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Abstract— The purpose of this work is to develop a systematic

approach towards synchronisation of two micro-mechanical

oscillators inside one optical cavity using feedback control.

We first obtain the linear quantum stochastic state space

model for the optomechanical system considered in this paper.

Then we design a measurement-based optimal controller, aimed

at achieving complete quantum synchronisation of the two

mechanical oscillators with different natural frequencies, in

the linear quadratic Gaussian setting. In addition, simulation

results are provided, which show how system parameters

impact on the control effect. These findings shed light on

the synchronised network of oscillators that can be used for

memory and quantum state transfer.

I. INTRODUCTION
Optomechanical systems, in which optical resonators in-

teract with mechanical oscillators, offer a platform for
studying a wide range of nonlinear and quantum effects.
These systems have been studied in the context of quantum-
limited detection of forces and displacements, the production
of nonclassical states of light, synchronisation and chaotic
dynamics; see [2], [14]. In this project, we consider an
optomechanical system which consists of multiple optical
and mechanical modes. In such a system, the motion of a
given mechanical mode will modulate the intracavity optical
field, which will in turn drive other mechanical modes. This
can be thought of as an optically mediated coupling between
the mechanical modes; see [8].

As the number of mechanical oscillators increases, the
interactions between different modes become more compli-
cated. In this situation, quantum network theory and the
(S,L,H) representation of cascade quantum systems is of
much help to obtain the corresponding linear stochastic state
space model, which is widely used in control engineering;
see [5], [9]. Once we acquire linear quantum stochastic sys-
tem models given by a set of quantum stochastic differential
equations (QSDEs), some existing control techniques turn
out to be applicable, which may significantly reduce the
workload of designing controllers and help pilot experiments.
To begin with, we are concerned with a membrane whose
mechanical motion is coupled to another membrane via the
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light field; see [7], [8]. Specifically, in this system setup,
there are two micro-mechanical oscillators coupled to the
fields of an optical cavity, and the cavity fields can induce
an effective coupling between the mechanical oscillators via
radiation pressure force.

The control goals of such optomechanical systems com-
prise synchronisation of each mechanical oscillator, superpo-
sition of different mechanical modes, multimode entangle-
ment and phonon-phonon coupling. In this paper, the aim
is to synchronise two micro-mechanical oscillators inside
one optical cavity using feedback control. Synchronisation,
which prevalently occurs in nature, is of great technological
interest since it can contribute to signal processing and novel
memory concepts; see [3], [11]. Moreover, at the nanoscale,
synchronisation mechanisms are likely to be integrated with
current nanofabrication capabilities and to facilitate scaling
up to network sizes; see [16].

Fig. 1. The closed-loop feedback plant-controller system.

We first reinterpret the optomechanical plant in the form
of QSDEs from the (S,L,H) description. And then we
formulate an optimal control problem, aimed at synchronis-
ing the two mechanical modes inside the cavity. Here we
mention another paper [16], in which two micro-mechanical
oscillators are synchronised by tuning the optical coupling
strength without feedback control involved. By contrast, the
focus of our research is the application of feedback that takes
advantage of acquired information about quantum plants. As
figure. 1 shows, the output of the controller, which tunes
the input optical power, is fed back to the optomehanical



plant. Also, the two mechanical oscillators in [16] can be
further synchronised by minimising the difference of their
amplitudes using the feedback control scheme proposed in
this paper. The linear quantum state space model we apply
in this paper makes it easier for us to sort out how system
parameters affect the behaviour of the quantum plant, and
assists in adjustments to system parameters in order to
observe salient synchronisation effects via feedback control.

The paper is organised as follows. We begin in Section
II by presenting the linear quantum state space model
for the optomechanical plant. In Section III, we design a
measurement-based optimal controller in the linear quadratic
Gaussian (LQG) setting, whose output modulates the ampli-
tude, phase and frequency of the laser. Simulation results
are studied as well. Section IV provides some concluding
remarks and future research directions.

Notations. In this paper the asterisk is used to indicate
the Hilbert space adjoint X? of an operator X , as well as
the complex conjugate z? = x � iy of a complex number
z = x + iy (here, i =

p
�1 and x, y are real). Real and

imaginary parts are denoted by < (z) = z+z
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2 and = (z) =
z�z
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2i respectively. The conjugate transpose A† of a matrix
A = {a
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} is defined by A†
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=
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a?
ij

 
and the transpose AT

= {a
ji

}
matrices, so that A†

=
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AT
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]

=

�
A]

�
T . Det (A) denotes the

determinant of a matrix A, and Tr (A) represents the trace of
A. The mean value (quantum expectation) of an operator X
is denoted by hXi. The commutator of two operators X,Y
is defined by [X,Y ] = XY � Y X . The anticommutator of
two operators X,Y is defined by {X,Y } = XY +Y X . The
tensor product of operators X,Y defined on Hilbert spaces
H,G is denoted X⌦Y , and is defined on the tensor product
Hilbert space H⌦G.

II. LINEAR QUANTUM STOCHASTIC SYSTEM
MODEL

Fig. 2. Two mechanical oscillators are connected to one thermal bath inside
an optical cavity. The cavity is driven by two continuous wave (cw) lasers.

As shown in Fig. 2, we consider setups that are composed
of two micro-mechanical oscillators inside one optical cavity.

Following the notations in [9], we first define
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where i, j = 1, 2. a{m1,m2} and a{o1,o2} are the annihilation
operators of the mechanical modes and optical modes respec-
tively, with q{m1,m2,o1,o2} being the corresponding position
operators and p{m1,m2,o1,o2} being the momentum operators
of each individual mode.

The operator X of an open quantum system evolves in the
Heisenberg picture as (see [5])

dX = L (X) dt+ [X,L] dW ?

+ [L?, X] dW

where the Lindblad operator L (X) is given by

L (X) = �i [X,H] +

1

2

(L?

[X,L] + [L?, X]L) .

The effective Hamiltonian of this optomechanical system is
(see [7], [8])
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where the cavity fields are transformed into the frame rotat-
ing at the driving frequency !

L,j

, and �

j

= !
L,j

� !0,j

denotes the detuning parameter with respect to the reso-
nance frequency of the corresponding cavity mode, !0,j .
The mechanical oscillation frequencies are given by !

i

.
The optomechanical interaction is induced by the radiation
pressure force that is proportional to the light field intensities,
and leads to a coupling rate between the jth optical and
the ith mechanical mode. Please note the interaction term in
this model is linearised around the optical steady state, and
g
ij

(i, j = 1, 2) denote the optomechanical coupling rates. ¯h
is the reduced Planck constant.

In order to apply the (S,L,H) description of a quantum
system, we first extract the system Hamiltonian, which is
commonly described by the following quadratic form
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and the vector x comprises the position and momentum
operators of both optical and mechanical modes,

x =

⇥
q
m1 p

m1 q
m2 p

m2 q
o1 p

o1 q
o2 p
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.

The coupling operators of this optomechanical system are
given by
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where �
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i

(i = 1, 2) denotes the mechanical dissipation
term. �
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r

j
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t

j

(j = 1, 2) are related to the cavity
linewidth; see [15].
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Now we are going to find the linear quantum state space
model of this optomechanical system.

First we define (n 2 N)

⇥2n = I
n

⌦ J,

�2n = P2nIn ⌦M,

with

J =


0 1

�1 0

�
,
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2


1 i
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�
.

I
n

denotes the n dimensional identity matrix, and P2n is a
2n⇥ 2n permutation matrix so that if we consider a column
vector a =
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Given the Hamiltonian and coupling operators of the
optomechanical system considered in this paper, we can
obtain the system coefficient matrices as follows (see [9]):
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And if we choose D = I12, then

C = �BT .

Therefore, the dynamics of two mechanical oscillators
inside a two-mode optical cavity can be captured by linear



QSDEs as follows

dx = Axdt+Bdw̃

dy = Cxdt+Ddw̃. (1)

with A, B, C, D given above. The quantum noise input is
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The two mechanical oscillators are connected to a thermal
bath, and W

th1 and W
th2 denote the thermal noise inputs

to each oscillators respectively. Similarly, ˜W{1
r

,2
r

} and
W{1

t

,2
t

} represent the quantum noise inputs to the optical
cavity from electromagnetic fields, coupled to each optical
mode respectively. Note that ˜W1
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inputs, that is,
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denote vacuum inputs.
|↵1| exp (i✓1) and |↵2| exp (i✓2) are the complex amplitudes
corresponding to two different coherent fields, with

��↵{1,2}
��

and ✓{1,2} being the classical amplitudes and phases respec-
tively.
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Also, here

G0 = BT0

with
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Table II shows quantum Itô terms for vacuum noise and
thermal noise. k

n

is the mean occupation number of the
thermal phonons which is associated with the temperature
of the system.

TABLE I
QUANTUM ITÔ TABLE FOR NOISE INPUTS.
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III. SYNCHRONISATION OF MECHANICAL
OSCILLATORS

Now, we formulate the LQG control problem for the
purpose of synchronising the two mechanical oscillators
using feedback control.

A metric which gauges the level of quantum complete
synchronisation is given in [12] as follows

S
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The performance index in this LQG control problem is
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which defines the level of synchronisation of the two me-
chanical modes at steady states. In addition, the more closer
S
c

is to 1, the more synchronised the two mechanical
oscillators are.

A. CONTROLLER DESIGN

As shown in Fig. 3, now we include the control input to
the optomechanical plant, with making a homodyne mea-
surement of the dW1

t

+dW ?

1
t

field (transmissive light), then
the plant model becomes

dx = (Ax+G0u0) dt+Bdw +Gudt,

dy
m
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xdt+D
m

dw (5)



Fig. 3. The composite system comprise the optomechanical plant and a
measurement-based LQG controller.

where
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The measurement-based LQG controller is given by
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K is the steady-state Kalman gain given by (see [4])
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In this LQG control problem, the quadratic cost is defined
as
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and R > 0.
The optimal feedback gains, L1 and L2, are given by (see

[1])
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where S1 satisfies the following Riccati equation
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By turning on measurement-based LQG feedback control,
we get the closed-loop system model as follows
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TABLE II
PARAMETERS FOR THE OPTOMECHANICAL PLANT.

Parameter Value
Natural frequency of oscillator 1 !1 ⇡MHz
Natural frequency of oscillator 2 !1 2⇡MHz

Mean number of the thermal phonons k
n

0.01 ⇠ 10
Mechanical dissipation terms �

m1 = �
m2 = �

m

0.001 ⇠ 0.1MHz
Optomechanical coupling terms g11 = g12 = g1 0.1MHz
Optomechanical coupling terms g21 = g22 = g2 0.01 ⇠ 1MHz

Laser detunings 41 = �42 = 4 1.5⇡MHz
Cavity decay rates �
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Initial complex amplitude of laser 1 |↵2| ei✓2 102 ⇠ 104ei
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Initial complex amplitude of laser 2 |↵2| ei✓2 102 ⇠ 104ei
⇡
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With the control signal u =
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plant, the amplitude of the coherent field corresponding to
the first laser becomes
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Therefore, in order to implement this control method, we
need to adjust the coherent field complex amplitude accord-
ingly, which is equivalent to tuning the amplitude and phase
of the first laser.

B. SIMULATION RESULTS

In the following simulation, we refer to the physical values
in [7], [13], and solve LQG control problems with the
assistance of Matlab; see [6], [10].

Example 1: Assume the experiment is conducted in the
unresolved sideband regime where the mechanical frequency
is comparable or smaller than the optical cavity linewidth.
The interaction between the motion of the two mechanical
oscillators is mediated by a quantised light field in a laser
driven high-finesse cavity. Also, Son

c

denotes the performance
index (see (4)) with optimal feedback control, while Soff

c

is
used when feedback control is turned off at steady states.
Table II shows the values of system parameters we use.
(i) k

n

= 0.01 ⇠ 10; �
m

= 0.01MHz; g1 = g2 = 0.1MHz.
As shown in Figure. 4, both Son

c

(solid line) and Soff
c

(dashed line) become smaller as the temperature of the
system increases (k

n

is proportional to the temperature of
the optomechanical system). When the temperature grows

Fig. 4. Plot of the quantum complete synchronisation metric S
on/off
c

as a
function of k

n

.

higher, the thermal force gets stronger, and the influence
of thermal and quantum noise renders Son

c

(Soff
c

) smaller.
By turning on the optical feedback control, we can see that
the quantum complete synchronisation metric turns out to be
closer to 1 at steady states. This indicates that the controller
works well at synchronising the two mechanical oscillators
regardless of the temperature.
(ii) k

n

= 0.01, 1; �
m

= 0.001 ⇠ 0.1MHz; g1 = g2 =

0.1MHz.

Fig. 5. Plot of the quantum complete synchronisation metric S
on/off
c

as a
function of �

m

(MHz).

Fig. 5 depicts how mechanical dissipation terms influence
the synchronisation effect in quantum and classical regimes.
As �

m

increases, Soff
c

(dashed line) grows gradually in both
quantum and classical regimes, while Son

c

(solid line) goes
up when k

n

is very small but goes down when k
n

is big.



Furthermore, in the classical regime, the synchronisation
effect with optimal feedback control becomes less salient
as �

m

varies from 0.001MHz to 0.1MHz. This is because
though we tune the intensity of the laser guided by the
feedback control scheme and the radiation pressure force
changes accordingly, the thermal force appears to impair
the mutual interaction between the two micro-mechanical
oscillators when k

n

is big.
(iii) k

n

= 0.01, 1; �
m

= 0.01MHz; g1 = 0.1MHz; g2 =

0.01 ⇠ 1MHz.

Fig. 6. Plot of the quantum complete synchronisation metric S
on/off
c

as a
function of g2 (MHz).

Fig. 6 shows how optomechanical coupling strength affects
the synchronisation effect in quantum and classical regimes.
In the quantum regime (k

n

= 0.01), it can be seen that
the level of quantum complete synchronisation goes down
as g2 increases attributed to the powerful radiation pressure
force. We feed the optimal control input back to the quantum
plant by tuning the first laser, and we can observe that as
g2 rises the control effect on synchronisation becomes more
significant. However, in the classical regime (k

n

= 1), Son
c

(solid line) achieves a local maximum when g2 is around
⇡ 0.3MHz, that is, the measurement-based controller works
best if g2 ⇡ 0.3MHz in this case.

IV. CONCLUSIONS

We have obtained the linear stochastic state space model
of the quantum plant, based on which a measurement-based
LQG controller is designed to synchronise the two mechan-
ical oscillators inside a cavity using feedback control. The
purpose is to implement the proposed control scheme to this

practical optomechanical system. Furthermore, simulation
results illustrate how to adjust parameters in the original
system setup in order to achieve prominent synchronisation
effects. This research allows us to think about controlled
(synchronised) network of oscillators that can be used for
memory and quantum state transfer. Future work includes
designing coherent controllers and conducting experiments
accordingly. Results of the experiments will be reported later.
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