Olivet Nazarene University

Digital Commons @ Olivet

Student Scholarship - Engineering

Engineering

4-15-2022

Automatic Tail-Cutter

Miles Hardesty Olivet Nazarene University, gmhardesty31@gmail.com

David Hutton Olivet Nazarene University, david4hutton@gmail.com

Kevin Vroman Olivet Nazarene University, kechev99@yahoo.com

Follow this and additional works at: https://digitalcommons.olivet.edu/engn_stsc

Part of the Engineering Commons

Recommended Citation

Hardesty, Miles; Hutton, David; and Vroman, Kevin, "Automatic Tail-Cutter" (2022). Student Scholarship -Engineering. 10.

https://digitalcommons.olivet.edu/engn_stsc/10

This Presentation is brought to you for free and open access by the Engineering at Digital Commons @ Olivet. It has been accepted for inclusion in Student Scholarship - Engineering by an authorized administrator of Digital Commons @ Olivet. For more information, please contact digitalcommons@olivet.edu.

ITW Deltar Universal Guiding System

By: David Hutton, Kevin Vroman, Miles Hardesty

April 21st, 2022

<u>Agenda</u>

- Acknowledgements
- Background
- Problem Statement
- Design Alternatives and Selection Criteria
- Proposed Design
- Prototyping and Final Design
- Final Design Validation
- Deliverables
- Conclusion

Acknowledgements

Dr. Schroeder

Setting up and offering guidance on design process

ITW Deltar & Jarrod LeSage

Providing clear guidance on requirements for design

Mentor Dr. Giraldo

Keeping project organized and on schedule, inspiring ideas

James Legrand & Sam Goin

Assistance in Tech Center during prototyping

Sponsor Background

- ITW Deltar Fasteners is a division of the larger Fortune 200 company,
 Illinois Tool Works
- Focus mainly on manufacturing of automotive fasteners
- The primary method of production is plastic injection molding

Background Terminology

- Runners: Hold parts together until molding is complete, then runners are placed into grinder to be recycled
- Ramp: guidance system for runners in the form of an inclined plane
- Grinder: Shreds runners to be used again on future parts
- Mold: Outline to format plastic into the desired shape
- Molding Machine/Press: Machine that fills molds to create parts
- Degree of Freedom (DOF): Variables affecting the range and direction in which the universal system can move

Robotic Arm

Runners

Molding Machine/ Press

Ramp

Grinder

Problem
Statement

Need Statement

- Around 30 different presses, unique grinder orientations
- Currently custom built and fitted
- This leads to non-desired hours and potential safety hazards
- Need a universal solution that can be mass produced and easily integrated

Design Objectives & Functional Requirements

- Lightweight: stable & easily moveable between machines
- User Friendly: both machining and setup
- **Direct Connection:** between the ramp and press
- Adjustable: degrees of freedom to ranges set

- Universal: any press & grinder orientation
- Arm Clearance: robot arm
- Runner Accuracy: doesn't miss grinder
- **Longevity:** resistant to continuous dropping of runners

Degree of Freedom	Range
2: Arm Length	9 to 24 in.
3: Direction	0° to 90°
4: Slope	0° to 30°
5: Width	12 to 18 in.
6: Ramp Length	20 to 36 in.

Design Constraints

- Cost Effective: less than \$200
- Use of Space: fit in alley between machines
- OSHA Codes: 1910.22

Design Alternatives

Design Alternatives – DOF 1 & 7

- Angle Iron vs. Magnet
- **DOF 1:** Ability to move ramp system in x axis
- **DOF 7:** movement in z axis
- Different mounting methods to press would allow/restrict this movement

Design Choice	Design Elements							
	Permanent Damage	Adjustability	Strength	Price	Familiarity	Total		
Angle Iron	0	0	1	1	0	2		
Magnet	1	1	0	0	1	<mark>3</mark>		

Design Alternatives – DOF 2

- One vs. Two Arms
- **DOF 2:** Ability for the ramp to move closer or further from the press
- While two arms would provide more support to the ramp, they would interfere with the ability of DOF 3

Design Alternatives – DOF 3

- Ball Joint vs. Expanding Part
- **DOF 3:** ability to rotate its direction 90 degree to be set perpendicular to press
- **Expanding Part:** pizza-like style part in the ramp to cover space as the ramp rotates
- Ball joint underneath ramp to allow for rotation

Design Choice		Design Elements							
	Machining Difficulty	Adjustability	Strength	User Difficulty	Price	Total			
Pizza Style	0	0	1	1	0	2			
Ball Joint	1	1	1	0	1	<mark>4</mark>			

Design Alternatives – DOF 5 & 6

- Ability for ramp to change in both width (5) and length (6)
- 5 & 6 work together, some solutions caused problems for other
- DOF 6, use notch system to place guide rails at different widths
- DOF 5, fold out and extendable drawer ideas

Design Choice		Design Elements							
	Weight	Veight Angle Width Length Fabrication Cost Total							
Design 1 (Fold-Out)	1	1	1	1	1	1	<mark>6</mark>		
Design 2 (Extendable)	0	0 1 1 1 0 0 4							

Design Alternatives – Plastic Type

- HDPE vs. Plexiglass
- Considerations:
 - Cost
 - Strength/Weight
 - Ease to machine
 - Deflection

Design Choice		Design Elements							
	Weight	Strength	Cost	Deflection	Fabrication	Total			
HDPE	1	0	1	0	1	3			
Plexiglass	0	1	0	1	0	2			

Selection Criteria

- Meets the 7 DOF
- Lightest weight possible
- Ease of fabrication & setup
- Cost
- Durability
- Longevity

Proposed Design

Proposed Design

Proposed Design - Arm

- Magnetic Mount
- Telescoping Arm
- **Ball Joint:** underneath center of the ramp, 360° of motion

Proposed Design - Ramp

- Dual direction folding to adjust ramp length
- Locking hinges for ramp extension
- Guide rails with series of notches, adjust for different widths, slide to lock into place

Prototyping & Final Design

"I never failed at making a light bulb. I just found out 99 ways not to make one."

- Thomas Edison

Prototyping - Arm

- Welding & magnet integrity issues
- Telescoping arm → square tubing

Prototyping - Ramp

- Locking hinges \rightarrow removable pin hinges: side walls load-bearing
- Epoxy → bolts for connecting hinges & mounting plate

Final Design

- Pin Hinges
- Bolt Connections
- Square Arm
- Magnet Structural
 Brace

Bill of Materials & Parts

ITW Deltar Universal Guidance System Bill of Materials

Product	Provider	Size	Qty.	Unit Cost	Cost
RAMP COMPONENTS					
HDPE Sheet	ePlastics	24x48 in	1	\$32.08	\$32.08
Hinges	Ace Hardware	N/A	6	\$2.12	\$12.72
Phillips Flat Head Bolts	Ace Hardware	10-32, 1/2"	24	\$0.15	\$3.60
Phillips Flat Head Bolts	Ace Hardware	10-32, 3/4"	4	\$0.16	\$0.64
10-32 Nuts	Ace Hardware	10-32.	28	\$0.14	\$3.92
TELESCOPING ARM COM	MPONENTS				
Neodymium Magnet, C	McMaster-Carr	2.65" OD, 2201b.	1	\$69.25	\$69.25
Mounting Plate	Component Hardware	3-1/2"x3-1/2"	1	\$12.56	\$12.56
Telescoping Tube 1	Coremark Metals	1-1/2"x1-1/2"x8", 12 ga	1	\$9.34	\$9.34
Telescoping Tube 2	Coremark Metals	1-3/4x1-3/4"x8", 12 ga	1	\$9.96	\$9.96
Telescoping Tube 3	Coremark Metals	2"x 2"x8", 12 ga	1	\$10.16	\$10.16
Safety Pin	Home Depot	1/4"x 2-3/4"	2	\$1.34	\$2.68
Arm to Ball Joint Bolt	Ace Hardware	3/8"-16x2"	1	\$0.75	\$0.75
Magnet to Arm Bolt	Ace Hardware	1/4"-20x1"	2	\$0.15	\$0.30
Ball Joint	K&F (Amazon)	N/A	1	\$49.99	\$49.99
				Arm Cost	\$164.99
				Ramp Cost	\$52.96
				Total Cost	\$217.95

Magnets used by ITW Deltar

Hinges

Safety Pin

Telescoping Tube

Ball Joint

Bulk Order Pricing

Product	Size	Qty.	Cost	
HDPE	24x48	10	\$	271.50
Hinges	N/A	60	\$	127.20
Phillips Flat Head	10-32, 1/2"	240	\$	36.00
Phillips Flat Head	10-32, 3/4"	40	\$	6.40
Nuts	10-32,	280	\$	39.20
Magnet	2.65" OD, 220 lb	10	\$	692.50
Mounting Plate	3-1/2" x 3-1/2"	10	\$	125.60
Telescoping Tube 1	1-1/2"x1-1/2"x7', 12 ga	1	\$	50.61
Telescoping Tube 2	1-3/4x1-3/4"x7', 12 ga	1	\$	57.11
Telescoping Tube 3	2"x2"x7', 12 ga	1	\$	59.22
Safety Pin	1/4"x2-3/4"	20	\$	26.80
Arm to Ball Joint Bolt	3/8"-16x2"	10	\$	7.50
Magnet to Arm Bolt	1/4"-20x1"	20	\$	3.00
Ball Joint	N/A	10	\$	499.90
*10 unit bulk order		Total Cost	\$ 2,002.54	
		Per Unit Cost	\$	200.25

Validation & Testing

Design Validation

Analysis

- Ball Joint Moment
- Magnet Moment
- Telescoping Arm Moment

Testing

- Ball Joint Rotational Strength Test
- On-site Prototype Test

Cost Constraints

- Initial prototype estimated cost: \$182.14
- Current cost estimation: \$217.95

DOF 2- Movement to/ from Press

DOF 3- Rotation

DOF 4-Changing Slope

DOF 5-Ramp Width

DOF 6- Ramp Length

Validation Summary

Requirement	Inspection	Test	Analysis	Pass/Fail
Ball Joint Rotational Strength		X		PASS
Magnet Pull Strength			X	PASS
System Moment Analysis			X	PASS
DOF 2: Motion To/From Press (9-24 in)	X			PASS
DOF 3:Ramp Rotation (0-90 degrees)	x			PASS
DOF 4: Slope of Ramp (0 to 30 degrees)	X			PASS
DOF 5: Ramp Width (12-18 in)	Х			PASS
DOF 6: Ramp Length (20-36 in)	X			PASS
On-Site Functional Prototype Test		X		PASS

Deliverables

1. Completed Prototype

2. Final Design Report

Includes testing and analysis as well as further recommendations

3. Manufacturing Document

Includes Bill of Materials and Manufacturing Instructions

Conclusion

Benefits to ITW

- Increased productivity with a standardized guidance system
- Higher reusability for universal ramps means lower costs long-term

Recommendations

- Cost cutting considerations (slightly weaker magnet, bulk ordering parts etc.)
- Additional slots would provide greater freedom when setting width
- Utilization of just arm design if DOF 5 & 6 are of low priority

QUESTIONS?

