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I. INTRODUCTION 

Asteroid detection has become increasingly important 

to focus on and improve, as near-Earth asteroids (NEAs) 

have proven dangerous even at small sizes and velocities. 

The images collected from telescopes observing NEAs 

and potentially hazardous asteroids (PHAs) require a 

significant amount of human interaction and processing 

time [1], [2]. Most larger asteroids have been detected, 

but some are still yet to be discovered, specifically 

dimmer and slower-moving asteroids. Survey telescopes 

take pictures of the same part of the night sky multiple 

times per night to observe the transients moving over time 

[1], [3], [4], [5]. 

A. NEOWISE Survey 

The Near-Earth Object Widefield Infrared Survey 

Explorer (NEOWISE) was created to find NEAs, but 

much of the sky is pictured in two infrared wavelength 

bands (3.4 and 4.6 μm) and includes data on multiple 

types of sources.  The two different bands will capture 

different features based on the wavelengths given off 

from each source. So, allowing for pictures to be taken in 

two different wavelengths allows for more features to be 

observed on the sources.  Each image taken through 

NEOWISE has a specific scan id as well as a frame 

number, allowing them to have unique names. The map 

in Figure 1 shows the sky areas where the NEOWISE 

survey has collected images during the past 7 years of 

operation. Some of the data collected include the location 

in astronomical units of right ascension and declination, 

absolute magnitude, visual magnitude, and the difference 

in the infrared bands. Absolute magnitude is the 

brightness of a celestial object as it would be seen from a 

set distance, whereas visual magnitude is the brightness 

of the object as viewed from Earth, where each object is 

placed at a different distance.  

 

 
Figure 1. NEOWISE Sky Coverage. This depicts the sky with 

astronomical coordinates of right ascension and declination. Right ascension 
is on the x-axis in degrees from 0 to 360°, declination is on the y-axis in 

degrees from -90 to 90°. The projection map shows the Single-exposure 

depth-of-coverage accumulated by the NEOWISE survey. 

B. Image Processing 

The standard asteroid detection technique is to 

recognize streaks. This method performs poorly on 

detecting slower-moving asteroids that may only appear 

as a couple of pixels [3]. Recent studies have been 

investigating the implementation of Machine Learning to 

deal with deciphering the images collected from these 

telescopes [6], [7] and finding these more irregular 

asteroids. The raw data is often processed in diverse ways 

to fit better with the research's objective and to be 

efficiently used with Machine Learning. For example, 

Duev et al. [2] decided to convert the images into 

grayscale because the color was not necessary to detect 

bright pixels; it simplified the data and the processing. 

Also, in multiple works such as [8], [9], [10], and [3], the 

known sources are subtracted from images such as stars, 

planets, or satellites. The differenced images are then 

used for the research, focusing solely on the transients or 

unknowns. Another example of preparing the data is seen 

in [3], where Rabeendran and Denneau use random 

horizontal and vertical image flipping rotations to avoid 

bias in the results. To efficiently use the machine learning 

models, the images need to go through a pre-processing 



step, including different changes such as background 

removal, thresholding, or known object removal.  

C. Research Question 

The problem addressed in this research is what pre-

processing steps need to be taken to better detect dimmer 

and slower-moving asteroids in the NEOWISE image 

survey? To explore this issue, we implement different 

techniques with the collected images as well as the source 

data.  

II. METHODS 

A. Data Collection 

We collect data for this research from the IRSA 

database, specifically from the NEOWISE survey. To 

retrieve the images and other source data, we use MySQL 

programming to perform the database inquiries. The 

images are single-frame images from a range of –50 to 50 

degrees in declination and the full range of right 

ascension. We collect data on 550,264 sources which 

includes asteroids, comets, planets, and planetary 

satellites. Each source data include the right ascension, 

declination, absolute magnitude, visual magnitude, the 

magnitude in bands 1 and 2, the difference between the 

band values, the identification for the image, and the x 

and y coordinate of the source on that image, which is 

calculated from the right ascension and declination. To 

convert the astronomical coordinates into pixels we first 

convert the right ascension and declination values that are 

originally in degrees, into arcseconds (1 degree is equal 

to 3600 arcseconds). We then convert to pixels because 

the image pixels collected from NEOWISE are reported 

to have 2.75 arcseconds per pixel. To save the images and 

data as workable files we save the images as NumPy 

arrays and the data as separate CSV files. Both 

files are named as the unique source id and frame number 

of that image. We apply a logarithmic filter to the image 

to improve image visualization, to scale the values down 

to readable values, leaving the background and the 

sources on the image.  
B. Data Analysis 

To better understand the data collected we analyze the 

sources separately by their specified labels. Specifically, 

for this dataset the labels are asteroid (A), comet (C), 

planet (P), and planetary satellite (S). In order to analyze 

the data, we calculate the minimum, median, and 

maximum for each different measurement collected for 

the source, which can be seen in Table 1.  

 

a) Asteroid Statistics  

  RA  Dec.  Absolute 

Mag.  
Visual 

Mag.  
Band 

1/Band 2 

Difference  
Minimum  0.002  -49.99  -1.200  7.456  -7.593  
Median  183.9  -2.080  15.13  20.13  0.911  
Maximum  360.0  49.99  32.10  37.20  10.63  

b) Comet Statistics  

  RA  Dec.  Absolute 

Mag.  
Visual 

Mag.  
Band 

1/Band 2 

Difference  
Minimum  0.471  -49.83  2.000  9.579  -3.143  
Median  192.6  -2.048  11.83  21.10  0.857  
Maximum  359.6  49.00  21.00  34.07  7.208  

  
c) Planet Statistics  

  RA  Dec.  Absolute 

Mag.  
Visual 

Mag.  
Band 

1/Band 2 

Difference  

Minimum  0.626  -12.41  -9.400  -1.613  0.240  
Median  168.9  -1.590  -6.045  5.720  1.009  
Maximum  330.8  19.70  -1.52  8.151  2.010  
  

d) Planetary Satellite Statistics  

  RA  Dec.  Absolute 

Mag.  
Visual 

Mag.  
Band 

1/Band 2 

Difference  
Minimum  0.101  -12.44  -2.000  5.637  -0.712  
Median  91.19  -0.473  6.498  15.83  0.788  
Maximum  359.6  19.63  16.90  26.20  5.409  

 

Table 1. Source Data Statistics. This table shows the different data  

associated with each source type. The minimum, median, and maximum are 

reported for each feature. 

 
C. Preprocessing Pipeline 

Our preprocessing pipeline starts with the input of a 

1016x1016 grayscale image collected from the database, 

and the final goal is the detect the point sources directly 

on the image and compare them with the known sources 

collected from the IRSA database, whose data is stored in 

the CSV file.  

The first step of our pipeline is data conditioning. The 

data contained negative numbers representing broken 

pixels, so we limited the arrays to contain only positive 

numbers to allow for image visualization. The second part 

of the conditioning is limiting the data to values of 0 to 

255, the standard values used in image processing. We 

were able to accomplish this by converting all of the 

images to 8-bit integers (whole numbers ranging from 0 

to 255).   

 

 



 

 

 

Next, we feed the images into a source detection 

algorithm called DAOStarfinder [14]. This algorithm was 

originally developed to detect stars but it can also be used 

to detect other point-like sources. The sources are 

detected by calculating the median value of pixels which 

is assigned as the value of the background. Points that lie 

outside of the full width half maximum (FWHM) of this 

value are flagged as possible sources. The last step is to 

add a threshold. We apply of threshold to pixels with 

values over 5 times the standard deviation. The output of 

this algorithm is a table with the x and y coordinates of 

each detected source on the image.  

Lastly, to compare the actual locations of the sources 

found from the data collected initially and the sources 

detected from the previous algorithm, we use the 

coordinates stored in each individual CSV file and 

compare that with the closes point possible from the 

source table generated by calculating the smallest 

Euclidian distance (the length of the line segment 

between the two points). The final output is an image with 

all the sources circled in blue, the sources of interest 

(asteroids, comets, planets, planetary satellites) circled in 

red as well as the value of the Euclidian distance of 

original point to the detected point.  

The steps of the preprocessing pipeline are pictured in 

Figure 2. 

 

 

 

 

 

 

 

III. RESULTS 

 

IV. DISCUSSION 

We were able to show that the preprocessing pipeline 

utilized in this research as useful at finding sources 

because the mean average of the distance 

between the real source coordinate and the detected 

source coordinate is around 73.6 arcseconds (around .02 

degrees in the sky) or 26.76 pixels. Since we know that 

the pipeline is able to detect the asteroids with 

some accuracy, we will be able to use it in the future to 

train Machine Learning algorithms to detect other 

asteroids. There is still some work that needs to be done 

to make sure that more of the sources of interest are 

detected. One possibility we could explore is to make sure 

that there are no anomalies in the data set and that there 

are no mistakes when collecting the coordinates of the 

sources from the database since there were some 

calculations that had to be made on the data. Another note 

is that the data has a large bias towards asteroids, 

as there is a considerably large amount of data collected 

for that source as compared to the others. We can also use 

the data statistics to determine certain parameters that 



should be used in training for Machine Learning and what 

the threshold might be for these parameters.  

V. FUTURE WORK 

In the future, we plan to continue this research by 

implementing the preprocessing steps into a complete 

pipeline that involves Machine Learning to detect new 

asteroids in these images. The data collected in this work 

will be able to help train the Machine Learning algorithm, 

as well as be ready for processing, resulting in better 

accuracy when detecting asteroids, specifically dimmer 

and slower-moving asteroids. There will be a focus on the 

images, as well as the metadata from the database on each 

individual object such as the visible magnitude, absolute 

magnitude, and the magnitude of the object in the first 

wavelength band and the second wavelength band. Our 

work builds on existing efforts in implementing deep 

learning to detect transients and possible asteroid 

candidates in the NEOWISE asteroid surveys and 

improving the ability to recognize irregular moving 

asteroids.  absolute magnitude, and the magnitude of the 

object in the first wavelength band and the second 

wavelength band. Our work builds on existing efforts in 

implementing deep learning to detect transients and 

possible asteroid candidates in the NEOWISE asteroid 

surveys and improving the ability to recognize irregular 

moving asteroids.  
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