machine learning algorithms including, 

but not limited to, Regression, Random Forests and XGBoost to consider current 

weather and ERCOT features and predict power outage percentage for locations. 

The transformed data is also trained using time series models and serially correlated 

models including Autoregression and Vector Autoregression. This study also 

focuses on traditional machine learning models that assume sample independence 

when compared to those that assume serial correlation. The results show machine 

learning models that utilize both weather features and ERCOT data yield a lower 

RMSE and higher prediction accuracy than using one feature-set exclusively. In 

addition, multivariate Vector Autoregressive models have lower RMSE compared 

to univariate Auto-Regressive, univariate Random Forest and univariate neural 

network models when weather and ERCOT data are included to predict power 

outages. Top performing traditional machine learning models are packaged into an 

external facing web application for public use in determining current power outage 

risk. 

1. Introduction 

In today’s energy dependent world, electrical power outages or interruptions can 

have catastrophic consequences [1]. Electrical power grid outages have been a topic of 

research for decades in both physics and engineering [2 – 6]. The North American 
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Electric Reliability Corporation (NERC) is responsible for effective and efficient bulk 

power supply for the North American Continent, United States, Canada, and Mexico 

[7]. Based on the Distributed Energy Resources Task Force Report in February 2017, 

the entire bulk power supply grid system of NERC is divided based on the following 

regions: i) Western Electric Systems Coordinating Council (WECC); ii) Midwest 

Reliability Organization (MRO); iii) Southwest Power Pool Regional Entity (SPP RE); 

iv) Texas Reliability Entity (Texas RE); v) Northeast Power Coordinating Council 

(NPCC); vi) Reliability First (RF); vii) Southeast Reliability Corporation (SERC); viii) 

Florida Reliability Coordinating Council (FRCC). The bulk power supply regional 

entities are depicted in Fig. 1. 

 

Fig. 1. NERC Bulk Power Supply with eight Regional Entity Boundaries [7]. 

Electrical power outages are analyzed from a data science and machine learning 

perspective, focusing on the Dallas-Fort Worth (DFW) and Houston metroplexes in 

Texas. The Electric Reliability Council of Texas (ERCOT) [8] is the major Texas 

Regional Entity in charge of autonomous electrical grid system. A primary focus is 

using data provided by ERCOT. 

ERCOT is tasked with maintaining and ensuring system reliability for 90% of the 

Texas electric load [8]. With over twenty-six million customers and 46,000 miles of 

transmission lines, it is one of the largest and oldest Independent System Operators 

(ISO) in the United States. As a deregulated energy market, it provides publicly 

available financial settlements and market conditions reporting for the Texas 

competitive wholesale power market [9]. DFW and Houston, two of the largest and 

fastest growing metro areas in America, make up 47% of Texas population as of 2019 

[10-12]. 

This research also focuses on weather patterns. Over recent years the number of 

power outages and brownouts across Texas have been on the rise. Extreme weather 

* Mexico not shown in the Figure 
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conditions—defined as once-in-a-lifetime events—such as: excessive heat, hurricanes 

and winter freezes put strain on the electricity grid and are occurring more regularly 

[13]. At 11:00 PM EDT August 25, 2017, Texas was hit by category 4 storm “Hurricane 

Harvey”. The following morning there were 258,137 customers across Texas 

experiencing power outages [31]. It is the costliest tropical cyclone on record, inflicting 

$125 billion of damages and claiming over 100 lives. The resulting flooding affected 

hundreds of thousands of homes that displaced 30,000 people and required 17,000 

rescues [32]. The storm also resulted in financial consequences for the energy industry 

with temporary closure of onshore/offshore oil production, petroleum refineries, natural 

gas processing plants and ports [31]. During the 2021 winter storm Uri, temperatures 

plunged below freezing levels in Texas from February 14th-20th. More than two thirds 

of Texans lost power, 49% experienced disruptions in water service and a reported 

death toll of 210 people. Additionally, the state experienced financial losses estimated 

between $80 billion to $130 billion [33]. 

In addition, complex interactions on the wholesale market can create electricity 

supply and demand problems that lead to unexpected outages [14]. The producers of 

power in ERCOT earn revenue primarily from the sales of energy services. They decide 

whether to keep, retire, or build new power plants based on the investment and ongoing 

cost relative to the prevailing energy prices and forward-looking market [34]. As such, 

high prices during times of power scarcity of high demand are a crucial feature to how 

ERCOT operates. The market design incentivizes long term investment for power 

supply [34]. Although, this can lead to power supply issues as generation owners are 

quick to retire or turn off power generation assets when they become uncompetitive or 

unprofitable [34]. Furthermore, unlike other regions in the U.S., ERCOT does not 

require mandatory reserve capacity for power. Reserve generation is based solely off 

generators’ decisions to run and customers’ decisions of how much and when to 

consume energy. ERCOT wholesale prices are driven by this supply and demand – 

where high prices indicate scarcity and low prices indicate energy to the grid is 

oversupplied [34]. The power consumers in selected Texas counties, though aware of 

the risks of power outages, are for the most part unaware of when such outages are at 

highest risk to occur. Therefore, this publication uses data science methods to aid 

consumers with a power outage prediction tool. 

A web application tool is created that predicts the real-time power outage risk 

percentage for Dallas-Fort Worth and Houston metro areas (including surrounding 

counties). Furthermore, the web application includes a user interface combining current 

weather and market conditions to help consumers to predict real time outage risk 

percentage. In addition, focus is also on building models assuming sample 

independence (machine learning models) and serial correlation (time series models). 

Univariate models are compared to multi-variate time series models showing that the 

inclusion of weather data and ERCOT market predictions increase power outage 

prediction accuracy. The study also shows how non-linear time series models such as 

Random Forest and Neural Networks can be leveraged to increase accuracy compared 

to linearly based Autoregressive models. Traditional machine learning models 

including Regression, Random Forests, XGBoost, Neural Networks and SVM are 

trained and tested to predict the power outage percentage for each of the selected Texas 

counties using weather data and ERCOT market conditions. Additionally, models 

based on serial correlation including univariate Autoregression, univariate Random 
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Forest, univariate Neural Networks and multivariate Vector Autoregression are used to 

predict power outage percentage. 

The power outage data is collected using a combination of i) influential results 

from ERCOT [8], ii) power outage data from ‘Poweroutage.us’ [26], and iii) the 

weather patterns from ‘Openweathermap’ [27]. The collected data have been merged 

according to real-time stamp and are stored on a relational database (Microsoft SQL 

Server). The data are further imputed and used to train the traditional and deep machine 

learning models. A brief description of the data is provided in Appendix - Table 1. The 

response variable in the dataset—power outage percentage—is highly sparse and 

imbalanced, with only 1.2% of records with customers experiencing power outages 

greater than or equal 1% of county population. Techniques including weight scaling, 

hyper-parameter tuning and transformation of the response variables are explored to 

ensure consistent model accuracy. The data is transformed to a usable format and used 

to train the traditional machine learning models and time series analysis. The results of 

the research show that models that including both weather features and ERCOT market 

data have higher prediction accuracy and yield a lower RMSE than using only one of 

the feature-sets exclusively. After using regression algorithms, power outage 

percentage is assigned into four different classes for classification prediction. Precision 

Score and Recall are used for performance evaluations. In addition, serially correlated 

models have lower RMSE with inclusion of both feature-sets than compared to 

univariate modeling. Weather conditions and ERCOT market conditions are leveraged 

to yield higher prediction accuracy when determining power outage risk in DFW and 

Houston metropolitan areas.  

2. Literature Review 

This research aims to address the problem: what is the current likelihood or risk of 

DFW and Houston area residents to experience a power outage? Moreover, the focus 

is to confirm what factors and datapoints are useful or influential in determining when 

the risk of power outage is high. Likewise, the focus is on what methods and prediction 

models achieve the most accurate results in assessing this risk. In addition, the paper 

builds upon the work and findings of various publications summarized below. These 

studies review current knowledge of the problem, propose prediction methods and 

selected features to explain the power outage models. 

Andersson G et al. in reference [1] studied the factors that were the cause of 

cascading outages of transmission and generation facilities in the North American 

Eastern connection, Denmark, Southern Sweden, Scandinavia, Italy, and Central 

Europe in 2003. The authors used methods like the historical data analysis, 

deterministic simulation, probabilistic simulation, and high-level statistical models to 

determine the root causes for grid blackouts. Additionally, they proposed remedial 

methods that can be implemented. The current research effectively utilizes the insights 

provided by the authors in reference [1] to implement the methods for the DFW and 

Houston power outage data. 

Carreras B. A. et al. in reference [2] analyzed various studies from 1984 to 2006 

using the statistical variations of blackout size, time correlations, and waiting times of 
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returning power to the Eastern and Western interconnections of the North American 

(NERC) grid. The authors also studied risks of blackout sizes, as well as the randomness 

of blackout initialization events and other factors that influence the power outages. 

Their statistical quantification and time correlations are analytically considered in the 

present study. 

In reference [3] Witthaut D., and Timme M., studied robust synchronization of the 

grid and the effects of adding new links to the grid. The authors determined that adding 

the new links were counter-intuitive and compared the phenomena to Braess’s Paradox 

in traffic networks. These insights were considered while collecting the data for power 

outages. 

Pahwa S. et al. in reference [4] studied the renewable energy distribution and the 

development method for load growth and power fluctuations in the network. The 

authors also considered blackouts with increasing network size and recommended 

remedies for the power failures. The recommendations from the authors are considered 

to build the power outage predictions. 

Vaiman M. et al. in reference [5] studied the causes of power outages and the 

discussed the engineering factor that affect the power outages. The following are the 

prominent engineering factors that are considered for this case study: i) overloaded 

transmission lines that subsequently contact vegetation; ii) overcurrent/undervoltage 

conditions triggering distance relay actions; iii) hidden failures or inappropriate settings 

in protection devices, which are exposed by a change in operating state; iv) voltage 

collapse; v) insufficient reactive power resources; vi) stalled motors triggered by low 

voltages or off-nominal frequency; vii) generator rotor dynamic instability; viii) small 

signal instabilities; ix) over (or under) excitation in generators; x) over (or under) speed 

in generators; xi) operator or maintenance personnel error; xii) computer or software 

errors and failures; xiii) errors in operational procedures. These engineering factors are 

considered as part of domain knowledge to predict power outages. 

Ji, C. et al. in reference [6] studied the weather factors and determined that extreme 

weather is not the only cause for power outages, but rather amplifies existing 

vulnerabilities that are cloaked in daily operations. The authors claim that lack of failure 

detail and recovery data has hindered the studies. This study considers the 

aforementioned observations and use the comprehensively collected power outage data 

for the analysis. 

Biswas, S. and Goehring, L in reference [15] studied the data science models for 

outage data between 2002 – 2017. The models are used to indicate proximity to failure 

points and forecast probabilities of major blackouts with a non-intrusive measurement 

of intermittent grid outages. The approach by the authors to predict the proximity points 

and probabilities of major blackouts are considered in modeling and feature creation. 

Haifeng S. et al. in reference [16] studied the power outage correlation studies from 

Twitter data including the load and power outage dependence. The current research 

uses the methodologies implemented by the authors for performing the correlation 

studies. 

Carlsson, F., and Martinsson, P. in reference [17] performed a selected experiment 

using a random parameter logit model on the willingness to pay high electricity price 

to avoid power outages. The experiment was conducted based on Swedish electricity 

market data. The current study considers the approach to use the random parameter 

logit model to predict the power outages. 
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Carnero, M.C., and Gomez, A. in reference [18] studied the electric power 

distribution outages for both health care and non-health care industries using the 

multicriteria Measuring Attractiveness by a Categorical Based Evaluation Technique 

(MACBETH) and Markov chains. The results for the power distribution were compared 

to the operating maintenance policies in the organizations and alternative plans 

produced from the machine learning models have been obtained. Both these techniques 

can be used in classification of the power outages and are implemented in the current 

study. 

Flamenbaum R. D. et al. in reference [19] studied the equipment failure predictions 

using Random Forest approach for Southern California based on historical data and the 

incorporation of environmental and geospatial factors. The results emphasize the high 

possibility of a predictive model while discussing the limitations. The Random Forest 

approach can be tailored to fit the current study in creating predictive models.  

Wang, Deng, C., and Wang, S. in reference [20] studied XGBoost classification 

which provides parallel tree boost and is illustrated with different classification dataset 

examples. This article discusses how the algebraic derivation and first/second-order 

derivatives of the loss functions contributed in XGBoost algorithms. The classification 

results are measured by the Receiver Operating Characteristics (ROC) and Precision-

Recall (PR) curves. By examining the results of XGBoost, the package has great 

potential to apply to regression, binary, and multi-class classification problems when 

research data are in large scale and their classification labels are imbalanced. The 

XGboost package is implemented in the current study to handle imbalance datasets 

without using under sampling or over sampling methods. 

In the Warsono et al. publication of the International Journal of Energy Economics 

and Policy, Vector Autoregressive models (VAR) with specific focus on the uses of 

multiple variables, and endogenous and exogenous variables are studied [21]. It is 

determined that VAR can explain the relationship between variables, the impact of one 

variable on a set of others, and can predict and forecast time series data. VAR is 

successfully used to forecast the closing prices of energy stocks. The present research 

outlines how multivariate time series modeling (such as VAR) is more powerful and 

can produce higher accuracy than univariate time series alone [21]. The current research 

uses the insights from reference and VAR models in power outage predictions. 

Additional methods provided by Kane et al. in the BMC Bioinformatics Journal 

review the comparison of Random Forest time series models and Auto Regressive 

Integrated Moving Average (ARIMA) models to predict Avian Influenza H5N1 

outbreaks are studied [22]. Some of the flaws of traditional ARIMA models when 

applied to real world problems, such as linear relationships between variables and 

assumptions of stationarity, are noted. In this comparison study, Random Forest 

achieves a higher prediction accuracy comparing to traditional ARIMA models [22]. It 

is determined that Random Forest can be used when the dataset has nonlinear 

relationships or when the model includes additional variables. The findings of the 

reference paper are applied to the current case study. 

In related research by Zhang G.B. from the Neurocomputing Journal, higher 

prediction accuracy is achieved by using combination of Ensemble of Neural Networks 

(NN) and traditional ARIMA time series models as outlined in reference [23]. Artificial 

Neural Networks provide more flexibility than ARIMA models because of nonlinear 

capability. The hybrid approach of ARIMA with NN allows for the benefits of 
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nonlinear fitting and also protects against influencing factors such as sample variations 

and data structure changes. The hybrid ensemble allows for the benefits and strengths 

of both ARIMA and NN in one model [23]. The findings of the reference paper are 

considered while building time-series models in current case study. 

The study proposed a decomposition method to break down the raw electricity load 

data into a trend series and a set of fluctuation sub-series data. After the decomposition, 

researchers are able to apply linear regression model for the trend series data and 

XGBoost regression model on fluctuation sub-series data. Bayesian optimization 

algorithm is used to optimized XGBoost hyper-parameters. [24]. 

Nitesh V. Chawla et al. in reference [25] introduced a new sampling method called 

Synthetic Minority Over-sampling Technique. The algorithm randomly selects a 

minority class and find its k nearest neighbors. Then synthetic instance is created by 

randomly choosing one of the k nearest neighbor. A line segment in the feature space 

is created by connecting the existing point and newly created instance. This algorithm 

can be used to create as many synthetic examples for the minority class as necessary. 

The current study uses XGBoost and it contains weight hyper-parameters which allows 

us to assign weight coefficient for imbalanced data. 

Luo, Zhang, Z. et al. in reference [35] established COVID-19 cases prediction 

models for the time series data of America by applying XGBoost regression algorithm. 

Mean absolute error, mean squared error, root mean square error, and mean absolute 

percentage error are used to evaluate the effect of model performance. By using 

XGBoost model, a sensitivity analysis was also conducted to determine the feature 

importance from the model. The current study incorporates the aforementioned 

approaches used by the authors in dealing with time series data. 

The hypothesis here is that the results show the percentage of customers without 

power can more accurately be predicted using machine learning models and time series 

methods by leveraging the use of detailed weather data and ERCOT market conditions. 

Increased prediction accuracy and lower RMSE can be achieved when both feature-sets 

are included as features in machine learning models or used as exogenous variables in 

time series analysis.  

3. Methods 

3.1 Data Source and Database Creation 

The data used by the research team was retrieved from multiple sources. The key 

response variable, outage data, is sourced from ‘PowerOutage.us’ [26]. 

‘PowerOutage.us’ collects, records, and aggregates live outage data from utilities all 

over the United States to create the most reliable and complete source of current and 

historical power outage information [26]. Historical outage data was pulled from 

August of 2017 through August 2021. This includes the number of electric customers 

served by county and the respective number of customers experiencing an outage at 

that time on an hourly basis. 

The weather data was retrieved from https://openweathermap.org, a team of 

research and IT experts that provides historical and real time weather information 

globally [27]. This includes continuous variables such as temperature, windspeed, 
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humidity, and precipitation levels and categorical weather descriptions such as cloudy, 

fog, storm warnings, etc. Current and historical weather information for August 2017 

– August 2021 was obtained at an hourly level via the 'OpenWeather' one-call-API. 

Historical ERCOT market data was retrieved from the ERCOT online load and 

pricing archives. Load data by weather zone was available at hourly level. In addition, 

Real-time and Day ahead pricing at the load zone and the hub were downloaded from 

the ERCOT archives. The pricing data is at the fifteen-minute interval level and was 

averaged to show the effective price on an hourly level. 

All data was saved and stored as CSV or excel files. Using Python, the 'CSV' files 

were separately imported into 'Pandas' data frames. Utilizing the 'SQLAlchemy' 

module, the data frames were then stored into a Microsoft SQL Server Database. The 

weather data has multiple weather descriptions during the same hour. In such cases, 

weather descriptions were pivoted to create more columns and limit the data for each 

hour and county to only one row. The ERCOT data pulled by load zone and weather 

zone was assigned to the counties that lie within the same geographic region. The data 

was joined together by county and timestamp, the end result is a data frame containing 

outage data, weather data, and ERCOT market data. 

3.2 Exploratory Data Analysis (EDA) 

The entire dataset contains 317,024 rows and 63 columns  

(See Appendix – Figure B). The first column is the 'datetime' column which records the 

exact time when the data was pulled from SQL database. The rest of the data features 

contain time, city, county, weather, electricity prices, temperatures, outage count, 

customer count and electricity load, etc. By checking the missing values, 'seal_level' 

and 'grnd_level' attributes don’t have any values. Entries 'rain_1h', 'rain_3h', 'snow_1h' 

and 'snow_3h' have above 86% missing values. Therefore, these columns do not 

provide any useful information in our future model, which means they are safe to 

discard.  

Before imputing the missing values in the rest of the columns, it is relevant to note 

that 'ERCOT_WEATHERZONE_LOAD' is not numeric. Therefore, the value type is 

changed to numeric before imputing the missing values. The missing values are 

imputed by their own medians—instead of means—to avoid outlier bias. Spaces were 

replaced with underscore symbol from column names and column values to make them 

more compatible and usable in data processing and machine learning algorithms. 

'RecordDateTime_CST' column was removed from the dataset for the EDA as machine 

learning algorithms are based on sample independence and date and time records and 

not included in the feature-set. 

In Appendix – Figure C, the temperature plot shows the temperatures from July 2017 

to July 2021. Both Houston and Dallas areas have seasonal temperature trends that are 

consistent with one another. Houston doesn’t have extreme low temperatures when 

compared to Dallas, and both cities had a noticeable temperature drop during February 

2021. This was the time when Texas had a winter storm of historic proportion and 

severity. 

In Appendix – Figure D, the outage count plot shows the outage counts from the 

same period as above temperature plot. The most noticeable is the spike during the 

Texas winter storm outage, which matches the temperature in Figure C plot. Besides 
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the winter storm outages spike in both Dallas and Houston, the second highest spike 

happened around in June 2019 in the Dallas area, and the third highest happened around 

in September 2017 in the Houston area.  

In Appendix – Figure E, the plot shows the ERCOT electricity price of the current 

load zone. The electricity price had a spike during February 2021. Also, there are spikes 

in Houston during September 2017, and Dallas during August 2019. Comparing 

temperature, outage counts, and electricity load price plots, it is not hard to tell that the 

winter storm in February not only caused electricity prices to rise much higher than any 

other period in our dataset, but also caused huge electrical outages. However, by taking 

a closer look at the electricity load prices plot in September 2017 around Houston and 

August 2019 around Dallas, the severe temperature did not occur during those periods 

according to temperature plot, but it caused electrical outages in both metroplexes. 

Looking even closer at the outage plot for Dallas, it appears that the massive outages 

occurred in June 2019 and electrical load price spike happened in August 2019. The 

current study aims to identify the important variables and factors that lead to high power 

outage events. 

In Appendix – Figure F, the outage counts corresponding to weather conditions and 

locations are plotted. Here, snow and freezing rain are selected as extreme weather 

conditions. During the non-snow days, the average outage counts are ~ 600, but during 

the snow days, it shows ~ 32,000. Obviously, the winter storm in February 2021 causes 

the average of power outage to be much higher. In other words, the outages caused by 

the Texas Winter Storm may be treated as outliers. The data shows that Houston has a 

high outage percentage during freezing rain conditions, whereas the same weather 

conditions in Dallas are not correlated with high power outage events. Therefore, it is 

worth investigating the confounding factors in Houston that led to these higher power 

outage conditions. 

In Appendix – Figure G, the correlation heatmap shows the Megawatt-Hour for 

ERCOT weather zone is highly correlated with Hub/Load zone energy prices. A couple 

of temperature features are also highly correlated. Appendix – Figure H shows outage 

percentages per each major county in Texas. The outliers are easily visualized in 

boxplot and swam plot. Most of the outliers close to 1.0 are electricity outages happened 

during Texas Winter Storm in February 2021. 

3.3 Data Preparation 

To begin to use traditional machine learning algorithms, the dataset is split into 

modeling group and validation group by county. In each group, the data contains 

counties in both Dallas-Fort Worth and Houston metropolitan areas. The reason is that 

by using these modeling and validation set splits, the weather and geographical 

influences can be minimized. If one group of data only contains counties in a solely 

metropolitan area, the weather features may have huge differences than the other group. 

Therefore, 'Harris', 'Tarrant', 'Dallas', 'Montgomery', and 'Brazoria', counties are 

assigned to modeling group while 'Collin', 'Fort Bend', 'Galveston', and 'Denton', are 

assigned to validation group. 

Since the traditional machine learning models assume sample independence and are 

not based on serial correlations, all timestamp columns are removed from the dataset.  

The data is sourced exclusively from Houston and Dallas counties. As such, redundant 
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geographical columns such as 'State', and 'Metro_Area' are removed from the feature-

set.  The two Boolean fields that identify records as a 'weekend' and 'weekday' are 

highly correlated, and only one of them is needed and the other is removed from the 

dataset. The dataset is strategically split into Modeling and Validation data to be a 

stratified representation of both Houston and Dallas, as such references to whether the 

data originated from Dallas or Houston are removed from the feature-set. 'Weekday', 

'Month', and 'hour’ variables are one hot encoded and changed to categorical variables.  

The response variable used in the dataset - 'power_outage_percentage' is created by 

dividing 'total_outages' by 'customer_count' at each timestamp.  With this new response 

variable in place, 'total_outages' and 'customer_count' are removed from the feature-

set. The county column is removed as none of the same counties are present in either 

validation or modeling set, by leaving this column could create shape errors or training 

biases in the models. When building classification models, the power outage percentage 

values are split into four classification buckets. Very low power outages are classified 

as Class 0 “<1%”, small power outages are deemed to be Class 1 “1-3%”, medium sized 

power outages are Class 2 “3-10%” and large power outages are Class 3 “over 10%”. 

The final step before creating machine learning models is to check whether the 

values of outage percentage column are all between 0 to 1. If the values are above 1.00, 

value 1 is re-assigned and if the values are negative, then value 0 is re-assigned. The 

data was treated with both one hot encoding and normalization to ensure the maximized 

interpretability of machine learning models. In the regression model section, five-fold 

cross validation is used with shuffle equals to ‘TRUE’ and in classification model 

section, stratified five-fold cross validation is used as it allows each class to maintain 

the same proportion in all folds. 

In this study, two modeling methods are used. The first method uses XGBoost 

regression results obtained ahead of time to predict the outage percentage and then split 

predicted outage percentage based on the rule introduced above. The second method 

splits the outage percentage response variable into four categories before using 

XGBoost classification algorithm. 

For Time series modeling, only continuous data features can be used. As such, the 

feature-set was stripped down to only include weather features: temperature, 

windspeed, humidity and rainfall. In addition, ERCOT features: load, real time load 

zone and hub prices, and day ahead load zone and hub prices. Unlike traditional 

machine learning models, time series depends on serial correlation to previous known 

response variable values. As such, hourly outage percentage was included in the 

feature-set as well. The full dataset currently has time series data on nine different 

counties. For purposes of model building only two counties were selected. Dallas 

county is used as the training set and Tarrant County as the test/validation set. The 

realizations were trimmed to only use time series data from Sept 1 2019 – August 31 

of 2021 (two years). To accommodate for previously known values, additional columns 

for each feature were created based on their lagged time series value. The full time 

series feature-set has the current and lagged hourly values (up to last 15 hours) for each 

of the variables in the feature-set. 
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3.4 Linear and non-linear Regression Models 

This section of machine learning modeling uses the following linear regression 

models: lasso (L1), Ridge (L2) and Huber regression along with non-linear regression 

models including random forest, gradient boost, decision tree, support vector machine, 

and multiple layer perceptron regression.  

Lasso and Ridge both solve the linear least square loss function with regularization 

applied to penalize their regression coefficients to avoid overfitting the problem. Lasso 

uses the absolute value of the coefficients and Ridge uses the square value of the 

coefficients. Lasso introduces sparsity, which can reduce the feature coefficients to zero 

for feature selections, while Ridge regression does not. Ridge regression still allows 

features to contribute even if this feature does not contribute much to the model. The 

Huber regressor is robust to outliers because its loss function is a balanced comprised 

between squared loss which is centered around the mean and absolute value loss which 

is centered around the median [36]. In this paper, strength of the penalty 'λ' is tuned to 

minimize the RMSE of the three linear regression models. When λ = .0001, lasso 

regression yields the lowest RMSE out of fold loss and when λ = .001, Ridge and Huber 

regression yield the lowest RMSE out of the fold loss. 

Random forest and gradient boost both belong to ensemble algorithms. They gain 

advantages by combing several basic estimators to build a given learning algorithm so 

as to improve the accuracy from a single estimator. The different ensemble methods 

used between random forest and gradient boost is that random forest builds several 

estimators independently to reduce their variance. Gradient boost builds base estimator 

sequentially to reduce the bias of the combined estimator [37].  

Random forest and gradient boost also belong to decision tree family. The algorithms 

predict response variables by learning decision rules inferred from the data features. 

Random forest fits a couple of classifying decision trees on various sub-samples, then 

averages the prediction accuracy and controls the over-fitting. Gradient boost is built 

in a stage-wise fashion, like other boosting methods, but it allows to optimize arbitrary 

differentiable loss functions [38][39].  

Support vector machine (SVM) uses the kernel trick and then maps the outputs from 

kernel functions into high dimension feature spaces. Different kernel functions can be 

specified for the decision function in a single prediction problem. Therefore, SVM is 

also useful on unlabeled data to find the natural clustering of the data and map the data 

to hyper-plane to categorize the data labels [40]. 

Multi-layer perceptron (MLP) is one of the neutral network algorithms. The first 

layer comes from all the features in the data, and they are represented by a set of neurons. 

Starting from the second layer, all the layers are called hidden layers. Each neuron in 

the hidden layers transforms the values from the previous layers with a weighted linear 

summation followed by a non-linear activation function [41].  

3.5 XGBoost 

The XGBoost algorithm is a convenient algorithm which can be used either in 

classification or regression. Researchers can tune its hyper parameters to deal with 

missing values, down-sample the data size, random select features in the data to avoid 

overfitting, and provide the weight of the data to handle unbalanced dataset. It is 
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important to mention that XGBoost belongs to one of the tree algorithms. Thus, 

researchers don’t have to normalize the data before using this algorithm. Multi-

collinearity is also non-existent among data features by using tree-based model. 

Therefore, this paper heavily relies on XGBoost algorithm to achieve the best 

regression and classification results. The basic functionality behind XGBoost algorithm 

is shown in Fig. 2. XGBoost also provides various objective solvers for different types 

of problems. In this paper, 'reg:squarederror' is used to solve regression problem and 

'multi:softprob' is used to solve multi-class classification problem. Another useful 

feature in XGBoost is 'scale_pos_weight' hyper-parameter, which helps to assign the 

weight coefficient to one of the classes in binary classification problem when 

imbalanced data is introduced. But 'scale_pos_weight' only works well in binary 

classification and XGBoost doesn’t provide other scale weight attribute to tune for 

multi-classification problem. Therefore, in this paper, it is a necessary and significant 

step to calculate the penalization coefficients for each class and balance the sample 

weight before fitting the model. In conclusion, predicting multi-classification is to 

predict the probability of each class. 

 

Fig. 2. XGBoost logic flow [24]. 

3.6 Time Series Models 

In addition to traditional machine learning models that assumed independence of 

observations, the data was fitted with various time series models that assume serial 

correlation. Serial correlation (or autocorrelation) refers to the similarity between 

observations as a function of the time lag between them [29]. The following models are 

based on this assumed relationship. 

To determine the appropriate number of lagged observations to include in the time 

series models, the AIC (Akaike Information Criterion) and BIC (Bayesian Information 
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Criterion) were taken for each autoregressive model of 1 through 15 lags on the training 

data. The number of lags that report the lowest AIC/BIC are used for model building. 

Given the large dataset and number of realizations, only a subset of the full data is 

used for time series model building. For this time series analysis, only two years of 

hourly data is used (Sept 2019 – August 2021) with Dallas County as the training set 

and Tarrant County as the test/validation set. With the sparsity of the data, outage 

percentages are broken out into four classes. The majority of outages percentages fall 

under 1% (99%). Special consideration is given to how model performance in other 

classes, especially when outage % are high (“3-10%” and “10% +”). 

Table 1. Outage percentage category by county. 

 
 

To assess the accuracy of time series models, the RMSE and the Balanced class 

Recall are measured in a 24-hour rolling window. In the rolling window forecast, the 

first hour is predicted using all actual lagged features. As the window moves along, 

most recent lagged features are replaced with the of the prior forecasted outage value.  

 

 

Fig. 3. Time Series Rolling Window Forecasting. 

As the window moves along, predictions are based solely off the value of prior 

predictions. When the window is complete, the next rolling window is built starting 

from the next observation in the test dataset. The rolling window method shows how 

well each model is in predicting the power outage percentage over the next 24 hours. 

Given the two years of hourly data in question (17,520 observations) and the rolling 

window size of 24 hours allows for 17,496 rolling windows. The rolling windows are 

tested, by taking 24 hourly predictions at each of the 17,496 rolling window positions, 

and a total of 419,904 predictions are obtained. The RMSE and balanced recall results 

for each hour are shown in Fig. 6. through Fig. 12. to determine the best fit of each 

model. 
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In addition to time series models, several control groups were also tested to ensure 

the accuracy of fitted time series models. The control groups are the average outage 

percentage found in the Dallas County dataset (approx. 0.12%) and what the last known 

outage % was at the beginning of each rolling window. These are held constant in each 

rolling window vs. the results of the fitted model. This check ensures that models have 

lower RMSE and higher Recall than simple control methods involving no time series 

methodologies. The Fig. 4 below outlines how the control groups are utilized in the 

rolling window vs fitted models. 

 

 

Fig. 4. Forecast vs. Control Group models for rolling window 

Initial models that are fit were univariate models including linear based 

autoregression, random forest, and neural networks. The autoregression models are 

trained on Dallas data using OLS (Ordinary least squares) to find the best fit. The 

random forest and neural network models were tuned using five-fold class stratified 

cross validation to find the highest performing model. 

Multivariate time series models were built using linearly based Vector 

Autoregression (VAR). All combinations of feature-sets were tested: i) outage and 

weather features only, ii) outage and ERCOT features only and the combination of all 

three feature-sets iii) outage, weather and ERCOT features. VAR was also tested using 

different combinations of data feature quality. Models were initially tested using the 

actual values of data features, the last known feature values at the start of a rolling 

window, and different prediction methods for features. Variables were treated as either 

endogenous (where they are explained by other variables in the model) or exogenous 

(variables not explained by other variables in the model). Endogenous forecast was 

done using VAR for each feature where all other variables are included in the prediction 

of each other within the rolling window. By comparison, the exogenous VAR forecast 

was done by building separate univariate linear auto regressive and univariate neural 

networks to predict feature values within the rolling window.  
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Table 2 below demonstrates the use and explanation of actuals, last known values 

and forecasted features with exogenous & endogenous forecasting methods. As the 

model traverses the rolling window, Table 2. establishes how the predicted y values for 

each model method are plugged back into the feature set for each subsequent rolling 

hour. 

Table 2. Actual, Last Known value and Forecast Values 

 
 

The model with top performing RMSE and balanced recall at the later lags of the 

24-hour rolling window are selected for further analysis. The class level precision 

scores and recall scores are examined at the hourly level. 

3.7 Web Application 

The final output of the study is an interactive online web application. The best fit 

machine learning XGBoost model is exported from Python using the 'Pickle' and 

'Joblib' functions. The model and Python functions are embedded in a 'pywebio' 

application [42] that allows for web hosting and public access. The user interface in the 
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pywebio application has a drop-down menu to select Texas counties. Once a county is 

selected, the application pulls necessary weather features from the 'OpenWeather' API 

and the 'current price', 'day ahead price', and load data from ERCOT are screen scraped 

from the current ERCOT market conditions website [29]. These datapoints are 

converted into a Pandas dataframe and fed into the imported machine learning model. 

The predicted ‘power outage percentage’ based on real time actual feature inputs is 

displayed on the web application. The results are displayed against current power 

outage statistics pulled via ‘PowerOutage.us’ [26]. The schematic for the entire web 

application process is shown in Fig 5 below. 

 

 

Fig. 5. 'PYWEBIO' web application process 

4 Results 

The results presented in the below sections can be considered as extension of the 

historical data analysis, deterministic simulation, and high-level statistical models 

discussed Andersson G et al. in reference [1]. The current ERCOT analysis results can 

be addition to various studies by Carreras B. A. et al. in reference [2] for the Eastern 

and Western interconnections of the North American (NERC) grid. The authors in 

reference [2] present the factors that influence the power outages, statistical 

quantification and time correlations; the time series studies in current study can 

supplement these former studies. Ji, C. et al. in reference [6] determines that extreme 

weather is not the only cause for power outages, but rather exacerbates, existing 

vulnerabilities that are obscured in daily operations. The current study results also boost 

the reference [6] results that extreme weather is not the only cause of power supply 

issues. 
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4.1 Machine Learning Models 

As described in the previous sections the entire dataset is split into modeling and 

validation groups by county. Modeling group includes Tarrant (DFW), Dallas (DFW), 

Montgomery (Hou), Brazoria (Hou), Harris (Hou). Validation group includes Collin 

(DFW), Fort Bend (DFW), Galveston (Hou), Denton (DFW). 

When building classification models, the power outage percentage values are split 

into four classification buckets. Very low power outages are classified as Class 0 

“<1%”, small power outages are deemed to be Class 1 “1-3%”, medium sized power 

outages are Class 2 “3-10%” and large power outages are Class 3 “over 10%”. 

 

Table 3. shown below lists regression RMSE from traditional machine learning 

models, RMSE is the average of five-fold cross validation values yielded by the 

designated regression algorithms applied to modeling data group. 

Table 3. Regression RMSE for Traditional ML models  

(including both ERCOT and Weather features)  

Type Algorithm RMSE 

Regression Lasso 1.46% 

Regression Ridge 1.46% 

Regression Huber 1.74% 

Regression Random Forest 1.20% 

Regression Gradient Boost 1.17% 

Regression Decision Tree 1.09% 

Regression SVM 1.60% 

Regression MLP 1.19% 

Regression XGBoost .78% 

XGBoost yielded the best RMSE without any doubt. Therefore, this paper uses 

XGBoost regression to plot the feature importance. (See Appendix - Fig I. 'Weekday_3', 

ERCOT load zone price and 'Clear_sky' are top three features obtained by regression 

model.) 

 

Table 4. shown below lists the regression results by XGBoost with weather features 

removed or ERCOT load prices removed. 

Table 4. XGBoost with ERCOT prices and Weather only models 

Type Algorithm Features RMSE 

Regression XGBoost 
ERCOT load 

prices only 
1.45% 

Regression XGBoost Weather only .93% 

The results show that machine learning models that utilize both weather features and 

ERCOT market data yield a lower RMSE than using one feature-set exclusively.  

 

Table 5. below shows the RMSE of the XGBoost model using weather and ERCOT 

features on the validation set. The model was trained on the modeling data and 

independently tested on the validation data. 
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Table 5. XGBoost Validation model results 

Type Algorithm Data group RMSE 

Regression XGBoost Validation 1.04% 

 

Table 6. below shows the classification performance for Class 3 (“over 10%”) by 

using regression XGBoost model prediction results. Class 3 is the group with power 

outage percentages larger than 10%.  

Table 6. XGBoost Confusion Matrix – 100% Validation group data 

Algorithm Precision Class3 Recall Class3 F1 Score Class3 

XGBoost 77% 94% 85% 

 

Confusion matrix 

               Actual 

Predict 
0 (<1%) 1 (1% to 3%) 2 (3% to 10%) 3 (>10%) 

0(<1%) 137464 705 174 27 

1(1% to 3%) 761 75 39 16 

2 (3% to 10%) 324 84 77 28 

3 (>10%) 8 4 4 241 

 

Table 7. below shows the classification performance for Class 3 by using 

classification XGBoost model. Class 3 shows the group power outage percentages 

larger than 10%. 

Table 7. XGBoost Confusion Matrix – Modeling group data (20% test set) 

Algorithm Precision Class3 Recall Class3 F1 Score Class3 

XGBoost 70% 89% 78% 

 

Confusion matrix 

           Actual 

Predict 
0 (<1%) 1 (1% to 3%) 2 (3% to 10%) 3 (>10%) 

0(<1%) 31291 2984 461 37 

1(1% to 3%) 75 159 25 0 

2 (3% to 10%) 8 28 58 1 

3 (>10%) 1 7 3 89 

 

Please note that the total counts of Table 6 and Table 7 confusion matrices are 

different because the first classification in Table 6 used entire validation group data and 

the second classification in Table 7 only used test dataset which is 20% of modeling 

group data. 

 

Appendix – Figure J shows train and test Receiver Operating Characteristic plot of 

XGBoost Classification. The training ROC is above test ROC all times which means 

the model didn’t overfit the data.  
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Appendix – Figure K shows Receiver Operating Characteristic plot for all classes. 

Outage percentage larger than 10% group (Class 3) has the highest AUC. 

 

Appendix – Figure L shows feature importance from XGBoost classification. The 

top three features are ERCOT load zone prices, 'month_8' and 'pressure' which ERCOT 

load zone prices are still one of the top three important features. 

4.2 Time Series Models 

After testing all feature-sets on all combination of lags (1 through 15), lag 15 

produces the lowest AIC and BIC, as such all-time series models are built as a function 

of the prior 15 hourly observations. The results for AIC and BIC are shown in Table 8. 

Below. 

Table 8. AIC and BIC for Time Series models 

 
 

Fig. 6. and Fig. 7 below show the result of the Univariate vs. Control Groups time 

series for RMSE and Balanced class Recall. 

 

 

Fig. 6. Univariate vs. Control Group RMSE 

 

feature_set lags aic bic AIC Rank BIC Rank

outage_only 15 -11364 -11248 1 1

outage_weather 15 -11513 -10961 1 1

outage_ercot 15 -12841 -12398 1 1

outage_weather_ercot 15 -13010 -12132 1 1
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Fig. 7. Univariate vs. Control Group Balanced Recall 

All univariate models outperformed the control groups in both RMSE and Recall. 

The Autoregressive Linear model maintained the lowest RMSE (1.33) at 24 hours vs 

all other models whereas the univariate neural network has the highest balanced class 

accuracy at 24 hours (56%). 

 

The following (Fig. 8. and Fig. 9.) show how VAR perform using different combination 

of feature-sets: outage & weather, outage & ERCOT, outage with weather & ERCOT 

using the actual values of the non-outage variables. 

 

 

Fig. 8. VAR RMSE with different combination of features. 
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Fig. 9. VAR Balanced Recall with different combination of features. 

 

VAR models greatly outperformed both AR & NN models in both RMSE and 

Recall. The VAR using actual features for outage, weather, & ERCOT has the lowest 

RMSE (.72 at 24 hours) and highest Recall Score (71% at 24 hours). 

 

Fig. 10. and Fig. 11. show how VAR performs using different combinations of 

features. Models were built using actual known features, last known features prior to 

the 24-hour window, and forecasted features by either univariate autoregression 

(exogenous) or multivariate vector autoregression (endogenous). 

 

 

Fig. 10. VAR RMSE (Actual vs. Last Known) with different combination of features. 
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Fig. 11. VAR Balanced Recall (Actual vs. Last Known) with different combination of 

features. 

 

The VAR model using the full feature of outage, weather and ERCOT and 

exogenously forecasting weather and ERCOT features by univariate autoregressive 

models has the lowest RMSE (.72 at 24 hours). In addition, it maintained the highest 

consistent recall score for rolling window hours 19 through 24 (64% at 24 hours). 

 

Fig. 12. and Fig. 13. show the class level precision and recall scores for the VAR 

model using the full feature of outage, weather and ERCOT and exogenously 

forecasting weather and ERCOT features by univariate autoregressive models. 

 

 

Fig. 12. VAR - AR Precision Score with classification using all features. 
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Fig. 13. VAR - AR Recall Score with classification using all features 

 

The model maintains 99% precision and recall for the most common class (<1%). 

Moreover, high precision and recall scores for high-risk outage buckets (95% at hour 

24 precision for 10%+ bucket and 75% / 72% at hour 24 Recall for 3-10% and 10%+ 

buckets respectively. Admittedly, the model has low precision for 1-3% and 3-10% 

buckets, 3% and 15% respectively. 

 

Table 9. summarizes the overall results of time series models across every hour and 

every rolling window. The RMSE, R squared value and balanced recall for each model 

are shown. 

Table 9. RMSE, R2 and Balanced Class Recall for Time Series Models 
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4.3 Web Application 

The deployed web application is shown in Fig. 14. The Fig. 14. displays highlighted 

boxes which are described as follows: Highlighted box  indicates the header for the 

app, box  shows the selection drop down list for the 9 counties in Dallas – Fort Worth 

and Houston areas. Once a selection is done, the current weather conditions for the 

selected county is shown in box  and the county map highlighted on Texas state map 

in box . The outage conditions for selected county are displayed as shown box  

and the ERCOT market conditions which are used in prediction are shown in box . 

The final result – predicted outage percentage is shown box . 

 

Fig. 14. Pywebio Deployed Output 

5 Discussion 

5.1 Results Discussion 

Linear and non-linear regression models including XGBoost, Lasso, Ridge, Random 

Forests, Gradient Boosting, Neural Networks, SVM and Decision Trees are trained and 

tested to predict the power outage percentage for each of the selected Texas counties 

using weather data and ERCOT market conditions. XGBoost outperformed the other 

algorithms tested. When assessing the individual fold level results from five-fold cross 

validation in all models tested, there is always one-fold RMSE value that deviates away 

from the RMSE of the other four folds. After plotting the response variable outage 

percentage distribution and zooming it in, it is clear that the outage percentage 

distribution is heavily skewed right (Appendix – Fig. M.). Carefully investigating the 
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data, the highest power outage percentages happened during the February 2021 Texas 

Winter Storm and the second highest power outage percentages happened during the 

Hurricane Harvey from August 2017 to September 2017.  

Both XGBoost regression and XGboost classification models indicate ERCOT load 

zone prices contribute the most important features rather than severe weather. It is 

observed that bad weather conditions do rank high in feature importance plots, but not 

as high as ERCOT load zone prices in either model. Therefore, ERCOT load prices 

play the key feature in the power outage prediction study. A further study could be 

conducted from the regions of Texas outside of the Houston and Dallas counties, as it 

is questionable that load zone prices in these less densely populated regions still 

contribute to power outages in the same way.  

Back to the models themselves, what is interesting is that the XGBoost regression 

performs better than XGBoost classification. One main reason is the data is heavily 

skewed. Though equal sample weights have been assigned to each class during the 

model training process; evaluation AUC score was only evaluated by probability of one 

class (Outage percentage larger than 10%), not across all the classes. During the 

regression, the evaluation metric RMSE was optimized across all the response 

variables. In the power outage percentage classification model, the algorithm predicts 

each class with the highest prediction score. But under the hood, the metric calculates 

each class prediction probability by grouping other classes into a second class. Then 

this 'binary' metric is averaged over all classes to get either a weighted average or macro 

average scores. Therefore, in the future study, a threshold for a typical class can be 

tweaked based on what predicted answers researchers can accept. To make it easier in 

the future, binary classification also could be conducted directly, and its performance 

could be better than regression model results – but it is highly dependent on how 

researchers split their classification categories. 

Time series modeling showed how even univariate time series models such as linear 

autoregressive, random forest, and neural networks can drastically help improve power 

outage percentage prediction metrics versus the control groups that assume the flat 

average or the last known power outage percentage for the next 24 hours. It was found 

that inclusion of continuous variables from weather data and ERCOT help further drive 

lower RMSE and Recall Score. Similar to machine learning models, inclusion of the 

ERCOT data greatly increased prediction accuracy versus that of univariate models. 

Inclusion of all three (weather, ERCOT & outage) provides a more modest increase 

than just outage data and ERCOT alone. The model with the highest accuracy used 

actual data points for weather and ERCOT data, although in a future forecast setting 

this is not possible as these values will be unknown. By assuming the weather and 

ERCOT features are exogenous and using individual linear autoregressive models to 

predict each feature as it traverses the rolling window, the research team was able to 

achieve lower RMSE and higher recall score than by just assuming the last known 

values at the window start. Time series modeling showed high recall scores for high-

risk outages classes “3-10%” and “>10%”. On the other hand, it showed very low recall 

scores for the “1-3%” class. This could imply that the model can only predict systematic 

outages and not those on a localized or neighborhood level. Smaller specific 

neighborhood issues such as a transmission line break are not picked up by the model 

or the feature-set. The high recall scores for high-risk outages classes make this model 

reliable. And because false positives for high outage percentage do not carry any 
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inherent risks or consequences, it is much safer for consumers if the model provides 

several false positives on when outage risks are high (low precision) as long as it 

captures when the majority of high-risk outage events actually occur (high recall). 

With validation of research results, models can be extended to rest of Texas ERCOT 

regions to make power outage predictions. The accuracy of predicting the power 

outages helps the consumers be aware of the risk and be prepared to handle the power 

outage situations. The results can only be inferred inside the ERCOT electrical grid 

system. It cannot draw statistical inference to the remaining regions of Texas which are 

not under ERCOT, or other states in the U.S. where there is not a comparable market 

structure, historical data, or weather patterns. 

5.2 Ethics Discussion 

Considering the ethical attributes, while the prediction results for high-risk outage 

classes were dependable, the model should not be used by consumers to make decisions 

that could affect their health or have life or death consequences. Causal inferences 

between ERCOT loading prices and power outages cannot be drawn. The research team 

advises end users to take all necessary and reasonable precautions in case of power 

outage, regardless of the prediction models. 

In addition, the results of this model could be used in bad faith. If the model predicts 

possible power outage risks, this could lead to product hoarding or price gouging of 

supplies that could put more consumers at risk. This could also extend to energy traders, 

power generators, or any other market stakeholders in ERCOT that could use these 

results for monetary gain instead of spreading safety awareness. Some stakeholders 

may take preventive action, diminishing the usefulness of the model. Larger 

commercial and industrial customers or cooperative/municipalities can have backup 

generators, batteries for energy storage, or solar panels at their disposal where the need 

for knowing power outage risk becomes lower as business operations are uninterrupted 

by grid failure. 

The model predicts outages based on the demand of the current population in 

Houston, Dallas and the rest of Texas, so any change in growth over time impacts the 

ability to predict. According to the US Census Bureau, Texas has had the nation’s 

largest annual population growth every year from 2010 through 2016 [44]. 

Furthermore, Dallas, Houston, Austin and San Antonio lead the population growth in 

the state [44]. While recent history is concerning, the population gains are expected to 

grow. An estimate published by the Texas Water Development Board expects 

population increases in Dallas County by 10% in 2030 and 22% 2040 [45]. There are 

similar projections for Houston showing population percentage gains of 7% and 14% 

in 2030 and 2040 [45]. Without additional interconnects to other NERC regions, the 

Texas power grid will be under even more strain in the years to come. The model should 

be retuned and retrained as the market and regulations change and evolve. Changes in 

infrastructure relating to additional transmission lines, cold weather protection 

investment, gas pipelines and renewable energy will have undetermined effects on the 

future reliability of ERCOT. There could also be changes in regulation or policy that 

change the meaning, significance and value distributions of variables utilized by the 

model. New policies such as price caps or capacity payments would need be recorded 

and evaluated into model performance to maintain accurate results.  

26

SMU Data Science Review, Vol. 6 [2022], No. 1, Art. 5

https://scholar.smu.edu/datasciencereview/vol6/iss1/5



The way that ERCOT variables are used in machine learning and time series models 

may also be paradoxical. While high load and high prices were identified as influential 

variables, these can be deceptive because of a feedback loop for how the ERCOT 

market operates. As the prices go up, generator resources are more likely to come online 

because of economic incentive, the prices would quickly return to nominal levels. From 

these variables alone, it is unclear how long the market can operate before load shedding 

actions must be taken and mandatory blackouts be implemented. The model may show 

a high risk of power outages for a specific instantaneous moment that quickly goes 

away because generation resources were promptly dispatched. While the risk for power 

outages at that time was valid, end users may unnecessarily be alarmed or get prepared 

for an issue that gets quickly and naturally resolved by the ERCOT market. 

The interpretation of weather patterns and its effect on the grid outages in Texas 

need to be examined as well. Events such as freezing can cause outage from higher 

demand (perhaps from electric heaters or other appliances) as well as down power lines 

from frozen rain or snow. Excessive heat can lead to higher demand (from air 

conditioning and other appliances) but also overload specific power lines. Extreme 

weather conditions can cause either systematic power supply issues or outages felt at a 

more localized and neighborhood level. Extreme weather will not always lead to higher 

demand or decreased generation supply, as such these conditions will not always imply 

a high risk of power outages per the model. Events felt on local level caused by storms 

will not affect all residents of large metro areas like Dallas and Houston. Weather only 

appears for major outages when it correlates and corresponds to high-risk activity from 

ERCOT load and pricing. 

An alternative outlook of power outage causes has been identified and investigated. 

Malfunction of the power generation equipment or severe weather may never be solely 

responsible for widely spread power outages. Momentary drastic increases in pricing 

or load can get quickly addressed and rectified without consumers ever knowing. The 

ERCOT power grid is complex with many stakeholders, variables and moving pieces. 

The predictions and inferences made from this model should be taken with caution to 

ensure the preparedness and safety of its end users. 

6 Conclusion 

The goal of this study is to build machine learning and time series models that can 

accurately predict the current risk of power outages as well as the predicted hourly risk 

over the next 24 hours. While not outwardly apparent, ERCOT features such as Load, 

Real Time, and Day ahead prices are most influential in determining power outage risk, 

and accuracy is maximized when done in consideration with weather data. When 

assuming sample independence and non-serial correlation between records, XGBoost 

produces the most accurate results. In comparison, in time series modeling, using 

Vector autoregression with the full feature-sets of outages, weather and ERCOT and 

exogenously forecasting weather and ERCOT features by univariate autoregressive 

models produces the most accurate model for forecasting the next 24 hours. Both 

XGBoost and VAR utilizing the full feature-set yielded a lower Root Mean Squared 

Error and higher Recall score than using either feature-set exclusively.  

Using these feature-sets allows for immediate prediction and forecasting results as 

current values are freely available by either screen scraping from ERCOT or API for 
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'Openweather'. The top performing machine learning model is packaged into an 

external facing web application for public use in determining current power outage risk. 

This research has provided machine learning and time series models that can be further 

extended to entire Texas ERCOT regions based on the availability of data. 
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Appendix:  

Appendix - Table 1: Data Description. 

 
  

Item Variable Type Description

1 'Metro_Area' varchar The metro area of the county, either Dallas or Houston

2 'State' varchar State, will be TX for all entries

3 'County' varchar The specific Texas county

4 'Weekday' Int Weekday in the month

5 'Month' Int Month of the year

6 'hour' Int Hour of the day when data is collected

7 'RecordDateTime_CST' date time time stamp in CST

8 'RecordDateTime_UTC' date time time stamp in UCT

9 'RecordDateTime_EST' date time time stamp in EST

10 'Customer_Count' float Overall electric Customer Count of the county at that specific time stamp

11 'Outage_Count' float Number of customer experiencing an outage at that specific time stamp

12 'temp' float temperature degrees in Fahrenheit

13 'feels_like' float feels like temperature degrees in Fahrenheit

14 'temp_min' float the min temperature degrees in Fahrenheit for the hour ending of the time stamp

15 'temp_max' float the max temperature degrees in Fahrenheit for the hour ending of the time stamp

16 'pressure' float Atmospheric pressure on the sea level, hPa

17 'humidity' float Humidity, %

18 'wind_speed' float windspeed in miles/hour.

19 'wind_deg' float wind direction in degrees

20 'rain_1h' float inches of rain in last hour

21 'rain_3h' float inches of rain in last 3 hours

22 'snow_1h' float inches of snow in last hour

23 'snow_3h' float inches of snow in last 3 hours

24 'clouds_all' float Cloudiness, %

25 'ERCOT_WEATHERZONE_LOAD' float Total MWH for ERCOT Weather zone for time stamp hour ending

26 'ERCOT_RT_LOADZONE_PRICE' float Current Load Zone energy weighted price/MWH for ERCOT load zone hour ending

27 'ERCOT_RT_HUB_PRICE' float Current HUB energy weighted price/MWH for ERCOT load zone hour ending

28 'ERCOT_DA_LOADZONE_PRICE' float Day Ahead Load Zone energy weighted price/MWH for ERCOT load zone hour ending

29 'ERCOT_DA_HUB_PRICE' float Day Ahead HUB energy weighted price/MWH for ERCOT load zone hour ending

30 'Clear_sky is clear' Boolean True/False flag for weather parameters and the description

31 'Clouds_broken clouds' Boolean True/False flag for weather parameters and the description

32 'Clouds_few clouds' Boolean True/False flag for weather parameters and the description

33 'Clouds overcast clouds' Boolean True/False flag for weather parameters and the description

34 'Clouds_scattered clouds' Boolean True/False flag for weather parameters and the description

35 'Drizzle_drizzle' Boolean True/False flag for weather parameters and the description

36 'Drizzle_heavy intensity drizzle' Boolean True/False flag for weather parameters and the description

37 'Drizzle_light intensity drizzle' Boolean True/False flag for weather parameters and the description

38 'Dust_dust' Boolean True/False flag for weather parameters and the description

39 'Fog_fog' Boolean True/False flag for weather parameters and the description

40 'Haze_haze' Boolean True/False flag for weather parameters and the description

41 'Mist_mist' Boolean True/False flag for weather parameters and the description

42 'Rain_extreme rain' Boolean True/False flag for weather parameters and the description

43 'Rain_freezing rain' Boolean True/False flag for weather parameters and the description

44 'Rain_heavy intensity rain' Boolean True/False flag for weather parameters and the description

45 'Rain_heavy intensity shower rain' Boolean True/False flag for weather parameters and the description

46 'Rain_light rain' Boolean True/False flag for weather parameters and the description

47 'Rain_moderate rain' Boolean True/False flag for weather parameters and the description

48 'Rain_proximity shower rain' Boolean True/False flag for weather parameters and the description

49 'Rain_shower rain' Boolean True/False flag for weather parameters and the description

50 'Rain_very heavy rain' Boolean True/False flag for weather parameters and the description

51 'Smoke_smoke' Boolean True/False flag for weather parameters and the description

52 'Snow_heavy snow' Boolean True/False flag for weather parameters and the description

53 'Snow_light rain and snow' Boolean True/False flag for weather parameters and the description

54 'Snow_light snow' Boolean True/False flag for weather parameters and the description

55 'Snow_snow' Boolean True/False flag for weather parameters and the description

56 'Squall_squalls' Boolean True/False flag for weather parameters and the description

57 'Thunderstorm_proximity thunderstorm' Boolean True/False flag for weather parameters and the description

58 'Thunderstorm_proximity thunderstorm with rain' Boolean True/False flag for weather parameters and the description

59 'Thunderstorm_ragged thunderstorm' Boolean True/False flag for weather parameters and the description

60 'Thunderstorm_thunderstorm' Boolean True/False flag for weather parameters and the description

61 'Thunderstorm_thunderstorm with heavy rain' Boolean True/False flag for weather parameters and the description

62 'Thunderstorm_thunderstorm with light rain' Boolean True/False flag for weather parameters and the description

63 'Thunderstorm_thunderstorm with rain' Boolean True/False flag for weather parameters and the description
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Appendix - Figure B: Data Table 

 

 

 

Appendix - Figure C: Temperatures from July 2017 to September 2021 in Dallas & Houston 
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Appendix - Figure D: Energy outage counts from July 2017 to September 2021 in Dallas & 

Houston 
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Appendix - Figure E: ERCOT Electricity price of current load zone from July 2017 to 

September 2021 in Dallas & Houston 

 

 

  

Appendix - Figure F: Outage average counts based on snow and freezing rain from July 

2017 to September 2021 in Dallas & Houston 
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Appendix - Figure G: Correlation heatmap for all continuous variables in the dataset 
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Appendix - Figure H: Outage Percentage boxplot and swam plot with respect to County 
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Appendix - Figure I: Feature importance plot from XGBoost Regression 

 

 

 

Appendix - Figure J: Train and test ROC plot of XGBoost Classification 
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Appendix - Figure K: ROC plot of XGBoost Classification for all classes 
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Appendix - Figure L: Feature importance plot from XGBoost Classification 

 

 

 

  

Appendix - Figure M: Response variable distribution 
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