Olivet Nazarene University Digital Commons @ Olivet

Student Scholarship - Engineering

Engineering

4-15-2022

VEX-U Robotics

Rachel Meyer Olivet Nazarene University, rrmeyer22@gmail.com

Coby Mollema Olivet Nazarene University, cobym8@gmail.com

Kalvin Quackenbush Olivet Nazarene University, kalvinquack@gmail.com

Follow this and additional works at: https://digitalcommons.olivet.edu/engn_stsc

Part of the Engineering Commons

Recommended Citation

Meyer, Rachel; Mollema, Coby; and Quackenbush, Kalvin, "VEX-U Robotics" (2022). *Student Scholarship – Engineering*. 5.

https://digitalcommons.olivet.edu/engn_stsc/5

This Presentation is brought to you for free and open access by the Engineering at Digital Commons @ Olivet. It has been accepted for inclusion in Student Scholarship – Engineering by an authorized administrator of Digital Commons @ Olivet. For more information, please contact digitalcommons@olivet.edu.

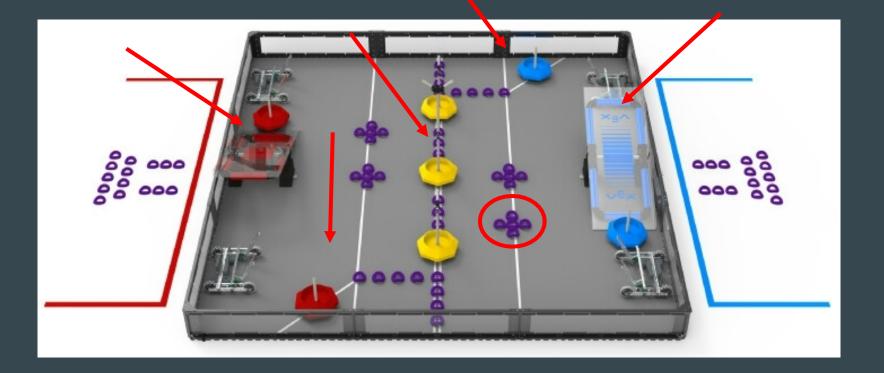
Senior Project Final Presentation 2022-04 VEXU Robotics

$\bullet \bullet \bullet$

Members: Kalvin Quackenbush, Rachel Meyer, Jacobus Mollema Faculty Mentor: Dr. Manjarrés

Special Thanks To

Olivet Robotics Club Kollin Gallegos Ricky Nyguen Dr. Manjarrés


Sponsor Background

ONU Robotics:

- Located at Olivet Nazarene University
- Founded in 2018 by the Olivet Nazarene Engineering Dept.
- Focuses on VEXU competitions
 - Turning Point (2018-2019)
 - Tower Takeover (2019-2020)
 - Change Up (2020-2021)

Tipping Point (2021-2022)

Need Statement

"Build two functioning robots capable of performing in the 2022 VEX Robotics Competition: Tipping Point"

Design Objectives:

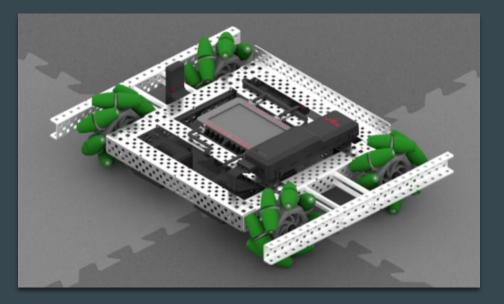
Highly reliable
Easily repairable
Durable design
Cost efficient

Functional Requirements

Large Robot:

- Contain a drivetrain that can a max speed of 300 RPM
- Must lift two 3.7 lbs goals off the ground
- Must lift one 3.7 lbs goal above 19"
- Must contain and autonomous routine to run tasks independently from the driver

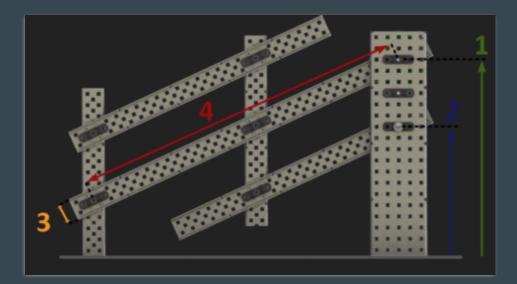
Small Robot:


- Contain a drivetrain that can reach a max speed of 400 RPM
- Must lift one 3.7 lbs goal off the ground
- Needs to intake the oblong rings from the playing field
- Needs to score the rings either on or in the mobile alliance goal

Design Constraints

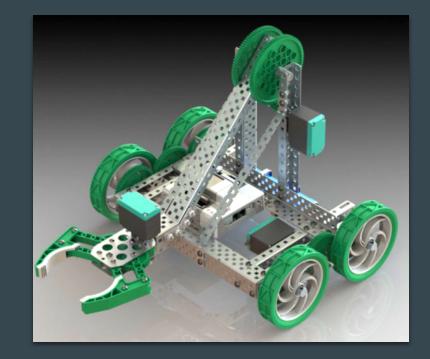
- Both robots may only be built by:
 - Official VEX parts
 - Materials fabricated by the team
 - Commercially available fasteners and springs
 - A legal electronics system
- One robot must be smaller than 24" x 24" x 24" at the beginning of the match
- One robot must be smaller than 15" x 15" x 15" at the beginning of the match
- There shall be no form of communication between the two robots
- Both robots must not exceed a budget over \$1000 USD
- Both robots must be safe to work with

Design Alternatives: Drivetrain


- X-Drive
- H-Drive
- 4-Motor Standard Drive
- Mecanum Drive
- 2-Motor Drive

Tank Drive. VEX Drivetrains - BLRS Wiki. (n.d.). Retrieved December 15, 2021, from https://wiki.purduesigbots.com/hardware/vexdrivetrains

Design Alternatives: Lifts


- Scissor Lift
- 4-Bar Lift
- 6-Bar Lift
- Lever Lift

JesseCRN. (2014, February 14). *Formulas used in VEX robotics*. VEX Forum. Retrieved December 15, 2021, from https://www.vexforum.com/t/formulas-used-in-vex-robotics/24322/9

Design Alternatives: Intake

- Elevator
- Claw
- Sweeper
- Escalator

Free CAD designs, Files & 3D models: The grabcad community library. Free CAD Designs, Files & 3D Models | The GrabCAD Community Library. (n.d.). Retrieved December 15, 2021, from https://grabcad.com/library/vex-clawbot-1

Large Robot Decision Matrix: Drivetrain

*Numbers based on measurements gathered

from video provided below

https://www.youtube.com/w atch?v=Py14YTHCth0&t=29 8s *

Evaluation	Multiplier	X-Drive	H-Drive	4 Motor	Mechanum	2 Motor
	wuitiplier	X-Drive	H-Drive			
Criteria				Standard	Wheels	Drive
Speed	3	1(better	0 (average)	1(better	-1 (worse	-1 (worse
	(extremely	than		than	than	than
	important)	average)		average)	average)	average)
Strafe	1 (normal)	1(better	1(better	-1 (worse	1(better	-1 (worse
		than	than	than	than	than
		average)	average)	average)	average)	average)
Force	3	0 (average)	1(better	1(better	1(better	-1 (worse
	(extremely		than	than	than	than
	important)		average)	average)	average)	average)
Turnability	1 (normal)	1(better	-1 (worse	0 (average)	1(better	-1 (worse
		than	than		than	than
		average)	average)		average)	average)
Weight	3	1(better	1(better	1(better	-1 (worse	1(better
	(extremely	than	than	than	than	than
	important)	average)	average)	average)	average)	average)
Buildability	1 (normal)	-1 (worse	1(better	1(better	1(better	1(better
		than	than	than	than	than
		average)	average)	average)	average)	average)
Total		5	7	9	4	4

Small Robot Decision Matrix: Drivetrain

Evaluation Criteria	Multiplier	X-Drive	H-Drive	4 Motor Standard	Mechanum Wheels	2 Motor Drive
Speed	3 (extremely important)	1(better than average)	0 (average)	1(better than average)	-1 (worse than average)	-1 (worse than average)
Strafe	3 (extremely important)	1(better than average)	1(better than average)	-1 (worse than average)	1(better than average)	-1 (worse than average)
Force	3 (extremely important)	0 (average)	1(better than average)	1(better than average)	1(better than average)	-1 (worse than average)
Turnability	1 (normal)	1(better than average)	-1 (worse than average)	0 (average)	1(better than average)	-1 (worse than average)
Weight	1 (normal)	1(better than average)	1(better than average)	1(better than average)	-1 (worse than average)	1(better than average)
Buildability	3 (extremely important)	-1 (worse than average)	1(better than average)	1(better than average)	1(better than average)	1(better than average)
Total		5	9	7	6	4

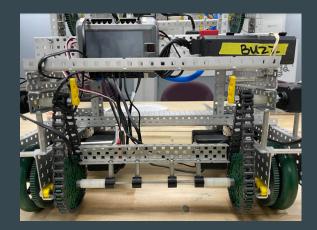
Large Robot Decision Matrix: Front Lift

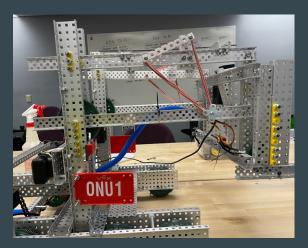
Evaluation Criteria	Multiplier	Scissor Lift	4-Bar Lift	6-Bar Lift	Lever Lift
Center of Gravity	3 (extremely important)	1(better than average)	0 (average)	1(better than average)	1(better than average)
Outreach	3 (extremely important)	-1 (worse than average)	1(better than average)	-1 (worse than average)	-1 (worse than average)
Force	3 (extremely important)	1(better than average)	1(better than average)	1(better than average)	1(better than average)
Size	2 (very important)	0 (average)	0 (average)	1(better than average)	1(better than average)
Lift Height	3 (extremely important)	0 (average)	0 (average)	-1 (worse than average)	-1 (worse than average)
Total		5	6	1	2

Small Robot and Large Robot Decision Matrix: Back Lift

Evaluation Criteria	Multiplier	Scissor Lift	4-Bar Lift	6-Bar Lift	Lever Lift
Center of Gravity	3 (extremely important)	1(better than average)	0 (average)	-1 (worse than average)	1(better than average)
Outreach	1 (normal)	-1 (worse than average)	1(better than average)	1(better than average)	-1 (worse than average)
Force	3 (extremely important)	1(better than average)	1(better than average)	0 (average)	1(better than average)
Size	3 (extremely important)	0 (average)	0 (average)	-1 (worse than average)	1(better than average)
Lift Height	1 (normal)	0 (average)	0 (average)	1(better than average)	-1 (worse than average)
Total		5	4	-4	7

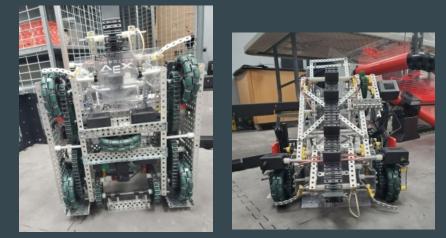
Small Robot Decision Matrix: Ring Intake

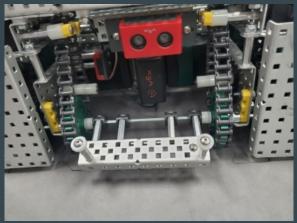

Evaluation Criteria	Multiplier	Elevator	Claw	Sweeper	Escalator
Speed of Intake	3 (extremely important)	1 (better than average)	-1 (worse than average)	0 (average)	1 (better than average)
Reliability	3 (extremely important)	0 (average)	1 (better than average)	1 (better than average)	0 (average)
Time of Scoring	2 (very important)	1(better than average)	-1 (worse than average)	0 (average)	1 (better than average)
Motors Needed	1 (normal)	-1 (worse than average)	1 (better than average)	1 (better than average)	1 (better than average)
Total		4	-1	4	6


Broader Impacts of Our Design

- Influencing younger generations and future teams participating in robotics competitions
- Safety of those who physically handle the robots.
 - Watch for sharp materials, electrostatic shock, rotating mechanisms, and pinching points
- Economic impact on the school as our sponsor.
 - Make sure we as a team use these funds efficiently and that we buy materials and parts that we need, to not waste money and to be trusted in the future with a given amount of money

Large Robot Final Design


- Common parts
 - Four bar lift in the front
 - Lever lift in the back
 - \circ 4 motor standard drivetrain
- Specialized parts
 - Tension rubber band supports
 - Tooth grabber for goals
 - Geared up drivetrain for more acceleration
 - Unfoldable parts to reach design constraints



Small Robot Final Design

- H-drive drivetrain
- One-bar lift
- Folded elevator intake
- Ultrasonic rear sensor

Autonomous and Driver Code

// VEXcode device constructors

```
include
```

```
Gerobot-config.h
```

```
🕑 vex.h
```

```
G controls.h
```

```
🕒 auto.h
```

```
C+ VEXmath.h
```

```
🕒 fileManager.h
```

```
C+ pid.h
```

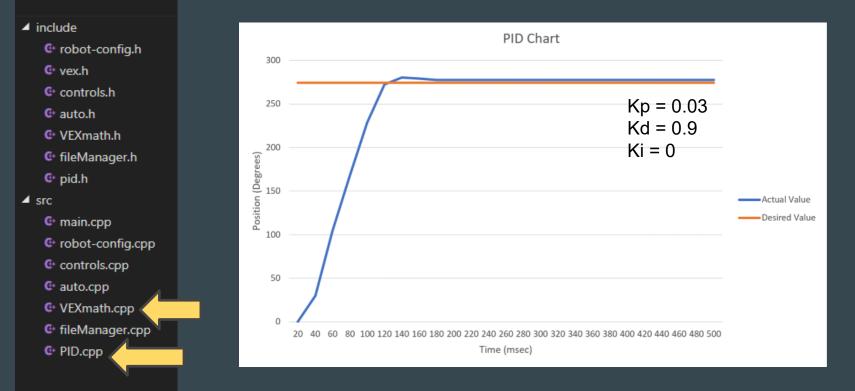
```
🔺 src
```

```
C main.cpp
```

```
🔮 robot-config.cpp
```

```
C+ controls.cpp
```

```
G auto.cpp
```


```
C VEXmath.cpp
```

```
Interpretation of the second secon
```

PID.cpp

```
controller Controller1 = controller(primary);
motor leftMotorA = motor(PORT15, ratio6_1, true);
motor leftMotorB = motor(PORT16, ratio6_1, false);
motor_group LeftDriveSmart = motor_group(leftMotorA, leftMotorB);
```

Autonomous and Driver Code

Competition!

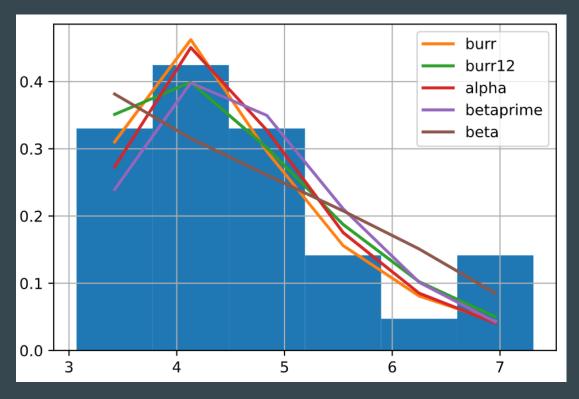
Validation (Large Robot)

- Satisfy all constraints?
- Contain a drivetrain that reaches 300 RPM?
- Lift two goals? 💙
- Lift one goal above 19"? 😆
- Contain an autonomous and driver-operated program?

Validation (Small Robot)

- Satisfy all constraints?
- Contain a drivetrain that reaches 400 RPM?
- Lift one goal? 🧹
- Intake rings?
- Score rings on or in goal?
- Contain an autonomous and driver-operated program?

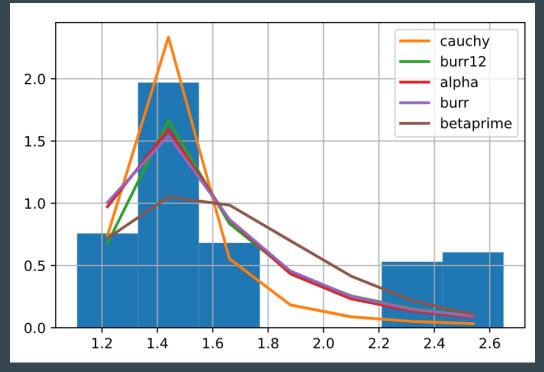
Experimental Tests


Large Robot

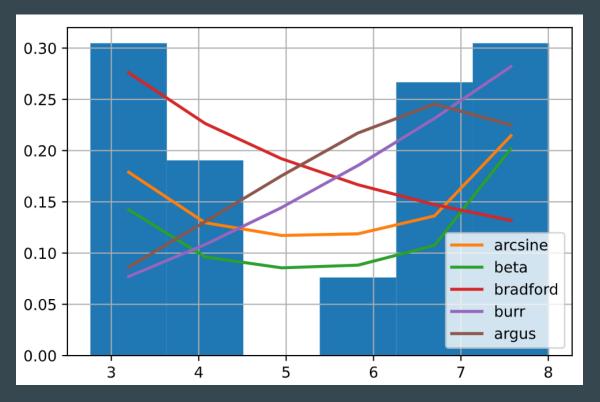
- Goal Grab Test
 - \circ Front goal
 - $\circ \quad \text{Middle Goal} \\$
- Driving Test
 - \circ Midpoint
 - Farside
 - Front goal
 - Middle goal
- Autonomous Routine 1 Test

Small Robot

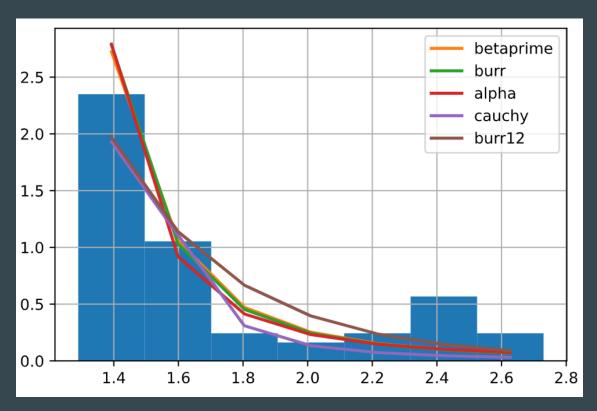
- Goal Grab Test
 - Alliance goal on tape
 - Alliance goal on scale
- Driving Test
 - Midpoint
 - Farside
 - \circ Front goal
 - Middle goal
- Autonomous Routine 1 Test


Results (Large Robot Goal Test)

H0: $\bar{x} \ll 4$ seconds H1: $\bar{x} \gg 4$ seconds Fit: Burr Confidence: 95% Confidence Interval: (3.16, 8.24)


Conclusion: Hypothesis is not rejected

Results (Large Robot Drive Test)


H0: $\bar{x} \ll 2$ seconds H1: \bar{x} > 2 seconds Fit: Cauchy Confidence: 95% Confidence Interval: (-0.2688, 3.105) Conclusion: Hypothesis is not rejected

Results (Small Robot Goal Test)

H0: $\bar{x} \leq 3$ seconds H1: $\bar{x} > 3$ seconds Fit: Arcsine Confidence: 95% **Confidence** Interval: (2.50, 8.00)Conclusion: Hypothesis is not rejected

Results (Small Robot Drive Test)

H0: $\bar{x} \leq 4$ seconds H1: $\bar{x} > 4$ seconds Fit: Beta prime Confidence: 95% **Confidence** Interval: (1.30, 4.10)Conclusion: Hypothesis is not rejected

Results (Small/Large Robot Autonomous Test) Note: Single Sample

Large Robot:

Small Robot:

AVG: 13.12 STD. DEV : 0.87 AVG: 10.41 STD. DEV : 0.16

Feasibility, Challenges and Risks

- Potential Injury-High
 - Proper training on equipment, and aware of potential hazards
- Failure of Systems-High
 - Proper test runs and redesigns
- Failure to build both robots-Medium
 - Make sure both robots are fully built and functional before competitions begin

Conclusion

Robotics competition placement

• 8th place

Ideas for changes in the future

ROBOTICS COMPETION TIPPING POINT

- Different designs for lift Mechanisms
- More sampling data for testing experiments

