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Abstract

The assembly of large polymeric systems in water involves a range of length scales,
from the angstrom scale of a water molecule to the tens of nanometer scale of the
solute, a range of interactions from strong waterwater interactions to the weaker
interactions between different groups, and a range of time scales. These effects com-
bine to cause a challenge for molecular simulations. Polypeptoids are a type of pep-
tidomimetic polymers that are highly tunable, and hence an ideal model system to
analysis self-assembly as a function of chemical groups in aqueous soft matter systems.
The focus of our work to develop a computer model that can simulate the large scale
of macromolecules, like polypeptoids, faster and efficiently. For this purpose, we have
developed the model for the different side chain groups, hydrophobic, hydrophilic,
and charges, and the backbone of polypeptoid separately. These are combined to
allow the simulation a varietys of polypeptoids.

We also saw how successfully the model we developed captures the water be-
havior near the hydrophobic group in terms of thermodynamic properties and order
parameters.

Since the coronavirus pandemic hit, several works have been done targeting SARS-
CoV-2, which is responsible for coronavirus, to discover potential inhibitors. The heli-
case protein and main protease are two of the most promising target of SARS-CoV-2.
Through a combination of molecular docking, molecular dynamics simulations, we
proposed a list of potential inhibitors of both the helicase and main protease.

Keywords: Coarse-Grained; Stillinger-Weber potential; Hydrophobic effect; SARS-
CoV-2
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1
Chapter 1

COARSE-GRAINED MODELS FOR CONSTANT pH SIMULATIONS OF CAR-
BOXYLIC ACIDS

1.1 Introduction
Polyacidic pH-responsive polymers display large reversible structural changes pro-
voked by pH and have a wide range of applications [2]. To determine this structure
by successfully reproducing right balance of the different interactions and how they
shift as pH is changed, the model need to be computationally efficient for large scale
simulations of multiple macromolecules. The coarse grained model based on the
Stillinger-Weber(SW) potential [3] gains interest due to an elimination of interaction
sites on hydrogen atoms and a significant reduction in the range of interaction. De-
spite the lack of hydrogen sites and Coulombic interaction the SW has been shown
successfully model water [4], hydrophobic interaction [5], aqueous salt solution [6] and
water soluble polymer [7]. The model uses a combination of two- and three- body in-
teractions to produce nearest-neighbor coordination numbers, geometries, and energy
scales.

In constant pH simulation [8], the protonation states are permitted to change in
response to pH and structural changes. The simplest and most commonly used CpH
method uses a continuum model for water and Monte Carlo moves between different
protonation state are used [9]. The SW model are well suited for the CpH simulation
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Chapter 1

because the lack of hydrogen sites makes the water response quicker to the change of
protonation state since it involves just translational motion, no orientational motion.

In this work we have developed SW models for protonated and deprotonated
carboxylic acid, which we apply to poly(methacrylic acid) (PMAA) as an example.
In the PMAA studies, we demonstrate how the protonation states, tacticities, and
counterions influence the structure of the polymer. We also developed a CpH model
in which transitions between protonated and deprotonated states are made through
discrete jumps, with one intermediate state using the Metropolis algorithm. In CpH
studies, we further explore the effects of local polymer structure and counterions in
the pH response.

1.2 Method

1.2.1 Potential Model
The StillingerWeber potential [3] uses two- and three-body potentials, as given by

E =
∑

i

∑
j>i

ϕ2(rij) +
∑

i

∑
j ̸=i

∑
k>j

ϕ2(rijrjkθijk) (1.1)

where rij is the distance between atoms i and j and θ is the angle between atom i
and its neighbors j and k.

The two-body term has this form:

ϕ2(rij) = A∈ij[B(σij/rij
)4 − 1] exp(σij/(rij − aijσij)) (1.2)

and the three-body term has this form:

ϕ3(rij, rjk, θijk) = λijk∈ijk[cos θijk − cos θ0]2 exp( γσij

rij − aijσij

) exp(γσik/(rik − aikσik))

(1.3)
The three-body term is necessary for particles with highly directional interactions,
such as hydrogen bonds. There are no Coulombic interactions for the model, but for
atoms with formal charges (sodium ions and the oxygens on the carboxylate group)
a Yukawa potential is used between pairs with the same charge, to treat charge
repulsion. The Yukawa potential has the form [10]

ϕY (rij) = AY
e−krij

rij

rij < rc (1.4)

The parameters A, B, aij, γ, k, and rc are taken from previous studies(A=7.049556277,
B=0.6022245583, aij =1.80, γ= 1.20, k = 1.80 −1, andrc = 7.0 [11] The well depth
(ϵ) and length scale (σ) parameters for ϕ2, the angle (θ0) and energy scale (ϵijk and

2



1.2 Method

λijk) parameters for ϕ3, and the energy scale (AY ) parameter for ϕY are taken to be
adjustable. The bond stretch (E = kb(r − r0)2) and bond angle (E = kθ(θ − θ0)2)
terms were taken from OPLS-UA values [12]1.2.2 Parameter Optimization
Parameters for water [4], the carbon atom types CHn and CT, [5] and the sodium
ion [6] are taken from previous studies. Nonbonded parameters for CT were taken
to be equivalent to CH2. Here, the atom types in the protonated and deprotonated
carboxylic groups of the PMAA are CO, COA, OH, O, and OA, where OH refers to
the protonated oxygen, O to the oxygen with double bond, OA to the carboxylate
oxygen, CO to the carbon of the protonated acid, and COA to the carbon atom of the
deprotonated acid, as shown in Figure 1. To reproduce the radial distribution function
between water and solute by SW potential TIP4P/2005 [12] and OPLS-AA12 are used
for all atom water and solute respectively. The free energy of hydration for acetic acid
was also used to parametrize the model, against the experimental value [14, 15]. The
interaction between OH-O, OH-OH, and OH-OA are taken to be slightly stronger than
OH-water interaction because of stronger hydrogen bonds between carboxylic group
stabilize the self-assembly of PMAA at low pH suggested by experimental [16, 17]and
other computational studies [18, 19]. Interactions between OA atoms are taken to be
purely repulsive, using the Yukawa potential.

Figure 1.1: Two units of the poly(methacrylic acid) structure, showing the protonated
and deprotonated forms and the coarse-grained groups (circles)

1.2.3 Constant pH simulations
For each carboxylic acid group, there are two states: a protonated state with po-
tential energy E0, and a deprotonated state with energy E1. With the λ- dynamics
method, [20] for continuous values of λ, the potential energy function is

E(λ) = (1 − λ)E0 + λE1 − λ∆Gm + λkBT ln (10) (pH − pKa,m) (1.5)

3



Chapter 1

where ∆Gm is the precalculated free energy difference between the protonated and
deprotonated states for the isolated monomer, kB is Boltzmann’s constant, and pKa,
m is the experimental pKa of the isolated monomer. λ represent the intermediate
which is allowed to have discrete values instead of being a continuous variable. In
this work, it is found that the method works with only one intermediate state. In-
termediate states are defined with interaction parameters interpolated between the
protonated and deprotonated parameters:

αλ = (1 − λ)α0 + λα1 (1.6)

where α represents a potential parameter, which includes ϵ, σ, and the three-body
parameters.

The simulation jumps to one state to another state if there is lower energy defer-
ence given by

E = {E0Eλ − ∆Gλ + λkBT ln(10)(pH − pKam)E1 − ∆G1 + kBT ln(10)(pH − pKam)}
(1.7)

where ∆Gλ is the free energy of state λ relative to state 0 and ∆G1 is the free
energy of state 1 relative to state 0. (E0, Eλ, and E1 refer to potential energy
functions, with different force field parameters.) The free energies, ∆Gλ and ∆G1,
for the monomer in water are found from standard free energy calculations. These
were done using free energy perturbation theory with 11 intermediate states, each
simulated for 1 ns, using the CG model. The values are ∆Gλ = 35.15 kcal/mol and
∆G1 = 41.95 kcal/mol. The monomer is taken to be trimethylacetic acid, for the
PMAA calculations, using the experimental value of 5.03 for pKa,m.

1.2.4 Simulation Details
• The CG simulations used LAMMPS, [21] with a 5 fs time step in the isother-

malisobaric (TPN) ensemble, with temperature and pressure controlled using a
Nose Hoover thermostat, with a 100 fs damping constant, and a barostat, with
a damping parameter of 1000 fs, at a temperature of 300 K and a pressure of 1
bar, respectively.

• The all-atom simulations used the Gromacs simulation package [22]
using TIP4P/2005 [12] water and OPLS-AA solute models.

• The free energy calculations for the hydration free energy of acetic acid were
done using finite difference thermodynamic integration (FDTI), [23] using a soft
core potential to avoid singularities.

• The constant pH simulations were carried out using bash shell scripts, which
call LAMMPS with the appropriate input files for the specific protonation state

4



1.3 Result and Discussion

1.3 Result and Discussion

Two body parameters are obtained from the Lorentz Berthelot combining rules:

εAB = (εAAεBB)1/2 (1.8)

and

σAB = (σAA + σBB)/2 (1.9)

For aqueous acetate and acetic acid (Figure 1.2), the coarse-grained models were pa-
rameterized to reproduce pair correlations of all atom model. And the CG model does
fairly well at reproducing the water structure near the three different oxygen types, in
terms of the positions of the first solvation shell and the peak heights. The pair corre-
lation function between the methyl carbon on (protonated) trimethylacetic acid and
water can be used to check how the model captures the hydrophobic interaction (Fig-
ure 2D). The free energy of hydration for acetic acid was also for parameterized the
model. Model gives this value of 6.6 ± 0.1 kcal/mol whereas the experimental value is
6.69 kcal/mol. [14]. On the length scale of the entire polymer, the structural changes
are captured by radius of gyration. The fraction of proximal (fproximal) neighbors
was used to see the changes in structure at the local and the nearest neighbor scale.
If the carbonyls are on the same side then conformation is known as the “proximal”,
or known as the “distal” if they are on the opposite sides (at a dihedral angle equal
to 120o). If that distance between the carbonyl carbon atom is less than 3.7 A, then
the conformation is proximal; otherwise it is distal. The properties of PMAA with
20 repeat units show that the model undergoes a structural transition induced by
the change in the protonation states (Table 1). The radius of gyration, RG, changes
from about 6 for the protonated state to 10 for the deprotonated state. Similar
changes have been reported using all-atom simulations. [24] Table 2 compares our
results with simulations of PMAA of the same length, but different force fields, tac-
ticities, and counterion concentrations. [24] The RG for the deprotonated form shows
a small dependence on sodium concentration, decreasing as the sodium concentration
increases. The local structure changes from mostly proximal for the isotactic form
and mostly distal for the syndiotactic form to about mostly distal for both tacticities.
The fraction of proximal values for both protonation states and tacticities are similar
to those from all-atom studies. [24] Sodium ions are taken to be associated with the
polymer if they are less than 4.0 from a carboxylate carbon. The amount of sodium
ion in contact with the polymer increases from about 3 at 0.25M to about 5 at 0.5M.
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Figure 1.2: Coarse-grained and all-atom pair correlation functions between water
oxygen and oxygen atoms on the acetic acid (A and B) and the acetate ion (C), and
between water oxygen and the methyl carbon on trimethylacetic acid (D)
Table 1.1: Properties of a 20 Unit Long PMAA for the Protonated and Deprotonated
Form at Various Sodium Concentration

[Na+] Radius of gyration () Fraction proximal Number of contact Na+
Syn Iso Syn Iso Syn Iso

Protonated 0 m 5.78± 5.67± 0.28± 0.77± N/A N/A
0.04 0.04 0.01 0.02

De-protonated 0 m 10.8± 9.7± 0.20± 0.30± N/A N/A
0.6 0.4 0.02 0.02

De-protonated 0.25m 10.7± 9.7± 0.19± 0.35± 3.0± 3.2±
0.5 0.3 0.03 0.02 0.5 0.3

De-protonated 0.50m 10.2± 8.8± 0.22± 0.39± 5.6± 4.9±
0.4 0.4 0.03 0.02 0.5 0.3
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1.3 Result and Discussion

Table 1.2: Radius of Gyration for n = 20 PMAA from Different Simulation Studies
tacticity [Na+] (M) radius of gyration ()

protonated deprotonated
syndiotactic, this work 0.25 5.80 ± 0.03 10.7 ± 0.5

isotactic, this work 0.25 5.73 ± 0.05 9.7 ± 0.3
syndiotactic [3] 0 7.3 ± 0.1 12.0 ± 0.1

isotactic [4] 0 7.0 ± 0.5 12.4 ± 0.1
atactic [5] 0.2 6.4, 6.7 9.9, 10.0

1.3.1 Constant pH Simulations

Using one intermediate state the method can jump between protonation states

Figure 1.3: Protonation state variable, λ, as a function of time for aqueous trimethy-
lacetic acid.

We found that a value of equal to 0.70 gives even transitions between the two
states using trimethylacetic acid as a test case. The titration curves are shown in
Figure 1.4. The results are fit to the Hill equation:

fractiondeprotonated = 1/
(
10n(pKa−pH) + 1

)
(1.10)

7
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Figure 1.4: Titration curves for oligomers of various lengths.

where pKa is minus the log of the acid dissociation constant and n gives the degree
of cooperativity. The pKa of the monomer, trimethylacetic acid, is, by construction,
close to the experimental value of 5.03.

Sodium ions also affect the pKa. By comparing structures which had a sodium
ion near a carboxylate carbon with those that do not, the pKa shows a large decrease
when a sodium ion is near. For the 20-mers, this is over 2.5 pH units.

Structural changes for the 20-mer as a function of pH are shown in Figure 6. The
radius of gyration shows an abrupt change near the pKa. The fraction of proximal
neighbors show a more gradual change. The local change, as given by the fraction
proximal, begins at a lower pH than the global change, as given by the radius of
gyration.

8



1.4 Conclusion

Figure 1.5: Radius of gyration (A) and fraction proximal nearest neighbors (B) as a
function of pH for the isotactic and syndiotactic 20-mer.

1.4 Conclusion
The CG model is able to reproduce properties of both the protonated and deproto-
nated states of carboxylic acid despite the lack of hydrogen interaction sites and the
lack of any long-ranged interactions The CpH method enables Monte Carlo moves
between the protonated and deprotonated states using one state in between using this
model.The models presented here can be combined with similar models for water [4],
ions, [6] alkanes, [5] ethers, [7] and peptoids, [25] to allow the simulation a larger
range of polymeric materials.

9
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Chapter 2

WATER HYDROGEN DEGREES OF FREEDOM AND THE HYDROPHOBIC EF-
FECTS

2.1 Introduction
Insights into the hydrophobic effect, as exemplified by the addition of small non-polar
solutes to water, can be gained by investigating the associated thermodynamic or
structural changes. [27, 28, 29, 30] Structural interpretation of hydrophobic hydration
relate the large entropy change to ordered water structure surrounding the solute.

The ordering of atoms in water involves the oxygen atom (or translational) degrees-
of-freedom or hydrogen atom (or rotational) degrees-of-freedom. The tetrahedral
parameter [31] is used to characterize the oxygen order and the hydrogen order is
characterized by a hydrogen bond analysis. Different model finds different water be-
havior in terms of the ordering of water near the hydrophobic solute. However, most of
them finds more tetrahedral order structure of water near hydrophobic solute. [32, 33]
The translational and orientational order of water structure mainly contribute to the
entropy of solvation. Some works say that they have equal contribution to entropy,
other says orientational contribution to entropy is small. [34]

The mW model of Molinero and Moore has no hydrogen interaction sites and long-
ranged interactions. [35] For all the molecular properties that are considered special
for water (hydrogen bonds and large dipole and quadrupole moments), the only one
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the mW contains is tetrahedality, and the model has no rotational response. Despite
its simplicity, the model can capture most of the properties of liquid water about as
accurately as more complex models, as can be captured by some complex models.

In this paper, we examine the predictions of the mW model for the solvation prop-
erties of methane and ethane. These properties include the temperature dependence
of solvation free energy, from which entropy, enthalpy, and heat capacity can be found,
and the structural properties of water near the solute, including the tetrahedral order
parameter and the Voronoi volume.

2.2 Method
For simulations, the mW model was used for water [35] and united-atom, short-ranged
models were used for methane [36] and ethane. [37] The Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) program was used for simulations, [38] with
a 5 fs time step in the isothermal-isobaric (TPN) ensemble, with temperature and
pressure controlled using a Nose-Hoover thermostat, with a 100 fs damping con- stant,
and a barostat, with a damping parameter of 1000 fs. All simulations were run at a
pressure of 1 bar, except certain constant volume simulations.

The entropy at 300 K was found during simulations at two additional temperatures
and using

S (r) = − (wT 2 (r) − wT1 (r)) / (T2 − T1) , withT2 = 320KandT1 = 280K (2.1)

The pure water calculations used 512 molecules, the free energy calculations used 256
water molecules plus the solute.

The value of the thermal pressure coefficient, γV , for the mW model is calculated
through the fluctuation formula

γV = (1/kBT )2(⟨PE⟩ V − ⟨P ⟩ V ⟨E⟩ V ) (2.2)

where E is the potential energy of the system and < ... >V indicates a canonical,
constant TVN, ensemble average.

The geometries of a water molecule’s first solvation shell can be described using
the tetrahedral order parameter, Q, of Errington and Debenedetti [39]

Qi = 1 − 3
8

3∑
j=1

4∑
k=j+1

(cos θijk + 1
3)2 (2.3)

where the sums are over the four nearest neighbors of molecule i and θjjk is the angle
between the three molecules, with molecule i at the center.

A Voronoi tessellation was used to estimate the volume occupied by the water
molecules in the simulation. The voronoi method assumes that all atoms are of equal
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size. The different molecular sizes can be taken into account to generate alternative
Voronoi volumes by assigning each molecule a radius. [40, 41] In this surface-based
(S-cell) method, the distance from a point in space to the surface of an atom is used to
assign volumes. Based on the radial distribution functions atomic radii were assigned.
The Monte Carlo integration was used to calculate both the normal and the S-cell
Voronoi volumes by generating 106 random points per configuration and assigning
the point to a specific atom.

2.3 Result and Discussion
The density and thermal pressure coefficient of the pure liquid as a function of tem-
perature are shown in Figure 2.1.

Figure 2.1: Density (A) and thermal pres- sure coefficient (B) from experiment (black
solid line) and various models: mW (red solid line and circles), SPC/E (blue dotted-
dashed line and triangles), TIP4P/2005 (green dotted line and squares), and TIP5P-E
(orange dashed line and pentagons)

SPC/E, [42] TIP4P/2005, [43] and TIP5P-E, [44] which represent optimal 3- site,
4-site, and 5-site non-polarizable models, respectively are chosen for comparison to
the mW model. The mW model does fairly well in reproducing the experimental
data, [45] with an accuracy that is close to SPC/E, particularly at lower temperature.
For temperature dependence of γV , the increase from the mW model is similar to
SPC/E. At 300 K, the slope of the γV versus the T curve is about 0.13 bar/K2 for
the mW model and 0.23 bar/K2 from the experiment.

The free energies of solvation are shown in Figure 2 . The other models from
Ashbaugh et al. [32] and the experimental data [46, 47] are also shown for comparing
free energy of solvation to mW model. The values of ∆H, ∆S, and ∆CP from
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mW model, along the values calculated for the other models [7] and the experiment,
[46, 47] are given in Table 2.1.

Figure 2.2: Free energies of solvation for methane (A) and ethane (B)

Table 2.1: Solvation thermodynamic properties of methane and ethane at a temper-
ature of 298 K and a pressure of 1 atm

∆G ∆H ∆S ∆CP

(kcal/mol) (kcal/mol) (cal/mol K) (cal/mol K)
Methane

Experiment 2.02 -2.72 -15.9 48.8
mW 1.70±0.02 -0.73±0.04 -8.1±0.1 23±3

SPC/E 2.23 -1.3 -11.8 39
TIP4P/2005 2.21 -2.28 -15 47.2

TIP5P-E 1.93 -2.2 -13.8 78.2
Ethane

Experiment 1.83 -4.17 -20.15 60
mW 1.89 ± 0.03 -1.12 ± 0.09 -10.0 ± 0.2 32 ± 2

For both methane and ethane, the mW model underestimates the magnitude of
S and CP by about a factor of two. The enthalpy is underestimated as well, which
compensates for the entropy to give a free energy that is close to the experiment.

The structure of the solvating water is characterized by the tetrahedral order
parameter, Q, and Voronoi volumes (Figures 2.3 and 2.4)
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Figure 2.3: Methane-water structure. (A) Radial distribution function between water
oxygen and methane carbon. (B) Tetrahedral order parameter for water as a function
of distance from methane. (C) Voronoi volume of water as a function of distance from
methane, with the solid line showing the ordinary Voronoi cell volume and the dotted-
dashed line the S-cell volume. The dotted lines show the positions of the first and
second nearest neighbor peaks.
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Figure 2.4: Ethane-water structure. (A) Radial distribution function between water
oxy- gon and methyl carbon. (B) Tetrahedral order parameter for water as a function
of distance from the methyl carbon. (C) Voronoi volume of water as a function of
distance from the methyl carbon, with the solid line showing the ordinary Voronoi
cell volume and the dot-dashed line the S-cell volume. The dotted lines show the
positions of the first and second nearest neighbor peaks.
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For both ethane and methane, Q shows a Small increases at the outer region of the
first solvation shell, which is very similar to the all-atom simulations of Ashbaugh et
al. [32] and the ab initio simulations of Grdadolnik et al. [48] for methane . Overall,
the increase of Q is very small. The average Q for a water molecule in the first
two solvation shells is 0.702, and in the bulk, Q is 0.701. The Voronoi tessellation
results [Figures 3(c) and 4(c)] indicate that the solvating water molecules may occupy
a different volume than the bulk. There is an increase in cell volume for Ordinary
Voronoi tessellation, where Q increases at the outer part of the first solvation shell,
and a decrease at close distances. The S-cell tessellation, where it is assumed that
the sizes of atoms are different, results are different from the ordinary tessellation.
Overall the addition of the solute decreases the S-cell volumes for both methane and
ethane.

Two approaches we took into account to improve the thermodynamic results from
mW model capture the half of the entropy solvation. First, from Figure 1(A), the
density of water as predicted by the mW model is slightly different from the experi-
ment. Except near 300 K, the density is too large. We ran a set of calculations at a
constant volume, rather than at a constant pressure, where the volume was adjusted
so that the density corresponds to the experimental density at that temperature. The
TVN results show that correcting the density does not improve the free energy results
(Figure 2.5)

Figure 2.5: Free energies of solvation for methane (A) and ethane (B), compar- ing
the mW results (circles) with the TVN simulations using the experimental density
(triangles) and the temperature dependent potential (squares)

A second approach is designed to build in the entropy left out of the coarse-
grained model by making the potential temperature dependent. A simple way to
do this is to make the well-depth parameter, ϵCO , between the carbon and oxygen
atoms dependent on temperature, as ϵCO(T ) = ϵ0

CO + δϵCOT . This was done only for
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the solute-solvent interactions. The parameters ϵ0 and δϵCO were found by finding
the values of ϵCO that gave the experimental ∆G of solvation at 300 K and at 340
K. (For ethane, ϵCO at 300 K, does not need to adjusted.) Fitting to ∆G at 300
and 340 K results in good agreement for the free energy over the whole range of
temperatures, indicating that the linear temperature dependence for can capture the
missing entropy.

2.4 Conclusion
The mW coarse-grained water models fairly accurate overall as compared to the com-
monly used water models like SPC/E but the temperature dependences of entropy
of solvation of methane and ethane differ from the experiment by roughly a factor
of two. There are slightly increased tetrahedral order and slightly decreased Voronoi
volume of water near the non-polar solutes .The neglected entropy can be added to
the coarse- grained model by treating the methane-water interaction as a potential
of mean force with a temperature independent or enthalpic part.
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COARSE GRAINED MODEL ON THE AGGREGATION BEHAVIOR OF POLYPEP-
TOIDS AT VARIOUS AGGREGATION NUMBERS

3.1 Introduction
Amphiphiles consist of at least two differently interacting groups, for example, a hy-
drophobic and a hydrophilic region. The self-assembly of polypeptoid amphiphiles
(PAs) plays a important role to design a very interesting structure, micelle, whereby
their hydrophilic part is directed toward the aqueous phase, while their hydrophobic
tails point to the center of the micelle, in aqueous solutions at concentrations higher
than their critical micelle concentration (CMC). It has drawn lots of attention for
scientific research as it can be programmed for biological activity that leads to ap-
plications in drug delivery vehicles, [49, 50] immunomodulators, [51] and molecular
reporters. [52]

The CMC depends on the relative length of the hydrophobic and hydrophilic
blocks. For a given soluble polypeptoid length, an increase of the hydrophobic length
leads to a decrease of CMC. [53, 54, 55] Several techniques have been used to deter-
mine the aggregation number and the CMC, such as fluorescence quenching, [56, 57]
static light scattering, [58, 59, 60, 61] neutron scattering, [62] and a combination
of viscometry and dynamic light scattering. [63] However, these different techniques
usually do not generate supportive results. Static light scattering calculated a lower
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aggregation number than did the dynamic light scattering method, while static flu-
orescence gave the lowest aggregation number.16 Molecular dynamics (MD) simula-
tion is a powerful tool in evaluating micelle formation. However, the computational
cost restricts simulation times and system size to a few hundred nanoseconds and
nanometers, respectively. Coarse-grained (CG) models, on the other hand, are com-
putationally cheaper choices wherein atomistic level details are removed while retain-
ing the relevant important physics, thus making it easier to study more complicated
systems, including self-assembly in amphiphilic polypeptoid at different aggregation
number. [64] By reducing some degrees of freedom and only representing the most
important ones, CG modeling can span scales cost-effectively.

Using the SW based coarse grained model for different molecule like water, [65]
ions [66] alkanes, [67] ethers, [68] and peptoids, [69] developed by the different mem-
bers in our group we successfully capture the aggregation behavior of polypeptoid at
different aggregation number(N) of 2, 5, 10, 15, 20, 27, leads to forms the micelle at
CMC and also provide an estimate for the CMC by conducting simulations of free
energy profile or the potential of mean force(PMF) required to extract individual
molecules from a micelle.

3.2 Method

The simulations used LAMMPS, [70] with a 5 fs time step in the isothermalisobaric
(TPN) ensemble, with temperature and pressure controlled using a Nose Hoover [71]
thermostat, with a 100 fs damping constant, and a barostat, with a damping param-
eter of 1000 fs, at a temperature of 300 K and a pressure of 1 bar, respectively.

The equilibrated configuration at the end of an NPT trajectory was used as the
initial structure for a “pulling” [74] simulation, to generate the initial configurations
for umbrella sampling within each window.The center of mass (COM) distances be-
tween each polypeptoid and the rest of the polypeptoid were calculated, and the
polypeptoid with the shortest COM distance from the rest of the polypeptoid was
selected and then pulled away from the micelle so that the COM distance is 40 using
a spring constant of 50 kcalmol−1−2. To create a set of starting configurations, one for
each “window” to be used in the weighted histogram free energy calculations, targeted
molecular dynamics was done(TMD) [75] to get the intermediate COM distance till
40A as a reaction coordinate for umbrella sampling. A total of 112 windows were
used with a spacing of 0.25 A COM separation between them. In each window, a
20 ns MD simulation was performed for umbrella sampling. A harmonic force with
a force constant of 50 kcalmol−1−2 was applied for each umbrella sampling window.
The Weighted Histogram Analysis Method (WHAM) [76] is used to get the PMF.
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3.3 Result and Discussion
The results of the simulations, including the structure and self-assembly of Polypep-
toid (Figure 3.1) at different aggregation number(N) are shown in Figure 2 where the
hydrophobic and hydrophilic groups are represented by red and blue color respectively

Figure 3.1: Polypeptoid

Figure 3.2: Self-assembly of Polypeptoid at different aggregation number(N)
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The stability of the micelle can be further characterized by examining the eccen-
tricity defined as. [75]

e = 1 − Imin

Iavg

(3.1)

where Imin is the moment of inertia along the x, y, or z axis with the smallest mag-
nitude and Iavg is the average of all three moments of inertia. From the Figure 3.3,
it is shown that the shape of the micelle gets more spherical (smaller value of e) as
the aggregation number gets higher

Figure 3.3: Eccentricity of polypeptoids as a function of different aggregation number
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Figure 3.4: Radius of Gyration of Polypeptoids as a function of different aggregation
number.

On the other hand, it is noticeable that the radius of gyration of the aggre-
gated structure increases with the aggregation number (Figure 3.4). This is what
we expect. The totally opposite scenario is seen in shape as aggregation number
increases. We also calculated the probability density distribution of the distances
of hydrophilic(Figure 3.5) and hydrophobic group (Figure 3.6) from center of mass
of polypeptoid. When N is 2 hydrophilic groups are closer to center of mass than
hydrophobic groups, the same feature is noticeable for N equals 5. However, this is
changes when N is 10 where hydrophobic groups are closer to the center of mass than
hydrophilic groups and the same thing is visible for N larger than 5. This indicates
that the polypeptoids start self-assembling to micelle when the N is 10.
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Figure 3.5: Probability density distribution of the center of mass distance of hy-
drophilic group of polypeptoid at different number of aggregations.

Figure 3.6: Probability density distribution of the center of mass distance of hy-
drophobic group of polypeptoid at different number of aggregations.

From the radial distribution function (rdf ) between hydrophobic groups and water
(Figure 3.7) it is noticeable that there is a large peak around the hydrophobic group
for both the aggregation number 2 and 5, indicating more water contacts at close
distances. But rdf peak is higher between hydrophilic and water for the case of 10,
15 ,20, 27 (Figure 3.8) This figure again implies that the most probable aggregation
number of polypeptoid to form micelle is 10.
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Figure 3.7: Radial distribution function (RDF) between hydrophobic groups and
water for different number of Polypeptoid

Figure 3.8: Radial distribution function (RDF) between hydrophilic group and water
for different number of Polypeptoid.

We calculated PMF by pulling out a single PA from the preformed structure or
micelle by umbrella sampling for different aggregation number to estimate the critical
micelle concentration. In Figure 3.9. PMF of separating the monomers from the dimer
and fivemer is shown.
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Figure 3.9: Potentials of mean force as a function of distance of pulled polypeptoid
center of mass R from micelle center of mass for rest of the polypeptoid.

3.4 Conclusion
SW based Coarse Grained model are successful for large-scale simulation of a large
range polymeric materials like polypeptoids in a very fast and efficient way. For our
case, self assembly of 27mer polypepoid to a micelle took 2 to 3 months of computer
time, whereas all atom model may take years to do this job.
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ALLOSTERIC INHIBITOR OF SARS-CoV-2 HELICASE BY MOLECULAR SIM-
ULATION AND VIRTUAL SCREENING

4.1 Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has significantly
affected the health and socioeconomic worldwide. SARS-CoV-2 helicase (Nsp13)
plays an essential role in viral replication and is the most conserved nonstructural
protein within the coronavirus family, making it a very promising target. SARS-
CoV-2 helicase comprises 596 residues. And It is 99 percent homologous to SARS-
CoV helicase. The X- ray structure from SARS-CoV (PDB ID 6JYT.2.A) shows five
domains. [76] The three domains, IA, 1B, and 2A make up a triangular base with the
N-terminal zinc binding domain (ZBD) at the top, and a stalk region connecting the
base to the ZBD (Figure 4.1)
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Figure 4.1: SWISS-MODEL structure of SARS-CoV-2 helicase, showing domain 1A
in green, domain 1B in blue, domain 2A in orange, the stalk domain in grey, the ZBD
in red, and a potential inhibitor in grey near the bottom.

SARS-CoV-2 helicase change its conformation, gaining the energy hydrolyzing
ATP to perform its catalytical function.The flexibility of the protein, key to its func-
tion, might make helicases a challenge for structural-based drug design. [77]. However,
many works have been done to identify potential SARS-CoV-2 inhibitors using com-
putational docking and molecular dynamics (MD) simulations. [78]. The competitive
inhibitors are designed at the ATP binding site of helicase located between domains
1A, 1B, and 2A. A better understanding of the flexibility of helicase can benefit the
Inhibitor design. [78, 79]. MD simulation with enhanced sampling methods can be
done to explore all the conformational areas.

In this work, the allosteric site away from ATP binding site and the nucleic acid-
binding channel was determined by principal component analysis from enhanced MD
simulation. The non-competitive inhibitors at the allosteric site are also proposed by
molecular docking to stop helicase’s flexibility, hence its function.
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4.2 Method

4.2.1 Molecular simulation

For simulations, the recently developed a99SB-disp model [80] was used for protein
since it has been shown that it can accurately reproduce the structure of a range of
folded and disordered proteins, [80] as well as a protein that contains both folded and
disordered domains. [81].A new water model, a99SB-disp water with slightly stronger
Lennard-Jones dispersion was used with the a99SB-disp model. [80]. For the three zinc
ions in the ZBD and the complexing cysteine and histidine residues,the Zinc Amber
Force Field (ZAFF) was used [87]. The Generalized Amber Force Field (GAFF)51
parameters was used for the potential inhibitor, using AM1-BCC charges [89].

The simulations were setup using the tleap and antechamber programs of AMBER
16 [90, 91]. Those coordinate and topology files were converted to GROMACS input
files using the ACPYPE program [92]. The simulations used the Replica Exchange
with Dynamic Scaling (REDS) method as implemented in the GROMACS simulation
package, version 5 [93].

The structure was minimized using steepest decent for 1000 steps, followed by
constant molecule number, volume, and temperature (NVT) simulations for 100 ps
and then 100 ps at constant N, pressure, and T (NPT) for each of the temperatures.

Gmx covar utility in Gromacs was used for Principal component analysis [94].

4.2.2 Molecular docking and scoring

To find potential allosteric inhibitors, docking into these sites was done using the
program Autodock Vina, [79] using 3868 compounds from the SWEETLEAD [80] li-
brary. The SWEETLEAD library consists of approved pharmaceuticals, illicit drugs,
and traditional medicinal herbs. Spatial data file (SDF) input files were converted to
PDBQT (protein data bank format plus partial charges and atom types) input for
Autodock using OpenBabel [81].

Additional binding pockets were explored using PrankWeb, [77] a web interface
for the P2Rank ligand-binding site prediction method [78] for the structure resulting
from the enhanced MD simulation.
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4.3 Result and Discussion

4.3.1 Finding alosteric site
To quantify the motions of the protein, a principle component (PC) analysis was
done. The first principal component of motion involves a bending motion of domain
2A, towards domains 1A and 1B. The second principal component involves a twisting
motion of domain 2A. These motions are shown in Figure 4.2. The PC eigenvalues
are 35.2 nm2 and 15.2 nm2 for the first and second components, respectively. The
eigenvalues sum to 117.0 nm2, so the first two PCs represent 43 percent of all protein
fluctuations. The projection of all the configuration (after the 50 ns of equilibration)
for the apo and complex simulations onto the first two PC eigenvectors (from the
apo simulations) are given in Figure 4.2. The complex and the apo protein cover
similar regions of PC2, but the complex does not explore very negative regions of
PC1, corresponding to an open structure, with a large separation between domains
2A and 1B.

Figure 4.2: Projection of the trajectory for the apo protien (blue dots) and the com-
plex (red dots) onto the first and second principle components. The structures on the
left correspond to negative values of the PC, so that negative values of PC1 corre-
spond to a larger distance between domains 1B and 2A and positive values represents
a rotation of the C-terminus part of domain 1B towards domain 2A

The PC map analysis shows that the large scale motion of the protein involves
movement of domain 2A, relative to the other domains. To restrain the flexibility of
the helicase an inhibitor can be designed to bind at the interface between domains
1A and 2A, in a region away from both the ATP binding site and the nucleic acid
binding channel.Using P2Rank [78] potential drug binding sites were identified. Four,
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out of 17, binding sites were found at the interface between domains 1A and 2A, as
shown in Figure 4.3(A). In order to inhibit motion of domain 2A, the inhibitor would
ideally be at a site with residues that are involved in domain motion but moving in
opposite directions. The four binding sites can be assessed based on the motions of
the residues in those binding sites using the results of the PCA. P2Rank returns the
points of the solvent accessible surface (SAS) for each binding site. For a point j
on the surface, the nearest residue is found, which is labeled ij. The motion of that
residue can be characterized from qα(ij) the eigenvector of principal component α for
residue ij. The total motion of the binding site can be found from

qα(total) =
N∑

j=1
qα(ij)/N (4.1)

where N is the number of SAS points for a specific pocket. The angle between the
direction of motion of one point on the surface relative the average direction is a way
to determine if a principal component of motion is moving the whole surface together,
or if parts of the surface move in different directions. The cosine of this angle, given
by

dα(i) = qα(ij).qα(total)/(|qα(ij)||qα(total)|) (4.2)
can be mapped onto the SAS.

Figure 4.3: (A) Four potential binding sites at the interface between domains 1A and
2A. Map for the movement of principal component 1 (B) and 2 (C) onto the surface
of the binding sites, with blue denotes a positive values and red negative d(i) values

In the Figure 4.3 (B) and (C) areas of the surface that move in the same direction
as the average (positive dα(i)) of the pocket are shown in blue and regions that move
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in the opposite direction as shown in red. The PC map analysis suggests that pockets
3 and 4 might be good targets for a non-competitive inhibitor, which could limit the
flexibility of domain 2A since pocket 4 shows anisotropy for both PC and pocket 3
shows anisotropy for second PC. Whereas pocket 2 does not show any anisotropy
neither for 1st PC nor 2nd PC and pocket 1 is ATP binding site.

4.3.2 Find inhibitor at alostering site by molecular docking

Pocket 4, while promising in terms of inhibiting domain motion, is not ranked highly
by P2Rank (13th out of 17 potential pockets). Docking into this pocket gave weakly
binding compounds, with Autodock Vina scores at or above -7 kcal/mol. Pocket 3,
ranked fourth out of the 17 pockets, is more promising from a drug binding perspec-
tive. Nine compounds from the SWEETLEAD database80 had Vina scores below -7
kcal/mol. The scores and several pharmacokinetic factors are given in Table 4.1. The
chemical structures of these compounds and the docked position of the top scoring
molecule are shown in Figure 4.4. The top scoring compound is raltegravir, an ap-
proved antiviral medication used to treat HIV/AIDS, as an HIV integrase inhibitor.85
The molecule makes hydrogen bonds with ASN 265, THR 440, and ARG 442, as well
as hydrophobic contacts between benzyl group and ALA 446, VAL 449, and the
methyl group on THR 440. It, therefore, makes significant contacts with residues on
both domains 1A and 2A.

Table 4.1: Docking score, molecular weight (MW), octanol water partition coefficient
(logP), polar surface area (PSA), the number of hydrogen bond donors, and the
number of hydrogen bond acceptors for the top nine scoring compounds for binding
pocket 3
Compounds Score MW logP PSA H-bond donors H-bond aacceptors

(kcal/mol) (g/mol) (Å2)
SW03354 -8.6 443.4 -3.9 155.1 2 11
SW03379 -8.3 533.5 -3.3 215.5 6 13
SW04090 -8.2 721.6 0.6 220.9 3 14
SW03819 -8.1 552.5 1.9 172.6 3 10
SW03493 -7.9 463.6 1.2 86.5 6 6
SW03107 -7.8 414.4 7.1 68.3 0 4
SW03768 -7.7 529.5 5.0 97.6 2 8
SW03357 -7.6 444.4 -2.4 192.8 3 10
SW03122 -7.5 415.5 0.5 91.2 1 6
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Figure 4.4: Chemical structures of inhibitors for allosteric pocket 3 and docked struc-
ture of SW03354

4.4 Conclusion
The flexibility of the helicase might be altered with an inhibitor to bind at the interface
between domains 1A and 2A, in a region away from the ATP and the nucleic acid
active sites. Four potential drug binding pockets between domains 1A and 2A were
identified. We sought a binding site that could change the flexibility by mapping
the atoms’ PC motion on each pocket’s surface onto the pocket’s surface, as shown
in Figure 4.3. If a pocket is at the boundary between regions that tend to move
in different directions, then the PC map would show negative and positive areas on
the surface. One pocket was identified as a promising allosteric site from the PC
map involved domain motion. The virtual screening revealed that this site could
bind drug-like molecules. Further studies would be needed to determine if molecules
designed to bind to the allosteric site are effective helicase inhibitors.
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REPURPOSING APPROVED DRUGS AS INHIBITORS OF MAIN PROTEASE
OF SARS-CoV-2 FROM MOLECULAR DYNAMIC SIMULATION AND VIRTUAL
SCREENING

5.1 Introduction

SARS-CoV-2, responsible for COVID-19 pandemic [94], is known as a coronavirus
(CoV) from the Coronaviridae family. Its RNA genome is 82 percent identical to
SARS-CoV [95], causing severe acute respiratory syndrome (SARS) pandemic in
2003 [96]. Two cysteine proteases: the chymotrypsin-like cysteine or main protease,
known as 3CLpro or Mpro, and the papain-like cysteine protease, PLpro are encoded
by SARS-CoV-2. They catalyze the proteolysis of polyproteins translated from the
viral genome into nonstructural proteins which is essential for packaging the nascent
virion and viral replication. [97] Therefore, the replication of the virus can be stopped
by inhibiting the activity of this protease. The peptide bond in Leu-Gln-Ser-Ala-Gly
recognition sequence of the substrate hydrolyzed by Mpro is distinct from the pep-
tide sequence recognized by other human cysteine proteases so far. [98] Thus, Mpro
is considered a promising target for anti SARS-CoV-2 drug design; it has been the
center of attention of several studies since the pandemic has started. [99] An X-ray
crystal structure of Mpro (PDB ID: 5R82 )shows that it comprises 306 residues. [95]
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Figure 5.1: Main Protease of SARS-CoV-2.

The amino acid sequence of the active site of Mpro is highly conserved among
coronaviruses. [100] From the literature survey, it is found that residues involved in
the binding of substrates are Phe140, His163, Met165, Glu166, and Gln189 (Figure
5.2) [101]

Figure 5.2: Active site of Main Protease of SARS-CoV-2.

When we started this work, the vaccine was not invented; in that case, drug re-
purposing can be an important strategy for immediate response to the COVID-19
pandemic. So, the primary goal of this computational work is to find existing drugs
that might be effective against SARS-CoV-2 main protease. We basically choose three
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significant drug molecules from existing drugs: Ribavirin, an anti-hepatitis C drug;
Azelastine, an anti-allergic drug; and luteolin, an anti-inflammatory drug (Figure 5.3).
In addition, several reports have indicated that HIV-1 protease inhibitors can design
SARS- CoV proteinase inhibitors (Zhang and Yap, 2004; Yamamoto et al., 2004;
Jenwitheesuk and Samudrala, 2003). In particular, the proteinase inhibitor Kale-
tra, a mixture of the proteinase inhibitors ribavirin and ritonavir (Fig. 1), exhibits
encouraging signs of being partially effective against the SARS virus (Vastag, 2003).
Therefore, a deeper understanding of known proteinase inhibitors as anti-SARS drugs
can be used as a starting point to design and discover better or more specific inhibitors
for treating SARS and any mutations by predicting resistance mechanisms and new
drugs for such mechanisms in advance.

Figure 5.3: A)Ribavirin, B) Azelastine, C)Luteolin.

In this work, two docking algorithms Autodockvina [79] and SwissDock [102], are
used for a consensus virtual screening using the three FDA-approved drugs (Ribavirin,
Azelastine, Luteolin). In addition, further studies molecular dynamic simulation are
done to see whether the complex structure of the main protease of SARS-CoV-2 and
drugs from virtual screening is stable or not.

5.2 Method

5.2.1 Starting structure
Pubchem database is used to get the SDF files of 3D stucture of drug molecules. [103]
Pubchem CID for ribavirin, azelastine, luteolin are 37542, 2267, 5280445 respectively.

5.2.2 Molecular docking
To mitigate the biases, we performed two independent runs of proteinligand docking
with three approved drugs using AutoDock Vina[79] and Swissdock. [102]

SwissDock is an online docking web server. Before uploading into SwissDock, the
input structure file of protein and ligand was prepared using UCSF Chimera [104].
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Swissdock returns the results by e-mail.The docked pose with the minimum fullfitness
score is considered for futher analysis. LigPlot (Pettersen et al., 2004), a molecular
visualization tool, was used to visualize the results obtained from the server.

AutoDock Vina [79] is a widely used open-source program for molecular docking.
The PDBQT files from SDF and PDB files of compounds and the protein generated by
The AutoDockTools (ADT) [79] software6. Non-polar hydrogen atoms were removed.
An affinity grid box with a size of 18 × 21 × 18 Å was generated and centered on
the active site. The default docking parameters were used, except for the number of
modes that was set to 9.

5.2.3 Molecular Dynamic Simulation

The GROMACS software, version 2018a, was used for performing all molecular dy-
namics (MD) simulations. [105] OPLS-AA/M force field. [106] was used for the proto-
nated Mpro dimer, with a net charge of -8 e. TIP4P was used for water solvent. [107]
Sodium counterions were added to neutralize the system. The OPLS/CM1A force
field was used for the selected ligand candidates, [108] using d the LigParGen Python
code.13 The parameters were converted to GROMACS format using LigParGen. [109]
. A triclinic simulation box with 10-Å was used padding. Energy minimization was
then performed using the steepest descent algorithm. A cutoff radius of 12 Å was
used to calculate non-bonded interactions explicitly. Long-range electrostatic interac-
tions were treated using the Particle Mesh Ewald (PME) algorithm. [110] All covalent
bonds along with hydrogen atoms were constrained at their equilibrium lengths us-
ing the LINCS algorithm. [111] Each system was initially simulated for 1 ns in the
canonical ensemble (NVT) for the solvent to relax and the temperature to equili-
brate. Initial velocities were sampled from a Maxwell- Boltzmann distribution at 310
K. The coupling constant of the thermostat was set to 2.0 ps. The system was then
equilibrated for 1.5 ns in the isothermal-isobaric ensemble (NPT). The pressure was
kept at 1 bar by the Berendsen barostat [112].

5.3 Result and Discussion

5.3.1 Molecular Docking

In comparing the ∆G value from both autodockvina and swissdock, which gives the
estimated free energy of binding, we can infer that the azelastine has the highest
binding affinity compared to Ribavirin and Luteolin drug compounds towards SARS-
CoV-2 main protease. However, the binding affinity of azelastine is very close to that
of Luteolin from autodock vina (Figure 5.4).
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Figure 5.4: Binding Affinity of Drug Molecule for Main protease from Docking

The docked pose of the minimum energy conformers of the three drugs, ribavirin,
azelastine, and luteolin, along with their corresponding 2D interaction plots, are
shown in Figure 5.5, 5.6, and 5.7, respectively. The docked poses clearly indicate
that the drugs molecules bind within the active site of the SARS-CoV-2 Mpro macro-
molecular structure.

Figure 5.5 shows that ribavirin binds firmly through two conventional hydrogen
bonds with residues Gln189 and Ser144 also form a significant number of hydrophobic
interactions.

Figure 5.5: Ribavirin in the binding site of main protease of SARS-CoV-2 and Molec-
ular Interaction Between Them from docking
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Azelastine stabilizes in the active site through all hydrophobic interactions with
residues. It does not create any H-interaction even though it shows the highest binding
affinity, as depicted in the 2D plot of Figure 5.6

Figure 5.6: Azilastine in the binding site of main protease of SARS-CoV-2 and Molec-
ular Interaction Between Them from docking

Luteolin, a promising candidate for the treatment of the current pandemic due to
SARS-CoV-2, showing 2nd highest binding affinity among the three-drug candidate
(Gautret et al., 2020), has been found to interact with the active site of the protease
through H-bond interaction with Gly 143, His 41, Thr 25, Cys 44 and Glu 66 as
shown in Figure 5.7. Besides H-bond, it also forms some hydrophobic interaction.
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Figure 5.7: Luteolin in the binding site of main protease of SARS-CoV-2 and Molec-
ular Interaction Between Them from docking

5.4 Molecular Dynamic Simulation

Usually, the analysis of RMSD and RMSF can infer important information about
the stability and flexibility of the receptor-ligand complex. Weak stability may be
seen in the high deviation and fluctuation of proteins during a simulation(Ghosh
Chakraborty, 2020). RMSDs during the whole simulation of SARS-CoV-2 Mpro in
complexed with three drugs were not found in the significant difference. The RMSD
in Figure 5.8 (A) shows SARS-CoV-2 Mpro is equilibrated at the last 5ns of MD
simulation for all systems in which the values were 0.28 nm with a standard deviation
of 0.02 nm for the three complexes. This shows a stable binding of drug molecules with
Mpro. Likewise, the RMSF per residue using their C-alpha atoms (Figure 5.8(B))
was calculated to determine and identify the Main protease’s flexibility. Comparing
the RMSF of the ligands and main protease complexes, it appears that the complex
for Ribavirin involves the highest fluctuation than the other two ligand-complex. The
radius of gyration (Figure 5.8(C)) was used to characterize the compactness of the
main protease (Figure 5.8(C)). The Main protease complexed with Azelastine and
Luteolin ligands presents similar compactness along with the entire MD simulation.
For Ribavirin, the Rg of the protein remains low fluctuation at the last 7ns of the
trajectory. Overall, the main protease in all systems is compact with an Rg value
of 4.35nm. In general, the RMSD, RMSF, and Rg show that the main protease has
low conformation change at the last 6ns of the MD trajectories. Thus, as expected,
the main protease present a similar solvent accessible surface area (Figure 5.8(D)),
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retaining its accessibility in the last 6 ns of the MD simulations.

Figure 5.8: A)RMSD , B)RMSF and C)radius of gyration (Rg) of the C-alpha atoms,
and D)solvent accessible surface area (SASA, ) of the Mpro complexed with Rib-
avirin(green line), Azilastine (black line) and Luteolin (red line) ligands

5.5 Conclusion
Molecular dynamics (MD) simulation and docking calculations are used to study
the SARS-CoV- 2 Main protease to obtain potential drug candidates for repurposing
against COVID-19. Overall, the Main protease does not undergo significant structural
change along the 5 ns MD simulation equilibration in a water solvent.

Docking shows Azilastine has a high binding affinity to the Main protease.MD
simulations of the three ligands@complexes show that the ligands remain bounded in
the binding region along the simulation.
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