Olivet Nazarene University

Digital Commons @ Olivet

Student Scholarship - Engineering

Engineering

4-15-2022

Centralized Wastewater System

Gabe Ferguson Olivet Nazarene University, ferggabe@gmail.com

Caleb Inorio Olivet Nazarene University, calebinorio@gmail.com

Ashton Loitz Olivet Nazarene University, ael82017@gmail.com

Byshop Williams Olivet Nazarene University, wbyshop@gmail.com

Follow this and additional works at: https://digitalcommons.olivet.edu/engn_stsc

Part of the Engineering Commons

Recommended Citation

Ferguson, Gabe; Inorio, Caleb; Loitz, Ashton; and Williams, Byshop, "Centralized Wastewater System" (2022). Student Scholarship - Engineering. 13.

https://digitalcommons.olivet.edu/engn_stsc/13

This Presentation is brought to you for free and open access by the Engineering at Digital Commons @ Olivet. It has been accepted for inclusion in Student Scholarship - Engineering by an authorized administrator of Digital Commons @ Olivet. For more information, please contact digitalcommons@olivet.edu.

Centralized Wastewater System Project 2022-12

Ashton Loitz, Gabe Ferguson,

Byshop Williams, Caleb Inorio

Outline

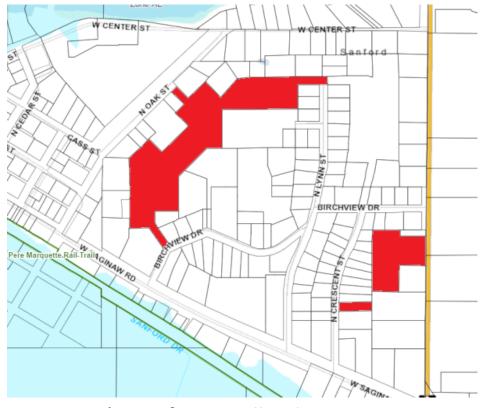
- Acknowledgments and Background
- Problem Statement
- Design Alternatives
- Design Selection
- Preliminary Design
- Final Design Walkthrough
- Engineering Analysis
- Cost Analysis
- Design Validation
- Conclusion

Acknowledgments

- VIPs (Very Important Professors)
 - Faculty Mentor: Prof. Ragan
 - Dr. Schroeder
- Professional Team
 - Jen Robinson
 - Amanda Laramie
 - Richard Goldszer
 - Mark Fetters
- Sponsor: CECorps
 - Stephan Barr
- Sanford Council Members
 - Dolores Porte

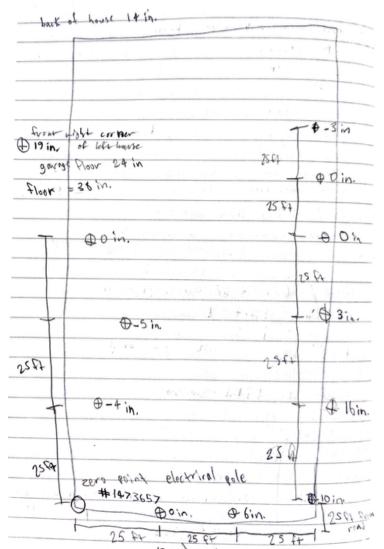
Background, Need for Implementation

- Sanford, MI devastated by dam failure in May 2020
- Over 30 houses and multiple businesses lost
 - Lost tax base
- No centralized wastewater system
 - Over 60% of houses built before 1969 as of 2014 Master Plan
- Need to help Sanford reinstate tax base while providing affordable housing



Problem Statement

- 3 Potential sites for housing developments
 - Wastewater is a concern for all developments
- Focused on Habitat for Humanity site
- Provide a cost effective and environmentally friendly solution to handle wastewater on site


*Data from Midland County GIS

Habitat for Humanity Site

- Need to design septic tank and field for site
- 75' x 270'
- Sits roughly 2 feet lower than neighbors
- Depth to water table of 0 inches
 - From USGS Web Soil Survey
- Clay-loam soil, poor draining

Engineering Accreditation Commission

Current Site Conditions

Design Objectives

- Our objective is to provide the Village of Sanford with an on-site wastewater treatment solution that is:
 - Affordable yet meets all the environmental and health requirements
 - Have long lifespan
 - Must be easily serviceable and cost effective to maintain
 - Needs to be configurable to fit similar shaped lots nearby

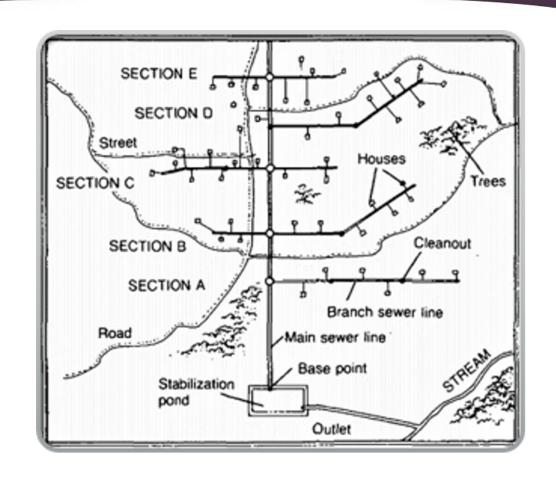
Functional Requirements

- Our wastewater treatment solution should:
 - Handle 350 gpd on average
 - Separate out all solids larger then 1/16"
 - Alert resident to problems within the system
 - Effectively dose field to allow for proper draining and filtration

Design Constraints and Codes

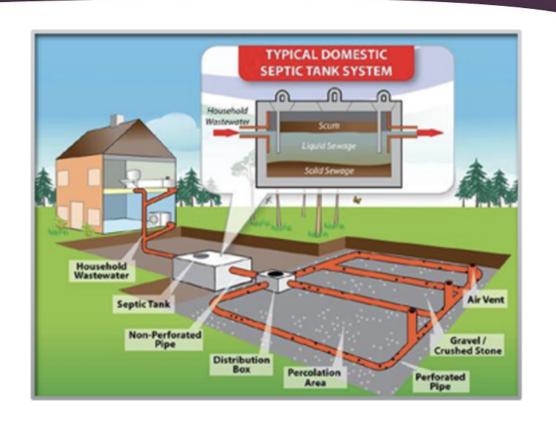
- Midland County Health Department requirements
 - Section 305.5 (c) Bottom of field must be 18 inches above water table
 - Section 305.3 Field size must be 2,100 square feet and tank size must be 1,000 gallons
 - Section 304 Field must be 10 feet from property lines and tanks must be 10 feet from house
- Michigan Criteria for Subsurface Sewage Disposal
 - II A. Soil needs to accept water at a rate of 45 minutes per inch or faster
 - Clay-loam over 45 minutes per inch

Additional Considerations and Constraints


- Health Department requests:
 - 1,250-gallon dual compartment septic tank
 - 7:1 slopes on embankments of septic field
- Other considerations
 - Buoyancy of tanks
 - Have room for a reserve field when first one fails
 - Verify site is outside floodplain

On-site vs Centralized Wastewater System

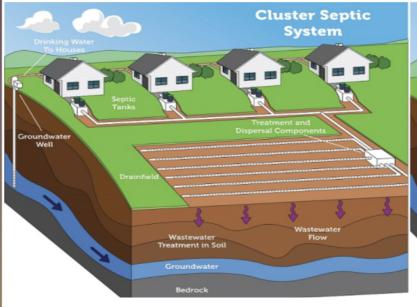
- Centralized municipal systems have a sewer main that each house can hook up to
 - Wastewater collected and treated at plant before release to public waters
- Allows a house to be built without worrying about individual wastewater concerns

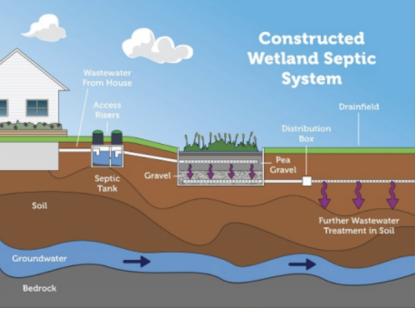


On-site vs Centralized Wastewater System

- On-site system stores solids and releases liquids into ground
 - Liquids required to be filtered by soil
- Septic tank separates solids from liquids
 - Septic tank will be pumped depending on usage
- Septic field allows water to enter the ground and be filtered

Design Alternatives


- Centralized Wastewater Plant
 - Would allow new homes to be built with no regard for wastewater, but large upfront cost from village
- Pump wastewater to nearby towns treatment plant
 - Cheaper than option 1 up front but would allow nearby town to set rates and get all the revenue
- Constructed Wetland
 - Lower cost maintenance, but needs large area
- Community drain field
 - Cost spread amongst several residences. Mainly suitable for subdivisions
- Engineered mound
 - Best for areas with high water table, but costly and short lifespan



Design Alternatives

- On-site alternatives
 - All include septic tanks with variation in field designs
 - Strengths and weaknesses for each

Design Selection

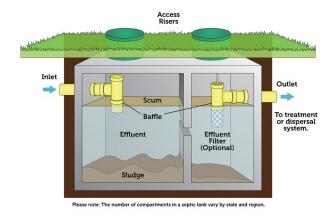
- Design Matrix
 - Each metric given a priority which gets multiplied by the score
- Engineered Mound was the alternative that won out

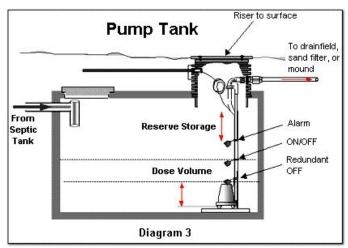
	De	esign Matrix for Habitat Lot				
Designs	Functions					
	Cost	Environmental Impact	Treatment Capacity	Ease of Maintenance		
Priority	111	///	✓	√ √		
Centralized Wastewater Plant	0	5	5	5	30	
Pump to Nearby Plant	0	5	5	5	30	
Engineered Mound	4	4	1	4	33	
Constructed Wetland	5	2	2	4	31	
Community Drain field	3	4	4	3	31	

Design Team Breakdown

Selected design allowed team responsibilities to be assigned

- Ashton Loitz: Communicate with suppliers and calculate pump information
- Gabe Ferguson: Design and Drafting (AutoCad)
- Byshop Williams: Design and Drafting (AutoCad)
- Caleb Inorio: Research background information and health regulations

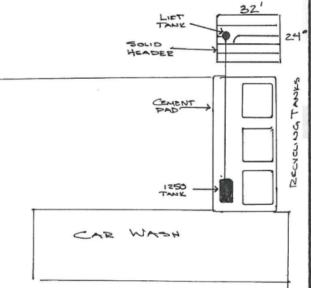





Description of Design

- Septic Tank
 - First phase
 - Separates out solids and contains them
- Pump Tank
 - Second phase
 - All gravity flow to this point
 - Pumps effluent up to the field
- Engineered Septic Mound
 - Third phase
 - Disperses effluent into mound for filtration

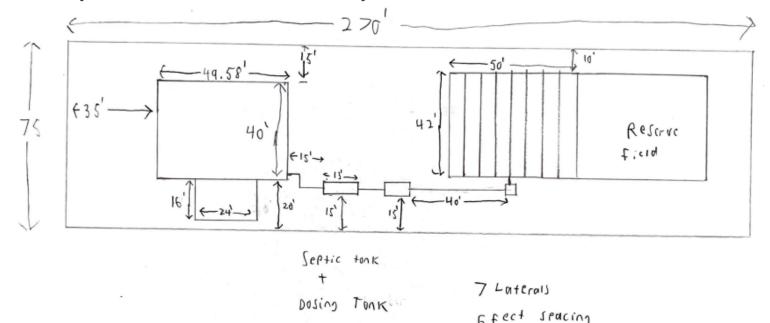
Septic Tank



Nearby Systems

- 2 sites to the south have mound systems
- Both built over 18 years ago

 Both raised 2+ feet at least above current grade



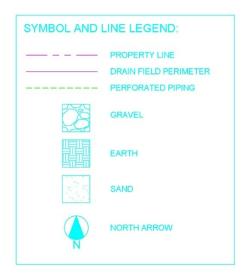
*Data from Midland County Health Department and Midland County GIS

Preliminary Design

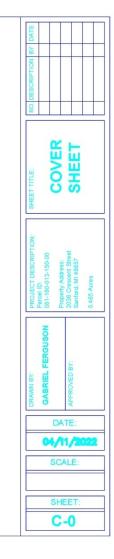
- Put tanks on side for shorter laterals
- Easier access to reserve field when needed
- Tried to keep field close to a square

ENGINEERED SEPTIC DRAIN FIELD

HABITAT FOR HUMANITY 2036 Crescent Street Sanford, MI 48657

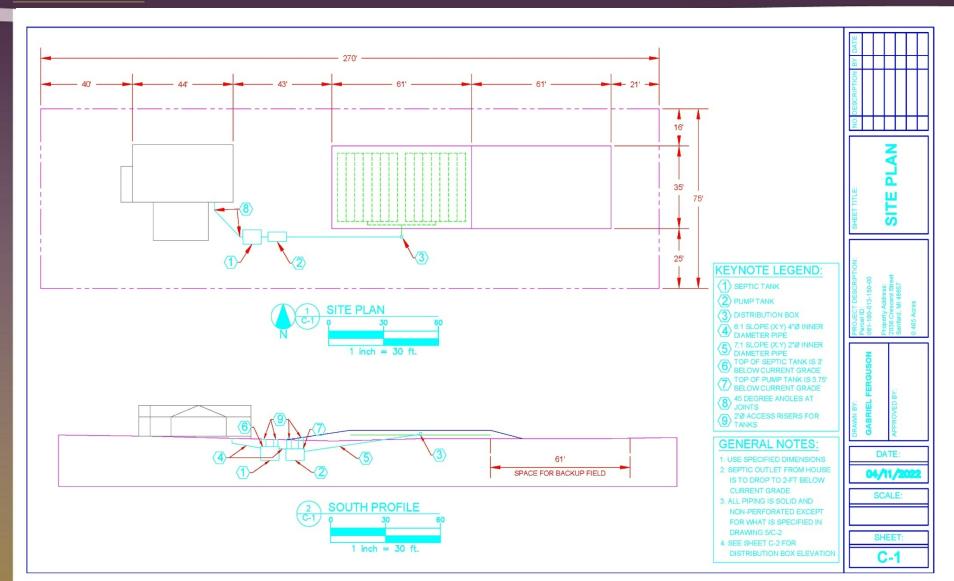

INDEX OF DRAWINGS:

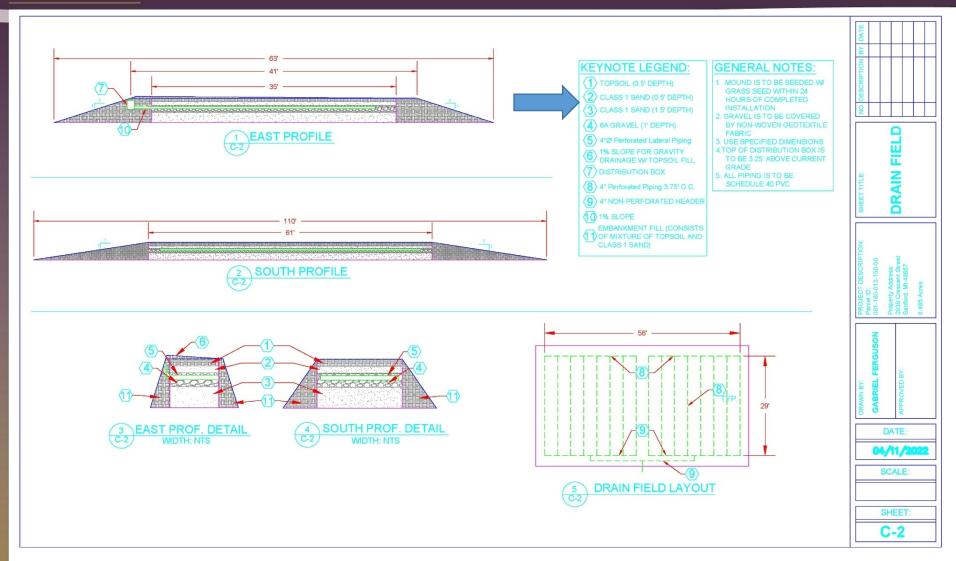
C-0.0 COVER SHEET

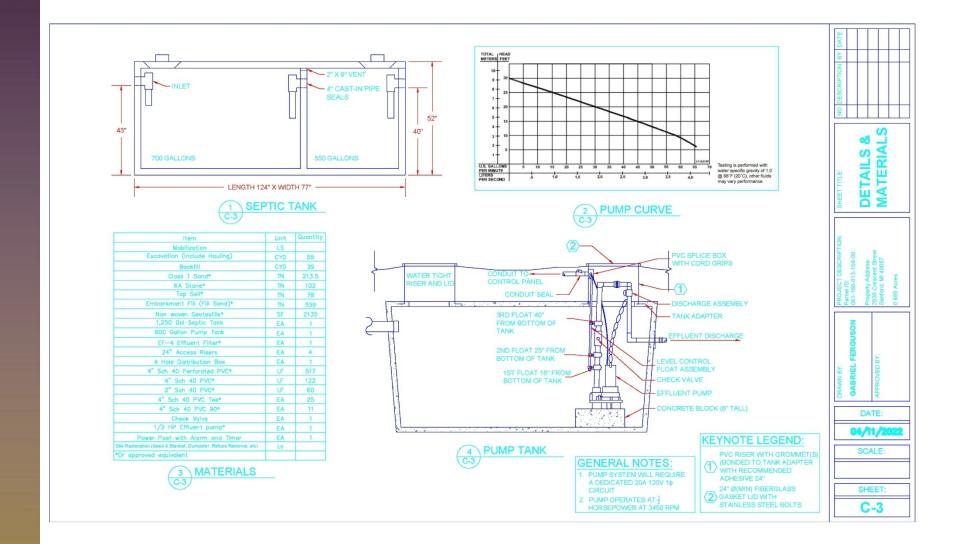

C-0.1 SITE PLAN

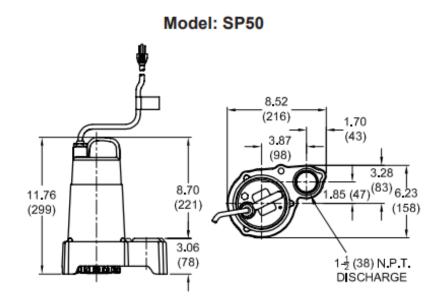
C-0.2 DRAIN FIELD

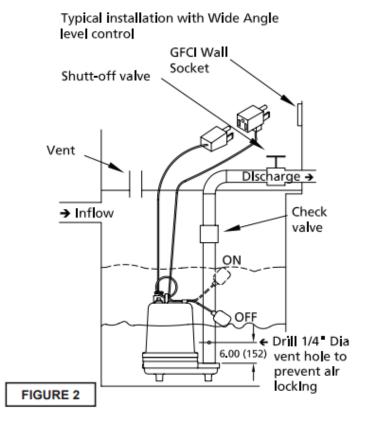
C-0.3 DETAILS






Engineering Accreditation Commission

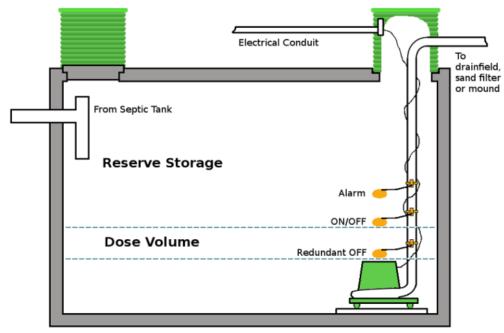




Pump Design

Standard pump available for use and example of installation

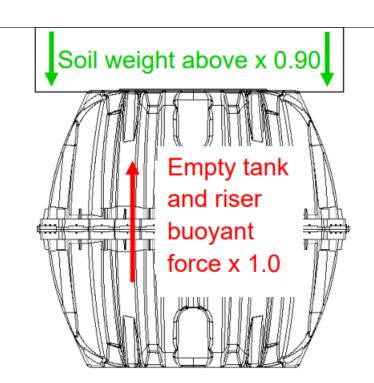
Engineering Analysis


- Design Flow
 - Assume 100 gpd and .17 lbs BOD per person
 - Single family house averages 3.5 people
 - 350 gpd
 - Assume max daily flow of 1,000 gallons per day
- 204 mg/L BOD concentration
 - Drain field size is appropriate per Michigan Criteria for On-Site Wastewater Treatment chapter 5

Engineering Analysis

- Pump tank float levels
 - 3 floats required to operate pump with timer
- 1st float
 - 18 inches from bottom of tank
 - Only pumps with timer on
- 2nd float
 - 25 inches from bottom of tank
 - Overrides the timer
 - ~90-gallon difference
- 3rd Float
 - 40 inches from bottom of the tank
 - Sounds alarms
 - Safety factor of ~100 gallons before tank backs up

Pump Tank


*Picture from expresssepticservice.com

Engineering Analysis

- Buoyancy of tanks
- Septic tank
 - Soil cover and weight of septic tank
 - 21,000 lbs
 - Buoyant force of 17,000 lbs
- Pump tank
 - Soil cover and weight of pump tank
 - 12,750 lbs
 - Buoyant force of 9,500 lbs

Cost Analysis

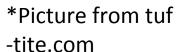
- Material pricing sourced from local suppliers
- Labor from RSMeans Online
 - Estimates from 2011
- Material Subtotal
 - \$17,100
- Labor Subtotal
 - \$13,100
- Total with contingency and O&P
 - \$45,600

Cost Analysis

			Material Unit	Material	Install Unit		
Item	Unit	Quantity	Cost	Subtotal	Cost	Install Subtotal	2022 Cost
Mobilization	LS		\$185.00				\$185.00
Excavation (Include Hauling)	CYD	55	\$0.00	\$0.00	\$5.61	\$308.69	\$308.69
Backfill	CYD	39	\$0.00	\$0.00	\$1.94	\$75.56	\$75.56
Class 1 Sand	TN	213.5	\$0.00	\$0.00	\$1.00	\$213.50	\$213.50
6A Stone	TN	102	\$24.00	\$2,448.00	\$44.63	\$4,551.75	\$6,999.75
Top Soil	TN	78	\$15.00	\$1,170.00	\$1.69	\$131.63	\$1,301.63
Embankment Fill (Fill Sand)	TN	559	\$5.75	\$3,214.25	\$1.69	\$943.31	\$4,157.56
Non woven Geotextile	SF	4270	\$0.16	\$683.20	\$0.06	\$266.88	\$950.08
1,250 Gal Septic Tank	EA	1	\$875.00	\$875.00	\$1,436.25	\$1,436.25	\$2,311.25
600 Gallon Pump Tank	EA	1	\$575.00	\$575.00	\$1,213.75	\$1,213.75	\$1,788.75
EF-4 Effluent Filter	EA	1	\$34.00	\$34.00	\$128.75	\$128.75	\$162.75
24" Diameter Access Risers 12"	EA	12	\$75.00	\$900.00	\$11.69	\$140.25	\$1,040.25
4 Hole Distribution Box	EA	1	\$65.00	\$65.00	\$43.13	\$43.13	\$108.13
4" Sch 40 Perforated PVC	LF	517	\$6.75	\$3,489.75	\$4.21	\$2,176.57	\$5,666.32
4" Sch 40 PVC	LF	122	\$6.75	\$823.50	\$4.21	\$513.62	\$1,337.12
2" Sch 40 PVC	LF	60	\$2.58	\$154.80	\$1.74	\$104.40	\$259.20
4" Sch 40 PVC Tee	EA	25	\$16.99	\$424.75	\$1.35	\$33.75	\$458.50
4" Sch 40 PVC 90	EA	11	\$13.77	\$151.47	\$1.35	\$14.85	\$166.32
1/2 HP Effluent pump	EA	1	\$292.00	\$292.00	\$537.50	\$537.50	\$829.50
Power Post with Alarm	EA	1	\$298.00	\$298.00	\$193.75	\$193.75	\$491.75
Site Restoration (Seed & Blanket, Dump	LS	1	\$1,500.00	\$1,500.00	\$0.00	\$0.00	\$1,500.00
	Subtotal =	-	-	\$17,100	-	\$13,100	\$30,400
Contingency (% of Subtotal)	20%	-	-	\$3,420	-	\$2,620	\$6,080
Contractor O&P (% of Subtotal)	30%	-	-	\$5,130	-	\$3,930	\$9,120
Total Alt	ternative 1 Cost =	-	-	\$25,650	-	\$19,650	\$45,600

Testing and Validation

Requirement	Inspection	Test	Analysis	Pass/Fail
42 inches above current grade	x			PASS
18 inches above water table	x			PASS
7:1 slopes on embankments	х			FAIL
2100 sf size field	x			PASS
1250-gallon dual tank	x			PASS
10 ft isolations	х			PASS
Perc Rate of 45 min/inch or less		x		PASS
Tank resists buoyancy			х	PASS
Handles 350 gallons per day			х	PASS
Alert Residents to failure	х			PASS
Timed dosing of field	x			PASS
Outside of floodplain	х			PASS



Testing and Validation

- Effectively separate all solids larger than 1/16"
- Design objectives
 - Affordable?
 - Easy to maintain?
 - Lifespan?
 - Fit similar shaped lots?

Impacts of our design

- Sets a precedent of new developments in the town
 - More affordable housing
- Helps reestablish the tax base
- Encourages businesses to return
- Future senior design projects

Conclusion

- Recommendations
 - We recommend Habitat move forward with the design
 - Submit the drawings with the permit application to the health department
 - Find as much volunteer work as possible to reduce labor costs
- Lessons we learned
 - The importance of codes and regulations
 - Severely limited this design
 - How to communicate effectively with suppliers
 - How to work as part of a larger team

Q&A

Engineering Accreditation Commission