
Learning with Limited Data and
Supervision

Amir Rahimi

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

November 2021

c© Amir Rahimi 2021

I hereby declare that except where specific reference is made to the work of oth-
ers, the contents of this thesis are original and have not been submitted to obtain a
degree in any other institution. This thesis is my own work which has been done in
collaboration with other researchers.

Amir Rahimi
25 November 2021

To my beloved parents

Acknowledgments

I would like to thank my collaborators who helped through suggestions and discus-
sions while writing the papers included in this thesis. I would like to thank my col-
laborators (in Alphabetical order) Thalaiyasingam Ajanthan, Byron Boots, Ching-An
Cheng, Stephen Gould, Richard Hartley, and Amirreza Shaban. This thesis would not
be possible without their contributions. Special thanks to my advisor Prof. Richard
Hartley for providing me the opportunity to study under his supervision. I would
also thank Prof. Stephen Gould for helping me become a better researcher in the
initial stages of my Ph.D. Finally, I would like to thank my family for sending their
unconditional love and support from far away.

vii

Abstract

Deep neural networks have been the main driving force of recent successes in ma-
chine learning leading to the deployment of these models in a wide range of indus-
tries such as healthcare, autonomous driving, and fintech. Despite the great success,
these models are known as data-hungry models requiring many labelled training
examples and costly computational resources to solve a pre-determined task. Sev-
eral obstacles limit the applicability of deep learning models in real-world scenarios.
First, annotating large-scale training data in tasks such as object localization or seg-
mentation is cumbersome and demands huge time and labor. Second, in real-world
scenarios and applications such as field robotics, the models may be required to learn
new classes in an ever-changing environment. However, accessing abundant fully la-
belled training data for novel classes may be infeasible. Therefore, a model needs
to adapt to learn novel classes given only a few examples with simple (weak) anno-
tations. Finally, it is known that most modern deep convolutional networks do not
have calibrated confidence scores, meaning that the confidence scores they assign to
the outcomes do not match the true frequency of those events. These models are of
utmost importance to output calibrated prediction scores that the downstream ap-
plications can rely upon, especially in safety-critical applications. This thesis focuses
on tackling these limitations in deep learning models with applications in Computer
Vision. We investigate the task of finding common objects in small image collec-
tions and propose an efficient graphical model inference algorithm that utilizes the
structure of the problem to reduce the computational time compared to traditional
inference algorithms significantly. We also propose a probabilistic approach to solve
the few-shot common object localization problem based on a parametric distribu-
tion of each class on a unit sphere. We further extend our model to localize objects
of novel classes in unseen images. In the next step, we study pairwise similarity
knowledge transfer for weakly supervised object localization to reduce the cost of
labor and time in annotating large-scale object detection datasets for novel classes.
We learn the similarity functions and the assignment of proposals to different novel
classes jointly using alternating optimization and show that the assignment problem
becomes an integer linear program for a certain type of loss function. Furthermore,
we propose an efficient inference algorithm to overcome the difficulty of computing
all pairwise similarities. Finally, to overcome pre-trained models’ accuracy degrada-
tion in learning expressive probability calibration functions using small calibration
data, we introduce and formalize the notion of order-preserving functions. We also
present two sub-families of order-preserving functions that benefit from parameter
sharing across different classes in classification problems.

ix

x

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Task Definitions and Contributions . 2

1.1.1 Finding Common Objects Across a Few Image Collections 2
Task definition. 2
Contributions. 3

1.1.2 Few-shot Weakly Supervised Object Detection 3
Task definition. 3
Contributions. 4

1.1.3 Knowledge-transfer for Weakly Supervised Object Localization . 5
Task definition. 5
Contributions. 5

1.1.4 Post-hoc Confidence Calibration of Deep Neural Networks . . . 6
Task definition. 6
Contributions. 6

1.2 Thesis Outline . 7

2 Background and Related Work 9
2.1 Supervised Learning . 9
2.2 Multiple-Instance Learning . 10

2.2.1 MI-SVM and mi-SVM . 11
2.3 Few-shot Image Classification . 12

2.3.1 Prototypical Networks . 13
2.3.2 Relation Networks . 13

2.4 Object Detection . 14
2.5 Weakly Supervised Object Localization 16

2.5.1 Knowledge-Transfer in MI-SVM WSOD 17
2.6 Confidence Calibration of Neural Networks 18

3 Efficient Inference for Finding Common Objects Across Small Image Col-
lections 21
3.1 Introduction . 21
3.2 Problem Setup . 23

Energy function. 24

xi

xii Contents

3.2.1 Dataset Setup . 25
3.3 Potential Functions . 25

Relation module. 25
Pairwise potentials. 26
Unary potentials. 26

3.3.1 Inference . 27
Joining. 28

Pruning. 28
Complexity. 30

3.4 Experiments . 30
3.4.1 Baseline Methods . 31
3.4.2 Few-shot Common Object Recognition 31

Dataset. 31
Feature extractor. 31
Sampling collections. 31
Evaluation metric. 32
Setting. 32
Results. 32
Effect of temperature T on unary potential function. . . . 32

3.4.3 Few-shot Object Co-Localization 34
Datasets. 34
Feature extractor. 35
Implementation. 35
Evaluation metric. 35
Results. 36
Effect of bag size and larger N, B̄. 36

3.4.4 Comparison of Energy Minimization Methods 39
3.5 Summary . 39

4 Few-shot Weakly-Supervised Object Detection via Directional Statistics 41
4.1 Introduction . 41
4.2 Details of Methodology . 44

4.2.1 Few-Shot WSOD and COL Tasks Definition 44
4.2.2 Pre-training and Feature Extraction 45
4.2.3 Statistical Model Assumptions . 46
4.2.4 COL . 47

4.2.4.1 Expectation-Maximization Derivation 49
4.2.4.2 Updating κ in M-Step . 51

4.2.5 Finding the Common Object in the Query Set 53
4.2.6 WSOD . 54

4.3 Experiments . 55
4.3.1 Common Object Localization . 55

4.3.1.1 Effect of Updating κ in M-Step 56
4.3.1.2 Direct Comparison to Greedy Tree 57

Contents xiii

4.3.2 Few-shot WSOD . 58
4.3.3 Large-Scale WSOD . 58
4.3.4 Ablation Study . 59
4.3.5 Qualitative Results . 61

4.4 Summary . 69

5 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Lo-
calization 71
5.1 Introduction . 71
5.2 Problem Description and Background . 73

5.2.1 Dataset and Notation. 73
5.2.2 Multiple-Instance Learning (MIL). 74
5.2.3 Optimization. 75
5.2.4 Knowledge Transfer. 75

5.3 Proposed Method . 75
5.3.1 Re-localization . 76

Inference. 78
Complexity. 79

5.3.2 Knowledge Transfer . 80
5.3.3 Network Architectures . 80

Proposal and feature extraction. 80
Scoring functions. 81

5.4 Experiments . 81
5.4.1 COCO 2017 Dataset . 81

5.4.1.1 Initialization Scheme . 81
5.4.1.2 Full Pipeline . 82

5.4.2 ILSVRC 2013 Detection Dataset 83
5.4.2.1 Baselines and Results . 84

5.5 Summary . 88

6 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Net-
works 89
6.1 Introduction . 89
6.2 Problem Setup . 91

6.2.1 Importance of Inductive Bias . 93
6.3 Intra Order-Preserving Functions . 93

6.3.1 Setup: Sorting and Ranking . 93
6.3.2 Intra Order-Preserving Functions 94
6.3.3 Order-Invariant and Diagonal Sub-families 95
6.3.4 Practical Considerations . 96

6.4 Implementation . 97
6.5 Experiments . 98

Datasets. 98
Baselines. 100

xiv Contents

6.5.1 Results . 101
6.5.2 Ablation Studies and More Experiments 103

6.5.2.1 Is Classwise-ECE a Proper Scoring Rule Calibration
Metric? . 105

6.5.2.2 Debiased ECE and a Fix to Classwise-ECE 107
6.6 Summary . 107

7 Conclusion 109
7.1 Future Directions . 111

Multiple diverse proposals for common objects. 111
Universal Cross-Transformers for few-shot classification. . 111
Incorporating semantic knowledge. 111
Other applications of intra order-preserving functions. . . 111

A Appendix A 113
A.1 Modeling with Gaussian Distribution . 113
A.2 MI-SVM WSOD Baseline . 113

B Appendix B 115
B.1 Missing Proof for Linearity of Labels in Sigmoid Cross-entropy Loss

Function . 115

C Appendix C 117
C.1 Missing Proofs for Intra Order-Preserving Functions 117

C.1.0.1 Deferred Proofs of Lemmas 118
C.1.1 Proof of Theorem 2, Order-invariant Functions 119

C.1.1.1 Properties of Order Invariant Functions 119
C.1.1.2 Main Proof . 120
C.1.1.3 Deferred Proof of Lemmas 120

C.1.2 Proof of Theorem 3, Diagonal Functions 122
C.2 Continuity and Differentiability of the Proposed Architecture 123
C.3 Reliability Diagrams . 124

List of Figures

1.1 Example of annotations for a supervised object detection problem. Providing
fully annotated datasets can be cumbersome in such tasks. 2

1.2 An example of the finding common objects problem: Each image corresponds
to a bag in this example. Bounding boxes represent the elements of the bags
within each image. In this example, “horse” is the target class and is shown
by blue bounding boxes. Orange boxes show all other non-target elements. In
this problem, the negative bag is optional but can help reduce the ambiguity of
the problem. For instance, the “persons” in the positive bags cannot be the
target object since there is a person in the negative bag. The finding common
objects task is defined as finding a selection, one element from each positive
bag, such that all the selected elements are from the same (target) class. So,
in this example, we are given the bags with bounding boxes as their elements.
We know whether a bag is positive or negative. However, we do not know
their elements’ labels. The task is to select one horse bounding box in each
positive bag. 3

1.3 An example of the few-shot weakly supervised object detection problem. The
input is a support set comprising a few images containing instances of unseen
categories with only image-level labels. The task is to find instances of the
objects (from the novel categories in the support set) in the query images. . . . 4

1.4 Knowledge transfer for weakly supervised object localization problem. We
have access to a fully annotated source dataset (left), and images of novel
classes in the target dataset with image-level labels (middle). Our goal is to
provide bounding box annotations to the images in the target dataset (right). . 5

2.1 Prototypical Networks classification in the embedding space. Image from [Snell
et al., 2017]. 14

2.2 Architecture of the relation networks for 1-shot, 5-way classification problem
using a query example. Image from [Sung et al., 2018]. 14

2.3 Faster-RCNN and RPN architectures. Images from [Ren et al., 2015]. 15

3.1 Examples of finding common objects problems we consider in this chapter. . . 22

3.2 Architecture of the relation module used for unary and pairwise potentials. . . 25

3.3 Each bag and its elements are shown by a horizontal green box and red circles,
respectively. A subproblem between p-th and q-th bag is presented as Tc(p, q). 28

xv

xvi LIST OF FIGURES

3.4 An example of the greedy inference algorithm on a collection with N = 4
positive bags. The first “Joining” operation (left) creates solution proposals of
size two and the second one (right) creates solution proposals of size four. The
“Pruning” operation (middle) prunes the solution proposals with high energy
values. 29

3.5 Average runtime vs. accuracy of different inference algorithms on miniIm-
ageNet for N ∈ {8, 16}, B̄ ∈ {0, 10, 20}, and B = 10. Each setting is
shown with a distinct color and different inference algorithms are shown with
different type of markers. 34

3.6 Computational time comparison of forward (computing pairwise similarities)
and graphical model inference (in sec.) on COCO dataset. Image from [Sha-
ban et al., 2019]. 35

3.7 Qualitative results on COCO dataset. Every two rows show a sampled col-
lection. For every collection, the first row shows the positive bags followed
by negative bag on the second row. Note that the first image in the first two
collections are identical but the target class (“Cake” vs. “Cat”) is different.
In the first problem, class “Person” does not appear in the negative images.
This could explain why “Unary Only” method detects people in the first prob-
lem. The last row shows a failure case of our algorithm. While “Cup” is the
target object, our method finds “Plant” in the second image. This might be
due to the fact that pot (which has visual similarities to “Cup”) and “Plant”
are labelled as one class in the training dataset. Note that “Dog”, “Cake”
and “Cup” are samples from unseen classes. Selected regions are tagged with
method names. Ground-truth target bounding box is shown in green with tag
“GT”. Image from [Shaban et al., 2019]. 37

3.8 Qualitative results on ImageNet dataset. In each sampled collection, the first
row and the second row show positive and negative images respectively. Sim-
ilar to Figure 3.7, the greedy method performs better when there are multiple
objects in each positive image. Selected regions are tagged with method names.
Ground-truth target bounding boxes are shown in green with tag “GT”. Image
from [Shaban et al., 2019]. 38

4.1 Few-shot WSOD problem. Similar to the few-shot classification problem, the
input training set (support set) only contains image labels (car, cow and
person are novel classes in this example). The model learns to detect the
target objects in the test (query) image. Few-shot WSOD bridges few-shot
classification and object detection by learning to detect the novel objects in the
query images while only needs image-level labels for the support images. . . . 42

LIST OF FIGURES xvii

4.2 The feature maps are shown as the shape of their tensors. Q, M, and C denote
the number of queries, support images, and classes respectively. A pre-trained
Faster-RCNN (shown in Figure 4.3) on the base dataset is used to extract
P proposals from each input image. The embeddings are grouped based on
their corresponding image-level labels and each group is fed into a separate
Common-Object Localization (COL) module. COL module (shown in detail
on the right) receives proposal embeddings of images of a class (Mc is the
number of images within class c) and simultaneously estimates the common
class direction θc and concentration κc along with bounding-box level labels
wc via EM steps. The Object Detection module uses the top labels of wc

to learn an appearance model for each novel class in the support set. This
appearance model is then tested on the testing proposals to detect novel objects
in the query set. 43

4.3 Feature Extraction. We use a pre-trained Faster-RCNN on the base dataset
to extract P proposals from each input image. A `2 normalization layer is
employed to project all the features onto the unit hypersphere. 45

4.4 Two-dimensional T-SNE projection of proposal features extracted from a pre-
trained Faster-RCNN. The proposals are selected using IoU threshold of 0.6
with ground-truth boxes. The instances for each class (approximately) form a
single cluster. 46

4.5 Example of COL across three images. Data points on the unit sphere rep-
resent feature proposals extracted from all input images. Features extracted
from each image are colored the same (shown in white, gray, black colors).
Background score function u−ω(x) is also shown on the unit sphere where blue
and red indicate the highest and lowest background scores, respectively. The
COL unit’s goal is to find a common object representation θ (shown by green
arrow) which is close to at least a white, gray, and black data point. Note
that the area marked with dashed circle is also close to proposals from all three
images but direction θ is favored as it has a lower background score. 48

4.6 Plot of different estimates of κ̂ as a function of r̄, for dimension d = 100.
At this resolution, the exact estimate is indistinguishable from the estimate
Equation (4.21). The graph also shows approximations of different orders,
such as Equation (4.23) and Equation (4.24), which are accurate for small-to-
medium values of r̄, but not for larger values. However, the exact value of κ̄

is extremely sensitive to small variations in the value of r̄, and it diverges to
infinity as r̄ approaches 1. For this reason it may not be good practice (as is
verified by our experiments) to use the exact estimate of κ̄ in clustering. . . . 52

4.7 mAP(%) vs. number of EM iterations in common object localization task
with K = 5 on COCO60 and VOC07 datasets. The performance reaches a
plateau at step 4. 58

xviii LIST OF FIGURES

4.8 Bounding box adjustments at each iteration for the common object localization
experiment on COCO60 with K = 5. Only the top prediction in the query
image is shown (in pink color) for each iteration. Ground-truth bounding
boxes of the target classes are shown in green. EM refinements improve the
target object localization in the query image. 60

4.9 Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object on the 4 different query
images on the right side. The algorithm fails to detect person in the first query
image but successfully detects other target objects. 62

4.10 Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the
right side. 63

4.11 Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the
right side. 64

4.12 Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the
right side. 65

4.13 Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the
right side. 66

4.14 Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the
right side. 67

4.15 5-shot common object localization (N = 1) on MS COCO. Each row shows
one common object localization problem. Ground-truth annotations (shown
in green) are just for visualization and are not used in the algorithm. Top
query bounding box prediction for each problem is shown in pink. 68

5.1 ICM iteration (left) and initialization (right) graphical models. In both graphs,
each node represents a bag (with B proposals) within a dataset with |Tc| = 9
bags. Left: ICM updates the unary label of the selected node (shown in
green). Edges show all the pairwise labels that gets updated in the process.
Since the unary labeling of other nodes are fixed each blue edge represents B
elements in vector r̂c. Right: For initialization we divide the dataset into
smaller mini-problems (with size K = 3 in this example) and solve each of
them individually. Each edge represents B2 pairwise scores that need to be
computed. 79

LIST OF FIGURES xix

5.2 Success cases on ILSVRC 2013 dataset. Unary method that relies on the
objectness function tends to select objects from source classes that have been
seen during training. Note that “banana”, “dog”, and “chair” are sam-
ples from source classes. Bounding boxes are tagged with method names. Each
method is shown with distinct color: “Ours”, “WU”, “Unary”, “WU(Unary)”,
“GT” represent our method, warm-up, unary-only, warm-up with unary, and
groundtruth respectively. 85

5.3 Extended results of Figure 5.2 . 86

5.4 Failure cases on ILSVRC 2013 dataset (see Figure 5.2 for details). 87

5.5 Success and failure cases on COCO dataset. First two rows show the success
cases of our method while the last row shows the failure cases. For a success
case example, the task for the middle image in the second row is to find the
cat. However, other methods selected the dog in this case. For a failure case,
in the bottom right image, our method selected the object inside the mirror
(see Figure 5.2 for details). 87

6.1 Comparing instances of intra order-preserving and order-invariant family
defined on the 2-dimensional unit simplex. Points C1 = [1, 0, 0]>, C2 =
[0, 1, 0]>, C3 = [0, 0, 1]> are the simplex corners. Arrows depict how an
input is mapped by each function. Unconstrained function freely maps the
input probabilities, intra order-preserving function enforces the outputs to
stay within the same colored region as the inputs, and order-invariant func-
tion further enforces the vector fields to be the same among all the 6 colored
regions as reflected in the symmetry in the visualization. 91

6.2 Relationship between different function families. Theorem 1 specifies the intra
order-preserving functions A. Theorem 2 specifies the intra order-preserving
and order-invariant functions A ∩B. Theorem 3 specifies the diagonal intra
order-preserving functions D. By Corollary 1, these functions are also order-
invariant and inter order-preserving i.e. D ⊆ A∩B∩C. 96

6.3 Flow graph of the intra order-preserving function. The vector x ∈ Rn is
the input to the graph. Function m is estimated using a generic multi-layer
neural network with non-linear activation for the hidden layers. The input
to the network is sorted for learning order-preserving functions. We employ
softplus activation function s+ to impose strict positivity constraints. 98

6.4 Accuracy, ECE, and NLL plots in MS and Dir for ResNet 152 on Ima-
geNet with different regularization weights. In the plots, x-axis shows the log
scale regularization and y-axis shows the accuracy, ECE, and NLL of differ-
ent methods, respectively. The value of the bias regularizer is found by cross
validation and kept constant for visualization purpose. Changing the bias
regularizer has little effect on the final shape of the plots. 101

xx LIST OF FIGURES

6.5 Performance evaluations of ResNet 152 (Top Row) and PNASNet5 large
(Bottom Row) on ImageNet dataset. (Left) Reliability diagrams. As sug-
gested by [Maddox et al., 2019] we show the difference between the estimated
confidence and accuracy over M = 15 bins. The dashed grey lines represent
the perfectly calibrated network at y = 0. Points above (below) the grey line
show overconfident (underconfident) predictions in a bin. (Middle) Weighted
reliability diagrams where bin values are weighted by data frequency distri-
bution. Since the uncalibrated network has different distances to the perfect
calibration in different bins, scaling by a single temperature will lead to a
mix of underconfident and overconfident regions. Our order-preserving func-
tions, on the other hand, have more flexibility to reduce the calibration error.
(Right) Transformation learned by Diag function compared to temperature
scaling and uncalibrated model (identity map). 102

6.6 Accuracy, NLL, and ECE vs. calibration set size for CIFAR, CARS, BIRDS
datasets. For each experiment, we use from 10% to 100% of the calibration set
to train pos-hoc calibration functions and plot their accuracy, NLL, and ECE.
Compared to Dir and MS, performance of the intra order-preserving methods
(TS, Diag, OI, and OP) degrades less with reducing the calibration set size. . 104

C.1 Reliability diagrams and learned diagonal functions. See Figure 6.5 for the
explanation of each diagram and axis. 126

C.2 Reliability diagrams and learned diagonal functions. See Figure 6.5 for the
explanation of each diagram and axis. 127

List of Tables

3.1 Statistics of the standard split of the miniImageNet dataset [Ravi and Larochelle,
2017] used for the few-shot common object recognition task. 31

3.2 Results on the miniImageNet dataset using different positive bags N, total number
of negative elements B̄, and bag sizes B = 5 and B = 10. The baseline method uses
cosine similarity on the bag elements as relation module∗. 33

3.3 Comparison of our method with other MIL methods (top), and graphical model
inference methods (middle). The effect of unary and pairwise potentials are shown
in the bottom part (bottom). The common object is found across 8 positive and 8
negative images in these examples∗. 33

3.4 Comparison of different unary potential functions on miniImageNet dataset with
N = 8, B = 5 and B̄ = 10. 34

3.5 Different statistics of the datasets used for the few-shot object co-localization task. . . 34
3.6 Run time and accuracy by varying the bag size and number of positive bags on

COCO dataset. 36
3.7 Average energy values for different graphical model inference methods on the mini-

ImageNet dataset∗. 39
3.8 Average energy values for the few-shot object co-localization task∗. 39

4.1 CorLoc (top) and mAP (bottom) performance of different few-shot common object
localization methods on VOC07 test set. All of the models are trained on COCO60
and evaluated on a test query with K = 5 images in the support set. The best and sec-
ond best performing methods are shown in bold and gray backgrounds respectively.
∗MI-SVM receives K extra negative images. 55

4.2 CorLoc(%) and mAP(%) results of different methods for the task of common object
localization on novel object classes on the COCO60 dataset with support set size
K = 5 and K = 10. ∗MI-SVM receives K extra negative images. 56

4.3 CorLoc(%) and mAP(%) results with κ estimations for the task of COL on novel
object classes on the COCO60 dataset with support set size K = 5 and K = 10. . . . 57

4.4 Class-agnostic CorLoc(%) with 95% confidence interval of the method in Chapter 3
compared to our method. All methods use K = 8 positive images for finding the
common object. 57

4.5 mAP(%) of different few-shot WSOD methods on COCO60 and PASCAL VOC
datasets. 58

4.6 Large-Scale WSOD on ImageNet Detection. 59
4.7 Ablation study on COCO60 dataset. #1-6 show the importance of initializa-

tion, iterative EM updates, and learning the background model. #7-9 compare
different statistical models in the EM algorithm. 61

xxi

xxii LIST OF TABLES

5.1 Performance and time comparison of different initialization algorithms. Our method
exhibits the highest initialization performance for K = 64, however, we get similar
performance for 4 ≤ K ≤ 64 after applying ICM. 82

5.2 Performance of different methods on ILSVRC 2013. Proposal generators and their
backbone models are shown in the second and third column. Total time is shown in
“Training+Inference” format. CorLoc is reported on the target set. The last column
shows the performance of an object detector trained on the target set and evaluated on
the target test set. ∗The first 3 methods use RCNN detector with AlexNet backbone
while other methods utilize Faster-RCNN detector with Inception-Resnet backbone. . 83

6.1 Statistics of the Evaluation Datasets. 99
6.2 Hyperparameters learned by cross validation. For Diag, OI, OP, and Unconstrained we

show the network architectures learned by cross validation. The number of units in each layer

are represented by a sequence of numbers, e.g. (10, 20, 30, 40) represents a network with 10

input units, 20 and 30 units in the first and second hidden layers, respectively, and 40 output

units. We perform multi-fold cross-validation and select the architecture with lowest NLL on

validation set. 100
6.3 ECE (with M = 15 bins) on various image classification datasets and models with

different calibration methods. The subscript numbers represent the rank of the cor-
responding method on the given model/dataset. The accuracy of the uncalibrated
model is shown in parentheses. The number in parentheses in Dir, MS, and Un-
constrained methods show the change in accuracy for each method. 101

6.4 Average relative error. Each entry shows the relative error compared to the uncal-
ibrated model averaged over all the datasets. The subscripts represent the rank of
the corresponding method on the given metric. See the Appendix for per dataset
performance comparisons. 103

6.5 Scores and rankings of different methods for Brier. 103
6.6 NLL. 105
6.7 Classwise ECE. 106
6.8 Temperature scaling effect on Classwise-ECE. A large temperature value improves

the Classwise-ECE in most of the cases. The subscript numbers represent the rank
compared to the values in Table 6.7. We remark that the purpose of this experiment is
not to improve the performance but rather highlight the need for studying Classwise-
ECE metric in the future works. 107

6.9 Debiased ECE [Kumar et al., 2019]. 108
6.10 Marginal Calibration Error [Kumar et al., 2019]. 108

Chapter 1

Introduction

A key aspect of human intelligence is learning new concepts from a limited number
of examples with minimal supervision. As an example, consider the problem of
object detection, where the goal is localizing objects within an image. Suppose we
show a few pictures of a previously unknown object, e.g., “zebra,” to a child and tell
that all of them contain instances of the previously unknown object category. In that
case, the child can learn the new object category and locate instances from that object
category in new images. Note that we only provide weak supervision to solve the
new task, i.e., showing images with the unknown object rather than providing their
bounding boxes to solve the problem. The child can solve the new task since they
have been provided with many examples from similar objects, e.g., horses, during
their life and can transfer that knowledge to the new task.

With the advent of deep learning methods, mixed with large amounts of data
and fast computational resources in recent years, there have been great successes
in solving tasks such as language translation, image classification, and many more.
Deep learning methods supersede the burden of feature engineering by automati-
cally learning task-relevant features as part of the task objective. However, most of
these methods require a large amount of labeled data and computational time to
get near-human performance limiting their applicability in real-world scenarios. The
reason is that hand-labeling data often requires a significant amount of time and in-
vestment. Additionally, the trained models may require solving a similar learning
task but for novel categories in a limited time when deployed in applications. How-
ever, a large amount of training data and expensive computational resources are not
accessible to the clients. Moreover, the clients cannot wait for days of training to have
their tasks solved.

Labeling datasets requires significant effort for tasks such as object detection or
segmentation because they usually require object/pixel-level annotations as shown
in Figure 1.1. Weakly supervised methods have been leveraged in such scenarios
to minimize labor costs. These methods utilize weaker forms of annotations such
as image-level tags to solve the task at hand. Nevertheless, they usually are not
transferable to unknown categories and require many training examples to learn
from weak labels. Meta-learning and few-shot learning techniques, on the other
hand, reduce requiring large training instances in low data regimes. Nonetheless,
these methods require full supervision for new classes.

1

2 Introduction

Figure 1.1: Example of annotations for a supervised object detection problem. Providing
fully annotated datasets can be cumbersome in such tasks.

In this research, we study learning and inference algorithms that shift the burden
of tedious hand-labeled data (as deep networks supersede feature engineering) and
facilitate learning new tasks with limited data or supervision. Our goal is to trans-
fer knowledge from a fully supervised dataset by training a model that can learn to
solve a new unknown learning task by having a (possibly small) number of exam-
ples that themselves have weak labels. Our applications of interest for these tasks
are objection localization and object detection. Furthermore, we explore the applica-
bility of deep learning models in safety-critical applications where the downstream
decision-making system can rely on the predicted probabilities output from these
models.

1.1 Task Definitions and Contributions

1.1.1 Finding Common Objects Across a Few Image Collections

Task definition. In this problem, the input is a small number of bags where each
bag contains multiple elements. An element either belongs to one of the pre-defined
foreground classes or a background class. Given a target class, a bag is considered
positive if at least one of its elements belongs to the target class; otherwise, it is
considered as a negative bag. The algorithm only knows whether a bag is positive or
negative concerning an unknown target class without knowing the elements’ labels.
We say the bag is weakly labeled in this case. The goal of the algorithm is to select one
element from each positive bag such that all the selected elements are from the same
target class (see Figure 1.2). We assume an annotated source dataset with element-
wise annotations comprising multiple known object categories is available during
training. It is assumed that the target class is from a novel category (not seen during
training) at test time. Although this task has many applications in Computer Vision
such as action localization [Yang et al., 2020], object co-segmentation [Vicente et al.,
2011], and etc., we consider the problems of few-shot common object recognition
where each bag element is an image of a single category and few-shot object co-
localization where a bag is an image, and its elements correspond to object proposals
generated from that image.

§1.1 Task Definitions and Contributions 3

Bag 1 Bag 2 Bag 3

Negative BagPositive Bags

Figure 1.2: An example of the finding common objects problem: Each image corresponds to
a bag in this example. Bounding boxes represent the elements of the bags within each image.
In this example, “horse” is the target class and is shown by blue bounding boxes. Orange
boxes show all other non-target elements. In this problem, the negative bag is optional but can
help reduce the ambiguity of the problem. For instance, the “persons” in the positive bags
cannot be the target object since there is a person in the negative bag. The finding common
objects task is defined as finding a selection, one element from each positive bag, such that all
the selected elements are from the same (target) class. So, in this example, we are given the
bags with bounding boxes as their elements. We know whether a bag is positive or negative.
However, we do not know their elements’ labels. The task is to select one horse bounding box
in each positive bag.

Contributions. We formalize the problems of finding instances of common object
categories across small collections and provide a benchmark for evaluating the few-
shot common object recognition and few shot object co-localization tasks. The prob-
lem is formulated as an energy minimization problem with learned unary and pair-
wise potential functions. We propose a specialized algorithm for the structured in-
ference problem that achieves comparable performance to state-of-the-art inference
methods while requiring less computational time. The project was a collaboration
between the author and Professor Byron Boot’s group at the Georgia Institute of
Technology (GATech). The author’s contributions include (i) formalization of the
problem, (ii) a novel greedy merge-and-prune inference heuristic to find the min-
imum cost labeling, and (iii) developing an attention mechanism for learning the
unary potentials. Apart from these contributions, the author contributed to the de-
velopment of all parts of this project. The greedy algorithm uses the fact that the
common object in a set of bags is also a common object in any subset of those bags.
We eliminate the requirement of computing pairwise similarities between all of the
elements in all bags using this simple heuristic. While accurate, it reduced the com-
putational time of the inference by 85% of the other known graph inference methods.

1.1.2 Few-shot Weakly Supervised Object Detection

Task definition. In this task, the input is a support set containing N × K images
with image-level labels where N is the number of previously unseen object classes,
and K is the number of images per class. Each image may contain multiple objects,

4 Introduction

Support Set Query Images

Figure 1.3: An example of the few-shot weakly supervised object detection problem. The
input is a support set comprising a few images containing instances of unseen categories with
only image-level labels. The task is to find instances of the objects (from the novel categories
in the support set) in the query images.

and the number of classes and samples from each class is typically less than 20. The
task is to find all the instances from any of the novel classes in a query image. Similar
to the finding common objects task, we assume having access to a source dataset with
bounding box annotations. Figure 1.3 illustrates an example of the few-shot weakly
supervised object detection task.

Contributions. For the few-shot weakly supervised object detection task, our con-
tributions are as follows: First, based on the recent observations in few-shot classifi-
cation and few-shot object detection [Wang et al., 2020; Tian et al., 2020], we observe
that learning a good embedding works surprisingly well for this task. We elimi-
nate the sophisticated episodic training of relation modules and the greedy inference
method introduced in our previous contribution without reducing the accuracy. We
propose a probabilistic few-shot object co-localization approach that operates directly
on the features extracted from a pre-trained (on the source dataset) object detector
without introducing any new parameter. We assume instances of each class are dis-
tributed around their center and utilize von Mises Fisher (vMF) for our probabilistic
distribution. We remark that our probabilistic model can better capture semantic in-

§1.1 Task Definitions and Contributions 5

Source Dataset Target Dataset

Person, Shorts Laptop, Desk, Monitor

Kettle, Bottle, Gas,

Washing Machine

Person, Shorts

Kettle, Bottle, Gas,

Washing Machine

Laptop, Desk, Monitor

Annotated Target Dataset

Figure 1.4: Knowledge transfer for weakly supervised object localization problem. We have
access to a fully annotated source dataset (left), and images of novel classes in the target
dataset with image-level labels (middle). Our goal is to provide bounding box annotations to
the images in the target dataset (right).

formation than the widely used Gaussian distribution. We employ the expectation-
maximization algorithm to find the parameters of the vMF distribution for each class.
Second, we propose a detection module based on the cosine distance to extend the
object co-localization problem to the few-shot weakly supervised object detection
(FSWSOD). We empirically show that our method, despite the simplicity, outper-
forms other strong baselines for both object co-localization and FSWSOD tasks. The
author is thankful to Amirreza Shaban, who originally came up with the idea of using
expectation-maximization for learning the class parameters and proposal assignment
in weakly supervised settings for Gaussian distributions, which further extended to
vMF distribution by the author of this thesis.

1.1.3 Knowledge-transfer for Weakly Supervised Object Localization

Task definition. This task is similar to the few-shot object co-localization task. The
difference is that in knowledge-transfer for weakly supervised object localization
(WSOL), the task is to localize objects of novel categories in a large-scale weakly
supervised target dataset with the help of a fully annotated source dataset of known
classes. An illustration for this problem is presented in Figure 1.4.

Contributions. In the few-shot object co-localization task, we learn pairwise and
unary scoring functions from the source dataset and apply them at test time on a
small number of bags. Now, what if we have a large-scale target dataset instead of
few weakly labeled bags? In contrast to the few-shot case, we can now adapt our
pairwise and unary scoring functions using the target dataset to improve our local-
ization performance further. It is much harder to perform adaptation in the few-shot
setting because the model will overfit to the input data since we have a small num-
ber of examples. Multiple-Instance Learning (MIL) methods are typically utilized
for model adaptation on the target dataset in the large-scale setting. These methods

6 Introduction

perform alternating optimization to gradually learn a classwise objectness (unary)
function and optimal proposal selection in re-training and re-localization steps. A
class-agnostic objectness score learned from the source dataset guides the optimiza-
tion. We argue that only using objectness is a weak form of knowledge-transfer and
augment the traditional MIL loss function by adding pairwise scoring terms. Similar
to MIL methods, we learn the scoring and selection jointly using alternating opti-
mization. We show that by carefully choosing the loss functions, our re-localization
becomes an integer linear program. A graphical model can represent this problem.
However, most state-of-the-art graph inference methods are not applicable because
of the quadratic increase in pairwise labels. We found that coordinate descent op-
timization methods like Iterated Conditional Modes (ICM) [Besag, 1986] can solve
the problem efficiently. Nevertheless, methods like ICM are prone to local minima
and have poor performance if they are not initialized properly. We provide high-
quality initialization for the ICM algorithm by dividing the target dataset into mul-
tiple smaller subproblems and optimize the re-localization loss for each subproblem
separately. Our approach makes optimization in large-scale settings possible. With
extensive experiments, we show the effectiveness of our proposed method. The au-
thor collaborated with Amirreza Shaban, who helped the author with experiments
and realized that the sigmoid cross-entropy is linear with respect to the labelling.

1.1.4 Post-hoc Confidence Calibration of Deep Neural Networks

Task definition. Deep neural networks are known to have over-confident predic-
tions. In the context of image classification, the output confidence scores they as-
sign to different classes do not match the empirical frequency of predicting those
classes correctly. The mismatch between the predicted confidence score and the em-
pirical frequency restricts their applicability for downstream applications where the
trained models might be adapted based on their confidence scores. In post-hoc con-
fidence calibration of deep networks, the task is to transform the output confidence
scores of a trained model using a hold-out calibration data of small size such that
the transformed confidence scores better match the empirical frequency of predicting
the events of interest correctly. Similar to the previously defined tasks, the post-hoc
confidence calibration methods objective is to learn generalizable transformations of
confidence scores (or logits) given a limited number of calibration examples.

Contributions. In post-hoc calibration, the calibration dataset usually has a small
size. So, learning an overly general calibration function can overfit to the calibra-
tion data and reduce the accuracy of the base model. This fact motivates us to
define intra order-preserving functions that act as a regularization in the space of
calibration functions. An intra order-preserving function is a vector-valued function
where the output has the same ordering as the input. We provide necessary and
sufficient conditions for defining intra order-preserving functions and show how to
model them using basic blocks used in any deep learning framework. We also define
two other subfamilies, namely order invariant and diagonal intra order-preserving

§1.2 Thesis Outline 7

functions, that benefit from the shared characteristics between different categories.
Throughout comprehensive experiments, we show the advantage of the proposed
order-preserving regularisations. While the author was the lead contributor to this
project, he is thankful to Ching-an Cheng and Amirreza Shaban for their help in
providing the proofs presented in Appendix C.

1.2 Thesis Outline

The remainder of this thesis is comprised of 6 chapters. In Chapter 2 we briefly
introduce the introductory background materials and definitions which help under-
stand the rest of the thesis. We also concisely review the prior arts relevant to the
remainder of this manuscript. We formalize the problem of finding common objects
across a few image collections in Chapter 3 and describe the mechanism for learning
the potential functions. Subsequently, we introduce our efficient greedy inference
algorithm for the problem. This work was presented in [Shaban et al., 2019]. In
Chapter 4, we first describe our probabilistic common object localization method.
Then, we extend it to localize novel objects in a query image for the task of few-shot
weakly supervised object detection. This work will be presented in [Shaban et al.,
2022]. We study weakly supervised object localization in the context of knowledge
transfer in Chapter 5. We unify the re-localization and re-training losses for this task
and show that the re-localization problem becomes equivalent to a graph labelling
problem. Furthermore, we present an efficient inference algorithm suitable for large-
scale problems. This work was presented in [Rahimi et al., 2020a]. In Chapter 6,
we investigate deep neural network confidence calibration and introduce the family
of intra order-preserving functions. In addition, we present two other sub-families
related to diagonal and order-invariant functions for learning better calibration func-
tions in low-data regimes. This work was presented in [Rahimi et al., 2020b]. Lastly,
Chapter 7 concludes and explores future directions to extend the works presented in
this thesis.

8 Introduction

Chapter 2

Background and Related Work

In this chapter, we introduce basic concepts and building blocks that have been used
throughout this thesis. We start with defining the problem of supervised learning.
Particularly, we introduce the classification problem and the typical loss function
used in this problem. Next, we define the multiple-instance learning problem that
uses a weaker form of supervision compared to the supervised classification prob-
lem. We also present the two most widely used multiple-instance learning algorithms
based on support vector machines. We study the problem of few-shot image classifi-
cation in which we only have access to a few labeled examples for each class. Then,
the Faster-RCNN architecture for object detection is presented. We also review recent
methods in weakly supervised object localization. Finally, we review the confidence
calibration of the neural networks problem.

2.1 Supervised Learning

The supervised learning problem is typically formulated as searching for a paramet-
ric function fθ : DX → DY, with parameters θ ∈ Θ such that the expectation of a
given loss function L(x, y, fθ) : DX ×DY × Θ → R for input samples x ∈ DX, and
target values y ∈ DY is minimized:

θ? = argmin
θ∈Θ

E
(x,y)∼P

L(x, y, fθ) =
∫
L(x, y, fθ) dP(x, y) . (2.1)

In this formulation, we assume P(x, y) is a joint probability distribution over our
input random variable X and target random variable Y, and Θ is the space of all
parameters we seek to minimize our objective. Random variables X and Y take
values in some domains DX and DY respectively. In classification problems, the label
y takes values from a set of c predefined classes y ∈ [[c]], where we denote this set by
[[c]] := {1, 2, . . . , c}.

The expectation in Equation (2.1) cannot be computed because the distribution
P(x, y) is unknown. But, we assume having access to a training setDtrain = {(xi, yi)}n

i=1
with instances drawn i.i.d from P(x, y). A general approach to finding the function

9

10 Background and Related Work

f is to minimize the empirical risk instead:

θ̂ = argmin
θ∈Θ

1
n

n

∑
i=1
L(xi, yi, fθ) . (2.2)

The goal is to learn the associations between xi and yi from the training data and
(possibly) measure the performance of the learned function on a dataset of unseen
samples known as the test dataset Dtest.

In this thesis, the function fθ is parametrized by a neural network with m param-
eters θ ∈ Θ and is denoted by f (x; θ), with Θ ⊆ Rm representing the space of all
possible parameters. In classification problems, it is assumed that fθ outputs a cate-
gorical distribution over the possible target classes. In this case, the output domain
DY is denoted by a c− 1 dimensional unit simplex denoted by ∆c. A c-dimensional
vector q = [q1, . . . , qc]> ∈ ∆c on the simplex ∆c ⊂ Rc satisfies the following two
conditions: (i) qi ≥ 0, ∀i ∈ [[c]], and (ii) ∑i qi = 1. A target class y ∈ [[c]] corresponds
to a one-hot vector residing on a vertex of the unit simplex. In this case, using

L(xi, yi, fθ) = − log(fyi(xi; θ)) , (2.3)

with fyi denoting the yi-th element of f , corresponds to the well-known negative log-
likelihood (NLL) or the cross-entropy loss function. Thus, the minimization in Equa-
tion (2.2) is equivalent to maximum likelihood estimation of the parameters θ:

θ?MLE = argmin
θ∈Θ

1
n

n

∑
i=1
− log(fyi(xi; θ)) . (2.4)

In deep learning-based classification methods the categorical distribution over the
possible target classes, also known as confidence scores, are obtained by applying a
softmax function at the final layer of the network. The softmax function σSM : Rc →
∆c on a vector z = [z1, . . . , zc]> ∈ Rc is defined as

qi = σSM(z)i =
exp(zi)

∑c
j=1 exp(zj)

, (2.5)

where σSM(z)i is its i-th element. The network outputs before the softmax layer (e.g.,
z in Equation (2.5)) are called the network’s predicted logits.

2.2 Multiple-Instance Learning

Multiple-instance learning (MIL) assumes a weaker form of supervision than the
standard supervised learning by assigning a target value to a set of elements, known
as a bag, instead of having a target value for each element. We assume the set of
indices [[n]] is partitioned into N subsets of indices sets I = {I1, . . . , IN} such that⋃

I∈I I = [[n]], I ⊂ 2[[n]]. For an index set I ∈ I , a bag BI is composed of multiple
elements BI = {ei}i∈I . In the simplest case, each element ei ∈ Rd is assumed to have

§2.2 Multiple-Instance Learning 11

a hidden binary label yi = y(ei) ∈ {0, 1}, and a bag’s binary label YI = Y(BI) ∈
{0, 1} is inherited from the elements in the bag. In the positive case with YI = 1, at
least one of the elements in the bag has a positive label, i.e., ∃i ∈ I s.t. yi = 1. When
the label of a bag is negative, i.e., YI = 0, we conclude that all the elements in the
bag have negative labels, i.e., ∀i ∈ I, yi = 0. Shortly, the relation between the bag and
element labels can be represented by YI = maxi∈I yi.

In the MIL framework, the training dataset is a set of bags with their correspond-
ing label DMIL

train = {(BI ,YI)}N
I=1, and the task is to either predict the label of a test bag

or find the most positive element in test or training bags. Note that the element-wise
labels are unknown to the learning methods in the MIL framework and are used only
for evaluation purposes.

2.2.1 MI-SVM and mi-SVM

The most widely used MIL methods in the computer vision community are mi-
SVM and MI-SVM [Andrews et al., 2003] 1. In these methods, a Support Vector
Machine (SVM) is used to classify the elements in an iterative process. The mi-SVM
formulation is a natural extension of soft-margin SVM as a mixed integer program-
ming problem and can be written as

mi-SVM min
{yi}

min
w,b,ξ

1
2
‖w‖2 + C ∑

i
ξi (2.6)

s.t ∀i : (2yi − 1)(〈w, ei〉+ b) ≥ 1− ξi, ξi ≥ 0, yi ∈ {0, 1},
∑
i∈I

yi ≥ 1 ∀I s.t YI = 1,

yi = 0 ∀I s.t YI = 0,

where the parameter C ≥ 0 determines the importance of mis-classified examples (in-
versely proportional to the strength of regularization.) Note that the optimization is
performed jointly on the soft-margin parameters and latent element labels yi in con-
trast with the standard SVM, where the integer labels are input to the optimization
problem.

In the MI-SVM formulation, the concept of soft-margin on elements is generalized
to a soft-margin defined on bags. In this case, the optimization is written as

MI-SVM min
w,b,ξ

1
2
‖w‖2 + C ∑

I
ξ I (2.7)

s.t ∀I : (2YI − 1)max
i∈I

(〈w, ei〉+ b) ≥ 1− ξ I , ξ I ≥ 0 .

Notice that only the most positive element per positive bag and the least negative
one in each negative bag is considered in the minimization in Equation (2.7), while

1Both “mi” and “MI” are abbreviations for multiple-instance. The lower case “mi” reflects that the
SVM loss is defined on instances (elements) of bags, and the upper case “MI” reflects the fact that the
loss is defined on bags.

12 Background and Related Work

Algorithm 1: mi-SVM Algorithm [Andrews et al., 2003]

Input: DMIL
train = {(BI ,YI)}N

I=1
Output: (w, b)
Initialize y0

i = YI for i ∈ I, t = 0
do

Solve inner minimization for Equation (2.6) given the current labels to get
SVM solutions w, b

Compute outputs fi = 〈w, ei〉+ b for all ei in positive bags
t = t + 1
Set yt

i =
1
2 (sgn(fi) + 1) for every i ∈ I,YI = 1

for every positive bag BI do
if ∑i∈I yt

i == 0 then
Compute i∗ = argmaxi∈I fi
Set yt

i∗ = 1

while yt
i 6= yt−1

i for all i ∈ I,YI = 1
return (w, b)

Algorithm 2: MI-SVM Algorithm [Andrews et al., 2003]

Input: DMIL
train = {(BI ,YI)}N

I=1
Output: (w, b)
Initialize e0

I = ∑i∈I ei/|I| for every positive bag BI , t = 0
do

Find SVM solution (w, b) for Equation (2.7) given the current positive
examples {et

I : YI = 1}
Compute outputs fi = 〈w, ei〉+ b for all ei in positive bags
t = t + 1
Set et

I = eargmaxi∈I fi for every I,YI = 1
while et

I 6= et−1
I for all I,YI = 1

return (w, b)

all the elements contribute to the optimization in Equation (2.6).
Similar to the mi-SVM formulation, the MI-SVM optimization is also a mixed

integer programming problem [Andrews et al., 2003]. These problems cannot be di-
rectly optimized. However, some heuristics using the fact that both Equations (2.6)
and (2.7) can be solved given the labels yi have been proposed. The pseudo-codes
for both mi-SVM and MI-SVM are presented at Algorithm 1 and Algorithm 2 respec-
tively.

2.3 Few-shot Image Classification

In few-shot image classification, we are given an N-way, K-shot support-set of ex-
amples along with their labels S = {(xi, yi)}N×K

i=1 ; each example x ∈ Rd belongs to

§2.3 Few-shot Image Classification 13

one of the K classes, i.e., yi ∈ [[K]], and each class has a small number, N, of labeled
examples. The number of images per class is usually less than 20. Given the support
set, the task is to predict the class y ∈ [[K]] of a query example x ∈ Rd. We assume the
support set examples are sampled from a dataset Dtest at test time. We also assume
having access to a large dataset of labeled examples Dtrain. The classes in the training
dataset Ctrain have no class in common with the classes in the test dataset Ctest, i.e.,
Ctrain ∩ Ctest = ∅.

Few-shot learning has gained a lot of attention in image classification [Doersch
et al., 2020; Rodríguez et al., 2020; Liu et al., 2019; Finn et al., 2017; Vinyals et al., 2016].
These methods are broadly categorized into optimization-based meta-learning [Ravi
and Larochelle, 2017; Finn et al., 2017], metric-based meta-learning [Vinyals et al.,
2016; Snell et al., 2017; Sung et al., 2018], feature reuse-based [Tian et al., 2020; Yang
et al., 2021], and methods with stand-alone architectures [Santoro et al., 2016; Mishra
et al., 2018]. In the following, we introduce two well-known metric-based methods
related to the methods developed in this thesis. These methods use an episodic
training scheme; the model is optimized over the distribution of tasks, each of which
is called an episode, to mimic test-time task-specific learning of image classifiers.

2.3.1 Prototypical Networks

Prototypical networks [Snell et al., 2017] use the mean of embedded support exam-
ples to represent novel class prototypes and classifies query examples by comparing
their distances to the class prototypes. The m-dimensional embedding f : Rd → Rm

is learned during training. The mean ck ∈ Rm of support examples for class k is
computed by

ck =
1
N ∑

(xi ,yi)∈S
yi=k

f (xi) . (2.8)

As illustrated in Figure 2.1, the query example x is classified by producing a
distribution over the K classes using the Euclidean distance between its embedding
f (x) and the class centers ck

p(y = k|x) = exp(−‖ f (x)− ck‖2
2)

∑k′ exp(−‖ f (x)− ck′‖2
2)

. (2.9)

2.3.2 Relation Networks

Instead of using the Euclidean distance to compare the samples in the embedding
space, relation networks [Sung et al., 2018], shown in Figure 2.2, learn a similarity
function between support examples and the query example to classify images from
unseen classes. The relation score rk between the samples xi of class k and the query
x is computed by

rk = g([ck, f (x)]), (2.10)

14 Background and Related Work

Figure 2.1: Prototypical Networks classification in the embedding space. Image from [Snell
et al., 2017].

Figure 2.2: Architecture of the relation networks for 1-shot, 5-way classification problem
using a query example. Image from [Sung et al., 2018].

where g is the learnable relation module, ck is computed using Equation (2.8), and
[·, ·] represents the concatenation operation. The class with the highest relation score
is returned as class prediction y for the query example x, i.e., y = argmaxk∈[[K]] rk .

2.4 Object Detection

In the object detection problem, the task is to find the locations of objects from a pre-
defined set of categories in an image. The locations are usually defined with coordi-
nates of axis-aligned bounding boxes that tightly enclose the instances in the image.
There have been many different object detection approaches proposed in computer
vision literature. In this thesis, we only consider the region-based Faster-RCNN [Ren
et al., 2015] method. The conceptual Faster-RCNN architecture is presented in Fig-
ure 2.3a. It has two stages:

1. In the first stage, the first stage feature extractor, implemented by a Convo-
lutional Neural Network (CNN), is employed to provide feature maps repre-

§2.4 Object Detection 15

senting the input image. These feature maps are then fed to a Region Pro-
posal Network (RPN) to determine bounding box region proposals that may
contain an object. The RPN, illustrated in Figure 2.3b, is a simple convolu-
tional network that predicts k bounding boxes and their corresponding fore-
ground/background scores for each spatial point in the feature map. The
k bounding boxes, called anchor boxes, are pre-defined boxes with different
aspect ratios with respect to the original image size. A classification layer
produces the foreground/background scores, and a regression layer refines
the coordinates of the given anchor boxes. These layers are supervised us-
ing a training dataset with bounding box annotations. Notice that for the RPN
network, the classification layer does not disambiguate different classes and
is hence called a class-agnostic classifier. The proposals with the highest fore-
ground scores (usually 300 proposals are kept) after applying a non-maximum
supression (NMS) operation are selected for the second stage.

2. In the second stage, the top bounding box region proposals and the feature map
are input to an ROI align or pooling layer. The ROI align layer crops the feature
map using the proposals bounding box coordinates and resizes them to a given
size. The resized features are fed to a second stage feature extractor. The final
feature for each region is then fed to classification and regression heads. The
classification head predicts the class of the corresponding region to be one of
the c foreground classes or a background class c∅. The regression head further
refines the region bounding box for each of the c classes. Finally, an NMS
operation followed by score thresholding determines the predicted bounding
boxes and their corresponding classes.

(a) Faster-RCNN. (b) Region Proposal Network.

Figure 2.3: Faster-RCNN and RPN architectures. Images from [Ren et al., 2015].

16 Background and Related Work

2.5 Weakly Supervised Object Localization

In Weakly Supervised Object Localization (WSOL), only image-level annotations are
provided in contrast to supervised object detection, where bounding box annotations
are available during training.

We review the MIL-based algorithms among other branches in WSOL [Bilen and
Vedaldi, 2016; Tang et al., 2014]. These approaches exploit alternating optimization to
learn a detector and the optimal selection jointly. The algorithm iteratively alternates
between re-localizing the objects given the current detector and re-training the de-
tector given the current selection. In recent years, alternating optimization schemes
combined with deep neural networks have been the state-of-the-art in WSOL [Wan
et al., 2019; Gao et al., 2019; Zhu et al., 2017]. However, due to the non-convexity of
the objective function, these methods are prone to a local minimum which typically
leads to sub-optimal results [Bilen et al., 2015; Wan et al., 2018] e.g., selecting the
salient parts instead of the whole object. Addressing this issue has been the main
focus of research in WSOL in recent years [Cinbis et al., 2016; Kumar et al., 2010;
Wan et al., 2019]. In multi-fold [Cinbis et al., 2016] learning, a weakly supervised
dataset is split into separate training and testing folds to avoid overfitting. Kumar
et al. [2010] propose an iterative self-paced learning algorithm that gradually learns
from easy to hard samples to avoid getting stuck in bad local optimum points. Wan
et al. [2019] propose a continuation MIL algorithm to smooth out the non-convex loss
function in order to alleviate the local optimum problem systematically.

Transfer learning is another way to improve WSOL performance. These ap-
proaches utilize the information in a fully annotated dataset to learn an improved
object detector on a weakly supervised dataset [Uijlings et al., 2018; Hoffman et al.,
2016; Rochan and Wang, 2015; Guillaumin and Ferrari, 2012]. They leverage the
common visual information between object classes to improve the localization per-
formance in the target weakly supervised dataset. The fully annotated source dataset
is used to learn a class-agnostic objectness measure in a standard knowledge-transfer
framework. This measure is incorporated during the alternating optimization step
to steer the detector toward objects and away from the background [Uijlings et al.,
2018]. Although the objectness measure is a powerful metric in differentiating be-
tween background and foreground, it does not discriminate between different ob-
ject classes. Several works have utilized pairwise similarity measures for improv-
ing WSOL [Shaban et al., 2019; Deselaers et al., 2010; Tang et al., 2014]. Deselaers
et al. [2010] frame WSOL as a graph labeling problem with pairwise and unary po-
tentials and progressively adapt the potential functions to learn weakly supervised
classes. Tang et al. [2014] utilize the pairwise similarity between proposals to cap-
ture the inter-class diversity for the co-localization task. Hayder et al. [2014, 2015]
use pairwise learning for object co-detection. The method in [Hayder et al., 2014,
2015] assumes Gaussian edge potentials, which is somewhat limited compared to
flexible deep comparators. Their method does not assume the target objects are from
novel classes. Also, their method does not work in the knowledge-transfer setting,
which we think is more practical. Furthermore, [Hayder et al., 2015; Deselaers et al.,

§2.5 Weakly Supervised Object Localization 17

2010] require computing all pairwise potentials, which is the bottleneck in large-scale
settings.

Co-localization [Li et al., 2016], co-segmentation [Li et al., 2018; Vicente et al.,
2011], and co-saliency [Zhang et al., 2015] methods have the same kind of output
as weakly-supervised object localization, but they typically do not utilize negative
examples. More recently, several methods were developed for localizing the common
novel object under the few-shot setting [Hu et al., 2019; Siam et al., 2020]. SILCO [Hu
et al., 2019] finds the common object by computing a dense similarity map between
each image in the support set and the query while only exploring the similarity
among support images using their coarse image-level features via a global average
pooling. Although using global average pooling reduces the computation, ignoring
the dense similarities among support images negatively affects the common object
localization.

2.5.1 Knowledge-Transfer in MI-SVM WSOD

We briefly describe the method proposed in [Uijlings et al., 2018] for knowledge-
transfer in weakly supervised object localization. This method is essentially MI-SVM
(Algorithm 2) augmented with objectness scores from a pre-trained Faster-RCNN
trained on the training dataset Dtrain. In this method, each image is represented as a
bag of bounding box proposals B. Learning is performed on one target class y ∈ [[c]]
at a time. The support set is split into positive images which has the target class and
a negative set of images without the target class. Then, a linear SVM appearance
model is employed to iteratively learn class y by alternating between two steps:

• Re-training: Train a binary SVM given the currently selected proposals from the
positive images and the proposals in negative images.

• Re-localization: Given the current SVM select the proposal with the highest score
from each positive image. In [Uijlings et al., 2018], the re-localization is guided by a
class-agnostic objectness measure to guide the selection toward objects. Therefore,
the selection for a positive image x with bounding box proposals B is updated as

B∗ = argmax
B∈B

SVM(x, B) + γO(x, B) , (2.11)

where O is the objectness model and γ adjusts its importance.

The algorithm is initialized with complete image bounding box proposal and alter-
nates between above steps until convergence. Finally, test proposal x from the test set
Dtest is scored using the SVM trained for each class. A hard negative mining in [Ui-
jlings et al., 2018] is employed to improve the performance of the classifier. In this
approach the negative set is initialized with full bounding box negative image fea-
tures and the hardest negative proposal within each image is added to the negative
set after each re-training step.

18 Background and Related Work

2.6 Confidence Calibration of Neural Networks

Deep neural networks have shown remarkable accuracy in classification tasks. How-
ever, it is known that these models do not have calibrated confidence scores [Guo
et al., 2017]; meaning that the confidence score they assign to a set of events does not
match the true frequency of those events. These high capacity models are known to
overfit the NLL loss resulting in over-confident predictions. Various methods have
been proposed to adjust the models such that the confidence scores become cali-
brated.

Obtaining well calibrated predictors has been studied by meteorologists and
statisticians for several decades. Brier [Brier, 1950] studied the verification of weather
forecasts when they are expressed in terms of probabilities and introduced the fa-
mous Brier score. Many follow up works studied the concept of reliability [Murphy
and Winkler, 1977], proper scoring rules [Winkler and Murphy, 1968], and calibration
and refinement [DeGroot and Fienberg, 1983] in a similar context. In general, there
are three different approaches to enforce better confidence calibration in modern
neural networks: (i) post-hoc calibration methods that learn a calibration function,
usually using a held-out calibration data, that transforms the pre-trained model’s log-
its (or confidence scores) such that the transformed confidences become calibrated.
(ii) Regularization-based methods that introduce regularization in the training pro-
cedure of models to avoid overfitting to the NLL loss. (iii) Bayesian neural networks
that derive the uncertainty of the predictions by making stochastic perturbation of the
original model. We briefly introduce these approaches in the following paragraphs.
However, in this thesis, we only consider post-hoc calibration methods.

Many different post-hoc calibration methods have been studied in the litera-
ture [Platt, 1999; Guo et al., 2017; Kull et al., 2019, 2017b,a; Kumar et al., 2019]. Their
main difference is in the parametric family of the calibration function. In Platt scal-
ing [Platt, 1999], scale and shift parameters a, b ∈ R are used to transform the scalar
logit output x ∈ R i.e. f (x) = ax + b of a binary classifier. Temperature scaling [Guo
et al., 2017] is a simple extension of Platt scaling for multi-class calibration in which
only a single scalar temperature parameter is learned. Dirichlet calibration [Kull
et al., 2019] allows learning within a richer linear functions family f (x) = Wx + b,
where W ∈ Rc×c and b ∈ Rc but the learned calibration function may also change the
decision boundary of the original model; [Kull et al., 2019] suggested regularizing
the off-diagonal elements of W to avoid overfitting. Earlier works like isotonic regres-
sion [Zadrozny and Elkan, 2002], histogram binning [Zadrozny and Elkan, 2001], and
Bayesian binning [Zadrozny and Elkan, 2002] are also post-hoc calibration methods.

In contrast to post-hoc calibration methods, several researches proposed to mod-
ify the training process to learn a calibrated network in the first place. Data aug-
mentation methods [Thulasidasan et al., 2019; Yun et al., 2019] overcome overfitting
by enriching the training data with new artificially generated pseudo data points
and labels. Mixup [Zhang et al., 2018] creates pseudo data points by computing the
convex combination of randomly sampled pairs. Cutmix [Yun et al., 2019] uses a
more efficient combination algorithm specifically designed for image classification in

§2.6 Confidence Calibration of Neural Networks 19

which two images are combined by overlaying a randomly cropped part of the first
image on the second image. In label smoothing [Pereyra et al., 2017; Müller et al.,
2019], the training loss is augmented to penalize high confidence outputs. To dis-
courage overconfident predictions, [Seo et al., 2019] modifies the original NLL loss
by adding a cross-entropy loss term with respect to the uniform distribution. Simi-
larly, [Kumar et al., 2018] adds a calibration regularization to the NLL loss via kernel
mean embedding.

Bayesian neural networks [Gal and Ghahramani, 2016; Maddox et al., 2019] derive
the uncertainty of the prediction by making stochastic perturbations of the original
model. Notably, [Gal and Ghahramani, 2016] uses dropout as approximate Bayesian
inference. [Maddox et al., 2019] estimates the posterior distribution over the param-
eters and uses samples from this distribution for Bayesian model averaging. These
methods are computationally inefficient since they typically feed each sample to the
network multiple times.

20 Background and Related Work

Chapter 3

Efficient Inference for Finding
Common Objects Across Small
Image Collections

Few-shot learning algorithms have gained a lot of attention in recent years. While
these methods perform well in tasks such as few-shot classification, their applica-
bility is relatively restrained in real-world scenarios such as field robotics in which
annotating the few examples is conceived as an obstruct. In this chapter, we study
the problem of finding common objects among a few weakly supervised bags.

We pose the problem as a minimum cost graph labeling optimization on a densely
connected graphical model. Each graph node represents a bag where every element
in the bag corresponds to one possible label at the node. First, we employ the relation
module to learn pairwise potentials from a fully annotated source dataset and pro-
pose a novel attention mechanism to incorporate the information in the negative bag
as our unary potentials. Next, we present an efficient greedy inference algorithm that
takes advantage of the inherent structure of the problem that a common object among
a set of positive bags is also a common object among any subset of those bags. We
eliminate the requirement of computing pairwise similarities between all elements in
all of the bags using this simple heuristic. Without reducing the performance, our
inference method reduces the computational time by ∼ 85% compared to the other
known graph inference methods for the problem of few-shot object co-localization.

3.1 Introduction

We study the problem of finding common objects across a collection containing a
small number of bags. A bag is a set with multiple elements, each belonging to
a single category. The collection contains multiple positive bags and an optional
negative bag with respect to a given target category. The target category and its
objects have been unknown to our algorithm during training and testing. A bag
is labeled as positive if at least one of its elements is from the target category and
negative otherwise. The task is defined as finding one instance of the target category

21

22 Efficient Inference for Finding Common Objects Across Small Image Collections

Positive Bags

Negative Bag

(a) Few-shot object co-localization. Each image in the top row corresponds to a positive bag containing
a set of region proposals (shown with bounding boxes). The task is to select one region per positive
bag such that the selected regions contain a shared category (green bounding boxes). Region proposals
from the images in the bottom row form a negative bag as they do not contain the common object. The
negative bag is optional here but can reduce ambiguity. For example, since a dog is present in the
negative bag, it can not be the desired common object.

(b) Few-shot common object recognition. Each rounded box represents a bag containing multiple
images as its elements. Green boxes are positive bags and the negative bag is shown by a red rounded
box. Here, the common object class is camera which is present in all of the green boxes and not present
in the red box.

Figure 3.1: Examples of finding common objects problems we consider in this chapter.

in each positive bag. In this scenario, we overcome the difficulty of annotating all the
elements in a bag by only providing bag-level annotations.

Object co-segmentation, co-localization, co-saliency, tracking, and video instance
segmentation are among the popular computer vision applications that have been
expressed as a form of the finding common objects problem [Vicente et al., 2011;
Faktor and Irani, 2013; Hsu et al., 2018; Fu et al., 2014; Babenko et al., 2009; Shaban
et al., 2019; Zhang et al., 2015]. As an example, consider the problem of few-shot ob-

§3.2 Problem Setup 23

ject co-localization in Figure 3.1a. Each image corresponds to a bag in this problem,
and the region proposals extracted from that image are the bag elements. The goal is
to select one region proposal per positive image such that all the selected proposals
share a common (and non-background) object category. While our method consid-
ers the general problem of finding common objects, we evaluate it on two different
tasks (see Figure 3.1): (i) few-shot common object recognition and (ii) few-shot object
co-localization.

A common approach to solve the problem of finding common objects is to for-
mulate it as a minimum cost graph labeling optimization on a densely connected
and undirected graphical model with learned pairwise and unary potentials [Vicente
et al., 2011]. Each node of the graph represents a positive bag in which every element
in the bag corresponds to one possible label at the node. The optimization objective,
called graph labeling, is to assign a single label to each node in the graph such
that the selected labels correspond to the common objects. The pairwise potential
functions measure how well two elements from two distinct positive bags are from
the same (foreground) class. Similarly, the unary potential function for an element
estimates how it differs from the elements in the negative bag.

We follow the relation network [Sung et al., 2018; Shaban et al., 2019] to compute
pairwise potentials. In addition, we propose a novel method to compute the relation
between an element in a positive bag and all the elements in the negative bag to
estimate the unary potential.

After computing unary and pairwise potentials, a simple merge-and-prune infer-
ence heuristic is used to find a minimum-cost labelling. This provides a simple but
effective solution to the NP-hard problem of optimal graph labelling. The proposed
greedy search algorithm for finding the common object is based on the following
observation: the common object for the complete problem is a common object in any subset
of the bags as well.

We note that graphical models have been previously used for Multiple-Instance
Learning (MIL) problems [Deselaers and Ferrari, 2010; Hajimirsadeghi et al., 2013].
However, our method is motivated by recent few-shot classification methods to find
common objects of novel classes.

3.2 Problem Setup

We consider a bag B = {ei} where an element ei ∈ Rd is represented by a d-
dimensional feature vector. We denote y(e) ∈ C ∪ {c∅} the label for element e. Here,
C is a set of categories of interest and c∅ represents the background class. Given a
class c ∈ C, we can also define the unary labeling function

yc(e) =

{
1 if y(e) = c
0 otherwise.

(3.1)

The label for bag B is written as Y(B) =
⋃

e∈B
y(e) − {c∅}. Let Yc(B) ∈ {0, 1}

24 Efficient Inference for Finding Common Objects Across Small Image Collections

denote the binary bag label which indicates the presence/absence of class c in bag B.
With this notation, a collection Tc given a class c is defined as a set with positive bags
that contain at least one element e with yc(e) = 1 and a negative bag with all elements
ē having yc(ē) = 0. Formally, a collection is an ordered set Tc = (B1, . . . ,BN , B̄)
comprising of positive bags Bj and an optional negative bag B̄ with the following
two properties:

1. ∀j ∈ {1 . . . N}, ∃e ∈ Bj s.t. yc(e) = 1.

2. ∀ē ∈ B̄, yc(ē) = 0.

For simplicity, we also introduce a pairwise labeling function between pairs of
elements. The pairwise labeling function r : Rd × Rd → {0, 1} is designated to
output 1 when two elements belong to the same object class and 0 otherwise, i.e.,

r(e, e′) =

{
1 if y(e) = y(e′) 6= c∅
0 otherwise.

(3.2)

Likewise, given a class c, two proposals are related under the class conditional pair-
wise labeling function rc : Rd ×Rd → {0, 1} if they both belong to class c. Further-
more, we also define the relation between an element e from a positive bag and a
negative bag B̄ as:

r(e, B̄) = max
ē∈B̄

r(e, ē) . (3.3)

The input to our algorithm is a collection Tc with a previously unseen class c. The
only information we have about the collection is whether a bag is positive or negative
in the collection. The task is to output a selection of elements, namely an ordered set
S = (e1, . . . , eN) where ej is from positive bag Bj, such that the selected elements are
from class c, i.e., ∀ej ∈ S, yc(ej) = 1.

Energy function. Here, we follow the definition in [Shaban et al., 2019] to formu-
late the problem of finding common object as finding a selection S that minimizes
the following energy function:

E(S | B̄) = ∑
ei ,ej∈S

i>j

ψP
θ (ei, ej) + η ∑

ei∈S
ψU

β (ei | B̄), (3.4)

where ψP
θ (·, ·) and ψU

β (· | B̄) are pairwise and unary potential functions with trained
parameters θ and β, and hyperparameter η ≥ 0 controls the effect of the unary terms.
We set η = 0 when there is no element in the negative bag B̄. We will describe the
neural network architecture of both unary and pairwise functions in Section 3.3. The
pairwise potential function favors selecting pairs having the same object class. The
unary potential discourages choosing elements similar to any element in the negative
bag.

§3.3 Potential Functions 25

ta
n
h

σ

W
1 ,b1

W
2 ,b2

w,b

e
e′

[⋅,⋅]

r(e,e′
)

⊗ ⊕

Figure 3.2: Architecture of the relation module used for unary and pairwise potentials.

3.2.1 Dataset Setup

A dataset D is a set of bags with elements and their corresponding classes. For a
bag B in a dataset, Y(B) ⊆ C is inferred from the elements’ classes as mentioned
in Section 3.2. To sample collections Tc from a dataset D, we first sample a class
c ∈ C. Then, we randomly sample N positive bags Bj with Yc(Bj) = 1. We also
sample a predefined number of bags with Yc(B) = 0 and consider their union as
a single negative bag B̄. We use the notation Tc ∼ D to indicate that a random
collection for a target class c is drawn from the dataset D.

We assume having access to a fully annotated training dataset Dtrain with classes
Ctrain. We build the groundtruth pairwise and unary labeling functions for Dtrain as
defined in Section 3.2. To sample a positive bag of size B in the few-shot common
object recognition task, we first randomly sample a target class c. Then, we sample
one image with label c and B − 1 images with any class c′ ∈ C. Similarly, for a
negative bag of size B̄, we sample B̄ images with classes c′ 6= c. For the few-shot
object co-localization task, a positive bag with respect to a class c ∈ C corresponds to
an image that contains at least one instance of class c. The elements in the bag are
generated by a pre-trained region proposal network (RPN) on the fully supervised
training dataset Dtrain. A negative bag in this case is generated by the union of all
the region proposals from B̄ images which do not contain class c.

Evaluations are performed on sampled collections from a test dataset Tc ∼ Dtest.
There are no shared element between the training and test datasets. In addition, the
set of classes Ctest used for the test dataset is disjoint from the set of classes used
during training, i.e., Ctest ∩ Ctrain = ∅. At test time we only know whether a bag is
positive or negative with respect to some unknown class c. The ground-truth labeling
functions are unknown to the algorithm and are only used for evaluation.

3.3 Potential Functions

Relation module. We adopt the relation module [Sung et al., 2018; Shaban et al.,
2019] for learning a similarity measure between a pair of elements. The relation

26 Efficient Inference for Finding Common Objects Across Small Image Collections

module learns a mapping r̂φ : Rd ×Rd → R with parameters φ, mapping the feature
vector of two elements to a scalar value. It consists of an embedding module f (·, ·) :
Rd ×Rd → Rd followed by a linear comparator function:

f (e, e′) = tanh(W1[e, e′] + b1)σ(W2[e, e′] + b2) + (e + e′)/2, (3.5)

r̂φ(e, e′) = w> f (e, e′) + b, (3.6)

where W1, W2 ∈ Rd×2d and vectors b1, b2 ∈ Rd are the parameters of the embedding
module, w ∈ Rd, b ∈ R are the parameters of the comparator, [·, ·] representing
concatenation, and tanh(·) and σ(·) are hyperbolic tangent and sigmoid activation
functions respectively, applied component-wise to vectors in Rd (see Figure 3.2).

Pairwise potentials. The pairwise potential function should have lower energy
when its input elements are more similar. Therefore, as described in [Shaban et al.,
2019], we define the pairwise potential function between two elements (e, e′) as the
negative of the output of the pairwise relation module with parameters θ: ψP

θ (e, e′) =
−r̂θ(e, e′). We employ sigmoid cross-entropy as the pairwise loss for a sampled
collection Tc ∼ Dtrain:

LP(Tc) = −
1

NP
∑

(e,e′)∼TC

(
r(e, e′) log σ(r̂θ(e, e′)) + (1− r(e, e′)) log σ(1− r̂θ(e, e′))

)
,

(3.7)
where the sum is over all the positive pairs in the collection, NP = B2N(N − 1)/2 is
the total number of such pairs, relation r(·, ·) defined in Equation (3.2) is the ground-
truth pairwise labeling function, and σ(x) = 1

1+e−x is the sigmoid function. In prac-
tice, we train the pairwise potential function on collections with N = 2 positive
bags. For the few-shot object co-localization task where the number of background
elements (i.e., region proposals) are much more than the foreground ones, we sub-
sample the elements in each bag pair with 25% positive (or same class) and 75%
negative (different classes) pairs.

Unary potentials. The purpose of unary potential function ψU
β (e | B̄) is to deter-

mine if there is any similarity between the element e and the elements ē ∈ B̄. If
there is such a similarity, the value of the unary potential function should be high. A
natural choice would be using

ψU
β (e|B̄) = max

ē∈B̄
r̂β(e, ē), (3.8)

where β is the (new) set of parameters for unary relation function r̂β. Nevertheless,
this results in sparse gradients and using only the maximum element ē in the nega-
tive bag can be noisy when there are multiple similar elements in B̄ to the element e.
To alleviate the problems, we propose to use a soft-attention based averaging of the
relations so that all elements in the negative bag can contribute to the unary potential

§3.3 Potential Functions 27

function proportionally to their similarity to e

ψU
β,T(e | B̄) =

∑ēk∈B̄ r̂β(e, ēk) exp(r̂β(e, ēk)/T)

∑ēk∈B̄ exp(r̂β(e, ēk)/T)
. (3.9)

Here, T > 0 is the temperature scaling parameter that controls the behavior of the
unary potential function. We remark that when T → +∞, the unary potential func-
tion captures the mean value of relations between e and all elements ē ∈ B̄ and it
meets the maximum value like Equation (3.8) when T → 0. The unary loss for a sam-
pled collection Tc is defined by sigmoid cross-entropy loss between r(e, B̄) (defined
in Equation (3.3)) and the predicted unary potential function

LU(Tc) = −
1

NB ∑
Bj∈Tc

∑
e∈Bj

(
r(e, B̄) log σ(ψU

β,T(e | B̄))+ (1− r(e, B̄)) log σ(1− ψU
β,T(e | B̄))

)
.

(3.10)
Denoting all the parameters of unary and pairwise loss functions as Θ = (θ, β, T),

we minimize the total loss function using the collections sampled from the training
dataset:

argmin
Θ

E
c∼Ctrain
Tc∼Dtrain

{
LU(Tc) + LP(Tc)

}
. (3.11)

Optimizing the loss function by sampling collections is similar to the episodic train-
ing for few-shot learning methods [Finn et al., 2017; Snell et al., 2017]. The training
episodes are similar to the collections that we want to test on. This can capture the
prior distribution of related and unrelated pairs [Shaban et al., 2019].

Although both unary and pairwise potential functions utilize relation modules in
our implementation, they have disjoint parameter sets. The reason is that the class
distribution of their inputs is different. The pairwise potential function only com-
pares pairs of elements in positive bags while the unary potential function computes
the relation between an element from a positive bag to all elements in a negative bag.
This architectural choice has been validated in [Shaban et al., 2019].

3.3.1 Inference

Minimizing the energy functions defined in Equation (3.4) is an NP-hard problem
in general. However, it has a mature field and numerous methods, e.g., AStar
search [Bergtholdt et al., 2010], loopy belief propagation [Weiss and Freeman, 2001],
and Tree-Reweighted Sequential (TRWS) [Kolmogorov, 2006], each with its own pros
and cons, have been proposed to find an approximate solution.

Our approach is designed to decompose the overall problem into smaller sub-
problems, solve them, and combine their solutions to find a solution to the overall
problem. This is based on the observation that “a solution to the overall problem will
also be a valid solution to any of the subproblems.” Let Tc(p, q) = {Bp,Bp+1, ...,Bq} be a
subsequence of the positive bags in Tc (see Figure 3.3). Then, a subproblem refers
to finding a set of common object proposals P for Tc(p, q) with low energy values;

28 Efficient Inference for Finding Common Objects Across Small Image Collections

P represents a collection of proposed selections of elements from the sequence of
bags Tc(p, q). The energy value for a selection Sp,q ∈ P is defined as sum of all pair-
wise and unary potentials in the subproblem, similar to how the energy function is
defined for the overall problem in Equation (3.4).

eNBeN2eN1

e1Be12e11

epBep2ep1

eqBeq2eq1
}

Subproblem

B1
<latexit sha1_base64="bTmt0r07GT4oCmOWRXc1zEBqPiE=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaqoMtSNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzJgSkTbmA3dQrjhVZwG8TtycVCBHc1D+6g8jmoRMGiqI1j3XiY2XEmU4FWxe6ieaxYROyIj1LJUkZNpLF6Hn+MIqQxxEyj5p8EL9vZGSUOtZ6NvJLKRe9TLxP6+XmODWS7mME8MkXR4KEoFNhLMG8JArRo2YWUKo4jYrpmOiCDW2p5ItwV398jpp16ruVbX2cF2pN/I6inAG53AJLtxAHe6hCS2g8ATP8ApvaIpe0Dv6WI4WUL5zCn+APn8AoKGSAA==</latexit>

Bp
<latexit sha1_base64="z2fTKAPuufwZ/ooZ7mFcLD9LiCw=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaqoMtSNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzJgSkTbmg3hQrjhVZwG8TtycVCBHc1D+6g8jmoRMGiqI1j3XiY2XEmU4FWxe6ieaxYROyIj1LJUkZNpLF6Hn+MIqQxxEyj5p8EL9vZGSUOtZ6NvJLKRe9TLxP6+XmODWS7mME8MkXR4KEoFNhLMG8JArRo2YWUKo4jYrpmOiCDW2p5ItwV398jpp16ruVbX2cF2pN/I6inAG53AJLtxAHe6hCS2g8ATP8ApvaIpe0Dv6WI4WUL5zCn+APn8AACySPw==</latexit>

Bq
<latexit sha1_base64="gsTpN3h6Ox6B+/BEHpO4ZXpW0EE=">AAAB9HicbVDLSgMxFL3xWeur6tJNsAiuykwVdFnqxmUF+4B2KJk004ZmMtMkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JPjx4Jr4zjfaGNza3tnt7BX3D84PDounZy2dJQoypo0EpHq+EQzwSVrGm4E68SKkdAXrO2P7zO/PWVK80g+mVnMvJAMJQ84JcZKXi8kZkSJSOvz/qRfKjsVZwG8TtyclCFHo1/66g0imoRMGiqI1l3XiY2XEmU4FWxe7CWaxYSOyZB1LZUkZNpLF6Hn+NIqAxxEyj5p8EL9vZGSUOtZ6NvJLKRe9TLxP6+bmODOS7mME8MkXR4KEoFNhLMG8IArRo2YWUKo4jYrpiOiCDW2p6ItwV398jppVSvudaX6eFOu1fM6CnAOF3AFLtxCDR6gAU2gMIFneIU3NEUv6B19LEc3UL5zBn+APn8AAbCSQA==</latexit>

BN
<latexit sha1_base64="7rXSr0PrL7hysKqHuSfRiqgmFqE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLUjSupYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dtbWNza3tgs7xd29/YPD0tFxS8tEEdokkkvVCbCmnAnaNMxw2okVxVHAaTsY32Z+e0KVZlI8mmlM/QgPBQsZwcZKfi/CZkQwT+uz/n2/VHYr7hxolXg5KUOORr/01RtIkkRUGMKx1l3PjY2fYmUY4XRW7CWaxpiM8ZB2LRU4otpP56Fn6NwqAxRKZZ8waK7+3khxpPU0CuxkFlIve5n4n9dNTHjjp0zEiaGCLA6FCUdGoqwBNGCKEsOnlmCimM2KyAgrTIztqWhL8Ja/vEpa1Yp3Wak+XJVr9byOApzCGVyAB9dQgztoQBMIPMEzvMKbM3FenHfnYzG65uQ7J/AHzucPzJWSHQ==</latexit>

Tc(p, q)
<latexit sha1_base64="reAtkRCN51oMqP5SBFA2HnyOefs=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQQUpSBV0W3bis0Be0IUym03boZBJnJmIJ+RU3LhRx64+482+ctFlo64GBwzn3cs8cP2JUKtv+Ngpr6xubW8Xt0s7u3v6BeVjuyDAWmLRxyELR85EkjHLSVlQx0osEQYHPSNef3mZ+95EISUPeUrOIuAEaczqiGCkteWZ5ECA1wYglrdTD1ej84cwzK3bNnsNaJU5OKpCj6Zlfg2GI44BwhRmSsu/YkXITJBTFjKSlQSxJhPAUjUlfU44CIt1knj21TrUytEah0I8ra67+3khQIOUs8PVkllQue5n4n9eP1ejaTSiPYkU4XhwaxcxSoZUVYQ2pIFixmSYIC6qzWniCBMJK11XSJTjLX14lnXrNuajV7y8rjZu8jiIcwwlUwYEraMAdNKENGJ7gGV7hzUiNF+Pd+FiMFox85wj+wPj8AWi6lAU=</latexit>

Figure 3.3: Each bag and its
elements are shown by a hori-
zontal green box and red circles,
respectively. A subproblem be-
tween p-th and q-th bag is pre-
sented as Tc(p, q).

The decomposition method starts at the root (i.e.,
full problem) and divides the problem into two dis-
joint subproblems 1 and recursively continues divid-
ing each into two subproblems until each subprob-
lem only contains a single bag Bj. If N = 2Z, then
this can be represented as a full binary tree2 where
each node represents a subproblem. Let N l

j be the
j-th node at level l. Then root node N Z

1 represents
the full problem, nodes N l

j at any given level l rep-
resent disjoint subproblems of the same size, and the
leaf nodes, N 0

j , at level 0 of the tree each represent a
subproblem with only one positive bag Bj.

Each level in the tree maintains a set of partial
solutions to the root problem. Computation starts at
the lowest level (leaf nodes) where each partial solu-
tion is simply one of the elements for all elements in
the bag. At the next level, each node combines the
partial solutions from its child nodes and prunes the
resulting set to form a new set of partial solutions for
its own subproblem, which in turn is used as input to
nodes at the next level in the tree and so on until we
reach the root node, which is the output for the optimization. The joining procedure
used to combine the partial solutions from two child nodes is described next.

Joining. Node j at level l receives as input solution proposals P l−1
2j−1 and P l−1

2j from

its child nodes N l−1
2j−1 and N l−1

2j . The joining operation simply concatenates every
possible selection from the first set with every possible selection in the second set
and forms a set of selection proposals X l

j for the subproblem

X l
j = {[Sleft, Sright] | Sleft ∈ P l−1

2j−1, Sright ∈ P l−1
2j }

where [·, ·] concatenates two selection sequences. We denote the joining operation by
the Cartesian product notation, i.e., X l

j = P l−1
2j−1 ×P l−1

2j .

Pruning. Since combining the partial solutions from two nodes results in a quadratic
increase in the number of partial solutions, the number of potential solutions grows

1We perform the division randomly. However, finding an optimal policy for the division is an
interesting direction for future works.

2This is without loss of generality since zero padding could be used if the number of positive bags
is not a power of 2.

§3.3 Potential Functions 29

Level 0

e11

e21

e11

e22

e1B

e2B

e31

e41

e31

e42

e3B

e4B

X 1
1<latexit sha1_base64="dxnoCXrFSlB3Hcd0H7CMqIS9CyE=">AAAB+3icdVDLSgMxFM3UV62vWpdugkVwNUymrba7ohuXFawttOOQSTNtaOZBkhHLML/ixoUibv0Rd/6NmbaCih4IHM65l3tyvJgzqSzrwyisrK6tbxQ3S1vbO7t75f3KjYwSQWiXRDwSfQ9LyllIu4opTvuxoDjwOO1504vc791RIVkUXqtZTJ0Aj0PmM4KVltxyZRhgNSGYp/3MRRDeIuiWq5bZQlajiaBl2qc2qtU1abRQrdmEyLTmqIIlOm75fTiKSBLQUBGOpRwgK1ZOioVihNOsNEwkjTGZ4jEdaBrigEonnWfP4LFWRtCPhH6hgnP1+0aKAylngacn86Tyt5eLf3mDRPlNJ2VhnCgaksUhP+FQRTAvAo6YoETxmSaYCKazQjLBAhOl6yrpEr5+Cv8nN7aJaqZ9Va+2z5d1FMEhOAInAIEz0AaXoAO6gIB78ACewLORGY/Gi/G6GC0Yy50D8APG2yfmlZO0</latexit>

X 1
2<latexit sha1_base64="7E3uTGjaxlvXoY5zWOmMU2QZ4NU=">AAAB+3icdVDLSsNAFJ3UV62vWJduBovgKiS12nRXdOOygn1AG8NkOmmHTh7MTMQS8ituXCji1h9x5984aSOo6IGBwzn3cs8cL2ZUSNP80Eorq2vrG+XNytb2zu6evl/tiSjhmHRxxCI+8JAgjIakK6lkZBBzggKPkb43u8z9/h3hgkbhjZzHxAnQJKQ+xUgqydWrowDJKUYsHWRuHcJbC7p6zTTMBaBpWI1W67ypiG2b9pkFrcKqgQIdV38fjSOcBCSUmCEhhpYZSydFXFLMSFYZJYLECM/QhAwVDVFAhJMusmfwWClj6EdcvVDChfp9I0WBEPPAU5N5UvHby8W/vGEifdtJaRgnkoR4echPGJQRzIuAY8oJlmyuCMKcqqwQTxFHWKq6KqqEr5/C/0mvblinRv26UWtfFHWUwSE4AifAAk3QBlegA7oAg3vwAJ7As5Zpj9qL9rocLWnFzgH4Ae3tE9jxk6s=</latexit>

e4Be42e41

e1Be12e11

e2Be22e21

e3Be32e31

e′ 11

e′ 21

e′ 12

e′ 22

e′ 1k

e′ 2k

e′ 31

e′ 41

e′ 32

e′ 42

e′ 3k

e′ 4k

e′ 1k2

e′ 2k2

e′ 3k2

e′ 4k2

e′ 11

e′ 21

e′ 31

e′ 41

X 2
1<latexit sha1_base64="tZzpp+Qnf4ZtF1hU9DyDBELSDWg=">AAAB+3icdVDLSsNAFJ3UV62vWJduBovgKiS12mZXdOOygn1AG8NkOmmHTh7MTMQS8ituXCji1h9x5984aSOo6IGBwzn3cs8cL2ZUSNP80Eorq2vrG+XNytb2zu6evl/tiSjhmHRxxCI+8JAgjIakK6lkZBBzggKPkb43u8z9/h3hgkbhjZzHxAnQJKQ+xUgqydWrowDJKUYsHWSuBeFtHbp6zTTOTIU6NI2GbdutZkHsc2gZ5gI1UKDj6u+jcYSTgIQSMyTE0DJj6aSIS4oZySqjRJAY4RmakKGiIQqIcNJF9gweK2UM/YirF0q4UL9vpCgQYh54ajJPKn57ufiXN0yk33JSGsaJJCFeHvITBmUE8yLgmHKCJZsrgjCnKivEU8QRlqquiirh66fwf9KrG9apUb9u1NoXRR1lcAiOwAmwQBO0wRXogC7A4B48gCfwrGXao/aivS5HS1qxcwB+QHv7BAhqk8w=</latexit>

Level 1 Level 2

P1
1

<latexit sha1_base64="SQLlXvp9ZO8+m+MF0Ur21k5/9rA=">AAAB/HicdVDLSsNAFJ3UV62vaJduBovgKiRtqLoruOmygn1AG8tkOmmHTiZhZiKEUH/FjQtF3Poh7vwbJ20EFT1w4XDOvcyZ48eMSmXbH0ZpbX1jc6u8XdnZ3ds/MA+PejJKBCZdHLFIDHwkCaOcdBVVjAxiQVDoM9L351e5378jQtKI36g0Jl6IppwGFCOlpbFZHYVIzTBiWWdxmzmLcT5mzbYuXceuN6Ft2Uto0mw2XMeFTqHUQIHO2HwfTSKchIQrzJCUQ8eOlZchoShmZFEZJZLECM/RlAw15Sgk0suW4RfwVCsTGERCD1dwqX6/yFAoZRr6ejOPKn97ufiXN0xUcOFllMeJIhyvHgoSBlUE8ybghAqCFUs1QVhQnRXiGRIIK91XRZfw9VP4P+nVLadh1a/dWqtd1FEGx+AEnAEHnIMWaIMO6AIMUvAAnsCzcW88Gi/G62q1ZBQ3VfADxtsnPqyVLg==</latexit>

P1
2

<latexit sha1_base64="3/XsvyMK6q+ELidqPrYHnnDAmAI=">AAAB/HicdVDLSsNAFJ3UV62vaJduBovgqiRpi10W3HRZwT6gjWEynbRDJ5MwMxFCiL/ixoUibv0Qd/6N0zaCih4YOJxzL/fM8WNGpbKsD6O0sbm1vVPereztHxwemccnAxklApM+jlgkRj6ShFFO+ooqRkaxICj0GRn6i6ulP7wjQtKI36g0Jm6IZpwGFCOlJc+sTkKk5hixrJffZnbuZU7umTWrbjVbTrMFNVlBk3bLaTRsaBdKDRToeeb7ZBrhJCRcYYakHNtWrNwMCUUxI3llkkgSI7xAMzLWlKOQSDdbhc/huVamMIiEflzBlfp9I0OhlGno68llVPnbW4p/eeNEBW03ozxOFOF4fShIGFQRXDYBp1QQrFiqCcKC6qwQz5FAWOm+KrqEr5/C/8nAqduNunPdrHW6RR1lcArOwAWwwSXogC7ogT7AIAUP4Ak8G/fGo/FivK5HS0axUwU/YLx9AjpZlSs=</latexit>

B1
<latexit sha1_base64="MBvSeMXOQ5PldTOD17890KfIL+Q=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyCq5C06WtXdNNlBWsLbQiT6aQdOnkwMxFqyJe4caGIWz/FnX/jpK2gogcGDufcyz1zvJhRIU3zQytsbG5t7xR3S3v7B4dl/ej4VkQJx6SPIxbxoYcEYTQkfUklI8OYExR4jAy8+VXuD+4IFzQKb+QiJk6ApiH1KUZSSa5eHgdIzjBi6WXmplbm6hXTMBt222xC06jbjVa9qki7ZdfaDWgZ5hIVsEbP1d/HkwgnAQklZkiIkWXG0kkRlxQzkpXGiSAxwnM0JSNFQxQQ4aTL4Bk8V8oE+hFXL5RwqX7fSFEgxCLw1GQeU/z2cvEvb5RIv+WkNIwTSUK8OuQnDMoI5i3ACeUES7ZQBGFOVVaIZ4gjLFVXJVXC10/h/+S2alg1o3ptVzrddR1FcArOwAWwQBN0QBf0QB9gkIAH8ASetXvtUXvRXlejBW29cwJ+QHv7BG/5k6I=</latexit>

B2
<latexit sha1_base64="9NTQJSh953Qmlw+95USEmFTwUaI=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyCq5CkMdZd0U2XFewD2hAm00k7dPJgZiLU0C9x40IRt36KO//GSVtBRQ8MHM65l3vmBCmjQprmh1ZaW9/Y3CpvV3Z29/ar+sFhVyQZx6SDE5bwfoAEYTQmHUklI/2UExQFjPSC6XXh9+4IFzSJb+UsJV6ExjENKUZSSb5eHUZITjBi+dXcz+25r9dM49KxHNuBpuG6rn3eUMSs23XXhJZhLlADK7R9/X04SnAWkVhihoQYWGYqvRxxSTEj88owEyRFeIrGZKBojCIivHwRfA5PlTKCYcLViyVcqN83chQJMYsCNVnEFL+9QvzLG2QybHg5jdNMkhgvD4UZgzKBRQtwRDnBks0UQZhTlRXiCeIIS9VVRZXw9VP4P+nahlU37Bun1myt6iiDY3ACzoAFLkATtEAbdAAGGXgAT+BZu9cetRftdTla0lY7R+AHtLdPT5iTiw==</latexit>

B3
<latexit sha1_base64="InXJIsqydGRBCc8KTErwtSBSKXc=">AAAB+HicdVDLSgMxFM34rPXRUZdugkVwNWT6mHZZdNNlBfuAdhgyaaYNzTxIMkId5kvcuFDErZ/izr8xfQgqeiBwOOde7snxE86kQujD2Njc2t7ZLewV9w8Oj0rm8UlPxqkgtEtiHouBjyXlLKJdxRSng0RQHPqc9v3Z9cLv31EhWRzdqnlC3RBPIhYwgpWWPLM0CrGaEsyzq9zLqrlnlpFlV1CjXofIcmoNp+poguw6ajrQttASZbBGxzPfR+OYpCGNFOFYyqGNEuVmWChGOM2Lo1TSBJMZntChphEOqXSzZfAcXmhlDINY6BcpuFS/b2Q4lHIe+npyEVP+9hbiX94wVUHTzViUpIpGZHUoSDlUMVy0AMdMUKL4XBNMBNNZIZligYnSXRV1CV8/hf+TXsWyq1blplZutdd1FMAZOAeXwAYN0AJt0AFdQEAKHsATeDbujUfjxXhdjW4Y651T8APG2ydSB5ON</latexit>

B4
<latexit sha1_base64="9DEbXQdL6znVqOTVvaTCWfxso+I=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyCq5C0sY27opsuK1hbaEOYTCft0MmDmYlQQ77EjQtF3Pop7vwbJ20FFT0wcDjnXu6Z4yeMCmmaH1ppbX1jc6u8XdnZ3duv6geHtyJOOSY9HLOYD3wkCKMR6UkqGRkknKDQZ6Tvz64Kv39HuKBxdCPnCXFDNIloQDGSSvL06ihEcooRyy5zL7NzT6+ZhuPYrYYNTcO0zIbTLMh566LehJZhLlADK3Q9/X00jnEakkhihoQYWmYi3QxxSTEjeWWUCpIgPEMTMlQ0QiERbrYInsNTpYxhEHP1IgkX6veNDIVCzENfTRYxxW+vEP/yhqkMHDejUZJKEuHloSBlUMawaAGOKSdYsrkiCHOqskI8RRxhqbqqqBK+fgr/J7d1w2oY9Wu71u6s6iiDY3ACzoAFWqANOqALegCDFDyAJ/Cs3WuP2ov2uhwtaaudI/AD2tsnYNCTlw==</latexit>

Joining JoiningPruning

Figure 3.4: An example of the greedy inference algorithm on a collection with N = 4 positive
bags. The first “Joining” operation (left) creates solution proposals of size two and the second
one (right) creates solution proposals of size four. The “Pruning” operation (middle) prunes
the solution proposals with high energy values.

exponentially as we ascend the tree. Also, not all the generated partial solutions
contain a common object. Therefore, we use a pruning algorithm P l

j = prune(X l
j ; k)

that picks the k selections with the lowest energy values. The energy values for each
subproblem can also be efficiently computed from bottom to top. At the lowest level,
the energy for each selection is the unary potential from Equation (3.9),

E0
j (Sj,j) = ηψU

β (ej | B̄) ∀ej ∈ P0
j = Bj, (3.12)

Note that selection Sj,j = (ej) consists of only one image. Starting at the leaves,
energy in all nodes can be computed recursively. Let S ∈ X l

j be formed by joining

two selection proposals Sleft ∈ P l−1
2j−1 and Sright ∈ P l−1

2j . The energy function El
j(S)

can be factored as

El
j(S) = El−1

2j−1(S
left) + El−1

2j (Sright) + P(Sleft, Sright) (3.13)

where P(·, ·) is the sum of all pairwise potentials on edges joining the two sub-
problems and is computed on the fly. Algorithm 3 summarizes the method. Also
see Figure 3.4 for an example of the joining and pruning operations. A good value
of k in the pruning method depends on the ambiguity of the task. It is possible to
construct an adversarial example that needs all possible proposals at the root node
to find the optimal solution. However, in practice, we found that k does not need
to be large to achieve good performance. Importantly, unlike other methods, this
algorithm does not necessarily compute all of the pairwise potentials. For example,
if an object class only appears in a small subproblem, the images of that class will get
removed by nodes whose subproblem size is large enough. Thus, in the next level of

30 Efficient Inference for Finding Common Objects Across Small Image Collections

Algorithm 3: Greedy Optimization Algorithm

Input: Tc = {B1, ...,BN , B̄}, and N = 2Z.
Output: Selection S = (e1, . . . , eN)
P0

j = Bj ∀j ∈ [1, . . . N]

E0
j (Sj,j) = ηψU

β (ei | B̄) ∀ej ∈ P j
0, j ∈ [1, . . . , N]

for l ← 1 to Z do
for j← 1 to 2Z−l do
X l

j ← P l−1
2j−1 ×P l−1

2j (joining)
Compute X l

j Energies According to Equation (3.13)
P l

j ← prune(X l
j ; k) (pruning)

return S ∈ PZ
1 with the minimum energy

the tree, the pairwise potentials between those images and other images is no longer
required. In general, the number of pairwise potentials computed depends on both
the value of k and the dataset. We observed that only a small fraction of the total
pairwise potentials were required in our experiments.

Complexity. The time complexity of computing unary potentials is O(B̄BN). The
upper bound time complexity for computing all possible pairs is O(N2B2). Since
our method does not necessarily compute all the pairs, this time complexity is lower
bounded by Ω(N2). Overall, the proposed method is practical for medium size
problems.

3.4 Experiments

We analyze different aspects of the method discussed in this chapter focusing on
the greedy inference algorithm and the effectiveness of the proposed unary potential
function. We refer the readers to [Shaban et al., 2019] for complementary information.
To assess different architectural choices, we first evaluate our method on the few-shot
common object recognition task (see Figure 3.1b). Next, we evaluate on the few-shot
object co-localization task which has a more realistic scenario (Figure 3.1a).

As feature extractor for both few-shot common object recognition and few-shot
object co-localization, we train deep network based architectures on the fully super-
vised dataset Dtrain for classification and object detection tasks respectively. To have
fair comparisons, we use the deep network based features as bag elements in all of
the competitive methods.

We make use of stochastic gradient descent with step-wise learning rate decay
schedule to learn pairwise and unary potential functions. We denote the complete
framework that uses the greedy optimization described in Algorithm 3 as “Ours”
in the tables. We use grid search on the validation set to tune the hyperparameters
of all the methods. We set the number of kept solution proposals k after every

§3.4 Experiments 31

pruning stage in the greedy optimization algorithm to be 300. All the experiments
are performed on a machine with a single Nvidia GTX 2080ti GPU and a 4GHz AMD
Ryzen Threadripper 1920X CPU with 12 cores.

3.4.1 Baseline Methods

We compare the greedy optimization algorithm to AStar [Bergtholdt et al., 2010]
which has been used for object co-segmentation [Vicente et al., 2011] and the faster
TRWS [Kolmogorov, 2006] which has been used for inference on MIL problems [De-
selaers and Ferrari, 2010; Deselaers et al., 2012]. We use a highly efficient parallel
implementation of these algorithms [Andres et al., 2012]. We also provide compar-
isons with the traditional SVM based [Hoffman et al., 2015; Andrews et al., 2003;
Bunescu and Mooney, 2007] and more recent attention based method of [Ilse et al.,
2018] for multiple-instance learning. Additionally, we consider a “baseline” method
that uses cosine similarity on the extracted features e ∈ Rd between pairs of elements
as the relation modules in pairwise and unary potential functions to assess the effec-
tiveness of the proposed learning strategy for both potential functions. We refer the
readers to [Shaban et al., 2019] for more details about these methods.

3.4.2 Few-shot Common Object Recognition

Dataset. We employ the miniImageNet dataset [Vinyals et al., 2016] for the few-shot
common object recognition task. Since it is a small-scale dataset, we can first assess
our architectural choices easily. Once the architectural choices are fixed, we apply
them for the large-scale few-shot object co-localization task. Statistical details of the
miniImageNet dataset are presented in Table 3.1.

Table 3.1: Statistics of the standard split of the miniImageNet dataset [Ravi and Larochelle, 2017]
used for the few-shot common object recognition task.

Images 60, 000
Image size 84× 84
Train classes 64
Validation classes 16
Test classes 20

Feature extractor. A Wide Residual Network (WRN) [Zagoruyko and Komodakis,
2016] with depth 28 and width factor 10 is trained on the training split as the feature
extractor for each element e ∈ R640 on this dataset. The network is trained using a
standard 64-class classification task. Features for the last global average pooling layer
before the linear classifier are used for all the methods.

Sampling collections. To sample a collection Tc, we first randomly sample M ≤ |C|
classes and select one of them as the target class c. The positive and negative bags are

32 Efficient Inference for Finding Common Objects Across Small Image Collections

selected randomly from images of only these M classes as described in Section 3.2.1.

Evaluation metric. For an output selection S = (e1, e2, . . . , eN), we measure the
success rate as our evaluation criterion for a sampled collection Tc defined as

Success rate(S, Tc) =
1
N ∑

ej∈S
yc(ej) (3.14)

We report the average success rate for 1000 randomly sampled collections from
Dtest along with 95% confidence interval.

Setting. We experiment with number of positive bags N ∈ {4, 8, 16}, bag sizes
B ∈ {5, 10}, and negative bag size B̄ ∈ {10, 20}. We choose different values for the
number of classes M in which we sample our collections from to have various levels
of difficulties in the sampled collections. When the bag size B is 5 (or 10), we select
a random value in the range M ∼ [5, 15] (or M ∼ [10, 20]). Lower values of M make
the problem more ambiguous by increasing the chance of generating other common
objects in the subproblems. On the other hand, it increases the importance of the
negative bag by increasing the chance of having more samples from each non-target
class.

Results. Table 3.2 presents the results comparing the proposed method to other
MIL based counterparts. The large gap between our method and the other MIL
approaches validates our argument that traditional MIL approaches overfit to the
training data in small data regimes while our method can better generalize in such
scenarios. Our method can leverage the relation learning using the base dataset to
compare if two elements are from the same class or not. At the same time, the
multiple-instance learning methods in 3.2 could only use features of bag elements.
Furthermore, the improvements of the proposed method compared to the cosine
similarity based baseline, show the importance of our relation learning while the
inference method is fixed.

Average total (potentials computation and inference) runtime versus accuracy
plot of different energy minimization methods on different settings is shown in Fig-
ure 3.5. Even on this small scale problem, the greedy optimization is faster on average
while its accuracy is on par with other inference methods.

Effect of temperature T on unary potential function. In order to evaluate the ef-
fectiveness of our proposed unary potential function, we devise the following exper-
iment. In the few-shot common object recognition task with N = 8 positive bags,
B̄ = 10 negative images, and B = 5, we train the unary potentials with four different
settings: (1) SOFTMAX: Unary potential function with the learned T described in
Section 3.3, (2) MAX: T → 0, (3) MEAN: T → +∞, and (4) No Unary: the model
without using negative bag information. The pairwise potential function is kept

§3.4 Experiments 33

Table 3.2: Results on the miniImageNet dataset using different positive bags N, total number of
negative elements B̄, and bag sizes B = 5 and B = 10. The baseline method uses cosine similarity on
the bag elements as relation module∗.

N 4 8 16
B̄ 10 20 10 20 10 20

B
=

5

Ours 63.83± 1.49 65.48± 1.47 72.49± 0.98 73.99± 0.96 78.60± 0.64 79.93± 0.62
Baseline (cosine) 60.88± 1.51 63.83± 1.49 64.46± 1.05 68.08± 1.02 66.78± 0.73 70.39± 0.77

MI-SVM [Hoffman et al., 2015] 56.25± 1.54 59.03± 1.52 62.75± 1.06 63.76± 1.05 67.91± 0.72 73.33± 0.69
sbMIL [Bunescu and Mooney, 2007] 54.55± 1.54 59.93± 1.52 58.25± 1.08 64.68± 1.05 61.35± 0.75 65.55± 0.74

mi-SVM [Andrews et al., 2003] 54.23± 1.54 59.43± 1.52 60.43± 1.07 66.08± 1.04 64.49± 0.74 69.69± 0.71
ATNMIL [Ilse et al., 2018] 50.35± 1.55 60.33± 1.52 56.05± 1.09 63.29± 1.06 58.97± 0.76 67.26± 0.73

B
=

10

Ours 37.42± 1.50 38.50± 1.51 42.85± 1.08 47.63± 1.09 51.70± 0.77 53.63± 0.77
Baseline (cosine) 35.73± 1.49 40.40± 1.52 38.01± 1.06 43.95± 1.09 41.08± 0.76 47.83± 0.77

MI-SVM [Hoffman et al., 2015] 29.53± 1.41 35.05± 1.48 35.25± 1.05 39.94± 1.07 41.21± 0.76 46.63± 0.77
sbMIL [Bunescu and Mooney, 2007] 31.55± 1.44 31.50± 1.44 34.10± 1.04 39.86± 1.07 28.80± 0.70 43.63± 0.77

mi-SVM [Andrews et al., 2003] 31.55± 1.44 35.33± 1.48 34.10± 1.04 39.86± 1.07 39.48± 0.76 45.16± 0.77
ATNMIL [Ilse et al., 2018] 26.58± 1.37 33.10± 1.46 28.48± 0.99 35.11± 1.05 31.56± 0.72 38.14± 0.75

∗ Numbers for baseline methods taken from [Shaban et al., 2019]

Table 3.3: Comparison of our method with other MIL methods (top), and graphical model inference
methods (middle). The effect of unary and pairwise potentials are shown in the bottom part (bottom).
The common object is found across 8 positive and 8 negative images in these examples∗.

Method COCO ImageNet

MI-SVM [Hoffman et al., 2015] 60.74± 1.07 49.44± 1.10
ATNMIL [Ilse et al., 2018] 60.00± 1.07 49.35± 1.10

Ours 65.34± 1.04 55.18± 1.09

TRWS [Kolmogorov, 2006] 65.04± 1.05 54.20± 1.09
AStar [Bergtholdt et al., 2010] 64.99± 1.05 54.23± 1.09

Unary Only 59.24± 1.08 50.29± 1.10
Pairwise Only 64.65± 1.05 53.00± 1.10

∗ Numbers taken from [Shaban et al., 2019]

34 Efficient Inference for Finding Common Objects Across Small Image Collections

Figure 3.5: Average runtime vs. accuracy of different inference algorithms on miniImageNet
for N ∈ {8, 16}, B̄ ∈ {0, 10, 20}, and B = 10. Each setting is shown with a distinct color
and different inference algorithms are shown with different type of markers.

Table 3.4: Comparison of different unary potential functions on miniImageNet dataset with N = 8,
B = 5 and B̄ = 10.

Method No Unary MEAN MAX SOFTMAX

Accuracy (%) 64.48± 1.47 70.23± 1.00 71.76± 0.99 72.49± 0.98

identical in all the methods. The performance of our methods on the described set-
tings are presented in Table 3.4. The results show that both MAX and SOFTMAX are
performing well while SOFTMAX is getting slightly better results.

3.4.3 Few-shot Object Co-Localization

Datasets. For the few-shot object co-localization task, we perform training on a
split of COCO 2017 dataset [Lin et al., 2014] introduced in [Bansal et al., 2018] with
63 training and evaluate on the remaining 17 classes. We also use 148 classes non-
overlaping with COCO 2017 training classes from the validation set of ILSVRC2013
detection dataset [Russakovsky et al., 2015] for cross-dataset evaluation. Different
statistics of these datasets are shown in Table 3.5.

Table 3.5: Different statistics of the datasets used for the few-shot object co-localization task.

COCO training images 111,085
COCO test images 8,245
ILSVRC test images 12,544
Training classes 63
COCO test classes 17
ILSVRC test classes 148

§3.4 Experiments 35

Greedy TRWS AStar
0.00

0.75

1.50

2.25

3.00

R
un

tim
e

(s
)

Forward time (GPU)
Inference time (CPU)

Figure 3.6: Computational time comparison of forward (computing pairwise similarities) and
graphical model inference (in sec.) on COCO dataset. Image from [Shaban et al., 2019].

Feature extractor. In the few-shot object co-localization task, each image corre-
sponds to a bag and the bag elements are the proposals generated by running a pre-
trained Faster-RCNN detector [Girshick, 2015] on the image. We use ResNet 50 [He
et al., 2016] as Faster-RCNN backbone and train it on the COCO 2017 training classes.
We save the outputs of the second stage feature extractor for top B = 300 proposals
according to their objectness scores as bag elements.

Implementation. We make use of the publicly available Faster-RCNN implementa-
tion of Tensorflow object-detection API [Huang et al., 2017b] with default settings to
extract features on images of size 336×336.

We map the 2048 dimensional globally averaged output of the second stage fea-
ture extractor to a d = 640 dimensional feature vector with an additional linear layer
to reduce the memory and time complexity of the relation modules. The Faster-
RCNN network is trained on four GPUs with batch size of 12 for 600k iterations. All
the competitive methods use the same 640 dimensional feature vectors as their bag
elements.

Evaluation metric. An element e for this task corresponds to one bounding box
from each image (i.e., positive bag). We use the same success rate as defined in Equa-
tion (3.14) for the few-shot object co-localization task. For an element e in a positive
bag in a collection Tc, we consider its label be yc(e) = 1 if its corresponding bound-
ing box has IoU overlap greater than 0.5 with a groundtruth bounding box of class c
in the corresponding image. It is also called class-agnostic Correct Localization (Cor-
Loc [Deselaers et al., 2010]) metric and has been used broadly in weakly supervised
object localization literature [Uijlings et al., 2018; Bilen et al., 2015; Cinbis et al., 2016;
Shi et al., 2017].

36 Efficient Inference for Finding Common Objects Across Small Image Collections

Table 3.6: Run time and accuracy by varying the bag size and number of positive bags on COCO
dataset.

N=2 N=8 N=32 N=128

B=100 0.46s 0.63s 1.08s 4.24s
B=200 0.48s 0.66s 1.34s 5.32s
B=300 0.49s 0.71s 1.68s 6.81s

CorLoc 73.01 76.17 76.72 76.84

Results. Quantitative results on 1000 randomly sampled collections with 8 posi-
tive bags and 8 negative images (a negative bag with 8×300 elements) on COCO and
ILSVRC datasets are shown in Table 3.3. Similar to few-shot common object recogni-
tion, our method outperforms other MIL baselines for few-shot object co-localization.

We also present the results when we only use pairwise (“pairwise only”) or unary
(“unary only”) potential functions in the energy function defined in Equation (3.4).
The results show that using pairwise potentials significantly improves the results. In
addition, unary potentials also boost the performance of our algorithm by using the
information in the negative bag. However, the performance improvement is relatively
less compared to the few-shot common object recognition task in Table 3.2. The
reason is that the negative bag can only be helpful if it contains objects similar to the
non-target objects present in positive bags. This has relatively a low probability given
the number of classes we are sampling from and the co-occurrence of objects from
different classes in an image.

As presented in Table 3.3, all inference algorithm perform similarly on this task.
Our greedy inference algorithm is significantly faster than other inference methods
as illustrated in Figure 3.6 and has a slightly better class-agnostic CorLoc. The greedy
inference algorithm only requires to compute only 15% of the total pairwise poten-
tials on average for this task. Note that in Figure 3.6, the forward time is the time
taken on GPU to compute the potentials given the input features. Inference time
is the time the MRF optimization takes on CPU given the computed potentials. The
greedy method computes some of the potentials and does the optimization in tree nodes
on GPU.

Figures 3.7 and 3.8 illustrate qualitative results comparing our approach with
other MIL baselines on sampled collections from COCO and ILSVRC datasets re-
spectively.

Effect of bag size and larger N, B̄. To see the effect of increasing the number of
bags on COCO dataset, with 128 negative images, we vary positive images from 8 to
128 and B from 100 to 300 (300 is reported to be enough for COCO detection [Huang
et al., 2017b]) and report the run time on a single GPU in Table 3.6. We only report
the best CorLoc when B=300. These results are not comparable to Table 3.3 since we
are only using classes with at least 128 images.

§3.4 Experiments 37

Figure 3.7: Qualitative results on COCO dataset. Every two rows show a sampled collection.
For every collection, the first row shows the positive bags followed by negative bag on the
second row. Note that the first image in the first two collections are identical but the target
class (“Cake” vs. “Cat”) is different. In the first problem, class “Person” does not appear
in the negative images. This could explain why “Unary Only” method detects people in the
first problem. The last row shows a failure case of our algorithm. While “Cup” is the target
object, our method finds “Plant” in the second image. This might be due to the fact that pot
(which has visual similarities to “Cup”) and “Plant” are labelled as one class in the training
dataset. Note that “Dog”, “Cake” and “Cup” are samples from unseen classes. Selected
regions are tagged with method names. Ground-truth target bounding box is shown in green
with tag “GT”. Image from [Shaban et al., 2019].

38 Efficient Inference for Finding Common Objects Across Small Image Collections

Figure 3.8: Qualitative results on ImageNet dataset. In each sampled collection, the first row
and the second row show positive and negative images respectively. Similar to Figure 3.7, the
greedy method performs better when there are multiple objects in each positive image. Selected
regions are tagged with method names. Ground-truth target bounding boxes are shown in
green with tag “GT”. Image from [Shaban et al., 2019].

§3.5 Summary 39

Table 3.7: Average energy values for different graphical model inference methods on the miniIma-
geNet dataset∗.

N 4 8 16
B̄ 0 10 20 0 10 20 0 10 20

B
=

5 TRWS 2.929179 −4.416873 −4.842334 18.300657 −4.425953 −12.602217 86.034355 −6.873013 −10.020649
ASTAR 2.908970 −4.429455 −4.851543 18.192284 −4.529052 −12.666497 85.560267 −7.277377 −10.398633
Greedy 2.908970 −4.429455 −4.851543 18.192282 −4.529052 −12.666499 86.692482 −6.909996 −10.002609

B
=

10 TRWS 0.515563 −6.576048 −8.300273 8.749933 −15.959289 −17.238385 53.324193 −28.602048 −59.609459
ASTAR 0.502832 −6.597286 −8.315386 8.675015 −16.079914 −17.404502 52.819455 −29.388606 −60.499036
Greedy 0.502832 −6.597286 −8.315387 8.707342 −16.048676 −17.384832 57.168652 −25.869081 −57.885948

∗ Numbers taken from [Shaban et al., 2019]

Table 3.8: Average energy values for the few-shot object co-localization task∗.

Method COCO ImageNet

TRWS −28.485636 −28.630786
AStar −28.487422 −28.631678

Greedy −27.246355 −25.496649
∗ Numbers taken from [Shaban et al., 2019]

3.4.4 Comparison of Energy Minimization Methods

The average energy value of output selection S for different inference algorithms
on miniImageNet and COCO datasets are shown in tables 3.7 and 3.8 respectively.
The energy values of ASTar and TRWS methods are lower for these tasks. However,
this does not translate to better success rates implying that finding the approximate
solution with our greedy inference method is enough for obtaining high success rate
for the tasks while being considerably more efficient.

3.5 Summary

This chapter presents an energy minimization approach for few-shot common ob-
ject recognition and few-shot object co-localization tasks. The energy minimization
problem utilizes unary and pairwise potential functions learned via differentiable
pairwise comparators known as relation modules. The pairwise potential function
computes a similarity measure between two elements. On the other hand, the unary
potential function compares an element with a set of elements accomplished by ap-
plying an aggregation function on pairwise comparisons. In contrast with existing
inference methods, the introduced greedy inference method exploits the structure
of the problem to minimize the energy without necessarily computing all of the
pairwise potential functions. The inference method’s performance is comparable to
other well-established graph inference algorithms for these tasks while being com-
putationally more efficient. Finally, extensive experiments validate the effectiveness
of different aspects of the approach.

40 Efficient Inference for Finding Common Objects Across Small Image Collections

Chapter 4

Few-shot Weakly-Supervised
Object Detection via Directional
Statistics

Detecting novel objects from few examples has become an emerging topic in com-
puter vision recently. However, these methods need fully annotated training images
to learn new object categories which limits their applicability in real world scenarios
such as field robotics. In this chapter, we propose a probabilistic multiple-instance
learning approach for few-shot Common Object Localization (COL) and few-shot
Weakly Supervised Object Detection (WSOD). In these tasks, only image-level labels,
which are much cheaper to acquire, are available. We find that operating on features
extracted from the last layer of a pre-trained Faster-RCNN is more effective compared
to previous episodic learning based few-shot COL methods. Our model simultane-
ously learns the distribution of the novel objects and localizes them via expectation-
maximization steps. As a probabilistic model, we employ von Mises-Fisher (vMF)
distribution which captures the semantic information better than Gaussian distribu-
tion when applied to the pre-trained embedding space. When the novel objects are
localized, we utilize them to learn a linear appearance model to detect novel classes
in new images. Our extensive experiments show that the proposed method, despite
being simple, outperforms strong baselines in few-shot COL and WSOD, as well as
large-scale WSOD tasks.

4.1 Introduction

In this chapter we address the problem of N-way, K-shot Weakly Supervised Object
Detection (WSOD), and develop a method with the following capabilities.

Suppose that we are given a set of N × K previously unseen images consisting of
K images of objects from each of N previously unknown (novel) classes. These will be
called the “support images.” Each training image has image-level labels, indicating
which classes are present in the image. Typically, the number of novel classes N may
be up to 20 and the number of training images K from each class may be 5 or 10, but
there is no requirement that the number of images in each novel class are equal.

41

42 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Few-shot WSOD

Support Set

[cow, person]

[car, person]

[car, cow]

[car, cow, person]

[car] [cow]

car
cow

Query

Figure 4.1: Few-shot WSOD problem. Similar to the few-shot classification problem, the
input training set (support set) only contains image labels (car, cow and person are novel
classes in this example). The model learns to detect the target objects in the test (query) image.
Few-shot WSOD bridges few-shot classification and object detection by learning to detect the
novel objects in the query images while only needs image-level labels for the support images.

Given this small number of support images, the algorithm learns to find instances
of (possibly multiple) objects from any of the novel classes in a query image, and
will put a bounding box around all such positive instances. As summarized in
Figure 4.1, our system provides a flexible object detection algorithm that requires a
very small training set of images of novel objects, where each image is annotated
only with image-level labels. As such, it is suitable for classifying and detecting
objects given only the images provided, for instance, by an internet image search
for images of novel classes. In comparison to supervised few-shot object detection
approaches, e.g., [Xiao and Marlet, 2020; Wang et al., 2019, 2020; Perez-Rua et al.,
2020], where manually labeled bounding box annotations are required, this is a more
realistic setting to learn an object detector on novel examples with applications like
robotics [Kim et al., 2020] or video object segmentation [Lu et al., 2019].

We first use a Faster-RCNN network to produce bounding box proposals of the
possible regions containing an object with their associated feature vectors. This net-
work is pre-trained on a fully annotated base dataset with bounding boxes of objects
of various classes; the base dataset does not contain any of the novel training classes.
Then, the novel objects are learned in a two steps process: 1) A common object localiza-
tion (COL) module is used first to localize the novel objects in the support images. 2)
An object detection module to learn the novel object classes found in the COL step.

§4.1 Introduction 43

Classifier 1

Query Proposal Embeddings Proposal LabelsPre-trained
Faster-RCNN

Pre-trained
Faster-RCNN

Q × P × d

(Alg. 1)
COL1Class 1

Class 2

Support Set Proposal
Embeddings

(Alg. 1)
COL2

COL

w2 ∈ ℝM2×P

w1 ∈ ℝM1×P

car cow

M × P × d
Object Detection

Classifier 2

Predictor

M
1 ×

P×
d

M
2 ×

P×
d

[cow, person]

[car, cow]
Support Set

Query

Common Obj. Localization (COL)

Class c
embed. Class c

bg. Score θinit ∈ ℝd, κinit ∈ ℝ+

Mc × P

Mc × P

Mc × P × d

θc ∈ ℝd, κc ∈ ℝ+

wc

E-Step

M-Step

Proposal Scores

Updated
parameters

n-steps

Background
Model

Figure 4.2: The feature maps are shown as the shape of their tensors. Q, M, and C denote
the number of queries, support images, and classes respectively. A pre-trained Faster-RCNN
(shown in Figure 4.3) on the base dataset is used to extract P proposals from each input
image. The embeddings are grouped based on their corresponding image-level labels and
each group is fed into a separate Common-Object Localization (COL) module. COL module
(shown in detail on the right) receives proposal embeddings of images of a class (Mc is the
number of images within class c) and simultaneously estimates the common class direction
θc and concentration κc along with bounding-box level labels wc via EM steps. The Object
Detection module uses the top labels of wc to learn an appearance model for each novel class
in the support set. This appearance model is then tested on the testing proposals to detect
novel objects in the query set.

We explain each of these modules in more details below.
COL module. To localize the novel objects in the support images, COL module finds
the common object in the K images provided for each of the N novel classes. The COL
module is run separately on the images from each of the N novel classes. The input to
the common object detector is the set of normalized feature vectors from the images
of a novel class c. This set of normalized feature vectors corresponds to the bounding
boxes provided by the proposal network1. An EM algorithm on these feature vectors
determines the direction parameter of von Mises-Fisher (vMF) distribution on the
unit sphere that is most likely to favour a common object representative from each
image. The closest feature from each image identifies the bounding box containing
the common object. A distribution for a background class is also trained, using the
base dataset to steer the COL away from selecting background objects.
Detection module. Once the novel objects are found by the COL module, their
bounding boxes are used to train a box classifier for each novel class c. The clas-
sification is done by a 2-class (contains / does not contain the object) classification
algorithm, once again working on normalized feature vectors. These bounding boxes
(and their associated features) are labeled as either positive or negative for containing

1In our preliminary experiments, we observed no severe drift in the recall measure of the RPN when
being tested on the novel classes compared to the recall value on the base classes. At the same time,
there is a significant difference in the final CorLoc values. Hence, we hypothesize that freezing the
RPN does not severely affect the performance. We note that finetuning RPN on the support set for the
task of few-shot object detection (FSOD). It might be reasonable as the support set is fully annotated.
However, finetuning RPN using predicted labels by our COL method is just a chicken-and-egg problem
and could cause a drift in the RPN predictions.

44 Few-shot Weakly-Supervised Object Detection via Directional Statistics

the object of the novel class. The positive bounding boxes are those that are deter-
mined by the COL module to contain the common object from class c; the negative
samples are chosen from proposals selected from the images of the other classes.
Thus, the classifier for class c is trained to distinguish features corresponding to
bounding boxes containing an object of class c from those that do not.

Finally, at test time, a query image is passed through the proposal network to
provide bounding boxes (and their features). These bounding boxes are then evalu-
ated by each of the classifiers to determine whether they contain a novel class object
or belong to the background.

The proposed method is summarized in Figure 4.2. We make several contribu-
tions and important observations: 1) We propose a simple yet powerful COL that uses
directional statistics for modeling. Our COL module can be built on top of off-the-
shelf pre-trained Faster-RCNN models without extra parameters. We observe that
by using feature vector directions in our probabilistic model, we can better capture
the semantic information compared to the Gaussian distribution. To our knowledge,
employing directional statistics for multiple-instance learning is new. 2) We employ
a detection module to extend COL to few-shot WSOD. To the best of our knowledge
few-shot WSOD has not been studied in the literature before. 3) Despite its simplicity,
our method outperforms sophisticated few-shot COL algorithms [Shaban et al., 2019;
Hu et al., 2019] on PASCAL VOC [Everingham et al., 2007], MS COCO [Lin et al.,
2014], and ILSVRC detection [Deng et al., 2009] benchmarks. In WSOD, our method
outperforms recent knowledge-transfer based approaches [Uijlings et al., 2018; Hoff-
man et al., 2016] in both few-shot and large-scale settings.

4.2 Details of Methodology

4.2.1 Few-Shot WSOD and COL Tasks Definition

The goal in few-shot WSOD is to learn a model that, given support images Dtrain

containing a set of novel classes L, detects instances of the novel classes in query
images Dtest. The support set consists of image-label pairs (I, y) ∈ Dtrain where
image-level label y ⊆ L is a subset of classes present in the image I2. The support
set is typically a small K-shot, N-way set sampled from a large dataset Dnovel with
a variety of novel classes Cnovel. The sampling process for few-shot WSOD follows
rules that are similar to few-shot classification problems [Lee et al., 2019; Snell et al.,
2017]. A set of N classes L ⊂ Cnovel, called target classes, are first sampled. Then,
for each target class c ∈ L, K images containing at least an instance of class c are
sampled without replacement to create the support set Dtrain. The query set Dtest is
sampled similarly, but unlike the support set, query labels also contain bounding box
annotations in addition to the image-level labels, as the goal is to detect target objects
in the query data. These bounding box annotations are only used for evaluation.
Few-shot COL [Shaban et al., 2019; Hu et al., 2019] is a special case of few-shot

2In contrast to few-shot image classification, few-shot WSOD images can have multiple labels.

§4.2 Details of Methodology 45

Faster-RCNN

Batch of

images

B

B × H × W × 3

Backbone ROI Pooling

RPN
Agnostic Box

Regressor

Proposal

Features

Bounding

box

proposals

B × P × d

B × P × 4
Full image

Bounding Box

Second Stage

Feat. Extractor
norm(.)

Figure 4.3: Feature Extraction. We use a pre-trained Faster-RCNN on the base dataset to
extract P proposals from each input image. A `2 normalization layer is employed to project
all the features onto the unit hypersphere.

WSOD where there is only one target class in the support set, i.e., N = 1.

For pre-training, the algorithm has access to a large dataset Dbase with a set of
base classes Cbase. Typically, there is no image in common between the base and novel
datasets. Moreover, the set of base classes is disjoint from the set of novel classes used
in evaluation, i.e., Cbase ∩ Cnovel = ∅.

4.2.2 Pre-training and Feature Extraction

We pre-train a Faster-RCNN [Ren et al., 2015] on the base dataset for bounding box
and feature extraction. The overall architecture is shown in Figure 4.3. To train the
network, we use the original bounding box labels within the base dataset to define
the Region Proposal Network (RPN) and second-stage losses of the Faster-RCNN.
We adapt a class-agnostic bounding box regression model in the second-stage to get
one bounding box per feature proposal regardless of the number of base classes.
Once trained, we use the trained Faster-RCNN to extract P bounding box proposals
B ∈ RP×4 and their corresponding d-dimensional features F ∈ RP×d from each input
image I. We also apply an `2 normalization layer to project all the features to the unit
hypersphere. As discussed later, the normalization step is important as our model
uses a cosine similarity measure for better generalization.

We need the feature extracted from the full image bounding box to initialize our
COL method. This is accomplished by adding the full image bounding box to the
box proposals generated by the RPN, thus its feature is extracted by the Faster-RCNN
second-stage feature extractor. We denote the first proposal in B and F, the complete
image bounding box and its feature, respectively.

46 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Airplane Bus Sheep

Boat Chair TV

comp-1 comp-1 comp-1

co
m
p-
2

co
m
p-
2

Figure 4.4: Two-dimensional T-SNE projection of proposal features extracted from a pre-
trained Faster-RCNN. The proposals are selected using IoU threshold of 0.6 with ground-
truth boxes. The instances for each class (approximately) form a single cluster.

4.2.3 Statistical Model Assumptions

Since the support set Dtrain provided to the learner is limited, it is crucial to employ
proper learning biases in the model to combat overfitting. Inspired by the success of
prototypical networks [Snell et al., 2017], we design our model based on the assump-
tion that features of each object class form a single cluster in the embedding space.
To illustrate this, we present T-SNE [van der Maaten and Hinton, 2008] plots of the
normalized features extracted from proposals of a pre-trained Faster-RCNN corre-
sponding to novel classes in Figure 4.4. The figure shows that the classes are mostly
forming a univariate distribution in the 2d T-SNE projection space. We propose to
use directional data based on the von Mises-Fisher (vMF) distribution, which arises
naturally when each cluster is distributed on the unit hypersphere. Formally, we as-
sume features of each foreground class follow vMF distribution with mean direction
θ and positive concentration parameter κ

p+θ (x) =
1
Z

exp
(

κθ>x
)

s.t. ‖θ‖ = 1 , (4.1)

where Z is the normalizing constant and input x ∈ Rd is a unit vector, i.e., ‖x‖ = 1
or equivalently x ∈ Sd−1. We assume the concentration hyperparameter is constant
and the same for all novel classes. In Section 4.2.4, we propose an expectation maxi-
mization algorithm to estimate the mean direction of a novel class from the support
set.

We could also use Gaussian distribution for our model which has an analogous
effect to using Euclidean distance. We empirically show that vMF provides supe-
rior results to Gaussian distribution when using pre-trained features. Our results
support related works in supervised few-shot learning [Qi et al., 2018; Gidaris and
Komodakis, 2018] where using the cosine similarity outperforms the Euclidean dis-

§4.2 Details of Methodology 47

tance measure. The underlying reason for this is well-studied by [Wang et al., 2017];
Softmax loss used in the pre-training tends to create a ‘radial’ feature distribution
where direction specifies the semantic classes while magnitude decides the classifi-
cation confidence.

Additionally, a background class distribution is learned to steer the learner to-
ward objects and away from background proposals. Let

p−ω(x) =
1
U

u−ω(x) , (4.2)

represent the background class distribution where U is a constant normalizer. As the
base dataset provides a reach set of examples for learning the background model, the
background distribution is learned from the base dataset and remains fixed when
evaluating on WSOD examples sampled from the novel data.

To learn the background distribution, we collect a set of background proposals
with low intersection-over-union (IoU) score (< 0.3) to the objects within the base
dataset and use maximum likelihood estimation in [Banerjee et al., 2005] to find the
parameters of vMF distribution for the background data.

4.2.4 COL

We first explain the method for few-shot COL with a single novel common object
within the support set and employ it for few-shot WSOD later. As shown in Fig-
ure 4.5, COL module’s goal is to find the common object representation across a set
of images with one novel object in common. Let F = {Fi}M

i=1 denote the Faster-
RCNN feature proposals extracted from the input images where M is number of
images. Each proposal has a (latent) binary label that indicates whether the proposal
tightly encloses the common object. Namely, zij ∈ {0, 1} is the label of the j-th pro-
posal in the i-th image. Starting from an initial guess for the direction parameter θ of
the novel common class, the algorithm alternately refines the mean direction and la-
bel estimations in an expectation-maximization optimization framework. We present
the update rules here and defer the derivations that bring interesting insights into
the proposed method to Section 4.2.4.1. In the E-step, the algorithm uses the current
direction to estimate soft labels w, where wik ∈ [0, 1] is the soft label for the k-th
proposal within the i-th image, via attention over the proposals within each image

wik =
p+θ (Fik)/p−ω(Fik)

∑P
j=1 p+θ (Fij)/p−ω(Fij)

, (4.3)

where Fij ∈ Sd−1 is the feature of the j-th proposal in Fi. Recall that p+θ and p−ω are our
foreground and learned background distributions introduced in Section 4.2.3. Note
that it is unnecessary to know the normalization factors Z and U, since they cancel.
In this step, the proposal with a high foreground to background score ratio gets the
highest label value within each image.

In the M-step, the mean direction θ and the concentration κ are updated given

48 Few-shot Weakly-Supervised Object Detection via Directional Statistics

!
B

a
ck

g
ro

u
n

d
S

co
re

Highest

Lowest

Embedded Feature Proposals Input Images

Figure 4.5: Example of COL across three images. Data points on the unit sphere represent
feature proposals extracted from all input images. Features extracted from each image are
colored the same (shown in white, gray, black colors). Background score function u−ω(x) is
also shown on the unit sphere where blue and red indicate the highest and lowest background
scores, respectively. The COL unit’s goal is to find a common object representation θ (shown
by green arrow) which is close to at least a white, gray, and black data point. Note that the
area marked with dashed circle is also close to proposals from all three images but direction θ
is favored as it has a lower background score.

the new labels

θ← r
‖r‖ , κ ← d‖r‖

where r =
1
M

M

∑
i=1

w>i Fi =
1
M

M

∑
i=1

P

∑
k=1

wikFik ,
(4.4)

where d is the feature dimension. Note that as we only need to know the multipli-
cation of κ and θ, the update rule simplifies to κθ ← dr. Intuitively, one can see
x̃i = w>i Fi as the common object representation within the i-th image; x̃i is estimated
by computing the weighted average over all the proposals where the contribution of
proposals are controlled by their soft labels. Given x̃i, the novel class direction θ is es-
timated as the mean of the common object representations similar to the prototypical
networks [Snell et al., 2017]. Finally, the estimated mean is projected back onto the
unit hypersphere. Updating κ is more involved and is numerically difficult where d
and κ are large. We propose several approximations in Section 4.2.4.2 and show that
the approximation in Equation (4.4) achieves the best performance in practice.

Algorithm 4 summarizes our COL method. The problem is solved in an iterative
fashion by alternating between E-step in Equation (4.3) and M-step in Equation (4.4)
until convergence. Following the common practice in WSOD [Rahimi et al., 2020a;

§4.2 Details of Methodology 49

Algorithm 4: Common Object Localization
Input: F = {F1, . . . , FM}, u−ω
Output: Common class mean direction θ and concentration κ
κθ← d

M ∑M
i=1 Fi1 // Initialization

for t← 1 to T do // Iterations
for i← 1 to M do // E-step

oij ← κθ>Fij − log u−ω(Fij) ∀j ∈ [1, P]
wi ← softmax(oi) // Update Soft labels

r← 1
M ∑M

i=1 w>i Fi
κθ← dr // M-step

Uijlings et al., 2018; Nguyen et al., 2009], we use the bounding box feature extracted
from the complete support images to initialize θ. Recall that we use the first proposal
in Fi to represent the complete image feature. Thus, the initialization step can be
written as

(κθ)init ←
d
M

M

∑
i=1

Fi1. (4.5)

We remark that our initial direction is similar to what is used as class mean in proto-
typical networks [Snell et al., 2017]. What makes us different is EM steps that refine
the estimated mean by focusing on the common objects and discarding background
parts of the image.

4.2.4.1 Expectation-Maximization Derivation

Recall that each proposal has a (latent) binary label zij ∈ {0, 1} that indicates whether
the proposal tightly encloses the common object. Following the best practice of the
previous works in WSOD [Rahimi et al., 2020a; Uijlings et al., 2018; Gokberk Cinbis
et al., 2014], we assume there is exactly one proposal with label 1 (positive proposal)
in each image and the rest are negative proposals, i.e., zi ∈ {e1, . . . eP} where ej ∈
{0, 1}P is the j-th canonical basis.

Assuming that the images are sampled independently given the common class c,
the full likelihood function is given by

l(θ;F) = p(F|θ) =
M

∏
i=1

p(Fi|θ)

=
M

∏
i=1

P

∑
j=1

p(Fi, zi = ej|θ) ,
(4.6)

where θ ∈ Sd−1 is the mean direction of the common class distribution. Note that
the last equation integrates over all possible values of zi. Assuming that proposals

50 Few-shot Weakly-Supervised Object Detection via Directional Statistics

are i.i.d samples from their corresponding distributions given their labels zi
3, we can

write

p(Fi|zi = ej, θ) = p+θ (Fij)
P

∏
k=1
k 6=j

p−ω(Fik) , (4.7)

where Fij is the feature of the j-th proposal in Fi, p+θ is the generic distribution that
generates the common class proposals, and p−ω represents background proposals’
distribution. For brevity, let us re-write Equation (4.7) in a more compact form

p(Fi|zi = ej, θ) = qθ(Fij)p−ω(Fi) , (4.8)

where qθ is quotient of object and background distributions qθ(x) = p+θ (x)/p−ω(x),
and p−ω(Fi) = ∏P

j=1 p−ω(Fij).

We adopt the EM algorithm to maximize the likelihood in Equation (4.6) by iter-
atively optimizing the surrogate expected log-likelihood which is easier to compute.
In the E-step, the posterior distribution of the latent variables wik = p(zi = ek|Fi, θ)
are computed for the current θ. By Equation (4.8), using Bayes’ theorem, and as-
suming a uniform distribution over image labels zi, the posterior can be expressed in
terms of quotient of distributions defined above

wik =
qθ(Fik)

∑P
j=1 qθ(Fij)

, (4.9)

yielding soft label vector wi ∈ RP for the i-th image proposals.

By plugging in the vMF probability density function of the common class and
background probability density function, the quotient qθ can be written as

qθ(x) ∝ exp
(

κθ>x− log u−ω(x)
)

. (4.10)

As shown in Algorithm 4, one can compute the soft labels via the softmax operation,
resembling the attention mechanism recently used for MIL [Ilse et al., 2018].

In the M-step, parameters θ are updated by maximizing the surrogate expected
log-likelihood using the posteriors computed in the E-step

l(θ′; θ) =
M

∑
i=1

Ep(zi |Fi ,θ)

[
log p(Fi|zi, θ′)

]
=

M

∑
i=1

P

∑
k=1

wik log p(Fi|zi = ek, θ′) , (4.11)

where the weights wik are computed in Equation (4.3). Lagrangian function is written
as

L(θ′, λ) = l(θ′; θ)− λ(‖θ′‖2 − 1) (4.12)

By plugging in the log-likelihood term in Equation (4.12) and computing the deriva-

3i.i.d assumption is a standard approach in MIL and works well in practice. See [Maron and Lozano-
Pérez, 1998] for more details.

§4.2 Details of Methodology 51

tive w.r.t. θ′ and λ we have

∇θ′L(θ′, λ) =
M

∑
i=1

P

∑
k=1

wik∇θ′ log
(

p+θ′(Fij)
P

∏
k=1
k 6=j

p−ω(Fik)
)
− 2λθ′ = κ

M

∑
i=1

P

∑
k=1

wikFik − 2λθ′ .

∇λL(θ′, λ) = −‖θ′‖2 + 1.
(4.13)

Finally, closed-form update rule

θ← norm(
M

∑
i=1

x̃i) ,

where x̃i = w>i Fi =
P

∑
k=1

wikFik ,

(4.14)

is derived by setting the derivatives to zero and solving for θ′ and λ.

4.2.4.2 Updating κ in M-Step

In this section, we propose a simple update rule for parameter κ that can be used
along Equation (4.14) in the M-step. As shown in our experiments (Table 4.3), updat-
ing κ with a our order-0 rule further improves our vMF-MIL COL results.

To find the optimal κ, we compute the derivative of the Lagrangian function in
Equation (4.12) w.r.t. κ

∂κL(θ′, λ) =
M

∑
i=1

P

∑
k=1

wik∂κ log
(

p+θ′(Fij)
P

∏
k=1
k 6=j

p−ω(Fik)
)
=

M

∑
i=1

P

∑
k=1

wik∂κ log p+θ′(Fik)

=
M

∑
i=1

P

∑
k=1

wik∂κ(− log Z(κ) + κF>ik θ′) = −M
∂κZ(κ)
Z(κ)

+ r>θ′ ,

(4.15)

where r = ∑M
i=1 ∑P

k=1 wikx and Z(κ) is vMF distribution normalization factor. A
precise formula is known for Z(κ), namely

Z(κ) =
(2π)d/2 Id/2−1(κ)

κd/2−1 . (4.16)

where d is the feature dimension and I is the modified Bessel function. This for-
mula is quoted in [Banerjee et al., 2005, 2.2], but it is upside-down compared to
Equation (4.16), since we are defining cd(κ) = 1/Z(κ).

By plugging in θ′ = r/‖r‖ from Equation (4.14) and setting the derivative to zero
we get

∂κZ(κ)
Z(κ)

=
‖r‖
M

= r̄ . (4.17)

Equation (4.17) is similar to what we see in vMF maximum-likelihood estima-

52 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Figure 4.6: Plot of different estimates of κ̂ as a function of r̄, for dimension d = 100. At
this resolution, the exact estimate is indistinguishable from the estimate Equation (4.21).
The graph also shows approximations of different orders, such as Equation (4.23) and Equa-
tion (4.24), which are accurate for small-to-medium values of r̄, but not for larger values.
However, the exact value of κ̄ is extremely sensitive to small variations in the value of r̄, and
it diverges to infinity as r̄ approaches 1. For this reason it may not be good practice (as is
verified by our experiments) to use the exact estimate of κ̄ in clustering.

tion, therefore, we can use the maximum-likelihood derivations from now on (See
Appendix of [Banerjee et al., 2005] equations A.7 to A.8) which leads to maximum-
likelihood estimation

κ = A−1
d (r̄) , (4.18)

where Ad is the ratio of Bessel functions,

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
. (4.19)

It is still numerically difficult to compute the Bessel function in cases where d and κ

are large. We are able to compute it in python using the scipy.special.iv function,
only for values of d up to about 120 and κ up to about 700.

To address this difficulty, different formulae are given for estimating the optimal
value of κ̂.

1. A formula due to [Mardia and Jupp, 2009] is given in [Banerjee et al., 2005](4.2)
as

κ̂ ≈ dr̄
(

1 +
d

d + 2
r̄2 +

d2(d + 8)
(d + 2)2(d + 4)

r̄4
)

.

For large values of d, this is almost the same as

κ̂ ≈ dr̄
(

1 + r̄2 + r̄4
)

. (4.20)

§4.2 Details of Methodology 53

2. [Banerjee et al., 2005] derive an estimate (unnumbered, above [Banerjee et al.,
2005, 4.4]),

κ̂ ≈ dr̄
1− r̄2 (4.21)

which has series expansion

κ̂ ≈ dr̄(1 + r̄2 + r̄4 + . . .) . (4.22)

Since 0 ≤ r̄ < 1, this series will converge, albeit slowly for r̄ close to 1. Thus, it
is seen that Equation (4.20) is simply a truncated approximation to the infinite
series Equation (4.22). We shall refer to Equation (4.20) (perhaps somewhat
inexactly) as the “order-2” approximation to Equation (4.22), since the approx-
imation to 1/(1− r̄2) contains terms up to second order in r̄2.

3. It is also possible to consider approximations of other orders for Equation (4.21),
including in particular the 0-order approximation

κ̂ ≈ dr̄ , (4.23)

first order approximation
κ̂ ≈ dr̄

(
1 + r̄2) , (4.24)

and the third-order approximation.

4. Another empirically derived formula is also given in [Banerjee et al., 2005, 4.4].
However, we observe (see Figure 4.6) that the approximation Equation (4.21) is
already a very close approximation, and the use of [Banerjee et al., 2005, 4.4] is
not warranted.

We show graphs of the approximations of κ̂ for various approximation, and the exact
solution in Figure 4.6.

4.2.5 Finding the Common Object in the Query Set

For a single feature proposal x ∈ Sd−1 extracted from query image I, our goal is
to estimate the class label c ∈ {0, 1} which indicates if the query proposal tightly
encloses the target object. Given the estimated common object mean θ and the
background class distribution p−ω, we compute conditional class distribution func-
tion P(c|x) ∝ P(c)p(x|c) where P(c) and p(x|c) are the class prior and likelihood,
respectively. We assume that the foreground class prior is a constant value α, i.e.,
P(c = 1) = α. Using the background and vMF foreground class likelihoods, the
conditional class distribution is written as

P(c|x) ∝

{
exp

(
κθ>x− log u−ω(x)

)
c = 1

λ c = 0 ,
(4.25)

54 Few-shot Weakly-Supervised Object Detection via Directional Statistics

where λ = (1− α)/α × Z/U encapsulates all the constants and Z is the vMF nor-
malizing constant. Equivalently, proposal x can be classified via a softmax over the
logits

logit(c|x) =
{

κθ>x− log u−ω(x) c = 1

log λ c = 0 .
(4.26)

We set λ = 1 for all the COL experiments. Changing λ adjusts the confidence values
but keeps the order of the final scores the same, therefore, its value does not affect
the mean Average Precision (mAP) or Correct Localization (CorLoc) metrics.

4.2.6 WSOD

For the task of WSOD where we have more than one target class, our COL algorithm
is first used to label instances of each class. Once the support set is labeled, an
off-the-shelf few-shot object detection model can be used for learning novel classes.
Inspired by the success of the recent few-shot object detection method in [Wang et al.,
2020], we employ a single layer cosine similarity classifier for learning.

Learning is performed on one target class c ∈ L at a time. Let vc ∈ Rd denote the
classifier weight for class c. The classification score for this class is computed as

sc(x) =
τv>c x
‖vc‖

, (4.27)

where x ∈ Sd−1 is the `2 normalized feature proposal extracted by our Faster-RCNN
model and τ is temperature hyperparameter. For class c, the input training set Dtrain

is split into positive images Dc
train of images that have the target class and negative

set Dtrain \ Dc
train, images without the target class. Then, we label Dc

train by running
the COL algorithm on the positive images and select the proposal with the highest
soft label from each image as the common object representative. All the proposals in
the negative set are used as negative examples. Finally, vc is learned by minimizing
the sigmoid cross entropy loss over the positive and negative proposals. We use the
L-BFGS optimizer with strong Wolfe line search for faster convergence.

At the test time, a test proposal x from the query set Dtest is scored using the
classifiers learned for each novel class.

Recently, [Qi et al., 2018] propose a weight imprinting process to learn novel class
prototypes on the unit hypersphere. Learning on the unit hypersphere has been em-
ployed by other few-shot learning algorithms for better generalization [Gidaris and
Komodakis, 2018] and to stabilize the training [Wang et al., 2020]. Most recently,
[Yang et al., 2021] propose to make the distributions more Gaussian by transform-
ing the features of the support set and query set using Tukey’s Ladder of Powers
transformation [Tukey, 1977]. It is shown that Tukey’s normalization significantly
improves the performance of few-shot prototypical learning. As the scope of these
methods is limited to supervised learning, we compare different normalizations and
transformations used in the literature for the weakly supervised task of COL in Sec-
tion 4.3.4.

§4.3 Experiments 55

4.3 Experiments

We evaluate the proposed method in few-shot COL and WSOD problems. We com-
pare our work (vMF-MIL) with Greedy Tree Chapter 3 and SILCO [Hu et al., 2019],
two state-of-the-art methods for the task of few-shot common object localization.

To the best of our knowledge there is no WSOD algorithm for few-shot setting
in the literature. However, WSOD with knowledge-transfer methods [Rahimi et al.,
2020a; Uijlings et al., 2018; Hoffman et al., 2016; Deselaers et al., 2010] are closely
related to our work. We describe a slightly modified version of [Uijlings et al., 2018],
called MI-SVM in our experiments, in Appendix A.2, and discuss its differences to
the proposed method. The MI-SVM baseline is not applicable to the COL problem as
it always requires negative examples for training. To compare MI-SVM against other
COL methods, we provide MI-SVM with an extra set of K negative images that do
not have the target class when sampling the support set.

The original version of Greedy Tree selects only one proposal from each image in
the support set and does not perform detection on a new query image. To make it
compatible with other methods, we add a simple inference step to the Greedy Tree
algorithm. Let S = {x1, . . . , xM} denote the set of selected proposals, one from each
image in the support set. We score feature proposal x from the query image as a sum
of its pairwise similarities to all the selected proposals, i.e., score(x) = ∑M

j=1 r(x, xj),
where r is the learned pairwise similarity function by Greedy Tree. The computed
score measures the negative change in the energy value if x were added as a new
node to the graph labeling problem used in Chapter 3.

In all the methods, we first hold out 20 base classes for validation and hyperpa-
rameter tuning and then re-train on all the base classes with the best found param-
eters. For evaluation, we compute the correct localization (CorLoc) rate [Deselaers
et al., 2010] and mean Average Precision (mAP) with IoU overlap threshold of 0.5 on
the query image.

4.3.1 Common Object Localization

Table 4.1: CorLoc (top) and mAP (bottom) performance of different few-shot common object local-
ization methods on VOC07 test set. All of the models are trained on COCO60 and evaluated on a test
query with K = 5 images in the support set. The best and second best performing methods are shown
in bold and gray backgrounds respectively. ∗MI-SVM receives K extra negative images.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv CorLoc

MI-SVM∗ [Uijlings et al., 2018] 29.4 13.2 53.7 32.7 12.9 70.4 66.4 67.4 15.7 81.6 10.0 67.6 67.1 27.1 10.1 16.7 84.2 38.9 43.5 41.1 42.5
SILCO [Hu et al., 2019] 51.0 30.3 50.7 34.5 11.3 72.2 63.6 58.9 11.2 86.8 6.7 56.9 51.9 49.2 13.0 16.7 52.6 41.1 46.8 34.2 42.0
Greedy Tree (Chapter 3) 35.3 21.1 59.7 34.5 24.2 77.8 73.4 61.1 23.1 89.5 15.0 64.7 73.4 25.4 12.8 13.3 100.0 64.2 61.3 46.6 48.8

vMF-MIL (ours) 62.7 42.1 53.7 49.1 6.5 68.5 73.8 69.5 19.4 97.4 36.7 65.7 82.3 40.7 21.7 15.0 94.7 64.2 69.4 31.5 53.2

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

MI-SVM∗ [Uijlings et al., 2018] 17.7 7.7 31.6 10.6 4.3 46.5 40.1 53.3 3.6 56.8 3.3 56.3 42.3 17.1 1.7 8.1 37.9 25.9 27.3 19.2 25.6
SILCO [Hu et al., 2019] 33.0 13.4 34.5 14.8 3.9 48.8 38.4 55.5 4.0 52.8 4.5 54.2 36.3 27.3 3.3 7.7 27.0 31.3 36.7 23.5 27.5
Greedy Tree (Chapter 3) 26.0 8.7 37.4 11.5 7.5 52.4 47.7 45.8 7.4 61.1 4.5 47.3 50.7 15.6 2.3 5.0 40.0 46.3 47.3 25.7 29.5

vMF-MIL (ours) 36.7 20.6 38.1 14.2 1.9 55.4 50.2 56.5 7.4 71.4 9.5 56.2 63.4 16.8 4.9 3.4 39.3 43.0 51.2 23.0 33.1

56 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Table 4.2: CorLoc(%) and mAP(%) results of different methods for the task of common object lo-
calization on novel object classes on the COCO60 dataset with support set size K = 5 and K = 10.
∗MI-SVM receives K extra negative images.

Model
K = 5 K=10

CorLoc@0.5 mAP@0.5 CorLoc@0.5 mAP@0.5

MI-SVM∗ [Uijlings et al., 2018] 30.5 15.9 33.2 16.2
SILCO [Hu et al., 2019] 29.7 14.8 31.3 15.8
Greedy Tree (Chapter 3) 32.7 16.0 33.8 16.4

vMF-MIL (ours) 35.7 19.6 38.2 20.2

We use the official implementations of SILCO and Greedy Tree for this exper-
iment. To have a fair comparison with SILCO, we employ Faster-RCNN with a
VGG16 [Simonyan and Zisserman, 2015] backbone architecture for feature extraction
in both Greedy Tree and our method.

We evaluate on a popular MS COCO 2014 [Lin et al., 2014] split used in few-shot
object detection methods [Wang et al., 2020; Perez-Rua et al., 2020; Xiao and Marlet,
2020; Yan et al., 2019; Kang et al., 2019], named COCO60. In the COCO60 split, 60
categories disjoint with the PASCAL VOC dataset are used as base classes and the
remaining 20 classes are used as novel classes. This allows us to also perform a
cross-dataset evaluation on the PASCAL VOC07 [Everingham et al., 2007] test set.
We evaluate the performance of each method over 2000 randomly sampled tasks.

Table 4.1 and Table 4.2 summarize the results on PASCAL VOC and MS COCO
datasets, respectively. Despite its simplicity, our method outperforms all the methods
by a large margin, followed by Greedy Tree and SILCO. Specifically, we gain between
10% to 20% relative improvement in mAP metric against the second best performing
method. The proposed method and Greedy Tree both estimate latent proposal-level
labels of the support images to find the common object. However, SILCO explores the
dense similarity between each support image and the query image while using coarse
image-level features via a global average pooling to estimate the relation of support
images. This experiment confirms that estimating proposal-level labels within the
support images is quite important for common object localization.

4.3.1.1 Effect of Updating κ in M-Step

As pointed out in the caption to Figure 4.6, the exact estimate of κ̂ may not be a good
choice for clustering, in the case where r̄ approaches 1 (meaning that the data has
small spread).

In Table 4.3, we try all the different formulas described in Section 4.2.4.2 to esti-
mate a value of κ̂. We also report the results where κ is kept constant. The experi-
ments show the following outcomes.

1. Order-∞ in Equation (4.21) performs notably worse, presumably because of the
sensitivity to the value of r̄, which is computed from a relatively small number
of samples in our few-shot learning scenario.

§4.3 Experiments 57

Table 4.3: CorLoc(%) and mAP(%) results with κ estimations for the task of COL on novel object
classes on the COCO60 dataset with support set size K = 5 and K = 10.

κ̂
K = 5 K=10

CorLoc@0.5 mAP@0.5 CorLoc@0.5 mAP@0.5

Constant 34.8 18.6 36.9 20.0
dr̄(1 + r̄2 + r̄4 + . . .) 20.1 11.3 24.6 13.7
dr̄(1 + r̄2 + r̄4 + r̄6) 31.8 17.7 34.7 19.0
dr̄(1 + r̄2 + r̄4) 33.1 18.6 36.3 19.5
dr̄(1 + r̄2) 34.7 19.0 37.5 19.9
dr̄ 35.7 19.6 38.2 20.2

2. The order-1 to order-3 estimates perform approximately the same as fixing κ̂.

3. The order-0 approximation, κ̂ = dr̄, gives the best results. In our COL experi-
ments, d = 512, so setting κ̂ = dr̄ places an upper bound of 512 on the value of
κ̂.

4.3.1.2 Direct Comparison to Greedy Tree

To ensure a fair comparison, we also compare our common object localization unit
to the Greedy Tree algorithm by exactly following the original experimental protocol
in Chapter 3. The Greedy Tree algorithm utilizes a split of the COCO 2017 dataset
with 63 base classes for training and 17 held-out novel classes for testing the algo-
rithm. The trained model is also tested on a subset of the ILSVRC 2013 detection
dataset with 148 novel classes that have no overlap with the base classes. In Greedy
Tree, a Faster-RCNN with ResNet50 [He et al., 2016] backbone is first trained on the
base classes and used to extract features from all the images. To allow a fair compar-
ison, we use the same feature set provided by the authors. To mimic common object
localization during training, we sample tasks with N = 1 and K = 8 for training.

Similar to Chapter 3, we evaluate our model over 1000 randomly sampled tasks
each containing K = 8 images with an object class in common. For each image,
the proposal with the highest soft label in Equation (4.3) is returned as the common
object. We report the class-agnostic CorLoc ratio on COCO and ILSVRC datasets
in Table 4.4 and compare it with the results in Chapter 3. vMF-MIL outperforms
Greedy Tree by 2.20% and 1.75% in MS COCO and ILSVRC datasets, respectively.

Table 4.4: Class-agnostic CorLoc(%) with 95% confidence interval of the method in Chapter 3
compared to our method. All methods use K = 8 positive images for finding the common object.

method COCO ILSVRC13

Greedy Tree (Chapter 3) 64.65± 1.05 53.00± 1.10
vMF-MIL 66.85± 1.03 54.75± 1.09

58 Few-shot Weakly-Supervised Object Detection via Directional Statistics

4.3.2 Few-shot WSOD

We train our model on COCO60 for the task of few-shot WSOD with different N-
way, K-shot problems and compare it with the knowledge-transfer MI-SVM model
described in Appendix A.2 on PASCAL VOC 2007 and MS COCO novel classes in
Table 4.5. To highlight the importance of EM refinement, we also train our model
with full image prototypical initialization without EM refinement. In both datasets,
vMF-MIL outperforms MI-SVM in all the scenarios, demonstrating the strong gener-
alization ability of our learning approach.

Table 4.5: mAP(%) of different few-shot WSOD methods on COCO60 and PASCAL VOC datasets.

Method Dataset
N = 5 N = 10 N = 20

K = 5 K=10 K=5 K=10 K=5 K=10

Prototypical Init
VOC07

16.01 17.93 10.56 11.02 5.41 6.72
MI-SVM [Uijlings et al., 2018] 17.99 20.27 12.09 13.07 7.04 8.32

vMF-MIL (ours) 21.22 22.01 14.54 15.83 8.83 10.19

Prototypical Init
COCO60

8.90 9.28 4.65 6.07 2.99 3.26
MI-SVM [Uijlings et al., 2018] 11.40 11.60 7.30 7.80 2.97 3.70

vMF-MIL (ours) 12.35 13.19 8.53 10.07 4.23 4.85

Iterations

0

10

20

30

40

0 1 2 3 4 10 20

VOC07 COCO60

mAP vs. iterations

Figure 4.7: mAP(%) vs. number of EM iterations in common object localization task with
K = 5 on COCO60 and VOC07 datasets. The performance reaches a plateau at step 4.

4.3.3 Large-Scale WSOD

Although our method is designed for low-shot settings, it is interesting to evaluate its
performance in the standard WSOD setting as well. Related to our work is transfer

§4.3 Experiments 59

learning approaches for large-scale WSOD [Uijlings et al., 2018; Hoffman et al., 2016]
with ImageNet detection as the standard benchmark. Typically, the first 100 classes
are used as the base dataset and the remaining 100 classes with 65k images are
used as novel objects. We follow the setup in [Uijlings et al., 2018] and use the pre-
trained Inception-Resnet Faster-RCNN model and weights provided by the authors
to extract proposals, features, and the objectness scores. We apply our EM algorithm
to the extracted features and use u−ω(x) = α(1− obj(x)) for each proposal x where
obj(x) is the Faster-RCNN objectness score and α is a hyper-parameter we tuned for
the task. To our surprise, vFM-MIL outperforms [Uijlings et al., 2018] in Table 4.6
while being about 100× faster. We believe these results can be further improved by
relaxing some of the assumptions in our statistical model as overfitting may not be as
significant in large-scale settings. For instance, we can learn a separate concentration
parameter for each novel class in the EM steps. Furthermore, we can utilize the novel
dataset to update the background scoring function u−ω . We defer these improvements
and further analysis to the future work.

Table 4.6: Large-Scale WSOD on ImageNet Detection.

Model CorLoc@0.5 Time (min.)

LSDA (JMLR 2016) [Hoffman et al., 2016] 28.8 -
Uijlings et al. (CVPR 18) [Uijlings et al., 2018] 74.2 900 (estimated)

vMF-MIL (ours) 76.5 10

4.3.4 Ablation Study

To understand which parts of the proposed method are critical for common object
localization, we analyzed results in Table 4.2 with K = 5 for each of the important
components of the proposed method in Table 4.7. These components are: initializing
θ and κ using features extracted from the complete image (Prototypical Init), updat-
ing θ, updating κ, and learning background distribution p−ω to steer the algorithm
toward objects. The first entry (#1) in Table 4.7 shows that there is a huge perfor-
mance gap when the background model is not used. This is expected, since without
using the background model it may localize non-object patterns such as grass, water,
building, etc. with similar appearances as the common object. Comparing the third
entry (#3) with #5 and #6 reveals that updating both θ and κ in the EM refinements
is important and that increases CorLoc by 4.8% and mAP by 6.3%. The fourth entry
shows the importance of initialization; the EM steps are only effective if θ is initial-
ized with the complete image proposal otherwise EM reaches a low quality local
minimum.

The second part of Table 4.7 shows the advantage of using vMF to Gaussian
distribution in the EM algorithm (see Appendix A.1 for the details). Tukey’s trans-
formation Tukey [1977] further improves the performance of the Gaussian model
but vMF distribution still exhibits the best performance. We believe this is because

60 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Iteration 2 Iteration 3Iteration 1

Figure 4.8: Bounding box adjustments at each iteration for the common object localization
experiment on COCO60 with K = 5. Only the top prediction in the query image is shown (in
pink color) for each iteration. Ground-truth bounding boxes of the target classes are shown in
green. EM refinements improve the target object localization in the query image.

§4.3 Experiments 61

feature vectors’ direction better captures the semantic information.

Table 4.7: Ablation study on COCO60 dataset. #1-6 show the importance of initialization,
iterative EM updates, and learning the background model. #7-9 compare different statistical
models in the EM algorithm.

Random Init Prototypical Init Update θ Update κ p−ω CorLoc mAP

1 X X 1.9 0.6
2 X 22.8 9.3
3 X X 30.9 13.3
4 X X X 30.1 14.2
5 X X X 34.8 18.6
6 X X X X 35.7 19.6

Gaussian Tukey+Gaussian vMF

7 X 29.8 13.9
8 X 34.0 17.3
9 X 35.7 19.6

Finally, we illustrate the performance improvement vs. the number of EM steps
in Figure 4.7. In both VOC07 and COCO60 datasets, mAP reaches a plateau show-
ing that the algorithm converges quickly. Qualitative results in Figure 4.8 depict
successful cases where EM refinements improve the top prediction.

4.3.5 Qualitative Results

We show some of the success cases of our method. Our first example in Figure 4.9
shows vMF-MIL performance on a single few-shot WSOD problem. Given the sup-
port set with only image-level annotations the algorithm learns to detect the target
objects in the query set. We sample 4 query images to evaluate the algorithm perfor-
mance in detecting different target objects. Except person in the first query image,
vMF-MIL successfully detects other target objects. More few-shot WSOD tasks are
shown in Figure 4.10, 4.11, 4.12, 4.13 and 4.14.

Finally, Figure 4.15 shows some of the success cases in localizing the target object
in the query image for the task of common object localization in Section 4.3.1. All the
target objects (dog, car, cow, train, boat, bus, sofa, horse, person) shown
in this figure are novel. Also, ground-truth annotations are only shown for better vi-
sualization and are not used in learning.

62 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Figure 4.9: Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support
set shown on the left side the algorithm detects the object on the 4 different query images on
the right side. The algorithm fails to detect person in the first query image but successfully
detects other target objects.

§4.3 Experiments 63

Figure 4.10: Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the right side.

64 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Figure 4.11: Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the right side.

§4.3 Experiments 65

Figure 4.12: Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the right side.

66 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Figure 4.13: Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the right side.

§4.3 Experiments 67

Figure 4.14: Few-shot WSOD on PASCAL VOC with N = K = 5. Given the support set
shown on the left side the algorithm detects the object in query images on the right side.

68 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Figure 4.15: 5-shot common object localization (N = 1) on MS COCO. Each row shows
one common object localization problem. Ground-truth annotations (shown in green) are just
for visualization and are not used in the algorithm. Top query bounding box prediction for
each problem is shown in pink.

§4.4 Summary 69

4.4 Summary

We have presented vMF-MIL, a multiple instance learning framework to address the
problem of few-shot common object localization and WSOD. vMF-MIL uses a simple
inductive bias in learning to combat the overfitting issue in few-shot learning. Specif-
ically, instances of each class are assumed to form a cluster on a unit hypersphere,
where the mean corresponds to the class prototype. Our experiments on few-shot
common object localization illustrate the advantage of our simple approach over sev-
eral state-of-the-art methods, improving the few-shot WSOD performance compared
with the strong MI-SVM baseline.

70 Few-shot Weakly-Supervised Object Detection via Directional Statistics

Chapter 5

Pairwise Similarity Knowledge
Transfer for Weakly Supervised
Object Localization

Weakly Supervised Object Localization (WSOL) methods only require image level la-
bels as opposed to expensive bounding box annotations required by fully supervised
algorithms. In this chapter, we study the problem of learning localization model
on target classes with weakly supervised image labels, helped by a fully annotated
source dataset. Typically, a WSOL model is first trained to predict class generic
objectness scores on an off-the-shelf fully supervised source dataset and then it is
progressively adapted to learn the objects in the weakly supervised target dataset.
Inspired by the success of our finding common objects in previous chapter, we argue
that learning only an objectness function is a weak form of knowledge-transfer and
propose to learn a classwise pairwise similarity function that directly compares two
input proposals as well. The combined localization model and the estimated object
annotations are jointly learned in an alternating optimization paradigm as is typi-
cally done in standard WSOL methods. In contrast to the existing work that learns
pairwise similarities, our approach optimizes a unified objective with convergence
guarantee and it is computationally efficient for large-scale applications. Experi-
ments on the COCO and ILSVRC 2013 detection datasets show that the performance
of the localization model improves significantly with the inclusion of pairwise simi-
larity function. For instance, in the ILSVRC dataset, the Correct Localization (CorLoc)
performance improves from 72.8% to 78.2% which is a new state-of-the-art for WSOL
task in the context of knowledge-transfer.

5.1 Introduction

Weakly Supervised Object Localization (WSOL) methods have gained a lot of atten-
tion in computer vision [Wan et al., 2019; Gao et al., 2019; Arun et al., 2019; Uijlings
et al., 2018; Cinbis et al., 2016; Bilen et al., 2014; Deselaers et al., 2010; Tang et al.,
2017, 2018]. Despite their supervised counterparts [He et al., 2017; Redmon et al.,

71

72 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

2016; Liu et al., 2016; Singh et al., 2018; Lin et al., 2017] that require the object class
and their bounding box annotations, WSOL methods only require the image level
labels indicating presence or absence of object classes. In spite of major improve-
ments [Wan et al., 2019; Cinbis et al., 2016] in this area of research, there is still a
large performance gap between weakly supervised and fully supervised object lo-
calization algorithms. In a successful attempt, WSOL methods are adopted to use
an already annotated object detection dataset, called source dataset, to improve the
weakly supervised learning performance in new classes [Uijlings et al., 2018; Hoff-
man et al., 2016]. These approaches learn transferable knowledge from the source
dataset and use it to speed up learning new categories in the weakly supervised
setting.

Multiple-Instance Learning (MIL) methods like MI-SVM [Andrews et al., 2003]
are the predominant methods in weakly supervised object localization [Wan et al.,
2019; Cinbis et al., 2016; Bilen et al., 2014]. Typically, images are decomposed into
bags of object proposals and the problem is posed as selecting one proposal from
each bag that contains an object class. MIL methods take advantage of alternating
optimization to progressively learn a classwise objectness (unary) function and the
optimal selection in re-training and re-localization steps, respectively. Typically, the
source dataset is used to learn an initial generic objectness function which is used
to steer the selection toward objects and away from background proposals [Uijlings
et al., 2018; Hoffman et al., 2016; Bilen and Vedaldi, 2016; Rochan and Wang, 2015;
Tang et al., 2014; Guillaumin and Ferrari, 2012]. However, solely learning an object-
ness measure is a sub-optimal form of knowledge-transfer as it can only discriminate
objects from background proposals, while it is unable to discriminate between differ-
ent object classes. Deselaers et al. [2010] propose to additionally learn a pairwise sim-
ilarity function from the fully annotated dataset and frame WOSL as a graph labeling
problem where nodes represent bags and each proposal corresponds to one label for
the corresponding node. The edges which reflect the cost of wrong pairwise label-
ing are derived from the learned pairwise similarities. Additionally, they propose
an ad-hoc algorithm to progressively adapt the scoring functions to learn the weakly
supervised classes using alternating re-training and re-localization steps. Unlike the
alternating optimization in MIL, re-training and re-localization steps in [Deselaers
et al., 2010] does not optimize a unified objective and therefore the convergence of
their method could not be guaranteed. Despite good performance on medium scale
problems, this method is less popular especially in large scale problems where com-
puting all the pairwise similarities is intractable.

In this work, we adapt the localization model in MIL to additionally learn a pair-
wise similarity function and use a two-step alternating optimization to jointly learn
the augmented localization model and the optimal selection. In the re-training step,
the pairwise and unary functions are learned given the current selected proposals
for each class. In the re-localization step, the selected proposals are updated given
the current pairwise and unary similarity functions. We show that with a prop-
erly chosen localization loss function, the objective in the re-localization step can be
equivalently expressed as a graph labeling problem very similar to the model in [De-

§5.2 Problem Description and Background 73

selaers et al., 2010]. We use the computationally effective iterated conditional modes
(ICM) graph inference algorithm [Besag, 1986] in the re-localization step which up-
dates the selection of one bag in each iteration. Unfortunately, the ICM algorithm is
prone to local minimum and its performance is highly dependent on the quality of
its initial conditions. Inspired by our work on few-shot object localization in Chap-
ter 3, we divide the dataset into smaller mini-problems and solve each mini-problem
individually using TRWS [Kolmogorov, 2006]. We combine the solutions of these
mini-problems to initialize the ICM algorithm. Surprisingly, we observe that initial-
izing ICM with the optimal selection from mini-problems of small sizes considerably
improves the convergence point of ICM.

Our work addresses the main disadvantages of graph labeling algorithm in [De-
selaers et al., 2010]. First, we formulate learning pairwise and unary functions and
updating the optimal proposal selections with graph labeling within a two-step al-
ternating optimization framework where each step is optimizing a unified objective
and the convergence is guaranteed. Second, we propose a computationally efficient
graph inference algorithm which uses a novel initialization method combined with
ICM updates in the re-localization step. Our experiments show our method signif-
icantly improves the performance of MIL methods in large-scale COCO [Lin et al.,
2014] and ILSVRC 2013 detection [Russakovsky et al., 2015] datasets. Particularly,
our method sets a new state-of-the-art performance of 78.2% correct localization [De-
selaers et al., 2010] for the WSOL task in the ILSVRC 2013 detection dataset1.

5.2 Problem Description and Background

We review the standard dataset definition and optimization method for the weakly
supervised object localization problem [Wan et al., 2019; Uijlings et al., 2018; Cinbis
et al., 2016; Deselaers et al., 2010]. We follow the notations introduced in Chapter 3
with slight modifications specific to our application. Although some concepts have
been introduced before, we will include them for the sake of completeness.

5.2.1 Dataset and Notation.

Suppose each image is decomposed into a collection of object proposals which form a
bag B = {ei}m

i=1 where an object proposal ei ∈ Rd is represented by a d-dimensional
feature vector. We denote y(e) ∈ C ∪ {c∅} the label for object proposal e. In this
definition C is a set of object classes and c∅ denotes the background class. Given a
class c ∈ C we can also define the binary label

yc(e) =

{
1 if y(e) = c
0 otherwise.

(5.1)

1Source code is available on https://github.com/AmirooR/Pairwise-Similarity-knowledge-
Transfer-WSOL

https://github.com/AmirooR/Pairwise-Similarity-knowledge-Transfer-WSOL
https://github.com/AmirooR/Pairwise-Similarity-knowledge-Transfer-WSOL

74 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

With this notation a dataset is a set of bags along with the labels. For a weakly
supervised dataset, only bag-level labels that denote the presence/absence of objects
in a given bag are available. More precisely, the label for bag B is written as Y(B) =
{c | ∃e ∈ B s.t. y(e) = c ∈ C}. Let Yc(B) ∈ {0, 1} denote the binary bag label which
indicates the presence/absence of class c in bag B.
Given a weakly supervised dataset DT = {T ,YT } called the target dataset, with
T = {Bj}N

j=1 and corresponding bag labels YT = {Y(B)}B∈T , the goal is to estimate
the latent proposal unary labeling2 yc for all object classes c ∈ CT in the target set.
For ease of notation, we also introduce a pairwise labeling function between pairs
of proposals. The pairwise labeling function r : Rd ×Rd → {0, 1} is designated to
output 1 when two object proposals belong to the same object class and 0 otherwise,
i.e., ,

r(e, e′) =

{
1 if y(e) = y(e′) 6= c∅
0 otherwise.

(5.2)

Likewise, given a class c, two proposals are related under the class conditional pair-
wise labeling function rc : Rd ×Rd → {0, 1} if they both belong to class c. Similar to
the unary labeling, since the pairwise labeling function is also defined over a finite
set of variables, it can be seen as a vector. Unless we use the word vector or function,
the context will determine whether we use the unary or pairwise labeling as a vector
or a function. We use the “hat” notation to refer to the estimated (pseudo) unary or
pairwise labeling by the weakly supervised learning algorithm.

5.2.2 Multiple-Instance Learning (MIL).

In standard MIL [Andrews et al., 2003], the problem is solved by jointly learning a
unary score function ψU

c : Rd → R (typically represented by a neural network) and a
feasible (pseudo) labeling ŷc that minimize the empirical unary loss

LU
c (ψ

U
c , ŷc | T) = ∑

B∈T
∑
e∈B

`(ψU
c (e), ŷc(e)), (5.3)

where the loss function ` : R× {0, 1} → R measures the incompatibility between
predicted scores ψU

c (e) and the pseudo labels ŷc(e). Here, likewise to the labeling,
we denote the class score for all the proposals as a vector ψU

c . Note that the unary
labeling ŷc is feasible if exactly one proposal has label 1 in each positive bag, and
every other proposal has label 0 [Cinbis et al., 2016]. To this end, the set of feasible
labeling F can be defined as

F =

{
ŷc | ŷc(e) ∈ {0, 1}, ∑

e∈B
ŷc(e) = Yc(B), ∀B ∈ T

}
. (5.4)

2Notice, the labeling is a function defined over a finite set of variables, which can be treated as a
vector. Here, yc denotes the vector of labels yc(e) for all proposals e.

§5.3 Proposed Method 75

Finally, the problem is framed as minimizing the loss over all possible vectors ψU
c

(i.e., , unary functions represented by the neural network) and the feasible labels ŷc

min
ψU

c ,ŷc

LU
c (ψ

U
c , ŷc | T),

s.t. ŷc ∈ F .
(5.5)

5.2.3 Optimization.

This objective is typically minimized in an iterative two-step alternating optimiza-
tion paradigm [Ortega and Rheinboldt, 1970]. The optimization process starts with
some initial value of the parameters and labels, and iteratively alternates between
re-training and re-localization steps until convergence. In the re-training step, the pa-
rameters of the unary score function ψU

c are optimized while the labels ŷc are fixed. In
the re-localization step, proposal labels are updated given the current unary scores.
The optimization in the re-localization step is equivalent to assigning positive label
to the proposal with the highest unary score within each positive bag and label 0 to
all other proposals [Andrews et al., 2003]. Formally, label of the proposal e ∈ B in
bag B is updated as

ŷc(e) =

{
1 if Yc(B) = 1 and e = argmaxe′∈B ψU

c (e′)

0 otherwise.
(5.6)

5.2.4 Knowledge Transfer.

In this chapter, we also assume having access to an auxiliary fully annotated dataset
DS (source dataset) with object classes in CS which is a disjoint set from the target
dataset classes, i.e., , CT ∩ CS = ∅. In the standard practice [Uijlings et al., 2018;
Rochan and Wang, 2015; Guillaumin and Ferrari, 2012], the source dataset is used to
learn a class-agnostic unary score ψU : Rd → R which measures how likely the input
proposal e tightly encloses a foreground object. Then, the unary score vector used in
Equation (5.6) is adapted to ψU

c ← λψU
c + (1− λ)ψU for some 0 ≤ λ ≤ 1. This steers

the labeling toward choosing proposals that contain complete objects. Although the
class-agnostic unary score function ψU is learned on the source classes, since objects
share common properties, it transfers to the unseen classes in the target set.

5.3 Proposed Method

In addition to learning the unary scores, we also learn a classwise pairwise similarity
function ψP

c : Rd ×Rd → R that estimates the pairwise labeling between pairs of
proposals. That is for the target class c, pairwise similarity score ψP

c (e, e′) between
two input proposals e, e′ ∈ Rd has a high value if two proposals are related, i.e., ,
r̂c(e, e′) = 1 and a low value otherwise. We define the empirical pairwise similarity
loss to measure the incompatibility between pairwise similarity function predictions

76 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

and the pairwise labeling r̂c

LP
c (ψ

P
c , r̂c|T) = ∑

B,B′∈T
B6=B′

∑
e∈B

e′∈B′

`(ψP
c (e, e′), r̂c(e, e′)), (5.7)

where ψP
c denotes the vector of the pairwise similarities of all pairs of proposals, and

` : R× {0, 1} → R is the loss function. We define the overall loss as the weighted
sum of the empirical pairwise similarity and the unary loss

Lc(ψc, ẑc|T) = αLP
c (ψ

P
c , r̂c|T) + LU

c (ψ
U
c , ŷc|T), (5.8)

where ψc =
[
ψU

c , ψP
c
]

is the vector of unary and pairwise similarity scores combined,
and ẑc = [ŷc, r̂c] denotes the concatenation of unary and pairwise labeling vectors,
and α > 0 controls the importance of the pairwise similarity loss.

We employ alternating optimization to jointly optimize the loss over the parame-
ters of the scoring functions ψU

c and ψP
c (re-training) and labelings ẑc (re-localization).

In re-training, the objective function is optimized to learn the pairwise similarity and
the unary scoring functions from the pseudo labels. In re-localization, we use the
current scores to update the labelings.

Training the model with fixed labels, i.e., re-training step, is straightforward and
can be implemented within any common neural network framework. We use sig-
moid cross entropy loss in both empirical unary and pairwise similarity losses

`(x, y) = −(1− y) log(1− σ(x))− y log(σ(x)), (5.9)

where x ∈ R is the predicted logit, y ∈ {0, 1} is the label, and σ : R→ R denotes the
sigmoid function σ(x) = 1/(1 + exp(−x)). The choice of the loss function directly
affects the objective function in the re-localization step. As we will show later, since
sigmoid cross entropy loss is a linear function of label y it leads to a linear objective
function in the re-localization step. To speed up the re-training step, we train pairwise
similarity and unary scoring functions for all the classes together by optimizing the
total loss

L(ψ | ẑ, T) = ∑
c∈CT
Lc(ψc, ẑc | T), (5.10)

where ψ = [ψc]c∈CT and ẑ = [ẑc]c∈CT are the concatenation of respective vectors for
all classes. Note that we learn the parameters of the scoring functions that minimize
the loss, while ẑ remains fixed in this step. Since the dataset is large, we employ
Stochastic Gradient Descent (SGD) with momentum for optimization. Additionally,
we subsample proposals in each bag by sampling 3 proposals with foreground and
7 proposal with background label in each training iteration.

5.3.1 Re-localization

In this step, we minimize the empirical loss function in Equation (5.8) over the fea-
sible labeling ẑc for the given model parameters. We first define feasible labeling set

§5.3 Proposed Method 77

A and simplify the objective function to an equivalent, simple linear form. Then, we
discuss algorithms to optimize the objective function in the large scale settings.

For ẑc to be feasible, labeling should be feasible, i.e., , ŷc ∈ F and pairwise
labeling r̂c should also be consistent with the unary labeling. For dataset DT and
target class c, this constraint set is expressed as

A =

 ẑc

∑e∈B ŷc(e) = Yc(B) B ∈ T
∑e∈B r̂c(e, e′) = ŷc(e′) B,B′ ∈ T ,B′ 6= B, e′ ∈ B′
r̂c(e, e′), ŷc(e) ∈ {0, 1} c ∈ C, for all e and e′

 . (5.11)

Next, we simplify the loss function in the re-localization step. Let
Tc = {B | B ∈ T , c ∈ Y(B)} and Tc̄ = T \ Tc denote the set of positive and negative
bags with respect to class c. The loss function in Equation (5.8) can be decomposed
into three parts

Lc(ψc, ẑc|T) = Lc(ψc, ẑc|Tc) + Lc(ψc, ẑc|Tc̄)+

∑
e∈B∈Tc

e′∈B′∈Tc̄

`(ψP
c (e, e′), r̂c(e, e′)) + `(ψP

c (e
′, e), r̂c(e′, e)),

were the first two terms are the loss function in Equation (5.8) defined over the
positive set Tc and negative set Tc̄, and last term is the loss defined by the pairwise
similarities between these two sets. Since for any feasible labeling all the proposals
in negative bags has label 0 and remain fixed, only the value of Lc(ψc, ẑc|Tc) changes
within A and other terms are constant. Furthermore, by observing that for sigmoid
cross entropy loss in Equation (5.9) we have `(x, y) = `(x, 0)− yx, for y ∈ [0, 1]3, we
can further break down Lc(ψc, ẑc|Tc) as

Lc(ψc, ẑc | Tc) = Lc(ψc, 0 | Tc)

−α ∑
B,B′∈Tc
B6=B′

∑
e∈B

e′∈B′

ψP
c (e, e′)r̂c(e, e′)− ∑

B∈T
∑
e∈B

ψU
c (e)ŷc(e),

︸ ︷︷ ︸
Lreloc(ẑc|ψc,Tc)

(5.12)

where 0 is zero vector of the same dimension as ẑc. Since the first term is constant
with respect to ẑc = [ŷc, r̂c], re-localization can be equivalently done by optimizing
Lreloc(ẑc | ψc, Tc) over the feasible set A

min
ẑc
−αr̂>c ψP

c − ŷ>c ψU
c ,

s.t. ẑc ∈ A,
(5.13)

where we use the equivalent vector form to represent the re-localization loss in Equa-
tion (5.12). The re-localization optimization is an Integer Linear Program (ILP) and
has been widely studied in literature [Schrijver, 1998]. The optimization can be

3See Appendix for the proof.

78 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

Algorithm 5: Re-localization
Input: Dataset DT , batch size K, #epochs E
Output: Optimal unary labeling ŷ∗

for c ∈ CT do
T ← round(|Tc|

K), ŷc ← 0
for t← 1 to T do

// Sample next mini-problem
X ∼ Tc
// Solve mini-problem with TRWS [Kolmogorov, 2006]

[ȳ∗c , r̄∗c]← argminz̄c
−αr̄>c ψ̄P

c − ȳ>c ψ̄U
c s.t. z̄c ∈ Ā

Update corresponding block of ŷc with ȳ∗

// Finetune for E epochs
ŷ∗c ← ICM(ŷc, E)

return {ŷ∗c}c∈CT

equivalently expressed as a graph labeling problem with pairwise and unary po-
tentials [Savchynskyy et al., 2019]. In the equivalent graph labeling problem, each
bag is represented by a node in the graph where each proposal of the bag corre-
sponds to a label of that node, and pairwise and unary potentials are equivalent to
the negative pairwise similarity and negative unary scores in our problem. We dis-
cuss different graph inference methods and their limitations and present a practical
method for large-scale settings.

Inference. Finding an optimal solution ẑ∗c that minimizes the loss function defined
in Equation (5.13) is NP-hard and thus not feasible to compute exactly, except in small
cases. Loopy belief propagation [Weiss and Freeman, 2001], TRWS [Kolmogorov,
2006], and AStar [Bergtholdt et al., 2010], are among the many inference algorithms
used for approximate graph labeling problem. Unfortunately, finding an approxi-
mate labeling quickly becomes impractical as the size of Tc increases, since the di-
mension of ẑc increases quadratically with the numbers of bags in Tc due to dense
pairwise connectivity. Due to this limitation, we employ an older well-known it-
erated conditional modes (ICM) algorithm for optimization [Besag, 1986]. In each
iteration, ICM only updates one unary label in ŷc along with the pairwise labels
that are related to this unary label while all the other elements of ẑc are fixed. The
block that gets updated in each iteration is shown in Figure 5.1. ICM performs co-
ordinate descent type updates which monotonically decrease the objective function
value. However, as the problem in Equation (5.13) is non-convex due to its discrete
constraint set, ICM can get stuck at a local minimum and its convergence point is
dependent on the quality of the initial labeling.

§5.3 Proposed Method 79

Figure 5.1: ICM iteration (left) and initialization (right) graphical models. In both graphs,
each node represents a bag (with B proposals) within a dataset with |Tc| = 9 bags. Left: ICM
updates the unary label of the selected node (shown in green). Edges show all the pairwise
labels that gets updated in the process. Since the unary labeling of other nodes are fixed
each blue edge represents B elements in vector r̂c. Right: For initialization we divide the
dataset into smaller mini-problems (with size K = 3 in this example) and solve each of them
individually. Each edge represents B2 pairwise scores that need to be computed.

To initialize the ICM algorithm, we divide the large-scale problem into several
disjoint smaller re-localization problems that can be efficiently solved by the pro-
posed co-localization algorithm in Chapter 3.

Let X ∈ Tc be one of the disjoint mini-problems. We optimize the re-localization
problem Lreloc(z̄c | ψ̄c,X) where vectors z̄c and ψ̄c are parts of vectors ẑc and ψc that
are within the mini-problem defined by X (see Figure 5.1). We repeat this problem
for all the mini-problems. We note that the division of the dataset is performed
randomly. In our pre-liminary experiments, we observed that our method always
converged to similar CorLoc values when we repeated our experiments multiple
times. However, finding an optimal policy for this task is an interesting problem for
future works. The complete re-localization step is illustrated in Algorithm 5.

Complexity. We practically observed that computing the pairwise similarity scores
is the computation bottleneck, thus we analyze the time complexities in terms of the
number of pairwise similarity scores each algorithm computes. Let M = maxc∈CT |Tc|
denotes the maximum number of positive bags, and B = maxB∈T |B| be the maxi-
mum bag size. To solve the exact optimization in Equation (5.13), we need to com-
pute the vector ψc with O(B2M2) elements. On the other hand, each iteration of ICM
only computes O(BM) pairwise similarity scores. We additionally compute a total
of O(MKB2) pairwise similarity scores for the initialization where K is the size of the
mini-problem. Thus, ICM algorithm would be asymptotically more efficient than the
exact optimization in terms of total number of pairwise similarity scores it computes,
if it is run for Ω(MB) iterations or E = Ω(B) epochs. We practically observe that by
initializing ICM with the result of the proposed initialization scheme, it convergences
in few epochs.

Even though Equation (5.13) is similar to the DenseCRF formulation [Krähenbühl
and Koltun, 2011], the pairwise potentials are not amenable to the efficient filtering
method [Adams et al., 2010] which is the backbone of DenseCRF methods [Krähen-
bühl and Koltun, 2011; Ajanthan et al., 2017]. Therefore, it is intractable to use any
existing sophisticated optimization algorithm except for ICM and MeanField [Blake
et al., 2011]. Nevertheless, our block-wise application of TRWS provides an effec-
tive initialization for ICM. We additionally experimented with the block version of

80 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

ICM [Savchynskyy et al., 2019] but it performs similarly while being slower.

5.3.2 Knowledge Transfer

To transfer knowledge from the fully annotated source set DS , we first learn class
generic pairwise similarity ψP : Rd ×Rd → R and unary ψU : Rd → R functions
from the source set. Since the labels are available for all the proposals in the source
set, learning the pairwise and unary functions is straightforward. We simply use
stochastic gradient descent (SGD) to optimize the loss

LT(ψP, ψU|S , r, o) = α ∑
B,B′∈S
B6=B′

∑
e∈B

e′∈B′

`(ψP(e, e′), r(e, e′))) + ∑
B∈S

∑
e∈B

`(ψU(e), o(e)),

(5.14)
where o(e) ∈ {0, 1} is class generic objectness label, i.e., ,

o(e) =

{
1 if y(e) 6= c∅
0 otherwise,

(5.15)

and relation function r : Rd ×Rd → R is defined by Equation (5.6). Here we do
not use hat notation since groundtruth proposal labels are available for the source
dataset DS . We skip the details as the loss in Equation (5.14) has a similar structure
to the re-training loss. Note that in general the class generic functions ψU and ψP and
class specific functions ψU

c and ψP
c use different feature sets extracted from different

networks. Having learned these functions, we adapt both pairwise similarity and
score vectors in the re-localization step in Algorithm 5 as

ψP
c ← (1− λ1)ψ

P
c + λ1ψP

ψU
c ← (1− λ2)ψ

U
c + λ2ψU,

where 0 ≤ λ1, λ2 ≤ 1 controls the weight of transferred and adaptive functions in
pairwise similarity and unary functions respectively. We start the alternating op-
timization with a warm-up re-localization step where only the learned class generic
pairwise and unary functions above are used in the re-localization algorithm, i.e., ,
λ1, λ2 = 1. The warm-up re-localization step provides high quality pseudo labels to
the first re-training step and speeds up the convergence of the alternating optimiza-
tion algorithm.

5.3.3 Network Architectures

Proposal and feature extraction. Following the experiment protocol in [Uijlings
et al., 2018], we use a Faster-RCNN [Ren et al., 2015] model trained on the source
dataset DS to extract region proposals from each image. We keep the box features in
the last layer of Faster-RCNN as transferred features to be used in the class generic
score functions. Following [Uijlings et al., 2018; Hoffman et al., 2016; Tang et al.,

§5.4 Experiments 81

2016], we extract AlexNet [Krizhevsky et al., 2012] feature vectors from each proposal
as input to the class specific scoring functions ψU

c and ψP
c .

Scoring functions. Let e and e′ denote features in Rd extracted from two image
proposals. Linear layers are employed to model the class generic unary function ψU

and all the classwise unary functions ψU
c i.e. ψU

c (e) = w>c e + bc where wc ∈ Rd

is the weight and bc ∈ R is the bias parameter. We employ the relation network
architecture from Chapter 3 to model the pairwise similarity functions ψP and ψP

c .
We share the parameters of the embedding functions in ψP

c (e, e′) for all the classes
c ∈ CT to reduce the number of parameters.

5.4 Experiments

We evaluate the main applicability of our technique on different weakly supervised
datasets and analyze how each part affects the final results in our method. We report
the widely accepted Correct Localization (CorLoc) metric [Deselaers et al., 2010] for
the object localization task as our evaluation metric. We report with 0.5 and 0.7
thresholds in our experiments. All experiments are done on a single Nvidia GTX
1080 GPU and 3.2GHz Intel(R) Xeon(R) CPU with 128 GB of RAM.

5.4.1 COCO 2017 Dataset

We employ a split of COCO 2017 [Lin et al., 2014] dataset to evaluate the effect
of different initialization strategies and our pairwise retraining and re-localization
steps. The dataset has 80 classes in total. We take the same split of [Bansal et al., 2018;
Shaban et al., 2019] with 63 source CS and 17 target CT classes and follow [Shaban
et al., 2019] to create the source and target splits to create source and target datasets
with 111, 085 and 8, 245 images, respectively.

Similar to [Shaban et al., 2019], we use Faster-RCNN [Ren et al., 2015] with
ResNet 50 [He et al., 2016] backbone as our proposal generator and feature extractor
for knowledge-transfer. We keep the top B = 100 proposals generated by Faster-
RCNN for experiments on the COCO 2017.
We first study different approaches for initializing the ICM method in the re-localization
step. Then, we present the result of the full proposed method and compare it with
other baselines.

5.4.1.1 Initialization Scheme

Since the ICM algorithm is sensitive to initialization, we devise the following ex-
periment to evaluate different initialization methods. To limit total running time of
the experiment, we only do this evaluation in the warm-up re-localization step. We
start by training class generic unary and pairwise similarity scoring functions on the
source dataset DS . Next, we initialize the labeling of the images in DT using the
following initialization strategies:

82 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

Table 5.1: Performance and time comparison of different initialization algorithms. Our method
exhibits the highest initialization performance for K = 64, however, we get similar performance for
4 ≤ K ≤ 64 after applying ICM.

Method Init. CorLoc (%) Init.+ICM CorLoc (%) Init.+ICM Energy (×105) Init. Time (Minutes)

Random 0.0 46.0 7.95 0
Objectness 38.7 46.0 7.95 0
Ours K = 2 40.9 46.0 7.95 0
Ours K = 4 44.4 46.9 7.88 1
Ours K = 8 45.2 46.9 7.88 1
Ours K = 64 46.1 47.0 7.88 1706

• Random: randomly select a proposal from each bag.

• Objectness: select the proposal with the highest unary score from each bag.

• Proposed initialization method: Proposed initialization method discussed in Sec-
tion 5.3.1. We conduct the experiment with different mini-problem sizes K ∈
{2, 4, 8, 64}. We use TRWS [Kolmogorov, 2006] algorithm for inference in each
mini-problem.

After initialization, we perform ICM to converge to a local minimum of the orig-
inal labeling problem. Table 5.1 compares performance and time of different initial-
ization algorithms. Our method exhibits the highest initialization performance when
K = 64, however, we get similar performance for 4 ≤ K ≤ 64 after applying ICM. On
the other hand, K = 2 and other initialization algorithms have a lower performance.
We note that increasing K beyond 64 might increase the ICM performance even fur-
ther but it becomes impractical due to its computational cost as the time column in
Table 5.1 shows.

5.4.1.2 Full Pipeline

Here, we conduct an experiment to determine the importance of learning pairwise
similarities on the COCO dataset. We compare our full method with the unary
method which only learns and uses unary scoring functions during, warm-up, re-
training and re-localization steps. This method is analogous to [Uijlings et al., 2018].
The difference is that it uses cross entropy loss and SGD training instead of Support
Vector Machine used in [Uijlings et al., 2018]. Also, we do not employ hard-negative
mining after each re-training step. For this experiment, we use mini-problems of
size K = 4 for initializing ICM. We run both methods for 5 iterations of alternating
optimization on the target dataset. Our method achieves 48.3% compared to 39.4%
CorLoc@0.5 of the unary method. This clearly shows the effectiveness of our pairwise
similarity learning.

§5.4 Experiments 83

Table 5.2: Performance of different methods on ILSVRC 2013. Proposal generators and their back-
bone models are shown in the second and third column. Total time is shown in “Training+Inference”
format. CorLoc is reported on the target set. The last column shows the performance of an object
detector trained on the target set and evaluated on the target test set. ∗The first 3 methods use RCNN
detector with AlexNet backbone while other methods utilize Faster-RCNN detector with Inception-
Resnet backbone.

Method Proposal Generator Backbone CorLoc@0.5 CorLoc@0.7 Time(hours) mAP@0.5

LSDA [Hoffman et al., 2016] Selective Search [Uijlings et al., 2013] AlexNet [Krizhevsky et al., 2012] 28.8 - - 18.1∗

[Tang et al., 2016] Selective Search [Uijlings et al., 2013] AlexNet [Krizhevsky et al., 2012] - - - 20.0∗

[Uijlings et al., 2018] SSD [Liu et al., 2016] Inception-V3 [Szegedy et al., 2016] 70.3 58.8 - 23.3∗

[Uijlings et al., 2018] Faster-RCNN Inception-Resnet 74.2 61.7 - 36.9

Warm-up (unary) Faster-RCNN Inception-Resnet 68.9 59.5 0 -
Warm-up Faster-RCNN Inception-Resnet 73.8 62.3 5+3 -
Unary Faster-RCNN Inception-Resnet 72.8 62.0 13+2 38.1
Full (ours) Faster-RCNN Inception-Resnet 78.2 65.5 65+13 41.7

Supervised[Uijlings et al., 2018] 46.2

5.4.2 ILSVRC 2013 Detection Dataset

We closely follow the experimental protocol of [Uijlings et al., 2018; Hoffman et al.,
2016; Tang et al., 2016] to create source and target datasets on ILSVRC 2013 [Rus-
sakovsky et al., 2015] detection dataset. The val1 split is augmented with images
from the training set such that each class has 1000 annotated bounding boxes in
total [Girshick et al., 2014]. The dataset has 200 categories with full bounding box
annotations. We use the first 100 alphabetically ordered classes as source categories
CS and the remaining 100 classes as target categories CT . The dataset is divided into
source training set DS with 63k images, target set DT with 65k images, and a target
test set with 10k images. The source dataset DS is formed by all images in the aug-
mented val1 set that have an object in CS . As for our target dataset DT , all images
which have an object in the target categories CT are used and all the bounding box
annotations are removed and only the bag labels YT are kept.

We report CorLoc of different algorithms on DT . Similar to previous works [Ui-
jlings et al., 2018; Hoffman et al., 2016; Tang et al., 2016], we additionally train a
detector from the output of our method on target set DT , and evaluate it on the
target test set. For a fair comparison, we use a similar proposal generator and multi-
fold strategy as [Uijlings et al., 2018]. We use Faster-RCNN [Ren et al., 2015] with
Inception-Resnet [Szegedy et al., 2017] backbone trained on source dataset DS for
object bounding box generation. Following [Uijlings et al., 2018], we perform multi-
folding strategy [Cinbis et al., 2016] to avoid overfitting: the target dataset is split
into 10 random folds and then re-training is done on 9 folds while re-localization
is performed on the remaining fold. Values of hyper-parameters are obtained using
cross validation. The experiment on COCO suggests a small mini-problem size K
would be sufficient to achieve good performance in the re-localization step. We use
K = 8 to balance the time and accuracy in this experiment.

84 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

5.4.2.1 Baselines and Results

We compare our method with two knowledge transfer techniques[Hoffman et al.,
2016; Uijlings et al., 2018] for WSOL. In addition, we demonstrate the results of the
following baselines that only use unary scoring function:

• Warm-up (unary): To see the importance of learning pairwise similarities in
knowledge-transfer, we perform the warm-up re-localization with only the
transferred unary scores ψU. This can be achieved by simply selecting the box
with the highest unary score within each bag. We compare this results with
the result of the warm-up step which uses both pairwise and unary scores in
knowledge-transfer.

• Unary: Standard MIL objective in Equation (5.5) which only learns labeling and
the unary scoring function.

We compare these results with our full pipeline which starts with a warm-up re-
localization step followed by alternating re-training and re-localization steps. The
results are illustrated in Table 5.2. Compared to [Uijlings et al., 2018], our method
improves the CorLoc@0.5 performance on the target set by 4% and mAP@0.5 on the
target test set by 4.8%. Warm-up re-localization improves CorLoc performance of
warm-up (unary) by 4.9% with transferring a pairwise similarity measure from the
source classes. Note that the result of warm-up step without any re-training performs
on par with the [Uijlings et al., 2018] MIL method. The CorLoc performance at the
stricter IoU> 0.7 also shows similar results. Compared to [Uijlings et al., 2018], our
implementation of the MIL method performs worse with IoU threshold 0.5 but better
with stricter threshold 0.7. We believe the reason is having a different loss function
and hard-negative mining in [Uijlings et al., 2018].

Some qualitative success cases on ILSVRC 2013 dataset are illustrated in Fig-
ure 5.2, and Figure 5.3. Failure cases on this dataset are also presented in Figure 5.4.
Refer to Figure 5.2 for more information on bounding box tags. As a success ex-
ample, in the 3rd row and second image from left in Figure 5.2, note that the target
object is the tiny bottle. Although, the dog is the most salient object in this image
and is selected by other methods, our method could find the bottle perfectly. Overall,
selection of a visually similar object in the image, occlusion and disconnected objects,
multi-part objects, and even errors in dataset annotations are the source of most of
the failures on this dataset. Figure 5.5 shows the qualitative results on the COCO
dataset.

§5.4 Experiments 85

Figure 5.2: Success cases on ILSVRC 2013 dataset. Unary method that relies on the object-
ness function tends to select objects from source classes that have been seen during training.
Note that “banana”, “dog”, and “chair” are samples from source classes. Bounding
boxes are tagged with method names. Each method is shown with distinct color: “Ours”,
“WU”, “Unary”, “WU(Unary)”, “GT” represent our method, warm-up, unary-only, warm-
up with unary, and groundtruth respectively.

86 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

Figure 5.3: Extended results of Figure 5.2

§5.4 Experiments 87

Figure 5.4: Failure cases on ILSVRC 2013 dataset (see Figure 5.2 for details).

Figure 5.5: Success and failure cases on COCO dataset. First two rows show the success
cases of our method while the last row shows the failure cases. For a success case example,
the task for the middle image in the second row is to find the cat. However, other methods
selected the dog in this case. For a failure case, in the bottom right image, our method selected
the object inside the mirror (see Figure 5.2 for details).

88 Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

5.5 Summary

We have studied the problem of learning localization models on target classes from
weakly supervised training images, helped by a fully annotated source dataset. We
have adapted MIL localization model by adding a classwise pairwise similarity mod-
ule that learns to directly compare two input proposals. Similar to the standard MIL
approach, we have learned the augmented localization model and annotations jointly
by two-step alternating optimization. We have represented the re-localization step as
a graph labeling problem and proposed a computationally efficient inference algo-
rithm for optimization. Compared to the previous work [Deselaers et al., 2010] that
uses pairwise similarities for this task, the proposed method is represented in alter-
nating optimization framework with convergence guarantee and is computationally
efficient in large-scale settings. The experiments show that learning pairwise similar-
ity function improves the performance of WSOL over the standard MIL.

Chapter 6

Intra Order-Preserving Functions
for Calibration of Multi-Class
Neural Networks

Predicting calibrated confidence scores for multi-class deep networks is important
for avoiding rare but costly mistakes. A common approach is to learn a post-hoc cal-
ibration function that transforms the output of the original network into calibrated
confidence scores while maintaining the network’s accuracy. However, previous post-
hoc calibration techniques work only with simple calibration functions, potentially
lacking sufficient representation to calibrate the complex function landscape of deep
networks. In this chapter, we aim to learn general post-hoc calibration functions that
can preserve the top-k predictions of any deep network. We call this family of func-
tions intra order-preserving functions. We propose a new neural network architecture
that represents a class of intra order-preserving functions by combining common
neural network components. Additionally, we introduce order-invariant and diago-
nal sub-families, which can act as regularization for better generalization when the
training data size is small. We show the effectiveness of the proposed method across
a wide range of datasets and classifiers. Our method outperforms state-of-the-art
post-hoc calibration methods, namely temperature scaling and Dirichlet calibration,
in several evaluation metrics for the task.

6.1 Introduction

Deep neural networks have demonstrated impressive accuracy in classification tasks,
such as image recognition [He et al., 2016; Ren et al., 2015] and medical research [Jiang
et al., 2012; Caruana et al., 2015]. These exciting results have recently motivated en-
gineers to adopt deep networks as default components in building decision systems;
for example, a multi-class neural network can be treated as a probabilistic predic-
tor and its softmax output can provide the confidence scores of different actions for
the downstream decision making pipeline [Girshick, 2015; Cao et al., 2017; Mozafari
et al., 2019]. While this is an intuitive idea, recent research has found that deep net-
works, despite being accurate, can be overconfident in their predictions, exhibiting

89

90 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

high calibration error [Maddox et al., 2019; Guo et al., 2017; Kendall and Gal, 2017].
In other words, trusting the network’s output naively as confidence scores in system
design could cause undesired consequences: a serious issue for applications where
mistakes are costly, such as medical diagnosis and autonomous driving.

A promising approach to address the miscalibration is to augment a given net-
work with a parameterized calibration function, such as extra learnable layers. This
additional component is tuned post-hoc using a held-out calibration dataset, so that
the effective full network becomes calibrated [Guo et al., 2017; Kull et al., 2019,
2017b,a; Platt, 1999; Zadrozny and Elkan, 2001]. In contrast to usual deep learn-
ing, the calibration dataset here is typically small. Therefore, learning an overly
general calibration function can easily overfit and actually reduce the accuracy of the
given network [Guo et al., 2017; Kull et al., 2019]. Careful design regularization and
parameterization of calibration functions is imperative.

A classical non-parametric technique is isotonic regression [Zadrozny and Elkan,
2002], which learns a monotonic staircase calibration function with minimal change
in the accuracy. But the complexity of non-parametric learning can be too expensive
to provide the needed generalization [Kull et al., 2017b,a]. By contrast, [Guo et al.,
2017] proposed to learn a scalar parameter to rescale the original output logits, at
the cost of being suboptimal in calibration [Maddox et al., 2019]; see also Section 6.5.
Recently, [Kull et al., 2019] proposed to learn linear transformations of the output
logits. While this scheme is more expressive than the temperature scaling above, it
does not explore non-linear calibration functions.

In general, a preferable hypothesis space needs to be expressive and, at the same
time, provably preserve the accuracy of any given network it calibrates. Limiting
the expressivity of calibration functions can be an issue, especially when calibrating
deep networks with complicated landscapes.

The main contribution of this chapter is introducing a learnable space of func-
tions, called intra order-preserving family. Informally speaking, an intra order-preserving
function f : Rn → Rn is a vector-valued function whose output values always share
the same ordering as the input values across the n dimensions. For example, if
x ∈ Rn is increasing from coordinate 1 to n, then so is f(x). In addition, we intro-
duce order-invariant and diagonal structures, which utilize the shared characteris-
tics between different input dimensions to improve generalization. We leverage the
inductive bias that the calibration functions can have similar behavior across differ-
ent classes (due to the common characteristics between the classes) to design these
subfamilies of order-preserving functions. For illustration, we depict instances of
3-dimensional intra order-preserving and order-invariant functions defined on the
unit simplex and compare them to an unconstrained function in Figure 6.1. We use
arrows to show how inputs on the simplex are mapped by each function. Each col-
ored subset in the simplex denotes a region with the same input order; for example,
we have x3 > x2 > x1 inside the red region where the subscript i denotes the ith
element of a vector. For the intra order-preserving function shown in Figure 6.1a
arrows stay within the same colored region as the inputs, but the vector fields in two
different colored region are independent to each other. Order-invariant function in

§6.2 Problem Setup 91

C3C

C C1 CC2C
(a) Intra Order-preserving OI

C C3C

C C C1 C2CC
(b) Order-invariant

C3

C1 CC2
(c) Unconstrained

Figure 6.1: Comparing instances of intra order-preserving and order-invariant family
defined on the 2-dimensional unit simplex. Points C1 = [1, 0, 0]>, C2 = [0, 1, 0]>,
C3 = [0, 0, 1]> are the simplex corners. Arrows depict how an input is mapped by each
function. Unconstrained function freely maps the input probabilities, intra order-preserving
function enforces the outputs to stay within the same colored region as the inputs, and order-
invariant function further enforces the vector fields to be the same among all the 6 colored
regions as reflected in the symmetry in the visualization.

Figure 6.1b further keeps the function permutation invariant, enforcing the vector
fields to be the same among all the 6 colored regions (as reflected in the symmetry
in Figure 6.1b). This property of order-preserving functions significantly reduce the
hypothesis space in learning, from the functions on whole simplex to functions on
one colored region, for better generalization.

We identify necessary and sufficient conditions for describing intra order-preserving
functions, study their differentiability, and propose a novel neural network architec-
ture that can represent complex intra order-preserving function through common
neural network components. From practical point of view, we devise a new post-hoc
network confidence calibration technique using different intra order-invariant sub-
families. Because a post-hoc calibration function keeps the top-k class prediction if
and only if it is an intra order-preserving function, learning the post-hoc calibration
function within the intra order-preserving family presents a solution to the dilemma
between accuracy and flexibility faced in the previous approaches. We conduct sev-
eral experiments to validate the benefits of learning with these new functions for
post-hoc network calibration. The results demonstrate improvement over various
calibration performance metrics, compared with the original network, temperature
scaling [Guo et al., 2017], and Dirichlet calibration [Kull et al., 2019].

6.2 Problem Setup

We address the problem of calibrating neural networks for n-class classification. Let
define [[n]] := {1, . . . , n}, Z ⊆ Rd be the domain, Y = [[n]] be the label space, and let
∆n denote the n− 1 dimensional unit simplex. Suppose we are given a trained prob-
abilistic predictor φo : Rd → ∆n and a small calibration dataset Dc of i.i.d. samples

92 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

drawn from an unknown distribution π on Z × Y . For simplicity of exposition, we
assume that φo can be expressed as the composition φo =: σSM ◦ g, with g : Rd → Rn

being a non-probabilistic n-way classifier and σSM : Rn → ∆n being the softmax op-
erator1, i.e. σSM(x)i = exp(xi)

∑n
j=1 exp(xj)

, for i ∈ Y , where the subscript i denotes the ith

element of a vector. When queried at z ∈ Z , the probabilistic predictor φo returns
argmaxi φo,i(z) as the predicted label and maxi φo,i(z) as the associated confidence
score. (The top-k prediction is defined similarly.) We say g(z) is the logits of z with
respect to φo.

Given φo and Dc, our goal is to learn a post-hoc calibration function f : Rn → Rn

such that the new probabilistic predictor φ := σSM ◦ f ◦ g is better calibrated and
keeps the accuracy (or similar performance concepts like top-k accuracy) of the origi-
nal network φo. That is, we want to learn new logits f(g(z)) of z. As we will discuss,
this task is non-trivial, because while learning f might improve calibration, doing so
could also risk over-fitting to the small dataset Dc and damaging accuracy. To make
this statement more precise, below we first review the definition of perfect calibra-
tion [Guo et al., 2017] and common calibration metrics and then discuss challenges
in learning f with Dc.

Definition 1. For a distribution π on Z × Y and a probabilistic predictor ψ : Rd →
∆n, let random variables z ∈ Z , y ∈ Y be distributed according to π, and define
random variables ŷ := argmaxi ψi(z) and p̂ := ψŷ(z). We say ψ is perfectly calibrated
with respect to π, if for any p ∈ [0, 1], it satisfies Prob(ŷ = y| p̂ = p) = p.

Note that z, y, ŷ and p̂ are correlated random variables. Therefore, Definition 1
essentially means that, if ψ is perfectly calibrated, then for any p ∈ [0, 1], the true
label y and the predicted label ŷ match, with a probability exactly p in the events
where z satisfies maxi ψi(z) = p.

In practice, learning a perfectly calibrated predictor is unrealistic, so we need a
way to measure the calibration error. A common calibration metric is called Expected
Calibration Error (ECE) [Naeini et al., 2015]: ECE = ∑M

m=1
|Bm|

N |acc(Bm)− conf(Bm)|.
This equation is calculated in two steps: First the confidence scores of samples in Dc

are partitioned into M equally spaced bins {Bm}M
m=1. Second the weighted average

of the differences between the average confidence conf(Bm) = 1
|Bm| ∑i∈Bm

p̂i and the

accuracy acc(Bm) =
1
|Bm| ∑i∈Bm

1(yi = ŷi) in each bin is computed as the ECE metric,
where |Bm| denotes the size of bin Bm, 1 is the indicator function, and the superscript
i indexes the sampled random variable. In addition to ECE, other calibration metrics
have also been proposed [Guo et al., 2017; Nixon et al., 2019; Brier, 1950; Kumar et al.,
2019]; e.g., Classwise-ECE [Kull et al., 2019] and Brier score [Brier, 1950] are proposed
as measures of classwise-calibration. All the metrics for measuring calibration have
their own pros and cons. Here, we consider the most commonly used metrics for
measuring calibration and leave their analysis for future work.

1The softmax requirement is not an assumption but for making the notation consistent with the
literature. The proposed algorithm can also be applied to the output of general probabilistic predictors.

§6.3 Intra Order-Preserving Functions 93

While the calibration metrics above measure the deviation from perfect calibra-
tion in Definition 1, they are usually not suitable loss functions for optimizing neural
networks, e.g., due to the lack of continuity or non-trivial computation time. Instead,
the calibration function f in φ = σSM ◦ f ◦ g is often optimized indirectly through
a surrogate loss function (e.g. the negative log-likelihood) defined on the held-out
calibration dataset Dc [Guo et al., 2017].

6.2.1 Importance of Inductive Bias

Unlike regular deep learning scenarios, here the calibration dataset Dc is relatively
small. Therefore, controlling the capacity of the hypothesis space of f becomes a
crucial topic [Guo et al., 2017; Kull et al., 2017a, 2019]. There is typically a trade-off
between preserving accuracy and improving calibration: Learning f could improve
the calibration performance, but it could also change the decision boundary of φ

from φo decreasing the accuracy. While using simple calibration functions may be
applicable when φo has a simple function landscape or is already close to being well
calibrated, such a function class might not be sufficient to calibrate modern deep
networks with complex decision boundaries as we will show in the experiments in
Section 6.5.

The observation above motivates us to investigate the possibility of learning cali-
bration functions within a hypothesis space that can provably guarantee preserving
the accuracy of the original network φo. The identification of such functions would
address the previous dilemma and give precisely the needed structure to ensure
generalization of calibration when the calibration datatset Dc is small.

6.3 Intra Order-Preserving Functions

In this section, we formally describe this desirable class of functions for post-hoc
network calibration. We name them intra order-preserving functions. Learning within
this family is both necessary and sufficient to keep the top-k accuracy of the original
network unchanged. We also study additional function structures on this family (e.g.
limiting how different dimensions can interact), which can be used as regularization
in learning calibration functions. Last, we discuss a new neural network architecture
for representing these functions.

6.3.1 Setup: Sorting and Ranking

We begin by defining sorting functions and ranking in preparation for the formal
definition of intra order-preserving functions. Let Pn ⊂ {0, 1}n×n denote the set of
n× n permutation matrices. Sorting can be viewed as a permutation matrix; Given
a vector x ∈ Rn, we say S : Rn → Pn is a sorting function if y = S(x)x satisfies
y1 ≥ y2 ≥ · · · ≥ yn. In case there are ties in the input vector x, the sorting matrix can
not be uniquely defined. To resolve this, we use a pre-defined tie breaker vector which
is used as a tie breaking protocol. We say a vector t ∈ Rn is a tie breaker if t = Pr,
for some P ∈ Pn, where r = [1, . . . , n]> ∈ Rn. Tie breaker pre-assigns priorities to

94 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

indices of the input vector and is used to resolve ties. For instance, S1 =
[

1 0
0 1

]
and

S2 =
[

0 1
1 0

]
are the unique sorting matrices of input x = [0, 0]> with respect to tie

breaker t1 = [1, 2]> and t2 = [2, 1]>, respectively. We say two vectors u, v ∈ Rn share
the same ranking if S(u) = S(v) for any tie breaker t.

6.3.2 Intra Order-Preserving Functions

We define the intra order-preserving property with respect to different coordinates
of a vector input.

Definition 2. We say a function f : Rn → Rn is intra order-preserving, if, for any
x ∈ Rn, both x and f(x) share the same ranking.

The output of an intra order-preserving function f(x) maintains all ties and strict
inequalities between elements of the input vector x. Namely, for all i, j ∈ [[n]], we
have xi > xj (or xi = xj) if and only if fi(x) > fj(x) (or fi(x) = fj(x)). For example,
a simple intra order-preserving function is the temperature scaling f(x) = x/t for
some t > 0. Another common instance is the softmax operator.

Clearly, applying an intra order-preserving function as the calibration function in
φ = σSM ◦ f ◦ g does not change top-k predictions between φ and φo = σSM ◦ g.

Next, we provide a necessary and sufficient condition for constructing continu-
ous, intra order-invariant functions. This theorem will be later used to design neural
network architectures for learning calibration functions. Note that for a vector v ∈ Rn

and an upper-triangular matrix of ones U, Uv is the reverse cumulative sum of v (i.e.
(Uv)i = ∑n

j=i vi).

Theorem 1. A continuous function f : Rn → Rn is intra order-preserving, if and only if
f(x) = S(x)−1Uw(x) with U being an upper-triangular matrix of ones and w : Rn → Rn

being a continuous function such that

• wi(x) = 0, if yi = yi+1 and i < n,

• wi(x) > 0, if yi > yi+1 and i < n,

• wn(x) is arbitrary,

where y = S(x)x is the sorted version of x.

The proof is deferred to Appendix. Here we provide as sketch as to why Theo-
rem 1 is true. Since wi(x) ≥ 0 for i < n, applying the matrix U on w(x) results in a
sorted vector Uw(x). Thus, applying S(x)−1 further on Uw(x) makes sure that f(x)
has the same ordering as the input vector x. The reverse direction can be proved sim-
ilarly. For the continuity, observe that the sorting function S(x) is piece-wise constant
with discontinuities only when there is a tie in the input x. This means that if the
corresponding elements in Uw(x) are also equally valued when a tie happens, the
discontinuity of the sorting function S does not affect the continuity of f inherited
from w.

§6.3 Intra Order-Preserving Functions 95

6.3.3 Order-Invariant and Diagonal Sub-families

Different classes in a classification task typically have shared characteristics. There-
fore, calibration functions sharing properties across different classes can work as a
suitable inductive bias in learning. Here we use this idea to define two additional
structures interesting to intra order-preserving functions: order-invariant and diagonal
properties. Similar to the purpose of the previous section, we will study necessary
and sufficient conditions for functions with these properties.

First, we study the concept of order-invariant functions.

Definition 3. We say a function f : Rn → Rn is order-invariant2, if f(Px) = Pf(x) for
all x ∈ Rn and permutation matrices P ∈ Pn.

For an order-invariant function f, when two elements xi and xj in the input x
are swapped, the corresponding elements fi(x) and fj(x) in the output f(x) are also
swapped. In this way, the mapping learned for the ith class can also be used for the
jth class. Thus, the order-invariant family shares the calibration function between
different classes while allowing the output of each class be a function of all other
class predictions.

We characterize in the theorem below the properties of functions that are both
intra order-preserving and order-invariant (an instance is the softmax operator). It
shows that, to make an intra order-preserving function also order-invariant, we just
need to feed the function w in Theorem 1 with the sorted input y = S(x)x instead
of x. This scheme makes the learning of w easier since it always sees sorted vectors
(which are a subset of Rn).

Theorem 2. A continuous, intra order-preserving function f : Rn → Rn is order-invariant,
if and only if f(x) = S(x)−1Uw(y), where U, w, and y are in Theorem 1.

Below, we provide an example to illustrate the difference between the order-
invariant subfamily and the general intra order-preserving functions.

Example 1. Consider two 3-class logit vectors x1 = [1, 2, 3]> and x2 = [2, 3, 1]>. An
order-preserving function f : R3 → R3 can have the outputs f (x1) = [4, 5, 6]> and
f (x2) = [8, 9, 7]>. An intra order-preserving and order-invariant function g : R3 →
R3 only receives sorted inputs. So, it can not have the vectors [4, 5, 6]> and [8, 9, 7]>

as output. If g(x1) = [4, 5, 6]>, the output of g on x2 should be g(x2) = [5, 6, 4]>.

Another structure of interest here is the diagonal property.

Definition 4. We say a function f : Rn → Rn is diagonal, if f(x) = [f1(x1), . . . , fn(xn)]
for fi : R→ R with i ∈ [[n]].

In the context of calibration, a diagonal calibration function means that different
class predictions do not interact with each other in f. Defining diagonal family is
mostly motivated by the success of temperature scaling method [Guo et al., 2017],

2This function is also called permutation equivariant.

96 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

Order-invariant

!

"

ℂ

$

Figure 6.2: Relationship between different function families. Theorem 1 specifies the intra
order-preserving functions A. Theorem 2 specifies the intra order-preserving and order-
invariant functions A∩B. Theorem 3 specifies the diagonal intra order-preserving functions
D. By Corollary 1, these functions are also order-invariant and inter order-preserving i.e.
D ⊆ A∩B∩C.

which is a linear diagonal intra order-preserving function. Therefore, although di-
agonal intra order-preserving functions may sound limiting in learning calibration
functions, they still represent a useful class of functions.

The next theorem relates diagonal intra order-preserving functions to increasing
functions.

Theorem 3. A continuous, intra order-preserving function f : Rn → Rn is diagonal, if and
only if f(x) = [f̄ (x1), . . . , f̄ (xn)] for some continuous and increasing function f̄ : R→ R.

Compared with general diagonal functions, diagonal intra order-preserving au-
tomatically implies that the same function f̄ is shared across all dimensions. Thus,
learning with diagonal intra order-preserving functions benefits from parameter-
sharing across different dimensions, which could drastically decrease the number
of parameters.

Finally, below we show that functions in this sub-family are also order-invariant
and inter order-preserving. Note that inter and intra order-preserving are orthogo-
nal definitions. Inter order-preserving is also an important property for calibration
functions, since this property guarantees that fi(x) increases with the original class
logit xi. The set diagram in Figure 6.2 depicts the relationship among different intra
order-preserving families.

Definition 5. We say a function f : Rm → Rn is inter order-preserving if, for any
x, y ∈ Rm such that x ≥ y, f(x) ≥ f(y), where ≥ denotes elementwise comparison.

Corollary 1. A diagonal, intra order-preserving function is order-invariant and inter order-
preserving

6.3.4 Practical Considerations

Theorems 1 and 2 describe general representations of intra order-preserving func-
tions through a function w that satisfies certain non-negative constraints. Inspired

§6.4 Implementation 97

by these theoretical results, we propose a neural network architecture, Figure 6.3, to
represent exactly a family of intra order-preserving functions.

The main idea in Figure 6.3 is to parameterize w through a composition of smaller
functions. For i < n, we set wi(x) = σ(yi− yi+1)mi(x), where σ : R→ R is a positive
function such that σ(a) = 0 only when a = 0, and mi is a strictly positive function.
It is easy to verify that this parameterization of w satisfies the requirements on w
in Theorem 1. However, we note that this class of functions cannot represent all
possible w stated in Theorem 1. In general, the speed wi(x) converges to 0 can be a
function of x, but in the proposed factorization above, the rate of convergence to zero
is a function of only two elements yi and yi+1. Fortunately, such a limitation does
not substantially decrease the expressiveness of f in practice, because the subspace
where wi vanishes has zero measure in Rn (i.e. subspaces where there is at least one
tie in x ∈ Rn).

By Theorem 1 and Theorem 2, the proposed architecture in Figure 6.3 ensures
f(x) is continuous in x as long as σ(yi − yi+1) and mi(x) are continuous in x. In
the appendix, we show that this is true when σ and mi are continuous functions.
Additionally, we prove that when σ and m are continuously differentiable, f(x) is
also directionally differentiable with respect to x. Note that the differentiability to the
input is not a requirement to learn the parameters of m with a first order optimization
algorithm which only needs f to be differentiable with respect to the parameters of
m. The latter condition holds in general, since the only potential sources of non-
differentiable f, S(x)−1 and y are constant with respect to the parameters of m. Thus,
if m is differentiable with respect to its parameters, f is also differentiable with respect
to the parameters of m.

6.4 Implementation

Given a calibration dataset Dc = {(zi, yi)}N
i=1 and a calibration function f parameter-

ized by some vector θ, we define the empirical calibration loss as 1
N ∑N

i=1 `(y
i, f(xi)) +

λ
2 ||θ||2, where xi = g(zi), ` : Y ×Rn → R is a classification cost function, and λ ≥ 0
is the regularization weight. Here we follow the calibration literature [Thulasidasan
et al., 2019; Guo et al., 2017; Kull et al., 2019] and use the negative log likelihood
(NLL) loss, i.e., `(y, f(x)) = − log(σSM(f(x))y), where σSM is the softmax operator
and σSM(x)y is its yth element. We use the NLL loss in all the experiments to study
the benefit of learning f with different structures. The study of other loss functions
for calibration [Seo et al., 2019; Xing et al., 2020] is outside the scope of this thesis.

To ensure f is within the intra order-preserving family, we restrict f to have
the structure in Theorem 1 and set wi(x) = σ(yi − yi+1)m(x), as described in Sec-
tion 6.3.4. We parameterize function m by a generic multi-layer neural network and
utilize the softplus activation s+(a) = log(1 + exp(a)) on the last layer when strict
positivity is desired and represent σ as σ(a) = |a|. For example, when mi(x) is
constant, our architecture recovers the temperature scaling scheme [Guo et al., 2017].

The order-invariant version in Theorem 2 can be constructed similarly. The only

98 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

Sort: S(x)x

Order Invariant?

NO

YES

s+

|yi − yi+1 |

Inverse Sort:

S(x)−1x

Input: x

y = S(x)x

w(x) Uw(x) f(x)

Same ordering as input x

Reverse

CUMSUM

Figure 6.3: Flow graph of the intra order-preserving function. The vector x ∈ Rn is the
input to the graph. Function m is estimated using a generic multi-layer neural network
with non-linear activation for the hidden layers. The input to the network is sorted for
learning order-preserving functions. We employ softplus activation function s+ to impose
strict positivity constraints.

difference is that the neural network that parameterizes m receives instead the sorted
input. Figure 6.3 illustrates the architecture of these models.

The diagonal intra order-preserving version in Theorem 3 is formed by learning
an increasing function shared across all logit dimensions. We use the official im-
plementation of proposed architecture in [Wehenkel and Louppe, 2019] that learns
monotonic functions with unconstrained neural networks. The idea is to learn an
increasing function f̄ (x) : R → R using a neural network, which can be realized by
learning a strictly positive function f̄ ′(x) and a bias f̄ (0) ∈ R and constructing the
desired function f̄ by the integral f̄ (x) =

∫ x
0 f̄ ′(t)dt + f̄ (0). In implementation, the

derivative f̄ ′ is modeled by a generic neural network and the positiveness is enforced
by using a proper activation function in the last layer. In the forward computation,
the integral is approximated numerically using Clenshaw-Curtis quadrature [Clen-
shaw and Curtis, 1960] and the backward pass is performed by Leibniz integral rule
to reduce memory footprint.

We note that, similar to our work, the concurrent work in [Zhang et al., 2020] also
give special attention to order preserving transformations for calibration. However,
their introduced functions are less expressive than the ones presented in this work.

6.5 Experiments

We evaluate the performance of intra order-preserving (OP), order-invariant intra
order-preserving (OI), and diagonal intra order-preserving (Diag) families in cali-
brating the output of various image classification deep networks and compare their
results with the previous post-hoc calibration techniques.

Datasets. We use six different datasets: CIFAR-{10,100} [Krizhevsky et al., 2009],
SVHN [Netzer et al., 2011], CARS [Krause et al., 2013], BIRDS [Welinder et al., 2010],
and ImageNet [Deng et al., 2009]. In these datasets, the number of classes vary from
10 to 1000. We evaluate the performance of different post-hoc calibration methods to
calibrate ResNet [He et al., 2016], Wide ResNet [Zagoruyko and Komodakis, 2016],

§6.5 Experiments 99

DenseNet [Huang et al., 2017a], and PNASNet5 [Liu et al., 2018] networks. The size
of the calibration and the test datasets, as well as the number of classes for each
dataset, are shown in Table 6.1. We note that the calibration sets sizes are the same
as the previous methods [Guo et al., 2017; Kull et al., 2019].

We follow the experiment protocol in [Kull et al., 2019] and use cross validation
on the calibration dataset to find the best hyperparameters and architectures for all
the methods. We found that [Kull et al., 2019] have improved their performance via
averaging output predictions of models trained on different folds. We follow the
same approach to have fair comparisons. Our criteria for selecting the best architec-
ture is the NLL value. We perform 3 fold cross validation for ImageNet and 5 folds
for all the other datasets. We limit our architecture to fully connected networks and
vary the number of hidden layers as well as the size of each layer. We allow networks
with up to 3 hidden layers in all the experiments. In CIFAR-10, SVHN, and CIFAR-
100 with fewer classes, we test networks with {1, 2, 10, 20, 50, 100, 150} units per layer
and for the larger CARS, BIRDS, and ImageNet datasets, we allow a wider range of
{2, 10, 20, 50, 100, 150, 500} units per layer. We use the similar number of units for all
the hidden layers to reduce the search space. We use ReLU activation for all middle
hidden layers and Softplus on the last layer when strict positivity is desired. We
utilize L-BFGS [Liu and Nocedal, 1989] for small scale optimization problems when
the computational resources allow (temperature scaling and diagonal intra order-
preserving (Diag) methods on CIFAR and SVHN datasets) and use Adam [Kingma
and Ba, 2014] optimizer for other experiments. Table 6.2 summarize cross validation
learned hyperparameter for each method.

Although the functions learned in Table 6.2 are more complicated than linear
transformations used in the baselines, they are not too complex to slow down com-
putation as the calibration network size is negligible compared to the backbone net-
work used in the experiments. In our experiments, all methods take less than 0.5
milliseconds/sample in forward path and their differences are negligible.

We use the pre-computed logits of these networks provided by [Kull et al., 2019]
for CIFAR, SVHN, and ImageNet with DenseNet and ResNet3. In addition, we
use the publicly available state-of-the-art models for PNASNet5-large and ResNet50

3https://github.com/markus93/NN_Calibration

Table 6.1: Statistics of the Evaluation Datasets.

Dataset #classes Calibration set size Test dataset size
CIFAR-10 10 5000 10000

SVHN 10 6000 26032
CIFAR-100 100 5000 10000

CARS 196 4020 4020
BIRDS 200 2897 2897

ImageNet 1000 25000 25000

https://github.com/markus93/NN_Calibration

100 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

Table 6.2: Hyperparameters learned by cross validation. For Diag, OI, OP, and Unconstrained we show
the network architectures learned by cross validation. The number of units in each layer are represented by a
sequence of numbers, e.g. (10, 20, 30, 40) represents a network with 10 input units, 20 and 30 units in the first
and second hidden layers, respectively, and 40 output units. We perform multi-fold cross-validation and select
the architecture with lowest NLL on validation set.

Dataset Model Diag OI OP Unconstrained

CIFAR10 ResNet 110 (1,10,10,1) (10,150,150,10) (10,2,2,10) (10,500,10)
CIFAR10 Wide ResNet 32 (1,2,2,1) (10,10,10,10) (10,2,2,10) (10,150,150,10)
CIFAR10 DenseNet 40 (1,2,2,1) (10,50,50,100 (10,2,2,10) (10,150,150,10)

SVHN ResNet 152 (SD) (1,20,20,1) (10,10,10,10) (10,50,50,10) (10,500,10)
CIFAR100 ResNet 110 (1,10,10,1) (100,100,100,100) (100,150,150,100) (100,500,100)
CIFAR100 Wide ResNet 32 (1,1,1) (100,100,100,100) (100,2,2,100) (100,500,100)
CIFAR100 DenseNet 40 (1,1,1) (100,10,10,100) (100,2,2,100) (100,500,500,100)

CARS ResNet 50 (pre) (1,50,1) (196,10,196) (196,2,2,196) (196,500,196)
CARS ResNet 101 (pre) (1,20,20,1) (196,100,100,196) (196,20,20,196) (196,500,196)
CARS ResNet 101 (1,50,1) (196,50,50,196) (196,100,100,196) (196,500,196)
BIRDS ResNet 50 (NTS) (1,50,50,1) (200,150,150,200) (200,50,50,200) (200,500,200)

ImageNet ResNet 152 (1,10,10,1) (1000,150,150,1000) (1000,2,2,1000) (1000,150,1000)
ImageNet DenseNet 161 (1,10,1) (1000,100,100,1000) (1000,2,2,1000) (1000,150,1000)
ImageNet PNASNet5 large (1,20,20,1) (1000,50,50,1000) (1000,100,100,1000) (1000,100,1000)

NTSNet [Yang et al., 2018]4 for ImageNet and BIRDS datasets, respectively. Further-
more, we trained different ResNet type models on CARS dataset using the standard
pytorch training script. The ResNet models with (pre) are initialized with pre-trained
ImageNet weights. The logits and the source code of our method is released at
https://github.com/AmirooR/IntraOrderPreservingCalibration.

The effect of weight regularization on different metrics for MS and Dir meth-
ods is illustrated in Figure 6.4. This shows that simply regularizing the off diagonal
elements of a linear layer has limited expressiveness to achieve good calibration es-
pecially in the case that number of classes is large.

Baselines. We compare the proposed function structures with temperature scal-
ing (TS) [Guo et al., 2017], Dirichlet calibration with off-diagonal regularization
(Dir) [Kull et al., 2019], and matrix scaling with off-diagonal regularization (MS) [Kull
et al., 2019] as they are the current best performing post-hoc calibration methods. We
also present the results of the original uncalibrated models (Uncal.) for comparison.
To show the effect of intra order-preserving regularization, we also show the results
of applying unconstrained multi-layer neural network without intra order-preserving
constraint (Unconstrained). In cross-validation, we tune the architecture as well as
regularization weight of Unconstrained and order-preserving functions. As we are
using the same logits as [Kull et al., 2019], we report their results directly on CIFAR-
10, CIFAR-100, and SVHN. However, since they do not present the results for CARS,
BIRDS, and ImageNet datasets, we report the results of their official implementation5

on these datasets.

4https://github.com/osmr/imgclsmob/blob/master/pytorch/README.md
5https://github.com/dirichletcal/experiments_dnn/

https://github.com/AmirooR/IntraOrderPreservingCalibration
https://github.com/osmr/imgclsmob/blob/master/pytorch/README.md
https://github.com/dirichletcal/experiments_dnn/

§6.5 Experiments 101

0 5

76

Top-1(%)

Uncal.
MS
Dir
DIAG
OI
TS

0 5

0.02

0.04

0.06

ECE

0 5

0.94

0.96

0.98

1.00

NLL

Figure 6.4: Accuracy, ECE, and NLL plots in MS and Dir for ResNet 152 on ImageNet
with different regularization weights. In the plots, x-axis shows the log scale regularization
and y-axis shows the accuracy, ECE, and NLL of different methods, respectively. The value of
the bias regularizer is found by cross validation and kept constant for visualization purpose.
Changing the bias regularizer has little effect on the final shape of the plots.

Table 6.3: ECE (with M = 15 bins) on various image classification datasets and models with
different calibration methods. The subscript numbers represent the rank of the corresponding method
on the given model/dataset. The accuracy of the uncalibrated model is shown in parentheses. The
number in parentheses in Dir, MS, and Unconstrained methods show the change in accuracy for
each method.

Dataset Model Uncal. TS Dir MS Diag OI OP Unconstrained

CIFAR10 ResNet 110 0.04758(93.6%) 0.01135 0.01094(−0.1%) 0.01063(−0.1%) 0.00672 0.00611 0.01196 0.01707(−0.4%)
CIFAR10 Wide ResNet 32 0.04518(93.9%) 0.00784 0.00845(+0.3%) 0.00732(+0.3%) 0.01367 0.00641 0.00773 0.00976(−0.1%)
CIFAR10 DenseNet 40 0.05508(92.4%) 0.00952 0.01104(+0.1%) 0.00993(+0.1%) 0.00691 0.01165 0.01287 0.01256(−0.5%)

SVHN ResNet 152 (SD) 0.00868(98.1%) 0.00615 0.00583(+0.0%) 0.00604(+0.0%) 0.00572 00.01166 0.01187 0.00151(+0.0%)
CIFAR100 ResNet 110 0.18488(71.5%) 0.02382 0.02825(+0.2%) 0.02744(+0.1%) 0.05077 0.01191 0.02533 0.03466(−4.4%)
CIFAR100 Wide ResNet 32 0.18788(73.8%) 0.01472 0.01895(+0.1%) 0.02586(+0.1%) 0.01723 0.01261 0.01734 0.04217(−6.1%)
CIFAR100 DenseNet 40 0.21168(70.0%) 0.00902 0.01144(+0.1%) 0.02206(+0.4%) 0.00751 0.00983 0.01545 0.09907(−12.9%)

CARS ResNet 50 (pre) 0.02397(91.3%) 0.01443 0.02438(+0.2%) 0.01866(−0.3%) 0.01052 0.01031 0.01855 0.01824(−3.5%)
CARS ResNet 101 (pre) 0.02187(92.2%) 0.01655 0.02258(+0.0%) 0.01916(−0.8%) 0.01021 0.01353 0.01252 0.01554(−3.9%)
CARS ResNet 101 0.04218(85.2%) 0.03014 0.02453(−0.3%) 0.03456(−1.1%) 0.02061 0.03235 0.03587 0.02362(−7.0%)
BIRDS ResNet 50 (NTS) 0.07148(87.4%) 0.03195 0.04866(−0.2%) 0.05857(−1.1%) 0.01882 0.01721 0.02924 0.02763(−2.2%)

ImageNet ResNet 152 0.06547(76.2%) 0.02084 0.04525(+0.1%) 0.05676(+0.1%) 0.00871 0.01092 0.01673 0.12978(−33.4%)
ImageNet DenseNet 161 0.05727(77.1%) 0.01984 0.03745(+0.1%) 0.04436(+0.4%) 0.01031 0.01232 0.01683 0.13808(−28.1%)
ImageNet PNASNet5 large 0.06107(83.1%) 0.07138 0.03986(+0.0%) 0.02174(+0.3%) 0.01172 0.00841 0.01333 0.03165(−4.8%)

Average Relative Error 1.008 0.424 0.495 0.506 0.271 0.332 0.413 0.667

6.5.1 Results

Table 6.3 summarizes the results of our calibration methods and other baselines in
terms of ECE and presents the average relative error with respect to the uncalibrated
model. Overall, Diag has the lowest average relative error followed by OI among
the models and datasets presented in Table 6.3. OI is the best-performing method
in 7 out of 14 experiments including ResNet 110 and Wide ResNet 32 models on
CIFAR datasets as well as state-of-the-art PNASNet5 large model. Diag family’s
relative average error is half the MS and Dir methods and 15% less compared to
Temp. Scaling. Although Dir and MS were able to maintain the accuracy of the
original models in most of the cases by imposing off diagonal regularization, order-
preserving family could significantly outperform them regarding the ECE metric.
Finally, we remark that learning an unconstrained multi-layer neural network does

102 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

Figure 6.5: Performance evaluations of ResNet 152 (Top Row) and PNASNet5 large (Bot-
tom Row) on ImageNet dataset. (Left) Reliability diagrams. As suggested by [Maddox
et al., 2019] we show the difference between the estimated confidence and accuracy over
M = 15 bins. The dashed grey lines represent the perfectly calibrated network at y = 0.
Points above (below) the grey line show overconfident (underconfident) predictions in a bin.
(Middle) Weighted reliability diagrams where bin values are weighted by data frequency dis-
tribution. Since the uncalibrated network has different distances to the perfect calibration in
different bins, scaling by a single temperature will lead to a mix of underconfident and over-
confident regions. Our order-preserving functions, on the other hand, have more flexibility to
reduce the calibration error. (Right) Transformation learned by Diag function compared to
temperature scaling and uncalibrated model (identity map).

not exhibit a good calibration performance and drastically hurts the accuracy in some
datasets as shown in the last column of Table 6.3.

Figure 6.5 illustrates the reliability diagrams of models trained on ResNet 152
(top row) and PNASNet5 large (bottom row). Weighted reliability diagrams are also
presented to better indicate the differences regarding the ECE metric. Surprisingly,
these diagrams show that the uncalibrated PNASNet5 large model is underconfident.
The differences between the mappings learned by Diag and temperature scaling on
these models are illustrated on the right column. Diag is capable of learning complex
increasing functions while temperature scaling only scales all the logits. Compared
with Dir and MS which learn a linear transformation, all intra order-preserving
methods can learn non-linear transformations on the logits while decoupling accu-
racy from calibration of the predictions.

In addition to ECE, which considers the top prediction, we also measure the NLL,
Marginal Calibration Error [Kumar et al., 2019], Classwise-ECE, and Berier score. As
it is shown in Table 6.4, Diag and OI have the best overall performance in terms
of average relative error in most cases, while Dir is the top performing method in
Classwise-ECE.

§6.5 Experiments 103

Table 6.4: Average relative error. Each entry shows the relative error compared to the uncalibrated
model averaged over all the datasets. The subscripts represent the rank of the corresponding method
on the given metric. See the Appendix for per dataset performance comparisons.

Evaluation Metric Uncal. TS Dir MS Diag OI OP
ECE 1.0007 0.4204 0.4905 0.5006 0.2701 0.3302 0.4103

Debiased ECE [Kumar et al., 2019] 1.0007 0.3573 0.4306 0.4095 0.2131 0.3372 0.4064
NLL 1.0007 0.7664 0.7726 0.7685 0.7491 0.7512 0.7653

Marginal Caliration Error [Kumar et al., 2019] 1.0007 0.7503 0.7352 0.9966 0.7251 0.7784 0.8985
Classwise-ECE 1.0007 0.7526 0.7041 0.7343 0.7292 0.7404 0.7435

Brier 1.0007 0.9365 0.9303 0.9365 0.9241 0.9292 0.9314

Table 6.5: Scores and rankings of different methods for Brier.

Dataset Model Uncal. TS Dir MS Diag OI OP
CIFAR10 ResNet 110 0.011027 0.009796 0.009775 0.009764 0.009672 0.009631 0.009753
CIFAR10 Wide ResNet 32 0.010477 0.009244 0.008881 0.008892 0.009266 0.009213 0.009255
CIFAR10 DenseNet 40 0.012747 0.011004 0.010971 0.010971 0.011004 0.011106 0.010993

SVHN ResNet 152 (SD) 0.002976 0.002911 0.002933 0.002987 0.002922 0.002933 0.002965

CIFAR100 ResNet 110 0.004537 0.003924 0.003913 0.003913 0.003935 0.003891 0.003902
CIFAR100 Wide ResNet 32 0.004327 0.003554 0.003542 0.003511 0.003554 0.003542 0.003554
CIFAR100 DenseNet 40 0.004917 0.004013 0.004001 0.004001 0.004013 0.004013 0.004026

CARS ResNet 50 (pretrained) 0.0006675 0.0006664 0.0006632 0.0006797 0.0006611 0.0006643 0.0006746
CARS ResNet 101 (pretrained) 0.0006266 0.0006255 0.0006233 0.0006557 0.0006222 0.0006201 0.0006233
CARS ResNet 101 0.0011316 0.0011295 0.0011233 0.0011547 0.0011181 0.0011233 0.0011192

BIRDS ResNet 50 (NTSNet) 0.0010356 0.0009955 0.0009884 0.0010407 0.0009773 0.0009721 0.0009742

ImageNet ResNet 152 0.0003387 0.0003324 0.0003336 0.0003324 0.0003291 0.0003302 0.0003313
ImageNet DenseNet 161 0.0003257 0.0003214 0.0003214 0.0003181 0.0003192 0.0003203 0.0003214
ImageNet PNASNet5 large 0.0002556 0.0002617 0.0002525 0.0002473 0.0002452 0.0002441 0.0002484

Average Relative Error 1.0007 0.9365 0.9303 0.9365 0.9241 0.9292 0.9314

6.5.2 Ablation Studies and More Experiments

Calibration Set Size. In this experiment, we gradually increase the calibration set
size from 10% to 100% of its original size to create smaller calibration subsets. Then,
for each calibration subset, we train different post-hoc calibration methods and mea-
sure their accuracy, NLL, and ECE. The results are illustrated in Figure 6.6. In overall,
the performance of non intra order-preserving methods, i.e. Dir and MS, are more
sensitive to the size of the calibration set while intra order-preserving methods main-
tain the accuracy and are more stable in terms of NLL and ECE.

Brier Score, NLL, and Classwise-ECE. As shown in Table 6.5, our OI is the best
method in 5 out 14 models with respect to the Brier score. MS also wins in 4 models.
However, it performs poorly on CARS and BIRDS datasets. Our Diag has the best
average relative error. Overall, both OI and Diag perform well on this metric. The
Dir is the third best method on this metric and is slightly worse than OI in average
relative error.

Results of different methods regarding the NLL metric are shown in Table 6.6.
MS is the best method when the number of classes is less than or equal to 100 on this
metric. Its performance degrades as the number of classes grows. This is typically
due to the excessive number of parameters introduced by this method. Surprisingly,
TS is the best method in SVHN with ResNet 152 (SD) model but its performance is

104 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

0.1 0.2 0.5 0.8 1
0.932

0.933

0.934

0.935

Top-1(%)

0.1 0.2 0.5 0.8 1

0.935

0.940

Top-1(%)

0.1 0.2 0.5 0.8 1

0.922

0.924

Top-1(%)

0.1 0.2 0.5 0.8 1

0.68

0.70

Top-1(%)

0.1 0.2 0.5 0.8 1

0.72

0.74

Top-1(%)

0.1 0.2 0.5 0.8 1
0.66

0.68

0.70

Top-1(%)

0.1 0.2 0.5 0.8 1
0.88

0.89

0.90

0.91

Top-1(%)

0.1 0.2 0.5 0.8 1

0.90

0.91

0.92

Top-1(%)

0.1 0.2 0.5 0.8 1
0.80

0.82

0.84

Top-1(%)

0.1 0.2 0.5 0.8 1

0.84

0.86

Top-1(%)

(a) Accuracy

0.1 0.2 0.5 0.8 1

0.22

0.24

NLL

0.1 0.2 0.5 0.8 1
0.18

0.20

0.22

0.24

NLL

0.1 0.2 0.5 0.8 1
0.225

0.250

0.275

0.300

NLL

0.1 0.2 0.5 0.8 1

1.2

1.4

NLL

0.1 0.2 0.5 0.8 1

1.0

1.2

1.4

1.6

NLL

0.1 0.2 0.5 0.8 1

1.25

1.50

1.75

NLL

0.1 0.2 0.5 0.8 1

0.35

0.40

0.45
NLL

0.1 0.2 0.5 0.8 1

0.30

0.35

NLL

0.1 0.2 0.5 0.8 1

0.6

0.7

0.8
NLL

0.1 0.2 0.5 0.8 1

0.6

0.7

0.8

0.9
NLL

(b) NLL

0.1 0.2 0.5 0.8 1

0.01

0.02

0.03

ECE

0.1 0.2 0.5 0.8 1

0.01

0.02

0.03
ECE

0.1 0.2 0.5 0.8 1

0.02

0.04

ECE

0.1 0.2 0.5 0.8 1
0.00

0.05

0.10

0.15
ECE

0.1 0.2 0.5 0.8 1
0.00

0.05

0.10

0.15

ECE

0.1 0.2 0.5 0.8 1
0.0

0.1

0.2
ECE

0.1 0.2 0.5 0.8 1

0.01

0.02

0.03

0.04

ECE

0.1 0.2 0.5 0.8 1
0.01

0.02

0.03

ECE

0.1 0.2 0.5 0.8 1

0.02

0.04

0.06

ECE

0.1 0.2 0.5 0.8 1

0.025

0.050

0.075

0.100
ECE

(c) ECE

DIAG TS OI MS DIR OP

C
IF

A
R

1
0

 R
e

s
N

e
t
1
1

0
C

IF
A

R
1

0
 W

id
e

 R
e

s
N

e
t

3
2

C
IF

A
R

1
0

 D
e

n
s
e

N
e

t
4

0
C

IF
A

R
1

0
0

 R
e

s
N

e
t
1
1

0
C

IF
A

R
1

0
0

 W
id

e
 R

e
s
N

e
t

3
2

C
IF

A
R

1
0

0
 D

e
n

s
e

N
e

t
4

0
C

A
R

S
 R

e
s
N

e
t
5

0
 (

p
re

)
C

A
R

S
 R

e
s
N

e
t
1

0
1

 (
p

re
)

C
A

R
S

 R
e

s
N

e
t
1

0
1

B
IR

D
S

 R
e

s
N

e
t
5

0

(N
T

S
N

e
t)

Figure 6.6: Accuracy, NLL, and ECE vs. calibration set size for CIFAR, CARS, BIRDS
datasets. For each experiment, we use from 10% to 100% of the calibration set to train pos-
hoc calibration functions and plot their accuracy, NLL, and ECE. Compared to Dir and MS,
performance of the intra order-preserving methods (TS, Diag, OI, and OP) degrades less with
reducing the calibration set size.

§6.5 Experiments 105

Table 6.6: NLL.

Dataset Model Uncal. TS Dir MS Diag OI OP
CIFAR10 ResNet 110 0.358277 0.209265 0.205113 0.203751 0.206744 0.204882 0.209546
CIFAR10 Wide ResNet 32 0.381707 0.191483 0.182032 0.181651 0.192215 0.191694 0.193326
CIFAR10 DenseNet 40 0.428217 0.225093 0.223712 0.222401 0.225514 0.230976 0.227985

SVHN ResNet 152 (SD) 0.085427 0.078611 0.080385 0.081006 0.078872 0.079923 0.080104
CIFAR100 ResNet 110 1.693717 1.091694 1.096075 1.073701 1.100916 1.079662 1.083753
CIFAR100 Wide ResNet 32 1.802157 0.944533 0.952886 0.932731 0.949284 0.943122 0.950015
CIFAR100 DenseNet 40 2.017407 1.057132 1.059093 1.050841 1.059724 1.061275 1.076266

CARS ResNet 50 (pretrained) 0.329937 0.318134 0.323816 0.319045 0.312341 0.315932 0.317933
CARS ResNet 101 (pretrained) 0.305367 0.293293 0.297144 0.297885 0.285731 0.288972 0.304446
CARS ResNet 101 0.611857 0.586194 0.595046 0.586835 0.573851 0.577742 0.583193

BIRDS ResNet 50 (NTSNet) 0.746767 0.565694 0.612395 0.630556 0.549152 0.545081 0.562883

ImageNet ResNet 152 0.988487 0.942084 0.950815 0.957866 0.925531 0.928502 0.939353
ImageNet DenseNet 161 0.943957 0.909285 0.912146 0.905783 0.889371 0.895522 0.906324
ImageNet PNASNet5 large 0.802407 0.757616 0.739555 0.715224 0.655501 0.656742 0.695953

Average Relative Error 1.0007 0.7664 0.7726 0.7685 0.7491 0.7512 0.7653

very similar to the Diag. The reason is that this model has a very high accuracy and
the original model is actually already well calibrated. So, the single parameter TS
would be enough to improve the calibration slightly. Our Diag is the best method
on datasets with larger number of classes and our OI is also comparable to it. Both
these method have the best average ranking and Diag has the best relative error on
NLL.

Finally, Table 6.7 compares different methods in Classwise-ECE. While there is no
single winning method on Classwise-ECE when the number of classes is less than
200, Dir is the best method on this metric in ImageNet and in overall. In the next
section, we discuss a hidden bias in Classwise-ECE metric that might become prob-
lematic. It seems Classwise-ECE might promote uncertainty in the output regardless
of the actual accuracy of the model. This suggests there might be more investigation
required for this metric and a practitioner should be cautious about these numbers.

6.5.2.1 Is Classwise-ECE a Proper Scoring Rule Calibration Metric?

It is known that ECE is not a proper scoring rule and thus there exist trivial solutions
which yield optimal scores [Ovadia et al., 2019]. In this section, we show the same
holds for Classwise-ECE metric. Classwise-ECE is “defined as the average gap across
all classwise-reliability diagrams, weighted by the number of instances in each bin:

Classwise-ECE =
1
k

k

∑
j=1

m

∑
i=1

Bi,j

n
|yj(Bi,j)− p̂j(Bi,j)| (6.1)

where k, m, n are the numbers of classes, bins and instances, respectively, |Bi,j| de-
notes the size of the bin, and p̂j(Bi,j) and yj(Bi,j) denote the average prediction of
class j probability and the actual proportion of class j in the bin Bi,j.” [Kull et al.,
2019].

106 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

Table 6.7: Classwise ECE.

Dataset Model Uncal. TS Dir MS Diag OI OP
CIFAR10 ResNet 110 0.098467 0.043445 0.039504 0.036152 0.037913 0.034541 0.044356
CIFAR10 Wide ResNet 32 0.095307 0.047754 0.029472 0.029211 0.054626 0.047473 0.049185
CIFAR10 DenseNet 40 0.114307 0.039774 0.036872 0.036781 0.038773 0.045755 0.051826

SVHN ResNet 152 (SD) 0.019404 0.018492 0.019885 0.020886 0.014781 0.018583 0.021287

CIFAR100 ResNet 110 0.416447 0.200953 0.186391 0.202705 0.219666 0.199772 0.202374
CIFAR100 Wide ResNet 32 0.420277 0.185734 0.179511 0.179662 0.186365 0.193976 0.184843
CIFAR100 DenseNet 40 0.470267 0.186643 0.186302 0.191125 0.186141 0.198666 0.187524

CARS ResNet 50 (pretrained) 0.173533 0.185137 0.170942 0.183126 0.168911 0.182175 0.175674
CARS ResNet 101 (pretrained) 0.165034 0.171866 0.159142 0.174057 0.166925 0.164343 0.155091
CARS ResNet 101 0.263002 0.272346 0.263333 0.274477 0.265945 0.264884 0.250971
BIRDS ResNet 50 (NTSNet) 0.249013 0.263697 0.229201 0.256396 0.250735 0.250694 0.240312

ImageNet ResNet 152 0.318467 0.308864 0.300611 0.308955 0.313726 0.306423 0.300812
ImageNet DenseNet 161 0.309927 0.303095 0.294031 0.298072 0.306596 0.302484 0.299593
ImageNet PNASNet5 large 0.313567 0.255876 0.237971 0.242832 0.250045 0.246344 0.244933

Average Relative Error 1.0007 0.7526 0.7041 0.7343 0.7292 0.7404 0.7435

While the above definition of Classwise-ECE intuitively makes sense, we show
that this metric fails to represent the quality of a predictor in a common degenerate
case e.g. in a balanced dataset with k classes one could achieve a perfect Classwise-
ECE by scaling down the logits with a large enough positive scalar. A large enough
temperature value increases the uncertainty of the model and brings all the class
probabilities close to 1/k while maintaining the accuracy of the model. As the re-
sult, in all the classwise-reliability diagrams every data point falls into the bin that
contains confidence values around 1/k. Since the dataset is balanced, the actual
proportion of class j in that bin will also be 1/k so the model exhibits a perfect
Classwise-ECE.

We remark that this problem does not happen with ECE, because ECE is com-
puted with regard to the accuracy of the bins. While all the data points still fall inside
the bin that contains the confidence value 1/k, the accuracy of this bin would be
equal to the accuracy of the model. Thus, there would be mismatch between the
confidence and the accuracy of the bin, which results to a high ECE.

To validate this insight, we scale down the uncalibrated logit values by a large
scalar number and see how it affects Classwise-ECE in Table 6.8. It shows this simple
hack drastically improves the Classwise-ECE value of the uncalibrated models and
outperforms the methods in Table 6.7 by large margin in most of the cases. Note
that we can not achieve perfect Classwise-ECE because the datasets are not perfectly
balanced.

We are concerned that this issue with Classwise-ECE might bias future work to lean
towards merely increasing the uncertainty of predictions without actually calibrating the
model in a meaningful way. To avoid this, Classwise-ECE metric should be always
used with other proper scoring rule metrics (e.g., NLL or Brier) in evaluation. As we
discuss in the next section, this issue would not happen when bins are dynamically
chosen to ensure the number of data points in each bin remains equal.

§6.6 Summary 107

Table 6.8: Temperature scaling effect on Classwise-ECE. A large temperature value improves the
Classwise-ECE in most of the cases. The subscript numbers represent the rank compared to the values
in Table 6.7. We remark that the purpose of this experiment is not to improve the performance but
rather highlight the need for studying Classwise-ECE metric in the future works.

Dataset Model Uncal. Uncal./1000
CIFAR10 ResNet 110 0.09846 0.000211
CIFAR10 Wide ResNet 32 0.09530 0.001261
CIFAR10 DenseNet 40 0.11430 0.001431

SVHN ResNet 152 (SD) 0.01940 0.331238

CIFAR100 ResNet 110 0.41644 0.000801
CIFAR100 Wide ResNet 32 0.42027 0.001991
CIFAR100 DenseNet 40 0.47026 0.002821

CARS ResNet 50 (pretrained) 0.17353 0.160481
CARS ResNet 101 (pretrained) 0.16503 0.161083
CARS ResNet 101 0.26300 0.150671
BIRDS ResNet 50 (NTSNet) 0.24901 0.058311

ImageNet ResNet 152 0.31846 0.110741
ImageNet DenseNet 161 0.30992 0.110741
ImageNet PNASNet5 large 0.31356 0.109601

6.5.2.2 Debiased ECE and a Fix to Classwise-ECE

We believe that the issue mentioned above is due to the binning scheme used in
estimating Classwise-ECE which allows all the data points fall into a single bin.
[Nixon et al., 2019] propose an adaptive binning scheme that guarantees the number
of data points in each bin remains balanced; therefore, it does not exhibit the same
issue as Classwise-ECE.

In addition to the binning scheme, [Kumar et al., 2019] introduce debiased ECE and
multiclass marginal calibration error metrics that are debiased versions similar to the
ECE and Classwise-ECE metrics, respectively. The idea is to subtract an approximate
correction term to reduce the biased estimate of the metrics. For the completeness,
we present debiased ECE and multiclass marginal calibration error for all the methods
in Table 6.9 and Table 6.10, respectively. While the results in debaised ECE are
similar to ECE, comparing the results in Table 6.7 and Table 6.10 shows Diag is
performing better in terms of multiclass marginal calibration error and outperforms
Dir in average relative error.

Overall, although the intra order-preserving models are the winning methods
among most of the ever-increasing calibration metrics, one should carefully pick the
calibration method and the metric depending on their application.

6.6 Summary

In this chapter, we have introduced the family of intra order-preserving functions
which retain the top-k predictions of any deep network when used as the post-hoc
calibration function. We have proposed a new neural network architecture to rep-
resent these functions, and new regularization techniques based on order-invariant

108 Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks

Table 6.9: Debiased ECE [Kumar et al., 2019].

Dataset Model Uncal. TS Dir MS Diag OI OP
CIFAR-10 ResNet 110 0.090707 0.019244 0.019275 0.017163 0.015732 0.000001 0.022826
CIFAR-10 Wide ResNet 32 0.086617 0.008092 0.009433 0.009584 0.017176 0.001941 0.010735
CIFAR-10 DenseNet 40 0.103407 0.011952 0.012283 0.012664 0.011301 0.024106 0.023095

SVHN ResNet 152 (SD) 0.019225 0.008922 0.009794 0.009393 0.006171 0.022696 0.034297

CIFAR-100 ResNet 110 0.226997 0.020042 0.028423 0.030545 0.055966 0.006261 0.029034
CIFAR-100 Wide ResNet 32 0.248277 0.010312 0.019095 0.030186 0.014984 0.005451 0.014083
CIFAR-100 DenseNet 40 0.265237 0.000001 0.000001 0.028096 0.000001 0.004324 0.012655

CARS ResNet 50 (pre) 0.023276 0.009002 0.025127 0.016054 0.000001 0.016115 0.013633
CARS ResNet 101 (pre) 0.021816 0.019563 0.024197 0.015042 0.019644 0.021365 0.012711
CARS ResNet 101 0.042805 0.026543 0.015181 0.037284 0.025422 0.047666 0.048217

BIRDS ResNet 50 (NTS) 0.471177 0.040544 0.055455 0.072246 0.015181 0.016502 0.031043

ImageNet ResNet 152 0.077457 0.021574 0.052475 0.060996 0.000661 0.009412 0.018043
ImageNet DenseNet 161 0.065987 0.020084 0.045425 0.048886 0.009981 0.011582 0.019243
ImageNet PNASNet5 large 0.068206 0.096207 0.057285 0.035804 0.012733 0.007131 0.012722

Avgerage Relative Error 1.0007 0.3573 0.4306 0.4095 0.2131 0.3372 0.4064

Table 6.10: Marginal Calibration Error [Kumar et al., 2019].

Dataset Model Uncal. TS Dir MS Diag OI OP
CIFAR-10 ResNet 110 0.008597 0.003052 0.003716 0.003635 0.003464 0.002181 0.003363
CIFAR-10 Wide ResNet 32 0.015167 0.014083 0.004101 0.004322 0.014426 0.014165 0.014104
CIFAR-10 DenseNet 40 0.011327 0.006024 0.004171 0.005832 0.006013 0.007296 0.006865

SVHN ResNet 152 (SD) 0.002272 0.002453 0.004265 0.005416 0.001781 0.003874 0.006917

CIFAR-100 ResNet 110 0.003157 0.001291 0.001855 0.002336 0.001443 0.001412 0.001514
CIFAR-100 Wide ResNet 32 0.003567 0.002664 0.002222 0.001991 0.002706 0.002685 0.002573
CIFAR-100 DenseNet 40 0.004177 0.002666 0.002221 0.002635 0.002614 0.002593 0.002342

CARS ResNet 50 (pre) 0.000636 0.000582 0.000351 0.000907 0.000605 0.000593 0.000593
CARS ResNet 101 (pre) 0.000433 0.000444 0.000444 0.000927 0.000412 0.000341 0.000466
CARS ResNet 101 0.001141 0.001141 0.001736 0.002307 0.001141 0.001185 0.001174
BIRDS ResNet 50 (NTS) 0.009347 0.001394 0.001486 0.001415 0.001383 0.001322 0.001301

ImageNet ResNet 152 0.000406 0.000382 0.000341 0.000427 0.000382 0.000382 0.000382
ImageNet DenseNet 161 0.000417 0.000393 0.000351 0.000382 0.000393 0.000393 0.000393
ImageNet PNASNet5 large 0.000397 0.000326 0.000251 0.000282 0.000282 0.000294 0.000305

Average Relative Error 1.0007 0.7503 0.7352 0.9966 0.7251 0.7784 0.8985

and diagonal structures. In short, calibrating neural network with this new family of
functions generalizes many existing calibration techniques, with additional flexibil-
ity to express the post-hoc calibration function. The experimental results show the
importance of learning within the intra order-preserving family as well as support
the effectiveness of the proposed regularization in calibrating multiple classifiers on
various datasets.

Chapter 7

Conclusion

Deep neural networks have been involved in some of the most spectacular break-
throughs in the last few years. In this thesis, we have argued that there are a few
limitations that we need to consider when training or deploying these models for
end-users.

We started to investigate tasks where there are limited examples with weak an-
notations available to the model. In particular, we considered the task of few-shot
common object localization, where the task is to localize the objects of a target class
in a small collection of images. Using the multiple-instance learning terminology,
we have formalized the task as having a small collection of bags where each bag
is composed of multiple elements. Assuming a novel target class, we only know
whether the bags in the collection contain elements from the target class (positive
bags) or not (negative bag). The goal is to find the elements that are from the target
class in the collection. We have formulated the problem as an energy minimiza-
tion on a densely connected graphical model with unary and pairwise potentials.
Each bag corresponds to a node in this graphical model, and the bag elements cor-
respond to the node’s labels. The pairwise potentials encourage selecting elements
from the same classes, and the unary potentials support selecting elements that are
not from the negative bag. We learned unary and pairwise potentials from a large
dataset of known objects based on the relation network model. We have proposed
a novel attention mechanism to aggregate the information in the negative bag as
our unary potentials. Furthermore, we have developed a greedy inference algorithm
that uses the fact that a common object across a set of bags is also a valid common
object across any subset of those bags. Our inference method does not necessarily
compute all pairwise potentials and is beneficial in the tasks where computing all
pairwise potentials is the bottleneck. Our experiments have been a support for the
effectiveness of our method and inference algorithm. Our method outperforms tra-
ditional multiple-instance learning algorithms in limited data settings. On the other
hand, our inference method achieves comparable results to the well-known graphical
model inference algorithms while significantly reducing the computational costs.

We later focused on the task of few-shot weakly supervised object detection. We
decomposed the problem into few-shot common object localization and few-shot
object detection. We have developed a probabilistic approach to the few-shot com-
mon object localization problem that directly works on the features extracted from

109

110 Conclusion

a trained object detector. We assumed each class is distributed based on the von
Mises-Fisher distribution on the unit hyper-sphere and learned the parameters of
the distributions and assignment of proposals to different classes jointly using the
expectation-maximization (EM) algorithm. In contrast to our previous greedy infer-
ence method, this approach did not require hyperparameters or episodic training. We
have extended common object localization to solve the few-shot weakly-supervised
object detection problem. To this end, we can localize objects of novel classes in
unseen query images.

We have studied knowledge transfer for weakly supervised object localization to
reduce the cost of effort and time in annotating large-scale object detection datasets
for novel classes. In this problem, the goal is to transfer knowledge from a source
dataset of known objects with full bounding box annotations to find instances of
novel objects in a target dataset with only image-level labels. Traditional multiple-
instance learning approaches leverage objectness scores as knowledge transfer from
the source dataset. In contrast, we discussed that using just objectness is a limited
form of knowledge transfer and additionally transferred a pairwise similarity mea-
sure that compares pairs of proposals. Since the target dataset of novel objects was
a large-scale dataset, we were less prone to overfitting than the few-shot common
object localization problem. Hence, we adapted our pairwise and unary similarities
using the target dataset. We learned the similarity functions and the assignment of
proposals to different target classes jointly using alternating optimization. We have
shown that the assignment problem becomes an integer linear program for a certain
type of loss function and have introduced an efficient inference algorithm to solve
the challenge of computing all pairwise similarities.

Lastly, we have investigated another limitation of deep neural networks in which
they tend to output miscalibrated confidence scores. We employed post-hoc cali-
bration to resolve this limitation and discussed that since the calibration set usually
has a limited size, a general calibration function may overfit and decrease the accu-
racy of the trained model. To this end, we have introduced the family of the intra
order-preserving functions as regularization in the space of calibration function to
learn a general calibration function and at the same time maintain the accuracy of
the trained model. We have presented two other sub-families based on diagonal
and order-invariant functions that benefit from parameter sharing across different
classes and are more effective in limited data scenarios. We have identified necessary
and sufficient conditions for representing intra order-preserving functions, exam-
ined their differentiability, and suggested a novel neural network architecture that
can express complex intra order-preserving functions by common neural network
components. Our comprehensive experiments have confirmed the effectiveness of
the proposed regularizations in the space of calibration functions.

§7.1 Future Directions 111

7.1 Future Directions

In this section, we list several possible extensions to the methods discussed in this
thesis.

Multiple diverse proposals for common objects. Current graphical model infer-
ence methods provide a single selection as their final result. In contrast, our greedy
inference method is proposal-based inherently and can be modified to provide mul-
tiple diverse solutions to the problem. This feature can be useful in cases where
there are multiple common objects in the collection. In addition, the top selected so-
lution proposal may contain some falsely selected elements. So, providing multiple
possible solution proposals can help the downstream tasks to have higher accuracy.
For example, the similarity of multiple solution proposals to query regions can help
select the best solution proposal and consequently increase the performance in the
few-shot weakly supervised object detection task.

Universal Cross-Transformers for few-shot classification. The EM idea for com-
mon object localization applies to the few-shot classification problem as well. In a
recent work [Doersch et al., 2020], Cross-Transformers are utilized to densely match
regions between the query image and images in the support set in a single step. We
can better localize the regions of interest in the support set with the EM iterates as-
suming a distribution over the common object present in images of the support set
containing the same class. One might perceive the EM iterates as the recurrent iter-
ates in the universal transformers [Dehghani et al., 2019]. Here, we ought to find a
probabilistic view of the recurrence and self-attention in the universal transformers.

Incorporating semantic knowledge. In addition to pairwise similarity knowledge
transfer, we can also leverage semantic knowledge such as word vectors and textual
attributes to describe novel classes. Consolidating semantic knowledge with pairwise
knowledge transfer unites weakly supervised and zero-shot learning methods and
can boost the performance of respective models.

Other applications of intra order-preserving functions. We believe the applica-
tions of intra order-preserving family are not limited to network calibration. Other
promising domains include, e.g., data compression, depth perception system calibra-
tion, and tone-mapping in images where tone-maps need to be monotonic. Exploring
the applicability of intra order-preserving functions in other applications is an inter-
esting future direction.

112 Conclusion

Appendix A

Appendix A

A.1 Modeling with Gaussian Distribution

In Section 4.3.4, we conduct experiment with Gaussian distribution used to model the
common object distribution. We assume the common object distribution is Gaussian
with mean θ and diagonal covariance matrix σ2 I, i.e., x ∼ N (θ, σI)

p+θc
(x) =

1
Z

exp
(
−‖x− θ‖2

2σ2

)
, (A.1)

and plug the distribution into Equation (4.9) to get the soft label update rule as

wik =
exp

(
− ‖Fik−θ‖2

2σ2 − log u−ω(Fik)
)

∑P
j=1 exp

(
− ‖Fij−θ‖2

2σ2 − log u−ω(Fij)
) . (A.2)

E-step is computed by setting the derivative of Equation (4.11) w.r.t. θ to zero

θ← 1
M

M

∑
i=1

P

∑
k=1

wikFik =
1
M

M

∑
i=1

w>i Fi , (A.3)

A.2 MI-SVM WSOD Baseline

To the best of our knowledge there is no WSOD algorithm for few-shot setting in the
literature. However, WSOD with knowledge transfer methods [Rahimi et al., 2020a;
Uijlings et al., 2018; Hoffman et al., 2016; Deselaers et al., 2010] are closely related to
our work. In this section, we describe our slightly modified version of [Uijlings et al.,
2018] introduced in Section 2.5.1 and discuss its differences to the proposed method.
In Section 4.3, we empirically compare our work against [Uijlings et al., 2018]. We
use highly efficient GPU solver in [Amos and Kolter, 2017] for SVM optimization.
To have a fair comparison, we use the same Faster-RCNN model trained on the base
classes as we used in our model to extract bounding box and feature proposals from
all images. For the objectness model O, we learn a class-agnostic logistic regression
model on the extracted feature.

113

114 Appendix A

The expectation and maximization steps in our method are analogous to re-
localization and re-training steps in [Uijlings et al., 2018]. In MI-SVM, only the pro-
posal with the highest score is labeled positive in the re-localization step while our
COL method infers soft labels in the expectation step via an attention mechanism.
Using soft labels could be beneficial as they reflect the uncertainty in choosing the
common object.

Appendix B

Appendix B

B.1 Missing Proof for Linearity of Labels in Sigmoid Cross-
entropy Loss Function

Let ` : R×R→ R be the sigmoid cross-entropy loss function

`(x, y) = −(1− y) log(1− σ(x))− y log(σ(x)),

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. Then, `(x, y) = `(x, 0)− yx,
for any x ∈ R and y ∈ [0, 1].

Proof.

`(x, y)− `(x, 0) =
(
− (1− y) log(1− σ(x))− y log(σ(x))

)
+ log(1− σ(x))

= y log(1− σ(x))− y log(σ(x))

= −yx

Last equality is derived using the fact that log(1− σ(x))− log(σ(x)) = −x which
can be easily verified by plugging in the sigmoid function. �

115

116 Appendix B

Appendix C

Appendix C

C.1 Missing Proofs for Intra Order-Preserving Functions

Theorem 1. A continuous function f : Rn → Rn is intra order-preserving, if and only if
f(x) = S(x)−1Uw(x) with U being an upper-triangular matrix of ones and w : Rn → Rn

being a continuous function such that

• wi(x) = 0, if yi = yi+1 and i < n,

• wi(x) > 0, if yi > yi+1 and i < n,

• wn(x) is arbitrary,
where y = S(x)x is the sorted version of x.

Proof of Theorem 1. (→) For a continuous intra order-preserving function f(x), let
w(x) = U−1S(x)f(x). First we show w is continuous. Because f is intra order-
preserving, it holds that S(x) = S(f(x)). Let f̂(x) := S(f(x))f(x) be the sorted version
of f(x). The above implies w(x) = U−1f̂(x). By Lemma 1, we know f̂ is continuous
and therefore w is also continuous.

Lemma 1. Let f : Rn → Rn be a continuous intra order-preserving function. S(f(x))f(x)
is a continuous function.

Next, we show that w satisfies the properties listed in Theorem 1. As w(x) =
U−1f̂(x), we can equivalently write w as

wi(x) =

{
f̂i(x)− f̂i+1(x) 1 ≤ i < n
f̂n(x) i = n.

Since f̂ is the sorted version of f, it holds that wi(x) ≥ 0 for 1 ≤ i < n. Also, by the
definition of the order-preserving function, wi(x) can be zero if and only if yi = yi+1,
where y = S(x)x. These two arguments prove the necessary condition.

(←) For a given w(x) satisfying the condition in the theorem statement, let v(x) =
Uw(x). Equivalently, we can write vi(x) = ∑n−i

j=0 wn−j(x) and vi(x)− vi+1(x) = wi(x),
∀i ∈ [[n]]. By construction of w, one can conclude that v(x) is a sorted vector where

117

118 Appendix C

two consecutive elements vi(x) and vi+1(x) are equal if and only if yi = yi+1. There-
fore, f(x) = S(x)−1v(x) has the same ranking as x. In other words, f is an intra
order-preserving function. The continuity of f follows from the lemma below and
the fact that v is continuous when w is continuous.

Lemma 2. Let v : Rn → Rn be a continuous function in which vi(x) and vi+1(x) are
equal if and only if yi = yi+1, where y = S(x)x. Then f(x) = S(x)−1v(x) is a continuous
function.

�

C.1.0.1 Deferred Proofs of Lemmas

Proof of Lemma 1. Let Pn = {P1, . . . , PK} be the finite set of all possible n× n dimen-
sional permutation matrices. For each k ∈ [K], define the closed set Nk = {x :
S(x)x = Pkx}. These sets are convex polyhedrons since each can be defined by a
finite set of linear inequalities; in addition, they together form a covering set of Rn.
Note that S(x) = Pk is constant in the interior int(Nk), but S(x) may change on
the boundary ∂(Nk) which corresponds to points where a tie exists in elements of
x (for such a point S(x) 6= Pk). Nonetheless, by definition of the set Nk, we have
S(x)x = Pkx for all x ∈ Nk, which implies that S(x) and Pk can only have different
elements for indices where elements of x are equal.

To prove that f̂(x) := S(f(x))f(x) is continuous, we leverage the fact that f̂(x) =
S(x)f(x) for intra order-preserving f. We will first show that f̂(x) = Pkf(x) for x ∈Nk
and any k ∈ [K], which implies f̂ is continuous on Nk when f is continuous. To see
this, consider an arbitrary k ∈ [K]. For x ∈ int(Nk) in the interior, we have S(x) = Pk
and therefore f̂(x) = Pkf(x). For x ∈ ∂Nk on the boundary, we have

f̂(x) = S(x)f(x) = Pkf(x).

The last equality holds because the difference between S(x) and Pk are only in the in-
dices for which elements of x are equal, and the order-preserving f preserves exactly
the same equalities. Thus, the differences between permutations S(x) and Pk do not
reflect in the products S(x)f(x) and Pkf(x).

Next, we show that f̂(x) = Pkf(x) = Pk′f(x) for x ∈ ∂Nk ∩ ∂Nk′ . While Pk 6= Pk′ ,
the intersection ∂Nk ∩ ∂Nk′ contains exactly points x such that the index differences
in Pk and Pk′ correspond to same value in x. Because f is order-preserving, by an
argument similar to the previous step, we have Pkf(x) = Pk′f(x) for x ∈ ∂Nk ∩ ∂Nk′ .

Together these two steps and the fact that {Nk} is covering set on Rn show that
f̂ is a piece-wise continuous function on Rn when f is continuous on Rn. �

Proof of Lemma 2. In order to show the continuity of f(x), we use a similar argument
as in Lemma 1 (see therein for notation definitions). For any k ∈ [K], it is also trivial
to show that f is continuous over the open set int(Nk) since f(x) = P−1

k v(x). We
use the same argument as Lemma 1 to show it is also a continuous for any point

§C.1 Missing Proofs for Intra Order-Preserving Functions 119

x ∈ ∂(Nk)
f(x) = S(x)−1v(x) = P−1

k v(x).

The last equality holds because P−1
k and S(x)−1 can only have different elements

among elements of y = S(x)x with equal values, and v preserves exactly these equal-
ities in y. Finally, the proof can be completed by piecing the results of different Nk
together.

�

C.1.1 Proof of Theorem 2, Order-invariant Functions

Theorem 2. A continuous, intra order-preserving function f : Rn → Rn is order-invariant,
if and only if f(x) = S(x)−1Uw(y), where U, w, and y are in Theorem 1.

To prove Theorem 2, we first study the properties of order invariant functions in
Appendix C.1.1.1. We will provide necessary and sufficient conditions to describe
order invariant functions, like what we did in Theorem 1 for intra order-preserving
functions. Finally, we combine these insights and Theorem 1 to prove Theorem 2 in
Appendix C.1.1.2.

C.1.1.1 Properties of Order Invariant Functions

The goal of this section is to prove the below theorem, which characterizes the rep-
resentation of order invariant functions using the concept of equality-preserving.

Definition 6. We say a function f : Rn → Rn is equality-preserving, if fi(x) = fj(x) for
all x ∈ Rn such that xi = xj for some i, j ∈ [[n]]

Theorem 4. A function f : Rn → Rn is order-invariant, if and only if f(x) = S(x)−1f̄(S(x)x)
for some function f̄ : Rn → Rn that is equality-preserving on the domain {y : y =
S(x)x, for x ∈ Rn).

Theorem 4 shows an order invariant function can be expressed in terms of some
equality-preserving function. In fact, every order invariant function is equality-
preserving.

Proposition 1. Any order-invariant function f : Rn → Rn is equality-preserving.

Proof. Let Pij ∈ Pn denote the permutation matrix that only swaps ith and jth elements
of the input vector; i.e. y = Pijx⇒ yi = xj, yj = xi, yk = xk, ∀x ∈ Rn, i, j, k ∈ [[n]], and
k 6= i, j. Thus, for an order-invariant function f : Rn → Rn and any x ∈ Rn such that
xi = xj, we have

f(Pijx) = Pijf(x)⇒ fi(Pijx) = fj(x)⇒ fi(x) = fj(x) (∵ Pijx = x for x such that xi = xj).

�

We are almost ready to prove Theorem 4. We just need one more technical lemma,
whose proof is deferred to the end of this section.

120 Appendix C

Lemma 3. For any P ∈ Pn and an equality-preserving f : Rn → Rn, S(x)f(x) =
S(Px)Pf(x).

Proof of Theorem 4. (→) For an order-invariant function f : Rn → Rn, we have f(Px) =
Pf(x) by Definition 3 for any P ∈ Pn. Take P = S(x). We then have the equality
f(x) = S(x)−1f(S(x)x). This is an admissible representation because, by Proposi-
tion 1, f is equality-preserving.

(←) Let f(x) = S(x)−1f̄(S(x)x) for some equality-preserving function f̄. First, be-
cause f̄ is equality preserving and f is constructed through the sorting function S, we
notice that f(x) is equality-preserving. Next, we show f is also order invariant:

f(Px) = S(Px)−1f̄(S(Px)Px)

= S(Px)−1f̄(S(x)x) (∵ S(Px)Px = S(x)x by choosing f(x) = x in Lemma 3)

= S(Px)−1S(x)f(x) (∵ definition of f(x))

= S(Px)−1S(Px)Pf(x) (∵ Lemma 3)

= Pf(x).

�

C.1.1.2 Main Proof

Proof of Theorem 2. (→) From Theorem 1 we can write f(x) = S(x)−1Uw(x). On the
other hand, from Theorem 4 we can write f(x) = S(x)−1f̄(y) for some equality-
preserving function f̄. Using both we can identify w(x) = U−1f̄(y) which implies
that w is only a function of the sorted input y and can be equivalently written as
w(y).

(←) For w with the properties in the theorem statement, the function f(x) = S(x)−1Uw(y)
satisfies the conditions of Theorem 1; therefore f is intra order-preserving. To show
f is also order-invariant, we write f(x) = S(x)−1f̄(y) where f̄(y) = Uw(y). Because
f̄i(y) = ∑n−i

j=0 wn−j(x), we can derive with the definition of w that

yi = yi+1 ⇒ wi(y) = 0⇒ f̄i(x) = f̄i+1(x).

That is, f̄(y) is equality-preserving on the domain of sorted inputs. Thus, f is also
order-invariant. �

C.1.1.3 Deferred Proof of Lemmas

Proof of Lemma 3. To prove the statement, we first notice a fact that S(x) = S(Px)P,
for any P ∈ Pn and x ∈ X := {x ∈ Rn : xi 6= xj, ∀i, j ∈ [[n]], i 6= j}. Therefore, for
x ∈ X, we have S(x)f(x) = S(Px)Pf(x).

§C.1 Missing Proofs for Intra Order-Preserving Functions 121

Otherwise, consider some x ∈ Rn \X. Without loss of generality1, we may con-
sider n > 2 and x such that x1 = x2 > xk for all k > 2; because f is equality-preserving,
we have f1(x) = f2(x).

To prove the desired equality, we will introduce some extra notations. We use
subscript i:j to extract contiguous parts of a vector, e.g. x2:n = [x2, . . . , xn] and
f2:n(x) = [f2(x), . . . , fnx)] (by our construction of x, x2:n is a vector where each el-
ement is unique.) In addition, without loss of generality, suppose P ∈ Pn shifts
index 1 to some index i ∈ [[n]]; we define P̄ ∈ {0, 1}n−1×n−1 by removing the 1st
column and the ith row of P (which is also a permutation matrix). Using this notion,
we can partition S(P̄x2:n) ∈ {0, 1}n−1×n−1 as

S(P̄x2:n) =

[
B1 B2

B3 B4

]
where B1 ∈ R1×i−1, B2 ∈ R1×n−i, B3 ∈ Rn−2×i−1, and B4 ∈ Rn−2×n−i. This would
imply that S(Px) ∈ {0, 1}n×n can be written as one of followings e>i

B1 0 B2

B3 0 B4

 or

B1 0 B2

e>i
B3 0 B4

 (C.1)

where ei is the ith canonical basis.
To prove the statement, let y = Pf(x). By the definition of P̄, we can also write y

as

y =

y1:i−1

yi
yi+1:n

 =

(P̄f2:n(x))1:i−1

f1(x)
(P̄f2:n(x))i:n−1

 (C.2)

Let us consider the first case in (C.1). We have

S(Px)Pf(x) =

 yi
B1y1:i−1 + B2yi+1:n
B3y1:i−1 + B4yi+1:n

 =

[
yi

S(P̄x2:n)P̄f2:n(x)

]
=

[
f1(x)

S(x2:n)f2:n(x)

]
= S(x)f(x)

where the second equality follows from (C.2), the third from the fact we proved at the
beginning for the set X, and the last equality is due to the assumption x1 = x2 > xk
and the equality-preserving property that f1(x) = f2(x). For the second case in (C.1),
based on the same reasoning above, we can show

S(Px)Pf(x) =

 (S(x2:n)f2:n(x))1

f1(x)
(S(x2:n)f2:n(x))2:n−1

 ,

Because x1 = x2, we have (S(x2:n)f2:n(x))1 = f1(x) = f2(x). Thus, S(Px)Pf(x) =

1This choice is only for convenience of writing the indices.

122 Appendix C

S(x)x. �

C.1.2 Proof of Theorem 3, Diagonal Functions

Theorem 3. A continuous, intra order-preserving function f : Rn → Rn is diagonal, if and
only if f(x) = [f̄ (x1), . . . , f̄ (xn)] for some continuous and increasing function f̄ : R→ R.

We first prove some properties of diagonal intra order-preserving functions, which
will be used to prove Theorem 3.

Proposition 2. Any intra order-preserving function f : Rn → Rn is equality-preserving.

Proof. This can be seen directly from the definition of intra order-preserving func-
tions. �

Corollary 2. The following statements are equivalent

1. A function f : Rn → Rn is diagonal and equality-preserving.

2. f(x) = [f̄ (x1), . . . , f̄ (xn)] for some f̄ : R→ R.

3. A function f : Rn → Rn is diagonal and order-invariant.

Proof. (1 → 2) Let f(x) = [f1(x1), . . . , fn(xn)] be a diagonal and equality-preserving
function. One can conclude that f1(x) = · · · = fn(x) for all x ∈ R.

(2→ 3) Let u = Px for some permutation matrix P ∈ Pn. Then f(Px) = [f̄ (u1), . . . , f̄ (un)] =
P[f̄ (x1), . . . , f̄ (xn)] = Pf(x).

(3→ 1) True by Proposition 1. �

Proof of Theorem 3. (→) By Proposition 2, an intra order-preserving function f is also
equality-preserving. Therefore, by Corollary 2 it can be represented in the form
f(x) = [f̄ (x1), . . . , f̄ (xn)] for some f̄ : R → R. Furthermore, because f(x) is intra
order-preserving, for any x ∈ Rn with x1 > x2, it satisfies f1(x1) > f2(x2); that is,
f̄ (x1) > f̄ (x2). Therefore, f̄ is an increasing function. Continuity is inherited natu-
rally.

(←) Because fi(x) = f̄ (xi) and f̄ is an increasing function, it follows that f is in-
tra order-preserving

xi = xj ⇒ fi(x) = fj(x) and xi > xj ⇒ fi(x) > fj(x).

�

Finally, we prove that diagonal intra order-preserving functions are also order-
invariant. This fact was mentioned in the Chapter 6 without a proof.

Corollary 3. A diagonal intra order-preserving function is also order-invariant.

Proof. Intra order-preserving functions are equality-preserving by Proposition 2. By
Corollary 2 an diagonal equality-preserving function is order-invariant. �

§C.2 Continuity and Differentiability of the Proposed Architecture 123

C.2 Continuity and Differentiability of the Proposed Archi-
tecture

In this section, we discuss properties of the function f(x) = S(x)−1UD(y)m(x). In
order to learn the parameters of m with a first order optimization algorithm, it is im-
portant for f to be differentiable with respect to the parameters of m. This condition
holds in general, since the only potential sources of non-differentiable f, S(x)−1 and
y are constant with respect to the parameters of m. Thus, if m is differentiable with
respect to its parameters, f is also differentiable with respect to the parameters of m.

Next, we discuss continuity and differentiability of f(x) with respect the input x.
These properties are important when the input to function f is first processed by a
trainable function g (i.e. the final output is computed as f ◦ g(x)). This is not the
case in post-hoc calibration considered in Chapter 6, since the classifier g here is not
being trained in the calibration phase.

We show below that when w(x) = D(y)m(x) satisfies the requirements in Theo-
rem 1, the function f(x) = S(x)−1UD(y)m(x) is a continuous intra order-preserving
function.

Corollary 4. Let σ : R→ R be a continuous function where σ(0) = 0 and strictly positive
on R \ {0}, and let m be a continuous function where mi(x) > 0 for i < n, and arbitrary
for md(y). Let D(y) denote a diagonal matrix with entries Dii = σ(yi − yi+1) for i < n
and Dnn = 1. Then w(x) = D(y)m(x) is a continuous function and satisfies the following
conditions

• wi(x) = 0, for i < n and yi = yi+1

• wi(x) > 0, for i < n and yi > yi+1

• wn(x) is arbitrary,

where y = S(x)x is the sorted version of x.

Proof. First, because y = S(x)x is a continuous function (by Lemma 1 with f(x) = x),
w(x) = D(y)m(x) is also a continuous function. Second, because ‖x‖ < ∞, we have
m(x) < ∞ due to continuity. Therefore, it follows that wi(x) = σ(yi − yi+1)mi(x)
satisfies all the listed conditions. �

To understand the differentiability of f, we first see that f may not be differentiable
at a point where there is a tie among some elements of the input vector.

Corollary 5. For w in Corollary 4, there exists differentiable functions m and σ such that
f(x) = S(x)−1Uw(x) is not differentiable globally on Rn.

Proof. For the counter example, let m : R3 → R3 be a constant function m(x) =
[1, 1, 1]>, and σ(a) = a2. It is easy to verify that they both satisfy the conditions in
Corollary 4 and are differentiable. We show that the partial derivative ∂f1(x)

∂x3
does not

124 Appendix C

exists at x = [2, 1, 1]>. With few simple steps one could see f1(x+ αe3) for α ∈ (−∞, 1]
is

f1(x + αe3) =

{
σ(1) + σ(−α) + 1 α ≤ 0

σ(1− α) + σ(α) + 1 0 < α ≤ 1
(C.3)

Though this function is continuous, the left and right derivatives are not equal at
α = 0 so the function is not differentiable at x = [2, 1, 1]>. �

The above example shows that f may not be differentiable for tied inputs. On the
other hand, it is straightforward to see function f is differentiable at points where
there is no tie. More precisely, for the points with tie in the input vector, we show the
function f is B-differentiable, which is a weaker condition than the usual (Frechét)
differentiability.

Definition 7. [Facchinei and Pang, 2007] A function f : Rn → Rm is said to be
B(ouligand)-differentiable at a point x ∈ Rn, if f is Lipschitz continuous in the neigh-
borhood of x and directionally differentiable at x.

Proposition 3. For f : Rn → Rn in Theorem 1, let w(x) be as defined in Corollary 4. If σ

and m are continuously differentiable, then f is B-differentiable on Rn.

Proof. Let Pn = {P1, . . . , PK} be the finite set of all possible n× n dimensional per-
mutation matrices. For each k ∈ [K], define the closed set Nk = {x : S(x)x = Pkx}.
These sets are convex polyhedrons since each can be defined by a finite set of linear
inequalities; in addition, they together form a covering set of Rn.

If there is no tie in elements of vector x, then x ∈ int(Nk) for some k ∈ [K]. Since
the sorting function S(x) has the constant value Pk in a small enough neighborhood
of x, the function f is continuously differentiable (and therefore B-differentiable) at x.

Next we show that, for any point x ∈ Rn with some tied elements, the directional
derivative of f along an arbitrary direction d ∈ Rn exists. For such x and d, there
exists a k ∈ [K] and a small enough δ > 0 such that x, x + εd ∈ Nk for all 0 ≤
ε ≤ δ. Therefore, we have f(x′) = f̂(x′) for all x′ ∈ [x, x + δd], where f̂k(x) =
P−1

k UD(Pkx)m(x). Let f̂′k(x; d) denote the directional derivative of f̂k at x along d.
By the equality of f̂k and f in [x, x + δd], we conclude that the directional derivative
f′(x; d) exists and is equal to f̂′(x; d).

Finally, we note that f is Lipschitz continuous, since it is composed by pieces of
Lipschitz continuous functions f̂k for k ∈ [K] (implied by the continuous differentia-
bility assumption on σ and m). Thus, f is B-differentiable. �

C.3 Reliability Diagrams

In Figure 6.5 of Chapter 6, we show the reliablity diagrams and diagnoal functions
leanred by TS and Diag in ResNet 152 and PNASNet5 large on ImageNet dataset.
Figure C.1 and C.2 illustrate the reliability diagrams for different calibration algo-
rithms in all the models. In general Diag method outperforms other methods in
calibration in most of the regions. OP and OI methods also achieve good calibration

§C.3 Reliability Diagrams 125

performance on this dataset and are slightly better than temperature scaling, while
MS and Dir methods do not reduce the calibration error as much.

126 Appendix C

C
IF

A
R

10
,R

es
N

et
11

0

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

C
IF

A
R

10
,W

id
e

R
es

N
et

32

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

C
IF

A
R

10
,D

en
se

N
et

40

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

C
IF

A
R

10
0,

R
es

N
et

11
0

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

C
IF

A
R

10
0,

W
id

e
R

es
N

et
32

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

C
IF

A
R

10
0,

D
en

se
N

et
40

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

(a) Reliability Diagram

0.0 0.5 1.0
0.00

0.01

0.02

0.03

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.0 0.5 1.0
0.00

0.02

0.0 0.5 1.0

0.00

0.05

0.0 0.5 1.0
0.00

0.05

0.10

0.0 0.5 1.0
0.00

0.05

0.10

(b) Weighted Reliability
Diagram

−12 10 31
−12

10

31

−24 15 54
−24

15

54

−39 14 66
−39

14

66

−22 14 50
−22

14

50

−38 21 80
−38

21

80

−62 14 90
−62

14

90

(c) Diagonal Functions

Dir MS DIAG OI OP Uncal. TS

Figure C.1: Reliability diagrams and learned diagonal functions. See Figure 6.5 for the
explanation of each diagram and axis.

§C.3 Reliability Diagrams 127

C
A

R
S,

R
es

N
et

50
(p

re
)

0.0 0.5 1.0

−0.2

0.0

0.2
co

nf
(B

m
)
−

ac
c(

B
m
)

C
A

R
S,

R
es

N
et

10
1

(p
re

)

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

C
A

R
S,

R
es

N
et

10
1

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

SV
H

N
,R

es
N

et
15

2
(S

D
)

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

BI
R

D
S,

R
es

N
et

50
(N

TS
)

0.0 0.5 1.0

−0.2

0.0

0.2

co
nf
(B

m
)
−

ac
c(

B
m
)

Im
ag

eN
et

,D
en

se
N

et
16

1

0.0 0.5 1.0
Confidence

0.0

0.1

co
nf
(B

m
)
−

ac
c(

B
m
)

(a) Reliability Diagram

0.0 0.5 1.0

0.000

0.005

0.010

0.0 0.5 1.0

0.000

0.005

0.010

0.0 0.5 1.0

0.000

0.005

0.010

0.0 0.5 1.0
−0.005

0.000

0.005

0.0 0.5 1.0
0.0

0.2

0.4

0.0 0.5 1.0
Confidence

0.00

0.01

(c
on

f(
B

m
)
−

ac
c(

B
m
))
|B

m
|/

N

(b) Weighted Reliability
Diagram

−16 10 35
−16

10

35

−17 10 37
−17

10

37

−17 10 37
−17

10

37

−9 5 19
−9

5

19

−16 8 33
−16

8

33

−75 −2 72

−75

−2

72

O
ut

pu
tL

og
it

(c) Diagonal Functions

Dir MS DIAG OI OP Uncal. TS

Figure C.2: Reliability diagrams and learned diagonal functions. See Figure 6.5 for the
explanation of each diagram and axis.

128 Appendix C

Bibliography

Adams, A.; Baek, J.; and Davis, M. A., 2010. Fast high-dimensional filtering using
the permutohedral lattice. In Computer Graphics Forum, vol. 29, 753–762. Wiley
Online Library. (cited on page 79)

Ajanthan, T.; Desmaison, A.; Bunel, R.; Salzmann, M.; Torr, P. H.; and

Pawan Kumar, M., 2017. Efficient linear programming for dense crfs. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 3298–3306.
(cited on page 79)

Amos, B. and Kolter, J. Z., 2017. OptNet: Differentiable optimization as a layer in
neural networks. In ICML. (cited on page 113)

Andres, B.; Beier, T.; and Kappes, J. H., 2012. OpenGM: A C++ library for discrete
graphical models. CoRR, abs/1206.0111 (2012). (cited on page 31)

Andrews, S.; Tsochantaridis, I.; and Hofmann, T., 2003. Support vector machines
for multiple-instance learning. In Advances in Neural Information Processing Systems,
577–584. (cited on pages 11, 12, 31, 33, 72, 74, and 75)

Arun, A.; Jawahar, C.; and Kumar, M. P., 2019. Dissimilarity coefficient based
weakly supervised object detection. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 9432–9441. (cited on page 71)

Babenko, B.; Yang, M.-H.; and Belongie, S., 2009. Visual tracking with online
multiple instance learning. In CVPR, 983–990. IEEE. (cited on page 22)

Banerjee, A.; Dhillon, I. S.; Ghosh, J.; Sra, S.; and Ridgeway, G., 2005. Clustering
on the unit hypersphere using von mises-fisher distributions. Journal of Machine
Learning Research, (2005). (cited on pages 47, 51, 52, and 53)

Bansal, A.; Sikka, K.; Sharma, G.; Chellappa, R.; and Divakaran, A., 2018. Zero-
shot object detection. In Proceedings of the European Conference on Computer Vision,
384–400. (cited on pages 34 and 81)

Bergtholdt, M.; Kappes, J.; Schmidt, S.; and Schnörr, C., 2010. A study of parts-
based object class detection using complete graphs. IJCV, 87, 1-2 (2010), 93. (cited
on pages 27, 31, 33, and 78)

Besag, J., 1986. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society: Series B (Methodological), 48, 3 (1986), 259–279. (cited on pages 6,
73, and 78)

129

130 BIBLIOGRAPHY

Bilen, H.; Pedersoli, M.; and Tuytelaars, T., 2014. Weakly supervised object de-
tection with posterior regularization. In British Machine Vision Conference, vol. 3.
(cited on pages 71 and 72)

Bilen, H.; Pedersoli, M.; and Tuytelaars, T., 2015. Weakly supervised object de-
tection with convex clustering. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1081–1089. (cited on pages 16 and 35)

Bilen, H. and Vedaldi, A., 2016. Weakly supervised deep detection networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2846–
2854. (cited on pages 16 and 72)

Blake, A.; Kohli, P.; and Rother, C., 2011. Markov random fields for vision and image
processing. Mit Press. (cited on page 79)

Brier, G. W., 1950. Verification of forecasts expressed in terms of probability. Monthly
weather review, 78, 1 (1950), 1–3. (cited on pages 18 and 92)

Bunescu, R. C. and Mooney, R. J., 2007. Multiple instance learning for sparse posi-
tive bags. In ICML, 105–112. (cited on pages 31 and 33)

Cao, Z.; Simon, T.; Wei, S.-E.; and Sheikh, Y., 2017. Realtime multi-person 2d pose
estimation using part affinity fields. In CVPR. (cited on page 89)

Caruana, R.; Lou, Y.; Gehrke, J.; Koch, P.; Sturm, M.; and Elhadad, N., 2015.
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day
readmission. In ACM SIGKDD, 1721–1730. (cited on page 89)

Cinbis, R. G.; Verbeek, J.; and Schmid, C., 2016. Weakly supervised object localiza-
tion with multi-fold multiple instance learning. IEEE transactions on pattern analysis
and machine intelligence, 39, 1 (2016), 189–203. (cited on pages 16, 35, 71, 72, 73, 74,
and 83)

Clenshaw, C. W. and Curtis, A. R., 1960. A method for numerical integration on an
automatic computer. Numerische Mathematik, 2, 1 (1960), 197–205. (cited on page
98)

DeGroot, M. H. and Fienberg, S. E., 1983. The comparison and evaluation of fore-
casters. Journal of the Royal Statistical Society: Series D (The Statistician), 32, 1-2 (1983),
12–22. (cited on page 18)

Dehghani, M.; Gouws, S.; Vinyals, O.; Uszkoreit, J.; and Kaiser, L., 2019. Univer-
sal transformers. In ICLR. (cited on page 111)

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L., 2009. Imagenet:
A large-scale hierarchical image database. In CVPR, 248–255. (cited on pages 44
and 98)

BIBLIOGRAPHY 131

Deselaers, T.; Alexe, B.; and Ferrari, V., 2010. Localizing objects while learning
their appearance. In Proceedings of the European Conference on Computer Vision, 452–
466. Springer. (cited on pages 16, 35, 55, 71, 72, 73, 81, 88, and 113)

Deselaers, T.; Alexe, B.; and Ferrari, V., 2012. Weakly supervised localization and
learning with generic knowledge. International Journal of Computer Vision, 100, 3
(2012), 275–293. (cited on page 31)

Deselaers, T. and Ferrari, V., 2010. A conditional random field for multiple-
instance learning. In ICML, 287–294. (cited on pages 23 and 31)

Doersch, C.; Gupta, A.; and Zisserman, A., 2020. Crosstransformers: spatially-
aware few-shot transfer. NeurIPS, (2020). (cited on pages 13 and 111)

Everingham, M.; Van Gool, L.; Williams, C. K. I.; Winn,
J.; and Zisserman, A., 2007. The PASCAL Visual Object
Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html. (cited on
pages 44 and 56)

Facchinei, F. and Pang, J.-S., 2007. Finite-dimensional variational inequalities and com-
plementarity problems. Springer Science & Business Media. (cited on page 124)

Faktor, A. and Irani, M., 2013. Co-segmentation by composition. In ICCV, 1297–
1304. (cited on page 22)

Finn, C.; Abbeel, P.; and Levine, S., 2017. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML. (cited on pages 13 and 27)

Fu, H.; Xu, D.; Zhang, B.; and Lin, S., 2014. Object-based multiple foreground video
co-segmentation. In CVPR, 3166–3173. (cited on page 22)

Gal, Y. and Ghahramani, Z., 2016. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In ICML, 1050–1059. (cited on page
19)

Gao, J.; Wang, J.; Dai, S.; Li, L.-J.; and Nevatia, R., 2019. Note-rcnn: Noise toler-
ant ensemble rcnn for semi-supervised object detection. In Proceedings of the IEEE
International Conference on Computer Vision, 9508–9517. (cited on pages 16 and 71)

Gidaris, S. and Komodakis, N., 2018. Dynamic few-shot visual learning without
forgetting. In CVPR, 4367–4375. (cited on pages 46 and 54)

Girshick, R., 2015. Fast r-cnn. In ICCV, 1440–1448. (cited on pages 35 and 89)

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J., 2014. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 580–587. (cited on page 83)

132 BIBLIOGRAPHY

Gokberk Cinbis, R.; Verbeek, J.; and Schmid, C., 2014. Multi-fold mil training for
weakly supervised object localization. In CVPR. (cited on page 49)

Guillaumin, M. and Ferrari, V., 2012. Large-scale knowledge transfer for object
localization in imagenet. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 3202–3209. IEEE. (cited on pages 16, 72, and 75)

Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q., 2017. On calibration of modern
neural networks. In ICML, 1321–1330. JMLR. org. (cited on pages 18, 90, 91, 92,
93, 95, 97, 99, and 100)

Hajimirsadeghi, H.; Li, J.; Mori, G.; Zaki, M.; and Sayed, T., 2013. Multiple instance
learning by discriminative training of markov networks. In UAI, 262–271. (cited
on page 23)

Hayder, Z.; He, X.; and Salzmann, M., 2015. Structural kernel learning for large
scale multiclass object co-detection. In Proceedings of the IEEE International Confer-
ence on Computer Vision, 2632–2640. IEEE. (cited on page 16)

Hayder, Z.; Salzmann, M.; and He, X., 2014. Object co-detection via efficient infer-
ence in a fully-connected crf. In Proceedings of the European Conference on Computer
Vision, 330–345. Springer. (cited on page 16)

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R., 2017. Mask r-cnn. In Proceedings
of the IEEE International Conference on Computer Vision, 2961–2969. (cited on page
71)

He, K.; Zhang, X.; Ren, S.; and Sun, J., 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 770–778. (cited on pages 35, 57, 81, 89, and 98)

Hoffman, J.; Pathak, D.; Darrell, T.; and Saenko, K., 2015. Detector discovery
in the wild: Joint multiple instance and representation learning. CVPR, (2015),
2883–2891. (cited on pages 31 and 33)

Hoffman, J.; Pathak, D.; Tzeng, E.; Long, J.; Guadarrama, S.; Darrell, T.; and

Saenko, K., 2016. Large scale visual recognition through adaptation using joint
representation and multiple instance learning. The Journal of Machine Learning Re-
search, 17, 1 (2016), 4954–4984. (cited on pages 16, 44, 55, 59, 72, 80, 83, 84, and 113)

Hsu, K.-J.; Tsai, C.-C.; Lin, Y.-Y.; Qian, X.; and Chuang, Y.-Y., 2018. Unsupervised
cnn-based co-saliency detection with graphical optimization. In ECCV. (cited on
page 22)

Hu, T.; Mettes, P.; Huang, J.-H.; and Snoek, C. G., 2019. Silco: Show a few images,
localize the common object. In ICCV. (cited on pages 17, 44, 55, and 56)

Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q., 2017a. Densely
connected convolutional networks. In CVPR, 4700–4708. (cited on page 99)

BIBLIOGRAPHY 133

Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.;
Wojna, Z.; Song, Y.; Guadarrama, S.; et al., 2017b. Speed/accuracy trade-offs
for modern convolutional object detectors. In CVPR, 7310–7311. (cited on pages
35 and 36)

Ilse, M.; Tomczak, J.; and Welling, M., 2018. Attention-based deep multiple in-
stance learning. In ICML, 2127–2136. (cited on pages 31, 33, and 50)

Jiang, X.; Osl, M.; Kim, J.; and Ohno-Machado, L., 2012. Calibrating predictive
model estimates to support personalized medicine. Journal of the American Medical
Informatics Association, 19, 2 (2012), 263–274. (cited on page 89)

Kang, B.; Liu, Z.; Wang, X.; Yu, F.; Feng, J.; and Darrell, T. r., 2019. Few-shot
object detection via feature reweighting. In ICCV. (cited on page 56)

Kendall, A. and Gal, Y., 2017. What uncertainties do we need in bayesian deep
learning for computer vision? In NeurIPS, 5574–5584. (cited on page 90)

Kim, D.; Lee, G.; Jeong, J.; and Kwak, N., 2020. Tell me what they’re holding:
Weakly-supervised object detection with transferable knowledge from human-
object interaction. In AAAI. (cited on page 42)

Kingma, D. P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, (2014). (cited on page 99)

Kolmogorov, V., 2006. Convergent tree-reweighted message passing for energy min-
imization. IEEE transactions on pattern analysis and machine intelligence, 28, 10 (2006),
1568–1583. (cited on pages 27, 31, 33, 73, 78, and 82)

Krähenbühl, P. and Koltun, V., 2011. Efficient inference in fully connected crfs
with gaussian edge potentials. In Advances in Neural Information Processing Systems,
109–117. (cited on page 79)

Krause, J.; Stark, M.; Deng, J.; and Fei-Fei, L., 2013. 3d object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13). Sydney, Australia. (cited on page 98)

Krizhevsky, A.; Hinton, G.; et al., 2009. Learning multiple layers of features from
tiny images. Technical report, University of Toronto. (cited on page 98)

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E., 2012. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, 1097–1105. (cited on pages 81 and 83)

Kull, M.; Nieto, M. P.; Kängsepp, M.; Silva Filho, T.; Song, H.; and Flach, P.,
2019. Beyond temperature scaling: Obtaining well-calibrated multi-class probabil-
ities with Dirichlet calibration. In NeurIPS, 12295–12305. (cited on pages 18, 90,
91, 92, 93, 97, 99, 100, and 105)

134 BIBLIOGRAPHY

Kull, M.; Silva Filho, T.; and Flach, P., 2017a. Beta calibration: a well-founded
and easily implemented improvement on logistic calibration for binary classifiers.
In Artificial Intelligence and Statistics, 623–631. (cited on pages 18, 90, and 93)

Kull, M.; Silva Filho, T. M.; Flach, P.; et al., 2017b. Beyond sigmoids: How to
obtain well-calibrated probabilities from binary classifiers with beta calibration.
Electronic Journal of Statistics, 11, 2 (2017), 5052–5080. (cited on pages 18 and 90)

Kumar, A.; Liang, P.; and Ma, T., 2019. Verified uncertainty calibration. In NeurIPS.
(cited on pages xxii, 18, 92, 102, 103, 107, and 108)

Kumar, A.; Sarawagi, S.; and Jain, U., 2018. Trainable calibration measures for
neural networks from kernel mean embeddings. In ICML, 2805–2814. (cited on
page 19)

Kumar, M. P.; Packer, B.; and Koller, D., 2010. Self-paced learning for latent
variable models. In Advances in Neural Information Processing Systems, 1189–1197.
(cited on page 16)

Lee, K.; Maji, S.; Ravichandran, A.; and Soatto, S., 2019. Meta-learning with
differentiable convex optimization. In CVPR. (cited on page 44)

Li, W.; Jafari, O. H.; and Rother, C., 2018. Deep object co-segmentation. In ACCV.
(cited on page 17)

Li, Y.; Liu, L.; Shen, C.; and van den Hengel, A., 2016. Image co-localization by
mimicking a good detector’s confidence score distribution. In ECCV, 19–34. (cited
on page 17)

Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollár, P., 2017. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
2980–2988. (cited on page 72)

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár,
P.; and Zitnick, C. L., 2014. Microsoft coco: Common objects in context. In
Proceedings of the European Conference on Computer Vision, 740–755. (cited on pages
34, 44, 56, 73, and 81)

Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.; Fei-Fei, L.; Yuille,
A. L.; Huang, J.; and Murphy, K., 2018. Progressive neural architecture search. In
ECCV. (cited on page 99)

Liu, D. C. and Nocedal, J., 1989. On the limited memory bfgs method for large
scale optimization. Mathematical programming, 45, 1-3 (1989), 503–528. (cited on
page 99)

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; and Berg, A. C.,
2016. Ssd: Single shot multibox detector. In Proceedings of the European Conference
on Computer Vision, 21–37. Springer. (cited on pages 72 and 83)

BIBLIOGRAPHY 135

Liu, Y.; Lee, J.; Park, M.; Kim, S.; Yang, E.; Hwang, S. J.; and Yang, Y., 2019. Learn-
ing to propagate labels: Transductive propagation network for few-shot learning.
ICLR, (2019). (cited on page 13)

Lu, X.; Wang, W.; Ma, C.; Shen, J.; Shao, L.; and Porikli, F., 2019. See more,
know more: Unsupervised video object segmentation with co-attention siamese
networks. In CVPR. (cited on page 42)

Maddox, W. J.; Izmailov, P.; Garipov, T.; Vetrov, D. P.; and Wilson, A. G., 2019. A
simple baseline for bayesian uncertainty in deep learning. In NeurIPS, 13132–13143.
(cited on pages xx, 19, 90, and 102)

Mardia, K. V. and Jupp, P. E., 2009. Directional statistics. John Wiley & Sons. (cited
on page 52)

Maron, O. and Lozano-Pérez, T., 1998. A framework for multiple-instance learning.
In NIPS, 570–576. (cited on page 50)

Mishra, N.; Rohaninejad, M.; Chen, X.; and Abbeel, P., 2018. A simple neural
attentive meta-learner. In ICLR. (cited on page 13)

Mozafari, A. S.; Gomes, H. S.; Leão, W.; and Gagné, C., 2019. Unsupervised
temperature scaling: Post-processing unsupervised calibration of deep models de-
cisions. In ICML Workshop. (cited on page 89)

Müller, R.; Kornblith, S.; and Hinton, G. E., 2019. When does label smoothing
help? In NeurIPS, 4696–4705. (cited on page 19)

Murphy, A. H. and Winkler, R. L., 1977. Reliability of subjective probability fore-
casts of precipitation and temperature. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 26, 1 (1977), 41–47. (cited on page 18)

Naeini, M. P.; Cooper, G.; and Hauskrecht, M., 2015. Obtaining well calibrated
probabilities using bayesian binning. In AAAI. (cited on page 92)

Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and Ng, A. Y., 2011. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011. http://ufldl.stanford.edu/
housenumbers/nips2011_housenumbers.pdf. (cited on page 98)

Nguyen, M. H.; Torresani, L.; De La Torre, F.; and Rother, C., 2009. Weakly
supervised discriminative localization and classification: a joint learning process.
In ICCV. (cited on page 49)

Nixon, J.; Dusenberry, M.; Zhang, L.; Jerfel, G.; and Tran, D., 2019. Measuring
calibration in deep learning. arXiv preprint arXiv:1904.01685, (2019). (cited on
pages 92 and 107)

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

136 BIBLIOGRAPHY

Ortega, J. M. and Rheinboldt, W. C., 1970. Iterative solution of nonlinear equations in
several variables, vol. 30. Siam. (cited on page 75)

Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.; Nowozin, S.; Dillon, J.; Lak-
shminarayanan, B.; and Snoek, J., 2019. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. In NeurIPS. (cited on page
105)

Pereyra, G.; Tucker, G.; Chorowski, J.; Kaiser, Ł.; and Hinton, G., 2017. Regular-
izing neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, (2017). (cited on page 19)

Perez-Rua, J.-M.; Zhu, X.; Hospedales, T. M.; and Xiang, T., 2020. Incremental
few-shot object detection. In CVPR. (cited on pages 42 and 56)

Platt, J., 1999. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers, 10, 3 (1999),
61–74. (cited on pages 18 and 90)

Qi, H.; Brown, M.; and Lowe, D. G., 2018. Low-shot learning with imprinted
weights. In CVPR. (cited on pages 46 and 54)

Rahimi, A.; Shaban, A.; Ajanthan, T.; Hartley, R.; and Boots, B., 2020a. Pairwise
similarity knowledge transfer for weakly supervised object localization. In ECCV.
(cited on pages 7, 48, 49, 55, and 113)

Rahimi, A.; Shaban, A.; Cheng, C.-A.; Hartley, R.; and Boots, B., 2020b. In-
tra order-preserving functions for calibration of multi-class neural networks. In
NeurIPS. (cited on page 7)

Ravi, S. and Larochelle, H., 2017. Optimization as a model for few-shot learning.
In ICLR. (cited on pages xxi, 13, and 31)

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A., 2016. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 779–788. (cited on page 71)

Ren, S.; He, K.; Girshick, R.; and Sun, J., 2015. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in Neural Information
Processing Systems, 91–99. (cited on pages xv, 14, 15, 45, 80, 81, 83, and 89)

Rochan, M. and Wang, Y., 2015. Weakly supervised localization of novel objects
using appearance transfer. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 4315–4324. (cited on pages 16, 72, and 75)

Rodríguez, P.; Laradji, I.; Drouin, A.; and Lacoste, A., 2020. Embedding prop-
agation: Smoother manifold for few-shot classification. ECCV, (2020). (cited on
page 13)

BIBLIOGRAPHY 137

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.;
Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; and Fei-Fei, L., 2015.
Imagenet large scale visual recognition challenge. IJCV, 115, 3 (2015), 211–252.
(cited on pages 34, 73, and 83)

Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; and Lillicrap, T., 2016.
Meta-learning with memory-augmented neural networks. In ICML, 1842–1850.
(cited on page 13)

Savchynskyy, B. et al., 2019. Discrete graphical modelsâĂŤan optimization per-
spective. Foundations and Trends R© in Computer Graphics and Vision, 11, 3-4 (2019),
160–429. (cited on pages 78 and 80)

Schrijver, A., 1998. Theory of linear and integer programming. John Wiley & Sons.
(cited on page 77)

Seo, S.; Seo, P. H.; and Han, B., 2019. Learning for single-shot confidence calibration
in deep neural networks through stochastic inferences. In CVPR, 9030–9038. (cited
on pages 19 and 97)

Shaban, A.; Rahimi, A.; Ajanthan, T.; Boots, B.; and Hartley, R., 2022. Few-shot
weakly-supervised object detection via directional statistics. In WACV. (cited on
page 7)

Shaban, A.; Rahimi, A.; Bansal, S.; Gould, S.; Boots, B.; and Hartley, R., 2019.
Learning to find common objects across few image collections. In Proceedings of the
IEEE International Conference on Computer Vision, 5117–5126. (cited on pages xvi, 7,
16, 22, 23, 24, 25, 26, 27, 30, 31, 33, 35, 37, 38, 39, 44, and 81)

Shi, M.; Caesar, H.; and Ferrari, V., 2017. Weakly supervised object localization
using things and stuff transfer. ICCV, (2017), 3401–3410. (cited on page 35)

Siam, M.; Doraiswamy, N.; Oreshkin, B. N.; Yao, H.; and Jagersand, M., 2020.
Weakly supervised few-shot object segmentation using co-attention with visual
and semantic embeddings. IJCAI, (2020). (cited on page 17)

Simonyan, K. and Zisserman, A., 2015. Very deep convolutional networks for large-
scale image recognition. ICLR, (2015). (cited on page 56)

Singh, B.; Najibi, M.; and Davis, L. S., 2018. Sniper: Efficient multi-scale training.
In Advances in Neural Information Processing Systems, 9310–9320. (cited on page 72)

Snell, J.; Swersky, K.; and Zemel, R., 2017. Prototypical networks for few-shot
learning. In NIPS, 4077–4087. (cited on pages xv, 13, 14, 27, 44, 46, 48, and 49)

Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P. H.; and Hospedales, T. M., 2018.
Learning to compare: Relation network for few-shot learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 1199–1208. (cited on
pages xv, 13, 14, 23, and 25)

138 BIBLIOGRAPHY

Szegedy, C.; Ioffe, S.; Vanhoucke, V.; and Alemi, A. A., 2017. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-First
AAAI Conference on Artificial Intelligence. (cited on page 83)

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z., 2016. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2818–2826. (cited on page 83)

Tang, K.; Joulin, A.; Li, L.-J.; and Fei-Fei, L., 2014. Co-localization in real-world
images. In Proceedings of the IEEE conference on computer vision and pattern recognition,
1464–1471. (cited on pages 16 and 72)

Tang, P.; Wang, X.; Bai, S.; Shen, W.; Bai, X.; Liu, W.; and Yuille, A., 2018. Pcl:
Proposal cluster learning for weakly supervised object detection. IEEE transactions
on pattern analysis and machine intelligence, 42, 1 (2018), 176–191. (cited on page 71)

Tang, P.; Wang, X.; Bai, X.; and Liu, W., 2017. Multiple instance detection network
with online instance classifier refinement. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (cited on page 71)

Tang, Y.; Wang, J.; Gao, B.; Dellandréa, E.; Gaizauskas, R.; and Chen, L., 2016.
Large scale semi-supervised object detection using visual and semantic knowledge
transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2119–2128. (cited on pages 80 and 83)

Thulasidasan, S.; Chennupati, G.; Bilmes, J. A.; Bhattacharya, T.; and Micha-
lak, S., 2019. On mixup training: Improved calibration and predictive uncertainty
for deep neural networks. In NeurIPS, 13888–13899. (cited on pages 18 and 97)

Tian, Y.; Wang, Y.; Krishnan, D.; Tenenbaum, J. B.; and Isola, P., 2020. Rethinking
few-shot image classification: a good embedding is all you need? In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XIV 16, 266–282. Springer. (cited on pages 4 and 13)

Tukey, J. W., 1977. Exploratory data analysis. Addison-Wesley Series in Behavioral
Science. Addison-Wesley, Reading, MA. (cited on pages 54 and 59)

Uijlings, J.; Popov, S.; and Ferrari, V., 2018. Revisiting knowledge transfer for
training object class detectors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1101–1110. (cited on pages 16, 17, 35, 44, 49, 55, 56,
58, 59, 71, 72, 73, 75, 80, 82, 83, 84, 113, and 114)

Uijlings, J. R.; Van De Sande, K. E.; Gevers, T.; and Smeulders, A. W., 2013.
Selective search for object recognition. International Journal of Computer Vision, 104,
2 (2013), 154–171. (cited on page 83)

van der Maaten, L. and Hinton, G., 2008. Visualizing data using t-sne. Journal
of Machine Learning Research, 9, 86 (2008), 2579–2605. http://jmlr.org/papers/v9/
vandermaaten08a.html. (cited on page 46)

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

BIBLIOGRAPHY 139

Vicente, S.; Rother, C.; and Kolmogorov, V., 2011. Object cosegmentation. In
CVPR, 2217–2224. (cited on pages 2, 17, 22, 23, and 31)

Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.; et al., 2016. Matching
networks for one shot learning. In NIPS, 3630–3638. (cited on pages 13 and 31)

Wan, F.; Liu, C.; Ke, W.; Ji, X.; Jiao, J.; and Ye, Q., 2019. C-mil: Continuation multiple
instance learning for weakly supervised object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2199–2208. (cited on pages
16, 71, 72, and 73)

Wan, F.; Wei, P.; Jiao, J.; Han, Z.; and Ye, Q., 2018. Min-entropy latent model
for weakly supervised object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1297–1306. (cited on page 16)

Wang, F.; Xiang, X.; Cheng, J.; and Yuille, A. L., 2017. Normface: L2 hypersphere
embedding for face verification. In Proceedings of the 25th ACM international confer-
ence on Multimedia, 1041–1049. (cited on page 47)

Wang, X.; Huang, T. E.; Darrell, T.; Gonzalez, J. E.; and Yu, F., 2020. Frustratingly
simple few-shot object detection. ICML, (2020). (cited on pages 4, 42, 54, and 56)

Wang, Y.-X.; Ramanan, D.; and Hebert, M., 2019. Meta-learning to detect rare
objects. In ICCV. (cited on page 42)

Wehenkel, A. and Louppe, G., 2019. Unconstrained monotonic neural networks. In
NeurIPS, 1543–1553. (cited on page 98)

Weiss, Y. and Freeman, W. T., 2001. On the optimality of solutions of the max-
product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on
Information Theory, 47, 2 (2001), 736–744. (cited on pages 27 and 78)

Welinder, P.; Branson, S.; Mita, T.; Wah, C.; Schroff, F.; Belongie, S.; and Per-
ona, P., 2010. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, Cali-
fornia Institute of Technology. (cited on page 98)

Winkler, R. L. and Murphy, A. H., 1968. âĂIJgoodâĂİ probability assessors. Journal
of applied Meteorology, 7, 5 (1968), 751–758. (cited on page 18)

Xiao, Y. and Marlet, R., 2020. Few-shot object detection and viewpoint estimation
for objects in the wild. ECCV, (2020). (cited on pages 42 and 56)

Xing, C.; Arik, S.; Zhang, Z.; and Pfister, T., 2020. Distance-based learning from
errors for confidence calibration. In ICLR. (cited on page 97)

Yan, X.; Chen, Z.; Xu, A.; Wang, X.; Liang, X.; and Lin, L., 2019. Meta r-cnn:
Towards general solver for instance-level low-shot learning. In ICCV. (cited on
page 56)

140 BIBLIOGRAPHY

Yang, P.; Hu, V. T.; Mettes, P.; and Snoek, C. G., 2020. Localizing the common action
among a few videos. In European Conference on Computer Vision, 505–521. Springer.
(cited on page 2)

Yang, S.; Liu, L.; and Xu, M., 2021. Free lunch for few-shot learning: Distribution
calibration. ICLR, (2021). (cited on pages 13 and 54)

Yang, Z.; Luo, T.; Wang, D.; Hu, Z.; Gao, J.; and Wang, L., 2018. Learning to
navigate for fine-grained classification. In ECCV. (cited on page 100)

Yun, S.; Han, D.; Oh, S. J.; Chun, S.; Choe, J.; and Yoo, Y., 2019. Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features. In ICCV,
6023–6032. (cited on page 18)

Zadrozny, B. and Elkan, C., 2001. Obtaining calibrated probability estimates from
decision trees and naive bayesian classifiers. In ICML, vol. 1, 609–616. Citeseer.
(cited on pages 18 and 90)

Zadrozny, B. and Elkan, C., 2002. Transforming classifier scores into accurate mul-
ticlass probability estimates. In ACM SIGKDD, 694–699. (cited on pages 18 and 90)

Zagoruyko, S. and Komodakis, N., 2016. Wide residual networks. In BMVC. (cited
on pages 31 and 98)

Zhang, D.; Han, J.; Li, C.; and Wang, J., 2015. Co-saliency detection via looking
deep and wide. In CVPR, 2994–3002. (cited on pages 17 and 22)

Zhang, H.; Cissé, M.; Dauphin, Y. N.; and Lopez-Paz, D., 2018. Mixup: Beyond
empirical risk minimization. In ICLR. (cited on page 18)

Zhang, J.; Kailkhura, B.; and Han, T., 2020. Mix-n-match: Ensemble and compo-
sitional methods for uncertainty calibration in deep learning. In ICML. (cited on
page 98)

Zhu, Y.; Zhou, Y.; Ye, Q.; Qiu, Q.; and Jiao, J., 2017. Soft proposal networks for
weakly supervised object localization. In Proceedings of the IEEE International Con-
ference on Computer Vision, 1841–1850. (cited on page 16)

	Acknowledgments
	Abstract
	Contents
	Introduction
	Task Definitions and Contributions
	Finding Common Objects Across a Few Image Collections
	Task definition.
	Contributions.

	Few-shot Weakly Supervised Object Detection
	Task definition.
	Contributions.

	Knowledge-transfer for Weakly Supervised Object Localization
	Task definition.
	Contributions.

	Post-hoc Confidence Calibration of Deep Neural Networks
	Task definition.
	Contributions.

	Thesis Outline

	Background and Related Work
	Supervised Learning
	Multiple-Instance Learning
	MI-SVM and mi-SVM

	Few-shot Image Classification
	Prototypical Networks
	Relation Networks

	Object Detection
	Weakly Supervised Object Localization
	Knowledge-Transfer in MI-SVM WSOD

	Confidence Calibration of Neural Networks

	Efficient Inference for Finding Common Objects Across Small Image Collections
	Introduction
	Problem Setup
	Energy function.
	Dataset Setup

	Potential Functions
	Relation module.
	Pairwise potentials.
	Unary potentials.
	Inference
	 Joining.
	Pruning.
	Complexity.

	Experiments
	Baseline Methods
	Few-shot Common Object Recognition
	Dataset.
	Feature extractor.
	Sampling collections.
	Evaluation metric.
	Setting.
	Results.
	Effect of temperature on unary potential function.

	Few-shot Object Co-Localization
	Datasets.
	Feature extractor.
	Implementation.
	Evaluation metric.
	Results.
	Effect of bag size and larger

	Comparison of Energy Minimization Methods

	Summary

	Few-shot Weakly-Supervised Object Detection via Directional Statistics
	Introduction
	Details of Methodology
	Few-Shot WSOD and COL Tasks Definition
	Pre-training and Feature Extraction
	Statistical Model Assumptions
	COL
	Expectation-Maximization Derivation
	Updating in M-Step

	Finding the Common Object in the Query Set
	WSOD

	Experiments
	Common Object Localization
	Effect of Updating in M-Step
	Direct Comparison to Greedy Tree

	Few-shot WSOD
	Large-Scale WSOD
	Ablation Study
	Qualitative Results

	Summary

	Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization
	Introduction
	Problem Description and Background
	Dataset and Notation.
	Multiple-Instance Learning (MIL).
	Optimization.
	Knowledge Transfer.

	Proposed Method
	Re-localization
	Inference.
	Complexity.

	Knowledge Transfer
	Network Architectures
	Proposal and feature extraction.
	Scoring functions.

	Experiments
	COCO 2017 Dataset
	Initialization Scheme
	Full Pipeline

	ILSVRC 2013 Detection Dataset
	Baselines and Results

	Summary

	Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks
	Introduction
	Problem Setup
	Importance of Inductive Bias

	Intra Order-Preserving Functions
	Setup: Sorting and Ranking
	Intra Order-Preserving Functions
	Order-Invariant and Diagonal Sub-families
	Practical Considerations

	Implementation
	Experiments
	Datasets.
	Baselines.
	Results
	Ablation Studies and More Experiments
	Is Classwise-ECE a Proper Scoring Rule Calibration Metric?
	Debiased ECE and a Fix to Classwise-ECE

	Summary

	Conclusion
	Future Directions
	Multiple diverse proposals for common objects.
	Universal Cross-Transformers for few-shot classification.
	Incorporating semantic knowledge.
	Other applications of intra order-preserving functions.

	Appendix A
	Modeling with Gaussian Distribution
	MI-SVM WSOD Baseline

	Appendix B
	Missing Proof for Linearity of Labels in Sigmoid Cross-entropy Loss Function

	Appendix C
	Missing Proofs for Intra Order-Preserving Functions
	Deferred Proofs of Lemmas
	Proof of , Order-invariant Functions
	Properties of Order Invariant Functions
	Main Proof
	Deferred Proof of Lemmas

	Proof of , Diagonal Functions

	Continuity and Differentiability of the Proposed Architecture
	Reliability Diagrams

