Olivet Nazarene University Digital Commons @ Olivet

Student Scholarship - Engineering

Engineering

4-15-2022

In-Line Profile/Easy Open Inspection

Margaux Catafort-Silva Olivet Nazarene University, margaux.cs@hotmail.fr

Kyle Pearson Olivet Nazarene University, raspberryky@gmail.com

Josh Turner Olivet Nazarene University, josht408@gmail.com

Follow this and additional works at: https://digitalcommons.olivet.edu/engn_stsc

Part of the Engineering Commons

Recommended Citation

Catafort-Silva, Margaux; Pearson, Kyle; and Turner, Josh, "In-Line Profile/Easy Open Inspection" (2022). *Student Scholarship – Engineering*. 11. https://digitalcommons.olivet.edu/engn_stsc/11

This Presentation is brought to you for free and open access by the Engineering at Digital Commons @ Olivet. It has been accepted for inclusion in Student Scholarship – Engineering by an authorized administrator of Digital Commons @ Olivet. For more information, please contact digitalcommons@olivet.edu.

Defect Zipper Detection System JOSH TURNER, KYLE PEARSON, AND MARGAUX CATAFORT--SILVA

Acknowledgements

ITW Zip-Pak - For supporting us with input and encouragement along the way.

- Colin Sheehan
- ONU Walker School of STEM For academic instruction and preparing us for this point in our academic careers
 - Dr. José Manjarrés

Agenda

- Sponsor Background
- Problem Background
 - Need Statement
 - Design Objectives, Functional Requirements, and Design Constraints
- Design Alternatives
 - Design Analysis
 - Design Selection
- Final Design Description
 - Design Analysis
 - System Operation
 - Testing and Validation
 - Possible Improvements
- Conclusion

Sponsor Background

- Manufacturing plant owned by ITW (Illinois Tool Works)
- Based in Manteno, IL
- Manufacturer of re-closable plastic zipper
 - Manufacturer of multiple zipper types
 - Including the "Zip-Pak 3" zipper

Problem Background

- Extruded zipper is coming off the line with defects
- Defect zipper is getting shipped to customers
- A defect zipper will pop open when a finger is run along the opening
 - "Pop-error"
- A solution is needed to detect when the zipper is defect
- An effective solution could be implemented in other plants around the globe

Zipper profile cross section

Need Statement

"It is necessary to design a method to detect pop-errors and reduce the volume of faulty product that ITW Zip-Pak sells to its clientele. Zip-Pak must pay to return any faulty material, which drives up company spending. Implementation of a pop-error detection system could reduce company spending on return shipping costs."

Design Objectives, Functional Requirements, and Design Constraints

Design Objectives

- Solution must be easy for operators to understand
- Device must be simple in order to be easily repaired and modified
- System should be precise in nature

Functional Requirements

- Identify when a defect comes through the line
- Alert operator of defect
- Display collection of defect information such as severity and frequency of occurrence
- Autonomous operation

Design Constraints

- Ability to operate under 240V AC
- Ability to check zipper at least once every 1 inch of material
- Must cost under \$10,000 to build and implement

Design Alternatives

Linear Position Sensor

- Linear position sensor attached to an opening device
- Arduino board that reads any sudden movement

Linear position sensor system concept

Design Alternatives Continued

Camera-Based Solution

- Detection camera (capture rate at least 60Hz)
- A macro lens
- Camera placed on the line and connected to an I/O board such as an Arduino

Design Alternatives Continued

Vibration Analysis Solution

- Need to be put on a mount
- Mechanical deflection device to measure the amount of force required to separate the zipper
- Accelerometer or frequency sensor
- Arduino board

Design Analysis & Selection

- Camera-based solution
 - ► Expensive
 - Heavyweight code
 - Difficult to maintain/modify
 - Imprecise
 - Not robust

Design Selection Continued

- Linear position sensor
 - Inexpensive
 - Easy to understand
 - Easy to maintain, but parts wear out
 - Easy to modify
 - Must make custom parts
 - Imprecise, cannot tell pop-error severity
 - Difficult to tune

Design Selection Continued

- Vibration sensor solution
 - Inexpensive
 - Easy to understand
 - Easy to maintain
 - Easy to modify
 - Can use pre-existing components
 - Precise, can tell severity
 - (Later) Adjusts to line speed

Design matrix						
Design Decisions	Criteria					
	Cost	Simplicity	Longevity	Accuracy	Score	
Vibration- based solution	7	6	8	8	29	
Linear deflection- based solution	6	7	7	5	25	
Camera based solution	3	8	5	6	22	

Design Matrix

Final Design Description

2 sections: assembly line & components case

- Assembly line
 - Splitting device: torpedo
 - Sensor: ADXL-345 accelerometer

System Operation - Accelerometer

- Accelerometer samples as often as it is polled (checked).
- When it reads an acceleration significantly different from the norm, it "sees" a poperror.
- Note the blue line, showing the acceleration parallel to the line. A pop was detected midway through this test run for our equipment.

Design Description Continued

Components case

- 2 microcontrollers (Arduino UNO R3)
- 3 buttons

1 screen

▶ 2 10W power supplies

Components box – screen, microcontrollers, buttons, power supplies

System Operation – UI Board

Buttons operate on an interrupt-based system

- Hardware reacts immediately to each button press
- Screen communicates with the board via Serial
 - Runtime not important, focus on accurate/readable data
 - Control loop consists of setting values and displaying them to screen, values are global and update when the UI board receives communication from the detection board

User Interface

Testing & Validation Plan

- Initial testing make-shift line with wooden prototype
 - Needed to make pops artificially
- Final testing Real-time assembly line
 - Found pops on the line as they would normally appear

Testing & Validation Plan

- Sampling rate design must react to pops as they occur
 - At max line speed (300 ft/min) it must sample every 16 ms
- False discovery rate what the design measures must match what is present
 - Must minimize false readings

Procedure:

- 1. Measure number of pops manually
- 2. Measure number of pops using design (simultaneously)

21

3. Compare results

Testing & Validation Results

- > 20 trials, 1 speed
- False discovery rate
 - Mean: 0.113
 - Standard deviation: 0.144
- Response time results
 - T = 2 * (cycle time) + (detection CT – regular CT)
 - ▶ T <= 12ms (< 16 ms)

FDR Distribution

- Using MATLAB's Distribution Fitting app, we find the exponential PDF that fits our FDR data
- Estimation for the mean (population)
 - ▶ 95% C.I. (0.11051, 0.18378)

Final Design Analysis

Design objectives:	UnderstandableEasily repairedPrecise			
Functional Requirements:	 Notifies the user Keeps track of occurrences Shows pop severity *Not autonomous 			
Constraints:	 Under budget Sufficient sampling rate 20W power requirement 			

Possible Improvements

- Industrial accelerometer
- Use of Raspberry Pi
- Larger display
- Display current roll status
- Alarm system integration

Conclusion

Fulfills the design objectives

- Cost-efficient
- Easy to understand and repair
- Accurate enough

Two metrics:

- False discovery rate
- Response time

Highlights of our system:

- Low false discovery rate
- Pop errors detected at fast line speed

Q & A

Appendix

