Olivet Nazarene University

Digital Commons @ Olivet

Student Scholarship - Engineering

Engineering

4-15-2022

Dewaxing Bulding Containment

Liam Gahan Olivet Nazarene University, mailgahan2547@gmail.com

Katarina Nikolic Olivet Nazarene University, knikolic147@gmail.com

Emily Ziemba Olivet Nazarene University, emilyziemba99@gmail.com

Follow this and additional works at: https://digitalcommons.olivet.edu/engn_stsc

Part of the Engineering Commons

Recommended Citation

Gahan, Liam; Nikolic, Katarina; and Ziemba, Emily, "Dewaxing Bulding Containment" (2022). Student Scholarship - Engineering. 14.

https://digitalcommons.olivet.edu/engn_stsc/14

This Presentation is brought to you for free and open access by the Engineering at Digital Commons @ Olivet. It has been accepted for inclusion in Student Scholarship - Engineering by an authorized administrator of Digital Commons @ Olivet. For more information, please contact digitalcommons@olivet.edu.

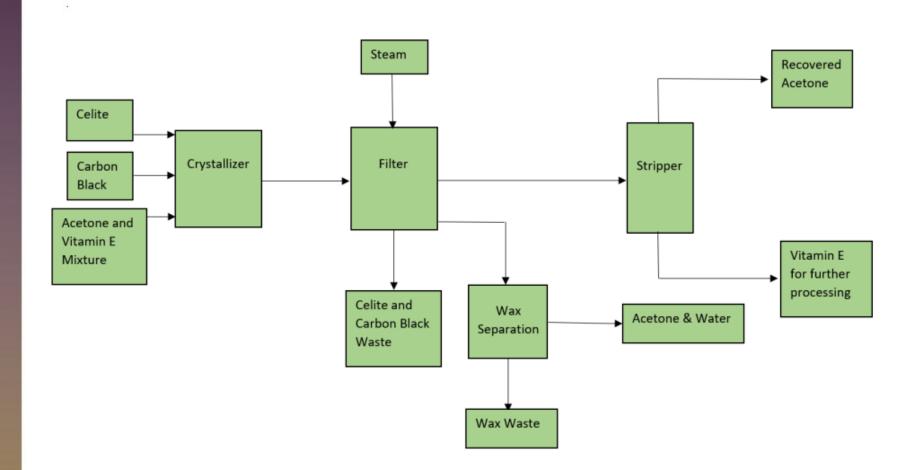
Kensing Dewaxing Building Containment

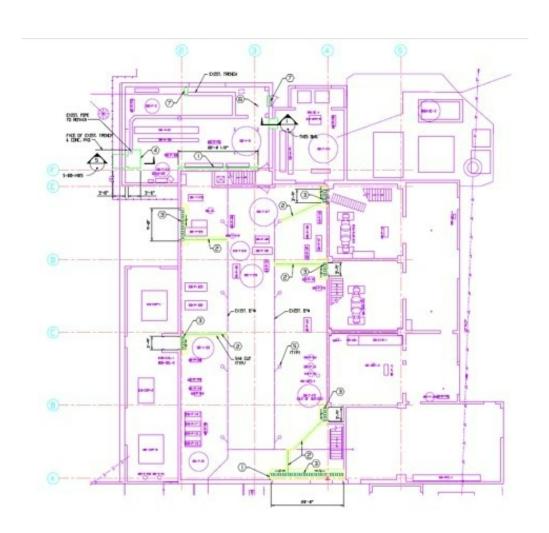
Liam Gahan, Katarina Nikolic, Emily Ziemba

Faculty Mentor: Dr. Keith Schimmel Kensing Sponsor: Ms. Kate Krull

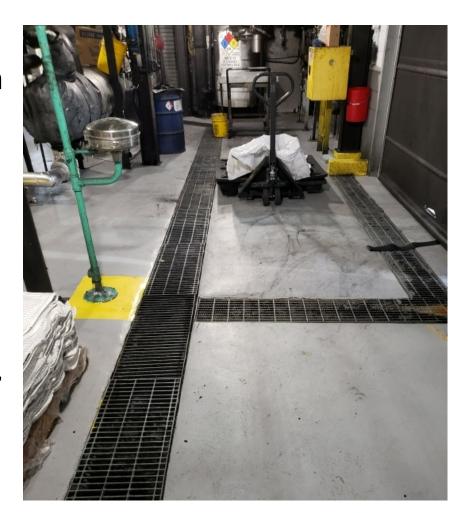
Background

Kensing Solutions


- Located in Kankakee, Illinois
- Site was purchased in 2021
 - From BASF
 - Kensing Founded
- Manufacturer of Consumer Products
 - Vitamin E
 - Anionic surfactants, phytosterols, and specialty esters


Dewaxing Building Process

Building Layout



Secondary Containment

- Crystallizer and Filter tanks remove waxes from the vitamin E stream
- Spills flow onto floor and then into a trench system
- The trench system is plugged and emptied manually into a tote for disposal
- Roll up doors are opened, and acetone vapors allowed to dissipate

Problem

- Vitamin E stream is thinned with acetone
- History of spills
 - Average of one per year
 - Varying levels of lost material
- No automated response safety issue
- Acetone is a hazardous chemical

Spill Issues

- Liquids
 - Trenches
 - Waste leads to process sewer
 - Acetone in wastewater
 - Fines from the city
- Secondary Containment must be improved
 - Quicker response
 - Complete removal of material
 - Safe

Problem Statement

Problem Definition

- Current system
 - Catches spills late
 - Hazardous conditions
- Spill remediation system
 - Catch spills quickly
 - Eliminate flammable atmosphere
 - Remove spill material

Design Objectives and Constraints

- Objectives
 - Remove spilled acetone from dewaxing building
 - Cost-effective
 - Safe
 - Easily accessible
 - Relatively simple to use
 - Feasible

- Constraints
 - Vapor concentrations below 15% LEL
 - No material can enter the process sewer or wastewater to the city
 - Material not be reworked for GMP
 - Components must not react with acetone

Functional Requirements

- Containment
 - All spilled material
- Removal of all vapors
- Quickly Deployable
 - Minimize time allowed for vaporization
- Spill Size
 - Ranging from leaks to 1000 kg of fluid

Codes and Standards

- Disposal of acetone waste
 - RCRA
 - Clean Water Act
- Code of Federal Regulations
 - Standard for existing sources
 - Maximum of 20.7 ppm per day
 - 8.2 ppm monthly average

- Clean Air Act
 - Acetone vapors exempted
- OSHA
 - Maximum 8 hr. exposure period
 - 1,000 ppm
 - Immediate danger to health
 - 2,500 ppm or 10% LEL

Design Alternatives

Design Alternatives

- Absorbents or absorbent trays
 - Bags of absorbent
 - Kept on site
- Pump/Tank System
 - Pump and piping
 - Outdoor storage tank
- Current System
 - Opening roll up doors
 - Pump into tote

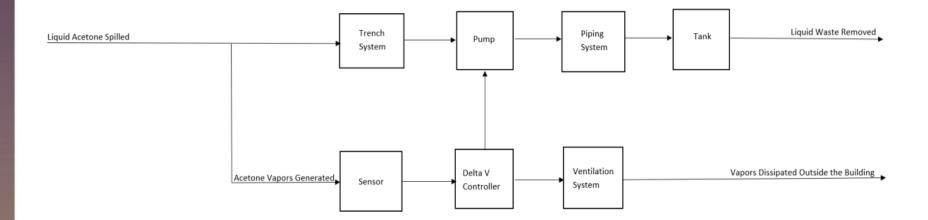
Evaluation of Alternatives

Design Matrix					
Design Decisions	Design Elements				
	Price	Safety	Ease of Use	Functionality	
Solution					

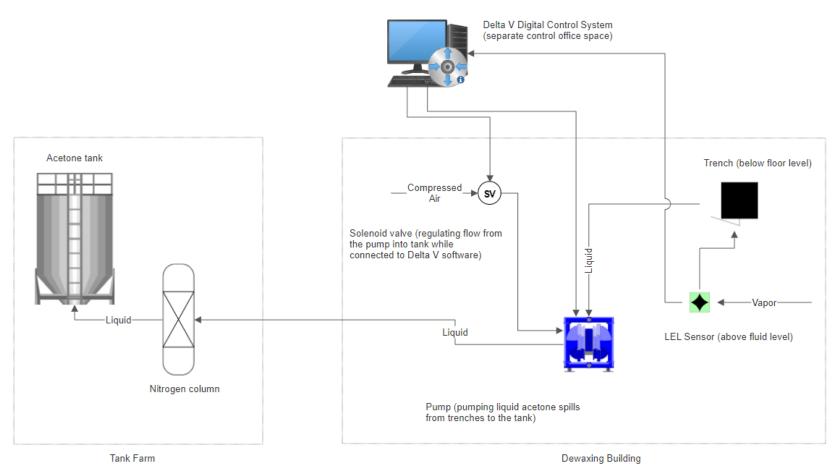
- Rated on scale of 1-10
- Price
 - Capital and lifetime costs
- Safety
 - Worker and process
- Ease of Use
 - Complexity
- Functionality
 - Satisfies all functional requirements

Design Matrix

Design Matrix					
Design Decisions	Design Elements				
Systems	Price	Safety	Ease of Use	Functionality	Totals
Absorbents	6	5	7	7	25
Pump/Tank	2	9	8	9	28
Current	10	1	7	6	24

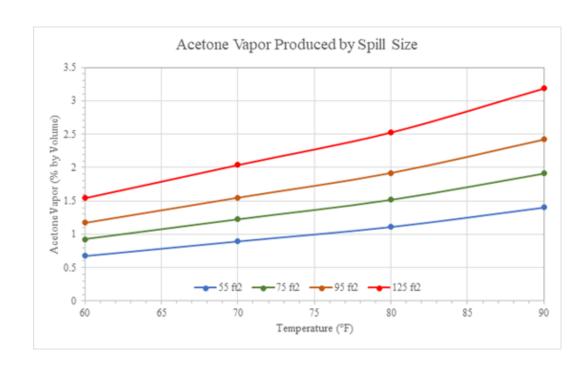


Final Design


Block Diagram

Process Flow Diagram

Dewaxing building



Design Validation

Ventilation System

- Existing Ventilation System
 - Flow Rate
 - 1752 ft³/min
- Vapor concentration generated
 - C_{ppm}
 - Converted to % by volume
- Adequate for spills with solution

$$C_{ppm} = \frac{K * A * P^{sat} * 10^6}{Q_v * P * k}$$

Pump

- Fastest flow of spill
 - 200 kg/min or 66 gpm
- Grainger, Inc.
 - ARO
 - 90 gpm maximum
 - Stainless steel
 - Double diaphragm (PTFE)
 - Will not degrade Acetone
 - No accumulation

Other Materials

- Piping
 - 100 feet
 - Stainless Steel
- Tank
 - 4700 gallons
 - Stainless Steel
 - LDAR
- Sensors and Conduit
 - LEL
 - Solenoid Valve
- Plug
 - Brady SPC
 - PVC

[4]

Cost Estimate

Capital Costs

Item	Cost
Tank	\$57,000
Piping and Labor	\$15,000
Sensor	\$20,000
Pump	\$5,454
Plug	\$257

Additional Costs

Item	Cost
Maintenance (every 5 years)	\$20,000
Waste Removal (per spill)	\$1,835

Total Cost (estimated 20-year lifespan)

Total	\$118,000
Total + 10%	\$130,000

Conclusion

- Benefits of solution
 - Automated system (quick clean-up)
 - Safely
 - Minimized Waste and Cost
 - Easily maintained
- Recommendations
 - Protocols development
 - Backup ventilation system

Acknowledgements

We would like to thank:

- The ONU Engineering Department
 - Professor Schroeder
 - Professor Schimmel
- Kensing Solutions
 - Ms. Kate Krull

Q&A

Questions?

Image Resources

- [1] "Our Story | Kensing Solutions," Kensing. https://kensingsolutions.com/about/our-story/ (accessed Sep. 14, 2021).
- [2] "Acetone sign, SKU: S2-4924," *MySafetySign.com*. [Online]. Available: https://www.mysafetysign.com/acetone-nfpa-sign/sku-s2-4924. [Accessed: 18-Apr-2022].
- [3] "Double Diaphragm Pump, 90 gpm Max. Flow, PTFE, Single Manifold Connection, 1 1/2 in," Grainger. https://www.grainger.com/product/ARO-Double-Diaphragm-Pump-5U672 (accessed Apr. 18, 2022).
- [4] "Used 4,700 Gallon 304 Stainless Steel Vertical Tank, 10' Dia. X 8' Straight Side 6997-9 | Stainless Steel Tanks 4,000 to 5,999 Gallons, Tanks," Perry Videx LLC. https://www.perryvidex.com/product/4700-g-120x-8-h-fh-6997-9/ (accessed Apr. 19, 2022).
- [5] "BRADY SPC ABSORBENTS Drain Plug, Fits Drain Dia. 6 in, PVC, Yellow, Handle Type Removable Eye Bolt 15U906|PLUG6 Grainger." https://www.grainger.com/product/BRADY-SPC-ABSORBENTS-Drain-Plug-15U906 (accessed Apr. 19, 2022).

