
On incorporating inductive biases
into deep neural networks

Sameera Ramasinghe

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

March 2022

© Sameera Ramasinghe 2021

Except where otherwise indicated, this thesis is my own original work.

Sameera Ramasinghe
25 March 2022

To the eternal silence of the timeless and boundless universe, where all become one,
and one becomes all.

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisors Dr. Salman Khan,
Prof. Nick Barnes, Prof. Stephen Gould, and Dr. Lars Petersson, for their continuous
support of my Ph.D. research. Without their invaluable knowledge in computer vision,
feedback, and guidance, I would not have been able to complete my studies.

I would also like to thank my colleagues and collaborators, specifically Moshiur
Farazi, Kanchana Ranasinghe, and Ali Cheraghian. Their constant help, valuable
suggestions, and friendship made my Ph.D. journey a whole lot easier. I will dearly
cherish all the good times we had at Data61.

I am grateful for all the administration staff members at both ANU and Data61,
who were immensely helpful in various administrative tasks from the beginning of
my studies. Also, thank you for being extremely responsive to all the emails, requests,
and irritative questions.

A special thanks go to all the members of the Ridma society, especially Mr. Sanath
Ranjitha, for guiding me throughout my life and academics. They always pushed
me to do beyond my best, and I cannot express my gratitude deeply enough for
all the vision, encouragement, and support. Our countless discussions on academic
matters, life, and literature strived me to be a better person in various aspects, and I
will continue to try to do so in the future.

Most importantly, I am forever indebted to my mother, father, and brother, who
were the pillars of my success. Thank you for always believing in me and encouraging
me to follow my dreams, and supporting me throughout my life.

Last but not least, I owe all my success to my lovely wife, Gayathri Warnakulahewa,
who has shown me never-ending support throughout my life. Since the day I met
her, she was the source of my motivation through various ups and downs of my life.
Being a wife of a Ph.D. student is not easy, yet you supported me unconditionally
without a single complaint. Thank you for all the dedication and sacrifices you made
for me.

vii

Abstract

A machine learning (ML) algorithm can be interpreted as a system that learns to
capture patterns in data distributions. Before the modern deep learning era, emulating
the human brain, the use of structured representations and strong inductive bias have
been prevalent in building ML models, partly due to the expensive computational
resources and the limited availability of data. On the contrary, armed with increas-
ingly cheaper hardware and abundant data, deep learning has made unprecedented
progress during the past decade, showcasing incredible performance on a diverse set
of ML tasks. In contrast to classical ML models, the latter seeks to minimize structured
representations and inductive bias when learning, implicitly favoring the flexibility of
learning over manual intervention. Despite the impressive performance, attention is
being drawn towards enhancing the (relatively) weaker areas of deep models such
as learning with limited resources, robustness, minimal overhead to realize simple
relationships, and ability to generalize the learned representations beyond the training
conditions, which were (arguably) the forte of classical ML. Consequently, a recent
hybrid trend is surfacing that aims to blend structured representations and substantial
inductive bias into deep models, with the hope of improving them.

Based on the above motivation, this thesis investigates methods to improve the
performance of deep models using inductive bias and structured representations
across multiple problem domains. To this end, we inject a priori knowledge into
deep models in the form of enhanced feature extraction techniques, geometrical
priors, engineered features, and optimization constraints. Especially, we show that by
leveraging the prior knowledge about the task in hand and the structure of data, the
performance of deep learning models can be significantly elevated.

We begin by exploring equivariant representation learning. In general, the real-
world observations are prone to fundamental transformations (e.g., translation, ro-
tation), and deep models typically demand expensive data-augmentations and a
high number of filters to tackle such variance. In comparison, carefully designed
equivariant filters possess this ability by nature. Henceforth, we propose a novel
volumetric convolution operation that can convolve arbitrary functions in the unit-ball
(B3) while preserving rotational equivariance by projecting the input data onto the
Zernike basis. We derive theoretical formulae to perform the convolution entirely in
the function space, which paves the way to efficient implementation and allows it to
be used as a differentiable and easily pluggable layer in deep networks. Similarly, we
derive a novel set of orthogonal basis functions that are complete in B3, where the
derived basis functions comprise the properties required to achieve both rotational
and translational equivariant convolutions. We conduct extensive experiments and
show that our formulations can be used to construct significantly cheaper ML models.

Next, we study generative modeling of 3D objects and propose a principled ap-

ix

x

proach to synthesize 3D point-clouds in the spectral-domain by obtaining a structured
representation of 3D points as functions on the unit sphere (S2). Using the prior
knowledge about the spectral moments and the output data manifold, we design an
architecture that can maximally utilize the information in the inputs and generate
high-resolution point-clouds with minimal computational overhead.

Then, we direct our attention to stochastic deep generative models. Conditioned
on an input variable, real-world scenarios carry more than one possible solution for
a given generation task. This aspect is less focused in the current deep generative
models, restraining their full potential towards generation of diverse outputs. We
introduce a novel framework for conditional generation in multimodal spaces that uses
latent variables to model generalizable learning patterns while minimizing a family
of regression cost functions. Our generic model can outperform highly engineered
pipelines tailored using domain expertise on various tasks while generating diverse
outputs. We further conduct theoretical analysis on the conditional GANs (cGAN)
and identify several critical problems associated with the existing training approaches.
We demonstrate—both theoretically and empirically—that by imposing constraints
to encourage a homeomorphism between the latent and output manifolds, one can
dramatically improve the realism and the diversity of the cGAN outputs.

Finally, we propose a framework to build normalizing flows (NF) based on increas-
ing triangular maps and Bernstein-type polynomials. Compared to the existing NF
approaches, our framework consists of favorable characteristics for fusing inductive
bias within the model i.e., theoretical upper bounds for the approximation error,
robustness, higher interpretability, suitability for compactly supported densities, and
the ability to employ higher degree polynomials without training instability. Further,
owing to the known mathematical properties of the Bernstein-type polynomials, we
can directly control the bounds of the outputs of our model. Most importantly, we
present a constructive universality proof, which permits us to analytically derive the
optimal model coefficients for known transformations without training.

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Introduction . 1
1.2 Inductive bias . 2
1.3 Machine learning vs human intelligence 3

1.3.1 Intuitive physics . 3
1.3.2 Combinatorial generalization . 6

1.4 Thesis Outline . 8
1.4.1 List of Publications . 9

2 Background and Related Work 11
2.1 Group equivariant networks . 11

2.1.1 Symmetry of neural networks . 12
2.1.2 Orbits and equivalance relations 13

2.2 Generative adversarial networks . 14
2.2.1 Equilibrium of GANs . 15
2.2.2 Problems in GANs . 16

2.3 Normalizing flows . 18
2.3.1 Optimization . 19
2.3.2 Triangular maps . 20

3 Equivarient Representation Learning in Unit Ball 21
3.1 Related works . 23
3.2 Preliminaries . 25

3.2.1 Moments . 25
3.2.2 Equivariance . 27
3.2.3 Spherical Harmonics . 27
3.2.4 Spherical Convolution . 28
3.2.5 3D Zernike Polynomials . 28

3.3 Volumetric Convolution . 29
3.3.1 Problem Formulation . 29
3.3.2 Convolution of functions in B3 . 30

3.3.2.1 Convolution as a function on SO(3) 30
3.3.2.2 Convolution as a function on S2 31

xi

xii Contents

3.3.3 Shape modeling of functions in B3 using 3D Zernike polynomials 32
3.3.4 Convolution in B3 using 3D Zernike polynomials 34
3.3.5 Equivariance to 3D rotation group 36

3.4 Axial symmetry measure of a function in B3 around an arbitrary axis . 38
3.5 A case study: Representation Learning on 3D objects 40

3.5.1 Equivariance to 3D radial translation 41
3.5.2 Adaptive Weighted Frequency Pooling 45
3.5.3 Experimental Architectures . 46

3.5.3.1 Single convolution layer architecture 46
3.5.3.2 Multi-convolution layer architecture 47

3.6 Experiments . 48
3.6.1 Datasets . 48
3.6.2 3D object classification . 48
3.6.3 3D Object Retrieval . 52
3.6.4 Ablation Study . 53
3.6.5 Classification of highly non-polar and textured objects 54
3.6.6 Equivariance to local pattern movements 56
3.6.7 Robustness against information loss 56
3.6.8 Approximation Accuracy of 3D Zernike moments calculation

approach . 57
3.7 Comparison with Invariant Approaches 57
3.8 Chapter summary . 59

4 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes. 61
4.1 Related Work . 64
4.2 Preliminaries . 65

4.2.1 Complete Orthogonal Systems . 65
4.2.2 Convolution in Unit Ball B3 . 65

4.3 Methodology . 66
4.3.1 Learned Mapping for Shape Synthesis 66

4.3.1.1 Compact Representation of Point Clouds 66
4.3.1.2 Derivation of orthogonal functions in B3 67
4.3.1.3 Completeness in B3 . 68
4.3.1.4 Relaxation of orthogonality of functions in B3 69

4.3.2 Convolution of functions in B3 . 70
4.3.3 Network Architecture . 74

4.4 Experiments . 74
4.4.1 3D Object Classification Performance 74
4.4.2 3D Object Retrieval Performance 77
4.4.3 Ablation Study . 77
4.4.4 Classification of Complex Shapes 80
4.4.5 Ablation study on input point cloud density 81

4.5 Chapter summary . 81

Contents xiii

5 Rethinking Conditional-GAN Training 83
5.1 Introduction . 83
5.2 Motivation . 85

5.2.1 Mismatch b/w adversarial & reconstruction losses 86
5.2.2 Conditional mode collapse . 87
5.2.3 Loss of structure b/w output & latent manifolds 88

5.3 Discussion on Related works . 89
5.4 Methodology . 90

5.4.1 Geodesics and global bi-lipschitz mapping 91
5.4.2 Encouraging the local bijective conditions 95
5.4.3 Univariate distributions . 97
5.4.4 Multivariate distribution . 98

5.5 Experiments . 100
5.5.1 Hyper-parameters and datasets 101
5.5.2 Image-to-image translation . 101
5.5.3 Geometrical interpretations . 102
5.5.4 Ablation study . 104
5.5.5 Generalizability . 104
5.5.6 Qualitative results . 105

5.6 Chapter summary . 105

6 Robust normalizing flows using Bernstein-type polynomials 117
6.1 Introduction . 117
6.2 Bernstein polynomials . 119

6.2.1 Strict monotonicity . 120
6.2.2 Universality . 121
6.2.3 Theoretical error bound . 121
6.2.4 Robustness . 122
6.2.5 Inversion . 123
6.2.6 Examples of Bernstein-type approximations 124

6.3 Theoretical comparison with other methods 125
6.3.1 Approximations and error bounds 125
6.3.2 Numerical stability . 126
6.3.3 Applicability to compact densities 126
6.3.4 Intepretability . 127

6.4 Bernstein-type Normalizing Flow . 128
6.5 Hyper-parameters and training details . 129
6.6 Experiments . 129

6.6.1 Modeling sample distributions . 129
6.6.2 Validation of the theoretical error upper-bound 130
6.6.3 Robustness . 131

6.7 Ablation study . 132
6.8 Chapter summary . 134

xiv Contents

7 Efficient high-resolution point cloud generation on unit sphere 135
7.1 Related Work . 137
7.2 Problem Formulation . 138
7.3 Spectral GAN . 139

7.3.1 Spherical Harmonics for 3D Objects 139
7.3.2 Cascaded GAN Structure . 141

7.3.2.1 Forward pass . 142
7.3.2.2 Backward pass . 142

7.4 Spatial domain regularizer . 143
7.5 Network architecture and training . 144
7.6 3D reconstruction from single image . 144
7.7 Experiments . 147

7.7.1 3D shape generation . 147
7.7.2 Unsupervised 3D Representation Learning 150
7.7.3 3D reconstruction results . 150

7.8 Sampling and reconstruction . 151
7.9 Literature on cascaded generative designs 153
7.10 Computational complexity analysis . 154
7.11 Chapter summary . 154

8 Conditional Generative Modeling via Learning the Latent Space 159
8.1 Proposed Methodology . 160

8.1.1 Convergence at inference . 163
8.1.2 Momentum as a supplementary aid 163

8.2 Overall Design . 164
8.3 Motivation . 165

8.3.1 Lipschitz continuity and structuring of the latent space 167
8.4 Experiments and discussions . 168
8.5 Experiments . 170

8.5.1 Experimental architectures . 170
8.5.2 Corrupted Image Recovery . 170
8.5.3 Automatic image colorization . 174
8.5.4 Image completion . 180

8.5.4.1 Diversity predictions and generalizability. 181
8.5.5 Scalability . 185
8.5.6 Convergence . 185
8.5.7 Model complexity . 185
8.5.8 Denoising of 3D objects in spectral space 190
8.5.9 Towards a measurement of uncertainty 196

8.6 Related work . 197
8.7 Chapter summary . 201

Contents xv

9 Conclusions 203
9.1 Summary . 203
9.2 Emerging directions . 205

9.2.1 Deep implicit layers . 205
9.2.2 Geometric deep learning . 206

9.2.2.1 Manifolds . 207
9.2.2.2 Graphs . 208

xvi Contents

List of Figures

1.1 Early conceptual acquisition in infants (Dupoux [2018]). 4

2.1 Many commonly used layers in deep networks naturally preserve a
form of symmetry (currently processing data points are indicated by
blue). 12

2.2 Orbits generated by group transformations. 13

2.3 First, a DCGAN is trained for 1, 10 and 25 epochs. Then, with the
generator fixed a discriminator is trained from scratch. It is evident
that the error quickly goes to 0, even with very few iterations on the
discriminator. This even happens after 25 epochs of the DCGAN, when
the samples are remarkably good and the supports are likely to intersect,
pointing to the non-continuity of the distributions. Note the logarithmic
scale. For illustration purposes the accuracy of the discriminator is also
shown, which goes to 1 in sometimes less than 50 iterations. This is 1
even for numerical precision, and the numbers are running averages,
pointing towards even faster convergence. 17

3.1 Fig. 1: Kernel representations of spherical convolution (left) vs. vol-
umetric convolution (right). In volumetric convolution, the shape is
modeled and convolved in B3 and in contrast, spherical convolution is
performed in S2. 22

3.2 Grid representations in Spherical and Cartesian coordinates. Left: The
space between grid points vary with r and from equator to poles. Right:
A crude approach to represent the spherical grid with a uniformly
spaced grid. This approach is inaccurate as spherical grids do not have
uniform spacing. 30

3.3 Consider the two rotations R1 and R2 which takes p to p′. Then R1 and
R2 can be decomposed using Euler angles as R1 = Ry(θ1)Rx(θ2)Ry(θ3)
and R2 = Ry(θ1)Rx(θ2)Ry(θ4), where the initial rotation around north
pole is different in the two cases. Therefore, if the function is symmetric
around north pole, the rotated function would only depend on p′. . . . 31

xvii

xviii LIST OF FIGURES

3.4 Analogy between planar and volumetric convolutions. Top (left to right):
2D image, kernel and planar convolution in the Cartesian plane. Bottom
(left to right): 3D object, 3D kernel and volumetric convolution. In planar
convolution the kernel translates and inner product between the image
and the kernel is computed in (x, y) plane. In volumetric convolution,
a 3D rotation and a radial translation are applied to the kernel and the
inner product is computed between 3D function and 3D kernel over B3.
This allows accurate encoding of shape and texture of 3D objects. . . . 32

3.5 Three cases of axial symmetry: left: axial symmetry measurement
is high, as both point values and overall shape of the function are
symmetric around the axis. Middle: axial symmetry measurement
is low, as overall shape of the function is not symmetric around the
axis. Right: axial symmetry measurement is low, as point values of the
function are not symmetrically distributed around the axis. 38

3.6 A 2D illustration of polar and non-polar shapes. 41

3.7 Weight sharing across radius. 43

3.8 Illustration of volumetric convolution with weight sharing across radius.
For the sake of clarity, this illustration only shows a single convolutional
kernel. We bisect and show a cross section of the resultant feature map
on right for better visualization. In the resultant feature map, each
spherical heatmap corresponds to the response at a specific transla-
tion of the kernel. Each value in a spherical heatmap corresponds to
the response at a specific 3D orientation of the kernel at a specified
translation. Therefore, the resultant feature map is a signal on B3,
which allows us to achieve equivariance over 3D rotation and radial
translation of local patterns. 44

3.9 The heat-maps of the dense frequency map. Left: frequency heat-map
with respect to kernel. Middle: frequency heat-map with respect to
input function. Right: frequency The resultant heat-map of the dense
frequency map. 46

3.10 The overall experimental architecture. 47

3.11 Accuracy comparison with state-of-the-art over ModelNet10 against the
number of trainable layers. 51

3.12 Accuracy comparison with state-of-the-art over ModelNet40 against the
number of trainable layers. 51

3.13 The robustness of the proposed model against missing data. The
accuracy drop is less than 30% at a high data loss rate of 50%. 58

3.14 The mean reconstruction error Vs ‘n’. Our Zernike frequencies compu-
tation approach has far less error than the conventional approach. . . . 58

LIST OF FIGURES xix

4.1 High-level comparison of our approach (bottom) with the traditional
approaches [Qi et al., 2017a; Su et al., 2015; Qi et al., 2017b; Klokov and
Lempitsky, 2017; Li et al., 2018b] (top). We transform an input shape
into a compact representation and project it onto a discriminative latent
space to capture more discriminative features, before performing con-
volution in B3 with roto-translational kernels. Our novel convolution
operator has a clear advantage over existing works that only work with
Euclidean geometries. This results in a light-weight and highly efficient
network design with significantly lower number of layers. 62

4.2 The overall CNN architecture. Our proposed design is a light-weight
model, comprising of only three weight layers. Our networks aims to
achieve a compact latent representation and volumetric feature learning
via convolutions in B3. 70

4.3 Ablation study on ModelNet10 in 3D object classification. 78

4.4 Ablation study on SHREC’17 in 3D object retrieval. 79

4.5 Training curves of our architecture on ModelNet10 for polynomial
weights. 79

4.6 Training curves of our architecture on kernel weights. 79

5.1 Overview of our approach. Our training procedure encourages a bi-
lipschitz mapping between the latent and generated output manifolds,
while mapping the Euclidean shortest paths in the latent manifold
to geodesics on the generated output manifold, which allows better
diversity and structure. We gain a considerable improvement in both
visual quality and the image diversity over our baseline Pix2Pix [Isola
et al., 2017], using the same network architecture (landmark → faces
image-to-image translation task). 84

5.2 Qualitative comparison with state-of-the-art cGANs on three challenging tasks.
We compare our proposed model with the baseline Pix2Pix [Isola et al.,
2017], Bicycle-GAN [Zhu et al., 2017b] and DS-GAN [Yang et al., 2019a].
It can be seen that samples generated by our model are clearly more
diverse (e.g., , color and subtle structural variation) and realistic (e.g., ,
shape and color) compared to other models in all tasks. Note that our
model has the same architecture as Pix2Pix. 96

5.3 Qualitative comparisons with baseline Pix2Pix [Isola et al., 2017] model. Our
proposed model consistently generates diverse and realistic samples
compared to its baseline Pix2Pix model. 96

xx LIST OF FIGURES

5.4 A visual example of interpolation along an Euclidean shortest path on the
latent manifold. Top row: the velocity V =

√
żMż change onMy across

the samples. Bottom three rows: the corresponding interpolated samples
in Bicycle-GAN, DS-GAN, and P2P Geo (Ours). As evident, our model
exhibits a smooth interpolation along with an approximately constant
velocity on My compared to the other networks, implying that our
model indeed tends to move along geodesics. The total standard
deviations of the V for 100 random interpolations for Bicycle-GAN,
DS-GAN, and P2P Geo (Ours) are 0.056 0.067, and 0.011, respectively. . 97

5.5 Colour distribution comparison on BW → color dataset on a-plane
in Lab color space. Our model exhibits the closest color distribution
compared to the ground truth. Furthermore, our model is able to
generate rare colors which implies more diverse colorization. 100

5.6 Colour distribution comparison on BW → color dataset on b-plane
in Lab color space. Our model exhibits the closest color distribution
compared to the ground truth. Furthermore, our model is able to
generate rare colors which implies more diverse colorization. 101

5.7 Euclidean path vs. geodesic comparison. We travel along a Euclidean
shortest path onMz and measure the corresponding curve distance LG
onMz (lm2faces). Then, we traverse between the same two points along
the numerically calculated geodesic and measure the corresponding
curve length LG. E(LG) vs LE is illustrated with the corresponding
standard deviation obtained along 10 random paths. Our model is
closer to the oracle case (LE = E(LG)). We were not able to obtain
distance greater than ∼ 60 for DS-GAN and Bicyle-GAN which implies
that our model generates more diverse data. Further, Pix2Pix did not
produce enough diversity for this comparison. 103

5.8 We apply our algorithm to three classic networks and obtain increased diver-
sity with no architectural modifications. Note that the original networks only
learn one-to-one mappings. 106

5.9 Qualitative results from landmarks→ faces task. 107

5.10 Qualitative results from sketch→ shoes task. 108

5.11 Qualitative results from hog→ faces task. The diversity of the outputs
are less in this task, as hog features maps are rich in information. 109

5.12 Qualitative results from BW → color task. 110

5.13 Qualitative results from sketch→ anime task. 111

5.14 Qualitative results from sketch→ bags task. 112

5.15 Qualitative results from labels→ facades task. 113

5.16 Smooth interpolations of our model. Each column represents an inter-
polation between two latent codes, conditioned on an input. The faces
are rotated to fit the space. 114

LIST OF FIGURES xxi

6.1 Overall Bernstein-NF architecture with m + 1 layers for d-dimensional
distributions. The range of transformations are within brackets and
trainable coefficients are in orange boxes. 128

6.2 Qualitative results for modeling the toy distributions. From the top row:
ground truth, prediction, and predicted density. 130

6.3 Theoretical error bound vs (averaged) experimental error. 131

6.4 Ablation study with different varients of our model. D and L denotes
the degree of the used polynomials and the number of layers, respec-
tively. Corresponding transformation functions are also shown below
the predicted densities. 133

6.5 Approximation of the target density starting from various initial densi-
ties (the initial distributions are noted below the densities). 133

7.1 Overview of Spectral-GAN. Our model operates in the spectral domain
using spherical harmonic moment vectors (SMVs). This allows us
to avoid the redundancy and irregularity of point-clouds. Using a
differentiable transformer, our model can also receive guidance from
the spatial domain. 136

7.2 The overview of the Spectral Generative Adversarial Network. An
unrolled version (with an explicit forward and backward pass) of the
training scheme is shown for clarity. 140

7.3 Qualitative analysis of the results. From the left, 1st column: Ground
truth, 2nd column: ground truth point-clouds reconstructed by SMV,
3rd − 7th columns: generated samples using spectral GAN. 146

7.4 Scalability of the proposed network with resolution. We obtain increas-
ingly dense resolution by only changing the output layer size in each
training phase. Number of points from the left: 302, 602, 1002, 1502 and
2002 . 149

7.5 Spectral GAN can generate high-resolution outputs with minimal com-
putational overhead. We increase resolution approximately 40× while
only an increase of 4× FLOPs. 150

7.6 Effect of backward pass. Top row: samples generated using only
forward pass. Bottom row: same samples after passing through both
forward and backward pass. Backward pass refines the image by
adding more fine details. 151

7.7 Qualitative results for 3D point-cloud reconstruction from a single
image. 152

7.8 Illustration of the sampling procedure. Red arrows and green arrows
demonstrate first stage and second stage sampling, respectively. 153

7.9 Qualitative results: generated point clouds for each class. 155

xxii LIST OF FIGURES

7.10 Our network tends to generate weird artifacts among plausible samples,
when trained without the spatial domain regularizer, since small varia-
tions in spectral domain cause significant variations in spatial domain.
A few such examples are illustrated here. These artifacts are effectively
suppressed by our spatial domain regularizer. 156

8.1 Training and inference process. Refer to Algorithm 3 for the training
process. At inference, z is iteratively updated using the predictions of
Z and fed to G to obtain increasingly fine-tuned outputs (see Sec. 8.2). . 164

8.2 Overall architecture for 128× 128 inputs. 165
8.3 Toy Example: Plots generated for each dimension of the CMM space Υ.

(a) Ground-truth distributions. (b) Model outputs for L1 loss. (c) Output
when trained with the proposed objective (without ρ correction). Note
the phantom distribution identified by the model. (d) E[ρ] as a heatmap
on (x, y). E[ρ] is lower near the true distribution and higher otherwise.
(e) Model outputs after ρ correction. 168

8.4 The behaviour of cost heatmaps Ê against (x, z) as the training pro-
gresses (toy example). The latent space gets increasingly structured
as w → w∗. Also, in (c) the network intelligently puts the optimal
latent codes further apart as the distance between the two ground truth
modes (m = 4 and m = −4) keeps increasing. 169

8.5 We enforce the Lipschitz continuity on both G and Z 169
8.6 The model architecture for various input sizes. The same general

structure in maintained with minimal changes to accomodate for the
changing input size. 171

8.7 Performance with 20% corrupted data. From the top row: ground
truth, inputs, outputs with L1 loss, outputs by Pathak et al. [2016b], and
outputs by our model. Our model demonstrates better convergence
compared to L1 loss and a similar capacity GAN [Pathak et al., 2016a]. . 172

8.8 With >30% alternate mode data, our model can converge to both the
input modes. From the left column: corrupted training samples, inputs,
prediction mode 1, and prediction mode 2. 173

8.9 Output gets better as the z traverse to the optimum position at inference.
Left column is the input. Five right columns show outputs at iterations
2, 4, 6, 8 and 10 (from left to right). 173

8.10 Qualitative comparison against the state-of-the-art on ImageNet dataset.
From the top row: ground truth, Izuka, P2P, Chroma, CIC, and ours.
Our model generally produces more vibrant and balanced color distri-
butions. 175

8.11 Qualitative comparison against the state-of-the-art on STL dataset. From
the top row: ground truth, Izuka, P2P, Chroma, CIC, and ours. Our
model generally produces more vibrant and balanced color distributions.176

8.12 Qualitative results of our model in the colorization task on ImageNet
dataset. 177

LIST OF FIGURES xxiii

8.13 Multiple colorization modes predicted by our model for a single input.
(Best viewed in color). 178

8.14 Output quality increases as z→ z∗ at inference. 179
8.15 Color distribution comparison of a, b planes. Our method produces the

closest distribution to the ground truth. 180
8.16 Qualitative results of our model in the image completion task on Celeb-

HQ dataset. 183
8.17 Qualitative results of our model in the image completion task on Fa-

cades dataset. 184
8.18 Qualitative comparison for image completion with 25% missing data

(models trained with random sized square masks). 185
8.19 Multimodel predictions of our model in colorization 186
8.20 Multimodel predictions of our model in colorization 187
8.21 Multimodel predictions of our model in landmarks-to-faces. 188
8.22 Multimodel predictions of our model in face inpainting. 189
8.23 Multimodel predictions of our model in surface-normals-to-pet-faces.

Note that this is generally a difficult task due to the diverse texture. . . 190
8.24 Multimodel predictions of our model in sketch-to-shoes translation. . . 191
8.25 Multimodel predictions of our model in sketch-to-bag translation. . . . 192
8.26 Qualitative results of our model in map-to-photo translation. 193
8.27 Scalability: we subsequently add layers to the architecture to be trained

on increasingly high-resolution inputs. From the left: 32× 32, 64× 64.
128× 128, 256× 256. 194

8.28 Qualitative comparison of 3D spectral denoising. The results are con-
verted to the spatial domain for a clear visualization. 194

8.29 Convergence on image completion (Paris view). Our model exhibits
rapid and stable convergence compared to state-of-the-art (PN, CE, P2P,
CA). 195

8.30 The uncertainty measurement illustration with the toy example. (left-
column: ground truth, right-column: prediction). We train the model with
x ∈ [0, 0.5] and test with x ∈ [0, 1.5]. During the testing, we add a
small Gaussian noise to z∗ at each x and get stochastic outputs. As
illustrated, the sample variance (the uncertainty measurement) increases
as x deviates from the observed data portion. 198

8.31 Colorization predictions for models trained with and without monkey
class. Output images are shown side by side with corresponding
uncertainty maps. For models trained without monkey data, high
uncertainty is predicted for pixels belonging to the monkey portion
(intensity is higher for high uncertainty). 199

xxiv LIST OF FIGURES

List of Tables

3.1 Mathematical symbols frequently used in this chapter. 26

3.2 Comparison with state-of-the-art on ModelNet10 (ranked according to
performance). 49

3.3 Comparison with state-of-the-art on ModelNet40 (ranked according to
performance). 50

3.4 3D object retrieval results comparison with state-of-the-art on McGill
Dataset. 52

3.5 3D object retrieval results comparison with state-of-the-art on SHREC’17. 52

3.6 Ablation study of the proposed architecture on ModelNet10 and SHREC’17
datasets. Here, “+” sign refers to “with” and “−” sign refers to “without”. 55

3.7 Performance of multi-layer architectures for highly non-polar and tex-
tured shape classification. Our model shows an improvement with
higher number of layers. 55

3.8 Performance comparison on local object-part movement resulting in
global non-rigid deformations. Accuracies are reported for the Model-
Net10 dataset. Performance drop under global deformations is shown
in blue. Our approach demonstrates minimal performance drop un-
der totally random deformations which signifies the strong invariance
behaviour of proposed approach. 56

4.1 The derived Qnl polynomials up to n = 5, m = 5. 68

4.2 Model accuracy vs depth analysis on ModelNet10 and ModelNet40
datasets. 75

4.3 Our model complexity is much lower compared to state-of-the-art 3D
classification models. The FLOPS (inference time) comparisons are
reported according to Li et al. [2018c] settings with 16 batch size. 76

4.4 3D object retrieval results comparison with state-of-the-art on McGill
Dataset. 78

4.5 3D object retrieval results comparison with state-of-the-art on SHREC’17. 80

4.6 Multi-layer architectures for highly non-polar and textured shape clas-
sification. Our model shows an improvement with more layers. 80

4.7 Ablation study on the input point cloud density. We sample the input
points on a grid (r= 25, θ = 36, φ = 18) before feeding to the network. . . 81

xxv

xxvi LIST OF TABLES

5.1 Quantitative comparison with the state-of-the-art on 9 (nine) challenging
datasets. -* denotes the cases where we were not able to make the
models converge. A higher LPIP similarity score means more diversity
and lower FID score signifies more realism in the generated samples.
Our approach gives consistent improvements over the baseline. 115

5.2 Ablation study. Ablation study with different variants of our model on
landmark → faces dataset reporting FID score (lower = more realistic)
and LPIPS (higher = more diverse). 116

6.1 Test log-likelihood comparison against the state-of-the-art on real-world
datasets (higher is better). Log-likelihoods are averaged over 10 trials
in SOS and Bernstein. 129

6.2 Test log-likelihood comparison against the state-of-the-art on image
datasets (higher is better). First three used multi-scale convolutional
architectures. 132

6.3 Test log-likelihood drop for random initial errors, as a ratio of the
standard deviations obtained using original data. 132

7.1 3D shape classification results on ModelNet10. 147
7.2 Inception scores (IS) for 3D shape generation. We only compare with

voxel based methods since no point-cloud (p-cloud) based method
reports IS. 147

7.3 FID scores for 3D shape generation. (lower is better) All the methods
except ours are voxel based. 148

7.4 Comparison with point-cloud generative models. 149
7.5 Average precision for 3D point-cloud reconstruction from single image.

The point-clouds are voxelized before obtaining the score. 152
7.6 Model complexity comparison with point-cloud generative models

(inference). We achieve the best performance while having the lowest
complexity. (↓ denotes lower is better, ↑ denotes higher is better) 157

8.1 Colorization: Quantitative analysis of our method against the state-of-
the-art. Ours perform better on a variety of metrics. 172

8.2 IOU of the predicted color distributions against the ground truth. Our
method shows better results. 174

8.3 table . 178
8.4 Turing Test for GT vs ours on popular image datasets Celeb-HQ and

Facades. 181
8.5 Image completion: Quantitative analysis of our method against state-of-

the-art on a variety of metrics. 182
8.6 Comparison on downstream task (CIFAR10 cls). (∗) denotes the oracle

case. 185
8.7 Model complexity comparison. 190
8.8 Reconstruction mAP of 3d spectral denoising. 195

LIST OF TABLES xxvii

8.9 Downstream 3D object classification results on ModelNet10 and Model-
Net40 using features learned in an unsupervised manner. All results in
% accuracy. 196

xxviii LIST OF TABLES

Chapter 1

Introduction

1.1 Introduction

Machine learning has shown tremendous success in various tasks during the past
decade, primarily due to the advancement of deep learning. Modern deep networks
have even exceeded human performance in many domains spanning image classifica-
tion [Krizhevsky et al., 2012; Szegedy et al., 2017; Brock et al., 2021], video analysis
[Kalfaoglu et al., 2020; Bertasius et al., 2021], natural language processing [Sutskever
et al., 2014; Bahdanau et al., 2014], speech recognition [Chung et al., 2019; Zeinali
et al., 2019], and game play [Silver et al., 2016; Moravčík et al., 2017]. Nevertheless,
there is still a fundamental difference between an end-to-end learned deep network
and human intelligence: humans have a remarkable ability to generalize beyond past
experiences and learn from limited data, which remains challenging for cutting-edge
ML models.

Deep models usually deter explicit structured representations and computational
assumptions, seeking to minimize hand-designed choices to model inductive bias.
This can also be seen as a trade-off between inductive bias and the flexibility of learn-
ing. This trade-off has paid well in the last decade, supported by the high-performing
hardware and abundant data [Krizhevsky et al., 2012; Bahdanau et al., 2014; Moravčík
et al., 2017]. This approach is seemingly counter-intuitive, as structured representa-
tions and inductive bias help models discover patterns and semantic information in
data easily. However, having an extensive amount of data allows the deep models
to discover structured information in the data implicitly [Welling, 2019]. Hence, the
aforementioned trade-off is suitable as long as a sufficient amount of data is available.
However, datasets are empirical estimates of the real-world distributions and may
comprise strong biases. Hence, there is a strong possibility that (naively trained)
models on these datasets would not function well when applied to noisy real-world
tasks. Further, the minimal inductive bias hampers the ability of the deep networks to
respond adequately to out-of-distribution data.

A natural solution for this problem is to encourage the model to capture the
underlying properties of data that generalize the model beyond the training set. For
example, assume a 3D object recognition task where the objects are not aligned with
respect to a canonical coordinate system. Intuitively, we have the prior knowledge that
the learned function should be symmetric against the 3D rotations and translations.

1

2 Introduction

However, since the training dataset is finite, it cannot represent all possible rotations
of all the objects. Given enough data, the network may incorporate some rotation
invariance, but, it is not likely that the network will systematically discover that the
learned function should be invariant to all the rotations, unless the invariance is
explicitly built into the layers of the model. In contrast, conscientiously designed
equivariant filters can help the model to be trained with limited data and generalize
to unseen rotations in the real-world. We will revisit inductive bias more formally in
the next sub-section.

1.2 Inductive bias

Learning generic patterns and rules using a set of observations is called inductive
reasoning. Any ML model should be able to perform inductive reasoning in order to
achieve sensible results over a training set. However, many optimal models may exist
that are equally consistent with an available set of training data. Inductive bias is the
process of preferring a certain set of generalizations in a model, that may work better
on the test set than other possible solutions. This concept is more formally presented
in the no-free-lunch theorem of machine learning [Wolpert, 1996], which basically says
given a dataset and a loss function, there is no absolutely general-purpose model.
That is, any model will generalize better on a particular test distribution and perform
worse on others. Therefore, the important problem becomes identifying inductive
biases that better coincide with the human perception and understanding of the world.

Since inductive bias is essential in any ML model, deep models implicitly or
explicitly incorporate inductive bias in the form of regularization objectives [Srivastava
et al., 2014; Kukačka et al., 2017; Zhang et al., 2017a], weight sharing, design constraints
[Yu et al., 2017; Long et al., 2015; Dumoulin and Visin, 2016; Huang et al., 2017a],
equivariance [Defferrard et al., 2020; Cohen et al., 2018b; Ramasinghe et al., 2019c;
Esteves et al., 2018a], or prior distributions in probabilistic models [Kingma and
Welling, 2013; Rezende and Mohamed, 2015; Ramasinghe et al., 2021]. From another
perspective, inductive bias can not only improve the performance but also ease the
optimization [Battaglia et al., 2018]. This is intuitive, since adding inductive bias to
a model can be considered as artificially forcing the model to learn relationships in
data without training. Similarly, inductive bias can also be treated as training data in
disguise [Goyal and Bengio, 2020] and one can compensate for the lack of inductive
bias with more data [Welling, 2019]. This is one primary motivation of deep learning:
the user-specified inductive bias in a model can be minimized if enormous datasets
are available. However, to capture certain relationships without sufficient inductive
bias, the model may need an infeasible number of training samples, which may not
be practical in certain tasks (e.g., 3D reconstruction).

§1.3 Machine learning vs human intelligence 3

1.3 Machine learning vs human intelligence

In contrast to ML models, humans can learn with limited data and generalize the
learned representations to new inputs. This remarkable ability of the human brain has
inspired ML/AI researchers to study how AI should relate to human intelligence since
the earliest days of AI research [TURING, 1950; Newell and Simon, 1961; Newell et al.,
1972; Bobrow and Winograd, 1977; Hayes-Roth and Hayes-Roth, 1979; Schank, 1972;
Fukushima and Miyake, 1982; Holyoak, 1987; Schmidhuber, 2015; Lake et al., 2017;
Battaglia et al., 2018; Goyal and Bengio, 2020]. At a high-level, many of these works
posit that human knowledge representation is built upon sub-symbolic reasoning,
where specialized units work in parallel to tackle a complex task. Particularly, they
emphasize two fundamental attributes of human intelligence: a) intuitive physics and
b) combinatorial generalization. We shall discuss these attributes and their motivation to
our work in the next sub-sections.

1.3.1 Intuitive physics

A key signature of human intelligence in understanding the external world is intuitive
physics [Wellman and Gelman, 1992]. Infants have an abstract understanding of physics
concepts that allow them to anticipate certain outcomes beyond past experiences.
For instance, infants can discount unlikely object trajectories beyond the paucity
of observations [Spelke, 1990; Kosslyn and Osherson, 1995]. Similarly, they can
recognize objects seen from entirely new angles by utilizing the understanding of the
symmetry of the objects in the physical world [Baillargeon, 2004; Baillargeon et al.,
2009]. Such understandings directly correspond to physics concepts such as inertia,
support, collisions, and geometry. Fig. 1.1 depicts a rough timeline of early conceptual
acquisition in infants.

Classical ML approaches have tried to fuse these physics concepts into learnable
models. The seminal work by Valiant [1984] and Hopfield [1982] were perhaps among
the earliest attempts on integrating natural rules of the physical world into learnable
models. Notably, Valiant [1984] embarked precise statistical learning in AI, and
Hopfield [1982] blended the rich concepts from spin glass theory to neural networks
models, which was later extended by Amit et al. [1985]. Similarly, Gardner [1988]
applied the replica trick 1 to neural networks to solve the problem of storing a given set
of p random patterns as N-bit Ising spin configurations. Their work allowed analytical
error computation and learning curves of (specific classes of) neural networks as a
function of the number of training samples [Györgyi and Tishby, 1990; Seung et al.,
1992], that can be generalized even to modern machine learning models [Zdeborová
and Krzakala, 2016]. These seminal works inspired the integration of mathematical
and physics concepts into classical ML models, few examples being the stochastic
block model study for detecting clusters in sparse networks [Fortunato, 2010; Decelle
et al., 2011], spectral algorithms for sparse data, [Krzakala et al., 2013], message

1The replica trick is generally used in statistical physics for computations that involve analytic
functions.

4 Introduction

Figure 1.1: Early conceptual acquisition in infants (Dupoux [2018]).

passing [Bolthausen, 2014; Javanmard and Montanari, 2013; Rangan et al., 2012], and
the work on restricted boltzman machines (RBM) [Smolensky, 1986; Hinton, 2002;
Gabrié et al., 2015; Tramel et al., 2018].

On the other hand, with the birth of deep learning, deep networks have been
employed across diverse disciplines that require exploiting natural laws of nature,
including applied physics [Baldi et al., 2016; Ibarra-Berastegi et al., 2015], compu-
tational biology [Alipanahi et al., 2015], material science [Kauwe et al., 2018; Ryan
et al., 2018; Wei et al., 2018], aquatic science [Jia et al., 2020], and climate analysis
[Nowack et al., 2018; Schmidt et al., 2019]. However, most of these works follow the
end-to-end philosophy of deep learning, which lessens the constraints and inductive
bias. Consequently, these models suffer from the need for extensive labeled data and
poor generalization to unseen conditions [Willard et al., 2020]. For instance, recent
work by Lerer et al. [2016] used a deep network (PhysNet) to predict the stability of
block towers from images. Remarkably, their model exceeded human performance
on both real and synthetic images on this task. However, the model demonstrated
two limitations: a) the model needs a humongous amount of data to be properly
trained (∼ 200, 000 scenes per single task) and b) the model does not generalize well
to more complex scenes (block towers with a higher number of blocks). In contrast,
ML models designed to strictly follow physics concepts, such as modern animation
engines [Lerer et al., 2016; Battaglia et al., 2013; Gerstenberg et al., 2015] and deep
implicit networks [Gould et al., 2019, 2021; Johnson et al., 2016b; Amos and Kolter,
2017; Agrawal et al., 2019] have shown much better generalizations in alien conditions
(see section 9.2.1 for a more comprehensive discussion on deep implicit layers). This

§1.3 Machine learning vs human intelligence 5

makes its clear that even when trained with an abundant amount of data, the model
might actually not learn the underlying physical rules or semantic concepts without
properly induced inductive biases.

The models proposed in chapters 3, 4, 5 and 6 follow this philosophy. We use
equivariant representation learning techniques that are explicitly designed to be sym-
metric against basic transformation groups, use known polynomial types to construct
flow-models, and use geometrical priors and constraints to improve generative mod-
els. Chapter 3 proposes a convolutional network comprising of layers that can learn
rotational equivariant representations. Instead of performing the convolution in the
Euclidean space, our model operates in the unit ball, making it easier to achieve
rotational equivariance. Although performing convolution in Euclidean geometries
is fairly straightforward, its extension to other topological spaces—such as a sphere
(S2) or a unit ball (B3)—entails unique challenges. We introduce a novel volumetric
convolution operation that can effectively model and convolve arbitrary functions in
B3. We develop a theoretical framework for volumetric convolution based on Zernike
polynomials and efficiently implement it as a differentiable and easily pluggable layer
in deep networks. By construction, our formulation leads to the derivation of a novel
formula to measure the symmetry of a function in B3 around an arbitrary axis, which
is useful in function analysis tasks. We demonstrate the efficacy of the proposed
volumetric convolution operation on a viable use case, i.e., 3D object recognition.

Chapter 4 further extends the aforementioned work to achieve both rotational and
translation equivariance while simultaneously reducing the impact of the redundancy
and the irregularity of 3D point clouds. Most models used in shape analysis directly
learn feature representations on 3D point clouds. We argue that 3D point clouds
are highly redundant and hold irregular (permutation-invariant) structures, making
it difficult to efficiently achieve inter-class discrimination. Chapter 4 proposes a
two-pronged solution to this problem that is seamlessly integrated into a single
blended convolution and synthesis layer. This fully differentiable layer performs two
critical tasks in succession. The first step projects the input 3D point clouds into a
latent 3D space to synthesize a highly compact and inter-class discriminative point
cloud representation. Since 3D point clouds do not follow an Euclidean topology,
standard 2/3D convolutional neural networks offer limited representation capability.
Therefore, in the second step, we propose a novel 3D convolution operator functioning
inside B3 to extract useful volumetric features. We derive formulae to achieve both
translation and rotation of our novel convolution kernels. Finally, we present an
extremely light-weight, end-to-end architecture that achieves compelling results on
3D shape recognition and retrieval using the proposed techniques. Most importantly,
the operations proposed in chapter 3 and 4 allows the construction of significantly
cheaper deep networks that are robust to noisy data, compared to deep models that
do not utilize explicit equivariant representation learning.

Moreover, chapter 5 studies how to improve the performance of conditional GANs
(cGAN) using geometrical priors. cGANs, in their rudimentary form, suffer from
critical drawbacks such as the lack of diversity in generated outputs and distortion
between the latent and output manifolds. Although efforts have been made to

6 Introduction

improve results, they can suffer from unpleasant side-effects such as the topology
mismatch between latent and output spaces. In contrast, we tackle this problem from
a geometrical perspective and propose a novel training mechanism that increases both
the diversity and the visual quality of a vanilla cGAN, by systematically encouraging
a bi-lipschitz mapping between the latent and the output manifolds. We validate
the efficacy of our solution on a baseline cGAN (i.e., Pix2Pix [Isola et al., 2017]) with
no diversity, and show that by only modifying its training mechanism (i.e., with our
proposed Pix2Pix-Geo), one can achieve more diverse and realistic outputs on a broad
set of image-to-image translation tasks.

In chapter 6, we focus on Normalizing Flows (NF). NFs are a class of generative
models that allows exact density evaluation and sampling. We propose a novel
framework to construct NFs based on increasing triangular maps and Bernstein-type
polynomials. Due to the known properties of Bernstein-type polynomials, our method
allows us to induce significant inductive bias into the model and manipulate the
model more, compared to the existing (universal) NF frameworks. For instance, our
model is highly interpretable, as we can analyze the model end-to-end by examining
the learned Bernstein coefficients. Utilizing the same properties, we can analytically
derive the upper-bound of the approximation error and directly control the bounds
of the output densities. Further, we theoretically show that our model is the most
robust NF framework among the other polynomial and spline-based flow-models
against noisy data. Moreover, we present a constructive universality proof, which
yields analytic expressions of the approximations for known transformations.

1.3.2 Combinatorial generalization

A crucial factor that helps humans to generalize knowledge beyond the experience
is called combinatorial generalization, which attributes to the human brain’s capacity
to link learned representations in limitless ways [Chomsky, 2014]. Thus, the human
brain can realize complex systems as compositions of more trivial entities and their
intercommunications [Navon, 1977; Plaut et al., 1996; Goodwin and Johnson-Laird,
2005; Kemp and Tenenbaum, 2008]. For instance, when we desire to assume something
spoken in a foreign language, we often analyze facial expressions, hand gestures,
and vocal tones to understand what is being said at a high level. Then, the learned
representations are put into the memory for future reference. This insight into the
human brain was further analyzed by Botvinick et al. [2001]. They affirmed that
the human brain acts in two different ways when exposed to default situations vs
novel environments. They labeled the former as habitual processing and the latter as
conscious processing. They especially showed that humans put extra mental effort when
dealing with conscious processing. Kahneman [2011], presented a similar notion
from a different perspective, where they classified the processing of the brain into
two categories: system 1 and system 2. System 1 processing is mostly unconscious,
extremely fast, and occurs in familiar environments. In contrast, system 2 processing
happens in novel conditions, is slower and requires a train of thoughts.

Current deep models’ operations are more comparable to the habitual or system

§1.3 Machine learning vs human intelligence 7

1 processing of the brain. Given a large amount of data, the model learns to correct
itself incrementally, based on an optimization objective. After training, they can
efficiently produce answers to complicated problems, as long as the training and
testing conditions are similar to an extent. In comparison, humans are more proficient
in performing conscious or system 2 processing, allowing rapid adoption to alien
conditions. The Global Workspace Theory [Baars, 1988] and the Global Neuronal
Workspace model [Shanahan, 2006, 2010, 2012; Dehaene et al., 2017] postulates that
the brain works in a modular manner in conscious processing. The brain would look
for the most relevant modules for the task in hand and employ them to develop a
possible solution. Each of these modules is an expert in some task and holds a unique
ability. To prevent the over-use of resources, the information is passed through a
bottleneck, allowing only the most relevant modules to work at a time.

On the other hand, learning from limited resources was extremely important in
classical ML due to insufficient hardware resources and data. Therefore, emulating
the combinatorial generalization of the human brain using structured representations
has been the core of classical ML/AI models since its infancy, in many domains such
as natural language processing, Bayesian models, probabilistic programming, and
reinforcement learning [Lees, 1957; Fikes and Nilsson, 1971; Russell and Norvig, 2002;
Džeroski et al., 2001; Koller et al., 2007]. Therefore, it is intriguing to investigate how
to incorporate structured representations into deep models.

Chapter 7 and 8 are inspired by this concept. In chapter 7, we use a set of
cascaded GANs that work in unison to generate high-resolution point-clouds. Each of
these GANs is an expert in identifying and generating patterns in a predetermined
frequency band. At the training and inference, each GAN communicates with the
others to generate and refine the outputs. Current deep generative models for 3D data
generally work on simplified representations (e.g., voxelized objects) and cannot deal
with the inherent redundancy and irregularity in point-clouds. A few recent efforts
on 3D point-cloud generation offer a limited resolution, but their complexity grows
with the increase in output resolution. Chapter 7 develops a principled approach
to synthesize 3D point-clouds using a spectral-domain GAN, where our spectral
representation is highly structured and allows us to disentangle various frequency
bands such that the learning task is simplified for a GAN model. Compared to spatial-
domain generative approaches, our formulation allows us to generate high-resolution
point-clouds with minimal computational overhead. Furthermore, we propose a fully
differentiable block to transform from the spectral to the spatial domain and back,
thereby allowing us to integrate knowledge from well-established spatial models.
We demonstrate that Spectral-GAN performs well for point-cloud generation tasks.
Additionally, it can learn a highly discriminative representation in an unsupervised
fashion and can be used to reconstruct 3D objects accurately.

Moreover, most of the current deep conditional generative models assume one-
to-one mappings between inputs and outputs. However, many real-world scenarios
contain more than one possible solutions for a given condition. For instance, a human
artist can draw multiple possible faces for a set of facial landmarks. This aspect
is less investigated in current deep generative models, limiting their full potential

8 Introduction

[Lee et al., 2019a; Isola et al., 2017]. Chapter 8 introduces a novel general-purpose
framework for conditional generation in multimodal spaces that uses latent variables
to model generalizable learning patterns, while minimizing a family of regression cost
functions. At inference, the latent variables are optimized to find optimal solutions
corresponding to multiple output modes. An interesting property of our model
is that it uses a separate module to find the optimal latent codes at the inference.
The model comprises of two main modules: the generator and the path-finding-
expert. During training, the latter learns to traverse to latent codes that correspond to
multiple outputs, and at the inference, interacts with the generator to produce diverse
outputs. Compared to existing generative solutions, our approach demonstrates
faster and stable convergence, and can learn better representations for downstream
tasks. Importantly, it provides a simple generic model that can beat highly engineered
pipelines tailored using domain expertise on a variety of tasks while generating
diverse outputs.

1.4 Thesis Outline

The rest of the chapters are organized as follows:
Chapter 2—Background. This chapter provides the necessary technical background
and the preliminaries needed to understand the rest of the thesis.
Chapter 3—Equivariant representation learning. In this chapter, we propose a novel
‘volumetric convolution’ operation that can model and convolve arbitrary functions in
B3 in the spectral space. We develop a theoretical framework for volumetric convolution
based on Zernike polynomials and efficiently implement it as a differentiable and
readily pluggable layer for deep networks.
Chapter 4—Blended convolution and synthesis. In this chapter, we propose a two-
part solution for 3D object analysis that is combined in a single blended convolution
and synthesis layer. This fully differentiable layer performs two critical tasks in
succession. In the first step, it projects the input 3D point clouds into a latent 3D
space to synthesize a highly compact and inter-class discriminative point cloud
representation. Since 3D point clouds do not follow a Euclidean topology, standard
2/3D convolutional neural networks offer sub-par performance. Therefore, in the
second step, we propose a novel 3D convolution operator functioning inside the unit
ball to extract useful volumetric features.
Chapter 5—Rethinking conditional-GAN training. In this chapter, we show that the
cGANs, in their basic form, suffer from significant drawbacks in-terms of diversity and
realism. We propose a novel training algorithm that can increase both realism and the
diversity of the outputs that are generated by cGANs while preserving the structure
of the latent manifold. To this end, we enforce a bi-lipschitz mapping between the
latent and generated output manifolds while encouraging Euclidean shortest paths
on the latent manifold to be mapped to the geodesics on the generated manifold.
Chapter 6—Robust normalizing flows using Bernstein-type polynomials. This
chapter focuses on a framework to construct NFs based on increasing triangular

§1.4 Thesis Outline 9

maps and Bernstein-type polynomials. Compared to the existing (universal) NF
frameworks, our method provides compelling advantages like theoretical upper
bounds for the approximation error, robustness, higher interpretability, suitability for
compactly supported densities, and the ability to employ higher degree polynomials
without training instability.
Chapter 7—Spectral-GAN for high-resolution 3D point cloud generation. In this
chapter, we develop a principled approach to synthesize 3D point-clouds using a
spectral-domain Generative Adversarial Network (GAN). The proposed model con-
sists of a structured series of GANs that operate together to improve the outputs.
Furthermore, our spectral representation is highly compact and allows us to disen-
tangle various frequency bands such that the learning task is simplified for a GAN
model.
Chapter 8—Conditional generative modeling via learning the latent space. This
chapter proposes a novel general-purpose framework for conditional generation in
multimodal spaces, which utilizes a path-finding-module to learn the behavior of
latent variables while minimizing a family of regression cost functions. At inference,
the latent variables are optimized using the path-finding-module to find optimal
solutions corresponding to multiple output modes. Compared to existing generative
solutions, our approach demonstrates faster and stable convergence, and can learn
better representations for downstream tasks.
Chapter 9—Conclusions. We conclude the thesis with a summary of our main
contributions while discussing the possible future research directions for incorporating
inductive biases and structured representations in deep models.

1.4.1 List of Publications

This thesis is based on five publications and two papers that are currently under
review at conferences:

• Ramasinghe, Sameera, Salman Khan, Nick Barnes. “Learned and Hand-crafted
Feature Fusion in Unit Ball for 3D Object Classification" in Proceedings of the 9th
International Conference on Pattern Recognition Applications and Methods - Volume
1: pp. 115-125. [Best student paper award]

• Ramasinghe, Sameera, Salman Khan, Nick Barnes, and Stephen Gould. “Rep-
resentation Learning on Unit Ball with 3D Roto-translational Equivariance" in
International Journal of Computer Vision (2019): 1-23.

• Ramasinghe, Sameera, Salman Khan, Nick Barnes, and Stephen Gould.“Blended
convolution and synthesis for efficient discrimination of 3d shapes" in The IEEE
Winter Conference on Applications of Computer Vision, pp. 21-31. 2020.

• Ramasinghe, Sameera, Salman Khan, Nick Barnes, and Stephen Gould. “Spectral-
GANs for High-Resolution 3D Point-cloud Generation", in IEEE/RSJ International
Conference on Intelligent Robots and Systems , 2020.

10 Introduction

• Ramasinghe, Sameera, Kanchana Ranasinghe, Salman Khan, Nick Barnes, and
Stephen Gould. “Conditional Generative Modeling via Learning the Latent
Space", in International Conference on Learning Representations, 2021.

• Ramasinghe, Sameera, Farazi Moshiur, Salman Khan, Nick Barnes, and Stephen
Gould. “Rethinking conditional GAN training" in Neural Information Processing
Systems, 2021.

• Ramasinghe, Sameera, Kasun Fernando, Salman Khan, and Nick Barnes.“Robust
normalizing flows using Bernstein-type polynomials", under review in Conference
on Learning Theory, 2022.

Apart from that, the author contributed to the following work, which is not
included as part of this thesis.

• Ali Cheraghian, Shafin Rahman, Sameera Ramasinghe, Pengfei Fang, Christian
Simon, Lars Petersson, and Mehrtash Harandi. “Synthesized Feature based
Few-Shot Class-Incremental Learning on a Mixture of Subspaces." Accepted at
the International Conference on Computer Vision, 2021.

Chapter 2

Background and Related Work

This chapter contains an exposition of the machinery and fundamentals necessary to
understand the technical details discussed in later chapters of this thesis. We discuss
group equivariant networks, generative adversarial networks and normalizing flows,
in the respective order.

2.1 Group equivariant networks

The seminal work by Klein [1893] rendered a new perspective on the question What
defines geometry? In this work, author showed that geometry is, in fact, the study of
symmetry groups, i.e., the properties of objects that are invariant under a class of
transformations. This revelation was remarkably productive and quickly found its
way into physics, which allowed novel insights into complex physics problems. Few
such notable works are the phenomenal theorem by Emmy Noether [Noether, 1918],
which paved the way to rigorously prove the conservation laws of physics using the
symmetry groups, gauge equivariance [Weyl, 1929], and Yang-Mills theory [Yang and
Mills, 1954]. In fact, Philip Anderson, the winner of the Nobel prize for physics in
1977, even stated that “it is only slightly overstating the case to say that physics is the study
of symmetry." Hence, symmetry is a vital concept for any system that aims to discover
patterns of data that consist of an underlying geometry.

Therefore, this notion of symmetry is a critical form of inductive bias for ML
models that hope to learn generalized semantic features from real-world data. Conse-
quently, group equivariant neural networks have recently grasped the attention of the
ML community due to their exciting properties from both theoretical and practical
standpoints [Esteves et al., 2018a; Cohen et al., 2018b; Rao et al., 2019; Ramasinghe
et al., 2019c; Cohen et al., 2018a; Sosnovik et al., 2019; Horie et al., 2020]. In cases
where the function from inputs to outputs contain symmetries with respect to a
specific group of transformations (e.g., 3D rotation group (SO(3)) in the 3D object clas-
sification task), equivariant networks can significantly reduce the model complexity.
We begin the discussion by reviewing basic concepts and then move on to practical
aspects.

11

12 Background and Related Work

2.1.1 Symmetry of neural networks

A group is formally defined follows:

Definition 2.1. A group (G, ·) is a set G equipped with an associative binary operation
G×G→ G, an identity element, and where every element has an inverse that is also in the
set.

Further, a symmetry group of an object can be loosely defined as below:

Definition 2.2. A symmetry group of an object is the group of all transformations under
which (some aspect of) the object is invariant.

The notion of symmetry can be considered under two aspects: invariance and
equivariance. For example, take the transformation f : X → X and the label function
L : X → Y, where X and Y are the input and output spaces, respectively. Then, L
is invariant to f if it satisfies L ◦ f = L. Similarly, L is equivariant to f if it satisfies
L ◦ f = f ◦ L. In other words, under invariance, the function output does not change,
while under equivariance, the function output changes in a deterministic manner.
In most cases, we are interested in the equivariance rather than the invariance. For
instance, consider a face recognition system. If the learned model is invariant to the
relative positions of the facial features, it will not detect any abnormality in an image
where the facial attributes are arbitrarily placed. On the contrary, in an equivariant
model, this information will be propagated forward in a deterministic manner, which
helps the model to raise a red flag in such a situation.

Interestingly, many such natural symmetries exist in common data-types we work
with. Consequently, the networks that work exceedingly well on these data types
intrinsically preserve these symmetries while extracting features. Figure 3.5 depicts
several such examples.

Figure 2.1: Many commonly used layers in deep networks naturally preserve a form
of symmetry (currently processing data points are indicated by blue).

In equivariant networks, we typically consider linear group actions, i.e., linear
group representations. Although this might seem restrictive, the space of all linear
group representations is vast, hence does not pose a problem for practical applications.
A more formal definition of the linear group representations is given below:

§2.1 Group equivariant networks 13

Figure 2.2: Orbits generated by group transformations.

Definition 2.3. A group homomorphism between groups G and H is a map f : G→ H such
that f (g1g2) = f (g1) f (g2). Let G be a group and V a vector space over some field. A linear
group representation is a group homomorphism ρ : G→ GL(V), where GL(V) is the general
linear group.

It can be shown that when V is finite-dimensional, GL(V) is identifiable with the
group of n× n invertible matrices, where n is the dimension of V.

Interestingly, the equivariant networks can be generalized using linear group
representations. Let us denote xi and ρi(g) as features and group representations,
respectively, corresponding to layers i = 1, 2, . . . , N of a network and g ∈ G where
G is a symmetry group. Further, consider fi to be the function that maps xi−1 to xi.
Then, an equivariant network satisfies the following relationship:

fi ◦ ρi−1(g) = ρi(g) ◦ fi. (2.1)

2.1.2 Orbits and equivalance relations

Let X and G be a set of data points and a group of transformations. Then, an orbit is
defined as Ox = {g(x)|x ∈ X, g ∈ G}. In other words, an orbit is the set of all points
we can obtain by applying a transformation from a group. If the label function is
symmetric with respect to G, then an equivariant network has only to learn general
features corresponding to each orbit instead of concentrating on each sample, which
dramatically reduces the required computational complexity.

Further, a model can be made symmetry-aware in three ways:

• Data augmentation. This is the most straightforward approach to follow in
order to achieve equivariance/invariance. The motive is to artificially expand
the dataset by applying relevant transformations on the data points and let the
network learn a generic mapping from inputs to labels. However, if the orbit of

14 Background and Related Work

the transformation group is vast, this method becomes infeasible. Further, the
required model capacity significantly increases since features are learned per
data point, rather than per orbit. However, this approach is appropriate in cases
where it is difficult to formalize or identify the required symmetry group.

• Transform data into invariant representations. This is only suitable for situ-
ations where invariant representations are needed. The strategy is to apply
a pre-processing step on the data before feeding to the network, so the data
becomes invariant to a transformation group. Consequently, the network only
observes already invariant representations, therefore, does not have to learn
an invariant function. The challenge here is to convert the data to invariant
representations, which might not be plausible for some transformation groups.
Moreover, since tackling the equivariance is not possible using this approach,
the network might suffer from the drawbacks discussed earlier.

• Equivariant network design. The ideal way to learn equivariant representations
is to design models using equivariant layers. It can be shown that a composition
of equivariant layers is also equivariant under the same transformation group.
Hence, carefully designed equivariant layers can be used as building blocks to
construct deep equivariant networks.

2.2 Generative adversarial networks

Generative adversarial networks (GAN) are a class of deep generative models that
has become prevalent in many modern generative tasks, including image generation
[Ledig et al., 2017; Choi et al., 2018; Royer et al., 2020], video generation [Chu et al.,
2020b; Saito and Saito, 2018; Tulyakov et al., 2018], natural language processing [Dash
et al., 2017; Guo et al., 2018; Ahamad, 2018], and audio synthesis Donahue et al. [2018];
Dong et al. [2018]; Engel et al. [2019], due to its ability to generate high-quality content
that can even fool human observers. In this section, we provide a basic overview of
GANs.

A GAN consists of two main components, i.e., the generator and the discrimina-
tor. The optimization procedure of GANs can be analyzed from a game-theoretic
perspective, where the generator and the discriminator play a min-max game against
each other until they approach a Nash equilibrium. This min-max game forces the
discriminator to learn to classify samples as real or synthetic, while the generator
attempts to fool the discriminator by generating samples that are indistinguishable
from real samples. It can be shown that the equilibrium of the above game is reached
when the Jensen-Shannon (JS) divergence between the synthetic and real sample
distributions approaches zero. We formally demonstrate this in Section 2.2.1.

§2.2 Generative adversarial networks 15

2.2.1 Equilibrium of GANs

The Kullback–Leibler (KL) divergence between two probability distributions p and q
can be obtained by,

DKL(p||q) =
∫

x
p(x)log

p(x)
q(x)

dx (2.2)

KL-divergence is an asymmetric measure. In contrast, JS divergence is a symmetric
metric that can measure the similarity between two distributions.

JSD(p||q) = 1
2
(DKL(p|| p + q

2
) + DKL(q||

p + q
2

)). (2.3)

The min-max game between the discriminator D and the generator G can be
formally stated as follows:

min
G

max
D

V(D, G) = Ex∼pd [logD(x)] + Ez∼pz [1− logD(G(z))]

= Ex∼pd [logD(x)] + Ex∼pg [1− logD(G(z))],
(2.4)

where pd is the training distribution and pg is the generated distribution. It can be
shown that optimal value D∗(x) that maximizes V(D, G) is achieved when,

D∗(x) =
pd

(pd + pg)
. (2.5)

The Nash equilibrium of Eq. 2.4 occurs as pd → pg, i.e., D∗(x) = 1
2 . This is

intuitive, since when the generator produces identical samples to the real distribution,
the discriminator cannot distinguish between them. Therefore, it can be seen that at
the global optimum V(D, G) = −2log2.

This equilibrium can be interpreted using the JS-divergence.

JSD(p||q) = 1
2
(DKL(p|| p + q

2
) + DKL(q||

p + q
2

)),

=
1
2
[2log2 +

∫
x

pdlog
pd

pd + pg
dx +

∫
x

pglog
pg

pd + pg
dx]

=
1
2
(2log2 + V(D, G))

(2.6)

Therefore,

V(D∗, G) = 2JSD(pd||pg)− 2log2 (2.7)

Since V(D, G) = −2log2 at the equilibrium, JSD(pd||pg) = 0.

16 Background and Related Work

2.2.2 Problems in GANs

Compared to generative models such as Boltzman machines and variational autoen-
coders (VAE), a main advantage of GANs is that they do not need to handle the
partition function. However, despite the remarkable success, GANs are known to
suffer from exigent problems. We discuss several such problems below:

Convergence. The convergence of GANs is only guaranteed when max
D

V(g, d) is

convex in the parameter space of the generator [Goodfellow et al., 2014a]. However,
this is fallacious in many practical scenarios, and drives GANs to be highly unstable
during the training if careful measures were not taken. The underlying cause for
this phenomenon is that the equilibrium for Eq. 2.4 is not a local minima, but a
saddle point in the parameter space: V has to be a local maxima with respect to a
one player and a local minima with respect to the other player. Therefore, unless
max

D
V(g, d) is (almost) convex in the parameter space of the generator, the players

can keep minimizing and maximizing V, never approaching an equilibrium. As a
toy example, consider the function V(x, y) = xy. The player 1 tries to minimize xy
by controlling x while the player 2 tries to minimize −xy by controlling y. Then, the
path of V is a circular orbit, assuming small gradient steps.

Nevertheless, it has been empirically validated that if model architecture and the
configurations are chosen carefully, GANs are able to generate exceptionally high
quality samples. One of the earliest attempts of generating realistic images is the deep
convolutional GAN (DCGAN) proposed by Radford et al. [2015]. They confirmed that
despite the training instability, carefully chosen hyper-parameters and architectures
could lead to well-optimized GANs. Since then, many pioneering works on GANs
have produced remarkable results using precisely engineered architectures [Denton
et al., 2015; Karras et al., 2017; Achlioptas et al., 2017b; Mao et al., 2017; Zhang et al.,
2019; Arjovsky et al., 2017]

Training instability. GANs are latent variable generative models, i.e., the gen-
erator outputs are encoded in a low dimensional latent space. Such a construct
works well in practice since image distributions, though seemingly high dimensional,
are merely low dimensional manifolds embedded in high dimensional spaces. For
instance, although there are 2561024 permutations of a 32× 32 size image (with 8 bits),
real-world images are concentrated only on disjoint small areas considering the entire
high-dimensional manifold. Arjovsky and Bottou [2017] confirmed that having such
disjoint ground truth manifolds makes the model highly unstable during training. We
refer the reader to Arjovsky and Bottou [2017] for a more comprehensive analysis on
the training dynamics of GANs.

Vanishing gradient. Consider a scenario where the discriminator is perfect. At
this state, V(D, G) = 0. Hence, the gradients approach zero, and the generator weights
are not updated. Particularly, if the discriminator becomes better at classifying real
and fake samples at the initial stages of training, the generator is not updated at
all. Fig. 2.3 demonstrates a result from a simple experiment extracted from Arjovsky
and Bottou [2017]. As a remedy, they proposed an alternative GAN training scheme,
using a modified loss function, that can significantly improve the stability of learning

§2.2 Generative adversarial networks 17

regardless of the state of the generator and the discriminator.

Figure 2.3: First, a DCGAN is trained for 1, 10 and 25 epochs. Then, with the generator
fixed a discriminator is trained from scratch. It is evident that the error quickly goes
to 0, even with very few iterations on the discriminator. This even happens after 25
epochs of the DCGAN, when the samples are remarkably good and the supports
are likely to intersect, pointing to the non-continuity of the distributions. Note the
logarithmic scale. For illustration purposes the accuracy of the discriminator is also
shown, which goes to 1 in sometimes less than 50 iterations. This is 1 even for
numerical precision, and the numbers are running averages, pointing towards even

faster convergence.

Lack of a proper evaluation metric It is not possible to directly evaluate the
density of samples using GANs. As a result, the direct evaluation of a GAN’s perfor-
mance is an open research problem. Consequently, comparing GAN architectures and
determining the optimal model while training is cumbersome. Although alternative
metrics have been proposed, there is no agreed-upon method as to which metric best
provides a fair insight into the GAN performance. Few such popular metrics are the
inception score (IS), frechet inception distance (FID), Image Retrieval Performance,
and human judgment.

Mode collapse Mode collapse is a commonly observed problem with GANs. Let

18 Background and Related Work

us denote the real data distribution associated with a generative task be pr. Note
that pr is the distribution of set of all possible samples, and is larger than number of
samples in the training distribution pd. Then, the objective function Eq. 2.4 is used to
optimize the generator G to generate the distribution pg ≈ pr. However, in practice,
training datasets do not cover the entire pr distribution. Therefore, Objective 2.4
assumes a sufficiently large number of training samples M to converge pg to pr. Then,
the expectation Ex∼pr [D(x)] is approximated by the empirical value 1

J ∑J
j=1 D(xj)),

where x1, ..., xJ ∼ pd. Arora et al. [2017] showed that the required J could be as large as
exp(M), otherwise, pg can be far from the optimal distribution, causing the generator
to have very low support, i.e., mode collapse.

2.3 Normalizing flows

Normalizing flows (NF) can be broadly categorized as generative models that can
estimate the density of arbitrary data points. To the best of our knowledge, the
term normalizing-flows was first introduced by Tabak and Turner [2013], where they
proposed a scheme for density estimation using a composition of simple maps. In
their model, the parameters of each map are estimated by the maximization of a local
quadratic approximation to the log-likelihood. Further developing this concept of
composing transformations for obtaining a more expressive composite transformation,
Rippel and Adams [2013] used deep neural networks to construct flows. Afterward,
the seminal work by Rezende and Mohamed [2015] used normalizing flows to approx-
imate variational inference. They showed that replacing the commonly used Gaussian
prior with a multimodal distribution obtained through NFs can dramatically improve
the performance of variational inference. NFs learn an invertible mapping between a
prior and a more complex distribution (the target) that have the same dimensionality.
Typically, the prior is chosen to be a Gaussian with an identity covariance or that is
uniform on the unit cube, and the target is the one we intend to learn. Below, we
present a summary of related ideas and refer the readers to Jaini et al. [2019] and
Kobyzev et al. [2020] for a comprehensive discussion.

More formally, let z and x be sampled data from the prior with density Pz and the
target distribution with density Px, respectively. Then, NFs learn f (z) = x which is
differentiable and invertible with a differentiable inverse. Such transformations are
called diffeomorphisms and they allow the estimation of the probability density Px(x)
via the change of variables formula, as follows,

Px(x) =
Pz(f−1x)
|J f (f−1x)| (2.8)

where J f is the Jacobian determinant of f .

An important property of diffeomorphisms is that they can be composed together
to obtain a more complex diffeomorphism. Consider two transformations f1 and f2.

§2.3 Normalizing flows 19

Then, the following properties hold:

(f1 ◦ f2)
−1 = f−1

2 ◦ f−1
1 , (2.9)

∣∣∣J f1◦ f2
(x)
∣∣∣ = ∣∣∣J f1

(f2(x))
∣∣∣∣∣∣J f2

(x)
∣∣∣ . (2.10)

Hence in practice, most NFs use a sequence of invertible functions to increase the
expressiveness, and hence, we have

f = f̃N ◦ f̃N−1 ◦ · · · ◦ f̃1 (2.11)

where f̃k’s are diffeomorphisms, as the transformation between the two densities.

2.3.1 Optimization

Given an independent and identically distributed (i.i.d.) sample {x1, . . . , xn} with
law Px, learning the target density Px and the transformation f (within an expressive
function class F) is done simultaneously via minimizing the Kullback-Leibler (KL)
divergence between Px and the pushforaward of Pz under f denoted by f∗Pz. In
situations where the density of the training samples is not available, we can use the
following method to obtain an estimator for minimizing the KL-divergence:

min
f∈F

KL(Px‖ f∗Pz)

= −max
f∈F

∫
log

Pz(f−1x)
|J f (f−1x)| · Px(x) dx. (2.12)

In the implementation, the integral in (2.12) is replaced by an estimator, the empirical
average,

1
n

n

∑
k=1

(
log Pz(f−1xk)− log |J f (f−1xk)|

)
, (2.13)

and the problem reduces to learning f that maximizes (2.13).
On the contrary, in scenarios where we cannot sample from the target density Px,

but density estimation of arbitrary data points is possible, we can use an alternative
objective function to optimize the flow model.

KL(f∗Pz‖px) ≈
1
N

N

∑
k=1

(
logPx(f (z))− log f∗Pz(z)

)
≈

N

∑
k=1

(
logPz(z)− log

∣∣∣J f (z)
∣∣∣− log f∗Pz(z)

) (2.14)

Consequently, the objective is to minimize the empirical estimator 2.14.

20 Background and Related Work

2.3.2 Triangular maps

Optimizing the flow model using Eq. 2.12 requires efficiently calculating the Jacobian
as well as f−1. Note that in this case, it is not necessarily required to compute f .
However, the computation of f is needed if we hope to sample from the trained
model. In contrast, if we use Eq. 2.14 to optimize the model, computation of f−1 is
not required. However, in this case, f−1 needs to be computed if we want to estimate
the sample density.

All of the above requirements—the calculation of f , f−1, and jacobian determinants—
can be achieved via constraining f to be an increasing triangular map. That is, taking
Px(x) to be a multivariate distribution where x = (x1, x2, . . . , xd), and the prior Pz(z)
where z = (z1, z2, . . . zd), the components of x are expressed as xj = f j(z1, z2, . . . , zj)
for suitably defined transformations f j, j = 1, 2, . . . , d where f j is increasing with
respect to zj. In this case, the Jacobian determinant is the product ∏d

j=1 ∂zj f j. Also,
because f j is increasing in zj, inversion can be done recursively starting from f−1

1 .
Picking f from the class of increasing triangular maps does not compromise the
expressiveness due to the following theorem in Bogachev et al. [2005]

Theorem 2.1 (Bogachev et al.). If µ and ν are absolutely continuous Borel probability
measures on Rd, then there exists an increasing triangular map (unique up to null sets of µ),
f : Rd → Rd, such that ν = f∗µ.

The origin of triangular maps runs back to the density transformation model
suggested by Rosenblatt [1952], and similar studies that were later conducted by
Knothe [1957] and Talagrand [1996]. Due to their appealing properties, triangular
maps have been a popular construct in many density estimation problems. Redlich
[1993] and Deco and Brauer [1995] were the first to use the term triangular maps in
density estimation. More recently, the models proposed by El Moselhy and Marzouk
[2012]; Marzouk et al. [2016]; Dinh et al. [2014, 2016]; Jaini et al. [2019]; Durkan et al.
[2019b]; Ramasinghe et al. [2021] utilized the same concept. In fact, Jaini et al. [2019]
affirmed that many other existing popular flow-based frameworks [Uria et al., 2016;
Kingma et al., 2016; Huang et al., 2018a; Germain et al., 2015; Papamakarios et al.,
2017] also are, in fact, variants of triangular maps.

Chapter 3

Equivarient Representation
Learning in Unit Ball

Natural objects consist of redundancies, repeatable patterns, and symmetries. A key
focus of machine learning models is to exploit these patterns in order to construct
compact representations. Learning symmetries of natural signals plays an integral
part in this process. One way this task can be achieved is via data augmentation,
i.e., transforming the dataset using a particular set of group transformations, and
attempting to learn these transformations using a neural network. However, in
this approach, there is no guarantee that the network will systematically learn the
symmetries. Further, Bubeck and Sellke [2021] recently showed that the amount of
parameters a neural networks needs to model a robust representation of n data points
is nd, where n is the number of parameters and d is the dimension of the inputs.
Therefore, one can expect to end up with unnecessarily large networks when trying
to learn symmetries via data augmentation. In contrast, a more elegant approach
to learn symmetries is carefully designing feature extraction methods such that the
learned representations are equivariant with respect to the transformations of interest.
Ubiquitous 2D CNNs are a good example for this, as 2D convolutions are equivariant
over 2D translations.

Consequently, convolution-based deep neural networks have performed exceed-
ingly well on 2D representation learning tasks (Krizhevsky et al. [2012], He et al.
[2016]). The convolution layers perform parameter sharing (referred as ’weight tying’)
to learn repetitive features across the spatial domain while having lower computa-
tional cost by using local neuron connectivity. However, state-of-the-art convolutional
networks can only work on Euclidean geometries and their extension to other topolog-
ical spaces e.g., spheres, is an open research problem. Remarkably, the adaptation of
convolutional networks to spherical domain can advance key application areas such
as robotics, geoscience and medical imaging.

Some recent efforts have been reported in the literature that aim to extend convo-
lutional networks to spherical signals. Initial progress was made by Boomsma and
Frellsen [2017], who performed conventional planar convolution with carefully se-
lected padding on a spherical-polar representation and its cube-sphere transformation
Ronchi et al. [1996]. A recent pioneering contribution by Cohen et al. [2018b] used

21

22 Equivarient Representation Learning in Unit Ball

Figure 3.1: Fig. 1: Kernel representations of spherical convolution (left) vs. volumetric
convolution (right). In volumetric convolution, the shape is modeled and convolved

in B3 and in contrast, spherical convolution is performed in S2.

harmonic analysis to perform efficient convolution on the surface of the sphere to
achieve rotational equivariance. The aforementioned works however do not systemati-
cally consider radial information in a 3D shape and the feature representations are
learned at fixed radii. Specifically, Cohen et al. [2018b] estimated similarity between
spherical surface and convolutional filter in S2, where the kernel moves in 3D rotation
group SO(3).

In this chapter, we propose a novel approach to perform volumetric convolution
inside a unit ball (B3) that explicitly learns representations across the radial axis.
Although we derive generic formulae to convolve functions in B3 we stick to two
popular use cases here i.e., 3D shape recognition and retrieval. In comparison to
closely related spherical convolution approaches, modeling and convolving 3D shapes
in B3 entail key advantages: ‘volumetric convolution’ can capture both 2D texture and
3D shape features and can handle non-polar 3D shapes. Furthermore, volumetric
convolution is equivariant to both 3D rotation and and radial translation, which
enhances its ability to capture more robust features from 3D functions. We develop
the theory of volumetric convolution using orthogonal Zernike polynomials Canterakis
[1999], and use careful approximations to efficiently implement it as low-cost matrix
multiplications. Our experimental results demonstrate significant boost over spherical
convolution and confirm the high discriminative ability of features learned through
volumetric convolution. Fig. 4.1 compares volumetric and spherical convolution
kernels.

Given that our proposed convolution operation is based on 3D orthogonal mo-
ments, we derive an explicit formula in terms of Zernike polynomials to measure the
axial symmetry of a function in B3, around an arbitrary axis. This relation is generally
applicable to function analysis tasks and here we demonstrate one particular use
case with relevance to 3D shape recognition and retrieval. Specifically, we use the

§3.1 Related works 23

derived formula to propose a hand-crafted descriptor that accurately encodes the
axial symmetry of a 3D shape. Moreover, we decompose the implementation of both
volumetric convolution and axial symmetry measurement into differentiable steps,
which enables them to be integrated in any end-to-end architecture.

Finally, we propose an experimental architecture to demonstrate the practical
usefulness of proposed volumetric convolution. A remarkable feature of our architec-
ture is the novel spectral domain pooling layer that enhances performance, enables
learning more compact features and significantly reduces the number of trainable
parameters in the network. It is worth pointing out that the proposed experimental
architecture is only a single possible example out of many possible architectures, and
is primarily focused on demonstrating the usefulness of the volumetric convolution
layer as a fully differentiable and easily pluggable layer, which can be used as a
building block in end-to-end deep architectures.

The main contributions of this work include:

• Development of the theory for volumetric convolution that can efficiently con-
volve functions in B3 and achieve equivariance over 3D rotation and translation
of local patterns.

• Implementation of the proposed volumetric convolution as a fully differentiable
module that can be plugged into any end-to-end deep learning architecture.

• A novel formula to measure the axial symmetry of a function defined in B3,
around an arbitrary axis using Zernike polynomials.

• The first approach to perform volumetric convolution on 3D objects that can
simultaneously model 2D (appearance) and 3D (shape) features.

• An experimental end-to-end trainable architecture with a novel spectral pooling
layer that automatically learns rich 3D shape descriptors.

The rest of the chapter is structured as follows. We first introduce related work
and basic concepts extensively used in the chapter in Sec. 3.1 and 3.2 respectively
followed by a detailed description of proposed volumetric convolution approach in
Sec. 3.3. The axial symmetry measurement formula is derived in Sec. 3.4. We present
an example CNN architecture based on proposed convolution technique in Sec. 3.5. In
Sec. 6.6 we demonstrate the effectiveness of the derived operators through extensive
experiments. Finally, we conclude the chapter in Sec. 3.8.

3.1 Related works

Equivariance in 3D: The convolution operation in 2D provides translation equiv-
ariance i.e., f (t(·)) = t(f (·)) where f , t denote the convolution and transformation
functions respectively. However, conventional convolution does not guarantee equiv-
ariance to an object’s pose (rotation, translation). This is a highly desirable property
in 3D shape analysis, e.g., a simple rotation of an object should not alter its category.

24 Equivarient Representation Learning in Unit Ball

To resolve this, Cohen and Welling Cohen et al. [2018b] proposed Spherical CNN
that performs cross-correlation after projecting images on the surface of the sphere.
Worrall and Brostow [2018] introduced an operator for voxelized inputs that is linearly
equivariant to 3D rotations and translations. Another interesting extension of Cohen
et al. [2018b] has recently been reported in Kondor et al. [2018] where Clebsch-Gordon
transform is used as a spectral domain non-linearity to realize a fully Fourier do-
main Spherical CNN. Thomas et al. [2018] proposed a tensor field network that uses
spherical harmonics similar to Cohen et al. [2018b]; Worrall et al. [2017]; Worrall and
Brostow [2018] and exhibits local equivariance to rotations, translations and 3D point
permutations. These efforts are focused on spherical projections Cohen et al. [2018b];
Kondor et al. [2018] or point-clouds Kondor [2018]; Thomas et al. [2018] and cannot
be directly applied to volumetric inputs. Furthermore, Weiler et al. [2018a] recently
proposed a solution to the problem of SE(3) equivariance by modeling 3D data as
dense vector fields in 3D Euclidean space. In this work however, we focus on B3 to
achieve radial translational and rotational equivariances over local patterns. Note that
an earlier version of this work lacks translational equivariance [Ramasinghe et al.,
2019a].

Orthogonal Moments: Orthogonal moments are useful tools for analyzing struc-
tured data. Generally, the goal of orthogonal moments is to obtain a descriptor from
a data representation, that is invariant to certain deformations and transformations
such as translation, rotation and scaling (TRS). Compared to geometric moments,
orthogonal moments behave favorably under aforementioned transformations and
therefore have been extensively used in 2D data analysis in past Hu [1962]; Lin and
Chellappa [1987]; Arbter et al. [1990]; Tieng and Boles [1995]; Khalil and Bayoumi
[2001]; Suk and Flusser [1996] . Many 3D TRS invariant moments are extensions of
their 2D counter-parts, although extending invariant moments from 2D to 3D is not a
straight forward task as rotation in 3D is not commutative. Despite this complexity,
many attempts to obtain TRS invariant orthogonal moments for 3D data have been
reported in literature Guo [1993]; Reiss [1992]; Canterakis [1996, 1999]; Flusser et al.
[2003]. The behaviour of orthogonal moments are strongly dependant on the Hilbert
space in which they are defined. For example, some moments are orthogonal inside
a cube and other moments are orthogonal on a sphere or inside a unit ball. The
moments defined inside a cube are less convenient for extracting rotation invariants,
compared to a sphere and a ball. Although El Mallahi et al. [2017] and Yang et al.
[2015] proposed orthogonal moments inside unit ball, they lack two key properties,
which prevents them from being used as basis functions for convolution operations:
1) loss of orthogonality under 3D rotation, 2) the completeness of basis polynomials
has not been proved in unit ball, which hampers its ability to represent an arbitrary
complex function with minimal number of terms. In contrast, 3D Zernike polyno-
mials Canterakis [1999] have both aforementioned properties, which makes them
an attractive choice for basis polynomials of our volumetric convolution. Recently,
Janssen et al. [2018] also used generalized 3D Zernike basis functions to represent a
3D version of cake-wavelets, which then obtain orientation scores between elongated
3D structures. First, they implement the 3D cake-wavelet functions using a discrete

§3.2 Preliminaries 25

Fourier transform based method, which does not have an analytical description in
the spatial domain. Therefore, they present an analytical version of the same 3D
cake-wavelets using a 3D Zernike basis functions, followed by a continuous Fourier
transform. They primarily evaluate their method on obtaining orientation scores
between 3D biomedical data, such as 3D rotational Xray images, which illustrates the
capacity of 3D Zernike moments in representing highly non-polar and textured data.
Our work, however, is not limited to obtaining handcrafted analytical features, as we
learn deep features using the properties of 3D Zernike moments.

3D Shape Recognition and Retrieval: As a case study, this chapter considers
popular 3D shape recognition and retrieval problems that can directly benefit from
discriminative volumetric representations. Traditionally, a diverse set of approaches
have been developed for this task including handcrafted features Vranic and Saupe
[2002]; Guo et al. [2016], unsupervised learning Wu et al. [2015, 2016]; Khan et al.
[2018] and deep learning Qi et al. [2017a]; Li et al. [2016]; Qi et al. [2016]. Among
hand-crafted shape descriptors, a popular choice is spherical harmonics that are
computed using Fourier domain coefficients Vranic and Saupe [2002]; Canterakis
[1996]. The hand-designed descriptors were targeted towards encoding both global
(e.g., angle histograms Ankerst et al. [1999] and shape distributions Osada et al. [2002])
and local 3D shape patterns (e.g., signature of histogram of orientations Tombari et al.
[2010] and 3D shape context Frome et al. [2004]). More recently, Wu et al. [2015]
introduced a convolutional deep belief network (DBN) that models the probabilistic
distributions of 3D data. Since 3D convolutions are computationally expensive, Li
et al. [2016] proposed to approximate 3D spaces as volumetric fields. However, all
of these deep learning based approaches perform convolutions in Euclidean space
which is sub-optimal for 3D shapes. Different from them, Ramasinghe et al. [2019b]
incorporated volumetric convolution within deep networks to achieve equivariance to
translations and rotations. Hierarchical non-linear networks that operate on point-
clouds were proposed in Qi et al. [2017a,b]. The proposed network design provides
invariance to point permutations but do not achieve equivariance to 3D rotations.

3.2 Preliminaries

We have defined commonly used mathematical symbols in this chapter, in Table 3.1.
Before delving into the details of proposed volumetric convolution, we briefly cover
basic concepts below.

3.2.1 Moments

Moments are projections of a function f onto a polynomial basis defined in a certain
space. If the polynomial basis is orthogonal and complete, any arbitrary function in
that space can be reconstructed using the corresponding moments.
Definition: Let Φ(Xp) be a n-variable polynomial basis of the space Ω. Let p = (p1, ..., pn)
be a multi-index of non-negative integers which shows the highest power of the respective

26 Equivarient Representation Learning in Unit Ball

Table 3.1: Mathematical symbols frequently used in this chapter.

Symbol Description

B3 Unit ball (B3) can be regarded as the set of points
u ∈ R3 where ‖u‖ < 1. Any point in unit ball can
be parameterized using coordinates (θ, φ, r).

S2 Surface of the unit sphere (S2) can be regarded as
the set of points u ∈ R3 where ‖u‖ = 1. Any point
in S2 can be parameterized using coordinates (θ, φ).

† Complex conjugate.

〈· , ·〉 Let f and g be complex functions defined in a space
Ω. Then 〈 f , g〉 =

∫
Ω f (X)g(X)†dX, X ∈ Ω

SO(3) 3D rotation group.

τα,β A rotation operation which aligns the north-pole
with the axis towards α (azimuth) and θ (polar) an-
gles.

Re Real component of a complex value.

Imag Imaginary component of a complex value.

Ry(α) A 3D rotation applied around y axis.

Zn,l,m(θ, φ, r) (n, l, m)th order 3D Zernike polynomial.

Ωn,l,m(f) (n, l, m)th order 3D Zernike moment of function f .

Yl,m(θ, φ) (l, m)th order spherical harmonic function.

Dl
m,n(α, β, γ) (n, l, m)th order Wigner D-matrix.

sym(α,β)(g) Let S be the set of functions in B3 which are sym-
metric around the axis towards (α, β), where α and
β are azimuth and polar angles respectively. Then
sym(α,β)(g) is the projection of a function g ∈ B3

into S.

§3.2 Preliminaries 27

variables in Φ(Xp). Then general moment Mp of f is defined as,

Mp =
∫

Ω
Φ(Xp) f (X)dX. (3.1)

3.2.2 Equivariance

A function is said to be an equivariant map when its domain and codomain are acted
on by the same symmetry group, and when the function commutes with the action
of the group. That is, applying a symmetry transformation and then computing the
function produces the same result as computing the function and then applying the
transformation. We formally define equivariance as follows:
Definition: Consider a set of transformations G, where individual transformations are
indexed as g ∈ G. Consider also a function or feature map φ : X −→ Y mapping inputs
x ∈ X to outputs y ∈ Y. Transformations can be applied to any x ∈ X using the operator
TX

g : X −→ X, so that x −→ TX
g [x]. The same can be done for the outputs with y −→ TY

g [y].
We say that φ is equivariant to G if

φ(TX
g [x]) = TY

g [φ(x)]. (3.2)

3.2.3 Spherical Harmonics

Spherical harmonics are a set of complete and orthogonal functions defined on the
surface of the unit sphere as

Yl,m(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos φ)eimθ , (3.3)

where φ ∈ [0, π] is the polar angle, θ ∈ [0, 2π] is the azimuth angle, l ∈ Z+ is a non-
negative integer, m ∈ Z is an integer, |m| < l, and Pm

l (·) is the associated Legendre
function

Pm
l (x) = (−1)m (1− x2)m/2

2l l!
dl+m

dxl+m (x2 − 1)l . (3.4)

Since spherical harmonics hold the orthogonality property∫ 2π

0

∫ π

0
Ym

l (θ, φ)Ym′
l′ (θ, φ)† sin φ dφdθ = δl,l′δm,m′ , (3.5)

where δm,m′ is the Kronecker delta function defined as

δm,m′ =

1, if m = m′

0, otherwise.
(3.6)

Spherical harmonics form the basis for any continuous function over S2 with finite
energy. Therefore, a function f : S2 → R can be rewritten using spherical harmonics

28 Equivarient Representation Learning in Unit Ball

as

f (θ, φ) = ∑
l

l

∑
m=−l

f̂ (l, m)Yl,m(θ, φ), (3.7)

where f̂ (l, m) can be obtained using

f̂ (l, m) =
∫ π

0

∫ 2π

0
f (θ, φ)Ym

l (θ, φ)† sin φ dφdθ. (3.8)

3.2.4 Spherical Convolution

Let f and g be the shape functions of the object and kernel respectively. Then f and g
can be expressed as

f (θ, φ) = ∑
l

l

∑
m=−l

f̂ (l, m)Yl,m(θ, φ) (3.9)

g(θ, φ) = ∑
l

l

∑
m=−l

ĝ(l, m)Yl,m(θ, φ), (3.10)

where Yl,m is the (l, m)th spherical harmonics function and f̂ (l, m) and ĝ(l, m) are
(l, m)th frequency components of f and g respectively. Then, the frequency compo-
nents of convolution f ∗ g can be easily calculated as

f̂ ∗ g(l, m) =

√
4π

2l + 1
f̂ (l, m)ĝ(l, 0)†, (3.11)

where † denotes the complex conjugate.

3.2.5 3D Zernike Polynomials

3D Zernike polynomials are a complete and orthogonal set of basis functions in B3,
that exhibits a form invariance property under 3D rotation. A (n, l, m)th order 3D
Zernike basis function is defined as

Zn,l,m(r, θ, φ) = Rn,l(r)Yl,m(θ, φ), (3.12)

where Rn,l is the 3D Zernike radial polynomial defined as

Rn,l(r) =
(n−1)/2

∑
v=0

qv
nlr

2v+l (3.13)

§3.3 Volumetric Convolution 29

and qv
nl is a scaler defined as

qv
nl =

(−1)
(n−l)

2

2(n−l)

√
2n + 3

3

(
(n− l)
(n−l)

2

)
(−1)v

(
(n−l)

2
v)(

2((n−l)
2 +l+v)+1
(n−l))

(
(n−l)

2 +l+v
(n−l)

2
)

. (3.14)

Yl,m(θ, φ) is the spherical harmonics function, n ∈ Z+, l ∈ [0, n], m ∈ [−l, l] and
n− l is even. Since 3D Zernike polynomials are orthogonal and complete in B3, an
arbitrary function f (r, θ, φ) in B3 can be approximated using Zernike polynomials as
follows:

f (θ, φ, r) =
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Zn,l,m(θ, φ, r) (3.15)

where Ωn,l,m(f) can be obtained using

Ωn,l,m(f) =
∫ 1

0

∫ 2π

0

∫ π

0
f (θ, φ, r)Z†

n,l,mr2 sin φ drdφdθ. (3.16)

Furthermore, 3D Zernike polynomials hold the orthogonality property as follows:∫ 1

0

∫ 2π

0

∫ π

0
Zn,l,m(θ, φ, r)Z†

n′,l′,m′r
2 sin φ drdφdθ =

4π

3
δn,n′δl,l′δm,m′ , (3.17)

where δ is the Kronecker delta function. In Section 3.3, we will derive the proposed
volumetric convolution using the concepts introduced above.

3.3 Volumetric Convolution

3.3.1 Problem Formulation

Convolution is an effective method to capture useful features from data represented
over uniformly spaced grids points in Rn, within each dimension of n. For example,
gray scale images can be represented as intensities distributed over grid points in
R2, spatio-temporal data and RGB images over grid points in R3, and stacked planar
feature maps over grid points in Rn. Given a shape function f and a convolutional
kernel h, this process can be more formally represented as follows:

(f ∗ g)(x) =
∫

Rn
f (y)g(x− y)dy, x, y ∈ Rn. (3.18)

In such cases, uniformity of the grid within each dimension ensures the translation
equivariance of the convolution. However, for topological spaces such as S2 and B3, it
is not possible to construct such a grid due to curvilinear geometry. This limitation
is illustrated in Fig. 3.2. A naive approach to perform convolution in B3 would be
to create a uniformly spaced three dimensional grid in (r, θ, φ) coordinates (with
necessary padding) and use a regular 3D kernel. However, as shown in Fig. 3.2, the
spaces between adjacent points in each axis are dependant on their absolute position.

30 Equivarient Representation Learning in Unit Ball

Figure 3.2: Grid representations in Spherical and Cartesian coordinates. Left: The
space between grid points vary with r and from equator to poles. Right: A crude
approach to represent the spherical grid with a uniformly spaced grid. This approach

is inaccurate as spherical grids do not have uniform spacing.

Therefore, modeling such a space as a uniformly spaced grid is inaccurate.
To overcome these limitations, we propose a novel volumetric convolution operation

which can effectively perform convolution on functions in B3. Volumetric convolution
allows the convolution output to be a signal on B3, which opens up the possibility
of achieving both rotation and radial translation equivariance with respect to the
convolution operator.

3.3.2 Convolution of functions in B3

3.3.2.1 Convolution as a function on SO(3)

Convolution in B3 can be achieved using two different approaches: 1) as a function
on S2 or 2) as a function on SO(3). Cohen et al. [2018b] showed that for functions
in S2, modeling convolution as a function on SO(3) improves the capacity of the
network. However for functions in B3, following the same approach is hampered by
implementation difficulties. More precisely, if modeled as a function on SO(3), for all
f , g ∈ B3,

f ∗ g(α, β, γ) = ∑
n

∑
l,m,m′

f̂n,l,m ĝn,l,m′Dl
m,m′(α, β, γ), (3.19)

where D is the Wigner D-matrix and α, β, γ are Euler angles. This relationship
cannot be implemented as a matrix/tensor operation, since corresponding frequency
components have to be extracted from spectral distributions and multiplied element-
wise. Therefore, aiming for a more efficient implementation, we derive volumetric
convolution as a function on S2, which is described in Section 3.3.2.2.

§3.3 Volumetric Convolution 31

Figure 3.3: Consider the two rotations R1 and R2 which takes p to p′. Then R1
and R2 can be decomposed using Euler angles as R1 = Ry(θ1)Rx(θ2)Ry(θ3) and
R2 = Ry(θ1)Rx(θ2)Ry(θ4), where the initial rotation around north pole is different in
the two cases. Therefore, if the function is symmetric around north pole, the rotated

function would only depend on p′.

3.3.2.2 Convolution as a function on S2

When performing convolution in B3 as a function on S2, a critical problem is that
several rotation operations exist for mapping a point p to a particular point p′.
For example, using Euler angles, we can decompose a rotation into three rotation
operations R(θ, φ) = R(θ)yR(φ)zR(θ)y, and the first rotation R(θ)y can differ while
mapping p to p′ (if y is the north pole) as shown in Fig. 3.3. However, if we enforce
the kernel function to be symmetric around y, the function of the kernel after rotation
would only depend on p and p′. This observation is important, as then we can
uniquely define a 3D rotation of the kernel in terms of azimuth and polar angles.

Let the kernel be symmetric around y and f (θ, φ, r), g(θ, φ, r) be the functions of
object and kernel respectively. Then we define volumetric convolution as

f ∗ g(α, β)〈 f (θ, φ, r), τ(α,β)(g(θ, φ, r))〉 =
∫ 1

0

∫ 2π

0

∫ π

0
f (θ, φ, r), τ(α,β)(g(θ, φ, r)) sin φ dφdθdr,

(3.20)
where τ(α,β) is an arbitrary rotation, that aligns the north pole with the axis towards

32 Equivarient Representation Learning in Unit Ball

Figure 3.4: Analogy between planar and volumetric convolutions. Top (left to right):
2D image, kernel and planar convolution in the Cartesian plane. Bottom (left to right):
3D object, 3D kernel and volumetric convolution. In planar convolution the kernel
translates and inner product between the image and the kernel is computed in (x, y)
plane. In volumetric convolution, a 3D rotation and a radial translation are applied to
the kernel and the inner product is computed between 3D function and 3D kernel

over B3. This allows accurate encoding of shape and texture of 3D objects.

(α, β) direction (α and β are azimuth and polar angles respectively). Eq. 4.15 is
able to capture more complex patterns compared to spherical convolution due to
two reasons: (1) the inner product integrates along the radius and (2) the projection
onto spherical harmonics forces the function into a polar function, that can result
in information loss. It is important to note that the response of our convolution
operator is a signal on S2, while the response of spherical convolution is a signal
on 3D rotation group (Cohen et al. [2018b]). However, we extend our convolution
operator to output a function on B3 in Section 3.5.1, which gives multiple advantages
compared to Cohen et al. [2018b]. Fig. 3.4 shows the analogy between planar
convolution, spherical convolution and volumetric convolution. In Section 3.3.3 we
derive formulae—preserving differentiability—to obtain 3D Zernike moments for
functions in B3.

3.3.3 Shape modeling of functions in B3 using 3D Zernike polynomials

Instead of using Eq. 3.16, we derive an alternative method to obtain the set
{

Ωn,l,m

}
.

The motivation is two fold: (1) ease of computation and (2) the completeness property
of 3D Zernike Polynomials ensures that limn→∞ ‖ f − ∑n ∑l ∑m Ωn,l,mZn,l,m ‖= 0

§3.3 Volumetric Convolution 33

for any arbitrary function f . However, since n should be finite in practical imple-
mentation, aforementioned property may not hold, leading to an increased distance
between the Zernike representation and the original shape. Therefore, minimizing the
reconstruction error

∑
(θ,φ,r)∈B3

∣∣∣ f̄ (θ, φ, r)− f (θ, φ, r)
∣∣∣ , (3.21)

where f̄ (θ, φ, r) = ∑n ∑l ∑m Ωn,l,mZn,l,m, n ∈ [1, N] pushes the set
{

Ωn,l,m

}
inside

frequency space, where
{

Ωn,l,m

}
has a closer resemblance to the corresponding shape.

Following this conclusion, we derive the following method to obtain
{

Ωn,l,m

}
.

Since Yl,m(θ, φ) = (−1)m
√

2l+1
4π

(l−m)!
(l+m)! P

m
l (cos φ)eimθ , where Pm

l (·) is the associated

Legendre function, it can be deduced that, Yl,−m(θ, φ) = (−1)mY†
l,m(θ, φ). Using this

relationship we obtain Zn,l,−m(θ, φ, r) = (−1)mZ†
n,l,m(θ, φ, r) and hence approximate

Eq. 3.15 as

f (θ, φ, r) =
∞

∑
n=0

n

∑
l=0

l

∑
m=0

An,l,mRe
{

Zn,l,m(θ, φ, r)
}
+ Bn,l,m Img

{
Zn,l,m(θ, φ, r)

}
, (3.22)

where Re
{

Zn,l,m(θ, φ, r)
}

and Img
{

Zn,l,m(θ, φ, r)
}

are real and imaginary components
of Zn,l,m respectively, and An,l,m and Bn,l,m are real valued constants to be calculated.

In practice, f (θ, φ, r) is reconstructed using a limited number of sample points and
a finite number of polynomials. Let N be the order of Zernike basis functions, K be
the number of sample points and f̄ be the reconstructed shape. The choice of K affects
both computational efficiency and the modeling accuracy. For instance, a lower value
of K increases the computational efficiency, but decreases modeling accuracy, and vice
versa. With an appropriate choice of K and N, using Eq. 3.22, f̄ can be approximated
in matrix form as,

f̄ = Ua + Vb, (3.23)

where,

f̄ = (f (θ1, φ1, r1), . . . , f (θi, φi, ri), . . . ,

f (θK, φK, rK))
T, (θi, φi, ri) ∈ B3,

(3.24)

a = (A0,0,0, . . . , An,l,m, . . . AN,N,N)
T, (3.25)

b = (B0,0,0, . . . , Bn,l,m, . . . , BN,N,N)
T, (3.26)

∀0 ≤ m ≤ l ≤ n ≤ N, and n− l is even. U and V are matrices with Re
{

Zn,l,m(θi, φi, ri)
}

34 Equivarient Representation Learning in Unit Ball

and Img
{

Zn,l,m(θi, φi, ri)
}

as their entries respectively, as follows:

U =

Re
{

Z0,0,0(θ0, φ0, r0)
}

. . . Re
{

Zn,l,m(θK, φK, rK)
}

...
...

...

Re
{

ZN,N,N(θ0, φ0, r0)
}

. . . Re
{

ZN,N,N(θK, φK, rK)
}
 , (3.27)

V =

Im
{

Z0,0,0(θ0, φ0, r0)
}

. . . Im
{

Zn,l,m(θK, φK, rK)
}

...
...

...

Im
{

ZN,N,N(θ0, φ0, r0)
}

. . . Im
{

ZN,N,N(θK, φK, rK)
}
 . (3.28)

Let X = (U, V) and c = (aT, bT)T. Then, Eq. 3.23 can be rewritten as,

f̄ = Xc. (3.29)

In other words, c is the approximated set of 3D Zernike moments {Ωn,l,m}. Eq.
3.29 can be interpreted as an overdetermined linear system, with the set {Ωn,l,m}
as the solution. To find the least squared error solution of the Eq. 3.29, we use the
pseudo inverse of X. One easy option is to use a common non-differentiable approach
like singular value decomposition to find the inverse X. However, this imposes
the condition that the inputs to the volumetric convolution layer do not depend on
any learnable function. To avoid imposing this condition and allow the volumetric
convolution layer to be integrated to any deep network, we propose an alternative
method. Li et al. [2011] proposed an iterative method to calculate the pseudo inverse
of a matrix. They showed that Vn converges to A+ where A+ is the Moore-Penrose
pseudo inverse of A if

Vn+1 = Vn(3I − AVn(3I − AVn)), n ∈ Z+, (3.30)

for a suitable initial approximation V0. They also showed that a suitable initial
approximation would be V0 = αAT with 0 < α < 2/ρ(AAT), where ρ(·) denotes the
spectral radius. Empirically, we choose α = 0.001 in our experiments. Next, we derive
the theory of volumetric convolution within the unit sphere.

3.3.4 Convolution in B3 using 3D Zernike polynomials

We formally present our derivation of volumetric convolution using the following
theorem.

Theorem 3.1. Suppose f , g : B3 −→ R are square integrable complex functions defined in
B3 so that 〈 f , f 〉 < ∞ and 〈g, g〉 < ∞. Further, suppose g is symmetric around north pole

§3.3 Volumetric Convolution 35

and τ(α, β) = Ry(α)Rz(β) where R ∈ SO(3). Then,

∫ 1

0

∫ 2π

0

∫ π

0
f (θ, φ, r), τ(α,β)(g(θ, φ, r)) sin φ dφdθdr

≡ 4π

3

∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Ωn,l,0(g)Yl,m(α, β),
(3.31)

where Ωn,l,m(f), Ωn,l,0(g) and Yl,m(θ, φ) are (n, l, m)th 3D Zernike moment of f , (n, l, 0)th

3D Zernike moment of g, and spherical harmonics function respectively.

Proof. Completeness property of 3D Zernike Polynomials ensures that it can approxi-
mate an arbitrary function in B3, as shown in Eq. 3.15. Leveraging this property, Eq.
4.15 can be rewritten as

f ∗ g(α, β) = 〈
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Zn,l,m,

τ(α,β)(
∞

∑
n′=0

n′

∑
l′=0

l

∑
m′=−l

Ωn′,l′,m′(g)Zn′,l′,m′)〉.
(3.32)

But since g(θ, φ, r) is symmetric around y, the rotation around y should not change
the function. Which ensures

g(r, θ, φ) = g(r, θ − α, φ) (3.33)

and hence,

∞

∑
n′=0

n′

∑
l′=0

l

∑
m′=−l

Ωn′,l′,m′(g)Rn′,l′(r)Yl′,m′(θ, φ)

=
∞

∑
n′=0

n′

∑
l′=0

l

∑
m′=−l

Ωn′,l′,m′(g)Rn′,l′(r)Yl′,m′(θ, φ)e−im′α.

(3.34)

This is true, if and only if m′ = 0. Therefore, if g(θ, φ, r) is a symmetric function
around y, defined inside the unit sphere, it can be rewritten as

∞

∑
n′=0

n′

∑
l′=0

Ωn′,l′,0(g)Zn′,l′,0, (3.35)

which simplifies Eq. 3.32 to

f ∗ g(α, β) = 〈
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Zn,l,m,

τ(α,β)(
∞

∑
n′=0

n′

∑
l′=0

Ωn′,l′,0(g)Zn′,l′,0)〉
(3.36)

36 Equivarient Representation Learning in Unit Ball

Using the properties of inner product, Eq. 3.36 can be rearranged as

f ∗ g(α, β) =
∞

∑
n=0

n

∑
l=0

∞

∑
n′=0

n′

∑
l′=0

l

∑
m=−l

Ωn,l,m(f)Ωn′,l′,0(g)

〈Zn,l,m, τ(α,β)(Zn′,l′,0)〉. (3.37)

Consider the term τ(α,β)(Zn′,l′,0). Then,

τ(α,β)(Zn′,l′,0(θ, φ, r)) = τ(α,β)(Rn′,l′(r)Yl′,0(θ, φ))

= Rn′,l′(r)τ(α,β)(Yl′,0(θ, φ))

= Rn′,l′(r)
l′

∑
m′′=−l′

Yl′,m′′(θ, φ)Dl′
m′′,0(α, β, ·), (3.38)

where Dl
m,m′ is the Wigner D-matrix. But we know that Dl′

m′′,0(α, β, ·) = Yl′,m′′(α, β).
Then Eq. 3.37 becomes

f ∗ g(α, β) =
∞

∑
n=0

n

∑
l=0

∞

∑
n′=0

n′

∑
l′=0

l

∑
m=−l

Ωn,l,m(f)Ωn′,l′,0(g)

l′

∑
m′′=−l′

Yl′,m′′(α, β)〈Zn,l,m, Zn′,l′,m′′〉, (3.39)

f ∗ g(α, β) =
4π

3

∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Ωn,l,0(g)Yl,m(α, β), (3.40)

which completes our proof.

3.3.5 Equivariance to 3D rotation group

One key property of the proposed volumetric convolution is its equivariance to 3D
rotation group. To demonstrate this we present the following theorem.

Theorem 3.2. Suppose f , g : B3 −→ R are square integrable complex functions defined in
B3 such that 〈 f , f 〉 < ∞ and 〈g, g〉 < ∞. Also, let ηα,β,γ be a 3D rotation operator that can
be decomposed into three Euler rotations Ry(α)Rz(β)Ry(γ) and τα,β another rotation operator
that can be decomposed into Ry(α)Rz(β). Suppose ηα,β,γ(g) = τα,β(g). Then,

η(α,β,γ)(f) ∗ g(θ, φ) = τ(α,β)(f ∗ g)(θ, φ), (3.41)

where ∗ is the volumetric convolution operator.

Proof. Since η(α,β,γ) ∈ SO(3), we know that η(α,β,γ)(f (x)) = f (η−1
(α,β,γ)(x)). Also we

§3.3 Volumetric Convolution 37

know that η(α,β,γ) : R3 → R3 is an isometry. We define,

〈η(α,β,γ) f , η(α,β,γ)g〉 =
∫

B3
f (η−1

(α,β,γ)(x))g(η−1
(α,β,γ)(x))dx. (3.42)

Consider the Lebesgue measure λ(B3) =
∫

B3 dx. It can be proven that a Lebesgue
measure is invariant under the isometries, which gives us dx = dη(α,β,γ)(x) =

dη−1
(α,β,γ)(x), ∀x ∈ B3. Therefore,

〈η(α,β,γ) f , η(α,β,γ)g〉 = 〈 f , g〉

=
∫

S3
f (η−1

(α,β,γ)(x))g(η−1
(α,β,γ)(x))d(η−1

(α,β,γ)x).
(3.43)

Let f (θ, φ, r) and g(θ, φ, r) be the object function and kernel function (symmetric
around north pole) respectively. Then volumetric convolution is defined as

f ∗ g(θ, φ) = 〈 f , τ(θ,φ)g〉. (3.44)

Applying the rotation η(α,β,γ) to f , we get

η(α,β,γ)(f) ∗ g(θ, φ) = 〈η(α,β,γ)(f), τ(θ,φ)g〉 (3.45)

Using the result in Eq. 3.43, we have

η(α,β,γ)(f) ∗ g(θ, φ) = 〈 f , η−1
(α,β,γ)(τ(θ,φ)g)〉. (3.46)

However, since ηα,β,γ(g) = τα,β(g), we get

η(α,β,γ)(f) ∗ g(θ, φ) = 〈 f , τ(θ−α,φ−β,)g〉. (3.47)

We know that,

f ∗ g(θ, φ) = 〈 f , τ(θ,φ)g〉 =
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Ωn,l,0(g)Yl,m(θ, φ). (3.48)

Then,

η(α,β,γ)(f) ∗ g(θ, φ) = 〈 f , τ(θ−α,φ−β)g〉

=
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Ωn,l,0(g)Yl,m(θ − α, φ− β)

= (f ∗ g)(θ − α, φ− β) = τ(α,β)(f ∗ g)(θ, φ).

(3.49)

Hence, we achieve equivariance over 3D rotations.

In simple terms, the theorem states that if a 3D rotation is applied to a function
defined in B3 Hilbert space, the output feature map after volumetric convolution

38 Equivarient Representation Learning in Unit Ball

Figure 3.5: Three cases of axial symmetry: left: axial symmetry measurement is high,
as both point values and overall shape of the function are symmetric around the
axis. Middle: axial symmetry measurement is low, as overall shape of the function is
not symmetric around the axis. Right: axial symmetry measurement is low, as point

values of the function are not symmetrically distributed around the axis.

exhibits the same rotation. The output feature map however, is symmetric around
north pole, hence the rotation can be uniquely defined in terms of azimuth and polar
angles. In Section 3.4 we derive the axial symmetry measure of a function in B3

around an arbitrary axis using 3D Zernike polynomials.

3.4 Axial symmetry measure of a function in B3 around an
arbitrary axis

In this section we present the following proposition to obtain the axial symmetry
measure of a function in B3 around an arbitrary axis using 3D Zernike polynomials.
An illustration of axial symmetry measurement is shown in Fig. 3.5.

Proposition 3.1. Suppose g : B3 −→ R3 is a square integrable complex function defined in
B3 such that 〈g, g〉 < ∞. Then, the power of projection of g in to S = {Zi} where S is the set
of Zernike basis functions that are symmetric around an axis towards (α, β) direction is given
by

‖ sym(α,β)
[
g(θ, φ, r)

]
‖= ∑

n

n

∑
l=0
‖

l

∑
m=−l

Ωn,l,mYl,m(α, β) ‖2, (3.50)

where α and β are azimuth and polar angles respectively.

Proof. The subset of complex functions which are symmetric around north pole is
S =

{
Zn,l,0

}
. Therefore, projection of the function into S gives

symy
[
g(θ, φ, r)

]
= ∑

n

n

∑
l=0
〈 f , Zn,l,0〉Zn,l,0(θ, φ, r). (3.51)

§3.4 Axial symmetry measure of a function in B3 around an arbitrary axis 39

To obtain the symmetry function around any axis which is defined by (α, β), we
rotate the function by (−α,−β), project into S, and finally compute the power of the
projection

sym(α,β)
[
g(θ, φ, r)

]
= ∑

n,l
〈τ(−α,−β)(f), Zn,l,0〉Zn,l,0(θ, φ, r). (3.52)

For any rotation operator τ, and for any two points defined on a complex Hilbert
space, x and y,

〈τ(x), τ(y)〉H = 〈x, y〉H. (3.53)

Applying this property to Eq. 3.52 gives

sym(α,β)
[
g(θ, φ, r)

]
= ∑

n,l
〈 f , τ(α,β)(Zn,l,0)〉Zn,l,0(θ, φ, r). (3.54)

Using Eq. 3.15 we get

sym(α,β)
[
g(θ, φ, r)

]
= ∑

n

n

∑
l=0
〈∑

n′

n′

∑
l′=0

l′

∑
m′=−l′

Ωn′ l′m′Zn′,l′,m′ ,

τ(α,β)(Zn,l,0)〉Zn,l,0(θ, φ, r). (3.55)

Using properties of inner product Eq. 3.55 further simplifies to

sym(α,β)
[
g(θ, φ, r)

]
=∑

n

n

∑
l=0

∑
n′

n′

∑
l′=0

l′

∑
m′=−l′

Ωn′ l′m′〈Zn′,l′,m′ ,

τ(α,β)(Zn,l,0)〉Zn,l,0(θ, φ, r). (3.56)

Using the same derivation as in Eq. 3.38,

sym(α,β)
[
g(θ, φ, r)

]
= ∑

n

n

∑
l=0

∑
n′

n′

∑
l′=0

l′

∑
m′=−l′

Ωn′ l′m′

l

∑
m′′=−l

Yl,m′′(α, β)〈Zn′,l′,m′ , Zn,l,m′′〉Zn,l,0(θ, φ, r).

(3.57)

Since 3D Zernike Polynomials are orthogonal we get

sym(α,β)
[
g(θ, φ, r)

]
=

4π

3 ∑
n

n

∑
l=0

l

∑
m=−l

Ωn,l,mYl,m(α, β)Zn,l,0(θ, φ, r).
(3.58)

In signal theory the power of a function is taken as the integral of the squared

40 Equivarient Representation Learning in Unit Ball

function divided by the size of its domain. Following this we get

‖ sym(α,β)
[
g(θ, φ, r)

]
‖

= 〈(∑
n

n

∑
l=0

l

∑
m=−l

Ωn,l,mYl,m(α, β))Zn,l,0(θ, φ, r),

(∑
n′

n′

∑
l′=0

l′

∑
m′=−l′

Ωn′,l′,m′Yl′,m′(α, β)Zn′,l′,0(θ, φ, r))†〉.

(3.59)

We drop the constants here since they do not depend on the frequency. Simplifying
Eq. 3.59 gives

‖ sym(α,β)
[
g(θ, φ, r)

]
‖= ∑

n

n

∑
l=0

l

∑
m=−l

l

∑
m′=−l

Ωn,l,mYl,m(α, β)

Ωn,l,m′Yl′,m(α, β),

(3.60)

which leads to

‖ sym(α,β)
[
g(θ, φ, r)

]
‖= ∑

n

n

∑
l=0
‖

l

∑
m=−l

Ωn,l,mYl,m(α, β) ‖2 . (3.61)

which completes our proof.

Using our derivation, one can obtain the distribution of symmetry the object has
around a set of axes. However, to compare two objects by the amount of symmetry it
has around a specific axis, it is needed to normalize the symmetry measurement by
dividing the final result with the norm of the unprojected function.

3.5 A case study: Representation Learning on 3D objects

A 2D image is a function on Cartesian plane, where a unique value exists for any
(x, y) coordinate. Similarly, a polar 3D object can be expressed as a function on the
surface of the sphere, where any direction vector (θ, φ) has a unique value. To be
precise, a 3D polar object has a boundary function in the form of f : S2 → [0, ∞].

Translation of the convolution kernel on (x, y) plane in 2D case, extends to move-
ments on the surface of the sphere in S2. If both the object and the kernel have
polar shapes, this task can be tackled by projecting both the kernel and the object
onto spherical harmonic functions. However, using spherical convolution to capture
features from 3D point clouds entail three critical limitations. First, the projection of
the points on to the surface of the sphere smoothens the overall shape in to a polar
one. In other words, since it formulates the shape as a function on (θ.φ), it restricts
the representation of complex (non-polar) objects. An illustration of 2D polar and
non-polar shapes is shown in Fig. 3.6. Second, the integration happens over the surface

§3.5 A case study: Representation Learning on 3D objects 41

Figure 3.6: A 2D illustration of polar and non-polar shapes.

of the sphere, which is unable to capture patterns across radius. Third, spherical
convolution is equivariant to only 3D rotation group.

These limitations can be addressed by representing and convolving the shape
function inside the unit ball (B3). Representing the object function inside B3 allows
the function to keep its complex shape information without any deterioration since
each point is mapped to unique coordinates (r, θ, φ), where r is the radial distance, θ

and φ are azimuth and polar angles respectively. Additionally, it allows encoding of
2D texture information simultaneously. The volumetric convolution can also achieve
equivariance to both 3D rotation and radial translation of local patterns. Fig. 4.1
compares volumetric convolution and spherical convolution.

We conduct experiments on 3D objects with uniform surface values, therefore in
this work we use the following transformation to apply a simple surface function to
the 3D objects:

f (θ, φ, r) =

r, if surface exists at (θ, φ, r)
0, otherwise.

(3.62)

3.5.1 Equivariance to 3D radial translation

Consider the case where the kernel is shifted along the radius and then convolved
with the input function. Let Rn,l be the linear component of the Zernike polynomial.
Then, if we consider only the linear component, shifting the kernel by r′ and then

42 Equivarient Representation Learning in Unit Ball

convolving with the input function gives,∫ 1

0
Rnl(r)Rn′ l(r− r′)r2dr

=
∫ 1

0

n−l
2

∑
v=0

qv
nlr

2v+l
n′−l

2

∑
v′=0

qv′
n′ l(r− r′)2v′+lr2dr

=

n−l
2

∑
v=0

qv
nl

n′−l
2

∑
v′=0

qv′
n′ l

∫
r2v+l(r− r′)2v′+lr2dr, (3.63)

which produces the result

n−l
2

∑
v=0

qv
nl

n′−l
2

∑
v′=0

qv′
n′ l

(−r′)l+2v′2F1[−l − 2v′, 3 + l + 2v; 4 + l + 2v; 1
r′

]
3 + l + 2v

, (3.64)

where 2F1 is the hypergeometric function. This complex relationship hampers achiev-
ing equivariance to 3D translation directly using properties of 3D Zernike Polynomials,
preserving differentiability. Hence, we follow an alternative approach to achieve this
task which is explained below.

Let’s consider the input function f (θi, φi, ri), ∀(θi, φi, ri) ∈ B3. Then, let us define
qk as,

qk = 0.1k, ∀0 ≤ k < 10, k ∈ Z. (3.65)

Next, we extract the sets of points f ′k ∈ f (θi, φi, rk), ∀qk < rk < qk+1. Then, let’s
consider the convolution kernel g(θi, φi, ri), ∀(θi, φi, ri) ∈ B3. We take the radially
translated kernel,

Tr(qk)

[
g(θi, φi, ri)] = g(θi, φi, ri − qk), (3.66)

where, 0 ≤ ri − qk < 1. Here, Tr(qk)

[
·] is radial translation by qk.

Finally, we perform convolution between f ′k and Tr(qk)

[
g] for each k, as graphically

illustrated in Fig. 3.7, which extends the response of our convolution operator to B3

as,
(f ′k ∗ g)(α, β, qk) = f ′k ∗ Tr(qk)

[
τ(α,β)g]. (3.67)

Convolving the aforementioned point sets individually with corresponding radially
translated kernel values allows us to share weights along radius, in other words,
achieve equivariance over 3D radial translation for local feature patterns. Furthermore,
the output of the convolution gives us a dense representation in B3, as illustrated in
Fig. 3.8. Equivariance to 3D radial translation can be more formally illustrated as
follows.

Let p = f (θi, φi, ri), ∀(θi, φi, ri) ∈ P, where P is a set of points which belongs to a
local feature pattern of a function in B3. Then, we perform convolution on p with a
kernel h,

(p ∗ h)(α, β, qk) = p ∗ Tr(qk)

[
τ(α,β)h]. (3.68)

§3.5 A case study: Representation Learning on 3D objects 43

Figure 3.7: Weight sharing across radius.

Suppose we translate the local feature pattern radially. Then,

(Trr′
[

p] ∗ h)(α, β, qk) = (p(r− r′) ∗ h(r))(α, β, qk) (3.69)

Let r′′ = r− r′. Then,

(Trr′
[

p] ∗ h)(α, β, qk) = (p(r′′) ∗ h(r′ + r′′))(α, β, qk),

= (p(r′′) ∗ h(r′′))(α, β, qk − r′),

= Tr(r′)
[
(p(r′′) ∗ h(r′′))(α, β, qk)].

(3.70)

Hence, we achieve equivariance over 3D radial translation of local patterns. The
intuition behind the aforementioned process is that if a specific shape attribute of the
object (not necessarily the whole object) translates along the radius, the corresponding
output feature pattern of would also translate along the radius of the output feature
map, which is in B3. A practical requirement to achieve this equivariance is that the
kernel should cover approximately the same area as the local pattern. We achieve this
requirement by designing the kernel as a concentrated set of points over a limiterd
area, in the spatial domain.

44 Equivarient Representation Learning in Unit Ball

Figure 3.8: Illustration of volumetric convolution with weight sharing across radius.
For the sake of clarity, this illustration only shows a single convolutional kernel.
We bisect and show a cross section of the resultant feature map on right for better
visualization. In the resultant feature map, each spherical heatmap corresponds to
the response at a specific translation of the kernel. Each value in a spherical heatmap
corresponds to the response at a specific 3D orientation of the kernel at a specified
translation. Therefore, the resultant feature map is a signal on B3, which allows us to

achieve equivariance over 3D rotation and radial translation of local patterns.

§3.5 A case study: Representation Learning on 3D objects 45

3.5.2 Adaptive Weighted Frequency Pooling

Feature pooling helps in aggregating information in spatial or filter response domain.
Although feature pooling is an established mechanism in spatial domain, frequency
domain pooling is largely an unsolved problem. Here, we propose a simple frequency
pooling approach that fuses information across different frequencies to learn more
compact and discriminative features.

Let us reconsider the proposed volumetric convolution formula at a specific
translation of the kernel,

f ∗ g(α, β) ≡ 4π

3

∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Ωn,l,0(g)Yl,m(α, β). (3.71)

As evident from the above formula, the response is also in spatial domain and is
a signal on S2. However, any signal on S2 can be completely characterized by its
corresponding spherical harmonic frequencies. To leverage this property, we rearrange
Equation 3.71 as follows,

f ∗ g(α, β) ≡ 4π

3

n

∑
l=0

l

∑
m=−l

 ∞

∑
n=0

Ωn,l,m(f)Ωn,l,0(g)

Yl,m(α, β). (3.72)

It is obvious that Sl,m =

 ∞
∑

n=0
Ωn,l,m(f)Ωn,l,0(g)

 represents (l, m)th spherical

harmonics frequency of the response of volumetric convolution. Since, in practice
we use n = 6, the set {Sl,m}, ∀(m, l), where 0 ≤ l ≤ 5 and −l ≤ m ≤ l, encodes
all the shape information in a low dimensional vector, compared to spatial domain
representation. Therefore, instead of spatial domain representation, we connect the
spectral representation to the fully connected layer.

Furthermore, it can be observed that the set {Sl,m} is within the linear span of
Ωn,l,m(f) ∪Ωn,l,0(g). Therefore, instead of calculating {Sl,m} in a precise manner, we
take the outer product between Ωn,l,m(f) and Ωn,l,0(g) to get a dense frequency map
Ω as follows:

Ω = Ωn,l,m(f)(Ωn,l,0(g)T (3.73)

where Ω ∈ R(100×100) and Ωn,l,m(f), Ωn,l,0(g) ∈ R(100×1). Then, we obtain two dense
weighted frequency maps, F1 ∈ R(100×100) and F2 ∈ R(100×100), by

F1 = Ω ◦W1, and F2 = Ω ◦W2, (3.74)

where ◦ is the Hadamard product and W1, W2 ∈ R(100×100) are trainable weights.
Next, we take row-wise and column-wise sum of F1 and F2 to obtain two vectors
v1 ∈ R(100×1) and v2 ∈ R(100×1):

v1 = F1uT, and v2 = (uF2)
T, (3.75)

46 Equivarient Representation Learning in Unit Ball

Figure 3.9: The heat-maps of the dense frequency map. Left: frequency heat-map with
respect to kernel. Middle: frequency heat-map with respect to input function. Right:

frequency The resultant heat-map of the dense frequency map.

where u ∈ R(1×100) is a vector of ones. Although neither v1 or v2 is an exact replica
of {Sl,m}, we have observed that empirically, this step increases the capacity of the
network and makes it more robust to random movements of feature patterns. Our
intuition for this behaviour is as follows: in practice, there may be other frequency
components in Ωn,l,m(f) ∪Ωn,l,0(g), other than {Sl,m}, which are invariant to certain
pattern movements. Also, most discriminative and robust features may belong
to certain frequency bands, and weighted sum of F100×100 allows us to give more
emphasis to such prominent frequency bands.

3.5.3 Experimental Architectures

In this section, we present two experimental architectures to demonstrate the use-
fulness of volumetric convolution in 3D object recognition tasks. The two types of
architectures considered here are with a single convolution layer and multi-convolution
layers respectively. Between these two types, single convolution layer showed better
classification performance on popular object datasets with simple 3D shapes, as re-
ported in Section 3.6.4. In contrast, the multi-convolution layer architecture shows
better performance for complex 3D shapes, as demonstrated in the same section.

3.5.3.1 Single convolution layer architecture

In this architecture, the object is initially fed to a volumetric convolution layer with 16
kernels. Each kernel is translated 10 times as mentioned in Section 3.5.1, which gives a
total of 160 kernels. We use n = 6 to implement Eq. 3.40, which gives 100 dimensional
vectors Ωn,l,m and Ωn,l,0 to represent the input object and each kernel respectively.
Convolving input with 16 kernels results in 160 × 100 × 100 dimensional output
feature map, since we take the outer product between Ωn,l,m and Ωn,l,0 as explained in
Section 3.5.2. Afterwards, we perform frequency pooling in two orthogonal directions
which reduces the dimensionality of the feature map to 160× 100× 2. The output of
the frequency pooling layer is then fed to a fully connected layer for classification. We

§3.5 A case study: Representation Learning on 3D objects 47

Figure 3.10: The overall experimental architecture.

do not use any non-linearity in this single convolution layer architecture. The overall
experimental architecture is shown in Fig. 4.2.

3.5.3.2 Multi-convolution layer architecture

In the multi-convolution layer architecture, the penultimate layer operates similar
to the explanation in Section 3.5.3.1, while the operation of other (intermediate)
convolution layers differs slightly. The main difference is that both the input and
the output of an intermediate convolution layer are in spatial domain, as opposed to
the penultimate layer. Let there be N kernels for an intermediate convolution layer.
Then, we calculate Zernike moments for both input function and kernels, and perform
convolution as per Eq. 3.40. From the output, we sample 300 equi-spaced points for
each θ and φ direction in the angular space, where 0 < θ < 2π and 0 < φ < π. To
sample points in r direction, we translate each kernel 10 times by an amount of 0.1,
and perform convolution for each translated state. This overall procedure results in
N output feature maps in B3, where each feature map has 10× 300× 300 sampled
points in the spatial domain. These feature maps are then fed to a ReLU layer, before
being convolved again by the next convolution layer. We apply adaptive frequency
pooling only to the penultimate layer, as we do not revert to spatial domain after that.

For both architectures, we use three iterations to calculate the Moore-Penrose
pseudo inverse using Eq. 3.30. We use a decaying learning rate lr = 0.1× 0.9

gstep
3000 ,

where gstep is incremented by one per iteration. For training, we use the Adam
optimizer with hyper-parameters β1 = 0.9, β2 = 0.999, ε = 1× 10−8. All the weights
are initialized using a random normal distribution with 0 mean and 0.5 standard
deviation. All these values are chosen empirically. Since we have decomposed the
theoretical derivations into sets of low-cost matrix multiplications, specifically aiming
to reduce the computational complexity, the GPU implementation is highly efficient.
For example, the model takes less than 25 minutes for an epoch during the training
phase for ModelNet10, with a batch size 2, on a single GTX 1080Ti GPU.

48 Equivarient Representation Learning in Unit Ball

3.6 Experiments

In this section, we discuss and evaluate the performance of the proposed approach on
3D object recognition and retrieval tasks. We first apply our experimental architecture
on five recent datasets, and compare the performance with relevant state-of-the-art
works. An extensive ablation study is also reported. We then evaluate the robustness
of the captured features against loss of information and finally show that the proposed
approach for computing 3D Zernike moments produce richer representations of 3D
shapes compared to the conventional approach.

3.6.1 Datasets

− ModelNet40 contains 40 object categories and a total of 12,311 CAD models. Train
and test sets originally contain 9,843 and 2,468 models respectively. We use the
standard train/test split to evaluate our model.
−ModelNet10 is closely related to ModelNet40 dataset, and contains 10 object classes.
We use the original train/test split provided by the authors of the dataset, which
contains 3991 models for training and 908 models for testing.
− McGill shape dataset is a benchmark 3D shape dataset with 10 classes: ant, crab,
spectacle, hand, human, octopus, plier, snake, spider and teddy-bear. The dataset
contains a total of 255 objects with a variety of pose changes and part articulations.
− SHREC’17 dataset is a challenging state-of-the-art 3D object dataset. This large scale
dataset contains about 51,300 3D models over 55 common categories. Each category is
subdivided into several subcategories, but we use only the main 55 categories in our
experiments. We use the original split by the authors which is 70%-30% for train and
test respectively.

3.6.2 3D object classification

One key feature of our proposed volumetric convolution is that it is a natural extension
of planar convolution to spherical domain (specifically B3). In the same way as a
planar kernel finds distributed discriminative patterns across (x, y) plane, volumetric
convolution is able to find such patterns distributed across the 3D space. Practically,
this should enable our model to capture rich features with less number of layers,
compared to other state-of-the-art models, that are somewhat ad-hoc extensions to
3D domain. To demonstrate this, we present the model complexity and accuracy
analysis on ModelNet10 and ModelNet40 datasets. Table 3.2 shows the results on
ModelNet10. Our model achieves an accuracy of 93.8% over ModelNet10 with only
three trainable layers: one convolution layer, one frequency pooling layer and one fully
connected layer. Our accuracy is the third highest, below SO-Net and Kd-Networks.
Compared to models such as VRN and PairWise, which have 45 and 23 convolution
layers respectively, our model achieves a higher accuracy with a significantly less
number of layers. This clearly demonstrates the richness of computed features by
volumetric convolution. Table 4.2 shows the results over ModelNet40. Our model
achieves an accuracy of 91.0% and ranks third, same as the case of ModelNet10. These

§3.6 Experiments 49

Ta
bl

e
3.

2:
C

om
pa

ri
so

n
w

it
h

st
at

e-
of

-t
he

-a
rt

on
M

od
el

N
et

10
(r

an
ke

d
ac

co
rd

in
g

to
pe

rf
or

m
an

ce
).

M
et

ho
d

Tr
ai

na
bl

e
la

ye
rs

Tr
ai

na
bl

e
Pa

ra
m

s
M

od
el

N
et

10

SO
-N

et
(C

V
PR

’1
8)

Li
et

al
.[

20
18

b]
11

FC
60

M
95

.7
%

K
d-

N
et

w
or

ks
(I

C
C

V
’1

7)
K

lo
ko

v
an

d
Le

m
pi

ts
ky

[2
01

7]
15

K
D

4M
94

.0
%

O
ur

s
(1

C
on

v,
1A

da
pt

.F
re

qP
oo

l,
1F

C
)

0.
7M

93
.8

%
V

R
N

(N
IP

S’
16

)
Br

oc
k

et
al

.[
20

16
]

45
C

on
v

90
M

93
.1

1%
Pa

ir
w

is
e

(C
V

PR
’1

6)
Jo

hn
s

et
al

.[
20

16
]

23
C

on
v

14
3M

92
.8

%
D

ee
pP

an
o

(S
PL

’1
5)

Sh
ie

t
al

.[
20

15
]

(4
C

on
v,

3F
C

)
-

85
.4

5%
3D

Sh
ap

eN
et

s
(C

V
PR

’1
5)

W
u

et
al

.[
20

15
]

(4
-3

D
C

on
v,

2F
C

)
38

M
83

.5
%

Po
in

tN
et

(I
JC

N
N

’1
6)

G
ar

ci
a-

G
ar

ci
a

et
al

.[
20

16
]

(2
C

on
v,

2F
C

)
<1

M
77

.6
%

50 Equivarient Representation Learning in Unit Ball

Table
3.3:C

om
parison

w
ith

state-of-the-art
on

M
odelN

et40
(ranked

according
to

perform
ance).

M
ethod

Trainable
layers

Trainable
Param

s
M

odelN
et40

SO
-N

et
(C

V
PR

’18)Liet
al.[2018b]

11FC
60M

93.4%
K

d-N
etw

orks
(IC

C
V

’17)K
lokov

and
Lem

pitsky
[2017]

15K
D

4M
91.8%

O
urs

(1C
onv,1A

dapt.FreqPool,1FC
)

0.7M
91.0%

V
R

N
(N

IPS’16)Brock
et

al.[2016]
45C

onv
90M

90.8%
Pairw

ise
(C

V
PR

’16)Johns
et

al.[2016]
23C

onv
143M

90.7%
M

V
C

N
N

(IC
C

V
’16)n

Su
et

al.[2015]
(60C

onv,36FC
)

200M
90.1%

PointN
et

(C
V

PR
’17)Q

iet
al.[2017a]

(5C
onv,2STL)

80M
86.2%

EC
C

(C
V

PR
’17)Sim

onovsky
and

K
om

odakis
[2017]

(4C
onv,1FC

)
-

83.2%
D

eepPano
(SPL’15)Shiet

al.[2015]
(4C

onv,3FC
)

-
77.63%

3D
ShapeN

ets
(C

V
PR

’15)
W

u
et

al.[2015]
(4-3D

C
onv,2FC

)
38M

77%

§3.6 Experiments 51

Figure 3.11: Accuracy comparison with state-of-the-art over ModelNet10 against the
number of trainable layers.

Figure 3.12: Accuracy comparison with state-of-the-art over ModelNet40 against the
number of trainable layers.

results demonstrate that our model has a good generalization over a large number of
object categories, without losing its advantage as a rich feature computer. Also, our
model has only 0.7M trainable parameters, which is a drastically lower compared to
state-of-the-art. This significant reduction in number of parameters is a fair indication
of the effectiveness of our adaptive-frequency-pooling layer.

52 Equivarient Representation Learning in Unit Ball

Table 3.4: 3D object retrieval results comparison with state-of-the-art on McGill
Dataset.

Method Accuracy

Tabia et al. [2014] 0.977%
Agathos et al. [2009] 0.976%
Tabia et al. [2013] 0.969%
Papadakis et al. [2008] 0.957%
Lavoué [2012] 0.925%
Xie et al. [2015] 0.988%

Ours 0.988%

Table 3.5: 3D object retrieval results comparison with state-of-the-art on SHREC’17.

Method mAP

Furuya and Ohbuchi [2016] (BMVC’16) 0.476
Esteves et al. [2018b] (ECCV’18) 0.444
Tatsuma and Aono [2009] 0.418
Bai et al. [2016] (CVPR’16) 0.406

Ours 0.452

To illustrate the trade-off between model complexity and performance, Fig. 3.11
and Fig. 3.12 plot accuracy against number of trainable layers of state-of-the-art models
on ModelNet10 and ModelNet40 datasets. These figures clearly show that volumetric
convolution is in a better position compared to most recent models, in terms of the
trade-off between complexity and accuracy. Note that, our method is not directly
comparable with with some other recent works (e.g., Kanezaki et al. [2016]; Sedaghat
et al. [2016]; Wu et al. [2016]; Qi et al. [2016]; Bai et al. [2016]; Maturana and Scherer
[2015]) that use multiple-models and/or data and feature augmentation.

3.6.3 3D Object Retrieval

We evaluate the 3D object retrieval performance of our model on McGill and SHREC’17
datasets. We obtain the 200-dimensional feature descriptor after the frequency pooling
layer, and measure the cosine similarity between the query shape and the shapes in
the database. We first train the model as a classifier using train set, with softmax cross
entropy as the loss function, and then use test set to evaluate the retrieval performance.
The results for McGill dataset are shown in Table 4.4. We use the nearest neighbour
performance measure for this task. For McGill dataset, we compare the performance
of our model with six state-of-the-art techniques:Tabia et al. [2014], Agathos et al.
[2009], Tabia et al. [2013], Papadakis et al. [2008], Lavoué [2012] and Xie et al. [2015].
As shown in Table 4.4, our feature vector is able to match the state of the art results
achieved by Xie et al. [2015].

§3.6 Experiments 53

Table 4.5 depicts the performance comparison on SHREC’17 dataset (as reported
in Esteves et al. [2018b]). This dataset includes random SO(3) perturbations. We
use mean average precision (mAP) to evaluate the performance as done in other
state-of-the-art techniques. Our model achieves the second best performance with
a mAP value of 0.452, which is only a small drop (0.024) compared to Furuya and
Ohbuchi [2016]. Overall, the results for 3D object retrieval task clearly demonstrate
the richness of our proposed feature descriptors.

3.6.4 Ablation Study

To justify our model choices, we perform an extensive ablation study on ModelNet10
and SHREC’17 datasets. The results are reported in Table 3.6. First, we use two and
three convolution layers instead of one. Accuracy drops from 93.8% to 92.0% and
89.8% in the cases of two layers and three layers respectively. This is an interesting
result, as usually one might expect the model to compute richer features as the
number of layers increase. However, it is known that in deep models, the accuracy
does not always increase with the number of layer due to factors such as over-fitting
on training set. Since our main focus of this work is to provide the theoretical
framework of volumetric convolution and implement it as a differentiable layer that
can be integrated into any deep architecture, we do not extensively investigate other
architectural choices or regularization measures that might perform well with multiple
layers. Rather, our main focus of the experiments is to show the richness of features
computed using volumetric convolution.

Then, we replace the volumetric convolution layer with a spherical convolution
layer, and achieve an accuracy of 76.2%. This is perhaps one of the most important
comparisons in our ablation study. This clearly shows that modeling a 3D object
and convolving it in B3 gives superior results as opposed to spherical convolution,
which performs convolution in S2. To demonstrate one practical use-case of axial
symmetry measurement of functions in B3, we measure the symmetry of objects
around four equi-angular axes, and concatenate these measurement values to form a
feature vector. Then we feed the generated feature vector to a fully connected layer
to classify objects. Since we theoretically derive and implement the axial symmetry
measurement formula as a fully differentiable module, this setting can be trained via
backpropagation. We were able to achieve a 60.4% accuracy over ModelNet10 from
using this simple hand-crafted feature.

Next, we investigate the effect of using various pooling mechanisms, instead of
the proposed adaptive frequency pooling. In all the pooling operations, we create a
(100× 100) dimensional dense frequency map and perform pooling both row-wise
and column-wise. First, we pool the outputs of the 16 kernels using mean-pooling and
max-pooling, which drops the accuracy below 90% in both cases. Then we concatenate
the kernel outputs and directly feed it to the fully connected layer, and achieve an
accuracy of 87.8%. Ilse et al. [2018] recently proposed two novel attention based
multiple instance learning (MIL) pooling mechanisms, that has trainable weights.
Since our intuition for using frequency pooling is to capture prominent frequency

54 Equivarient Representation Learning in Unit Ball

bands from frequency maps, we test the model using aforementioned MIL pooling
mechanisms as it can learn to give attention to different frequency bands. We first
construct the dense frequency map and then apply the two MIL pooling mechanisms—
gated and non-gated—to achieve 89.8% and 90.3% accuracy respectively.

Recently, Liu et al. [2017] introduced a novel learning framework that gives angular
representations on hyperspheres. This framework is supervised by two novel loss
formulations that utilizes the angular similarity between the final descriptors. Since
it is fair to assume that angular similarity plays a significant role in our model too—
specially due to volumetric convolution’s equivariance to 3D rotation group—we
test the performance of weighted-softmax function and generalized-angular-softmax
function proposed by Liu et al. [2017] in our experiments. However, as illustrated in
Table 3.6, neither of these loss functions are able to outperform softmax loss function
in our setting.

Furthermore, we use different similarity measures for retrieving 3D objects and
compare the performances. As shown in Table 3.6, cosine similarity performs best
while Euclidean, KL and Bhattacharya give inferior results.

3.6.5 Classification of highly non-polar and textured objects

The ablation study shown in Table 4.6 depicts that accuracy drops when multi-layer
architectures are used in object classification. In this section, we explore a possible
reason for this behaviour.

Two key features of our convolution layer are: (a) the ability to jointly model both
shape and texture information, and (b) handling non-polar (i.e. dense in B3) objects.
However, the dataset used for the ablation study experiment—ModelNet10—contains
relatively simpler shapes with uniform texture. Therefore, using more layers (thus
more parameters) can cause overfitting on the training set, as our network is able to
capture highly discriminative features using a single volumetric convolution layer,
which can cause a drop in test accuracy. To verify this, we employ a multi-layer
architecture to classify a more challenging dataset, where objects are highly non-polar
and textured.

To this end, we sample 1000 3D brain scan images from the large-scale OASIS-3
dataset (Fotenos et al. 2005). OASIS-3 is a compilation of 3D MRI brain scans obtained
from over 1000 participants, collected over the course of 30 years. Participants include
609 cognitively normal adults and 489 individuals at various stages of Alzheimer’s
Disease aged between 42-95yrs. We split the sampled data in to train and test sets,
comprising of 800 and 200 scans respectively. In both the train and test sets, we
include equal numbers of Alzheimer and normal cases to avoid any bias. Afterwards,
we train and test our network on the sampled data with softmax cross entropy as the
loss function. Table 4.6 shows the performance against the number of layers used in
the network.

In this experiment, we used 16 convolution kernels in each layer. As evident
from Table 4.6, increasing the number of convolution layers improve the classification
accuracy, up to three layers. Thus, it can be concluded that dense objects with texture

§3.6 Experiments 55

Table 3.6: Ablation study of the proposed architecture on ModelNet10 and SHREC’17
datasets. Here, “+” sign refers to “with” and “−” sign refers to “without”.

3D Object Classification

Method Accuracy

Final Architecture (FA) 93.8%
FA (2Conv) 92.0%
FA (3Conv) 89.8%
FA − VolCNN + SphCNN 76.2%
Axial symmetry features 60.4%

FA − Adapt. FreqPool + MeanPool 84.2%
FA − Adapt. FreqPool + MaxPool 86.7%
FA − Adapt. FreqPool + FeatureConcat 87.8%
FA − Adapt. FreqPool + MILAPooling [Ilse et al., 2018] 90.3%
FA − Adapt. FreqPool + MILGAPooling [Ilse et al., 2018] 89.8%

FA + WSoftmax [Liu et al., 2017] 92.8%
FA + GASoftmax [Liu et al., 2017] 90.7%

3D Object Retrieval

Method mAP

FA (Cosine Similarity) 0.452
FA (Euclidean Distance) 0.386
FA (KL Divergence) 0.320
FA (Bhattacharyya Distance) 0.354

Table 3.7: Performance of multi-layer architectures for highly non-polar and textured
shape classification. Our model shows an improvement with higher number of layers.

Model Accuracy

Ours (1 Conv layer) 69.4%
Ours (2 Conv layers) 78.8%
Ours (3 Conv layers) 83.2%
Ours (4 Conv layers) 82.8%

56 Equivarient Representation Learning in Unit Ball

Table 3.8: Performance comparison on local object-part movement resulting in global
non-rigid deformations. Accuracies are reported for the ModelNet10 dataset. Perfor-
mance drop under global deformations is shown in blue. Our approach demonstrates
minimal performance drop under totally random deformations which signifies the

strong invariance behaviour of proposed approach.

Original Shape Rot + Radial trans Random

Ours 93.8% 91.4% (↓2.4) 88.5% (↓5.3)
Ours without FreqPool 82.8% 78.3% (↓4.5) 61.4% (↓21.4)

VoxNet 90.4% 43.8% (↓46.6) 42.1% (↓48.3)

allow our network to showcase its full capacity.

3.6.6 Equivariance to local pattern movements

For the translation and rotation of local feature patterns, which results in non-rigid
deformations of the global shape, our proposed convolution operator ensures equivari-
ance. In this experiment, we evaluate the robustness of our proposed network to such
movements of local feature patterns. To this end, we radially translate and rotate local
feature patterns in 3D and compare the behaviour of our approach with a traditional
spatial-domain convolution method (Maturana and Scherer [2015]). Furthermore, we
also test our approach with an even more difficult set of ‘random’ movements of local
patterns.

Initially, we get the heat kernel signature of the 3D shape with 20 eigen vectors
and a time stamp of 10. Afterwards, we get the vertices associated with the highest
10% of the heat response and cluster them using DBSCAN algorithm Ester et al. [1996].
We then find the centroid of each cluster, and get the 50 closest sample points to
each centroid to obtain a set of sample point clusters. We then move each cluster
independently and classify the final set of points using networks already trained on
ModelNet10. The results are shown in Table 3.8.

As illustrated in Table 3.8, our network is robust to both random and rotational
+ translational movements of local patterns. Furthermore, when we remove the
frequency pooling after the convolution layer, and connect the fully connected layer
directly to the response of the convolution, the network becomes less robust to
random movements of local patterns. Overall, even with highly challenging severe
deformations, we note that the proposed approach does not experience a significant
drop in the accuracy, compared to the spatial-domain convolution based approach.
This behaviour signifies the strong invariance capability of proposed convolution
operator.

3.6.7 Robustness against information loss

One critical requirement of a 3D object classification model is to be robust against
information loss. To demonstrate the effectiveness of our proposed features in this

§3.7 Comparison with Invariant Approaches 57

aspect, we randomly remove data points from the objects in validation set, and
evaluate model performance. The results are illustrated in Fig. 3.13. The model shows
no performance loss until 20% of the data points are lost, and only gradually drops to
an accuracy level of 66.8 at a 50% data loss. This implies that the proposed model is
robust against data loss and can work well for incomplete shapes.

3.6.8 Approximation Accuracy of 3D Zernike moments calculation approach

In Sec. 3.3.3, we proposed an alternative method to calculate 3D Zernike moments
(Eq. 3.22, 3.23), instead of the conventional approach (Eq. 3.16). We hypothesized
that moments obtained using the former has a closer resemblance to the original
shape, due to the impact of finite number of frequency terms. In this section,
we demonstrate the validity of our hypothesis through experiments. To this end,
we compute moments for the shapes in the validation set of ModelNet10 dataset
using both approaches, and compare the mean reconstruction error defined as:
1
T ∑T

t
∥∥ f (t)−∑n ∑l ∑m Ωn,l,mZn,l,m(t)

∥∥, where T is the total number of points and
t ∈ B3. Fig. 3.14 shows the results. In both approaches, the mean reconstruction
error decreases as n increases. However, our approach shows a significantly low mean
reconstruction error of 0.0467% at n = 6 compared to the conventional approach,
which has a mean reconstruction error of 0.56% at same n. This result also justifies
the utility of Zernike moments for modeling complex 3D shapes.

3.7 Comparison with Invariant Approaches

In the literature, the 3D shape analysis techniques with invariance properties have
been proposed for both continuous surfaces and discrete point clouds. For the former
representations, a Riemannian metric was proposed for parameterized 3D surfaces that
is invariant to shape re-parametrizations [Kurtek et al., 2010]. In our case, invariance
to re-parametrization group is less practical as we are working with discretized
3D shapes. Further, incorporating such distance metrics and parametrizations of
real-world 3D shapes within deep feature learning models is a fairly challenging
and largely unsolved problem. For the case of point clouds, permutation invariance
has been studied for deep convolutional [Qi et al., 2017a] and graph convolutional
networks in [Maron et al., 2018; Wang et al., 2018a]. The above works show that
achieving permutation invariance is relatively simple in deep architectures.

Graph based approaches have been proposed to work on non-Euclidean topologies
and are thus suitable to operate on 3D surfaces [Bronstein et al., 2017]. An input
surface is converted to a graphical representation (e.g., polygon mesh) and converted
to spectral domain where convolution is performed [Bruna et al., 2013; Defferrard
et al., 2016; Boscaini et al., 2015; Henaff et al., 2015]. A different set of methods
first reduce the complexity of input data by projecting them in a parametric 2D
representation space and then apply convolutions to learn features. Finally, [Masci
et al., 2015; Monti et al., 2017; Boscaini et al., 2016] perform convolution within local
surface patches and thus provide invariance to surface deformations. However, the

58 Equivarient Representation Learning in Unit Ball

Figure 3.13: The robustness of the proposed model against missing data. The accuracy
drop is less than 30% at a high data loss rate of 50%.

Figure 3.14: The mean reconstruction error Vs ‘n’. Our Zernike frequencies computa-
tion approach has far less error than the conventional approach.

§3.8 Chapter summary 59

desirable invariance to deformations is generally dictated by the end-task and may
not always be desirable since significant deformations can change object functionality,
affordance and semantics [Su et al., 2018]. As we explain in the next paragraph,
our fully learnable network allows task-dependent learning of invariance to shape
deformations. Further, all of the above approaches learn representations on the shape
surface or its 2D transformed version and do not consider the volumetric nature of
3D shapes.

In comparison to above mentioned approaches, we propose a novel convolutional
operator in B3 that is suitable for volumetric shapes. Our proposed convolution
operator is equivariant to isometric transformations (rotation, translation), and is also
robust to non-isometric variations such as deformations (radial translations of local
object parts) and shape articulations (scaling and local part rotations) (as shown in
Sec. 3.6.6). Deep learning based solutions that can achieve invariance to all types
of deformations are relatively less explored1 and, to the best of our knowledge,
ours is the first roto-translation equivariant convolution operator inside the unit-ball.
The advantage of our approach over graph based invariant models is the ability to
learn representations on volumetric shapes. As an example, a recent work [Maron
et al., 2018] investigates invariance and equivariance for graph networks but only
considering the linear layers (not the convolution ones) in the 2D case. The extension of
our proposed convolution operator to arbitrary graphs and all possible deformations
is an interesting research problem but beyond the scope of current work.

It is noteworthy that the end-to-end representation learning in our case auto-
matically enforces invariance to deformations and articulations depending on the
end-task. In comparison, the traditional approaches [Carrière et al., 2015; Reininghaus
et al., 2015] for topological data analysis propose hand-crafted descriptors (based
on persistence diagrams) that are invariant to only certain classes of deformations
(intrinsic and extrinsic isometries). As a result, these descriptors are relatively less
generalizable and their manual design offers less flexibility for new problems. We
have conducted an experiment in this regard, where ModelNet10 shapes are first
deformed by random movements of local object parts and their feature representations
are used for final classification (Sec. 3.6.6). We achieve a classification accuracy quite
close to that of original shapes, showing that the deformed and articulated shapes are
mapped close to the original unaltered 3D shapes in the learned feature space.

3.8 Chapter summary

Equivariant representation learning is an important form of inductive bias that can
help the deep networks to discover underlying symmetries of data. In this chapter, we
derive a novel ‘volumetric convolution’ operation using 3D Zernike polynomials, that
can learn feature representations in B3 while preserving equivariance over the SO3
group. We develop the underlying theoretical foundations for volumetric convolution
and demonstrate that it can be efficiently computed and implemented using low-cost

1We refer the reader to [Cohen et al., 2018a] for an excellent review on group equivariant CNNs.

60 Equivarient Representation Learning in Unit Ball

matrix multiplications. Furthermore, we propose a novel, fully differentiable method
to measure the axial symmetry of a function in B3 around an arbitrary axis, using 3D
Zernike polynomials and demonstrate one possible use case by proposing a simple
hand-crafted descriptor. Finally, using volumetric convolution as a building tool,
we propose an experimental architecture, that gives competitive results over state-
of-the-art with a relatively shallow network, in 3D object recognition and retrieval
tasks. In this experimental architecture, we introduce a novel frequency pooling
layer, which can learn frequency bands in which the most discriminative features
lie. One drawback of the current volumetric convolution operator is that 3D Zernike
polynomials loose their orthogonality when a 3D translation is applied. This prevents
volumetric convolution from achieving automatic translation invariance. Therefore
one immediate extension to this work would be to investigate novel orthogonal and
complete basis polynomials in a unit ball, which preserves its orthogonality when
translated. Such polynomials would make it possible to achieve translation invariance
more efficiently—compared to the proposed method—as then, the conversion from the
spatial domain to spectral domain at each translation of the kernel is not necessary.

Chapter 4

Blended Convolution and
Synthesis for Efficient
Discrimination of 3D shapes.

The human world is three-dimensional, therefore optimally understanding and inter-
preting 3D data is an important research problem. In the last chapter, we investigated
a novel convolution-based feature extraction method for 3D data that is equivariant
to 3D translation and rotation. In this chapter, we will explore how to further inject
inductive bias to CNNs in order to address several issues that are entailed with 3D
data. Specifically, there are two main issues pertinent to 3D data: (a) 3D point clouds
and rasterized voxel based representations encode redundant information thereby
making inter-class discrimination difficult, (b) 3D convolutions generally operate in
Euclidean space, whereas real-world 3D data lie on a non-Euclidean manifold. The
representations thus learned fail to encode the true geometric structure of input shapes.
The availability of low-cost 3D sensors and their vast applications in autonomous cars,
medical imaging and scene understanding demands a fresh look towards solving the
above-mentioned challenges.

Existing representation learning schemes for 3D shape description either operate
on voxels [Brock et al., 2016; Wu et al., 2016] or point clouds [Qi et al., 2017b; Klokov
and Lempitsky, 2017; Cheraghian et al., 2020, 2019b; Cheraghian and Petersson, 2019;
Cheraghian et al., 2019a, 2020]. The voxelized data representations are highly sparse,
thus prohibiting the design of large-scale deep CNNs. Efficient data structures such
as Octree [Meagher, 1982] and Kdtree [Bentley, 1975] have been proposed to solve this
problem, however neural networks based representation learning on these tree-based
indexing structures is an open research problem [Riegler et al., 2017]. In comparison,
point clouds offer an elegant, simple and compact representation for each point
(x, y, z). Additionally, they can be directly acquired from the 3D sensors, e.g., low-cost
structured light cameras. On the down side, their irregular structure and high point
redundancy pose a serious challenge for feature learning.

We note that recent attempts on direct feature learning from point clouds assume
a simplistic pipeline (see Fig. 4.1) that mainly aims to extract better global features
considering all points [Qi et al., 2017a,b; Klokov and Lempitsky, 2017; Li et al.,

61

62 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

Figure 4.1: High-level comparison of our approach (bottom) with the traditional
approaches [Qi et al., 2017a; Su et al., 2015; Qi et al., 2017b; Klokov and Lempitsky,
2017; Li et al., 2018b] (top). We transform an input shape into a compact representation
and project it onto a discriminative latent space to capture more discriminative
features, before performing convolution in B3 with roto-translational kernels. Our
novel convolution operator has a clear advantage over existing works that only work
with Euclidean geometries. This results in a light-weight and highly efficient network

design with significantly lower number of layers.

2018b]. However, all these approaches lack the capacity to work on non-Euclidean
geometries and have no inherent mechanism to deal with the high redundancy
of point clouds. In this work, we propose an integrated solution, called Blended
Convolution and Synthesis (BCS), to address the above-mentioned problems. BCS
can effectively deal with the irregular, permutation-invariant and redundant structure
of point clouds. Our solution has two key aspects. First, we map the input 3D
shape into a more discriminative 3D space. We posit that raw 3D point clouds are
sub-optimal to be directly used as input to classification models, due to redundant
information. This property hampers the classification and retrieval performance by
adding an extra overhead to the network, as the network should then disregard
redundant features purely using convolution. In contrast, we initially synthesize a
more discriminative shape by projecting the original shape to a latent space using a
newly derived set of functions which are complete in the unit ball (B3). The structure
of this latent shape is governed by the loss function, and therefore, is optimized to
pick up the most discriminative features. This step reduces the number of convolution
layers significantly, as shown experimentally in Sec. 6.6. Second, we propose a new
convolution operation that works on non-Euclidean typologies i.e., inside the unit ball
(B3). We derive a novel set of complete functions within B3 that perform convolution

63

in the spectral domain.
Furthermore, since our network operates on the ‘spectral domain’, it provides multi-

ple advantages compared to competing models that operate in Euclidean domains:
1) A highly compact and structured representation of 3D objects, which addresses
the problem of redundancy and irregularity. Effectively, a 3D shape is represented
as a linear combination of complete-orthogonal functions, which allows only a few
coefficients to encode shape information, compared to spatial domain representations.
2) Convolution is effectively reduced to a multiplication-like operator which improves
computational efficiency, thereby significantly reducing the number of FLOPS. 3)
A theoretically sound way to treat non-Euclidean geometries, which enables the
convolution to achieve translational and rotational equivariance; and 4) Scalability to
large-sized shapes with bounded complexity.

Most importantly, existing methods which perform convolution in the spectral
domain [Cohen et al., 2018b; Esteves et al., 2018b; Ramasinghe et al., 2019a] use
spherical harmonics or Zernike polynomials to project 3D functions to the spectral
domain for performing convolution. The aforementioned function spaces entail
certain limitations, e.g.: 1) ‘Spherical harmonics’ only operate on the surface of the
unit sphere, which causes critical information loss for non-polar shapes. 2) ‘Zernike
polynomials’ cause the convolution to achieve only 3D rotational movement of the
kernel. In contrast, our newly derived polynomials can handle non-polar shapes,
while achieving both 3D rotational and translational movements of the convolution
kernel as theoretically proved in Sec. 4.3.2. Recently, Jiang et al. [2019] proposed a
novel Fourier transform mechanism to optimally sample non-uniform data signals
defined on different topologies to spectral domain without spatial sampling error. This
allows CNNs to analyze signals on mixed topologies, regardless of the architecture.
However, their spectral transformation does not specifically focus on computational
efficiency and equivariance properties, as ours. On the other hand, Huang et al. [2019a]
proposed a model which can directly segment textured 3D meshes, by extracting
features from high-resolution signals on geodesic neighborhoods of surfaces. In
contrast, our model consumes point clouds and we propose a lightweight convolution
operator, which extracts useful features for 3D classification.

The main contributions of this work are:

• A novel approach to obtain a learned 3D shape descriptor, which enhances the
convolutional feature extraction process, by projecting the input 3D shape into a
latent space, using newly derived functions in B3.

• Develop the theory of a novel convolution operation, which allows both 3D
rotational and 3D translational movements of the kernel.

• Derive formulae to perform discriminative latent space projection of the input
shape and 3D convolution in a single step, thereby making our approach
computationally efficient.

• Implement the proposed latent space projection and convolution as a fully
differentiable module which can be integrated into any end-to-end learning

64 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

architecture, and developing a shallow experimental network which produces
results on par with state-of-the-art while being computationally efficient.

4.1 Related Work

3D shape descriptors: A 3D shape descriptor is a representation of the structural
essence of a 3D shape. A variety of hand-crafted feature descriptors have been
proposed in past research efforts. A few key such works are based on light field
descriptors [Chen et al., 2003], Fourier transformation [Vranic et al., 2001], eigen value
descriptors [Jain and Zhang, 2007], and geometric moments [Elad et al., 2002]. Most
recent hand-crafted 3D descriptors are based on diffusion parameters [Bronstein et al.,
2010; Rustamov, 2007; Bronstein et al., 2009]. On the other hand, learned 3D shape
descriptors have also been popular in the computer vision literature. Litman et al.
[2014] propose a supervised bag-of-features (BOF) method to learn a descriptor. Zhu
follow an interesting approach, where they first project the 3D shapes into multiple
2D shapes, and then perform training on the 2D shapes to learn a descriptor. Xie et al.
[2016] present a hybrid approach which combines both hand-crafted features and
deep networks. They first compute a geometric feature vector from the 3D shape, and
then employ a deep network on the feature vector to learn a 3D descriptor. Xie et al.
[2015] follow a similar approach, where they first calculate heat kernel signatures of
3D shapes and then use two deep encoders to obtain descriptors. Our work is partially
similar to this, but has a key difference: instead of computing hand-crafted features as
the first step, we do a learned mapping of input 3D shape into a more discriminative
3D space, which allows us to get rid of high intra-class variances exhibited by most
3D shape descriptors. This step provides another advantage since it maximizes the
distance between initial shapes, before being fed to convolution layers later.

Orthogonal Moments and 3D Convolution: Generally, orthogonal moments are
used to obtain deformation invariant descriptors from structured data. Compared
to geometric moments, orthogonal moments are robust to certain deformations such
as rotation, translation and scaling. This property of orthogonal moments has been
exploited specially in 2D data analysis in the past [Hu, 1962; Lin and Chellappa,
1987; Arbter et al., 1990; Tieng and Boles, 1995; Khalil and Bayoumi, 2001; Suk and
Flusser, 1996]. Extension of deformation invariant moments from 2D to 3D also
has been explored by many prior works [Guo, 1993; Reiss, 1992; Canterakis, 1999;
Flusser et al., 2003]. However, the certain properties of these moments depend on the
Hilbert space on which they are defined. For example, orthogonal moments defined
in a sphere or a ball exhibit convenient properties to extract rotation invariants,
compared to orthogonal moments defined in a cube. These unique properties of
orthogonal moments have recently been used to derive convolution operations which
allows 3D rotational movements of kernels [Cohen et al., 2018b; Esteves et al., 2018b;
Ramasinghe et al., 2019a,c]. However, the moments used in these works do not contain
the necessary properties to achieve 3D translation of the kernels, and therefore, we
derive a novel set of functions in B3 to overcome this limitation.

§4.2 Preliminaries 65

3D Shape Classification and Retrieval: Recent works developed for 3D shape
classification and retrieval can be broadly categorized into three classes: 1) hand-
crafted feature based [Vranic and Saupe, 2002], [Guo et al., 2016] 2) unsupervised
learning based [Wu et al., 2016], [Khan et al., 2018] 3) deep learning based [Qi et al.,
2017a,b; Li et al., 2016]. Generally, deep learning based approaches have shown
superior results compared to other two categories. However, the aforementioned
deep learning architectures operate on Euclidean spaces, which is sub-optimal for 3D
shape analysis tasks, although Weiler et al. [2018b] has shown impressive results using
SE(3)-equivariant convolutions in the Euclidean domain. In contrast, our network
performs convolution on B3 which allows efficient feature extraction, since 3D rotation
and translation of kernels are easier to achieve in this space.

4.2 Preliminaries

We first provide an overview of basic concepts that will be used later in proposed
method.

4.2.1 Complete Orthogonal Systems

Orthogonal functions are useful tools in shape analysis. Let Φm and Φn be two
functions defined in some space S. Then, Φm and Φn are orthogonal over the space S

if and only if, ∫
S

Φn(X)Φm(X)dX = 0, ∀n 6= m. (4.1)

Let f be a function defined in space S, and {Φm : m ∈ Z+} be a set of orthogonal
functions defined in the same space. Then, the set of orthogonal moments of f ,
with respect to set {Φm}, can be obtained by f̂m =

∫
S

f (X)Φm(X)† where † denotes
the complex conjugate. If a set of functions {Φm : m ∈ Z+} is both complete and
orthogonal, it can reconstruct f (X) using its orthogonal moments as follows,

f (X) = ∑
m

f̂mΦm(X). (4.2)

4.2.2 Convolution in Unit Ball B3

The unit ball (B3) is the set of points x ∈ R3, where ‖x‖<1. Any point in B3 can be
parameterized using coordinates (θ, φ, r), where θ, φ, and r are azimuth angle, polar
angle, and radius respectively. Performing convolution on 3D shapes in non-linear
topological spaces such as the unit ball (B3) has a key advantage: compared to the
Cartesian coordinate system, it is efficient to formulate 3D rotational movements of
the convolutional kernel in B3 [Ramasinghe et al., 2019a]. To this end, both the input
3D shape and the 3D kernel should be represented as functions in B3. However,
performing convolution in the spatial domain is difficult due to non-linearity of B3

space [Ramasinghe et al., 2019a]. Therefore, it is necessary to first obtain the spectral

66 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

representation of the 3D shape and the 3D kernel, with respect to a set of orthogonal
and complete functions in B3, and consequently perform spectral domain convolution.

4.3 Methodology

Here, we present our ‘Blended Convolution and Synthesis’ layer in detail. First, we
construct a set of orthogonal and complete polynomials in B3. Then, we relax the
orthogonality condition of these polynomials, which allows us to project the input
shape to a latent space. This projection is a learned process and depends on the
softmax cross-entropy between predicted and ground-truth object classes. Therefore,
the projected shape is optimized to contain more discriminative properties across
object classes. Afterwards, we convolve the latent space shape with roto-translational
kernels in B3 to map it to the corresponding class. Besides, we derive formulae to
achieve both projection and convolution in a single step, which makes our approach
more efficient.

Below in Section 4.3.1, we explain the learned projection of the object onto a latent
space. Then, in Section 4.3.2, we derive our convolution operation, which is able to
capture features efficiently using roto-translational kernels.

4.3.1 Learned Mapping for Shape Synthesis

In this section, we explain the projection of 3D point clouds to a discriminative latent
space in B3. First, we derive a set of complete orthogonal functions in B3. Orthogonal
moments obtained using orthogonal functions can be used to reconstruct the original
object. However, our requirement here is not to reconstruct the original object, but
to map it to a more discriminative shape. Therefore, after deriving the orthogonal
functions, we relax the orthogonality condition to facilitate the latent space projection.
Furthermore, instead of the input point cloud, we use a compact representation as
the input to the feature extraction layer, for efficiency and to leverage the capacity of
convolution in B3. In Section 6.3.3, we explain our compact representation.

4.3.1.1 Compact Representation of Point Clouds

Most 3D object datasets contain point clouds with uniform texture. That is, if the
3D shape is formulated as a function f in B3, such that for any point on the shape,
f (θ, φ, r) = c, where c is a constant. However, formulating 3D shapes in B3 has
the added advantage of representing both 2D texture and 3D shape information
simultaneously [Ramasinghe et al., 2019a]. Therefore, the advantage of convolution in
B3 can be utilized when the input and kernel functions have texture information.

Following this motivation, we convert the uniform textured point clouds into
non-uniform textured point clouds using the following approach. First, we create a
grid using equal intervals along r, θ, and φ. We use 25, 36, and 18 interval spaces for
r, θ, and φ, respectively. Then, we bin the point cloud to grid points, which results
in a less dense, non-uniform surface valued point cloud. The obtained compact

§4.3 Methodology 67

representation does not contain all the fine-details of the input point cloud. However
in practice, it allows better feature extraction using the kernels. A possible reason
could be that kernels are also non-uniform textured point clouds with discontinuous
space representations, and they can capture better features from non-uniform textured
input point clouds when performing convolution in B3.

4.3.1.2 Derivation of orthogonal functions in B3

In this section, we derive a novel set of orthogonal polynomials with necessary
properties to achieve the translation and rotation of convolution kernels. Afterwards,
in Section 4.3.1.4, we relax the orthogonality condition of the polynomials to facilitate
latent space projection.

Canterakis [1999] showed that a set of orthogonal functions which are complete
in unit ball can take the form Zn,l,m(r, θ, φ) = Qnl(r)Yl,m(θ, φ), where Qnl is the linear
component and Yl,m(θ, φ) is the angular component. The variables r, θ and φ are
radius, azimuth angle and polar angle, respectively. We choose Yl,m(θ, φ) to be
spherical harmonics, since they are complete and orthogonal in S2.

For the linear component, we do not use the Zernike linear polynomials as in
Canterakis [1999], as they do not contain the necessary properties to achieve the
translational behaviour of convolution kernels [Ramasinghe et al., 2019a]. Therefore,
we derive a novel set of orthogonal functions, which are complete in 0 < r < 1, and
can approximate any function in the same range. Furthermore, it is crucial that these
functions contain necessary properties to achieve the translation of kernels while
performing convolution. Therefore, we choose the following function as the base
function:

fnl = (−1)ln
n

∑
k=0

((n− l)r)k

k!
. (4.3)

It can be seen that,
fnl ≈ (−1)ln exp(r(n− l)), (4.4)

as n increases, for small r. Therefore, we use the approximation given in Eq. 4.4 in
future derivations. As we show in Section 4.3.2, this property is vital for achieving the
translation of kernels. Next, we orthogonalize fnl(r) to obtain a new set of functions
Qnl(r). Consider the orthogonality∫

B3
Zn,l,mZn′,l′,m′ = 0, ∀n 6= n′, l 6= l′, m 6= m′. (4.5)

If we consider only the linear component, the orthogonality condition should be∫ 1

0
Qn,lQn′,l′r2dr = 0, ∀n 6= n′, l 6= l′. (4.6)

Therefore, Qn,l should be orthogonal with respect to the weight function w(r) = r2.
We define,

Qnl(r) = fnl(r)−
n−1

∑
k=0

k

∑
m=0

CnlkmQkm(r) (4.7)

68 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

where n ≥ 0, n ≥ l ≥ 0 and Cnlkm is a constant. Since Qnl should be an orthogonal
set, the inner product between any two different Qnl functions is zero. Therefore, we
obtain,

〈Qnl , Qn′ l′〉 = 〈 fnl , Qn′ l′〉 −
n−1

∑
k=0

k

∑
m=0

Cnlkm〈Qkm, Qn′ l′〉

Since 〈Qnl , Qn′ l′〉 = 0, we get:

Cnln′ l′ =
〈 fnl , Qn′ l′〉
‖ Qn′ l′ ‖2 . (4.8)

Following this process, we can obtain the set of orthogonal functions Qnl for n ≥
0, n ≥ l. The derived polynomials up to n = 5, l = 5 are shown in Table. 4.1. In
Section 4.3.1.3, we prove the completeness property of the derived functions.

Table 4.1: The derived Qnl polynomials up to n = 5, m = 5.

Polynomial Expression

Q00 0
Q10 1. + 2x
Q11 −1.− 1x
Q20 −9.79− 10.65x + 9x2

Q21 5.29 + 6.29x− 4x2

Q22 −1.99− 3.63x + x2

Q30 −123.58− 158.11x + 87.46x2 + 32x3

Q31 70.26 + 89.41x− 50.31x2 − 13.5x3

Q32 15.86 + 22.27x− 11.06x2 − 0.5x3

Q33 −768.81− 1006.25x + 512.65x2 + 139.10x3 + 104.16x4

Q40 −35.86− 46.15x + 25.59x2 + 4x3

Q41 422.87 + 550.70x− 287.81x2 − 73.52x3 − 42.66x4

Q42 −768.81− 1014.25x + 480.65x2 + 73.77x3 + 13.5x4

Q43 −776.81− 1034.25x + 454.65x2 + 50.43x3 − 2.66x4

Q44 −768.81− 1022.25x + 464.65x2 + 56.43x3 + 0.16x4

Q50 −3683.18− 4855.97x + 2342.20x2 + 509.59x3 + 340.36x4 + 324x5

Q51 1960.80 + 2578.79x− 1263.64x2 − 280.02x3 − 167.77x4 − 130.20x5

Q52 −981.80− 1286.88x + 643.53x2 + 141.74x3 + 72.23x4 + 42.66x5

Q53 463.12 + 604.69x− 309.13x2 − 64.52x3 − 25.87x4 − 10.12x5

Q54 −208.26− 272.17x + 140.81x2 + 25.87x3 + 7.44x4 + 1.33x5

Q55 91.29 + 122.33x− 61.70x2 − 9.53x3 − 2.07x4 − 0.04x5

4.3.1.3 Completeness in B3

In this section, we prove the completeness in B3 for the set of functions {Qnl} derived
in Section 4.3.1.2.

§4.3 Methodology 69

Condition 1: Consider the orthogonal set {pn} defined in L2[0, 1]. Then, {pn} is complete
in space L2[0, 1] if and only if there is no non-zero element in L2[0, 1] that is orthogonal to
every {pn}.

To show that fnl is complete over L2[0, 1], we first prove the completeness of the
set {Φn}, which is obtained by orthogonalizing the set {1, x, x2, x3, ...}. Let Ψ(x) be
an element in L2[0, 1], which is orthogonal to every element of {1, x, x2, x3, ...}. Then,
suppose the following relationship is true:

〈Ψ, e2πikx〉 =
∞

∑
n=0

(2πikn)n

n!
〈Ψ, xn〉 = 0, (4.9)

where k is a constant. However, we know that {e2πikx}k=∞
k=0 is the complex exponential

Fourier basis, and is both complete and orthogonal. Therefore, if Eq. 4.9 is true, Ψ = 0,
which gives us the result, i.e., 〈Ψ, xn〉 = 0 ≡ Ψ = 0. Equivalently, since {Φn} is
obtained by orthogonalization of {1, x, x2, x3, ...}, 〈Ψ, {Φn}〉 = 0 ≡ Ψ = 0. Hence,
according to Condition 1, {Φn} is complete in L2[0, 1].

Next, we consider the set Qn,l . Since Qn,l is orthogonalized using the basis
functions in Eq. 4.21, it is enough to show that fnl is complete over L2[0, 1]. Let Θ be a
function defined in L2[0, 1]. Then, suppose the following relationship is true:

〈Θ, fn,l〉 = (−1)ln
n

∑
k=0

((n− l)k

k!
〈Θ, rk〉 = 0. (4.10)

For Eq. 4.10 to be true, 〈Θ, rk〉 = 0 for k = {0, 1, 2, ...}. But we showed that this
condition is satisfied if and only if Θ = 0. Therefore, 〈Θ, fn,l〉 = 0, ∀n ≥ l ≥ 0 ≡ Θ =
0. Hence, fn,l is complete in L2[0, 1].

4.3.1.4 Relaxation of orthogonality of functions in B3

Computing Cnln′ l′ using Eq. 4.8 ensures the orthogonality of Qnl . Since Qnl and
Ylm are both orthogonal and complete, projecting the input shape f onto the set of
functions Znlm, n ≥ l ≥ m ≥ 0, enables us to reconstruct f by:

f (θ, φ, r) =
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ωn,l,m(f)Zn,l,m(θ, φ, r), (4.11)

where spectral moment Ωn,l,m(f) can be obtained using

Ωn,l,m(f) =
∫ 1

0

∫ 2π

0

∫ π

0
f (θ, φ, r)Zn,l,mr2 sin φ drdφdθ.

Representing f in spectral terms, as in Eq. 4.11, enables easier convolution in spectral
space, as derived in Section 4.3.2.

However, we argue that since 3D point clouds across different object classes
contain redundant information, projecting the point clouds in to a more discriminative
latent space can improve classification accuracy. Our aim here is to reduce redundant

70 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

Figure 4.2: The overall CNN architecture. Our proposed design is a light-weight
model, comprising of only three weight layers. Our networks aims to achieve a
compact latent representation and volumetric feature learning via convolutions in B3.

information and noise from the input point clouds and map it to a more discriminative
point cloud, which concentrates on discriminative geometric features. Therefore, we
make Cnln′ l′ trainable, which allows the latent space projection f̂ of the input shape f
as follows:

f̂ (θ, φ, r) =
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ω̂n,l,m(f)Ẑn,l,m(θ, φ, r), (4.12)

where spectral moment Ω̂n,l,m(f) can be obtained using,

Ω̂n,l,m(f) =
∫ 1

0

∫ 2π

0

∫ π

0
f (θ, φ, r)Ẑ†

n,l,mr2 sin φ drdφdθ,

where

Ẑn,l,m(θ, φ, r) = Q̂nl(r)Ylm(θ, φ) (4.13)

and

Q̂nl(r) = fnl(r)−
n−1

∑
k=0

k

∑
m=0

WnlkmQ̂km(r). (4.14)

Here, the set {Wnlkm} denotes trainable weights. Note that since the final orthogo-
nal function is a product of the linear and the angular parts, making both functions
learnable is redundant.

4.3.2 Convolution of functions in B3

Let the north pole be the y axis of the Cartesian coordinate system and the kernel
is symmetric around y. Let f (θ, φ, r), g(θ, φ, r) be the functions of object and kernel

§4.3 Methodology 71

respectively. Then, convolution of functions in B3 is defined by:

f ∗ g(α, β, r′)〈 f (θ, φ, r), T′r{τ(α,β)(g(θ, φ, r))}〉 (4.15)

=
∫ 1

0

∫ 2π

0

∫ π

0
f (θ, φ, r)T′r{τ(α,β)(g(θ, φ, r))} sin φ dφdθdr,

where τ(α,β) is an arbitrary rotation that aligns the north pole with the axis towards
the (α, β) direction (α and β are azimuth and polar angles respectively) and T′r is
translation by r′.

To achieve both latent space projection and convolution in B3 in single step, we
present the following theorem.

Theorem 4.1. Suppose f , g : X −→ R3 are square integrable functions defined in B3 so that
〈 f , f 〉 < ∞ and 〈g, g〉 < ∞. Further, suppose g is symmetric around the north pole and
τ(α, β) = Ry(α)Rz(β) where R ∈ SO(3) and T′r is translation of each point by r′. Then,

∫ 1

0

∫ 2π

0

∫ π

0
P{ f (θ, φ, r)}T′r{τ(α,β)(g(θ, φ, r))} sin φ dφdθdr

≈ 4π

3

∞

∑
n=0

n

∑
l=0

l

∑
m=−l
〈 fnl(r), Qn′ l(r)〉(e(n−l)r′ − e(n

′−l)r′)

Ω̂n,l,m(f)Ω̂n,l,0(g)Yl,m(θ, φ), (4.16)

where, Ω̂n,l,m(f), Ω̂n,l,0(g) and Yl,m(θ, φ) are (n, l, m)th spectral moment of f , (n, l, 0)th

spectral moment of g, and spherical harmonics function, respectively. P{·} is the projection to
a latent space, τ(α, β) = Ry(α)Rz(β) where R ∈ SO(3) and Tr is translation of each point
by r.

Proof. The input function f is projected to the latent space shape f̂ by,

f̂ (θ, φ, r) =
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ω̂n,l,m(f)Ẑn,l,m(θ, φ, r), (4.17)

where spectral moment Ω̂n,l,m(f) can be obtained using,

Ω̂n,l,m(f) =
∫ 1

0

∫ 2π

0

∫ π

0
f (θ, φ, r)Ẑ†

n,l,mr2 sin φ drdφdθ. (4.18)

and,

Ẑn,l,m(θ, φ, r) = Q̂nl(r)Ylm(θ, φ), (4.19)

where,

Q̂nl(r) = fnl(r)−
n−1

∑
k=0

k

∑
m=0

WnlkmQ̂km(r), (4.20)

fnl = (−1)ln
n

∑
k=0

((n− l)r)k

k!
, (4.21)

72 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

and,

Yl,m(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos φ)eimθ , (4.22)

where φ ∈ [0, π] is the polar angle, θ ∈ [0, 2π] is the azimuth angle, l ∈ Z+ is a non-
negative integer, m ∈ Z is an integer, |m| < l, and Pm

l (·) is the associated Legendre
function,

Pm
l (x) = (−1)m (1− x2)m/2

2l l!
dl+m

dxl+m (x2 − 1)l . (4.23)

In Eq. 4.20, the set {Wnlkm} denotes trainable weights. Using this result, we can
rewrite f ∗ g(r′, α, β) as,

f ∗ g(r, α, β) = 〈
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

Ω̂n,l,m(f)Ẑn,l,m(θ, φ, r),

Tr′{τ(α,β)(
∞

∑
n′=0

n

∑
l′=0

l′

∑
m′=−l′

Ω̂n′,l′,m′(g)Ẑn′,l′,m′(θ, φ, r)))}〉B3

(4.24)

Using the properties of inner product, this can be rewritten as,

f ∗ g(r′, α, β) =
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

∞

∑
n′=0

′n

∑
l′=0

l′

∑
m′=−l′

Ω̂n,l,m(f)Ω̂n′,l′,m′(g)

〈Ẑn,l,m(θ, φ, r), Tr′{τ(α,β)(Ẑn′,l′,m′(θ, φ, r))}〉B3

(4.25)

Consider the term,

Γ = 〈Ẑn,l,m(θ, φ, r), Tr′{τ(α,β)(Ẑn′,l′,m′(θ, φ, r)))}〉B3

= 〈Q̂nl(r)Ylm(θ, φ), Tr′{τ(α,β)(Q̂n′ l′(r)Yl′m′(θ, φ))}〉B3

(4.26)

Γ can be decomposed into its angular and linear components as,

Γ =
∫ 1

0
Q̂nl(r)Tr′{Q̂n′ l′(r)}r2dr

∫ 2π

0

∫ π

0
Ylm(θ, φ)τ(α,β)(Yl′m′(θ, φ))}sinφdφdθ. (4.27)

First, consider the angular component,

Ang(Γ) =
∫ 2π

0

∫ π

0
Ylm(θ, φ)τ(α,β)(Yl′m′(θ, φ))}sinφdφdθ. (4.28)

Since g(θ, φ, r) is symmetric around y, using the properties of spherical harmonics,
Eq. 4.28 can be rewritten as,

Ang(Γ) =
∫ 2π

0

∫ π

0
Ylm(θ, φ)

l′

∑
m′′=−l′

Yl′,m′′Dl′
m′′0(α, β)}sinφdφdθ (4.29)

§4.3 Methodology 73

where Dl′
mm′ is the Wigner-D matrix. But Dl′

m′′0 = Yl′,m′′ , and hence,

Ang(Γ) =
l′

∑
m′′=−l′

Yl′,m′′(α, β)
∫ 2π

0

∫ π

0
Ylm(θ, φ)Yl′,m′′(θ, φ)}sinφdφdθ (4.30)

Since spherical harmonics are orthogonal,

Ang(Γ) = CangYl,m(α, β), (4.31)

where Cang is a constant. Consider the linear component of Eq. 4.27. It is important to
note that for simplicity, we derive equations for the orthogonal case and use the same
results for non-orthogonal case. In practice, this step does not reduce accuracy.

Lin(Γ) =
∫ 1

0
Q̂nl(r)Tr′{Q̂n′ l′(r)}r2dr. (4.32)

Since Q̂nl(r) is a linear combination of fnl ≈ (−1)ln exp(r(n− l)), it is straightforward
to see that,

Qnl(r + r′) = fnl(r) exp((n− l)r′)−
n−1

∑
k=0

k

∑
m=0

CnlkmQkm(r) exp(k−m)r′. (4.33)

Also, we have derived that l = l′ from the result in Eq. 4.31. Applying this result and
Eq. 4.33 to Eq. 4.32 gives,

〈Qnl(r + r′),Qn′ l(r)〉 = 〈 fnl(r + r′), Qn′ l(r)〉 −
n−1

∑
k=0

k

∑
m=0

Cnlkm〈Qkm(r + r′), Qn′ l(r)〉,

(4.34)

〈Qnl(r + r′),Qn′ l(r)〉 = 〈 fnl(r), Qn′ l(r)〉e(n−l)r′ −
n−1

∑
k=0

k

∑
m=0

Cnlkm〈Qkm(r)e(k−m)r′ , Q(n′ l(r)〉.

(4.35)

Since Qkm and Qn′ l are orthogonal,

〈Qnl(r + r′),Qn′ l(r)〉 = 〈 fnl(r), Qn′ l(r)〉e(n−l)r′ − Cnln′ le(n
′−l)r′ ||Qn′ l ||2. (4.36)

But since for orthogonal case, Cnln′ l′ =
< fnl ,Qn′ l′>
||Qn′ l′ ||2

,

〈Qnl(r + r′),Qn′ l(r)〉 = 〈 fnl(r), Qn′ l(r)〉e(n−l)r′ − 〈 fnl(r), Qn′ l′(r)〉e(n
′−l)r′ , (4.37)

〈Qnl(r + r′), Qn′ l(r)〉 = 〈 fnl(r), Qn′ l(r)〉(e(n−l)r′ − e(n
′−l)r′). (4.38)

Combining Eq. 4.31 and Eq. 4.38 for Eq. 4.25 and choosing the normalization constant

74 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

to be 4π
3 (since the integration is over unit ball) gives,

f ∗ g(r′, α, β) ≈ 4π

3

∞

∑
n=0

∞

∑
n′=0

n

∑
l=0

l

∑
m=−l
〈 fnl(r), Qn′ l(r)〉

(e(n−l)r′ − e(n
′−l)r′)Ω̂n,l,m(f)Ω̂n′,l,0(g)Yl,m(α, β).

(4.39)

4.3.3 Network Architecture

Our experimental architecture consists of two convolution layers and a fully connected
layer. We employ four kernels in the first convolution layer and 16 kernels in the
second convolution layer, each followed by group normalization [Wu and He, 2018]
and a ReLU layer. The experimental architecture is illustrated in Figure 4.2. We
use n = 5 for implementing Eq. 4.15 and softmax cross-entropy loss as the objective
function during training. For training, we use a two step process. First, we train
polynomial weights using a learning rate of 10−5, and then train kernel weights using
a learning rate of 0.01. We used the Adam optimizer for calculating gradients with
parameters β1 = 0.9, β2 = 0.999, and ε = 1× 10−8, where parameters refer to the
usual notation. We use 20k iterations to train polynomials weights and 30k iterations
to train kernel weights. We use a single GTX 1080Ti GPU for training and the model
takes around 30 minutes to complete a single epoch during training on ModelNet10
dataset.

4.4 Experiments

We evaluate the proposed methodology on 3D object classification and 3D object
retrieval tasks using recent datasets: ModelNet10, ModelNet40, McGill 3D, SHREC’17
and OASIS. We also conduct a thorough ablation study to demonstrate the effective-
ness of our derivations and design choices.

4.4.1 3D Object Classification Performance

A key feature of our proposed pipeline is the projection of the input 3D shapes into a
more discriminative latent shape, before feeding them into convolution layers. One
critical advantage of this step is that original subtle differences across object classes
are magnified in order to leverage the feature extraction capacity of convolution layers.
Therefore, the proposed network should be able to capture more discriminative
features in the lower layers, and provide better classification results with a smaller
number of layers, compared to other state-of-the-art works which directly extract
features from the original shape. To illustrate this, we present a model depth vs
accuracy analysis on ModelNet10 and ModelNet40 in Table 4.2, and compare the
effectiveness of our network with other comparable state-of-the-art approaches.

§4.4 Experiments 75

M
et

ho
d

M
od

al
it

y
V

ie
w

s
#L

ay
er

s
M

od
el

N
et

10
M

od
el

N
et

40

Vo
xN

et
(I

R
O

S’
15

)
[M

at
ur

an
a

an
d

Sc
he

re
r,

20
15

]
Vo

lu
m

e
-

-
92

.0
%

83
.0

%
3D

G
A

N
(N

IP
S’

16
)

[W
u

et
al

.,
20

16
]

Vo
lu

m
e

-
-

91
.0

%
83

.3
%

3D
Sh

ap
eN

et
(C

V
PR

’1
5)

[W
u

et
al

.,
20

15
]

Vo
lu

m
e

4-
3D

C
on

v
+

2F
C

83
.5

%
77

%
V

R
N

((N
IP

S’
16

))
[B

ro
ck

et
al

.,
20

16
]

Vo
lu

m
e

-
45

C
on

v
93

.6
%

91
.3

%

G
IF

T
((C

V
PR

’1
6)

)
[B

ai
et

al
.,

20
16

]
R

G
B

64
-

92
.4

%
83

.1
%

Pa
ir

w
is

e
((C

V
PR

’1
6)

)
[J

oh
ns

et
al

.,
20

16
]

R
G

B
12

23
C

on
v

92
.8

%
90

.7
%

M
V

C
N

N
(I

C
C

V
’1

6)
[S

u
et

al
.,

20
15

]
R

G
B

12
60

C
on

v
+

36
FC

-
90

.1
%

M
H

BN
(C

V
PR

’1
8)

[Y
u

et
al

.,
20

18
c]

R
G

B
6

78
C

on
v

+
18

FC
95

.0
%

94
.7

%
D

ee
pP

an
o

(S
PL

’1
5)

[S
hi

et
al

.,
20

15
]

R
G

B
4C

on
v

+
3F

C
85

.5
%

77
.6

3%

EC
C

(C
V

PR
’1

7)
[S

im
on

ov
sk

y
an

d
K

om
od

ak
is

,2
01

7]
Po

in
ts

-
4C

on
v

+
1F

C
90

.0
%

83
.2

%
K

d-
N

et
w

or
ks

(I
C

C
V

’1
7)

[K
lo

ko
v

an
d

Le
m

pi
ts

ky
,2

01
7]

Po
in

ts
-

15
K

D
93

.5
%

91
.8

%
SO

-N
et

(C
V

PR
’1

8)
[L

ie
t

al
.,

20
18

b]
Po

in
ts

11
FC

95
.7

%
93

.4
%

Po
in

tN
et

(C
V

PR
’1

7)
[Q

ie
t

al
.,

20
17

a]
Po

in
ts

-
5C

on
v

+
2S

TL
-

89
.2

%
LP

-3
D

C
N

N
(C

V
PR

’1
9)

[K
um

aw
at

an
d

R
am

an
,2

01
9]

Po
in

ts
-

15
C

on
v

+
3F

C
-

92
.1

%
O

ur
s

Po
in

ts
-

2C
on

v
+

1F
C

94
.2

%
91

.8
%

Ta
bl

e
4.

2:
M

od
el

ac
cu

ra
cy

vs
de

pt
h

an
al

ys
is

on
M

od
el

N
et

10
an

d
M

od
el

N
et

40
da

ta
se

ts
.

76 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

Method FLOPS ModelNet40
(inference)

PointNet [Qi et al., 2017a] 14.70B 89.2%
SpecGCN [Wang et al., 2018] 17.79B 92.1%
PCNN [Atzmon et al., 2018] 4.70B 92.3%
PointNet++ [Qi et al., 2017b] 26.04B 91.9%
3DmFV-Net [Ben-Shabat et al., 2017] 16.89B 91.6%
PointCNN [Li et al., 2018c] 25.30B 92.2%
DGCNN [Wang et al., 2018a] 44.27B 93.5%
Ours 1.31B 91.8%

Table 4.3: Our model complexity is much lower compared to state-of-the-art 3D
classification models. The FLOPS (inference time) comparisons are reported according

to Li et al. [2018c] settings with 16 batch size.

State-of-the-art work can be mainly categorized into three types: volume based,
RGB based and Points based. Volume based methods generally rely on volumetric
representation of the 3D shape such as voxels. VoxNet [Maturana and Scherer, 2015]
shows the best performance among volume based models, with an accuracy of 92.0%
in ModelNet10 and 83.0% in ModelNet40, which is lower than our model’s accuracy.
It is interesting to see that 3DShapeNets [Wu et al., 2015], and VRN [Brock et al., 2016]
have significantly more layers compared to our model, although accuracies are lower.
In general, our model performs better and has a lower model depth compared to
volume based methods.

RGB based models generally follow the projection of the 3D shape into 2D repre-
sentations, as an initial step for feature extraction. We perform better than all the RGB
based methods, except for MHBN [Yu et al., 2018c], which has accuracies 95.0% and
94.7% over ModelNet10 and ModelNet40 respectively. However, MHBN contains six
views and for each view they employ a VGG-M network for initial feature extraction.
This results in a significantly complex setup, which contains 96 trainable layers. In
contrast, our model uses a single view and three trainable layers. Generally, RGB
based models use multiple views, pre-trained deep networks and ensembled models,
which results in increased model complexity. In contrast, our model use a single view
and does not use pre-trained models, and achieves the second highest performance
compared to RGB based models.

Point based models directly consume point clouds. Our model achieves the
second best performance in this category, the highest being SO-NET [Li et al., 2018b].
However, SO-NET contains 11 fully connected layers, while our model only contains
three layers. Our model is able to outperform the other point based setups, although
their model depths are larger.

Overall, our model achieves a performance mark comparable to the best models,
with a much shallower architecture. Our model contains the lowest number of
trainable layers compared to all the models. This analysis on ModelNet10 and

§4.4 Experiments 77

ModelNet40 clearly reveals the efficiency and better feature extraction capacity of
our approach. Table 8.7 depicts the computational efficiency of BCS compared to
state-of-the-art. With just 1.31B FLOPs, we outperform the closest contender PCNN
[Atzmon et al., 2018] by a significant 3.39B margin.

4.4.2 3D Object Retrieval Performance

In this section, we compare the performance of our approach in 3D object retrieval. We
use the McGill 3D dataset and SHREC’17 dataset for our experiments. We first obtain
the feature vectors computed by each kernel in the second layer, and concatenate
them. Then, we apply an autoencoder on the concatenated vector and retrieve a
1000-dimensional descriptor. Then we measure the cosine similarity between input
and target shapes to measure the 3D object retrieval performance. We use the nearest
neighbour performance and the evaluation metric. Table 4.4 depicts the results on the
McGill Dataset. Out of the six state-of-the-art models compared, our model achieves
the best retrieval performance. Table 4.5 illustrates the performance comparison on
the SHREC’17 dataset, where our approach gives the second best performance, below
Furuya and Ohbuchi [2016]. Figure 4.6 depicts our training curves for polynomial
weights and kernel weights. The training curves are obtained for ModelNet10.

4.4.3 Ablation Study

In this section, we conduct an ablation study on our model and discuss various design
choices, as illustrated in Figure 4.4. Firstly, we use a single convolution layer instead
of two, and achieve an accuracy of 74.2% over ModelNet10. Then, we investigate the
effect of using a higher number of convolution layers. We get accuracies 91.3% and
87.5%, when using three and four convolution layers respectively. Therefore, using
two convolution layers yields the best performance. An important feature of our
convolution layer is the translation of convolution kernels, in addition to rotation. To
evaluate the effect of this, we use only rotating kernels and measure the performance,
and achieve an accuracy of 80.2%. Therefore, it can be concluded that having the
translational movements of the kernel has caused an accuracy increment of 14%,
which is significant. Next, we measure the effect of latent space projection. To this
end, we use orthogonal polynomials derived in Equations 4.7-4.8 for convolution,
instead of making them learnable. This removes the latent space projection of the
input, as the original object is reconstructed using spectral moments. After removing
the latent space projection, the accuracy is dropped by 20.3%, which clearly reveals the
significance of this feature. Then, we replace our convolution layers with volumetric
convolution [Ramasinghe et al., 2019a] layers and spherical convolution layers [Cohen
et al., 2018b] and get 88.5% and 77.3% accuracy respectively. This shows that our
convolution layer has a better feature extraction capacity compared to other convolu-
tion operations. One key reason behind this can be the translational movements of
our kernels and the combined latent space projection step, which the aforementioned
convolution methods lack.

78 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

Figure 4.3: Ablation study on ModelNet10 in 3D object classification.

Table 4.4: 3D object retrieval results comparison with state-of-the-art on McGill
Dataset.

Method Accuracy

Bashiri et al. [2019] (arxiv’19) 0.9646%
Zeng et al. [2018] (IET’18) 0.981%
Han et al. [2018] (IP’18) 0.8827%
Tabia et al. [2014] (CVPR’14) 0.977%
Papadakis et al. [2008] (3DOR’w) 0.957%
Lavoué [2012] (TVC’14) 0.925%
Xie et al. [2015] (CVPR’15) 0.988%

Ours 0.990%

Moreover, we test our model using basis functions in Eq. 4.21 as the projection
functions, instead of learnable functions. Also, we again test the model using orthogo-
nal functions. In both cases, the performance is lower compared to learnable functions.
Furthermore, instead of soft-max cross entropy, we use WSoftmax [Liu et al., 2017] and
GASoftmax [Liu et al., 2017] and achieve only 84.0% and 83.0% respectively. Therefore,
using soft-max cross entropy as the loss function is justified. We also evaluate the
effect of sampling density on accuracy. As shown in Figure 4.4, accuracy drops below
94.2%—which is reported by final architecture—when using a denser representation.
Similarly, accuracy drops to 86.7% when using r = 10, θ = 18, φ = 9 as sampling
intervals. Therefore, using r = 25, θ = 36, φ = 18 as in the final architecture seems to
be the ideal design choice. We use four different distance measures in the 3D object
retrieval task and compare the performance: cosine similarity, Euclidean distance, KL
divergence, and Bhattacharya distance. Out of these, cosine similarity yields the best
performance, with a mAP of 0.466.

§4.4 Experiments 79

Figure 4.4: Ablation study on SHREC’17 in 3D object retrieval.

Figure 4.5: Training curves of our architecture on ModelNet10 for polynomial weights.

Figure 4.6: Training curves of our architecture on kernel weights.

80 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

Table 4.5: 3D object retrieval results comparison with state-of-the-art on SHREC’17.

Method mAP

Furuya and Ohbuchi [2016] (BMVC’16) 0.476
Esteves et al. [2018b] (ECCV’18) 0.444
Tatsuma and Aono [2009] (TVC’09) 0.418
Bai et al. [2016] (CVPR’16) 0.406

Ours 0.466

Table 4.6: Multi-layer architectures for highly non-polar and textured shape classifica-
tion. Our model shows an improvement with more layers.

Model Accuracy
Ours (1 Conv layer) 66.3%
Ours (2 Conv layers) 82.7%
Ours (3 Conv layers) 86.7%
Ours (4 Conv layers) 88.1%
Ours (5 Conv layers) 87.0%

4.4.4 Classification of Complex Shapes

The proposed convolution layer offers two key advantages: 1) the ability to simultane-
ously model both shape and texture information, and 2) handling non-polar objects.
However, we used ModelNet10 to conduct the ablation study shown in Figure 4.6,
which contains relatively simple shapes (i.e. not dense in B3), and it is clear from the
results that the accuracy drops when more than two convolution layers are used. A
possible reason for this behaviour is overfitting. Since our convolution layer can cap-
ture highly discriminative features from the input functions, using more parameters
can cause overfitting on relatively simpler shapes, and thus, a drop in classification
accuracy. To test this hypothesis, we conduct an experiment on a more challenging
dataset, which contains highly non-polar and textured objects.

In this experiment, we use OASIS-3 dataset [Fotenos et al., 2008] to sample 1000
3D brain scan images. The dataset includes brain scan images from both Alzheimer’s
disease patients and healthy subjects. A key property of these images is that they have
texture information and are highly dense in B3. Firstly, we split the sampled data
in to train and test sets, with 800 and 200 images for each set, respectively. To avoid
bias, we include an equal number of Alzheimer cases and healthy cases in both train
and test sets. Then, we evaluate different network architectures using the dataset,
varying the number of convolution layers. We use cross entropy loss function in this
experiment. The results are shown in Table 4.6.

As evident from Table 4.6, the classification accuracy increases with the number of
convolution layers, up to four layers. Hence, it can be concluded that more challenging
objects allow our model to demonstrate its full capacity.

§4.5 Chapter summary 81

Table 4.7: Ablation study on the input point cloud density. We sample the input
points on a grid (r= 25, θ = 36, φ = 18) before feeding to the network.

Original point cloud sampling Accuracy
(r= 250, θ = 200, φ = 200) 94.22%
(r= 300, θ = 250, φ = 250) 94.21%
(r= 400, θ = 300, φ = 300) 94.23%
(r= 500, θ = 400, φ = 400) 94.20%

4.4.5 Ablation study on input point cloud density

A critical problem associated with directly consuming point clouds, in order to learn
features, is the redundancy of information. This property hampers optimal feature
learning using neural network based models, by imposing an additional overhead.
To verify this, we conduct an ablation study on the density of the input point cloud,
and observe the performance variations of our model. The obtained results are
reported in Table 4.7. As the results suggest, there is no clear variation of classification
performance, although the input sampling density is increased. Therefore, it can be
empirically concluded that input point clouds are not optimal to be directly fed to
learning networks, due to their inherent redundancy. As a result, significant reduction
in their density could still lead to comparable performance with that of the original
point cloud.

4.5 Chapter summary

In this chapter, we further extend the equivariant filters derived in chapter 3 to
naturally achieve equivariance against the SE(3) group. We propose a novel approach
called ‘Blended Convolution and Synthesis’ to analyse 3D data, which entails two
key operations: (1) learning a 3D descriptor obtained by projecting the input 3D
shape into a discriminative latent space and (2) convolving the 3D descriptor in B3

with roto-translational 3D kernels for extracting features. We derive a novel set of
polynomials in B3, and project the input data into a spectral space using the derived
polynomials to join these two operations into a single step. Furthermore, we use a
compact representation of the input data to reduce the density of the data distribution
and leverage the advantage of convolving functions in B3. Finally, we present a
light-weight architecture and achieve compelling results in 3D object classification
and 3D object retrieval tasks. One critical aspect of our work is that the proposed
convolution operator relaxes its orthogonality to achieve the equivariance. Hence,
although the proposed operator is efficient compared to the state-of-the-art, it can be
further optimized and needs further research in this regard.

82 Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.

Chapter 5

Rethinking Conditional-GAN
Training

5.1 Introduction

A key attribute that underpins the remarkable learning ability of humans is intuitive
physics (see Chapter 1). In this chapter, using a GAN as a use case, we demonstrate
that explicit injection of the prior physics of the problem into models, the performance
of machine learning models can be significantly elevated. Although we primarily
focus on vision based experiments in this chapter, it should be noted that the derived
formulae and developed insights are generic across any task.

Generative adversarial networks (GAN) are a family of deep generative models
that learns to model data distribution Y from random latent inputs z ∼ Z using a
stochastic generator function G : Z → Y [Goodfellow et al., 2014a]. A seemingly
natural extension from unconditional GANs to conditional GANs (cGAN) can be
achieved via conditioning both the discriminator and the generator on a conditioning
signal x ∼ X . However, such a straightforward extension can cause the models to
disregard the conditioning signal x [Isola et al., 2017; Pathak et al., 2016b; Lee et al.,
2019a; Ramasinghe et al., 2020b]. To overcome this unsought behavior, a reconstruction
loss is typically added to the objective function to penalise the model when it deviates
from x. This approach has been widely adapted for diverse tasks including image-to-
image translation [Wang et al., 2018; Isola et al., 2017], style transfer [Zhu et al., 2017a;
Junginger et al., 2018] and inpainting [Zeng et al., 2019a; Pathak et al., 2016b; Yang
et al., 2017a]. However, in spite of the wide usage, naively coupling the reconstruction
and the adversarial objectives entails undesirable outcomes as discussed next.

Many conditional generation tasks are ill-posed (many possible solutions exist
for a given input), and an ideal generator should be able to capture one-to-many
mappings between the input and output domains. Note that the stochasticity of G
typically depends on two factors, first the randomness of z and second the dropout
[Srivastava et al., 2014]. However, empirical evidence suggests the composition of
reconstruction and adversarial losses leads to limited diversity, despite the random
seed z. In fact, many prior works have reported that the generator often tends to
ignore z, and learns a deterministic mapping from X to Y , leaving dropout as the

83

84 Rethinking Conditional-GAN Training

only source of stochasticity [Isola et al., 2017; Lee et al., 2019a; Pathak et al., 2016b;
Ramasinghe et al., 2020b]. Additionally, Shao et al. [2018] and Arvanitidis et al. [2017]
demonstrated that from a geometrical perspective, latent spaces of generative models
(e.g., cGANs) tend to give a distorted view of the generated distribution, thus, the
Euclidean paths on the latent manifold do not correspond to the geodesics (shortest
paths) on the output manifold. This hinders many possibilities such as clustering in
the latent space, better interpolations, higher interpretability and ability to manipulate
the outputs. We show that the foregoing problems can be direct consequences of the
conventional training approach. Moreover, the naive coupling of regression loss and
the adversarial loss can also hamper the visual quality of the generated samples due
to contradictory goals of the two objective functions (see Sec. 5.2.1).

ℝ! ℝ"

bi-Lipschitz
mapping

Euclidian distance

Latent Manifold Output Manifold

Bicycle-GAN

DS-GAN
MR-GAN

Pix2Pix

Ours
(Pix2Pix-Geo)

0

0.05

0.1

0.15

0.2

0.25

60 80 100 120 140

Geodesic path

LP
IP

S
(H

ig
he

r =
 m

or
e

di
ve

rs
e)

FID
(Lower = more realistic)

Figure 5.1: Overview of our approach. Our training procedure encourages a bi-lipschitz
mapping between the latent and generated output manifolds, while mapping the
Euclidean shortest paths in the latent manifold to geodesics on the generated output
manifold, which allows better diversity and structure. We gain a considerable improve-
ment in both visual quality and the image diversity over our baseline Pix2Pix [Isola
et al., 2017], using the same network architecture (landmark→ faces image-to-image

translation task).

The aforementioned drawbacks have led multi-modal conditional generation
approaches to opt for improved objective functions [Yang et al., 2019a; Mao et al.,

§5.2 Motivation 85

2019], and even complex architectures compared to vanilla cGANs [Zhu et al., 2017b;
Ramasinghe et al., 2020b; Lee et al., 2019a]. However, in Sec. 5.2, we show that while
the existing solutions may improve the diversity and address the loss mismatch, they
can also aggravate the topology mismatch and distortion between the latent and
output manifolds. In contrast, we argue that these issues are not a consequence of
the model capacities of vanilla cGANs [Isola et al., 2017; Pathak et al., 2016b; Mathieu
et al., 2015a; Wang et al., 2018], rather a result of sub-optimal training procedures
that are insensitive to their underlying geometry. As a remedy, we show that the
foregoing problems can be addressed by systematically encouraging a structured
bijective and a continuous mapping, i.e., a homeomorphism, between the latent
and the generated manifolds. Furthermore, the structure of the latent space can be
enhanced by enforcing bi-lipschitz conditions between the manifolds. To this end, we
introduce a novel training procedure and an optimization objective to encourage the
generator and the latent space to preserve a bi-lipschitz mapping, while matching the
Euclidean paths in the latent space to geodesics on the output manifold.

We choose Pix2Pix [Isola et al., 2017], a vanilla cGAN, and modify its training
procedure to demonstrate that the proposed mapping improves the realism of the
outputs by removing the loss mismatch, enhances the structure of the latent space,
and considerably improves the output diversity. As the formulation of our conditional
generation approach is generic, we are able to evaluate the modified Pix2Pix model,
dubbed Pix2Pix-Geo, on a diverse set of popular image-to-image translation tasks.
We show that with the modified training approach, our Pix2Pix-Geo significantly
improves the prediction diversity of the cGAN compared to the traditional baseline
procedure and achieves comparable or better results than the more sophisticated
state-of-the-art models. Most importantly, our modifications are purely aimed at the
optimization procedure, which demands no architectural modifications to vanilla
cGANs.

5.2 Motivation

In conditional generative modeling, the ground truth (output) data distribution Y ⊆
RM is conditioned on an input distribution X ⊆ Rd. Consider the data distribution
Y|xp ⊂ Y conditioned on xp ∈ X . Then, the following adversarial objective function is
used to optimize the generator G by playing a min-max game against a discriminator
D, thereby approximating the distribution Y|xp ,

Ladv =
G

min
D

max E
y∼Y

[Φ(D(xp, y)]) + E
z∼ζ

[Φ(1− D(G(xp, z))], (5.1)

where Φ is a suitably chosen monotone function, y ∼ Y and z ∈ Rk is a latent vector
sampled from a prior distribution ζ. It has been widely observed that using the
above objective function in isolation, pushes the models to generate samples that are
not strongly conditioned on the input signal xp [Isola et al., 2017; Yang et al., 2019a;
Lee et al., 2019a; Zhu et al., 2017b]. Hence, the conventional cGAN loss couples a
reconstruction loss Lr (typically `1 or `2) with Eq. 5.1. However, as alluded in Sec. 5.1,

86 Rethinking Conditional-GAN Training

this entails several drawbacks: a) contradictory goals of the loss components, b)
conditional mode collapse, and c) insensitivity to the underlying manifold geometry.
Below, we will explore each of these issues in detail and contrast our method against
several recent attempts that have been proposed to resolve them. From this point
onwards, our analysis is focused on the conditional setting and we do not explicitly
denote the conditioning signal x in our notations, to avoid clutter.

5.2.1 Mismatch b/w adversarial & reconstruction losses

The optimal generator for the adversarial loss is,

G∗ = argmin
G

(
JSD

[
pg(ȳ)‖pd(y)

])
, (5.2)

where JSD is the Jensen–Shannon divergence, y is the ground-truth and ȳ = G(z) is
the generated output.

Now, let us consider the expected `1 loss, Ey,z
∣∣y− ȳ(z)

∣∣. Then,

Ey,z
∣∣y− ȳ(z)

∣∣ = ∫ ∞

−∞

∫ ∞

−∞

∣∣y− ȳ(z)
∣∣ p(y)p(z|y)dzdy. (5.3)

To find the minimum of the above, we find the value where the subderivative of
the ȳ(z) equals to zero as,

d
dȳ

[
∫ ∞

−∞

∫ ∞

−∞

∣∣y− ȳ(z)
∣∣ p(y)p(z|y)dydz] =

∫ ∞

−∞

∫ ∞

−∞
−sign(y− ȳ(z))p(y)p(z|y)dzdy = 0.

(5.4)

∫ ȳ

−∞

∫ ∞

−∞
−sign(y− ȳ(z))p(y)p(z|y)dzdy+

∫ ∞

ȳ

∫ ∞

−∞
−sign(y− ȳ(z))p(y)p(z|y)dzdy = 0.

(5.5)∫ ȳ

−∞

∫ ∞

−∞
p(y)p(z|y)dzdy =

∫ ∞

ȳ

∫ ∞

−∞
p(y)p(z|y)dzdy. (5.6)

Since z is randomly sampled, with enough iterations p(z) = p(z|y). Then,∫ ȳ

−∞
p(y)dy

∫ ∞

−∞
p(z)dz =

∫ ∞

ȳ
p(y)

∫ ∞

−∞
p(z)dz, (5.7)

∫ ȳ

−∞
p(y)dy =

∫ ∞

ȳ
p(y)dy, (5.8)

which means that the probability mass to left of ȳ is equal to the probability mass
to the right of ȳ. Therefore, ȳ is the median of the distribution p(y). Hence, unless
pd(y) is unimodal with a sharp peak, the optimal generator for the `1 loss does not
equal G∗. With a similar approach, it can be shown that `2 concentrates pg near the
average of the ground truth distribution. Hence, these contradictory goals of Lr and

§5.2 Motivation 87

Ladv force the model to reach a compromise, thereby settling in a sub-optimal position
in the parameter space.

Now, consider a function f such that f (z) = y and p(f (z)) = pd. Then, the
corresponding cumulative distribution is,

F(y) = p(f (z) ≤ y). (5.9)

Therefore, p(f (z)) can be obtained as,

p(f (z)) =
∂

∂y1
. . .

∂

∂yM

∫
{z∗∈Rk | f (z∗)≤ f (z)}

p(z)dkz. (5.10)

According to Eq. 5.10, f should be differentiable almost everywhere with a positive
definite JT

f J f , where J f is the Jacobian of f . Recall the Rademacher theorem,
Theorem 1: Let Z be an open subset of Rk and g : Z → RM a lipschitz function.
Then, g differentiable almost everywhere (with respect to the Lebesgue measure λ).
That is, there is a set E ⊂ Z with λ(Z/E) = 0 and such that for every z ∈ E there is a
linear function Lz : Rk → RM with

lim
z∗→z

g(z)− g(z∗)− Lz(z∗ − z)
|z∗ − z| = 0. (5.11)

Recall that our loss function enforce a bilipschitz mapping between the manifolds
with a positive definite metric tensor, hence, G−1 and G is differentiable almost
everywhere. That is, given enough flexibility, G converges to f almost surely, i.e.,
JSD[pg(ȳ)||pd(y)] ≈ 0. Hence, our adversarial loss and the other loss components are
not contradictory. This argument is empirically backed by our experiments, as we
show that the realism of the outputs of the Pix2Pix [Isola et al., 2017] model can be
significantly improved using the proposed method. Both Bicycle-GAN [Zhu et al.,
2017b] and MR-GAN [Lee et al., 2019a] remove this loss mismatch using a bijective
mapping and by matching the moments of the generated and target distributions,
respectively. However, their training procedures can disrupt the structure of the latent
space (see Sec. 5.2.3).

5.2.2 Conditional mode collapse

(Conditional) mode collapse is a commonly observed phenomenon in cGANs [Isola
et al., 2017; Lee et al., 2019a; Pathak et al., 2016b; Ramasinghe et al., 2020b]. In this
section, we discuss how the traditional training procedure may cause mode collapse
and show that the existing solutions tend to derange the structure of the latent
manifold.

Definition 5.1. [Yang et al., 2019a]. A mode H is a subset of Y s.t. maxy∈H
∥∥y−y∗

∥∥<α

for an output y∗ and α>0. Then, at the training phase, z1 is attracted to H by ε from an
optimization step if ‖y∗−Gθ(t+1)(z1)‖+ε < ‖y∗−Gθ(t)(z1)‖, where θ(t) are the parameters
of G at time t.

88 Rethinking Conditional-GAN Training

Proposition 5.1. [Yang et al., 2019a]. Suppose z1 is attracted to H by ε. Then, there exists a
neighbourhood N (z1) of z1, such that z is attracted to H by ε/2, ∀z ∈ N (z1). Furthermore,
the radius of N (z1) is bounded by an open ball of radius r where the radius is defined as,

r = ε

(
4 inf

z

{
max(τ(t), τ(t + 1))

})−1

, (5.12)

where τ(t) = ‖Gθ(t)(z1)−Gθ(t)(z)‖
‖z1−z‖ .

Proposition 5.1 yields that by maximizing τ(t) at each optimization step, one can
reduce the effect of mode collapse. Noticeably, the traditional training approach does
not impose such a constraint. Thus,‖z1 − z‖ can be arbitrary large for a small change
in the output and the model is prone to mode collapse. As a result, DSGAN [Yang
et al., 2019a], MS-GAN [Mao et al., 2019] and MR-GAN [Lee et al., 2019a] (implicitly)
aim to maximize τ. Although maximizing τ improves the diversity of the model, it
also causes an undesirable side-effect, as discussed next.

5.2.3 Loss of structure b/w output & latent manifolds

A sufficiently smooth generative model G(z) can be considered as a surface model
[Gauss, 1828]. This has enabled analyzing latent variable generative models using
Riemannian geometry [Arvanitidis et al., 2020; Wang et al., 2020a; Shao et al., 2018;
Khrulkov and Oseledets, 2018]. Here, we utilize the same perspective: a generator
can be considered as a function that maps low dimensional latent codes z ∈ Mz⊆Rk

to a data manifold My in a higher dimensional space RM where Mz and My

are Riemannian manifolds, i.e., z encodes the intrinsic coordinates of My. Note
that increasing τ in an unconstrained setting does not impose any structure in
the latent space. That is, since the range of

∥∥G(z1)−G(z)
∥∥ is arbitrary in different

neighbourhoods, stark discontinuities in the output space can occur, as we move along
Mz. Further note that Bicycle-GAN also does not impose such continuity on the
mapping. Thus, the distance between two latent codes onMz may not yield useful
information such as the similarity of outputs. This is a significant disadvantage, as
we expect the latent space to encode such details. Interestingly, if we can induce a
continuous and a bijective mapping, i.e., a homeomorphism betweenMy andMz,
while maximizing τ, the structure of the latent space can be preserved to an extent.

However, a homeomorphism does not reduce the distortion ofMz with respect
to Mz. In other words, although the arc length between z1 and z is smoothly
and monotonically increasing with the arc length between G(z1) and G(z) under a
homeomorphism, it is not bounded. This can cause heavy distortions between the
manifolds. More formally, maximizing τ encourages maximizing the components of
the Jacobian Jd×k = ∂G

∂z at small intervals. If G is sufficiently smooth, the Riemannian
metric M = JTJ can be obtained, which is a positive definite matrix that varies

§5.3 Discussion on Related works 89

smoothly on the latent space. Further, by the Hadamard inequality,

det(M) ≤
k

∏
i=0
‖Ji‖2 , (5.13)

where Ji are the columns of J. This leads to an interesting observation. In fact, det(M)
can be seen as a measure of distortion of the output manifold with respect to the latent
manifold. Therefore, although maximizing τ acts as a remedy for mode collapse, even
under a homeomorphism, it can increase the distortion betweenMz andMy.

In conditional generation tasks, it is useful to reduce the distortion between the
manifolds. Ideally, we would like to match the Euclidean paths onMz to geodesics
onMy, as it entails many advantages (see Sec. 5.1). Consider a small distance ∆z on
Mz. Then, the corresponding distance inMy can be obtained using Taylor expansion
as,

G(∆z) = J∆z + Θ(‖∆z‖) ≈ J∆z, (5.14)

where Θ(‖∆z‖) is a function which approaches zero more rapidly than ∆z. It is
evident from Eq. 5.14 that the corresponding distance on My for ∆z is governed
by J. Ideally, we want to constrain J in such a way that small Euclidean distances
∆z encourage the output to move along geodesics in My. However, since random
sampling does not impose such a constraint on J, the traditional training approach
and the existing solutions fail at this. Interestingly, it is easy to deduce that geodesics
avoid paths with high distortions [Gallot et al., 1990]. Recall that minimizing τ along
optimization curves reduces the distortion of My, thus, encourages ∆z to match
geodesics onMy. However, minimizing τ can also lead to mode collapse as discussed
in Sec. 5.2.2.

Although the above analysis yields seemingly contradictory goals, one can achieve
both by establishing a bi-lipschitz mapping betweenMy andMz, as it provides both
an upper and a lower-bound for τ. Such a mapping betweenMz andMy provides a
soft bound for det(M), and prevents mode collapse while preserving structure of the
latent manifold.
Remark 1: An ideal generator function should be homeomorphic to its latent space. The
structure of the latent space can be further improved by inducing a bi-lipschitz mapping
between the latent space and generator function output.1

Based on the above Remark, we propose a training approach that encourages a
structured bi-lipschitz mapping between the latent and the generated manifolds and
show that in contrast to the existing methods, the proposed method is able to address
all three issues mentioned above.

5.3 Discussion on Related works

Conditional generative modeling. Generative modeling has shown remarkable
progress since the inception of Variational Autoencoders (VAE) [Kingma and Welling,

1Note that every bi-lipschitz mapping is a homeomorphism.

90 Rethinking Conditional-GAN Training

2013] and GANs [Goodfellow et al., 2014a]. Consequently, the conditional counter-
parts of these models have dominated the conditional generative tasks [Isola et al.,
2017; Zhang et al., 2016; Ramasinghe et al., 2019d; Bao et al., 2017; Lee et al., 2018;
Zeng et al., 2019b]. However, conditional generation in multimodal spaces remain
challenging, as the models need to exhibit a form of stochasticity in order to generate
diverse outputs. To this end, Zhu et al. [2017b] proposed a model where they enforce a
bijective mapping between the outputs and the latent spaces. Yang et al. [2019a], Mao
et al. [2019], and Lee et al. [2019a] introduced novel objective functions to increase the
distance between the samples generated for different latent seeds. Chang et al. [2019]
used separate variables that can be injected at the inference to change the effects of loss
components that were used during the training. In contrast, VAE based methods aim
to explicitly model the latent probability distribution and at inference, diverse samples
are generated using different latent seeds. However, typically, the latent posterior
distribution of the VAE is approximated by a Gaussian, hence, the ability to model
more complex distributions is hindered. As a solution, Maaløe et al. [2016] suggested
using auxiliary variables to hierarchically generate more complex distributions, using
a Gaussian distribution as the input. Normalizing Flows [Rezende and Mohamed,
2015] are similar in concept, where the aim is to generate more complex posterior
distributions hierarchically. They apply a series of bijective mappings to an initial
simple distribution, under the condition that the Jacobian of these mappings are easily
invertible.

Geometrical analysis of generative models. Recent works have discovered in-
triguing geometrical properties of generative models [Arvanitidis et al., 2017; Shao
et al., 2018; Arvanitidis et al., 2020]. These works apply post-train analysis on the
models and confirm that Euclidean paths in the latent space do not map to geodesics
on the generated manifold. In contrast, we focus on preserving these properties
while training the model. In another direction, Wang et al. [2020a] introduced a
loss function that forces the real and generated distributions to be matched in the
topological feature space. They showed that by using this loss, the generator is able
to produce images with the same structural topology as in real images. Similarly,
Khrulkov and Oseledets [2018] proposed a novel performance metric for GANs by
comparing geometrical properties of the real and generated data manifolds. Different
to our work, these methods do not ensure homeomorphism between the latent and
generated manifolds.

5.4 Methodology

Our approach is motivated by three goals. R1) A bi-lipschitz mapping needs to be
established betweenMz andMy as,

1
C

dMz(z
p, zq) ≤ dMy(φ

−1(zp),φ−1(zq)) ≤ CdMz(z
p, zq), (5.15)

where d·(·) is the geodesic distance in the denoted manifold, zp and zq are two latent
codes, and C is a constant. Further, φ : My→Mz is a continues global chart map

§5.4 Methodology 91

with its inverse φ−1. R2) Euclidean distances inMz should map to geodesics inMy

for better structure. R3) The geodesic distance between two arbitrary points onMy

should correspond to a meaningful metric, i.e., pixel distance (note the loss mismatch
issue is implicitly resolved by R1). In Sec. 5.4.1, we explain our training procedure.

5.4.1 Geodesics and global bi-lipschitz mapping

In this Section, we discuss the proposed training procedure in detail. Consider a map
γMz : I →Mz, that parameterizes a curve onMz using t ∈ I ⊂ R. Then, there also
exists a map (G ◦ γMz) ≡ γMy : I →My. If γMy is a geodesic, this mapping can be
uniquely determined by a p ∈ My and an initial velocity V ∈ TpMy, where TpMy is
the tangent space ofMy at p as shown below: 2.

LetM be a manifold and γ : I →M be a geodesic satisfying γ(t0) = p, γ̇(t0) = V,
where p ∈ M, V ∈ TpM and I ⊂ R. TpM is the tangent bundle ofM. Let us choose
coordinates (xi) on a neighborhood U of p, s.t. γ(t) = (x1(t), x2(t), . . . , xn(t)). For γ

to be a geodesic it should satisfy the condition,

ẍk + ẋi(t)ẋj(t)Γk
ij(x(t)) = 0, (5.16)

where Eq. 5.16 is written using Einstein summation. Here, Γ are Christoffel symbols
that are functions of the Riemannian metric. Eq. 5.16 can be interpreted as a second-
order system of ordinary differential equations for the functions xi(t). Using auxiliary
variables vi = ẋi, it can be converted to an equivalent first-order system as,

ẋk(t) = vk(t), (5.17)

v̇k(t) = −vi(t)vj(t)Γk
ij(x(t)). (5.18)

On the other hand, existence and uniqueness theorems for first-order ODEs ensure that
for any (p, V) ∈ U ×Rn, there exists a unique solution η : (t0 − ε, t0 + ε)→ U ×Rn,
where ε > 0, satisfying the initial condition η(t0) = (p, V).

Now, let us define two geodesics, γ, β : I →M in an open interval with γ(t0) =
β(t0) and γ̇(t0) = β̇(t0). By the above mentioned uniqueness theorem, they agree on
some neighborhood of t0. Let α be the supremum of numbers b s.t. they agree on
[t0, b]. If α ∈ I, then using continuity it can be seen that, γ(α) = β(α) and γ̇(α) = β̇(α).
Then, by applying local uniqueness in a neighborhood of α, the curves agree on a
slightly larger interval, which is contradiction. Hence, arguing the similarity to the
left of t0, it can be seen that the curves agree on all I.

This is a useful result for us, as we can obtain a unique point p′ ∈ My only
by defining an initial velocity and following γMy for a time T (note that we do not
consider the highly unlikely scenario where two geodesics may overlap exactly at
t = T).

2V depends on p and hence the dependency of the mapping γM p on p does need to be explicitly
denoted.

92 Rethinking Conditional-GAN Training

To find the geodesic between two points on a Riemannian manifold, ideally, γMz

should be constrained as,

γ̈Mz = − 1
2 M−1

[
2(Ik ⊗ γ̇T

Mz
) ∂vec(M)

∂γMz
γ̇Mz

−
[

∂vec(M)
∂γMz

]T
(γ̇Mz ⊗ γ̇Mz)

]
, (5.19)

where Mk×k = JT
φ−1Jφ−1 is the metric tensor, Jφ−1 is the Jacobian, and ⊗ is the outer

product [Arvanitidis et al., 2017]. This approach is expensive, as it requires calculating
the Jacobians in each iteration and moreover, causes unstable gradients. However,
in practice, an exact solution is not needed, hence, we adapt an alternate procedure
to encourage γMy to be a geodesic, and use Eq. 5.19 only for evaluation purposes
in Sec. 6.6. Since geodesics are locally length minimizing paths on a manifold, we
encourage the model to minimize the curve length L(γMy(t)) on My in the range
t = [0, T]. L(γMy(t)) can be measured as follows:

L(γMy(t)) =
∫ 1

0

∥∥∥∥∥∂G ◦ γMz(t)
∂t

∥∥∥∥∥ dt,

=
∫ 1

0

∥∥∥∥∥∂G ◦ γMz(t)
∂γMz(t)

∂γMz(t)
∂t

∥∥∥∥∥ dt.

(5.20)

Eq. 5.20 can be expressed using the Jacobian Jφ−1 as,

=
∫ 1

0

∥∥∥∥∥Jφ−1
∂γMz(t)

∂t

∥∥∥∥∥ dt,=
∫ 1

0

√[
Jφ−1

∂γMz(t)
∂t

]T

Jφ−1
∂γMz(t)

∂t
dt. (5.21)

Since Mk×k = JT
φ−1Jφ−1 ,

=
∫ 1

0

√[
∂γMz(t)

∂t

]T

M
∂γMz(t)

∂t
dt.

Considering small ∆t = T
N ,

≈
N

∑
i=0

√[
∂γMz(t)

∂t

]T

M
∂γMz(t)

∂t
∆t =

N−1

∑
i=0

√
żT

i Mżi∆t. (5.22)

Further,
∥∥G(∆z)

∥∥ = ∆zTM∆z > 0, ∀∆z > 0, i.e., M is positive definite (since
dG
dz 6= 0, which is discussed next). Hence, by Hadamard inequality (Eq. 5.13), it can
be seen that we can minimize the ∂G

∂z , in order for L(γMy(t)) to be minimized. But
on the other hand, we also need γMy(T) = y. Therefore, we minimize ∂G

∂z at small

§5.4 Methodology 93

intervals along the curve by updating the generator at each ti = i∆t,

Lgh(ti, zti , y, x) =‖[α(ti) · y− (1− α(ti)) · G(zt0 , x)]

− G(zti , x)‖, (5.23)

where i = 0, 1, . . . , N, and α(·) is a monotonic function under the conditions
α(0) = 0 and α(T) = T. Another perspective for the aforementioned procedure is that

the volume element ε ofMy can be obtained as ε =
√∣∣det(M)

∣∣dz. Therefore, det(M)

is a measure of the distortion in My with respect to Mz and geodesics prefer to
avoid regions with high distortions. The procedure explained so far encourages a
bi-lipschitz mapping as in Eq. 5.15 and satisfies R1.

Proof. The loss Lgh in Sec. 5.4.1 forces G(z) to be smooth and det(∂(G)
dz) > 0, hence,

det(G) > 0. Let T(·) denote the unit tangent bundle of a given manifold. Then,
the map d f : TMz → TMy is also smooth. Therefore, the function h(p) =

∣∣d f (p)
∣∣,

p ∈ TMz is continuous too. Let 1/C and K denote its minimum and maximum,
respectively. Therefore, for every unit speed piecewise-smooth path γ : [a, b]→Mz,
the length of its image inMy is,

L(G ◦ γ) =
∫ b

a

∥∥∥∥∥∂(G ◦ γ)

dt

∥∥∥∥∥ dt. (5.24)

Further,
1
C

∫ b

a

∥∥∥∥∂γ

dt

∥∥∥∥ dt < L(G ◦ γ) < K
∫ b

a

∥∥∥∥∂γ

dt

∥∥∥∥ dt. (5.25)

If C < K,

1
K

∫ b

a

∥∥∥∥∂γ

dt

∥∥∥∥ dt < L(G ◦ γ) < K
∫ b

a

∥∥∥∥∂γ

dt

∥∥∥∥ dt. (5.26)

On the contrary, if C ≥ K,

1
C

∫ b

a

∥∥∥∥∂γ

dt

∥∥∥∥ ≤ LMy(G ◦ γ) ≤ C
∫ b

a

∥∥∥∥∂γ

dt

∥∥∥∥ . =⇒ 1
C

LMz(γ) ≤ LMy(γ) ≤ CLMz(γ).

(5.27)

Since the geodesic distances are length minimizing curves on My and Mz, it
follows that,

1
C

dMz(z
p, zq) ≤ dMy(φ

−1(zp), φ−1(zq)) ≤ CdMz(z
p, zq), (5.28)

where, d(·, ·) are the geodesic distances and C is a constant.

Proof. Consider a geodesic γV : I →M, defined in an open interval I ⊂ R, with an
initial velocity V ∈ TM. Let us also define a curve γ̃(t) = γV(ct). Then, γ̃(0) =

94 Rethinking Conditional-GAN Training

γV(0) = p ∈ M. Writing γV(t) = (γ1(t), γ2(t), . . . , γn(t)) in local coordinates,

˙̃γ(t) =
d
dt

γi
V(ct) = cγ̇i

V(ct). (5.29)

Further, it follows that ˙̃γ = cγ̇(0) = cV.
Next, let Dt and D̃t denote the covariant differentiation operators along γV and γ̃,

respectively. Then,

D̃t ˙̃γ(t) = [
d
dt

˙̃γk(t) + Γk
ij(γ̃(t)) ˙̃γi(t)]∂k (5.30)

= (c2γ̈k(ct) + c2Γk
ij(γV(ct))γ̇i

V(ct)γ̇j(ct))∂k (5.31)

c2Dtγ̇(ct) = 0. (5.32)

Hence, γ̃ is a geodesic, and therefore, γ̃ = γcV .

Further, as shown before, it can be shown that the enforced bijective mapping
removes the loss mismatch between the adversarial and reconstruction losses, hence,
improves the visual quality of the outputs (see Fig. 5.3).

According to R2), proposed training mechanism should map Euclidean paths
on Mz to geodesics on My. Therefore, we move z along Euclidean paths when
minimizing Lgh, which also ensures thatMz ⊆ Rk. Furthermore, we constrain ż to be
a constant, for simplicity. Since we ensure that the distortion ofMy along the paths of
z are minimum, in practice, it can be observed that the Euclidean paths on the latent
space are approximately matched to the geodesics on the output manifold (Fig. 5.7).

Further, let γV(t) be a geodesic curve with an initial velocity V. Then, it can be
shown

γcV(t) = γV(ct), (5.33)

where c is a constant.

Proof. Consider a geodesic γV : I →M, defined in an open interval I ⊂ R, with an
initial velocity V ∈ TM. Let us also define a curve γ̃(t) = γV(ct). Then, γ̃(0) =
γV(0) = p ∈ M. Writing γV(t) = (γ1(t), γ2(t), . . . , γn(t)) in local coordinates,

˙̃γ(t) =
d
dt

γi
V(ct) = cγ̇i

V(ct). (5.34)

Further, it follows that ˙̃γ = cγ̇(0) = cV.
Next, let Dt and D̃t denote the covariant differentiation operators along γV and γ̃,

respectively. Then,

D̃t ˙̃γ(t) = [
d
dt

˙̃γk(t) + Γk
ij(γ̃(t)) ˙̃γi(t)]∂k (5.35)

= (c2γ̈k(ct) + c2Γk
ij(γV(ct))γ̇i

V(ct)γ̇j(ct))∂k (5.36)

§5.4 Methodology 95

Algorithm 1: Training algorithm
sample inputs {x1, x2, ..., xJ} ∼ X ;
sample outputs {y1, y2, ..., yJ} ∼ Y ;
for k epochs do

for x in χ do
z ∼ Bk

r // Sample z from k-ball with a small radius r
V ← ∇z

∥∥y− G(zt0)
∥∥

t← 0
for T steps do

sample noise: e ∼ N (0, ε1); ε11
update G: ∇wLgh(y, z, x, t)
update z: z← z + ηV + e
update t: t← t + 1

update G: ∇w[Llh(y, z, x)+LR(y, z, x)+Ladv(y, z, x)]

c2Dtγ̇(ct) = 0. (5.37)

Hence, γ̃ is a geodesic, and therefore, γ̃ = γcV .

This is an important result, since it immediately follows that
∥∥∥ż1

t0

∥∥∥ >
∥∥∥ż2

t0

∥∥∥ =⇒
L(γż1(T)) > L(γż2(T)). Following these intuitions, we define ż = ∇z

∥∥y− G(zt0)
∥∥.

This yields an interesting advantage, i.e.,‖ż‖ (hence L(γż(T))) tends to be large for
high

∥∥y− G(zt0)
∥∥, which corresponds to R3.

5.4.2 Encouraging the local bijective conditions

The approach described in Sec. 5.4.1 encourages a global bi-lipschitz mapping between
My andMz. However, we practically observed that imposing bijective conditions in
local neighborhoods in conjunction leads to improved performance. Thus, we enforce
a dense bijective mapping between My and Mz near γMy(T). Let zT and y be the
latent code at γMy(T) and the ground truth, respectively. We generate two random
sets Z̃ and Ỹ using the distribution,

Z̃ = N (zT; ε2) and Ỹ = Ψ(y), (5.38)

where Ψ(·) applies random perturbations such as brightness, contrast and small noise,
and 0 < ε2 < 1. One trivial method to ensure that a bijective mapping exists is to apply
a loss function ∑

∥∥yi − G(zi)
∥∥, ∀zi ∈ Z̃ , yi ∈ Ỹ to update the generator. However,

we empirically observed that the above loss function unnecessarily applies a hard
binding between the perturbations and the generated data. Therefore, we minimize
the KL-distance between G and Ỹ up to second order moments. One possible way to
achieve this is to model each pixel as a univariate distribution (App 5.4.3). However in
this case, since the generator cannot capture the correlations between different spatial
locations, unwanted artifacts appear on the generated data. Therefore, we treat G and

96 Rethinking Conditional-GAN Training

Landmark to Face

Ours Pix2Pix Bicycle-GAN DS-GAN Ours Pix2Pix Bicycle-GAN DS-GAN Ours Pix2Pix Bicycle-GAN DS-GAN

Sketch to Anime B&W to Color

Input:

Facial

Landmark

GT:

Face

Input:

Sketch

GT:

Anime

Input:

B&W Image

GT:

Color Image

G
e
n
e
ra

te
d
 S

a
m

p
le

s

Figure 5.2: Qualitative comparison with state-of-the-art cGANs on three challenging tasks.
We compare our proposed model with the baseline Pix2Pix [Isola et al., 2017], Bicycle-
GAN [Zhu et al., 2017b] and DS-GAN [Yang et al., 2019a]. It can be seen that samples
generated by our model are clearly more diverse (e.g., , color and subtle structural
variation) and realistic (e.g., , shape and color) compared to other models in all tasks.

Note that our model has the same architecture as Pix2Pix.

Input GT

Satellite → Map

Edges → Shoes

Facades → Photo

HOG → Faces

Generated Samples Generated Samples

Ours (Pix2Pix Geo) Baseline (Pix2Pix)

Figure 5.3: Qualitative comparisons with baseline Pix2Pix [Isola et al., 2017] model. Our
proposed model consistently generates diverse and realistic samples compared to its

baseline Pix2Pix model.

§5.4 Methodology 97

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11

Bicycle-GAN

V
e
lo

c
it

y

Samples

Input

Ground

Truth

Ours (P2P Geo)

DS-GAN

Ours (P2P Geo) DS-GAN Bicycle-GAN

Figure 5.4: A visual example of interpolation along an Euclidean shortest path on the latent
manifold. Top row: the velocity V =

√
żMż change onMy across the samples. Bottom

three rows: the corresponding interpolated samples in Bicycle-GAN, DS-GAN, and
P2P Geo (Ours). As evident, our model exhibits a smooth interpolation along with an
approximately constant velocity onMy compared to the other networks, implying
that our model indeed tends to move along geodesics. The total standard deviations of
the V for 100 random interpolations for Bicycle-GAN, DS-GAN, and P2P Geo (Ours)

are 0.056 0.067, and 0.011, respectively.

Ỹ as M-dimensional multivariate distributions (M = image height× image width).
Then, the KL-distance between the distributions up to the second order of moments
can be calculated using the following equation,

Llh(y, z, x) =
1
2

[
log
|ΣG∗ |∣∣∣ΣỸ ∣∣∣ −M + tr(Σ−1

G ΣỸ)

+ (µG − µỸ)
TΣ−1

G (µG − µỸ)

]
,

(5.39)

where Σ and µ denote the correlation matrices and the means.

5.4.3 Univariate distributions

Minimizing the information loss between two distributions can be interpreted as
minimizing the Kullback–Leibler (KL) distance between the two distributions. KL-
distance between two distribution is defined as,

KL(P||Q) =
∫

p(x)log

[
p(x)
q(x)

]
dx. (5.40)

98 Rethinking Conditional-GAN Training

If we approximate an arbitrary density Q in Rn with a Gaussian distribution, it can be
shown that the parameters which minimize the KL-distance between Q and a given
density P are exactly the same as minimizing the distance between P and Q up to the
second moment. Therefore, we approximate P and Q with Gaussian distributions and
minimize the KL distance between them.

Now, consider two Gaussian distributions, P and Q.

KL(P||Q) =
∫ [

log(P(x))− log(Q(x))

]
P(x)dx

=
∫ [
− 1

2
log(2π)− log(σP)−

1
2
(

x− µP

σP
)2

+
1
2

log(2π) + log(σQ) +
1
2
(

x− µQ

σQ
)2

]
1√

2πσP
exp

[
− 1

2
(

x− µP

σP
)2

]
dx

=
∫ [

log(
σQ

σP
) +

1
2
((

x− µQ

σQ
)2 − (

x− µP

σP
)2)

]
1√

2πσP
exp

[
− 1

2
(

x− µP

σP
)2

]
dx

= E
P

[
log(

σQ

σP
) +

1
2
((

x− µQ

σQ
)2 − (

x− µP

σP
)2)

]

= log(
σQ

σP
) +

1
2σ2

Q
E
P
[(x− µQ)

2]− 1
2

= log(
σQ

σP
) +

σ2
P + (µP − µQ)

2

2σ2
Q

− 1
2

.

(5.41)

5.4.4 Multivariate distribution

Consider two Gaussian distributions, P and Q in Rn,

P(x) =
1

(2π)n/2det(ΣP)1/2 exp

[
− 1

2
(x− µP)

TΣ−1
P (x− µP)

]
, (5.42)

Q(x) =
1

(2π)n/2det(ΣQ)1/2 exp

[
− 1

2
(x− µQ)

TΣ−1
Q (x− µQ)

]
. (5.43)

§5.4 Methodology 99

KL distance between the two distributions,

KL(P||Q) = E
P

[
logP− logQ

]

=
1
2

E
P

[
− logdetΣP − (x− µP)

TΣ−1
P (x− µP) + logdetΣQ + (x− µQ)

TΣ−1
Q (x− µQ)

]

=
1
2

[
log

detΣQ

detΣP

]
+

1
2

E
P

[
− (x− µP)

TΣ−1
P (x− µP) + (x− µQ)

TΣ−1
Q (x− µQ)

]

=
1
2

[
log

detΣQ

detΣP

]
+

1
2

E
P

[
− tr(Σ−1

P (x− µP)(x− µP)
T) + tr(Σ−1

Q (x− µQ)(x− µQ)
T)

]

=
1
2

[
log

detΣQ

detΣP

]
+

1
2

E
P

[
− tr(Σ−1

P ΣP) + tr(Σ−1
Q (xxT − 2xµT

Q + µQµT
Q))

]

=
1
2

[
log

detΣQ

detΣP

]
− 1

2
M +

1
2

tr(Σ−1
Q (ΣP + µPµT

P − 2µQµT
P + µQµT

Q))

=
1
2
(

[
log

detΣQ

detΣP

]
−M + tr(Σ−1

Q ΣP) + tr(µT
PΣ−1

Q µP − 2µT
PΣ−1

Q µQ + µQΣ−1
Q µQ))

=
1
2
(

[
log

detΣQ

detΣP

]
−M + tr(Σ−1

Q ΣP) + (µQ − µP)
TΣ−1

Q (µQ − µP)).

(5.44)

However, using the above loss (Eq. 5.39) in its original form yields practical
obstacles: for instance, the correlation matrices have the dimension M×M, which
is infeasible to handle. Therefore, following Achlioptas [2001], we use a random
projection matrix RM×h; hM to project the images to a h−dimensional space, where
Ri,j ∼ p(x); p(

√
3) = 1

6 , p(0) = 2
3 , p(−

√
3) = 1

6 (we empirically justify this reduction
method using an ablation study in Sec. 5.5.4). Moreover, numerically calculating |Σ|
and Σ−1 causes unstable gradients which hinders the generator optimization. We
address this issue by adapting the approximation technique proposed in Boutsidis
et al. [2017]:

log(|Σ|) ≈ −
N

∑
i=1

tr(Ci)

i
, (5.45)

where C = I− Σ. Further, Σ−1 can be calculated as,

Vi+1 = Vi(3I− ΣVi(3I− ΣVn)), i = 1, 2, . . . , N, (5.46)

where Li et al. [2011] proved that Vi → Σ−1 as i→ ∞, for a suitable approximation
of V0. They further showed that a suitable approximation should be V0 = αΣT,
0 < α < 2/ρ(ΣΣT), where ρ(·) is the spectral radius. Our final loss function Ltotal

100 Rethinking Conditional-GAN Training

consists of four loss components:

Ltotal = β0Lgh + β1Llh + β2Lr + β3Ladv, (5.47)

where β0 . . . β3 are constant weights learned via cross-validation. Algorithm 1 shows
overall training scheme.

−40 −20 0 20 40 60 80

a

−16

−14

−12

−10

−8

−6

−4

−2

lo
g

(p
(a

))

GT

P2P Geo (Ours)

Bicycle-GAN

DS-GAN

MR-GAN

P2P

CGML

Figure 5.5: Colour distribution comparison on BW → color dataset on a-plane in Lab
color space. Our model exhibits the closest color distribution compared to the ground
truth. Furthermore, our model is able to generate rare colors which implies more

diverse colorization.

5.5 Experiments

In this section, we demonstrate the effectiveness of the proposed training scheme
using qualitative and quantitative experiments. First, we illustrate the generalizability
of our method by comparing against the state-of-the-art methods across a diverse
set of image-to-image translation tasks. Then, we explore the practical implications
of geometrically structuring the latent manifold. Finally, we conduct an ablation
study to compare the effects of the empirical choices we made in Sec. 8.1. In all the
experiments, we use Pix2Pix [Isola et al., 2017] as our model architecture, and use
the same model trained using the traditional training approach as the main baseline.
We use the official implementation of other comparable methods to benchmark their
performance against ours. For a fair comparison, we use their pre-trained models
wherever available, otherwise train their model from scratch, strictly following the
authors’ instructions to the best of our ability.

§5.5 Experiments 101

−40 −20 0 20 40 60 80 100

b

−16

−14

−12

−10

−8

−6

−4

−2
lo
g

(p
(b

))
GT

P2P Geo (Ours)

Bicycle-GAN

DS-GAN

MR-GAN

P2P

CGML

Figure 5.6: Colour distribution comparison on BW → color dataset on b-plane in Lab
color space. Our model exhibits the closest color distribution compared to the ground
truth. Furthermore, our model is able to generate rare colors which implies more

diverse colorization.

5.5.1 Hyper-parameters and datasets

We use 100 iterations with α = 0.1 to calculate the inverse of matrices using Eq. 5.46
and 20 iterations to calculate the log determinant using Eq. 5.45. Further, 10 time
steps are used for Lgh, and zt0 is sampled from a B64

0.01. For training, we use the Adam
optimizer with hyper-parameters β1 = 0.9, β2 = 0.999, ε = 1× 10−8. All the weights
are initialized using a random normal distribution with 0 mean and 0.5 standard
deviation. The weights of the final loss function are,

Ltotal = 100.0Lgh + 0.01Llh + 100.0LR + Ladv, (5.48)

All these values are chosen empirically. For f acades → photo, map → photo,
edges→ shoes, edges→ bags, and night→ day, we use the same stadard datasets used
in Pix2Pix [Isola et al., 2017]. For the landmarks→ f aces, hog→ f aces, BW → color,
and sketch→ anime experiments, we use the UTKFace dataset [Zhang and Qi, 2017],
CelebHQ dataset [Lee et al., 2020], STL dataset [Coates et al., 2011], and Anime Sketch
Colorization Pair dataset [Kim] provided in Kaggle, respectively.

5.5.2 Image-to-image translation

We compare our method against state-of-the-art models that focus on multimodal
image-to-image translation. Fig. 5.2 shows the qualitative results on landmarks→ faces,
sketch → anime and BW → color. As evident, our training mechanism increases the
diversity and the visual quality of the baseline P2P model significantly, and shows

102 Rethinking Conditional-GAN Training

better performance compared to other models. Fig. 5.3 shows qualitative comparison
against the baseline. Table 8.9 depicts the quantitative results. As shown, our model
exhibits a higher diversity and a higher realism on multiple datasets. In all the cases,
we outperform our baseline by a significant margin. Fig. 5.5 and Fig. 5.6 compare
color distribution in BW2color task.

5.5.3 Geometrical interpretations

A key implication of our training scheme is that the Euclidean shortest paths onMz

map to geodesics onMy, which preserves better structure. We conduct an experiment
to empirically validate the aforementioned attribute. First, we travel along Euclidean
paths onMz and measure the corresponding curve length LE on the data manifold.
Second, we calculate the actual geodesic distance LG between the same two points on
My using Eq. 5.19 in discrete intervals. We travel in 10 random directions starting
from random initial points, and obtain LGi for evenly spaced LE ∈ {10, 20, 30, . . . 90}.
Then, we obtain set of the means and standard deviations of LG for the corresponding
LE. Fig. 5.7 illustrates the distribution. As evident, our model exhibits a significantly
high overlap with the ideal curve, i.e., , LE = E(LG) compared to DS-GAN and
Bicycle-GAN.

A useful attribute of travelling along the geodesics on the output manifold (My)
is to obtain smooth interpolations, since the geodesics tend to avoid regions with
high distortions, i.e., rapid changes. However, Euclidean shortest paths in the latent
spaces (Mz) of cGANs often do not correspond to geodesics on theMy. Therefore, in
order to travel along geodesics, it is required to numerically obtain the geodesic paths
using Eq. 5.19, which requires extra computation. In contrast, the proposed training
method encourages the generator to map the Euclidean paths on Mz to geodesics
onMy. Therefore, smooth interpolations can be obtained by traveling between two
latent codes in a straight path. To evaluate this, we compare the interpolation results
between Bicycle-GAN, DS-GAN and our model. Fig. 5.7 shows a qualitative example,
along with a quantitative evaluation. As visible, our model exhibits smooth transition
from the starting point to the end point. In comparison, Bicycle-GAN shows abrupt
and inconsistent changes along the path. DS-GAN does not show any significant
variance in the beginning and shows sudden large changes towards the end. We also
quantify this comparison using the velocity on the data manifold: since the curve
length onMy can be calculated using Eq. 5.22, it is easy to see that the velocity on

My can be obtained using
√

żT
i Mżi. Fig. 5.7 further illustrates the change in the

aforementioned velocity, corresponding to the given qualitative examples. Our model
demonstrates an approximately constant non-zero velocity (note that geodesics have
constant velocities), while the other models show sudden velocity changes along
the path. Further qualitative results for smooth interpolation are shown in the Fig.
5.16. We did not include CGML in these evaluations. The reason is that the inference
procedure of the CGML is fundamentally different from a CGAN. The latent variables
are randomly initialized at inference and then guided towards optimal latent codes
through a separate path-finding expert module. As a result, unlike CGANs, the entire

§5.5 Experiments 103

latent space is not considered as a low-dimensional manifold approximation of the
output space. In other words, interpolation through sub-optimal areas of the latent
space does not correspond to meaningful changes in the output. Therefore, we did
not use CGML for experiments that evaluate the structure of the latent space.

20 30 40 50 60 70 80 90
LE (Distance onMy for Euclidean distances on Mz)

20

30

40

50

60

70

80

90

E
(L

G
)

(G
eo

d
es

ic
d

is
ta

n
ce

on
M

y
)

Oracle case

P2P Geo (Ours)

Bicycle-GAN

DS-GAN

Figure 5.7: Euclidean path vs. geodesic comparison. We travel along a Euclidean shortest
path onMz and measure the corresponding curve distance LG onMz (lm2faces). Then,
we traverse between the same two points along the numerically calculated geodesic
and measure the corresponding curve length LG. E(LG) vs LE is illustrated with the
corresponding standard deviation obtained along 10 random paths. Our model is
closer to the oracle case (LE = E(LG)). We were not able to obtain distance greater
than ∼ 60 for DS-GAN and Bicyle-GAN which implies that our model generates more
diverse data. Further, Pix2Pix did not produce enough diversity for this comparison.

104 Rethinking Conditional-GAN Training

5.5.4 Ablation study

We conduct an ablation study to compare the different variants of the proposed
technique. Table 5.2 depicts the results. First, we compare different distance functions
used to calculate Llh. As expected, naive maximization of the distances between the
generated samples without any constraints increases the diversity, but reduces the
visual quality drastically. Further, we observed unwanted artifacts when modeling
each pixel as a univariate distribution, as the model then cannot capture dependencies
across spatial locations. Then, we compare different down-sampling methods that can
be used for efficient calculation of the correlation matrices, where random projection
performed the best. Interestingly, we observed a reduction of the visual quality when
the dimension of the latent code is increased. In contrast, the diversity tends to
improve with the latter. We chose dim(z) = 64 as a compromise. Finally, we compare
the effects of different combinations of the loss components.

5.5.5 Generalizability

To demonstrate the generalizability of the proposed algorithm across different loss
functions and architectures, we employ it on three classic networks: Pathak et al.
[2016b], Johnson et al. [2016a], and Ronneberger et al. [2015]. These networks use a
masked reconstruction loss with the adversarial loss, perception loss from pre-trained
networks, and a reconstruction loss, respectively.

Pathak et al. This model is used for image inpainting tasks, and is trained
by regressing to the ground truth content of the missing area. To this end, the
authors utilize a reconstruction loss (Lrec) and an adversarial loss (LAdv). Consider
a binary mask M where missing pixels are indicated by 1 and 0 otherwise. Then,
Lrec(x) =

∥∥M� (x− G((1−M)� x))
∥∥2

2, where x is the input and � is the element-
wise production. Ladv is the usual adversarial loss on the entire output. In order to
apply our training algorithm, we replace LR with Lrec.

Johnson et al. The primary purpose of this network is neural style transferring,
i.e., given a artistic style image and an RGB image, output should construct an image
where the content of the RGB image is represented using the corresponding artistic
style. The model utilizes an encoder decoder mechanism and consists of four loss
components: 1) feature reconstruction loss L f r, 2) style reconstruction loss Lstyle 3)
reconstruction loss and 4) variation regularization loss Ltv. The feature reconstruction
loss is obtained by passing the generated and ground truth images through a pre-
trained VGG-16 and calculating the `2 loss between the corresponding feature maps.
Let the output of the relu2_2 layer of VGG-16 be denoted as φ(·). Then,

L f r(y, ȳ) =
1
K
∥∥φ(y)− φ(ȳ)

∥∥2
2 , (5.49)

where K is the number of neurons in relu2_2.
The style reconstruction loss is similar, except that the inputs to the VGG-16 are

the generated image and the style image. Let the output of the jth layer of VGG-16

§5.6 Chapter summary 105

be φ(·)j. Further, assume that φ(·)j gives Cj dimensional features on a Hj ×Wj grid,
which can be reshaped in to a Cj × HjWj matrix ψj. Then, Gj(·) = ψψT/(CjHjWj)
and,

Lstyle =
∥∥∥Gj(y)− Gj(ȳ)

∥∥∥2

F
, (5.50)

where‖·‖F is the Frobeneus norm. While training, Lstyle is calculated for relu1_2,
relu2_2, relu3_3, and relu4_3 of the VGG-16.

Reconstruction loss is simply the pixel-wise `2 loss. They also adapt a total
variation loss to encourage spatial smoothness in the output image as,

Ltv(ȳ) = ∑
i,j
((ȳi,j+1,−ȳi,j)

2 + (ȳi+1,j,−ȳi,j)
2). (5.51)

In order to apply our training algorithm, we replace LAdv with L f r, Lstyle, and Ltv.
Ronneberger et al. This model was originally proposed for segmentation of

RGB (medical) images and is trained with a soft-max cross-entropy loss between the
predicted and target classes. However, we use a pixel-wise reconstruction loss as
the objective function to allow multi-modal outputs. Further, we define the task at
hand as converting segmentation maps to faces. To impose our training algorithm,
we simply remove Ladv.

The above networks are designed to capture one-to-one mappings between the
inputs and the outputs. Therefore, the only stochasticity in these models is the
dropout. Therefore, we concatenate a latent map to the bottle-necks of the networks
to improve the stochasticity. Note that simply concatenating the latent maps without
our algorithm does not yield diverse outputs as the naive reconstruction losses (which
exist in all of the above networks) only converge to a single output mode. Our
algorithm increases the diversity of the models and obtain one-to-many mappings
with no changes to the architecture (for fair comparison, we concatenate a latent code
at the bottlenecks during both the original and proposed training).

5.5.6 Qualitative results

We apply our model on a diverse set of image-to-image translation tasks. Qualitative
results are shown in Fig. 5.12, Fig. 5.11, Fig. 5.15, Fig. 5.9, Fig. 5.13, Fig. 5.14, and
Fig. 5.10.

5.6 Chapter summary

In this chapter, we improve the performance of cGANSs by inducing inductive bias in
the form of geometrical priors. We study vanilla cGANs and provide important insight
into the relationship between the training mechanism and the manifold structure of

106 Rethinking Conditional-GAN Training

Neural Style Transfer Image Inpainting Segmentation Mask
to Face

O
ur

 g
en

er
al

iz
ab

le

so
lu

tio
n

 to
 im

pr
ov

e
di

ve
rs

ity
D

om
ai

n
So

lu
tio

n
In

pu
t(s

)

Johnson et al Pathak et al Ronneberger et al

Ours (Geo + Johnson et al) Ours (Geo + Pathak et al) Ours (Geo + Ronneberger et al)

Figure 5.8: We apply our algorithm to three classic networks and obtain increased diversity
with no architectural modifications. Note that the original networks only learn one-to-one

mappings.

the latent and output spaces. We show that the cGANs, in their basic form, suffer from
significant drawbacks in terms of diversity, and the proposed solutions to overcome
these problems also are prone to undesired implications. Specifically, we show that
the existing solutions are not optimal from a geometrical perspective, and can lead
to sub-optimally structured latent space structures. In contrast, we propose a novel
training algorithm that can increase both realism and the diversity of the outputs that
are generated by cGANs while preserving the structure of the latent manifold. To
this end, we enforce a bi-lipschitz mapping between the latent and generated output
manifolds while encouraging Euclidean shortest paths on the latent manifold to be
mapped to the geodesics on the generated manifold. Moreover, we establish the
necessary theoretical foundation and demonstrate the effectiveness of the proposed
algorithm at a practical level, using a diverse set of image-to-image translation tasks,
where our model achieves compelling results.

§5.6 Chapter summary 107

Figure 5.9: Qualitative results from landmarks→ faces task.

108 Rethinking Conditional-GAN Training

Figure 5.10: Qualitative results from sketch→ shoes task.

§5.6 Chapter summary 109

Figure 5.11: Qualitative results from hog→ faces task. The diversity of the outputs are
less in this task, as hog features maps are rich in information.

110 Rethinking Conditional-GAN Training

Figure 5.12: Qualitative results from BW → color task.

§5.6 Chapter summary 111

Figure 5.13: Qualitative results from sketch→ anime task.

112 Rethinking Conditional-GAN Training

Figure 5.14: Qualitative results from sketch→ bags task.

§5.6 Chapter summary 113

Figure 5.15: Qualitative results from labels→ facades task.

114 Rethinking Conditional-GAN Training

Figure 5.16: Smooth interpolations of our model. Each column represents an interpo-
lation between two latent codes, conditioned on an input. The faces are rotated to fit

the space.

§5.6 Chapter summary 115

M
et

ho
d

fa
ca

de
s2

ph
ot

o
sa

t2
m

ap
ed

ge
s2

sh
oe

s
ed

ge
s2

ba
gs

sk
et

ch
2a

ni
m

e
BW

2c
ol

or
lm

2f
ac

es
ho

g2
fa

ce
s

ni
gh

t2
da

y
LP

IP
FI

D
LP

IP
FI

D
LP

IP
FI

D
LP

IP
FI

D
LP

IP
FI

D
LP

IP
FI

D
LP

IP
FI

D
LP

IP
FI

D
LP

IP
FI

D
Bi

cy
cl

e-
G

A
N

0.
14

2
58

.2
1

0.
10

9
54

.2
1

0.
13

9
21

.4
9

0.
18

4
22

.3
3

0.
02

6
73

.3
3

0.
00

8
78

.1
3

0.
12

5
72

.9
3

0.
06

5
98

.2
08

0.
10

3
12

0.
63

D
S-

G
A

N
0.

18
1

59
.4

3
0.

12
8

48
.1

3
0.

12
6

27
.4

4
0.

11
3

26
.6

6
0.

00
6

67
.4

1
0.

01
2

71
.5

6
0.

16
8

88
.3

1
0.

06
1

92
.1

4
0.

10
1

13
7.

9
M

R
-G

A
N

0.
10

8
11

0.
31

0.
09

1
10

8.
34

-*
-*

-*
-*

-*
-*

0.
01

5
11

3.
46

0.
18

2
10

8.
72

0.
13

8
15

5.
31

0.
09

8
14

0.
51

C
G

M
L

0.
19

1
46

.2
0.

14
3

42
.1

1
0.

13
20

.3
8

0.
19

20
.4

3
0.

05
61

.4
0

0.
09

2
51

.4
0.

19
0

73
.4

0
0.

14
1

51
.3

3
0.

10
0

12
7.

8
Ba

se
lin

e
(P

2P
)

0.
01

1
92

.0
6

0.
01

4
88

.3
3

0.
01

6
34

.5
0

0.
01

2
32

.1
1

0.
00

1
93

.4
7

0.
00

2
97

.1
4

0.
00

9
12

1.
69

0.
02

1
15

1.
4

0.
00

8
15

7.
3

O
ur

s(
P2

P
G

eo
)

0.
14

8
63

.2
7

0.
15

4
59

.4
1

0.
14

1
20

.4
8

0.
16

7
19

.3
1

0.
08

6
56

.1
1

0.
09

2
61

.3
3

0.
19

7
67

.8
2

0.
15

6
45

.3
1

0.
10

1
13

1.
8

Ta
bl

e
5.

1:
Q

ua
nt

ita
tiv

e
co

m
pa

ri
so

n
w

ith
th

e
st

at
e-

of
-t

he
-a

rt
on

9
(n

in
e)

ch
al

le
ng

in
g

da
ta

se
ts

.-
*

de
no

te
s

th
e

ca
se

s
w

he
re

w
e

w
er

e
no

ta
bl

e
to

m
ak

e
th

e
m

od
el

s
co

nv
er

ge
.A

hi
gh

er
LP

IP
si

m
ila

ri
ty

sc
or

e
m

ea
ns

m
or

e
di

ve
rs

ity
an

d
lo

w
er

FI
D

sc
or

e
si

gn
ifi

es
m

or
e

re
al

is
m

in
th

e
ge

ne
ra

te
d

sa
m

pl
es

.O
ur

ap
pr

oa
ch

gi
ve

s
co

ns
is

te
nt

im
pr

ov
em

en
ts

ov
er

th
e

ba
se

lin
e.

116 Rethinking Conditional-GAN Training

Variant type Model FID LPIP

Llh

MMD 66.31 0.188
2nd moment (univaritate) 117.53 0.201

Maximizing distance 132.91 0.232
2nd moment (multivariate) 67.82 0.197

Downsampling

Mean pool 75.41 0.192
Max pool 82.42 0.162

CNN 77.93 0.191
Random Projection 67.82 0.197

dim(z)

16 65.32 0.172
32 67.11 0.188
64 67.82 0.197
128 82.33 0.166

Training loss

Ll + Ladv 91.3 0.051
Lgh + Ll + Ladv 63.11 0.151
Llh + Ll + Ladv 91.3 0.055

Llh + Lgh + Ll + Ladv 67.82 0.197

Table 5.2: Ablation study. Ablation study with different variants of our model on
landmark → faces dataset reporting FID score (lower = more realistic) and LPIPS

(higher = more diverse).

Chapter 6

Robust normalizing flows using
Bernstein-type polynomials

6.1 Introduction

In the last chapter, we showed that regularizing generative models using prior physics
about the task in hand, can improve their performance. In particular, we used a GAN
as a use case. In this chapter, we further validate this proposition by using a different
class of generative models: Normalizing flows. Modeling the probability distribution
of a set of observations, i.e., generative modeling, is a crucial task in machine learning.
It enables the generation of synthetic samples using the learned model and can
estimate the likelihood of a data sample. This field has met with great success in many
problem domains including image generation [Ho et al., 2019; Kingma and Dhariwal,
2018; Lu and Huang, 2020], audio synthesis [Esling et al., 2019; Prenger et al., 2019],
reinforcement learning [Mazoure et al., 2020; Ward et al., 2019], noise modeling
[Abdelhamed et al., 2019], and simulating physics experiments [Wirnsberger et al.,
2020; Wong et al., 2020]. In the recent past, deep neural networks such as generative
adversarial networks (GANs) and variational autoencoders (VAEs) have been widely
adopted in generative modeling due to their tremendous success in modeling high
dimensional distributions. However, they entail several limitations: 1) exact density
estimation of arbitrary data points is not possible, and 2) training can be cumbersome
due to aspects such as mode collapse, posterior collapse and high sensitivity to
architectural design of the model Kobyzev et al. [2020].

In contrast, normalizing flows (NFs) are a category of generative models that
enable exact density computation and efficient sampling. Since the seminal work
by Rezende and Mohamed [2015], NFs have been gaining increasing attention from
the machine learning community due to the attractive properties mentioned earlier.
In the abstract, NFs consist of a series diffeomorphisms that transforms a simple
distribution into a more complex one, which in turn allows an analytical density
estimation of samples. In the implementation, the Jacobian determinants of these
diffeomorphisms should be computed. As the computation of a determinant of an
unconstrained n× n−matrix is of O(n3) complexity, NFs must be designed so that
efficient calculation of the Jacobian determinants is possible. To this end, two popular

117

118 Robust normalizing flows using Bernstein-type polynomials

approaches have been proposed so far: 1) efficient determinant calculation methods
such as [Berg et al., 2018; Grathwohl et al., 2018; Lu and Huang, 2020], and 2) triangular
maps [Jaini et al., 2019; Dinh et al., 2014, 2016]. Here, we focus on the latter.

The key benefit of triangular maps is that their Jacobian matrices are triangular,
and hence, the calculation of Jacobian determinants takes only O(n) steps. However,
it is not a priori clear whether such a constrained class of maps is expressive enough
to produce sufficiently complex transformations. Interestingly, Bogachev et al. [2005]
shows that there exists a unique increasing triangular map that transforms one
probability density to another (up to null sets). There have been numerous attempts
at calculating such maps efficiently. In fact, Jaini et al. [2019] mentions that majority of
the existing normalizing flow variants are triangular maps (e.g., autoregressive flows),
albeit not being universal, i.e., not being dense in the space of increasing triangular
maps. As a result, most of these methods have reverted to the empirical approach of
stacking several transformations together, aiming to increase the expressiveness of the
composite transformation. Alternatively, there are NFs that use genuinely universal
transformations. The majority of such methods employ coupling functions based on
polynomials such as sum-of-squares (SOS) polynomials in [Jaini et al., 2019], cubic
splines in Durkan et al. [2019a] or rational quadratic splines in Durkan et al. [2019b].
Thanks to known mathematical properties of polynomials being used as building
blocks, these models are highly interpretable.

In this Chapter, building on the existing literature, we further investigate this direc-
tion and propose a novel, theoretically sound, and universal approach that employs
Bernstein-type polynomials for estimating the increasing triangular transformation
between densities. The proposed method holds several advantages over previous
attempts:

• robustness against initial and round-off errors due to the optimal stability of the
Bernstein basis,

• existence of a theoretical upper bound for the error of approximation when the
optimal convergence of the trainable parameters occur,

• being able to invert easily and accurately due to the availability of efficient root
finding algorithms,

• suitability for approximating compactly supported target densities,

• the ability to increase the expressiveness by increasing the polynomial degree at
no cost to the training stability,

• constructive universality proof which gives analytic expressions for approxima-
tions of known transformations.

The rest of the Chapter is structured as follows. In section 6.2, we introduce
Bernstein-type polynomials and discuss the properties that lead to the advantages
mentioned above. Afterwards, in section 6.3 we compare Bernstein-type polynomials
with other classes of coupling maps and highlight the suitability of our method.

§6.2 Bernstein polynomials 119

In section 6.4, we describe briefly how we construct the NF using Bernstein-type
polynomials. Finally, in section 6.6, we verify our claims empirically by testing our
NF on synthetic and real-world data sets.

6.2 Bernstein polynomials

Bernstein polynomials (of degree n),(
n
k

)
xk(1− x)n−k, 0 ≤ k ≤ n, n ∈N, (6.1)

were first introduced by Bernstein in his constructive proof of the Weierstrass theorem
in Bernstein [1912]. In fact, given a continuous function f : [0, 1] → R, its degree n
Bernstein approximation, Bn(f) : [0, 1]→ R, given by

Bn(f)(x) =
n

∑
k=0

f
(

k
n

)(
n
k

)
xk(1− x)n−k, (6.2)

is such that Bn(f)→ f uniformly in [0, 1] as n→ ∞. Moreover, Bernstein polynomials
form a basis for degree n polynomials on [0, 1]. More generally, polynomials of
Bernstein-type can be defined as follows.

Definition 6.1. A degree n polynomial of Bernstein-type is a polynomial of the form

Bn(x) =
n

∑
k=0

αk

(
n
k

)
xk(1− x)n−k, x ∈ [0, 1] (6.3)

where αk, 0 ≤ k ≤ n are some real constants.

Remark 6.1. Polynomials of Bernstein-type on an arbitrary closed interval [a, b] are defined by
composing Bn with the linear map that sends [a, b] to [0, 1], La,b(x) = x−a

b−a . So, Bernstein-type
polynomials on [a, b] take the form

Bn ◦ La,b(x) =
n

∑
k=0

αk

(
n
k

)
(x− a)k(b− x)n−k

(b− a)n . (6.4)

Hereafter, we denote degree n Bernstein-type polynomials by Bn regardless of the domain.

Remark 6.2. Note that Bn(a) = α0 and Bn(b) = αn. Therefore, one can fix the values of a
Bernstein-type polynomial at the end points of [a, b] by fixing α0 and αn.

Due to the structure of Bernstein-type polynomials, they are ideal for constructing
triangular flows between compactly supported densities. As we shall see below,
one can control their properties like strict monotonicity, range and universality by
specifying conditions on the coefficients, and the error of approximation depends on
the degree of the polynomials used. As a result, our model is highly interpretable.

120 Robust normalizing flows using Bernstein-type polynomials

6.2.1 Strict monotonicity

In triangular flows, the class of transformations used are expected to be invertible. We
can achieve this using increasing functions. Due to the structure of Bernstein-type
polynomials, we can easily specify conditions on the coeffecients that guarantee their
strict monotonicity. We state this as a theorem:

Theorem 6.1. Consider the Bernstein-type polynomial in (6.3). Suppose α0 < α1 < · · · < αn.
Then Bn is strictly increasing on [0, 1].

Proof. Let f : [0, 1] → R be a strictly increasing continuous function such that
f (k/n) = αk. Let s < t and let Zx

i , 0 ≤ i ≤ n and be a sequence of iid Bernoulli(x)
for x = s, t, defined on the same probability space such that Zs

i ≤ Zt
i via monotone

coupling. That is, let Zs
i = 1U≤s and Zt

i = 1U≤t where U is a uniform random variables
on [0, 1] and couple them as follows.

P((Zs
i , Zt

i) = (j, k))j,k∈{0,1} =

(
1− t t− s

0 s

)

and P(Zs
i > Zt

i) = P(Zs
i = 1, Zt

i = 0) = 0. So, Zt
i ≥ Zs

i as required.
Then

f

(
n

∑
i=0

Zs
i /n

)
≤ f

(
n

∑
i=0

Zt
i /n

)
.

Consequently,

E

 f

(
n

∑
i=0

Zs
i /n

) ≤ E

 f

(
n

∑
i=0

Zt
i /n

) . (6.5)

This is equivalent to Bn(s) ≤ Bn(t).
If (6.5) is not strict, then f (∑n

i=0 Zt
i /n) = f (∑n

i=0 Zs
i /n) almost surely, and therefore,

∑n
i=0 Zt

i = ∑n
i=0 Zs

i almost surely. But this is impossible due to monotone coupling.
Therefore, by contradiction, (6.5) is strict as required.

Remark 6.3. According to the Theorem 6.1, the strict monotonicity of Bernstein-type polyno-
mials depends entirely on the strict monotinicity of the coefficients αk’s. We saw in Remark 6.2
that Bn(a) = α0 and Bn(b) = αn. In addition, if we assume that αk’s are increasing, then the
range of Bn is the interval [α0, αn]. This translates to a significant advantage when training
for compactly supported targets because we can achieve any desired range [c, d] (the support of
the target) by fixing α0 = c and αn = d and let only αk, 0 < k < n vary.

Remark 6.4. The strict monotonicity of the coeffecients is not restrictive. For example, if the
required range is [c, d], we can take αn−k = c + (d− c)(1 + v2

0 + · · ·+ v2
k)
−1 where vk’s are

real valued. This converts the constrained problem of finding αk’s to an unconstrained one
of finding vk’s. Alternatively, we can take α0 = c and αk = |v1|+ · · ·+ |vk|, and after each
iteration, linearly scale αk’s in such a way that αn = d.

§6.2 Bernstein polynomials 121

6.2.2 Universality

Whether the NFs are sufficiently expressive or not depends on the universality of the
transformations used in their construction. Therefore, in triangular flows, we need
to use a class of functions that well-approximates the class of increasing continuous
functions. As we shall see below, the class of increasing Bernstein-type polynomials
on [a, b] are uniformly dense in the class of increasing continuous functions on [a, b].
In fact, we construct this sequence of polynomial approximations explicitly.

First, we recall the density result in Bernstein [1912].

Theorem 6.2 (Bernstein). Let f : [0, 1]→ R be given. Then Bn(f) given by Equation 6.2
converges uniformly to f as n→ ∞.

Remark 6.5. By rescaling, the above theorem holds on any interval [a, b]. Moreover, by
construction, whenever f is increasing, Bn(f) is increasing. So, it is automatic that increasing
Bernstein polynomials on [a, b] are dense in increasing continuous functions, and in particular,
increasing differentiable maps on [a, b]. (6.4) gives us the explicit formula for the degree n
polynomial that approximates f .

Next, to show universality, we need to prove that any increasing differentiable
function f : R→ R can be well-approximated by Bernstein-type polynomials. This is
our next result.

Corollary 6.1. Let f : R→ R be continuous. Then there exists a sequence of Bernstein-type
polynomials that converges to f point-wise on R and converges uniformly to f on any compact
set.
Proof. Choose two positive sequences {Mn} and {εn} such that Mn → ∞ and εn → 0.
Let In = [−Mn, Mn]. Then, there exists a Bernstein approximation qn on In (which
extends naturally to R) such that

max
In
| f − qn| ≤ εn.

Then the sequence of Bernstein approximations {qn} converges point-wise to f on R,
and this convergence is uniform on each compact interval.

Remark 6.6. When f is increasing then qn is increasing on [−Mn, Mn]. Also, when f is
α−Hölder and Mn = log n, choosing the degree of qn to be n is sufficient. This will be
explained in Remark 6.7.

6.2.3 Theoretical error bound

The error of approximation of a function f by its Bernstein polynomials has been
extensively studied. We state two such result due to Voronovskaya [1932] and Kac
[1938] and refer the reader to [Bustamante, 2017, Chapter 4] for their proofs and a
detailed account of other error bounds.

122 Robust normalizing flows using Bernstein-type polynomials

Theorem 6.3 (Voronovskaya). Suppose f : [0, 1]→ R is twice continuously differentiable.
Then

Bn(f)− f =
x(1− x)

2n
f ′′(x) + o(n−1).

and this error cannot be improved by increasing the smoothness of f .

Theorem 6.4 (Kac). Suppose f : [0, 1]→ R is α−Hölder with holder constant L, then

|Bn(f)− f | ≤ L

(
x(1− x)

2n

)α/2

.

Remark 6.7. These hold for an arbitrary interval [a, b] with x(1− x) replaced by (x− a)(b−
x). Thus, in Corollary 6.1, when f is α−Hölder, In = [− log n, log n] and qn is the degree
n Bernstein approximation, then the error estimate is L(log n)2/n where L is the Hölder
constant of f and limn→∞ L(log n)2/n = 0.

Since we know the error estimate in terms of the degree of the polynomials used,
we can improve the optimality of our NF by avoiding unnecessarily high degree
polynomials. This keeps the number of trainable parameters under control.

6.2.4 Robustness

Due to the presence of random or systematic errors, sample data generated from
experiments are generally a perturbation of their true value. These initial errors may
get amplified in the NFs unless they are numerically stable. Moreover, the usage of
finite-precision arithmetic in the execution causes round-off errors which affect the
final outcome. Therefore, a discussion about the robustness of the construction of
NFs is in order. In this section, we recall some known results in Farouki and Rajan
[1987]; Farouki and Goodman [1996] about the optimal stability of the Bernstein basis.
The key idea is that smaller condition numbers lead to smaller errors and the Bernstein
basis has the optimal condition numbers compared to other polynomial bases.

To illustrate this, let p(x) be a polynomial on [a, b] of degree n expressed in terms
of a basis {φk}n

k=0. That is,

p(x) =
n

∑
k=0

ckφk(x), x ∈ [a, b].

Let ck be randomly perturbed, with perturbations δk where the relative error δk/ck ∈
(−ε, ε). Then the total pointwise perturbation is δ(x) = ∑n

k=0 δkφk(x). So, |δ(x)| ≤
∑n

k=0 |δkφk(x)| ≤ ε ∑n
k=0 |ckφk(x)| ≤ εCφ(p(x)), where

Cφ(p(x)) =
n

∑
k=0
|ckφk(x)|

is the condition number for total perturbation with respect to the basis φk. It is clear
that Cφ(p(x)) controls the magnitude of the total perturbation.

§6.2 Bernstein polynomials 123

The following result compares the condition numbers for total perturbation with
respect to two non-negative bases.

Theorem 6.5 (Farouki & Goodman). Suppose φ = {φk}n
k=0 and ψ = {ψk}n

k=0 are non-
negative bases for polynomials of degree n on [a, b]. Suppose that for each j, ψj is a non-negative
linear combination of the former, that is, ψj = ∑n

k=0 Mjkφk with Mjk ≥ 0. Then for any
polynomial p(x), Cφ(p(x)) ≤ Cψ(p(x)).

Note that on [a, b] where 0 ≤ a < b, the Bernstein polynomials and the power
monomials, {1, x, x2, . . . , xn}, are non-negative bases. It is true that the latter is a
positive linear combination of the former but not vice-versa Farouki and Goodman
[1996]. So, we have the following Corollary.

Corollary 6.2. Let 0 ≤ a < b, {ψk := xk} and {φk}n
k=0 be the power basis and degree n

Bernstein basis on [a, b] respectively. Then for an arbitrary polynomial p(x), Cφ(p(x)) ≤
Cψ(p(x)).

Remark 6.8. This means that the upper bound on the change in the value of a polynomial
caused by a perturbation of coefficients is always smaller in the Bernstein basis than in the
power basis.

A more involved computation yields the condition number

C̃φ(x0) =

(
m!

|p(m)(x0)|
n

∑
k=0
|ckφk(x0)|

)1/m

that controls the computational error for a m−fold root x0 of p(x) in [a, b] Farouki
and Rajan [1987]. The following theorem establishes the robustness of the Bernstein
basis for root finding.

Theorem 6.6 (Farouki & Rajan). For an arbitrary polynomial p(x) with a root x0 ∈ [0, 1],
let C̃ψ(x0) and C̃φ(x0) denote the condition numbers of the root in the power and the Bernstein
bases on [0, 1], respectively. Then C̃φ(x0) < C̃ψ(x0) for x0 ∈ (0, 1] and C̃φ(0) = C̃ψ(0).

Remark 6.9. In fact, the condition numbers of Bernstein basis on [a, b] are better than the
condition numbers for the power basis adapted to [a, b], i.e., (x− a)k, k = 0, 1, . . . , n Farouki
and Rajan [1987]. So, the above theorem does not depend on the choice of the interval [0, 1].

So, we conclude that compared to the power basis representation of a polynomial,
the Bernstein representation (which we use), is systematically more stable against
perturbations of coefficients, and the resulting errors when 1) evaluating polynomials
and 2) computing roots are lower.

6.2.5 Inversion

It is crucial that the transformations used in the construction of NFs have inverses that
are easy to compute. In our setting, this boils down to finding roots of Bernstein-type

124 Robust normalizing flows using Bernstein-type polynomials

polynomials. That is, at each interation, given x we solve for z ∈ [0, 1],

n

∑
k=0

αk

(
n
k

)
zk(1− z)n−k = x (6.6)

which can be rewritten as

n

∑
k=0

(αk − x)
(

n
k

)
zk(1− z)n−k = 0 (6.7)

as Bernstein polynomials form partition of unity on [0, 1]. So, finding inverse images,
i.e., solving (6.6) is equivalent to finding solutions to (6.7). Due to our assumption
of increasing αk’s, Bn is increasing, and has at most one root on [0, 1]. The condition
(α0 − x)(αn − x) < 0 (which can be easily checked) guarantees the existence of a
unique solution of (6.7), and hence, the invertibility of the original transformation.

Due to the extensive use of Bernstein-type polynomials in computer-aided geomet-
ric design, there are several well-established efficient root finding algorithms at our
disposal Spencer [1994]. For example, the parabolic hull approximation method in
Rajan et al. [1988] is ideal for higher degree polynomials with fewer roots (in our case,
just one) and has cubic convergence for simple roots (better than Newton’s method).
Further, because of the numerical stability described in section 6.2.4, Bernstein-type
polynomials minimizes the errors in such root solvers based on floating–point arith-
metic.

6.2.6 Examples of Bernstein-type approximations

In this section, we illustrate how to use Bernstein-type polynomials to approximate
diffeomorphisms between densities. We restrict our attention to densities on R.

Suppose F and G are the distribution functions of the two probability densities Pz

and Px on the real line. Then the increasing rearrangement f = G−1 ◦ F is the unique
increasing transformation that pushes forward Pz to Px, and this basic construction
generalizes to higher dimensions [Villani, 2009, Chapter 1].

Now, we can easily write down transformations between some known densities,
and using (6.4), we can explicitly write down their Bernstein-type approximations.

Example 6.1. Uniform[0, 1] to any arbitrary non-zero continuous and compactly supported
density P on [0, 1]:
Here, G(x) =

∫ x
0 P(s) ds, x ∈ [0, 1] is strictly increasing and hence, invertible on [0, 1].

So, f (x) = G−1(x), and G−1 is once continuously differentiable. The degree n Bernstein
approximation of f is

Bn(f)(x) =
n

∑
k=0

G−1
(

k
n

)(
n
k

)
xk(1− x)n−k.

and ‖Bn(f)− f ‖∞ = O(n−1/2).

§6.3 Theoretical comparison with other methods 125

Example 6.2. Kumaraswamy(α, β) to Uniform[0, 1]:
Here, α, β > 0 and for x ∈ [0, 1], F(x) = 1− (1− xα)β Kumaraswamy [1980] and G(x) = x.
Therefore, f (x) = F(x) and the degree n Bernstein approximation is

Bn(f)(x) =
n

∑
k=0

F
(

k
n

)(
n
k

)
xk(1− x)n−k.

When α, β ≥ 1, ‖Bn(f)− f ‖ = O(n−1).

Example 6.3. Uniform[0, 1] to Exponential(λ):
Since F(x) = x, x ∈ [0, 1] and G(x) = 1− e−λx, x ≥ 0,

f (x) = − 1
λ

ln(1− x) =
1
λ

∞

∑
k=1

xk

k
, x ∈ [0, 1).

Pick an increasing sequence {bn} such that 0 < bn < 1 and limn→∞ bn = 1. Then, the degree
n Bernstein polynomial on [0, bn], given by

qn(x) = − 1
λ

n

∑
k=0

ln
(

1− kbn

n

)(
n
k

)
xk(bn − x)n−k

bn
n

is such that limn→∞ qn(x) = f (x), x ∈ [0, 1). This convergence is uniform on each compact
subset of [0, 1).

6.3 Theoretical comparison with other methods

Here, we compare and contrast properties of existing NFs and our construction and
discuss its advantages as well as limitations. To keep the exposition brief, we restrict
our discussion to universal NFs such as neural autoregressive flows (NAF) in Huang
et al. [2018b], SOS flows in Jaini et al. [2019] and splines in Durkan et al. [2019a,b].

6.3.1 Approximations and error bounds

In all of these cases and ours, the universality proof is based on the fact that the
learnable class of functions is dense in the class of increasing continuous functions.
However, the argument we present here (see Corollary 6.1) is constructive. So, as
shown in section 6.2.6, we can write down sequences of approximations for (known)
transformations between densities. In fact, we can say more. We have a theoretical
upper bound for the error of approximation. This is discussed in section 6.2.3. In the
case of cubic splines of Durkan et al. [2019a]), it is known that for k = 1, 2, 3 and 4,
when the transformation is k times continuously differentiable and the bin size is h,
the error is O(hk) [Ahlberg et al., 1967, Chapter 2]. However, we are not aware of any
other instance where an error bound is available.

We present an example to show that the error O(n−1) in Theorem 6.3 does not
necessarily improve when SOS polynomials are used instead.

126 Robust normalizing flows using Bernstein-type polynomials

Example 6.4. Uniform[0, 1] to the Normal(0, 1):

T(z) = Erf−1(2z− 1) =
∞

∑
k=0

√
2πk+ 1

2 ck

2k + 1

(
z− 1

2

)2k+1

,

where {ck}k≥0 is a bounded positive sequence Jaini et al. [2019]. This is the power series
expansion of T at z = 1/2, and hence, it is unique.

The SOS approximation ∑n
k=0

√
2πk+1/2ck

2k+1 (z− 1/2)2k+1 of T is only O((2n + 1)−1) accu-
rate on any compact sub-interval of (0, 1). This is precisely the accuracy one would expect
from the degree 2n + 1 Bernstein approximation on a compact subinterval of (0, 1).

Even though the error bound under optimal convergence is O(n−1), and in general,
cannot be improved further regardless of how regular the transformation is. We
compare the average error we obtain against the theoretical average error in an
experiment. See section 6.6.2.

6.3.2 Numerical stability

From Farouki and Rajan [1987], we know that Bernstein-type polynomials are sys-
tematically more stable than the polynomials in the power form when determining
roots (for example, when inverting) and evaluation (for example, when finding image
points). This was discussed in section 6.2.4. In fact, due to Farouki and Goodman
[1996] the Bernstein polynomial basis on a given interval is optimally stable, in the
sense that no other non-negative basis gives smaller condition numbers for the values
or roots of arbitrary polynomials on that interval. As a result, when polynomials
are used to construct NFs, i.e., quadratic or cubic splines, SOS polynomials, and etc.,
Bernstein-type polynomials yield the most robust NF. We verify this experimentally
in section 6.6.3.

Inverting splines are easier due to the availability of analytic expressions for
roots. However, we have efficient and numerically stable algorithms like convex
hull approximation and parabolic hull approximation to find roots of Bernstein-type
polynomials. The latter is faster than both the bisection method and the Newton’s
method Spencer [1994]. This allows us to reduce the cost of numerical inversion in
our setting.

6.3.3 Applicability to compact densities

In any NF model, even if the target density is not compactly supported, we can
implement the learning procedure by first converting the target density to a density
with a support of our choice via a suitable invertible transformation.

Let Bn : [0, 1] → [a, b] be the learnable Bernstein-type polynomial and let h :
[a, b]→ R be a fixed invertible transformation so that h−1 transforms the target den-
stity to a one supported on [a, b]. So, α0 = a and αn = b. Let I = {(α1, . . . , αn−1) | a <

§6.3 Theoretical comparison with other methods 127

α1 < · · · < αn−1 < b}. Then the optimization problem is

min
I

KL(Px‖(h ◦ Bn)∗Pz)

=−max
I

∫
log

Pz(B−1
n (h−1x))

|Jh◦Bn
(B−1

n (h−1x))| · Px(x) dx

=−max
I

∫
log

Pz(B−1
n (h−1x))

|Jh(h−1x)JBn
(B−1

n (h−1x))| · Px(x) dx

=−max
I

∫
log

Pz(B−1
n (h−1x))

|JBn
(B−1

n (h−1x))| · Px(x) dx (6.8)

+
∫

log |Jh(h
−1x)| · Px(x) dx.

Note that the second integral can be taken outside the max because it is independent
of Bn, and hence, a constant that is irrelevant for the optimization. So, wlog we can
assume that the target density is compactly supported.

We note that this argument holds true even when we replace Bn with an arbitrary
f from a suitable class F. So, for example, in Durkan et al. [2019a,b] and in our case,
the assumption that the range of the transformations used is finite (as opposed to, say,
SOS polynomials from R to R having infinite range) is not restrictive.

Since we deal with compactly supported targets, in practice, we do not need to
construct deep architectures (with a higher number of layers), as we can increase the
degree of the polynomials to get a more accurate approximation. Although the same
argument seems valid for the other polynomial based methods, a practical problem
arises where the higher order polynomials may predict extremely high values initially,
which can cause unstable gradients. In contrast, since the range of our transformations
can be explicitly controlled by constraining α0 and αn (see Remark 6.3), the same
problem does not occur. For the same reason of being able to control the range by
simply fixing α0 and αn, Bernstein-type polynomials are ideal for modeling compactly
supported targets. In fact, in most other methods except splines, either there is no
obvious way to control the range or the range is infinite.

6.3.4 Intepretability

In general, polynomial based NFs are more interpretable than NAFs because we know
how certain properties of polynomials determine properties of the target density. For
example, coefficients of SOS polynomials control the first few moments of the target
density Jaini et al. [2019]. In the Bernstein case, we can say more.

• If αk’s are increasing, then so is Bn, and the support of the target density is
[α0, αn].

• The condition numbers Cφ and C̃φ given in section 6.2.3 control the error of
evaluation and inversion, respectively.

128 Robust normalizing flows using Bernstein-type polynomials

• The error of approximation corresponds to the degree of the Bernstein-type
polynomial in a precise way.

Therefore, our model is highly interpretable.

6.4 Bernstein-type Normalizing Flow

Now, we construct normalizing flows using the theoretical framework established
in section 6.2 for compactly supported targets. Consider a d-dimensional source
Pz(z) and a d-dimensional target Px(x). Then, the element-wise mapping between
the components xj and zj is approximated using a Bernstein-type polynomial as

xj = Bj
n(zj). We obtain the parameters of Bj

n(zj) using a neural network which is
conditioned on z≤j. This ensures a triangular mapping between the distributions.

Figure 6.1: Overall Bernstein-NF architecture with m + 1 layers for d-dimensional dis-
tributions. The range of transformations are within brackets and trainable coefficients

are in orange boxes.

As per Remark 6.3, we fix α0 and αn to be constants, and thus, define the range
of each transformation. Moreover, due to Theorem 6.1, αk’s need to be strictly
increasing for transformation to be strictly increasing. However, when we convert this
constrained problem to an unconstrained one as proposed by Remark 6.4, we may
obtain vk’s using the neural network and then calculate αk’s as described there.

For each Bj
n, we employ a fully-connected neural net with three layers to obtain

the parameters, except in the case of B0
n for which we directly optimize the parameters.

§6.5 Hyper-parameters and training details 129

Model Power GAS hepmass miniboone bsds300

FFJORD 0.46± 0.01 8.59± 0.12 −14.92± 0.08 −19.43± 0.04 157.40± 0.19
GLOW 0.42± 0.01 12.24± 0.03 −16.99± 0.02 −10.55± 0.45 156.95± 0.28
MAF 0.45± 0.01 12.35± 0.02 −17.03± 0.02 −10.92± 0.46 156.95± 0.28
NAF 0.62± 0.01 11.96± 0.33 −15.09± 0.04 −8.86± 0.15 157.73± 0.04
BLOCK-NAF 0.61± 0.01 12.06± 0.09 −14.71± 0.38 −8.95± 0.07 157.36± 0.03
SOS 0.60± 0.01 11.99± 0.41 −15.15± 0.10 −8.90± 0.11 157.48± 0.41
RQ-NSF (AR) 0.66± 0.01 13.09± 0.02 −14.01± 0.03 −9.22± 0.48 157.31± 0.28
BERNESTEIN 0.63± 0.01 12.81± 0.01 −15.11± 0.02 −8.93± 0.08 157.13± 0.11

Table 6.1: Test log-likelihood comparison against the state-of-the-art on real-world
datasets (higher is better). Log-likelihoods are averaged over 10 trials in SOS and

Bernstein.

Figure 7.2 illustrates a model architecture with m + 1 layers and degree n polynomials
for d-dimensional distributions. Here, there are (n− 1)(m + 1) variable coeffecients,
altogether.

6.5 Hyper-parameters and training details

For optimization, we used the Adam optimizer with parameters β1 = 0.9, β1 = 0.999,
ε = 1× 10−8, where parameters refer to the usual notation. An initial learning rate of
0.01 was used for updating the weights with a decay factor of 10% per 50 iterations.
We initialized all the trainable weights using a random standard normal distribution
and used maximum likelihood as the objective function for training. We observed that
a single layer model with 100 degree polynomials performed well for the real-world
data. In contrast, for 2D toy distributions and and images we used higher number of
layers (8) with 15 degree polynomials in each layer. For all the experiments, we use
a Kumaraswamy distribution with parameters a = 2 and b = 5 as the base density.
However, using a standard normal distribution after converting it to a density on [0, 1]
using a nonlinear transformation e.g., 1+tanh(z)

2 , also yielded similar results.

6.6 Experiments

In this section, we summarise our empirical evaluations of the proposed model based
on both real-world and synthetic datasets and compare our results with other NF
methods.

6.6.1 Modeling sample distributions

We conducted experiments on four datasets from the UCI machine-learning repository
and BSDS300 dataset. Table 6.1 compares the obtained test log-likelihood against
recent flow-based models. As illustrated, our model achieves competitive results

130 Robust normalizing flows using Bernstein-type polynomials

Figure 6.2: Qualitative results for modeling the toy distributions. From the top row:
ground truth, prediction, and predicted density.

on all of the five datasets. We observe that our model consistently reported a lower
standard deviation which may be attributed to the robustness of our model.

We also applied our method to two low-dimensional image datasets, CIFAR10
and MNIST. The results are reported in Table 6.2. Among the methods that do not
use multi-scale convolutional architectures, we obtain the optimal results. In addition,
we tested our model on several toy datasets (shown in Fig. 6.2). Note that these 2D
datasets contain multiple modes, sharp jumps and are not fully supported. So, the
densities are not that obvious to learn. Despite the difficulties, our model is able to
estimate the given distributions in a satisfactory manner.

6.6.2 Validation of the theoretical error upper-bound

The degree n (≥ 5) Bernstein approximation of a function f ∈ C3[0, 1] has an error
upper-bound

En = n−1‖ρ2 f (2)‖∞ + n−3/2‖ρ3 f (3)‖∞

where ρ(x) =
√

x(1− x) [Bustamante, 2017, Chapter 4]. This is an improved version
of the Theorem 6.3. Now, we verify this experimentally and show that the observed
(average) error is smaller than this theoretical upper-bound. To this end, we use

§6.6 Experiments 131

a Kumarswamy(2, 5) distribution as the prior and Uniform[0, 1] as the target (see
Example 6.2). We can compare the average error,

∫ 1
0 | f (x)− qn(x)| dx where f (x) =

1 − (1 − x2)5 and qn is the learned degree n Bernstein-type polynomial, and the
theoretical error,

1.25n−1 + 5n−3/2 < En < 1.25n−1 + 5.5n−3/2.

The Fig. 6.3 illustrates the desired conclusion.

0 10 20 30 40 50 60 70 80 90 100
Degrees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
rr

or

Theoretical error bound

Average experimental error

Figure 6.3: Theoretical error bound vs (averaged) experimental error.

In this case, in the NF, we have used a single layer and increased the degree of
the polynomial from 10 to 100. The NF model was stable even when the degree 100
polynomial was used. So, this experiment also demonstrates that our model is, in fact,
stable even when higher degree polynomials are used (as claimed in Section 6.3.3).

6.6.3 Robustness

In order to experimentally verify that Bernstein-NFs are more numerically stable than
other polynomial based NFs (as claimed in Section 6.2.4), we add i.i.d. noise (sampled
from a Uniform[0, 0.01]) to POWER and GAS datasets, and measure the change in the
test log-likelihood as a fraction of the standard deviation. For a fair comparison, we
train all the models from the scratch over 5 trials to obtain the standard deviations
and the test log-likelihoods. The Table 6.3 illustrates these results. As expected,

132 Robust normalizing flows using Bernstein-type polynomials

Bernetein-type polynomials demonstrate the lowest change in performance, implying
the robustness against random initial errors.

Model MNIST CIFAR10

Real NVP −1.06 −3.49
GLOW −1.05 −3.35
FFJORD −0.99 −3.40
MADE −2.04 −5.67
MAF −1.89 −4.31
SOS −1.81 −4.18
BERNSTEIN −1.54 −4.04

Table 6.2: Test log-likelihood comparison against the state-of-the-art on image datasets
(higher is better). First three used multi-scale convolutional architectures.

Model POWER GAS

RQ-NSF 2.3 5.4
SOS 2.1 1.7
MADE 2.1 4.6
MAF 2.4 4.4
BERNSTEIN 1.1 1.3

Table 6.3: Test log-likelihood drop for random initial errors, as a ratio of the standard
deviations obtained using original data.

6.7 Ablation study

We compare the performance of different variants of our model against a simple task,
in order to better understand the design choices. To this end, we use a standard normal
as the base distribution, and a mixture of five Gaussians with means = (−5,−2, 0, 2, 5),
variances = (1.5, 2, 1, 2, 1), and weights 0.2 each, as the target. Fig. 6.4 depicts the
results.

Clearly, we were able to increase the expressiveness of the transformation by
increasing the degree of the polynomials, as well as the number of layers. However, it
is also visible that using an unnecessarily higher degree over-parametrizes the model,
and hence, deteriorate the output. As discussed in the main article, we are able to use
polynomials with degree as high as 100 in this experiment and others with no cost to
the training stability because the training is done for a compactly supported target.

We also examine how the initial base distribution affects the performance. We
use a mixture of seven Gaussians with means = (−7,−5,−2, 0, 2, 5, 7), variances =
(1, 1, 2, 2, 2, 1, 1), and weights = (0.8, 0.2, 0.2, 0.6, 0.2, 0.2, 0.8), as the target. We used a
model with a 100-degree polynomial and a single layer for this experiment. Fig. 6.5

§6.7 Ablation study 133

illustrates the results. Although all priors capture the multimodes, when Uniform[0, 1]
is used the model was not able to predict that the density is almost zero for large
negative values.

Figure 6.4: Ablation study with different varients of our model. D and L denotes the
degree of the used polynomials and the number of layers, respectively. Corresponding

transformation functions are also shown below the predicted densities.

Figure 6.5: Approximation of the target density starting from various initial densities
(the initial distributions are noted below the densities).

134 Robust normalizing flows using Bernstein-type polynomials

6.8 Chapter summary

In this Chapter, we proposed a novel method to construct a universal autoregressive
normalizing flow with Bernstein-type polynomials as the coupling functions. Our
theoretical discussion on Bernstein-type polynomials concluded that they possess
properties ideal for constructing normalizing flows, and as a result, our method
has several advantages like robustness against initial and round-off errors, higher
interpretability, theoretical error bound, and better training stability for higher degree
polynomials. This allows us to induce significant inductive bias into the model by
controlling the bounds of the target density, and by explicitly designing the model
to achieve an upperlimit for the error. Another important aspect of our model is the
constructive universality proof, which does not exist for the competing methods. We
compared our method to other universal normalizing flows both theoretically and
experimentally. Our experiments on real-world and synthetic datasets (including 2D
multimodal ones) provided competitive results and show that our theoretical claims
hold in practice.

Chapter 7

Efficient high-resolution point
cloud generation on unit sphere

Thus far, we showed that instilling task-dependant physics priors into machine learn-
ing models can significantly improve their efficacy and performance, across different
problem settings. From here onward, we turn our attention towards inducing another
significant aspect of the human brain into machine learning systems. We show that
the concept of combinatorial generalization — dividing a learning system into smaller
modules that specialize on solving a particular task — can be extremely effective
in learning representations. In this chapter, we show the efficacy of combinatorial
generalization by following a use case of 3D data synthesis.

Point-clouds are a popular 3D representation for real-world objects and scenes.
In comparison to other representations such as voxels, mesh and truncated signed
distance function (TSDF), point-clouds are often an attractive choice for 3D data
because they capture shape details accurately, are computationally efficient to process
and can be acquired as a default output from several 3D sensors (e.g., LiDAR).
However, point-clouds pose a major challenge for deep networks, particularly the
generative pipelines, due to their inherent redundancy and irregular nature (e.g.,
permutation-invariance).

Due to the complexity of point-clouds, most 3D synthesis approaches are inap-
plicable. For example, generative approaches designed for voxelized inputs [Wu
et al., 2016; Kingma and Welling, 2013; Wu et al., 2015; Xie et al., 2018a; Huang et al.,
2017b; Khan et al., 2019], cannot work with the irregular point sets. To overcome this
challenge, some recent generative approaches solely focus on point-cloud synthesis.
For example, Achlioptas et al. [2017a] use a GAN framework for 3D point-cloud
distribution modelling in the data and auto-encoder latent space, Yang et al. [2019b]
sample 3D points from a prior spatial distribution and then transform them using
an invertible parameterization while Shu et al. [2019]; Valsesia et al. [2018] employ
graph-structured networks for point-cloud generation.

All such efforts so far, operate in the ‘spatial-domain’ (3D Euclidean space) which
makes the modelling task relatively difficult due to arbitrary point configurations in
3D space. This leads to a number of roadblocks towards a versatile generative model
e.g., considering a fixed set of points [Achlioptas et al., 2017a] and limited scalability

135

136 Efficient high-resolution point cloud generation on unit sphere

• Irregularity
• Permutations
• Redundancy

Spatial to
Spectral-domain

• Structured
• Fixed

dimensional

Spherical
Harmonic

Moments (SMV)

Noise

Spectral
GAN

Generated
SMVs

Spectral to
Spatial-domain

Differentiable Transformer

Point-cloud
Representation

Spectral
Representation

Figure 7.1: Overview of Spectral-GAN. Our model operates in the spectral domain using
spherical harmonic moment vectors (SMVs). This allows us to avoid the redundancy
and irregularity of point-clouds. Using a differentiable transformer, our model can

also receive guidance from the spatial domain.

§7.1 Related Work 137

to arbitrary point resolutions [Shu et al., 2019; Valsesia et al., 2018]. As opposed to
previous works, we perform generative modelling in the spectral space using spherical
harmonic moment vectors (SMVs), which inherently offers a solution to the above
mentioned problems. Specifically, generating 3D shapes via spectral representations
allows us to compactly represent redundant information in point-clouds, easily scale to
high-dimensional point-cloud sets, remain invariant to the permutations in unordered
point sets and generate high-fidelity shapes with relatively minimal outliers. Besides,
our spectral representation allow us to develop an understanding about the frequency
domain functional space of generic 3D objects. Our main contributions are:

• To handle the redundancy and irregularity of point-clouds, we propose the first
spectral-domain GAN that synthesizes novel 3D shapes by using a spherical
harmonics based representation.

• A fully differentiable transformation from the spectral to the spatial domain
and back, thus allowing us to integrate knowledge from well-established spatial
models.

• Through both quantitative and qualitative evaluations, we illustrate that Spectral-
GAN can generate high-quality 3D shapes with minimal artifacts and can be
easily scaled to high-dimensional outputs.

• Our proposed framework learns highly discriminative unsupervised features
and can seamlessly perform 3D reconstruction from 2D inputs. Moreover, we
show that Spectral-GAN is scalable to high-resolution outputs (40× resolution
increase with just 4× parameters).

7.1 Related Work

Generative models in spectral-domain: Yang et al. [2017b] and Souza and Frayne
[2018] develop methods for MRI reconstruction using GANs, and use Fourier domain
information to refine the output. In the former approach, the generator operates
in the spatial domain, and spectral information is used to refine the output. The
latter approach, in contrast, uses two separate networks in the frequency and spatial
domains and adopts the Fourier transform to exchange information between the two.
A significant drawback of these approaches is that output resolution is tightly coupled
to the network design and thus they lack scalability to high dimensions.

In a different application, Portilla and Simoncelli [2000] present a method to synthe-
size textures as 2D images based on a complex wavelet transform. They parameterize
this operation using a set of statistics computed on pairs of coefficients corresponding
to basis functions at adjacent spatial locations, orientations, and scales. However, their
approach is not a learning model, which offers less flexibility. Furthermore, Zhu et al.
[2018] recently proposed a model that initially processes undersampled input data
in the frequency domain and then refines the result in the spatial domain using the
inverse Fourier transform. They approximate the inverse Fourier transform using
a sequence of connected layers, but one disadvantage is that their transformation
has quadratic complexity with respect to the size of the input image. Furthermore,

138 Efficient high-resolution point cloud generation on unit sphere

the above works are limited to 2D and do not study the 3D point-cloud generation
problem in spectral domain.

3D GANs in spatial-domain: 3D GANs can be primarily categorized into two
types: voxel outputs and point-cloud outputs. The latter typically entails more
challenges as point-clouds are unordered and highly irregular in nature.

For voxelized 3D object modeling, several influential methods have been proposed
in the literature. Wu et al. [2016] extend the 2D GAN framework to 3D domain
for the first time. Following their work, Smith and Meger [2017] use a novel GAN
architecture for 3D shape generation by employing Wasserstein distance as the loss
function. A recent work by Khan et al. [2019] presents a factorized 3D generative
model that sequentially generates shapes in a coarse-to-fine manner. Our approach
also uses a two-step procedure–a forward pass and backward pass—to refine a coarse
3D shape, but a key difference here is that they use spatial information to refine the
shape, while our method depends on frequency information.

Naive extensions of traditional spatial GANs to 3D point-cloud generation do
not produce satisfactory results, due to their inherent properties such as being an
unordered, irregularly distributed collection (see Sec. 7.2). Achlioptas et al. [2017a]
were the first to use GANs to generate point-clouds. They first convert a point-cloud to
a compact latent representation and then train a discriminator on it. Although we also
use a compact representation, i.e., , the SMV to train the GAN, SMVs provide a richer
representation compared to latent space approximations and theoretically guarantee
accurate reconstruction of the 3D point-cloud. Moreover, Valsesia et al. [2018] propose
a graph convolution based network to extract localized features from 3D point-clouds,
in order to reduce the effect of irregularity. A drawback of their method, however, is
the rather high computational complexity of graph convolution, and less scalability
with the resolution of the point-cloud. A recent work by Shu et al. [2019] also
propose a tree-structured graph convolution network, which is more computationally
efficient. The model proposed by Li et al. [2018a] attempts to handle the irregularity
of point-clouds using a separate inference model which captures a latent distribution,
to deal with the irregularity of point-clouds. In contrast, we effectively reduce the
problem to the standard GAN setting by using a fixed-dimensional representation for
point-clouds.

7.2 Problem Formulation

An exchangeable sequence can be considered as a sequence of random variables
X̃ = {xi}n

i=1, where the joint probability distribution of X̃ does not vary under
position permutations. More formally,
Definition: For a given finite set {xi}n

i=1 of random objects, let µx1,x2,...,xn be their joint
distribution. This finite set is exchangeable if µx1,x2,...,xn = µxπ(1),xπ(2),...,xπ(n) , for every permu-
tation π : {1, 2, . . . , n} → {1, 2, . . . , n}. The spatial representation X of a point-cloud is
a set of d-dimensional vectors, and in cases of Euclidean geometry, typically, d = 3.
A set is a collection of elements without any particular order or a fixed number of

§7.3 Spectral GAN 139

elements and thus, the probability distribution p(X) is an exchangeable sequence.
According to the Hewitt and Savage theorem [Hewitt and Savage, 1955], there exists a
latent distribution Q such that,

p(X) =
∫

p(x1, x2, . . . , xn | Q) p(Q)dQ. (7.1)

Eq. 7.1 shows that in order to properly model X as an exchangeable sequence and
obtain a distribution p(X), it is necessary to capture the latent representation Q. In
other words, it is difficult for a GAN to model X as an exchangeable sequence, only
by observing a set of X sequences and estimating the marginal distributions p(xi), i ∈
[1, . . . , n]. In this case, the generative model needs to learn the joint probability
distribution p(xi, Q) instead of p(xi). This makes it challenging to extend traditional
GANs to the point-cloud generation problem. A straightforward approach to resolve
this is to model point-cloud data as ordered, fixed-dimensional vectors. However, this
approach does not hold the integral probability metric (IPM) guarantees of a GAN [Li
et al., 2018a].

On the contrary, we propose to model point-cloud data as SMVs, which effectively
reduces the problem to the traditional case in two ways: 1) SMVs encode the corre-
sponding shape information in a structured, fixed dimensional vector and 2) the vector
elements are highly correlated with each other. The task of learning the distribution of
elements of SMVs is theoretically similar to learning the pixel distribution of images,
as in the latter case also, we only need to capture the joint probability distribution
of pixels of each instance. In the case of image synthesis, however, GANs exploit the
correlation of pixels using convolution kernels, which is not possible in the case of
SMVs as correlation does not depend on proximity. Furthermore, different frequency
portions of the SMVs show different characteristics. To handle these specific attributes,
we propose a series of cascaded GANs, each consisting of only fully connected layers.
Since each GAN only needs to generate a specific portion of the SMV, they can be
designed as shallow models with fewer floating point operations (FLOPs).

7.3 Spectral GAN

We propose a 3D generative model that operates entirely in the spectral domain. Such
a design offers unique advantages over spatial domain 3D generative models: (a) a
compact representation of 3D shapes with an intuitive frequency-domain interpreta-
tion, (b) the flexibility to generate high-dimensional shapes with minimal changes to
the model complexity, and (c) a permutation invariant representation which handles
the irregularity of point-clouds. Below, we first introduce the spherical harmonics
representations that serve as the basis for our proposed Spectral GAN model.

7.3.1 Spherical Harmonics for 3D Objects

Spherical harmonics are a set of complete and orthogonal basis functions, which
can efficiently represent functions on the unit sphere S2 in R3. They are a higher

140 Efficient high-resolution point cloud generation on unit sphere

Figu
re

7.2:
T

he
overview

of
the

Sp
ectral

G
enerative

A
d

versarial
N

etw
ork.

A
n

u
nrolled

version
(w

ith
an

exp
licit

forw
ard

and
backw

ard
pass)

of
the

training
schem

e
is

show
n

for
clarity.

§7.3 Spectral GAN 141

dimensional analogy of the Fourier series, which forms a basis for functions on unit
circle. The spherical harmonics are defined on S2 as,

Ym
l (θ, φ) = Nm

l Pm
l (cos φ)eimθ , (7.2)

where φ ∈ [0, π] is the polar angle, θ ∈ [0, 2π] is the azimuth angle, l ∈ Z+ is a
non-negative integer, m ∈ Z is an integer, |m| < l, i =

√
−1 is the imaginary unit,

Nm
l = (−1)m

√
2l+1
4π

(l−m)!
(l+m)! is the normalization coefficient and Pm

l (·) is the associated
Legendre function,

Pm
l (x) = (−1)m (1− x2)

m
2

2l l!
dl+m

dxl+m (x2 − 1)l . (7.3)

Since spherical harmonics are orthogonal and complete over the continuous functions
on S2 with finite energy, such a function f : S2→R can be expanded as,

f (θ, φ) =
∞

∑
l=0

l

∑
m=−l

cm
l Ym

l (θ, φ), (7.4)

where cm
l are the spherical harmonic moments obtained by,

cm
l =

∫ π

0

∫ 2π

0
f (θ, φ)Ym

l (θ, φ)† sin φ dφdθ. (7.5)

The sufficient conditions for the expansion in Eq. 7.4 are given in [Hobson, 1931].
In practical cases, a bounded set of spherical harmonic basis functions (M + 1)2 is
defined, where M is the maximum degree of harmonics series.

The process of 3D shape modeling via spherical harmonics can be decomposed into
two major steps. First, sample points from the 3D shape surface and then computing
spherical harmonic moments. Any polar 3D surface function can be represented as
r = f (θ, φ), where f (θ, φ) is a single valued function on the unit sphere S2, r is the
radial coordinate with respect to a predefined origin inside an object, and (θ, φ) is the
direction vector. Thus, we can compute moments of the corresponding 3D point-cloud
using Eq. 7.5.

7.3.2 Cascaded GAN Structure

SMVs provide a highly structured representation of 3D objects, as explained in
Sec. 7.3.1. Due to this structured nature, the margin for error is significantly lower
in our setup, compared to GANs that try to produce spatial domain representations.
Also, different frequency bands of the SMV typically entail different characteristics,
which makes it highly challenging for a single GAN to generalize over the complete
SMV. Therefore, to overcome this obstacle, we use multiple cascaded GANs, where
each GAN specializes in generating a pre-defined frequency band of the SMV.

Our approach uses a combination of T GAN models to generate the SMV of 3D
shapes. Among them, the first model is a regular GAN while the remaining T − 1

142 Efficient high-resolution point cloud generation on unit sphere

models are conditional GANs (cGAN). The objective of initial GAN model is given by
a two-player min-max game,

min
G1

max
D1

LGAN(G1,D1) = Eḡ1 [logD(ḡ1)] + Ez1 [log(1−D(G(z1)))], (7.6)

where ḡi ∼ pg is the SMV band sampled from the spectral coefficient distribution and
z ∼ pz is the noise vector sampled from a Gaussian distribution. In a cGAN, synthetic
data modes are controlled by forwarding conditioning variables (e.g., a class label) as
additional information to the generator. In our case, we use a specific band of SMVs
gi predicted by the previous generator to condition the subsequent generator. Then,
the cGAN objective becomes,

min
Gi

max
Di

LcGAN(Gi,Di) = Eḡi [logD(ḡi)] + Egi−1,zi [log(1−D(Gi(gi−1, zi)))] : i > 1.

(7.7)

Each GAN generates a portion of the complete spherical moment vector for the
next GAN to be conditioned upon. The setup includes two major steps: (i) forward
pass and (ii) backward pass. Accordingly, the overall architecture can be decomposed
into two sets of generators G f and Gb, that implement the forward and backward
functions, respectively. In the forward pass, the model tries to generate a coarse shape
representation, and the backward pass refines the coarse representation to generate a
refined representation. The basis of our design is the Markovian assumption, i.e., given
the outputs from the neighbouring generators, a current generator is independent
from the outputs of the rest. We describe the two generation steps in Sec. 7.3.2.1 and
7.3.2.2.

7.3.2.1 Forward pass

In the forward pass, we have a set of T′ generative models G f = {G1, . . . ,GT′},
which work in unison to generate a coarse representation of a 3D shape. Each
Gi ∈ {G2, . . . GT′} is conditioned upon the outputs of Gi−1, and generates a predefined
frequency band (Si) of the complete spherical harmonic representation (S) of the
corresponding 3D shape. It is worthwhile to note that the forward pass is sufficient to
generate the complete SMV without the aid of a backward pass. However, a critical
limitation of this setup is that each GAN is only conditioned upon lower frequency
bands of the SMV. In practice, this results in noisy outputs. Therefore, we also perform
a backward pass, which allows the GANs to refine the generation by observing the
higher frequencies. This procedure is explained on Sec. 7.3.2.2.

7.3.2.2 Backward pass

As explained in Sec. 7.3.2.1, the aim of the backward pass is to generate a more refined
SMV, which produces a more refined 3D shape. Similar to forward pass, the backward
pass is implemented using another set of generators Gb = {GT′+1, . . . GT}, where

§7.4 Spatial domain regularizer 143

T = 2T′ − 1. Each Gi ∈ Gb is conditioned upon the outputs of Gi−1 and generates
a specific portion of the complete SMV. In the training phase, we first transfer the
trained weights from {G f \GT′} to Gb, before training {Gb}. Therefore, this can be
intuitively considered as fine-tuning {G1 . . . GT′−1} based on higher frequencies. The
training procedure is explained in Sec. 7.5.

7.4 Spatial domain regularizer

Since SMVs are highly structured, each element of a particular SMV is crucial for
accurate reconstruction of its corresponding 3D point-cloud. In other words, even
slight variations of a particular SMV cause significant variations in the spatial domain.
Therefore, it is cumbersome for a GAN to synthesize SMVs, corresponding to visually
pleasing point-clouds, by solely observing a distribution of ground truth SMVs.

To surmount this barrier, we use a spatial domain regularizer that can refine the
weights of our cascaded GAN architecture, in order to synthesize more plausible
SMVs. The spatial domain regularizer provides feedback from the spatial domain
to the GANs, depending on the quality of the spatial reconstruction. Firstly, we
employ a pre-trained PointNet [Qi et al., 2017a] model on the reconstructed synthetic
point-cloud, and extract a global feature. Secondly, using the same procedure, we
obtain another global feature from a ground truth point-cloud from the same class,
and compute the L2 distance between these two features. Finally, using back back-
propagation, we update the weights of all the generators G = {G f ∪ Gb} to minimize
the L2 distance. The final architecture of the proposed model is shown in Fig. 7.2.

In order to back-propagate error signals from the spatial domain to the spectral do-
main, we require ∂L/∂g, where g is the SMV and L is the loss. To this end, we derive
the following formula: let g = (g0

0, . . . , gm
l , . . . gK

K)
> be the SMV of a particular instance

and {r(θ0, φ0), . . . , r(θn, φn), . . . , r(θN , φN)} be the corresponding reconstructed points
on S2 for the same instance. Then, using the chain rule it can be shown that,

∂L
∂gm

l
= ∑

θ
∑
φ

∂L
∂r(θ, φ)

∂r(θ, φ)

∂gm
l

, (7.8)

where, r(θ, φ) =
M

∑
l=0

l

∑
m=−l

gm
l Ym

l (θ, φ). (7.9)

Combining Eq. 7.8 and 7.9, we obtain,

∂L
∂gm

l
= ∑

θ
∑
φ

∂L
∂r(θ, φ)

Ym
l (θ, φ). (7.10)

The above expression can be written as a matrix-vector product to obtain derivatives
∂L/∂g. This makes the transformer a fully differentiable and a network-agnostic
module which can be used to communicate between spectral and spatial domains.

144 Efficient high-resolution point cloud generation on unit sphere

7.5 Network architecture and training

Our aim is to generate a compact spectral representation, i.e., , a vector, instead of
a irregular point set. In the spatial domain, points are correlated across the spatial
space, and convolutions can be adopted to capture these dependencies. In fact,
convolution kernels extract local features, under the assumption that spatially closer
data points form useful local features. In contrast, closer elements in spectral domain
representations do not necessarily exhibit strong correlations. Therefore, convolutional
layers fail to excel in this scenario and thus, we opt for fully connected (FC) layers
in designing our GANs. Interestingly, however, our GANs learn to generate quality
outputs with a low depth architecture.

Generator architecture: For our main experiments, we choose the maximum
degree of SMVs and the number of GANs as M=100 and T=7, respectively, where
G f = {G1, ..,G4} and Gb = {G5,G6,G7}. Each generator in G f respectively generates
frequency bands (0 ≤ l ≤ 50,−l ≤ m ≤ 0), (0 ≤ l ≤ 50, 0 < m ≤ l), (50 < l ≤
100,−l ≤ m ≤ 0) and (50 < l ≤ 100, 0 < m ≤ l). Since G5,G6,G7 are used to fine
tune G1,G2,G3, they generate the same frequency portions as the latter set. For all the
generators, we use the same architecture, except for the last FC layer. Each generator
consists of three FC layers, first two layers with 512 neurons each, and the number of
neurons in the last layer depends on the output size. For the first two layers, we use
ReLU activation and the final layer has a tanh activation.

Training: The input to each of our generators, except to G1, is a 300-d vector:
a 200-d noise vector concatenated with a 100-d vector sampled in equal intervals
from the previous generator output. For G1, we use a 200-d noise input. We use
RMSprop as the optimization algorithm with ρ=0.9, momentum=0, ε=10−7, where
symbols refer to usual notation. For G f and Gb, we use learning rates 0.001 and 0.0001
respectively, and for discriminators, we use a learning rate 10−5. While training, we
use three discriminator updates per each generator update. Our sampling procedure
is explained in supplementary materials and the training scheme is illustrated in
Algorithm 2.

7.6 3D reconstruction from single image

As a different application, we propose a generative model which can reconstruct 3D
objects by observing a single RGB image. The model follows the network architecture
proposed in Sec. 7.5, with a few alterations. Instead of randomly choosing the latent
vector z, we use a set of image encoders to obtain an object representative vector ẑ,
by taking a 2D image as the input. We use the same image encoder proposed in
[Wu et al., 2015], which consists of five spatial convolution layers with kernel size
{11, 5, 5, 5, 8} with strides {4, 2, 2, 2, 1}. We use batch normalization after each layer,
and ReLu activation as the non-linearity.

We use T′ such image encoders for each Gi ∈ G f , and use the same ẑ vectors
generated for {G1, . . . ,GT′−1} when training Gi ∈ Gb. Each image encoder is trained
end-to-end with Gi ∈ G f . The training procedure is similar to Algorithm 2, although

§7.6 3D reconstruction from single image 145

Algorithm 2: Training procedure for the Spectral-GAN.
G = {G f ∪ Gb};
Ro = A set of samples from ground truth point-clouds;
for i iterations do

for each Gk ∈ G f do
for j iterations do

Train Gk;

Gb
Weights←−−−− {G1, . . . GT′−1};

for each Gk ∈ Gb do
for j iterations do

Train Gk;
for p iterations do

g Synthesize←−−−−−− {GT′ ∪ Gb};
rg ← Reconstruct(g);
fg ← PointNet(rg);
fo ← PointNet(ro ∼ Ro);

L←
∥∥∥ fg − fo

∥∥∥
2
;

G ← Update(G, L);

we use different loss functions in this case. To optimize the GANs in spectral domain,
we use two loss components: an adversarial loss Lad and a spectral reconstruction
loss Lsr. The final spectral domain loss Lspectral is,

Lspectral = Lad + αLsr, (7.11)

where Lsr is the L2 distance between the ground-truth SMV and the generated SMV
from G ′T ∪ Gb and Lad is given as,

Lad = logD(x) + log(1−D(G(E(y)))) (7.12)

Here, E(·) is the encoder function, D(·), G(·) and y are discriminator function,
generator function and image input, respectively. α is a scalar weight. For the spatial
domain optimization, we replace spatial regularization loss with the Chamfer distance
as follows:

Lspatial = ∑
u∈S1

min
v∈S2
‖u− v‖2

2 + ∑
v∈S2

min
u∈S1
‖u− v‖2

2 , (7.13)

where S1 and S2 are ground-truth and generated point sets, respectively. First, we
obtain S2 by converting the SMV to a point-cloud using Eq. 7.4 and then compute the
loss (Eq. 7.13).

146 Efficient high-resolution point cloud generation on unit sphere

Figu
re

7.3:
Q

u
alitative

analysis
of

the
resu

lts.
From

the
left,1

stcolu
m

n:
G

rou
nd

tru
th,2

nd
colu

m
n:

grou
nd

tru
th

p
oint-clou

d
s

reconstructed
by

SM
V,3

rd−
7

th
colum

ns:generated
sam

ples
using

spectralG
A

N
.

§7.7 Experiments 147

Table 7.1: 3D shape classification results on ModelNet10.

Method Type Accuracy

3D-ShapeNet (CVPR’15) [Wu et al., 2015] Supervised 93.5%
EC-CNNs (CVPR’17) [Simonovsky and Komodakis, 2017] Supervised 90.0%
Kd-Network (ICCV’17) [Klokov and Lempitsky, 2017] Supervised 93.5%
LightNet (3DOR’17) [Zhi et al., 2017] Supervised 93.4%
SO-Net (CVPR’18) [Li et al., 2018b] Supervised 95.5%

Light Filed Descriptor [Chen et al., 2003] Unsupervised 79.9%
Vconv-DAE (ECCV’16) [Sharma et al., 2016] Unsupervised 80.5%
3D-GAN (NIPS’16) [Wu et al., 2016] Unsupervised 91.0%
3D-DesNet (CVPR’18) [Xie et al., 2018a] Unsupervised 92.4%
3D-WINN (AAAI’19) [Huang et al., 2019b] Unsupervised 91.9%
PrimtiveGAN (CVPR’19) [Khan et al., 2019] Unsupervised 92.2%

Spectral-GAN (ours) Unsupervised 93.1%

7.7 Experiments

In this section, we evaluate our model both qualitatively and quantitatively, and
develop useful insights.

7.7.1 3D shape generation

Qualitative results: We train our model for each category in ModelNet10 and show
samples of generated 3D point-clouds in Fig. 7.3. As expected, the reconstruction from
SMV adds some noise to the ground truth point-clouds. An interesting observation,
however, is that the quality of generated point-clouds are not far from from the
reconstructed point-clouds from the ground-truth. Since the network only consumes
the reconstructed ground-truth, this observation highlights the ability of our network
in accurate modeling of input data distributions.

Table 7.2: Inception scores (IS) for 3D shape generation. We only compare with voxel
based methods since no point-cloud (p-cloud) based method reports IS.

Method 3D Data Accuracy

3D-ShapeNet [Wu et al., 2015] (CVPR’15) voxel 4.13 ± 0.19
3D-VAE [Kingma and Welling, 2013] (ICLR’15) voxel 11.02 ± 0.42
3D-GAN [Wu et al., 2016] (NIPS’16) voxel 8.66 ± 0.45
3D-DesNet [Xie et al., 2018a] (CVPR’18) voxel 11.77 ± 0.42
3D-WINN [Huang et al., 2019b] (AAAI’19) voxel 8.81 ± 0.18
PrimitiveGAN [Khan et al., 2019] (CVPR’19) voxel 11.52 ± 0.33

Spectral-GAN (ours) p-cloud 11.58 ± 0.08

148 Efficient high-resolution point cloud generation on unit sphere

Table 7.3: FID scores for 3D shape generation. (lower is better) All the methods except
ours are voxel based.

Method D
re

ss
er

To
ile

t

St
an

d

C
ha

ir

Ta
bl

e

So
fa

M
on

it
or

Be
d

Ba
th

tu
b

D
es

k

3D-GAN [Wu et al., 2016] (NIPS’16) - - - 469 - 517 - - - 651
3D-DesNet [Xie et al., 2018a] (CVPR’18) 414 662 517 490 538 494 511 574 - -
3D-WINN [Huang et al., 2019b] (AAAI’19) 305 474 456 225 220 151 181 222 305 322

Spectral-GAN (ours) 462 195 452 472 522 180 192 230 208 354

Quantitative analysis: To assess the proposed approach quantitatively, we compare
the Inception Score (IS) of our network with other voxel-based generative models
in Tab. 7.2. In this experiment, we use Qi et al. [2016] as the reference network. IS
evaluates a model in terms of both quality and diversity of the generated shapes.
Overall, our model demonstrates the second highest performance with a score of
11.58. To the best of our knowledge, our work is the first 3D point-cloud GAN to
report IS.

We further evaluate our model using Frechet Inception Distance (FID) proposed
by Heusel et al. [2017], and compare with state-of-the-art. IS does not always coincide
with human judgement regarding the quality of the generated shapes, as it does not
directly capture the similarity between the synthetic and generated shapes. Therefore,
FID is used as a complementary measure to evaluate GAN performance. Huang et al.
[2019b] were the first to incorporate FID to 3D GANs, and following them, we also
use Qi et al. [2016] as the reference network. As evident from Table 7.3, our results
are on-par with state-of-the-art, getting highest scores in three categories: toilet, night
stand and bath tub. Interestingly, our Spectral-GAN generally performs better with
objects that have curved boundaries, which is a favorable characteristic, as curved
boundaries are generally difficult to generate in Euclidean spaces. Note that we
convert the point-clouds to meshes before evaluating with both IS and FID.
Comparison with point-cloud generation approaches: We use two metrics proposed
in Achlioptas et al. [2017a] (i.e., MMD-CD, MMD-ED) to compare the performance of
the proposed architecture with other point-cloud generation methods, and display
the results in Table 7.4. In this experiment, we use 16 classes of ShapeNet [Yi et al.,
2016]. As shown, our network gives best results. Intuitively, this suggests that shapes
generated by our network have high fidelity compared to the test set.
Scalability to high resolutions: A favorable attribute of our network design is the
ability to scale to higher resolutions with minimal changes to the architecture. To
verify this, we vary the degree of SMV, and train our model separately for each case.
Since the number of points n is tied to the maximum degree M of SMVs as n=4M2,
we obtain samples with different resolutions for each case (see Fig. 7.4). A key point
here is that we only change the output layer size of the generator (according to the
length of SMV) to generate point-clouds with different resolutions. Fig. 7.5 illustrates

§7.7 Experiments 149

Table 7.4: Comparison with point-cloud generative models.

Method Class MMD-CD MMD-EMD

r-GAN (dense) [Achlioptas et al., 2017a] 0.0029 0.136
r-GAN (conv) [Achlioptas et al., 2017a] 0.0030 0.223
Valsesia et al. [2018] (no up.) Chair 0.0033 0.104
Valsesia et al. [2018] (up.) 0.0029 0.097
TreeGAN [Shu et al., 2019] 0.0016 0.101
Spectral-GAN (ours) 0.0012 0.080

r-GAN (dense) [Achlioptas et al., 2017a] 0.0009 0.094
r-GAN (conv) [Achlioptas et al., 2017a] 0.0008 0.101
Valsesia et al. [2018] (no up.) Airplane 0.0010 0.102
Valsesia et al. [2018] (up.) 0.0008 0.071
TreeGAN [Shu et al., 2019] 0.0004 0.068
Spectral-GAN (ours) 0.0002 0.057

r-GAN (dense) [Achlioptas et al., 2017a] 0.0020 0.146
r-GAN (conv) [Achlioptas et al., 2017a] 0.0025 0.110
Valsesia et al. [2018] (no up.) Sofa 0.0024 0.094
Valsesia et al. [2018] (up.) 0.0020 0.083
Spectral-GAN (ours) 0.0020 0.080

r-GAN (dense) [Achlioptas et al., 2017a] 0.0021 0.155
TreeGAN [Shu et al., 2019] All classes 0.0018 0.107
Spectral-GAN (w/o backward pass) 0.0020 0.127
Spectral-GAN (ours) 0.0015 0.097

Figure 7.4: Scalability of the proposed network with resolution. We obtain increasingly
dense resolution by only changing the output layer size in each training phase.

Number of points from the left: 302, 602, 1002, 1502 and 2002

.

150 Efficient high-resolution point cloud generation on unit sphere

the variation of resolution with the number of FLOPs. Remarkably, we are able to
generate high-resolution outputs up to 40, 000 points with only 0.3B FLOPs. Another
intriguing observation is that our network is able to increase the output resolution by
a factor of 40, while the number of FLOPs is only increased by a factor around 4.
Usefulness of backward pass: Fig. 7.6 illustrates the effect of performing a backward
pass. As shown, the forward pass only generates a coarse representation of the shapes
without fine details. This is anticipated, since cascaded GANs can only observe the
lower frequency portions of SMV in the forward pass. In contrast, the backward pass
observes the higher frequency portions, and fine tunes the coarse representation by
adding complementary details.

Figure 7.5: Spectral GAN can generate high-resolution outputs with minimal compu-
tational overhead. We increase resolution approximately 40× while only an increase

of 4× FLOPs.

7.7.2 Unsupervised 3D Representation Learning

In this section, we evaluate the representation learning capacity of our discriminator.
To this end, we pass relevant SMV frequency bands of 3D point-clouds through trained
discriminators, extract the features from the third FC layer, and finally concatenate
them to create a feature vector. This feature vector is then fed through a binary
SVM classifier and the classification results are obtained as one-against-the-rest. The
classification results on ModelNet10 are depicted in Table 7.1. As evident, we achieve
the highest result with a value of 93.1%, which highlights the excellent representation
learning capacity of our discriminators.

7.7.3 3D reconstruction results

In this section, we evaluate the performance of the 3D reconstruction network pro-
posed in Sec. 7.6. First, we randomly apply a rotation R = (Rx, Ry, Rz) to each

§7.8 Sampling and reconstruction 151

3D model from the IKEA dataset 15 times, and render the rotated model in front
of background images obtained from Xiao et al. [2010]. Afterwards, we save the
rendered images and the corresponding 3D models to create ground-truth image-3D
model pairs. The ground truth 3D-models are manually aligned using the Itera-
tive closest point (ICP) algorithm. While applying rotations, we set the constraints
−π

6 < Rx, Ry < π
6 and −π < Rz < π and crop the rendered images for the object to

be in the center of the images. For the test set, we use the original images provided in
the IKEA dataset and test our network on four object classes: chair, sofa, table and
bed. We train our model separately for each category and use mean average precision
(mAP) to evaluate the performance. In evaluation, we voxelize the generated and
ground truth point-clouds using a 20×20×20 voxel grid, and obtain average precision
for voxel prediction. The results and illustrative examples are shown in Table 7.5 and
Fig. 7.7, respectively. As depicted, we surpass state-of-the-art results in sofa and bed
categories, while achieving second best results in the table category.

Figure 7.6: Effect of backward pass. Top row: samples generated using only forward
pass. Bottom row: same samples after passing through both forward and backward

pass. Backward pass refines the image by adding more fine details.

7.8 Sampling and reconstruction

A key attribute of any sampling theorem is the minimum number of sample points
required to accurately represent a band-limited function in a particular space. Several
such sampling theorems have been proposed to represent a signal with finite energy in
S2, whereas a most popular choice is the Driscoll and Healy’s (DH) theorem proposed
by Driscoll and Healy [1994], which we also use in our work.

According to DH theorem, to accurately represent a signal on S2 using spherical
harmonic moments band-limited at degree M, 4M2 equiangular sampled points are
needed. For all the main experiments in this work, we choose M = 100 and obtain

152 Efficient high-resolution point cloud generation on unit sphere

Figure 7.7: Qualitative results for 3D point-cloud reconstruction from a single image.

Table 7.5: Average precision for 3D point-cloud reconstruction from single image. The
point-clouds are voxelized before obtaining the score.

Method Chair Sofa Bed Table

AlexNet-fc8 [Girdhar et al., 2016] 20.4 38.8 29.5 16.0
AlexNet-conv4 [Girdhar et al., 2016] 31.4 69.3 38.2 19.1
T-L network [Girdhar et al., 2016] 32.9 71.7 56.3 23.3
3D-VAE-GAN [Wu et al., 2016] 47.2 78.8 63.2 42.3
VAE-IWGAN [Smith and Meger, 2017] 49.3 68.0 65.7 52.2
PrimtiveGAN [Khan et al., 2019] 47.5 77.1 68.4 60.0

Spectral-GAN (ours) 42.3 81.2 71.4 48.3

§7.9 Literature on cascaded generative designs 153

an equally sampled 200× 200 grid in each θ and φ directions, where 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π. However, as mentioned in Sec. 7.4, spherical harmonics can represent
only polar 3D shapes, which can result in less visually pleasing spatial representations
of non-polar shapes. To overcome this obstacle, we follow the following sampling
procedure.

First, we scale the 3D mesh to fit inside the unit ball B3, and cast rays from the
centroid of the shape to outward direction, and take the first hit locations of the rays
with a face as a sample point. In the first stage, we sample 200× 100 such equiangular
points in a 200× 100 grid, sampled in θ and φ directions respectively, where 0 ≤ θ ≤ π

and 0 ≤ φ ≤ 2π. In the second stage, we rotate the casted rays in φ direction, by an
amount of π

99 , and obtain the last hit locations of the each ray with a face of the 3d
shape as a sample point. Union of these two sampling sets provide a more visually
pleasing point-cloud for non-polar 3D shapes. This procedure is illustrated in Fig. 7.8.

Figure 7.8: Illustration of the sampling procedure. Red arrows and green arrows
demonstrate first stage and second stage sampling, respectively.

7.9 Literature on cascaded generative designs

Denton et al. [2015] proposed a cascaded GAN architecture for 2D image generation.
Similar to our work, they also use a series of conditional GANs which are conditioned
upon one another. These GANs generate image representations in a Laplacian pyramid
framework to create increasingly refined images. Instead of generating images directly
in the spatial domain, these generative models specialize in generating a specific
residual image, according to the corresponding stage of the Laplacian pyramid, which
are finally combined together to produce a high quality image. This is analogous to

154 Efficient high-resolution point cloud generation on unit sphere

our work, where our generators generate a specific frequency portion of SMVs, which
are finally combined together to obtain the full representation. Other recent works
also employ cascaded generative architectures to improve image quality e.g., Wang
et al. [2018] use a combination of generators operating on low and high resolution
domains, Wang and Gupta [2016] separately train generative models to learn style and
structure components, Zhang et al. [2017b] progressively adds photorealistic details
in low-resolution generated images. The conditional stacked GAN architecture of
Huang et al. [2017b] is particularly close to ours, that feeds onto previous generators
output and new latent vectors to create novel images. Finally, the seminal SinGAN
[Shaham et al., 2019] approach designs a pyramid of coarse-to-fine generators that can
be trained on a single image. However, as opposed to current work, all above efforts
operate in the spatial domain and have no concrete definition of spectral bands.

7.10 Computational complexity analysis

A key feature of our network is its high computational efficiency despite being a
cascaded design. Since the target is a 1-D structured vector, the generators are allowed
to have a shallow architecture, which decreases the total number of FLOPs during
operation. Table 7.6 compares the our model complexity against the state-of-the-art
models. We achieve the best performance in terms of MMD-CD and MMD-EMD
while having the lowest model complexity. Experiments are conducted for inference
with 20 batch size.

7.11 Chapter summary

This chapter proposes a generative model for 3D point-clouds that operates in the
spectral-domain. A key feature of our model is the use of structured representations,
in the form of a set of cascaded GANs. Each GAN is an expert in generating the
representations that correspond to a specific frequency band, and are allowed to
communicate with other GANs to refine the outputs. We show that this modular
approach is highly effective and can be scaled up easily. In contrast to previous
methods that operate in the spatial-domain, our approach provides an inherent way to
deal with the inherent redundancy and irregularity of point-clouds. We demonstrate
that our model generates sound 3D outputs, can scale to high-dimensional outputs
and learns discriminative features in an unsupervised manner. Further, it can be used
for 3D reconstruction tasks with minimal changes to the architecture.

§7.11 Chapter summary 155

Figure 7.9: Qualitative results: generated point clouds for each class.

156 Efficient high-resolution point cloud generation on unit sphere

Figure 7.10: Our network tends to generate weird artifacts among plausible samples,
when trained without the spatial domain regularizer, since small variations in spectral
domain cause significant variations in spatial domain. A few such examples are
illustrated here. These artifacts are effectively suppressed by our spatial domain

regularizer.

§7.11 Chapter summary 157

Ta
bl

e
7.

6:
M

od
el

co
m

pl
ex

ity
co

m
pa

ri
so

n
w

ith
po

in
t-

cl
ou

d
ge

ne
ra

tiv
e

m
od

el
s

(i
nf

er
en

ce
).

W
e

ac
hi

ev
e

th
e

be
st

pe
rf

or
m

an
ce

w
hi

le
ha

vi
ng

th
e

lo
w

es
t

co
m

pl
ex

it
y.

(↓
de

no
te

s
lo

w
er

is
be

tt
er

,↑
de

no
te

s
hi

gh
er

is
be

tt
er

)

M
et

ho
d

M
M

D
-C

D
(↓

)
M

M
D

-E
M

D
(↓

)
#F

LO
Ps

(↓
)

#P
oi

nt
s

(↑
)

r-
G

A
N

(d
en

se
)

[A
ch

lio
pt

as
et

al
.,

20
17

a]
0.

00
29

0.
13

6
0.

1B
20

48
V

al
se

si
a

et
al

.[
20

18
]

(u
p.

)
C

ha
ir

0.
00

29
0.

09
7

30
4B

20
48

Sp
ec

tr
al

-G
A

N
(o

ur
s)

0.
00

12
0.

08
0

0.
09

B
36

00

r-
G

A
N

(d
en

se
)

[A
ch

lio
pt

as
et

al
.,

20
17

a]
0.

00
09

0.
09

4
0.

1B
20

48
V

al
se

si
a

et
al

.[
20

18
]

(u
p.

)
A

ir
pl

an
e

0.
00

08
0.

07
1

30
4B

20
48

Sp
ec

tr
al

-G
A

N
(o

ur
s)

0.
00

02
0.

05
7

0.
09

B
36

00

r-
G

A
N

(d
en

se
)

[A
ch

lio
pt

as
et

al
.,

20
17

a]
0.

00
20

0.
14

6
0.

1B
20

48
V

al
se

si
a

et
al

.[
20

18
]

(u
p.

)
So

fa
0.

00
20

0.
08

3
30

4B
20

48
Sp

ec
tr

al
-G

A
N

(o
ur

s)
0.

00
20

0.
08

0
0.

09
B

36
00

r-
G

A
N

(d
en

se
)

[A
ch

lio
pt

as
et

al
.,

20
17

a]
A

ll
cl

as
se

s
0.

00
21

0.
15

5
0.

1B
20

48
Sp

ec
tr

al
-G

A
N

(o
ur

s)
0.

00
15

0.
09

7
0.

09
B

36
00

158 Efficient high-resolution point cloud generation on unit sphere

Chapter 8

Conditional Generative Modeling
via Learning the Latent Space

In the last chapter, we proposed a novel modular approach to synthesize 3D point
cloud data, motivated by combinatorial generalization of the human brain. In this
chapter, we show that this concept can be extended to the task of 2D image generation.
Specifically, we decouple the image generation task into smaller modules, and propose
a simple, novel conditional image generation mechanism that can outperform even
sophisticated GAN models.

Conditional generative models provide a natural mechanism to jointly learn
a data distribution and optimize predictions. In contrast, discriminative models
improve predictions by modeling the label distribution. Learning to model the data
distribution allows generating novel samples and is considered a preferred way to
understand the real world. Existing conditional generative models have generally
been explored in single-modal settings, where a one-to-one mapping between input
and output domains exists [Nalisnick et al., 2019; Fetaya et al., 2020]. Here, we
investigate continuous multimodal (CMM) spaces for generative modeling, where
one-to-many mappings exist between input and output domains. This is critical since
many real world situations are inherently multi-modal, e.g., humans can imagine
several outcomes for a given occluded image.

In a discrete setting, this problem becomes relatively easy to tackle using tech-
niques such as maximum-likelihood-estimation, since the output can be predicted as
a vector [Zhang et al., 2016], which is not possible in continuous domains. One way
to model CMM spaces is by using variational inference, e.g., variational autoencoders
(VAE) [Kingma and Welling, 2013]. However, the approximated posterior distribution
of VAEs are often restricted to the Gaussian family, which hinders its ability to model
more complex distributions. As a solution, Maaløe et al. [2016] suggested using
auxiliary variables to improve the variational distribution. To this end, the latent
variables are hierarchically correlated through injected auxiliary variables, which
can produce non-Gaussian distributions. A slightly similar work by Rezende and
Mohamed [2015] proposed to perform variational inference using normalizing flows,
that can hierarchically generate more complex probability distributions by applying a
series of bijective mappings to an original simpler distribution. Recently, Chang et al.

159

160 Conditional Generative Modeling via Learning the Latent Space

[2019] proposed a model, where a separate variable can be used to vary the impact of
different loss components at inference, which allows diverse outputs.

In addition to the aforesaid methods, in order to model CMM spaces, a prominent
approach in the literature is to use a combination of reconstruction and adversarial
losses [Isola et al., 2017; Zhang et al., 2016; Pathak et al., 2016a]. However, this
entails key shortcomings. 1) The goals of adversarial and reconstruction losses are
contradictory (Sec. 8.3), hence model engineering and numerous regularizers are
required to support convergence [Lee et al., 2019b; Mao et al., 2019], thereby resulting
in less-generic models tailored for specific applications [Zeng et al., 2019b; Vitoria et al.,
2020]. 2) The adversarial loss based models are notorious for difficult convergence
due to the challenge of finding Nash equilibrium of a non-convex min-max game
in high-dimensions [Barnett, 2018; Chu et al., 2020a; Kodali et al., 2017]. 3) The
convergence is heavily dependent on the architecture, hence such models show lack
of scalability [Thanh-Tung et al., 2019; Arora and Zhang, 2017]. 4) The promise of
assisting downstream tasks remains challenging, with a large gap in performance
between the generative modelling approaches and their discriminative counterparts
[Grathwohl et al., 2020; Jing and Tian, 2020].

In this work, we propose a general-purpose framework—Conditional Generation
by Modeling the Latent Space (cGML)—for modeling CMM spaces using a set of
domain-agnostic regression cost functions instead of the adversarial loss. This im-
proves both the stability and eliminates the incompatibility between the adversarial
and reconstruction losses, allowing more precise outputs while maintaining diversity.
The underlying notion is to learn the ‘behaviour of the latent variables’ in minimizing
these cost functions while converging to an optimum mode during the training phase,
and mimicking the same at inference. Despite being a novel direction, the proposed
framework showcases promising attributes by: (a) achieving state-of-the-art results
on a diverse set of tasks using a generic model, implying generalizability, (b) rapid
convergence to optimal modes despite architectural changes, (c) learning useful fea-
tures for downstream tasks, and (d) producing diverse outputs via traversal through
multiple output modes at inference.

8.1 Proposed Methodology

We define a family of cost functions {Ei,j = d(yg
i,j,G(xj, w))}, where xj ∼ χ is the

input, yg
i,j ∼ Υ is the ith ground-truth mode for xj, G is a generator function with

weights w, and d(·, ·) is a distance function. Note that the number of cost functions
E(·,j) for a given xj can vary over χ. Our aim here is to come up with a generator
function G(xj, w), that can minimize each Ei,j, ∀i as G(xj, w)→ yg

i,j. However, since G
is a deterministic function (x and w are both fixed at inference), it can only produce a
single output. Therefore, we introduce a latent vector z to the generator function, that
can be used to converge ȳi,j = G(xj, w, zi,j) towards a yg

(i,j) at inference, and possibly,

§8.1 Proposed Methodology 161

to multiple solutions. Formally, the family of cost functions now becomes:

{Êi,j = d(yg
i,j,G(xj, w, zi,j))}, ∀zi,j ∼ ζ. (8.1)

Then, our training objective can be defined as finding a set of optimal z∗i ∈ ζ and
w∗ ∈ ω by minimizing Ei∼I [Êi], where I is the number of possible solutions for xj.
Note that w∗ is fixed for all i and a different z∗i exists for each i. Considering all the
training samples xj ∼ χ, our training objective becomes,

{{z∗i,j}, w∗} = arg min
zi,j∈ζ,w∈ω

Ei∈I,j∈J [Êi,j]. (8.2)

It can be shown that Eq. 8.2 can be optimized via Algorithm 3 as follows: Let us
consider a particular input xj and an associated ground truth yg

i,j. Then, for this
particular case, we denote our cost function to be Êi,j = d(w, z). Further, a family of
cost functions can be defined as,

fw(z) = d(w, z), (8.3)

for each w ∼ ω. Further, let us consider an arbitrary initial setting (zinit, winit). Then,
with enough iterations, gradient descent by ∇z fw(z) converges zinit to,

z̄ = arg inf
z∈ζ

fw. (8.4)

Next, with enough iterations, gradient descent by ∇w fw(z̄) converges w to,

w̄ = arg inf
w∈ω

fw(z̄). (8.5)

Observe that fw̄(z̄) ≤ fwinit , where the equality occurs when∇z fw(z) = ∇w fw(z̄) =
0. If fw(z) has a unique global minima, repeating Equation 8.4 and 8.5 converges to
that global minima, giving {z∗i,j, w∗i,j}. It is straight forward to see that using a small
number of iterations (usually one in our case) for each sample set for Equation 8.5,
i.e., stochastic gradient descent, gives us,

{z∗i,j, w∗} =
zi,j∈ζ,w∈ω

arg min Ei∈I,j∈J [Êi,j], (8.6)

where w∗ is fixed for all samples and modes [Robbins, 2007]. Note that the proof is
valid only for the convex case, and we rely on stochastic gradient descent to converge
to at least a good local minima, as commonly done in many deep learning settings.

Intuitively, the goal of Eq. 8.2 is to obtain a family of optimal latent codes
{z∗i,j}, each causing a global minima in the corresponding Êi,j as yg

i,j = G(xj, w, z∗i,j).
Consequently, at inference, we can optimize ȳi,j to converge to an optimal mode in
the output space by varying z. Therefore, we predict an estimated z̄i,j at inference,

z̄i,j ≈ min
z

Êi,j, (8.7)

162 Conditional Generative Modeling via Learning the Latent Space

for each yg
i,j, which in turn can be used to obtain the prediction G(xj, z̄i,j, w) ≈ yg

i,j. In
other words, for a selected xj, let ȳt

i,j be the initial estimate for ȳi,j. At inference, z can
traverse gradually towards an optimum point yg

i,j in the space, forcing ȳt+n
i,j → yg

i,j, in
finite steps (n).

However, still a critical problem exists: Eq. 8.7 depends on yg
i,j, which is not

available at inference. As a remedy, we enforce Lipschitz constraints on G over
(xj, zi,j), which bounds the gradient norm as,∥∥∥G(xj, w∗, z∗i,j)− G(xj, w∗, z0)

∥∥∥∥∥∥z∗i,j − z0

∥∥∥ ≤
∫ ∥∥∥∇zG(xj, w∗, γ(t))

∥∥∥ dt ≤ C, (8.8)

where z0 ∼ ζ is an arbitrary random initialization, C is a constant, and γ(·) is a
straight path from z0 to z∗i,j.

Proof.

||G(xj, w∗, z∗i,j)− G(xj, w∗, z0)|| = ||
∫ z∗i,j

z0

∇zG(xj, w∗, z)dz|| (8.9)

Let γ(t) be a straight path from z0 to z∗i,j, where γ(0) = z0 and γ(1) = z∗i,j. Then,

= ||
∫ 1

0
∇zG(xj, w∗, γ(t))

dγ

dt
dt|| (8.10)

= ||
∫ 1

0
∇zG(xj, w∗, γ(t))(z∗i,j − z∗0)dt|| (8.11)

= ||(z∗i,j − z∗0)
∫ 1

0
∇zG(xj, w∗, γ(t))dt|| (8.12)

≤
∥∥∥(z∗i,j − z∗0)

∥∥∥∥∥∥∥∥
∫ 1

0
∇zG(xj, w∗, γ(t))dt

∥∥∥∥∥ (8.13)

On the other hand the Lipschitz constraint ensures,

∥∥∥∇zG(xj, w∗, γ(t))
∥∥∥ ≤ lim

ε→0

∥∥∥G(xj, w∗, γ(t))− G(xj, w∗, γ(t + ε))
∥∥∥

‖zt − zt+ε‖
≤ C, (8.14)

where C is a constant. Combining Eq. 8.13 and 8.14 we get,

∥∥∥G(xj, w∗, z∗i,j)− G(xj, w∗, z0)
∥∥∥∥∥∥z∗i,j − z0

∥∥∥ ≤
∫ 1

0

∥∥∥∇zG(xj, w∗, γ(t))
∥∥∥ dt ≤ C. (8.15)

§8.1 Proposed Methodology 163

Intuitively, Eq. 8.8 implies that the gradients ∇zG(xj, w∗, z0) along the path γ(·)
do not tend to vanish or explode, hence, finding the path to optimal z∗i,j in the space
ζ becomes a fairly straight forward regression problem. Moreover, enforcing the
Lipschitz constraint encourages meaningful structuring of the latent space: suppose
z∗1,j and z∗2,j are two optimal codes corresponding to two ground truth modes for a

particular input. Since ‖z∗2,j − z∗1,j‖ is lower bounded by

∥∥∥G(xj,w∗,z∗2,j)−G(xj,w∗,z∗1,j)
∥∥∥

L , where
L is the Lipschitz constant, the minimum distance between the two latent codes is
proportional to the difference between the corresponding ground truth modes. In
practice, we observed that this encourages the optimum latent codes to be placed
sparsely, which helps a network to learn distinctive paths towards different modes
(see Sec. 8.3.1).

8.1.1 Convergence at inference

We formulate finding the convergence path of z at inference as a regression problem,
i.e., zt+1 = r(zt, xj). We implement r(·) as a recurrent neural network (RNN). The
series of predicted values {z(t+k) : k = 1, 2, .., N} can be modeled as a first-order
Markov chain requiring no memory for the RNN. We observe that enforcing Lipschitz
continuity on G over z leads to smooth trajectories even in high dimensional settings,
hence, memorizing more than one step in to the history is redundant. However, zt+1 is
not a state variable, i.e., the existence of multiple modes for output prediction ȳ leads
to multiple possible solutions for zt+1. On the contrary, E[zt+1] is a state variable w.r.t.
the state (zt, x), which can be used as an approximation to reach the optimal z∗ at
inference. Therefore, instead of directly learning r(·), we learn a simplified version
r′(zt, x) = E[zt+1].

Intuitively, the whole process can be understood as observing the behavior of z on
a smooth surface at the training stage, and predicting the movement at inference. A
key aspect of r′(zt, x) is that the model is capable of converging to multiple possible
optimum modes at inference based on the initial position of z.

8.1.2 Momentum as a supplementary aid

Based on Sec. 8.1.1, z can now traverse to an optimal position z∗ during inference.
However, there can exist rare symmetrical positions in the ζ where E[zt+1]− zt ≈ 0,
although far away from {z∗}, forcing zt+1 ≈ zt. Simply, the above phenomenon can
occur if some zt+1 has traveled in many non-orthogonal directions, so the vector
addition of zt+1 ≈ 0. This can fool the system to falsely identify convergence points,
forming phantom optimum point distributions amongst the true distribution (see
Fig. 8.3). To avoid such behavior, we consider ~v(zt, xj) = (zt+1 − zt)xj . Then, we
learn the expected momentum E[ρ(zt, xj)] = αE[|~v(zt, xj)|] at each (zt, xj) during the
training phase, where α is an empirically chosen scalar. In practice, E[ρ(zt, xj)]→ 0

164 Conditional Generative Modeling via Learning the Latent Space

(a) Training

(b) Inference

Figure 8.1: Training and inference process. Refer to Algorithm 3 for the training
process. At inference, z is iteratively updated using the predictions of Z and fed to G

to obtain increasingly fine-tuned outputs (see Sec. 8.2).

as zt+1, zt → {z∗}. Thus, to avoid phantom distributions, we improve the z update as,

zt+1 = zt + E[ρ(zt, xj)]

 r′(zt, xj)− zt∥∥∥r′(zt, xj)− zt

∥∥∥
 . (8.16)

Since both E[ρ(zt, xj)] and r′(zt, xj) are functions on (zt, xj), we jointly learn these two
functions using a single network Z(zt, xj). Note that coefficient E[ρ(zt, xj)] serves
two practical purposes: 1) slows down the movement of z near true distributions, 2)
pushes z out of the phantom distributions.

8.2 Overall Design

The proposed model consists of three major blocks as shown in Fig. 8.1: an encoder
H, a generator G, and Z . The detailed architecture diagram for 128× 128 is shown
in Fig. 8.2. Note that for derivations in Sec. 8.1, we used x instead of h = H(x), as h
is a high-level representation of x. The training process is illustrated in Algorithm
3. At each optimization zt+1 = zt − β∇zt [Êi,j], Z is trained separately to approximate
(zt+1, ρ). At inference, x is fed to H, and then the Z optimizes the output ȳ by
updating z for a pre-defined number of iterations of Eq. 8.16. For Ê(·, ·), we use L1

loss. Furthermore, it is important to limit the search space for zt+1, to improve the

§8.3 Motivation 165

Figure 8.2: Overall architecture for 128× 128 inputs.

Algorithm 3: Training algorithm
sample inputs {x1, x2, ..., xJ} ∈ χ; sample outputs {y1, y2, ..., yJ} ∈ Υ ;
for k epochs do

for x in χ do
for l steps do

update z = {z1, z2, ..., zJ}: ∇zÊ B Freeze H,G,Z and update z
update Z : ∇wL1[(zt+1, ρ),Z(zt,H(x))] B Freeze H,G, z and update
Z

update G,H: ∇wÊ B Freeze Z , z and update H,G

performance of Z . To this end, we sample z from the surface of the n-dimensional
sphere (Sn). Moreover, to ensure faster convergence of the model, we force the
Lipschitz continuity on both Z and the G.

8.3 Motivation

Here, we explain the drawbacks of conditional GAN methods and illustrate our idea
via a toy example.
Incompatibility of adversarial and reconstruction losses: cGANs use a combination
of adversarial and reconstruction losses. We note that this combination is suboptimal
to model CMM spaces.

Remark 8.1. Consider a generator G(x, z) and a discriminator D(x, z), where x and z are
the input and the noise vector, respectively. Then, consider an arbitrary input xj and the
corresponding set of ground-truths {yg

i,j}, i = 1, 2, ..N. Further, let us define the optimal
generator G∗(xj, z) = ŷ, ŷ ∈ {yg

i,j}, LGAN = Ei[log D(yg
i,j)] + Ez[log(1− D(G(xj, z))]

166 Conditional Generative Modeling via Learning the Latent Space

and L` = Ei,z[|yg
i,j − G(xj, z)|]. Then, G∗ 6= Ĝ∗ where Ĝ∗ = arg

G
min

D
max LGAN + λL`,

∀λ 6= 0.

Proof. It is straightforward to derive the equilibrium point of arg
G

min
D

max LGAN from
the original GAN formulation. However, for clarity, we show some steps here.

Let,

V(G, D) = arg
G

min
D

max Ei[log D(yg
i,j)] + Ez[log(1− D(G(xj, z))] (8.17)

Let p(·) denote the probability distribution. Then,

V(G, D) = arg
G

min
D

max
∫

Υ
p(yg
·,j) log D(yg

·,j) + p(ȳ·,j)(log(1− D(G(xj, z))dy (8.18)

V(G, D) = arg
G

min
D

max Ey∼yg
·,j
[log D(y)] + Ey∼ȳ·,j [log(1− D(y)] (8.19)

Consider the inner loop. It is straightforward to see that V(G, D) is maximized

w.r.t. D when D(y) =
p(yg
·,j)

p(yg
·,j)+p(ȳ·,j)

. Then,

C(G) = V(G, D) = arg
G

min Ey∼yg
·,j
[log

p(yg
·,j)

p(yg
·,j) + p(ȳ·,j)

] + Ey∼ȳ·,j [log
p(ȳ·,j)

p(yg
·,j) + p(ȳ·,j)

]

(8.20)
Then, following the Theorem 1 from Goodfellow et al. [2014a], it can be shown

that the global minimum of the virtual training criterion C(G) is achieved if and only
if p(yg

·,j) = p(ȳ·,j).
Next, consider the L1 loss for xj,

L1 =
1
N ∑

i

∣∣∣yg
i,j − G(xj, z, w)

∣∣∣ (8.21)

∇wL1 = − 1
N ∑

i
sgn(yg

i,j − G(xj, z, w))∇w(G(xj, z, w)) (8.22)

For L1 to approach to a minima, ∇wL1 → 0. Since {yg
i,j} is not a singleton, when

L1 → 0, G(xj, z, w) 6= ŷ ∈ {yg
i,j}.

Now, let us consider the L2 loss,

L2 =
1
N ∑

i

∥∥∥yg
i,j − G(xj, z, w)

∥∥∥2
(8.23)

∇wL2 = − 2
N ∑

i
(yg

i,j − G(xj, z, w))∇w(G(xj, z, w)) (8.24)

For ∇wL2 → 0, G(xj, z, w) → 1
N ∑i yg

i,j. However, omitting the very specific case

§8.3 Motivation 167

where (1
N ∑i yg

i,j) ∈ {y
g
i,j}, which is highly unlikely in a complex distribution, as

L2 → 0, G(xj, z, w) 6= ŷ ∈ {yg
i,j}. Therefore, the goals of arg

G
min

D
max LGAN and λL`

are contradictory and G∗ 6= Ĝ∗.

Note that we do not extend our proof to high order L losses as it is intuitive.

Generalizability: The incompatibility of above mentioned loss functions demands
domain specific design choices from models that target high realism in CMM settings.
This hinders the generalizability across different tasks [Vitoria et al., 2020; Zeng et al.,
2019b]. We further argue that due to this discrepancy, cGANs learn sub-optimal
features which are less useful for downstream tasks (Sec. 8.5.4).

Convergence and the sensitivity to the architecture: The difficulty of converging
GANs to the Nash equilibrium of a non-convex min-max game in high-dimensional
spaces is well explored [Barnett, 2018; Chu et al., 2020a; Kodali et al., 2017]. Goodfellow
et al. [2014a] underlines if the discriminator has enough capacity, and is optimal at every step
of the GAN algorithm, then the generated distribution converges to the real distribution; that
cannot be guaranteed in a practical scenario. In fact, Arora et al. [2018] confirmed that
the adversarial objective can easily approach to an equilibrium even if the generated
distribution has very low support, and further, the number of training samples
required to avoid mode collapse can be in order of exp(d) (d is the data dimension).

Multimodality: The ability to generate diverse outputs, i.e., convergence to multiple
modes in the output space, is an important requirement. Despite the typical noise
input, cGANs generally lack the ability to generate diverse outputs [Lee et al., 2019b].
Pathak et al. [2016a] and Iizuka et al. [2016] even state that better results are obtained
when the noise is completely removed. Further, variants of cGAN that target diversity
often face a trafe-off between the realism and diversity [He et al., 2018], as they have
to compromise between the reconstruction and adversarial losses.

A toy example: Here, we experiment with the formulations in Sec. 8.1. Consider
a 3D CMM space y = ±4(x, x2, x3). Then, we construct three layer multi-layer
perceptrons (MLP) to represent each of the functions, H, G, and Z , and compare the
proposed method against the L1 loss. Figure 8.3 illustrates the results. As expected,
L1 loss generates the line y = 0, and is inadequate to model the multimodal space.
As explained in Sec. 8.1.2, without momentum correction, the network is fooled
by a phantom distribution where E[zt+1] ≈ 0 at training time. However, the push
of momentum removes the phantom distribution and refines the output to closely
resemble the input distribution. As implied in Sec. 8.1.2, the momentum is maximized
near the true distribution and minimized otherwise.

8.3.1 Lipschitz continuity and structuring of the latent space

Enforcing the Lipschitz constraint encourages meaningful structuring of the latent
space: suppose z∗1,j and z∗2,j are two optimal codes corresponding to two ground truth

168 Conditional Generative Modeling via Learning the Latent Space

Figure 8.3: Toy Example: Plots generated for each dimension of the CMM space Υ. (a)
Ground-truth distributions. (b) Model outputs for L1 loss. (c) Output when trained
with the proposed objective (without ρ correction). Note the phantom distribution
identified by the model. (d) E[ρ] as a heatmap on (x, y). E[ρ] is lower near the true

distribution and higher otherwise. (e) Model outputs after ρ correction.

modes for a particular input. Since
∥∥∥z∗2,j − z∗1,j

∥∥∥ is lower bounded by

∥∥∥G(xj,w∗,z∗2,j)−G(xj,w∗,z∗1,j)
∥∥∥

L ,
where L is the Lipschitz constant, the minimum distance between the two latent codes
is proportional to the difference between the corresponding ground truth modes.
Also, in practice, we observed that this encourages the optimum latent codes to
be placed sparsely. Fig. 8.4 illustrates a visualization from the toy example. As
the training progresses, the optimal {z∗} corresponding to minimas of Ê are iden-
tified and placed sparsely. Note that as expected, at the 10th epoch the distance
between the two optimum z∗ increases as x goes from 0 to 1, in other words, as the∥∥∥4(x, x2, x3)− (−4(x, x2, x3))

∥∥∥ increases.

Practical implementation is done as follows: during the training phase, a small
noise e is injected to the inputs of Z and G, and the networks are penalized for
any difference in output. More formally, LZ and Ê now become, L1[zt+1,Z(zt, h)] +
αL1[Z(zt + e, h + e),Z(zt, h)] and L1[yg,G(h, z)] + αL1[G(h + e, z + e),G(h, z)], respec-
tively. Fig. 8.5 illustrates the procedure.

8.4 Experiments and discussions

The distribution of natural images lies on a high dimensional manifold, making the
task of modelling it extremely challenging. Moreover, conditional image generation
poses an additional challenge with their constrained multimodal output space (a single
input may correspond to multiple outputs while not all of them are available for
training). In this section, we experiment on several such tasks. For a fair comparison

§8.4 Experiments and discussions 169

(a) (b) (c)

(d) 0 epochs (e) 5 epochs (f) 10 epochs

Figure 8.4: The behaviour of cost heatmaps Ê against (x, z) as the training progresses
(toy example). The latent space gets increasingly structured as w→ w∗. Also, in (c)
the network intelligently puts the optimal latent codes further apart as the distance

between the two ground truth modes (m = 4 and m = −4) keeps increasing.

Figure 8.5: We enforce the Lipschitz continuity on both G and Z .

170 Conditional Generative Modeling via Learning the Latent Space

with a similar capacity GAN, we use the encoder and decoder architectures used in
Pathak et al. [2016a] for H and G respectively. We make two minor modifications: the
channel-wise fully connected (FC) layers are removed and U-Net style skip connections
are added.

We train the existing models for a maximum of 200 epochs where pretrained
weights are not provided, and demonstrate the generalizability of our theoretical
framework in diverse practical settings by using a generic network for all the experi-
ments. Models used for comparisons are denoted as follows: PN [Zeng et al., 2019b],
CA [Yu et al., 2018a], DSGAN [Yang et al., 2019a], CIC [Zhang et al., 2016], RFR [Li
et al., 2020a], Chroma [Vitoria et al., 2020], P2P [Isola et al., 2017], Izuka [Iizuka et al.,
2016], CE [Pathak et al., 2016a], CRN [Chen and Koltun, 2017a], and B-GAN [Zhu
et al., 2017b].

8.5 Experiments

8.5.1 Experimental architectures

For the experiments on images, we mainly use 128× 128 size inputs. However, to
demonstrate the scalability, we use several different architectures and show that the
proposed framework is capable of converging irrespective of the architecture. Fig. 8.6
shows the architectures for different input sizes.

For training, we use the Adam optimizer with hyper-parameters β1 = 0.9, β2 =
0.999, ε = 1× 10−8, and a learning rate lr = 1× 10−5. We use batch normalization
after each convolution layer, and leaky ReLu as the activation, except the last layer
where we use tanh. All the weights are initialized using a random normal distribution
with 0 mean and 0.5 standard deviation. Furthermore, we use a batch size of 20
for training, though we did not observe much change in performance for different
batch sizes. We choose the dimensions of z to be 10, 16, 32, 64 for 32× 32, 64× 64,
128× 128, 256× 256 input sizes, respectively. An important aspect to note here is that
the dimension of z should not be increased too much, as it would increase the search
space for z unnecessarily. While training, z is updated 20 times for a single G,H
update. Similarly, at inference, we use 20 update steps for z , in order to converge to
the optimal solution. All the values are chosen empirically.

8.5.2 Corrupted Image Recovery

We design this task as image completion, i.e., given a masked image as input, our
goal is to recover the masked area. Interestingly, we observed that the MNIST dataset,
in its original form, does not have a multimodal behaviour, i.e., a fraction of the
input image only maps to a single output. Therefore, we modify the training data as
follows: first, we overlap the top half of an input image with the top half of another
randomly sampled image. We carry out this corruption for 20% of the training data.
Corrupted samples are not fixed across epochs. Then, we apply a random sized mask
to the top half, and ask the network to predict the missing pixels. We choose two

§8.5 Experiments 171

Figure 8.6: The model architecture for various input sizes. The same general structure
in maintained with minimal changes to accomodate for the changing input size.

.

172 Conditional Generative Modeling via Learning the Latent Space

competitive baselines here: our network with the L1 loss and CE. Fig. 8.7 illustrates
the predictions. As shown, our model converges to the most probable non-corrupted
mode without any ambiguity, while other baselines give sub-optimal results. In the
next experiment, we add a small white box to the top part of the ground-truth images
at different rates. At inference, our model was able to converge to both the modes
(Fig. 8.8), depending on the initial position of z, as the probability of the alternate
mode reaches 0.3. Moreover, Fig. 8.9 shows how the output gets more fine-tuned as z
traverses to its optimal position.

Method
STL ImageNet

LPIP ↓ PieAPP ↓ SSIM ↑ PSNR ↑ LPIP ↓ PieAPP ↓ SSIM ↑ PSNR ↑
Izuka 0.18 2.37 0.81 24.30 0.17 2.47 0.87 18.43
P2P 1.21 2.69 0.73 17.80 2.01 2.80 0.87 18.43
CIC 0.18 2.81 0.71 22.04 0.19 2.56 0.71 19.11
Chroma 0.16 2.06 0.91 25.57 0.16 2.13 0.90 23.33
Ours 0.12 1.47 0.95 27.03 0.16 2.04 0.92 24.51
Ours (w/o ρ) 0.16 1.90 0.89 25.02 0.20 2.11 0.88 23.21

Table 8.1: Colorization: Quantitative analysis of our method against the state-of-the-art.
Ours perform better on a variety of metrics.

Figure 8.7: Performance with 20% corrupted data. From the top row: ground truth,
inputs, outputs with L1 loss, outputs by Pathak et al. [2016b], and outputs by our
model. Our model demonstrates better convergence compared to L1 loss and a similar

capacity GAN [Pathak et al., 2016a].

§8.5 Experiments 173

Figure 8.8: With >30% alternate mode data, our model can converge to both the input
modes. From the left column: corrupted training samples, inputs, prediction mode 1,

and prediction mode 2.

Figure 8.9: Output gets better as the z traverse to the optimum position at inference.
Left column is the input. Five right columns show outputs at iterations 2, 4, 6, 8 and

10 (from left to right).

174 Conditional Generative Modeling via Learning the Latent Space

8.5.3 Automatic image colorization

Deep models have tackled this problem using semantic priors [Iizuka et al., 2016;
Vitoria et al., 2020], adversarial and L1 losses [Isola et al., 2017; Zhu et al., 2017c; Lee
et al., 2019b], or by conversion to a discrete form through binning of color values
[Zhang et al., 2016]. Although these methods provide compelling results, several
inherent limitations exist: (a) use of semantic priors results in complex models, (b)
adversarial loss suffers from drawbacks (see Sec. 8.3), and (c) discretization reduces
the precision. In contrast, we achieve better results using a simpler model.

The input and the output of the network are l and (a, b) planes respectively (LAB
color space). However, the color distribution of a natural dataset in a and b planes
(LAB space) are strongly biased towards low values. If not taken into account, the
loss function can be dominated by these desaturated values. Zhang et al. [2016]
addressed this problem by rebalancing class weights according to the probability of
color occurrence. However, this is only possible in a case where the output domain is
discretized. To tackle this problem in the continuous domain, we push the output color
distribution towards a uniform distribution as follows: we add another constraint to
the cost function E to push the predicted a and b colors towards a uniform distribution:
E = ‖agt − a‖+ ‖bgt − b‖+ λ(losskl,a + losskl,b), where losskl,· = KL(·||u(0, 1)). Here,
KL(·||·) is the KL divergence and u(0, 1) is a uniform distribution.

Fig. 8.10, Fig. 8.11, Fig. 8.12 and Table 8.1 depict our qualitative and quantitative
results, respectively. We demonstrate the superior performance of our method against
four metrics: LPIP, PieAPP, SSIM and PSNR. Although heavily used in the literature,
per pixel metrics such as PSNR do not effectively capture the perceptual quality of an
image. To overcome this shortcoming, more perceptually motivated metrics have been
proposed such as SSIM Wang et al. [2004], MSSIM Wang et al. [2003], and FSIM Zhang
et al. [2011]. However the similarity of two images is largely context dependant, and
may not be captured by the aforementioned metrics. As a solution, recently, two deep
feature based perceptual metrics–LPIP Zhang et al. [2018] and PieAPP Prashnani et al.
[2018]–were proposed, which coincide well with the human judgement. To cover
all these aspects, we evaluate our experiments against four metrics: LPIP, PieAPP,
PSNR and SSIM. Fig. 8.13 depicts examples of multimodality captured by our model.
Fig. 8.14 shows colorization behaviour as the z converges during inference.

We also compare the color distributions of the predicted a, b planes with state-
of-the-art. The results are shown in Fig. 8.15 and Table 8.2. As evident, our method
predicts the closest color distribution to the ground truth.

Method a b
Chroma 0.71 0.78
Izuka 0.68 0.63
Ours 0.82% 0.80%

Table 8.2: IOU of the predicted color distributions against the ground truth. Our
method shows better results.

§8.5 Experiments 175

Figure 8.10: Qualitative comparison against the state-of-the-art on ImageNet dataset.
From the top row: ground truth, Izuka, P2P, Chroma, CIC, and ours. Our model

generally produces more vibrant and balanced color distributions.

176 Conditional Generative Modeling via Learning the Latent Space

Figure 8.11: Qualitative comparison against the state-of-the-art on STL dataset. From
the top row: ground truth, Izuka, P2P, Chroma, CIC, and ours. Our model generally

produces more vibrant and balanced color distributions.

§8.5 Experiments 177

Figure 8.12: Qualitative results of our model in the colorization task on ImageNet
dataset.

178 Conditional Generative Modeling via Learning the Latent Space

Figure 8.13: Multiple colorization modes predicted by our model for a single input.
(Best viewed in color).

Method
User study Turing test

STL ImageNet ImageNet
Izuka 21.89 32.28 -
Chroma 32.40 31.67 -
Ours 45.71 36.05 31.66

Table 8.3: table
Colorization: Psychophysical study and Turing test results. All performances are in

%.

§8.5 Experiments 179

Figure 8.14: Output quality increases as z→ z∗ at inference.

180 Conditional Generative Modeling via Learning the Latent Space

Figure 8.15: Color distribution comparison of a, b planes. Our method produces the
closest distribution to the ground truth.

User study: Evaluation of synthesized images is an open problem [Salimans
et al., 2016]. Although recent metrics such as LPIP [Zhang et al., 2018] and PieAPP
[Prashnani et al., 2018] have been proposed, which coincide closely with human
judgement, perceptual user studies remain the preferred method. Therefore, to
evaluate the quality of our synthesized images in the colorization task, we conduct
two types of user studies:

Therefore we conduct two user studies to further validate the quality of generated
samples (Table 8.3). a) In the Psychophysical study, we present volunteers with
batches of 3 images, each generated with a different method. A batch is displayed
for 5 secs and the user has to pick the most realistic image. After 5 secs, the next
image batch is displayed. b) We conduct a Turing test to validate our output quality
against the ground-truth, following the setting proposed by Zhang et al. [2016]. The
volunteers are presented with a series of paired images (ground-truth and our output).
The images are visible for 1 sec, and then the user has an unlimited time to pick the
realistic image.

8.5.4 Image completion

In this case, we show that our generic model outperforms a similar capacity GAN
(CE) as well as task-specific GANs. In contrast to task-specific models, we do not use
any domain-specific modifications to make our outputs perceptually pleasing.

We observe that with random irregular and fixed-sized masks, all the models

§8.5 Experiments 181

perform well, and we were not able to visually observe a considerable difference (see
Fig. 8.16 and Fig. 8.17 for qualitative results). We also conduct Turing tests to evaluate
the image completion tasks on Facades and Celeb-HQ datasets. The results are shown
in Table 8.4.

Dataset Celeb-HQ Facades
GT 59.11% 55.75%
Ours 40.89% 44.25%

Table 8.4: Turing Test for GT vs ours on popular image datasets Celeb-HQ and
Facades.

Therefore, we presented models with a more challenging task: train with random
sized square-shaped masks and evaluate the performance against masks of varying
sizes. Fig. 8.18 illustrates qualitative results of the models with 25% masked data. As
evident, our model recovers details more accurately compared to the state-of-the-art.
Notably, all models produce comparable results when trained with a fixed sized
center mask, but find this setting more challenging. Table 8.5 includes a quantitative
comparison. Observe that in the case of smaller sized masks, PN performs slightly
better than ours, but worse otherwise. We also evaluate the learned features of the
models against a downstream classification task (Table 8.6). First, we train all the
models on Facades [Tyleček and Šára, 2013] against random masks, and then apply
the trained models on CIFAR10 [Krizhevsky et al., 2009] to extract bottleneck features,
and finally pass them through a FC layer for classification. We compare PN and ours
against an oracle (AlexNet features pre-trained on ImageNet) and show our model
performs closer to the oracle case.

8.5.4.1 Diversity predictions and generalizability.

We also experiment on a diverse set of image translation tasks to demonstrate our
generalizability.

An appealing attribute of our network is its ability to converge to multiple optimal
modes at inference. A few such examples are shown in Fig. 8.19, Fig. 8.20, Fig. 8.21,
Fig. 8.22, Fig. 8.23, Fig. 8.24, and Fig. 8.25. For the facial-land-marks-to-faces experiment,
we used the UTKFace dataset [Zhang and Qi, 2017]. For the surface-normals-to-pets
experiment, we used the Oxford Pet dataset [Parkhi et al., 2012]. In order to get the
surface normal images, we follow Bansal et al. [2017b]. First, we crop the bounding
boxes of pet faces and then apply PixelNet [Bansal et al., 2017a] to extract surface
normals. For maps-to-ariel and edges-to-photos experiments, we used the datasets
provided by Isola et al. [2017].

For measuring the diversity, we adapt the following procedure: 1) we generate 20
random samples from the model. 2) calculate the mean pixel value µi of each sample.
3) pick the closest sample sm to the average of all the mean pixels λ = 1

20 ∑20
i=1 µi. 4)

pick the 10 samples which have maximum mean pixel distance from sm. 5) calculate
the mean standard deviation of the 10 samples picked in step 4. 6) repeat the

182 Conditional Generative Modeling via Learning the Latent Space

M
ethod

10%
corruption

15%
corruption

25%
corruption

LPIP
↓

PieA
PP
↓

PSN
R
↑

SSIM
↑

LPIP
↓

PieA
PP
↓

PSN
R
↑

SSIM
↑

LPIP
↓

PieA
PP
↓

PSN
R
↑

SSIM
↑

D
SG

A
N

0.101
1.577

20.13
0.67

0.189
2.970

18.45
0.55

0.213
3.54

16.44
0.49

PN
0.045

0.639
27.11

0.88
0.084

0.680
20.50

0.71
0.147

0.764
19.41

0.63
C

E
0.092

1.134
22.34

0.71
0.134

2.134
19.11

0.63
0.189

2.717
17.44

0.51
P2P

0.074
0.942

22.33
0.79

0.101
1.971

19.34
0.70

0.185
2.378

17.81
0.57

C
A

0.048
0.731

26.45
0.83

0.091
0.933

20.12
0.72

0.166
0.822

21.43
0.72

R
FR

0.051
0.743

29.31
0.85

0.097
1.033

19.22
0.70

0.171
1.127

18.42
0.61

O
urs

(w
/o

ρ)
0.053

0.799
27.77

0.83
0.085

0.844
23.22

0.76
0.141

0.812
22.31

0.74
O

urs
0.051

0.727
27.83

0.89
0.080

0.740
26.43

0.80
0.129

0.760
24.16

0.77

Table
8.5:

Im
age

com
pletion:Q

uantitative
analysis

of
our

m
ethod

against
state-of-the-art

on
a

variety
of

m
etrics.

§8.5 Experiments 183

Figure 8.16: Qualitative results of our model in the image completion task on Celeb-
HQ dataset.

184 Conditional Generative Modeling via Learning the Latent Space

Figure 8.17: Qualitative results of our model in the image completion task on Facades
dataset.

§8.5 Experiments 185

Method Pretext Acc. (%)
ResNet∗ ImageNet Cls. 74.2
PN Im. Completion 40.3
Ours Im. Completion 62.5

Table 8.6: Comparison on downstream task (CIFAR10 cls). (∗) denotes the oracle case.

Figure 8.18: Qualitative comparison for image completion with 25% missing data
(models trained with random sized square masks).

experiment 5 times for each model and get the expected standard deviation.

8.5.5 Scalability

Another appealing feature of our model is its strong convergence properties irre-
spective of the architecture, hence, scalability to different input sizes. Fig. 8.27 shows
examples from image completion and colorization for varying input sizes. We add
layers to the architecture to be trained on increasingly high-resolution inputs, where
our model was able to converge to optimal modes at each scale.

8.5.6 Convergence

The modular design of our model allows it to be a a generic model without any
domain specific constraints. Consequently, our model exhibits better convergence
properties, compared to state-of-the-art models. Fig. 8.29 depicts a quantitative
comparison. We compare the convergence of our model on the image completion task
(Paris view) against PN, CE, P2P, and CA. As evident, our model exhibits rapid and
stable convergence compared to the other models.

8.5.7 Model complexity

Table 8.7 compares the number of FLOPS in our model against the other models.
Despite showing impressive performance, our model consists of the second lowest

186 Conditional Generative Modeling via Learning the Latent Space

Figure 8.19: Multimodel predictions of our model in colorization

§8.5 Experiments 187

Figure 8.20: Multimodel predictions of our model in colorization

188 Conditional Generative Modeling via Learning the Latent Space

Figure 8.21: Multimodel predictions of our model in landmarks-to-faces.

§8.5 Experiments 189

Figure 8.22: Multimodel predictions of our model in face inpainting.

190 Conditional Generative Modeling via Learning the Latent Space

Figure 8.23: Multimodel predictions of our model in surface-normals-to-pet-faces.
Note that this is generally a difficult task due to the diverse texture.

number of FLOPS, due to the simplicity of the network. Although CE contains a
marginally lower number of FLOPS compared to ours, the performance of our model
is far superior to CE. It is worthy to note that highly engineered models such as CIC,
Izuka, and RFR comprise a significantly higher number of FLOPS than us, which
demonstrates the efficacy of our approach.

Model CE PN Chroma CIC P2P Izuka RFR Ours
Flops (1× 109) 0.634 0.946 1.275 52.839 0.732 14.082 25.64 0.638

Table 8.7: Model complexity comparison.

8.5.8 Denoising of 3D objects in spectral space

Spectral moments of 3D objects provide a compact representation, and help building
light-weight networks [Ramasinghe et al., 2020a, 2019c; Cohen et al., 2018b; Esteves
et al., 2018a]. However, spectral information of 3D objects has not been used before for
self-supervised learning, a key reason being the difficulty of learning representations in
the spectral domain due to the complex structure and unbounded spectral coefficients.
Here, we present an efficient pretext task that is conducted in the spectral domain:
denoising 3D spectral maps. To this end, we use two types of spectral spaces: spherical
harmonics space and the Zernike space.

The minimum number of sample points required to accurately represent a finite
energy function in a particular function space depends on the used sampling theorem.
According to Driscoll and Healy’s theorem Driscoll and Healy [1994], 4N2 equiangular
sampled points are needed to represent a function on S2 using spherical moments
at a maximum degree N. Therefore, we compute the first 16384 spherical moments
of 3D objects where l ≤ 128 by sampling 256× 256 equiangular points in θ and φ

directions, where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. Afterwards, we arrange the spherical
moments as a 128× 128 feature map, and convolve with a 2× 2 kernel with stride size
2 to downsample the feature map to 64× 64 size. The output is then fed to 64-size
architecture. We add Gaussian noise and mask portions of the spectral map to corrupt
it. Afterwards, the model is trained to de-noise the input.

§8.5 Experiments 191

Figure 8.24: Multimodel predictions of our model in sketch-to-shoes translation.

192 Conditional Generative Modeling via Learning the Latent Space

Figure 8.25: Multimodel predictions of our model in sketch-to-bag translation.

§8.5 Experiments 193

Figure 8.26: Qualitative results of our model in map-to-photo translation.

194 Conditional Generative Modeling via Learning the Latent Space

Figure 8.27: Scalability: we subsequently add layers to the architecture to be trained
on increasingly high-resolution inputs. From the left: 32× 32, 64× 64. 128× 128,

256× 256.

Figure 8.28: Qualitative comparison of 3D spectral denoising. The results are converted
to the spatial domain for a clear visualization.

§8.5 Experiments 195

Figure 8.29: Convergence on image completion (Paris view). Our model exhibits rapid
and stable convergence compared to state-of-the-art (PN, CE, P2P, CA).

For Zernike polynomials, we compute the first 100 moments for each 3D object
where n ≤ 9, and arrange the moments as a 10× 10 feature map. Then, the feature
map is upsampled using transposed convolution by using a 5× 5 kernel and with a
stride size 3. The upsamapled feature map is fed to a 32-size network and trained
end-to-end to denoise. We first train the network on 55k objects in ShapeNet, and
then apply the trained network on the Modelnet10 and Modelnet40 to extract the
bottleneck features. These features are then fed to a single fully connected layer for
classification.

Fig. 8.28 and Table 8.8 depicts our qualitative and quantitative results. We perform
favorably well against other methods. To evaluate the learned features, we use Zernike
polynomials, as they are more discriminative compared to spherical harmonics [Ra-
masinghe et al., 2019a]. We first train the network on the 55k ShapeNet objects by
denoising spectral maps, and then apply the trained network on the ModelNet10 &
40. The features are then extracted from the bottleneck (similar to Sec. 8.5.4), and fed
to a FC classifier (Table 8.9). We achieve the state-of-the-art results in ModelNet40
with a simple pretext task.

Method M10 M40
CE 10.3 4.6
cVAE 8.7 4.2
Ours 84.2 79.4

Table 8.8: Reconstruction mAP of 3d spectral denoising.

196 Conditional Generative Modeling via Learning the Latent Space

Method M10 M40
Sharma et al. [2016] 80.5% 75.5%
Han et al. [2019] 92.2% 90.2%
Achlioptas et al. [2017b] 95.3% 85.7%
Yang et al. [2018] 94.4% 88.4%
Sauder and Sievers [2019] 94.5% 90.6%
Ramasinghe et al. [2019d] 93.1% -
Khan et al. [2019] 92.2% -
Ours 92.4% 90.9%

Table 8.9: Downstream 3D object classification results on ModelNet10 and ModelNet40
using features learned in an unsupervised manner. All results in % accuracy.

8.5.9 Towards a measurement of uncertainty

In Bayesian approaches, the uncertainty is represented using the distribution of
the network parameters ω. Since a network output is unique for fixed w̄ ∼ ω,
sampling from the output is equivalent to sampling from ω. Often, ω is modeled as a
parametric distribution or obtained through sampling, and at inference, the model
uncertainty can be estimated as VARp(y|x)(y). One intuition behind this is that for
more confident inputs, p(y|x, w) will showcase less variance over the distribution of
ω—hence lower VARp(y|x)(y)—as the network parameters have learned redundant
information [Loquercio et al., 2019].

As opposed to sampling from the distribution of network parameters, we model
the optimal z∗ for a particular input as a probability distribution p(z∗), and measure
VARp(y|x)(y) where p(y|x) =

∫
p(y|x, z∗)p(z∗|x)dz. Our intuition is that in the

vicinity of well observed data VARp(y|x)(y) is lower, since for training data 1) we
enforce the Lipschitz constraint on G(x, z) over (x, z) and 2) Ê(yg,G(x, z)) resides
in a relatively stable local minima against z∗ for observed data, as in practice, z∗ =
Eepochs[z∗] + ε for a given x, where ε is some random noise which is susceptible to
change over each epoch. Further, Let (x, z∗) and yg be the inputs to a network G and
the corresponding ground truth label, respectively.

Formally, let p(yg|x, z∗) = N (yg;G(x, z∗), αI) and z∗ ∼ U (|z∗ − E(z∗)| < δ),
where α is some variable describing the noise in the input x and δ is a small positive
scalar. Then,

COVp(yg|x)(y
g) ≈= 1

K

K

∑
k=1

[αkI] + COV(G(x, z∗)). (8.25)

where COV is the sample covariance.

§8.6 Related work 197

Proof.

Ep(yg|x)(y
g) =

∫
yg p(yg|x)dyg

=
∫

yg[
∫
N (yg;G(x, z∗), αI)p(z∗|x)dz∗]dyg

=
∫
[
∫

ygN (yg;G(x, z∗), αI)p(z∗|x)dyg]dz∗

=
∫
[
∫

ygN (yg;G(x, z∗), αI)dyg]p(z∗|x)dz∗

=
∫
G(x, z∗)p(z∗|x)dz∗

(8.26)

Let πδ2 = A, and p(z∗|x) ≈ 1
A . Then, by Monte-Carlo approximation,

≈ 1
K

K

∑
k=1
G(x, z∗k) (8.27)

Next, consider,

COVp(yg|x)(y
g) = Ep(yg|x)((y

g)(yg)T)−Ep(yg|x)(y
g)Ep(yg|x)(y

g)T

=
∫ ∫

(yg)(yg)T p(yg|x, z∗)p(z∗|x)dz∗dyg −Ep(yg|x)(y
g)Ep(yg|x)(y

g)T

=
∫
[COVp(yg|x,z∗) + Ep(yg|x,z∗)E

T
p(yg|x,z∗)p(z∗|x)dz−Ep(yg|x)(y

g)Ep(yg|x)(y
g)T

≈ 1
K

K

∑
k=1

[αkI + G(x, z∗k)G(x, z∗k)
T]− 1

K2 [(
K

∑
k=1

G(x, z∗k))(
K

∑
k=1

G(x, z∗k))
T]

=
1
K

K

∑
k=1

[αkI] + COV(G(x, z∗))

(8.28)

Note that in similar to Bayesian uncertainty estimations, where an approximate
distribution q(w) is used to estimate p(w|D), where D is data, our model sample
from the an empirical distribution p(z∗|x). In practice, we treat αk as a constant over
all the samples–hence omit from the calculation—and use stochastic forward passes
to obtain Eq. 8.25. Then, the diagonal entries are used to calculate the uncertainty in
the each dimension of the output. We test this hypothesis on the toy example and the
colorization task, as shown in Fig. 8.30 and Fig. 8.31, respectively.

8.6 Related work

Conditional Generative Modeling. Conditional generation involves modeling the
data distribution given a set of conditioning variables that control of modes of the

198 Conditional Generative Modeling via Learning the Latent Space

Figure 8.30: The uncertainty measurement illustration with the toy example. (left-
column: ground truth, right-column: prediction). We train the model with x ∈ [0, 0.5]
and test with x ∈ [0, 1.5]. During the testing, we add a small Gaussian noise to z∗ at
each x and get stochastic outputs. As illustrated, the sample variance (the uncertainty

measurement) increases as x deviates from the observed data portion.

generated samples. With the success of VAEs [Kingma and Welling, 2014] and GANs
[Goodfellow et al., 2014b] in standard generative modeling tasks, their conditioned
counterparts [Sohn et al., 2015; Mirza and Osindero, 2014] have dominated conditional
generative tasks recently [Vitoria et al., 2020; Zhang et al., 2016; Isola et al., 2017; Pathak
et al., 2016a; Lee et al., 2019b; Zhu et al., 2017c; Bao et al., 2017; Lee et al., 2018; Zeng
et al., 2019b]. While probabilistic latent variable models such as VAEs generate
relatively low quality samples and poor likelihood estimates at inference [Maaløe
et al., 2019], GAN based models perform significantly better at high dimensional
distributions like natural images but demonstrate unstable training behaviour. A
distinct feature of GANs is its mapping of points from a random noise distribution
to the various modes of the output distribution. However, in the conditional case
where an additional loss is incorporated to enforce the conditioning on the input, the
significantly better performance of GANs is achieved at the expense of multimodality;
the conditioning loss pushes the GAN to learn to mostly ignore its noise distribution.
In fact, some works intentionally ignore the noise input in order to achieve more
stable training [Isola et al., 2017; Pathak et al., 2016a; Mathieu et al., 2015b; Xie et al.,
2018b].

Multimodality. Conditional VAE-GANs are one popular approach for generating
multimodal outputs [Bao et al., 2017; Zhu et al., 2017c] using the VAE’s ability to
enforce diversity through its latent variable representation and the GAN’s ability to

§8.6 Related work 199

Figure 8.31: Colorization predictions for models trained with and without monkey
class. Output images are shown side by side with corresponding uncertainty maps.
For models trained without monkey data, high uncertainty is predicted for pixels

belonging to the monkey portion (intensity is higher for high uncertainty).

enforce output fidelity through its learnt discrimanator model. Mixture models [Chen
and Koltun, 2017b; Ghosh et al., 2018; Deshpande et al., 2017] that discretize the
output space are another approach. Domain specific disentangled representations [Lee
et al., 2018; Huang et al., 2018c] and explicit encoding of multiple modes as inputs
Zhu et al. [2016]; Isola et al. [2017] have also been successful in generating diverse
outputs. Sampling-based loss functions enforcing similarity at a distribution level [Lee
et al., 2019b] have also been successful in multimoal generative tasks. Further, the use
of additional specialized reconstruction losses (often using higher-level features extracted
from the data distribution) and attention mechanisms also achieves multimodality
through intricate model architectures in domain specific cases [Zeng et al., 2019b;
Chen and Koltun, 2017b; Vitoria et al., 2020; Zhang et al., 2016; Iizuka et al., 2016;
Zhang et al., 2020; Yu et al., 2018b; Sagong et al., 2019; Wang et al., 2018b; Iizuka et al.,
2016].

We propose a simpler direction through our domain-independent energy function
based approach that is also capable of learning generic representations that better
support downstream tasks. Notably, our work contrasts from energy based models
previously investigated for likelihood modeling due to their simplicity, however, such
models are notoriously difficult to train especially on high-dimensional spaces [Du
and Mordatch, 2019].
VAEs and other related work. Variational auto encoders (VAE) are a special class

of autoencoders that are trained in a manner that ensures the latent space has good
properties allowing the generation of new data. In VAEs, for an input x, the latent
space is modeled as a probability distribution q(z|x), which is sampled from a known
family of distributions (typically Gaussian), as the true posterior distribution p(z|x)
is intractable. However, assuming the posterior distribution of the latent space as a
Gaussian distribution constrains the quality of the generated data distribution, as
the true distribution may be far from a Gaussian. Therefore, it is beneficial to model
q(z|x) as a more complex distribution, in order to generate high dimensional data
distributions.

200 Conditional Generative Modeling via Learning the Latent Space

As a solution, Maaløe et al. [2016] suggested using a set of auxiliary variables a to
improve the flexibility of q(z|x). The key idea is to obtain a complex marginal q(z|x) =∫

q(z|a, x)p(a, x)da, which can be non-Gaussian. On the other hand, Normalizing
flows (NF) [Rezende and Mohamed, 2015], among other benefits, provides an ideal
mechanism for the above task. NFs apply a series of bijective mappings NF : P(zi)→
P(zi+1), where P(zi+1) is typically more complex compared to P(zi). In contrast,
we do not explicitly model our latent space as a probability distribution. However,
we draw some interesting analogies from a probabilistic perspective as follows: our
latent space ζ can be interpreted as a set of energy surfaces Exj : ζ → R, as Exj =

||yg
j − G(x, zj)|| for each ground truth mode yg

j . From this perspective, Fig. 8.5
illustrates the energy heatmaps for the toy example. As shown, high energies are
indicated by a brighter color. Since our system has a finite energy, the combined
energy Ex = ∑j Exj can be transformed to a probability distribution via the Gibbs
measure as p′(z) = 1

T(β)
exp(−βEx(z)), where T(·) is the partition function. Note that

this probability is not restricted to a simple distribution.

A critical difference between the VAEs and our model is that we do not sample
directly from p′(z), since to obtain p′(z), we need to integrate Ex over the latent
space. However, our predictor network Z learns the high probability coordinates
{z∗} of p′(z), and is able to converge to such locations at inference. This probabilistic
perspective of our latent space (or the corresponding energy surface) is intuitively
justified by the convergence samples shown in Fig. 52. The intermediate samples we
obtain as we go from z to z∗ also produce plausible results, however, the visual quality
at the z∗ is maximized, indicating high p′(z = z∗|x). In contrast to NFs, our model
does not explicitly learn the probability distributions, rather, the predictor network
learns to converge to the high probability areas in complex distributions. Also, the
complexity of the p′(z) increases with the complexity and the multimodality of the
corresponding higher dimensional target data distribution. Therefore, the required
dimensionality of the z tends to increase in such cases. A property of NFs is that each
transformation affects only a small volume in the original space, hence, we need a
higher number of layers to work with high dimensional spaces (the volume grows
exponentially with the dimension of the space). In contrast, we did not observe such
an increase in the required capacity of the predictor with the dimension of z.

The model proposed by Chang et al. [2019] also uses a separate input S, that can
vary the output of the generator, in cases where multiple loss components are used.
The variable S is used both as an input to the generator and also to control the weights
of the loss components while training. Interestingly, at the inference, the model is able
to approximate the change in loss based on the input S, and generate diverse outputs.
However, this method is more useful in scenarios where the required diversity is in
the form of different styles, which can be induced by different loss functions.

§8.7 Chapter summary 201

8.7 Chapter summary

Conditional generation in multimodal domains is a challenging task due to its ill-
posed nature. Similar to chapter, this chapter follows a modular approach and
propose a novel generative framework that minimize a family of cost functions during
training. In contrast to most of the existing methods, we remove the adversarial loss
function from the final objective function, which gives us advantages such as training
stability and faster convergence. Our architecture consists of a separate path-finding
module that observes the convergence patterns of latent variables and applies this
knowledge during inference to traverse to multiple output modes during inference.
This modularity removes the generator from the burden of capturing the multiple
modes alone. The generator communicates with the path-finding module at inference
to produce multiple outputs for a single input. Despite using a simple and generic
architecture, we show impressive results on a diverse set of tasks. The proposed
approach demonstrates faster convergence, scalability, generalizability, diversity and
superior representation learning capability for downstream tasks.

202 Conditional Generative Modeling via Learning the Latent Space

Chapter 9

Conclusions

Inducing inductive bias and structured representations into ML models is essential
for ML models to reach human intelligence. Following this motivation, the thesis
proposes several methods that aim to systematically include novel inductive biases
and structured representations into deep models, and shows that appealing results
can be achieved. The proposed methods cover both generative and discriminative
tasks, in both 2D and 3D domains. This final chapter summarizes our contributions
and discusses several promising future research branches in this direction.

9.1 Summary

Although deep networks have matched or exceeded human performance in various
tasks, they are far from human intelligence in generalizing knowledge to new situ-
ations and learning from limited data. Inspired by insights from cognitive science
and psychology, we study several methods to inject inductive bias into deep models
to mimic two crucial attributes of human intelligence: combinatorial generalization
and intuitive physics. Chapter 3, 4, 5, and chapter 6 focus on blending intuitive
physics with deep models. Similarly, chapter 7 and chapter 8 follow the principles of
combinatorial generalization.

In Chapter 3, we study the problem of equivariant representation learning. The
world around us comprises many symmetries that humans can intuitively understand.
ML models need an extensive amount of data to capture these symmetries without
properly introduced inductive bias, i.e., equivariance. In contrast, a natural way to
exploit these symmetries is to design filters that are symmetric against the relevant
transformation groups. Chapter 3 proposes a novel volumetric convolution operation
that is equivariant to the SO(3) group. To this end, we first project the data onto the
Zernike basis and propose the necessary theoretical formulae to perform the convolu-
tion in the spectral space, making the convolution highly efficient and differentiable.
We apply the proposed framework to the 3D object recognition and retrieval task and
show that our formulations can be used to construct significantly cheaper models.

Chapter 4 further extends this work to achieve both rotational and translational
equivariance. Since the Zernike basis functions do not comprise the necessary prop-
erties to obtain translational equivariance, we from scratch derive a novel set of

203

204 Conclusions

orthogonal and complete functions in B3 which comprise such properties. Further,
to handle the irregularity and the redundancy of the 3D point clouds, we project the
point-clouds onto a low-dimensional latent space and then perform the convolution on
the latent space. We propose a theoretical framework that can integrate the aforesaid
convolution and projection into a single operation, increasing the efficiency.

Chapter 5 focuses on several key problems associated with the traditional training
approaches for cGANs: mode collapse, lack of structure in the latent space, and
incompatibility of the loss components. We approach this problem from a geometrical
perspective and posit that the aforementioned drawbacks can be eluded by preserving
a homeomorphism between the latent and generated manifolds. First, we theoretically
demonstrate the validity of our claims and show that the theoretical claims hold in
practice by conducting empirical evaluations.

In Chapter 6, we use Bernstein-type polynomials to develop a framework for
constructing flow-models. Leveraging the known properties of Bernstein-type poly-
nomials, one can manipulate the behavior of the proposed model to a greater extent.
Compared to the state-of-the-art, our framework consists of appealing properties such
as higher interpretability, known error bounds, robustness, the ability to control target
distribution bounds, and a constructive universality proof.

Inspired by the human brain’s combinatorial generalization, Chapter 7 introduces
a cascaded GAN architecture that can work collectively to generate high-resolution
point-clouds. The GANs work entirely in the spectral space, where each GAN
focuses on generating a pre-defined specific frequency band. At the training and
inference, the GANs pass information between each other to refine outputs. While
employing a single GAN to model the entire frequency band is sub-optimal—due to
the different properties of each frequency band—we show that collectively, the GANs
can produce high-quality outputs. Moreover, we design a generic module that can
translate information between the spectral and spatial domains. This module allows
the GANs to receive feedback from the spatial domain, allowing further refinement of
the outputs.

Chapter 8 addresses the problem of conditional generation in multimodal output
spaces. Similar to Chapter 7, we again follow a modular approach, aiming to embed a
meaningful structured representation into the model. Our model is a latent variable
model, i.e., the generated high-dimensional outputs are encoded in a low-dimensional
latent space. We employ a separate path-finding module for guiding the generator
to converge to multiple outputs at inference. The path finding module learns to
traverse to optimal latent codes at the training phase and communicates with the
generator at inference. The purpose of such a module is to release the generator from
the burden of memorizing many output modes, allowing a simple and generalizable
network across multiple tasks. We demonstrate that compared to state-of-the-art, our
model has better scalability, convergence properties, and learns better features for
downstream tasks.

§9.2 Emerging directions 205

9.2 Emerging directions

Injecting inductive biases into deep networks is increasingly gaining momentum
within the machine learning community, as it allows building networks that are
interpretable, efficient, robust, and more effective. Below, we briefly discuss two such
emerging research directions.

9.2.1 Deep implicit layers

There are emerging applications in ML concerning systems that can be parameterized
using continuous temporal inputs, solving constrained optimization problems, and
smooth density estimation. Implicit layers are a framework that can be used to solve
these problems. The origin of implicit layers goes back several decades [Pineda, 1987;
Rico-Martinez and Kevrekidis, 1993; Farber et al., 1993]. However, the interest in
incorporating implicit layers in deep networks have resurfaced through several recent
pioneering works: deep declarative networks [Gould et al., 2019, 2021], structured
variational autoencoders [Johnson et al., 2016b], OptNet [Amos and Kolter, 2017], and
cvxpy layers [Agrawal et al., 2019].

A layer in a deep network can be defined as a differentiable parametric function, which
can be broadly categorized into two classes: a) explicit layers and b) implicit layers.
Almost all commonly used layers in deep networks (e.g., convolution, activation,
dropout, batch-normalization) are explicit layers and take the form y = f (x), where
x,y and f are inputs, outputs, and some deterministic function, respectively. On the
contrary, implicit layers demand inputs and outputs to satisfy a joint condition. For
instance, the objective of an implicit layer can be to find y, such that g(x, y) = 0, where
g(·) is a non-linear function. This allows for a much broader class of models and
increased expressive power compared to explicit layers. Implicit layers have multiple
advantages compared to explicit layers: a) implicit layers can represent complex
representations such as solutions for differential equations. b) Memory efficiency. c)
decoupling of the task and the solution procedure.

Implicit layers are an ideal way to incorporate physical rules that govern the
natural world into deep models since many physical systems (e.g., optimizers, control
systems, physics engines, and game solvers) can be represented as a solution to a
non-linear equation g(x, y) = 0. One way to use an implicit layer in an end-to-end
trainable model is to "roll-out" the solution procedure, which can typically consist
of an iterative method, and back-propagate through all the steps. However, this
results in long computational graphs causing unstable gradients and high memory
consumption. Alternatively, we can first find an exact solution for the layer and
analytically backpropagate through it at the solution points using the implicit function
theorem.

Implicit layers are useful in situations where complex mathematical constraints
must be integrated into a deep model. For instance, Wang et al. [2019] introduced
a differentiable (smoothed) maximum satisfiability (MAXSAT) solver that can be
blended into deep learning systems. The proposed solver relies on a fast coordinate

206 Conclusions

descent approach to solving the semidefinite program (SDP) correlated with the
MAXSAT problem and can learn the logical structure of complex problems in a
minimally supervised fashion. Yang et al. [2019c] constructed a model that can
parametrize homeomorphisms and synthesize 3D point clouds. Wang et al. [2019]
proposed a differentiable submodule maximization approach that can be used in
data summarization, feature selection, and active learning. Song et al. [2020] used
constrained stochastic differential equations for generative modeling by transforming
between complex and prior distributions. Deep equilibrium models [Bai et al., 2019]
are another interesting approach that aims to represent state-of-the-art deep networks
using a single implicit layer in NLP and computer vision domains. Furthermore, deep
implicit layers can be used for applications that include modeling continuous-time
physical models [Sanchez-Gonzalez et al., 2019; Cranmer et al., 2020a; Wang et al.,
2020b; Zhong et al., 2019].

Although implicit layers consist of many appealing attributes, there is still much
room for improvement that demands extensive future research. Despite the low
memory requirements of the implicit layers, how to optimally design architectures to
utilize this advantage needs further investigation. Currently, most of the proposed
models that use implicit layers follow similar architectures to typical deep learning
models, which might not be ideal. Secondly, further study is needed for embedding
latent stochastic differentiable equations in implicit layers for large-scale applica-
tions. Thirdly, using partial differential equations solvers as layers is another exciting
research direction. Although some interesting work has been done in this regard,
this aspect needs further attention. Finally, it is beneficial to investigate methods
to regularize the optimization in order to reduce the required number of function
evaluations for solving an implicit layer.

9.2.2 Geometric deep learning

Geometric deep learning is an umbrella term used for deep networks that use geo-
metric inductive biases. This typically involves working with data that has a natural
non-Euclidean geometry. Interestingly, many real-world systems and data consist
of an underlying non-Euclidean geometry, including social networks data, sensor
networks, medical imagery, genetic data, molecular structures, physics systems, and
manifolds. Therefore, geometric deep learning is capturing increasing attention from
the ML community.

The two typical types of constructs studied in this field are graphs and manifolds.
Manifolds can be roughly considered as surfaces that are locally Euclidean, and
graphs are abstract models of systems with many entities and interactions. Below, we
discuss some recent advances in these two areas and consider possible future research
directions.

§9.2 Emerging directions 207

9.2.2.1 Manifolds

Geometric deep learning on manifolds can be broadly classified as analysis and
synthesis. In analysis, the salient concern is to obtain features that are symmetric under
deformations. A naive way of extracting features from manifolds is to embed the
manifold in the Euclidean space and apply traditional convolutions [Ji et al., 2012] .
In this approach, however, the learned function is not symmetric under deformations.
Therefore, it is vital to consider geometric (intrinsic) convolutions on the manifold, where
the convolution occurs in the intrinsic coordinates of the manifold. Such an operation,
by construction, is symmetric under (certain) deformations.

Geometric convolution holds unique challenges compared to its Euclidean counter-
part, such as ambiguous numbers of neighbors and permutations. These hurdles can
be addressed to a certain degree by performing the convolution in a suitable spectral
space. To this end, the manifold is first projected onto a set of basis functions using
the generalized Fourier transform—which reduces the convolution to a form of matrix
multiplication—and then the convolution is performed [Shuman, 2020; Cohen et al.,
2018b; Esteves et al., 2018b; Ramasinghe et al., 2019c]. However, this approach suffers
from several shortcomings, including computational complexity (at least O(n2)), num-
ber of parameters (O(n)), no guarantee of spatial localization, isotropic filters (hence
no notion of direction), and filters depend on the basis (hence lack of generalization).
To tackle these problems, several methods have been proposed, such as anisotropic
filters [Gao et al., 2020], generalizable filters [Levie et al., 2019], polynomial filters
[Defferrard et al., 2016], and rational filters [Levie et al., 2018]. Despite these efforts, we
believe that a significant amount of further research is required to further enhance the
geometric convolutions that are symmetric to more general groups of deformations
and transformations.

On the other hand, the synthesis of manifolds has also been reinforced by many
recent advancements. Graph convolutional autoencoders [Litany et al., 2018], metric
preservation priors [Cosmo et al., 2020], mesh convolutional operators [Gong et al.,
2019; Kulon et al., 2019; Vidaurre et al., 2020], and GANs [Goodfellow et al., 2014a] are
few such notable works. The challenge of generating manifolds in higher dimensions,
compared to images, is that the manifolds do not possess the canonical correspon-
dence between predictions, inputs, and outputs. Thus, a simple reconstruction loss
between the outputs and the ground truth is not optimal. Therefore, certain assump-
tions like fixed topology and canonical co-existence between the inputs and outputs
are utilized in existing models. Hence, the synthesis of manifolds between arbitrary
topology demands a more comprehensive study. Generalizability is another aspect
that needs to be improved in current geometric deep models, both in analysis and
synthesis. Generalizability is an important requirement in many tasks, where the
model should be able to learn unified representations from multimodal inputs and
cross-representations (images, point-clouds, meshes). Application of spatial transform-
ers to non-Euclidean data [Yi et al., 2017] is perhaps an encouraging approach for this.
Similarly, the expressive power, robustness, and performance guarantees of current
architectures need more attention. Moreover, deep learning with meshes typically

208 Conclusions

consists of a strong theoretical background. However, strong assumptions are often
put in place in practical implementations since real-world data do not always satisfy
the mathematical properties of manifolds. Also, models assume prior knowledge (e.g.,
isometric shape deformations), and oftentimes do not apprehend the full richness of
the data. Thus, there is exists a gap between the theory and implementations, which
must be closely studied.

9.2.2.2 Graphs

Graphs can be used to model complex systems and interactions and are starting to be
employed in important industrial applications. Several examples include fake news
detection in Twitter [Meyers et al., 2020], drug discovery and design [Gaudelet et al.,
2020; Stokes et al., 2020], combinatorial drug therapy [Zitnik et al., 2018], protein
design [Ingraham et al., 2021; Gainza et al., 2020; Veselkov et al., 2019], recommender
systems [Monti et al., 2017], particle physics [Battaglia et al., 2016; Chang et al., 2016],
and medical image analysis [Ktena et al., 2017]. However, there is still a gap (compared
to image and video domains) between research and large-scale industrial applications
where graph-based deep learning is concerned. Therefore, it is vital to fill this gap for
the progress of the research area.

Until recently, graph learning did not have a large-scale dataset that compares to
Imagenet for images. Hu et al. [2020] recently released the open graph benchmark, which
addresses this necessity, but, the field is in dire need of more large-scale datasets.
Similarly, the scientific community needs to deliver more specialized software libraries
and packages for geometric deep learning.

Moreover, most of the real-world graphs, e.g., social networks, are not static and
exhibit continuous-time dynamic graphs. These graphs have to be modeled using
streams of asynchronous node events and edge events, which are still under-explored.
Temporal graph networks are a step in this direction [Rossi et al., 2020]. They learn
a memory that compresses all the past interactions of a node and predicts future
edges, which can be utilized in recommender systems. Besides, in some medical
applications that use graph-based deep learning, e.g., decease classification, the graph
must be hand-crafted explicitly [Parisot et al., 2018; Kazi et al., 2019; Li et al., 2020b].
Typically, a patient point cloud is created first using phenotypic and imaging features,
and the graph is built based on it afterward. However, this is not always ideal, as
for some diseases, the similarities of patients can be completely different. Therefore,
it is sometimes useful to learn this graph end-to-end. To this end, Kazi et al. [2020]
proposed a differentiable graph module that allows the construction of a graph from
data that can be used for feature learning. This learning the graph concept comprises
tremendous possibilities and needs more follow-up work in the future.

Modeling complex dynamical systems with graphs is another promising research
direction. Cranmer et al. [2020b] proposed a framework that can model the motion of
complex entities in a dynamical system using graphs. Their framework can learn the
symbolic equations of the messages sent along the edges. Learning these equations
provides not only better generalizability but also higher interpretability. This area has

§9.2 Emerging directions 209

a vast amount of practical applications, from astronomy to molecular dynamics, as it
allows modeling the interactions of millions of entities embedded in a constrained
system extremely fast. However, this area needs further attention to achieve better
scalability. Finally, analyzing directed graphs is also a challenging topic, as such
graphs comprise nonsymmetric Laplacian matrices that do not have orthogonal eigen-
decompositions.

210 Conclusions

Bibliography

Abdelhamed, A.; Brubaker, M. A.; and Brown, M. S., 2019. Noise flow: Noise
modeling with conditional normalizing flows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 3165–3173. (cited on page 117)

Achlioptas, D., 2001. Database-friendly random projections. In Proceedings of the
twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
274–281. (cited on page 99)

Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; and Guibas, L., 2017a. Learning repre-
sentations and generative models for 3d point clouds. arXiv preprint arXiv:1707.02392,
(2017). (cited on pages 135, 138, 148, 149, and 157)

Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; and Guibas, L., 2017b. Repre-
sentation learning and adversarial generation of 3d point clouds. arXiv preprint
arXiv:1707.02392, (2017). (cited on pages 16 and 196)

Agathos, A.; Pratikakis, I.; Papadakis, P.; Perantonis, S. J.; Azariadis, P. N.;
and Sapidis, N. S., 2009. Retrieval of 3d articulated objects using a graph-based
representation. 3DOR, 2009 (2009), 29–36. (cited on page 52)

Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.; and Kolter, Z., 2019.
Differentiable convex optimization layers. arXiv preprint arXiv:1910.12430, (2019).
(cited on pages 4 and 205)

Ahamad, A., 2018. Generating text through adversarial training using skip-thought
vectors. arXiv preprint arXiv:1808.08703, (2018). (cited on page 14)

Ahlberg, J. H.; Nilson, E. N.; and Walsh, J. L., 1967. The Theory of Splines and their
Applications. Academic Press. (cited on page 125)

Alipanahi, B.; Delong, A.; Weirauch, M. T.; and Frey, B. J., 2015. Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning. Nature
biotechnology, 33, 8 (2015), 831–838. (cited on page 4)

Amit, D. J.; Gutfreund, H.; and Sompolinsky, H., 1985. Spin-glass models of neural
networks. Physical Review A, 32, 2 (1985), 1007. (cited on page 3)

Amos, B. and Kolter, J. Z., 2017. Optnet: Differentiable optimization as a layer in
neural networks. In International Conference on Machine Learning, 136–145. PMLR.
(cited on pages 4 and 205)

211

212 BIBLIOGRAPHY

Ankerst, M.; Kastenmüller, G.; Kriegel, H.-P.; and Seidl, T., 1999. 3d shape his-
tograms for similarity search and classification in spatial databases. In International
Symposium on Spatial Databases, 207–226. Springer. (cited on page 25)

Arbter, K.; Snyder, W. E.; Burkhardt, H.; and Hirzinger, G., 1990. Application of
affine-invariant fourier descriptors to recognition of 3-d objects. IEEE Transactions
on pattern analysis and machine intelligence, 12, 7 (1990), 640–647. (cited on pages 24
and 64)

Arjovsky, M. and Bottou, L., 2017. Towards principled methods for training genera-
tive adversarial networks. arXiv preprint arXiv:1701.04862, (2017). (cited on page
16)

Arjovsky, M.; Chintala, S.; and Bottou, L., 2017. Wasserstein generative adversarial
networks. In International conference on machine learning, 214–223. PMLR. (cited on
page 16)

Arora, S.; Ge, R.; Liang, Y.; Ma, T.; and Zhang, Y., 2017. Generalization and
equilibrium in generative adversarial nets (gans). arXiv preprint arXiv:1703.00573,
(2017). (cited on page 18)

Arora, S.; Risteski, A.; and Zhang, Y., 2018. Do GANs learn the distribution? some
theory and empirics. In International Conference on Learning Representations. (cited
on page 167)

Arora, S. and Zhang, Y., 2017. Do gans actually learn the distribution? an empirical
study. arXiv preprint arXiv:1706.08224, (2017). (cited on page 160)

Arvanitidis, G.; Hansen, L. K.; and Hauberg, S., 2017. Latent space oddity: on the
curvature of deep generative models. arXiv preprint arXiv:1710.11379, (2017). (cited
on pages 84, 90, and 92)

Arvanitidis, G.; Hauberg, S.; and Schölkopf, B., 2020. Geometrically enriched latent
spaces. arXiv preprint arXiv:2008.00565, (2020). (cited on pages 88 and 90)

Atzmon, M.; Maron, H.; and Lipman, Y., 2018. Point convolutional neural networks
by extension operators. arXiv preprint arXiv:1803.10091, (2018). (cited on pages 76
and 77)

Baars, B., 1988. A cognitive theory of consciousness. cambridge universitypress.[anc,
bjb, rnc](1993) how does a serial, integrated and very limited stream of conscious-
ness emerge from a nervous system that is mostly unconscious, distributed, parallel
and of enormous capacity? theoretical and experimental studies of consciousness.
In Ciba Foundation Symposium, vol. 174, 282303. (cited on page 7)

Bahdanau, D.; Cho, K.; and Bengio, Y., 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, (2014). (cited on
page 1)

BIBLIOGRAPHY 213

Bai, S.; Bai, X.; Zhou, Z.; Zhang, Z.; and Latecki, L. J., 2016. Gift: A real-time and
scalable 3d shape search engine. In Computer Vision and Pattern Recognition (CVPR),
2016 IEEE Conference on, 5023–5032. IEEE. (cited on pages 52, 75, and 80)

Bai, S.; Kolter, J. Z.; and Koltun, V., 2019. Deep equilibrium models. arXiv preprint
arXiv:1909.01377, (2019). (cited on page 206)

Baillargeon, R., 2004. Infants’ physical world. Current directions in psychological
science, 13, 3 (2004), 89–94. (cited on page 3)

Baillargeon, R.; Li, J.; Ng, W.; and Yuan, S., 2009. An account of infants’ physical
reasoning. Learning and the infant mind, (2009), 66–116. (cited on page 3)

Baldi, P.; Bauer, K.; Eng, C.; Sadowski, P.; and Whiteson, D., 2016. Jet substructure
classification in high-energy physics with deep neural networks. Physical Review D,
93, 9 (2016), 094034. (cited on page 4)

Bansal, A.; Chen, X.; Russell, B.; Gupta, A.; and Ramanan, D., 2017a. Pixelnet:
Representation of the pixels, by the pixels, and for the pixels. arXiv preprint
arXiv:1702.06506, (2017). (cited on page 181)

Bansal, A.; Sheikh, Y.; and Ramanan, D., 2017b. Pixelnn: Example-based image
synthesis. arXiv preprint arXiv:1708.05349, (2017). (cited on page 181)

Bao, J.; Chen, D.; Wen, F.; Li, H.; and Hua, G., 2017. Cvae-gan: Fine-grained image
generation through asymmetric training. In The IEEE International Conference on
Computer Vision (ICCV). (cited on pages 90 and 198)

Barnett, S. A., 2018. Convergence problems with generative adversarial networks
(gans). arXiv preprint arXiv:1806.11382, (2018). (cited on pages 160 and 167)

Bashiri, F. S.; Rostami, R.; Peissig, P.; D’Souza, R. M.; and Yu, Z., 2019. An applica-
tion of manifold learning in global shape descriptors. arXiv preprint arXiv:1901.02508,
(2019). (cited on page 78)

Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.;
Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R.; et al.,
2018. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, (2018). (cited on pages 2 and 3)

Battaglia, P. W.; Hamrick, J. B.; and Tenenbaum, J. B., 2013. Simulation as an engine
of physical scene understanding. Proceedings of the National Academy of Sciences, 110,
45 (2013), 18327–18332. (cited on page 4)

Battaglia, P. W.; Pascanu, R.; Lai, M.; Rezende, D.; and Kavukcuoglu, K., 2016.
Interaction networks for learning about objects, relations and physics. arXiv preprint
arXiv:1612.00222, (2016). (cited on page 208)

214 BIBLIOGRAPHY

Ben-Shabat, Y.; Lindenbaum, M.; and Fischer, A., 2017. 3d point cloud classification
and segmentation using 3d modified fisher vector representation for convolutional
neural networks. arXiv preprint arXiv:1711.08241, (2017). (cited on page 76)

Bentley, J. L., 1975. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18, 9 (1975), 509–517. (cited on page 61)

Berg, R. v. d.; Hasenclever, L.; Tomczak, J. M.; and Welling, M., 2018. Sylvester
normalizing flows for variational inference. arXiv preprint arXiv:1803.05649, (2018).
(cited on page 118)

Bernstein, S., 1912. Démonstration du théorème de weierstrass fondée sur le calcul
des probabilités. Communications of the Kharkov Mathematical Society, (1912), 1–2.
(cited on pages 119 and 121)

Bertasius, G.; Wang, H.; and Torresani, L., 2021. Is space-time attention all you
need for video understanding? arXiv preprint arXiv:2102.05095, (2021). (cited on
page 1)

Bobrow, D. G. and Winograd, T., 1977. An overview of krl, a knowledge representa-
tion language. Cognitive science, 1, 1 (1977), 3–46. (cited on page 3)

Bogachev, V. I.; Kolesnikov, A. V.; and Medvedev, K. V., 2005. Triangular transfor-
mations of measures. Sbornik: Mathematics, 196, 3 (2005), 309. (cited on pages 20
and 118)

Bolthausen, E., 2014. An iterative construction of solutions of the tap equations for
the sherrington–kirkpatrick model. Communications in Mathematical Physics, 325, 1
(2014), 333–366. (cited on page 4)

Boomsma, W. and Frellsen, J., 2017. Spherical convolutions and their application in
molecular modelling. In Advances in Neural Information Processing Systems, 3436–3446.
(cited on page 21)

Boscaini, D.; Masci, J.; Melzi, S.; Bronstein, M. M.; Castellani, U.; and Van-
dergheynst, P., 2015. Learning class-specific descriptors for deformable shapes
using localized spectral convolutional networks. In Computer Graphics Forum, vol. 34,
13–23. Wiley Online Library. (cited on page 57)

Boscaini, D.; Masci, J.; Rodolà, E.; and Bronstein, M., 2016. Learning shape
correspondence with anisotropic convolutional neural networks. In Advances in
Neural Information Processing Systems, 3189–3197. (cited on page 57)

Botvinick, M. M.; Braver, T. S.; Barch, D. M.; Carter, C. S.; and Cohen, J. D., 2001.
Conflict monitoring and cognitive control. Psychological review, 108, 3 (2001), 624.
(cited on page 6)

BIBLIOGRAPHY 215

Boutsidis, C.; Drineas, P.; Kambadur, P.; Kontopoulou, E.-M.; and Zouzias,
A., 2017. A randomized algorithm for approximating the log determinant of a
symmetric positive definite matrix. Linear Algebra and its Applications, 533 (2017),
95–117. (cited on page 99)

Brock, A.; De, S.; Smith, S. L.; and Simonyan, K., 2021. High-performance large-scale
image recognition without normalization. arXiv preprint arXiv:2102.06171, (2021).
(cited on page 1)

Brock, A.; Lim, T.; Ritchie, J. M.; and Weston, N., 2016. Generative and dis-
criminative voxel modeling with convolutional neural networks. arXiv preprint
arXiv:1608.04236, (2016). (cited on pages 49, 50, 61, 75, and 76)

Bronstein, A.; Bronstein, M.; Ovsjanikov, M.; and Guibas, L., 2009. Shape google:
a computer vision approach to invariant shape retrieval. Proc. NORDIA, 1, 4 (2009),
6. (cited on page 64)

Bronstein, A. M.; Bronstein, M. M.; Kimmel, R.; Mahmoudi, M.; and Sapiro, G.,
2010. A gromov-hausdorff framework with diffusion geometry for topologically-
robust non-rigid shape matching. International Journal of Computer Vision, 89, 2-3
(2010), 266–286. (cited on page 64)

Bronstein, M. M.; Bruna, J.; LeCun, Y.; Szlam, A.; and Vandergheynst, P., 2017.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing
Magazine, 34, 4 (2017), 18–42. (cited on page 57)

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y., 2013. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203, (2013). (cited
on page 57)

Bubeck, S. and Sellke, M., 2021. A universal law of robustness via isoperimetry.
Advances in Neural Information Processing Systems, 34 (2021). (cited on page 21)

Bustamante, J., 2017. Bernstein Operators and Their Properties. Birkhauser. (cited on
pages 121 and 130)

Canterakis, N., 1996. Complete moment invariants and pose determination for
orthogonal transformations of 3d objects. In Mustererkennung 1996, 339–350. Springer.
(cited on pages 24 and 25)

Canterakis, N., 1999. 3d zernike moments and zernike affine invariants for 3d image
analysis and recognition. In In 11th Scandinavian Conf. on Image Analysis. Citeseer.
(cited on pages 22, 24, 64, and 67)

Carrière, M.; Oudot, S. Y.; and Ovsjanikov, M., 2015. Stable topological signatures
for points on 3d shapes. In Computer Graphics Forum, vol. 34, 1–12. Wiley Online
Library. (cited on page 59)

216 BIBLIOGRAPHY

Chang, M. B.; Ullman, T.; Torralba, A.; and Tenenbaum, J. B., 2016. A com-
positional object-based approach to learning physical dynamics. arXiv preprint
arXiv:1612.00341, (2016). (cited on page 208)

Chang, S.; Park, S.; Yang, J.; and Kwak, N., 2019. Sym-parameterized dynamic
inference for mixed-domain image translation. In Proceedings of the IEEE International
Conference on Computer Vision, 4803–4811. (cited on pages 90, 159, and 200)

Chen, D.-Y.; Tian, X.-P.; Shen, Y.-T.; and Ouhyoung, M., 2003. On visual similarity
based 3d model retrieval. In Computer graphics forum, vol. 22, 223–232. Wiley Online
Library. (cited on pages 64 and 147)

Chen, Q. and Koltun, V., 2017a. Photographic image synthesis with cascaded
refinement networks. In Proceedings of the IEEE international conference on computer
vision, 1511–1520. (cited on page 170)

Chen, Q. and Koltun, V., 2017b. Photographic image synthesis with cascaded
refinement networks. In The IEEE International Conference on Computer Vision (ICCV).
(cited on page 199)

Cheraghian, A. and Petersson, L., 2019. 3dcapsule: Extending the capsule archi-
tecture to classify 3d point clouds. In 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), 1194–1202. doi:10.1109/WACV.2019.00132. (cited on
page 61)

Cheraghian, A.; Rahman, S.; Campbell, D.; and Petersson, L., 2019a. Mitigating
the hubness problem for zero-shot learning of 3d objects. In British Machine Vision
Conference (BMVC’19). (cited on page 61)

Cheraghian, A.; Rahman, S.; Campbell, D.; and Petersson, L., 2020. Transductive
zero-shot learning for 3d point cloud classification. In 2020 IEEE Winter Conference
on Applications of Computer Vision (WACV). doi:10.1109/WACV.2019.00132. (cited
on page 61)

Cheraghian, A.; Rahman, S.; and Petersson, L., 2019b. Zero-shot learning of 3d
point cloud objects. In International Conference on Machine Vision Applications (MVA).
(cited on page 61)

Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; and Choo, J., 2018. Stargan: Unified
generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 8789–8797.
(cited on page 14)

Chomsky, N., 2014. Aspects of the Theory of Syntax, vol. 11. MIT press. (cited on page
6)

Chu, C.; Minami, K.; and Fukumizu, K., 2020a. Smoothness and stability in gans.
arXiv preprint arXiv:2002.04185, (2020). (cited on pages 160 and 167)

http://dx.doi.org/10.1109/WACV.2019.00132
http://dx.doi.org/10.1109/WACV.2019.00132

BIBLIOGRAPHY 217

Chu, M.; Xie, Y.; Mayer, J.; Leal-Taixé, L.; and Thuerey, N., 2020b. Learning
temporal coherence via self-supervision for gan-based video generation. ACM
Transactions on Graphics (TOG), 39, 4 (2020), 75–1. (cited on page 14)

Chung, J. S.; Nagrani, A.; Coto, E.; Xie, W.; McLaren, M.; Reynolds, D. A.; and

Zisserman, A., 2019. Voxsrc 2019: The first voxceleb speaker recognition challenge.
arXiv preprint arXiv:1912.02522, (2019). (cited on page 1)

Coates, A.; Ng, A.; and Lee, H., 2011. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, 215–223. (cited on page 101)

Cohen, T.; Geiger, M.; and Weiler, M., 2018a. A general theory of equivariant cnns
on homogeneous spaces. arXiv preprint arXiv:1811.02017, (2018). (cited on pages 11
and 59)

Cohen, T. S.; Geiger, M.; Köhler, J.; and Welling, M., 2018b. Spherical cnns. arXiv
preprint arXiv:1801.10130, (2018). (cited on pages 2, 11, 21, 22, 24, 30, 32, 63, 64, 77,
190, and 207)

Cosmo, L.; Norelli, A.; Halimi, O.; Kimmel, R.; and Rodola, E., 2020. Limp:
Learning latent shape representations with metric preservation priors. arXiv preprint
arXiv:2003.12283, 2 (2020). (cited on page 207)

Cranmer, M.; Greydanus, S.; Hoyer, S.; Battaglia, P.; Spergel, D.; and Ho, S.,
2020a. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, (2020). (cited
on page 206)

Cranmer, M.; Sanchez-Gonzalez, A.; Battaglia, P.; Xu, R.; Cranmer, K.; Spergel,
D.; and Ho, S., 2020b. Discovering symbolic models from deep learning with
inductive biases. arXiv preprint arXiv:2006.11287, (2020). (cited on page 208)

Dash, A.; Gamboa, J. C. B.; Ahmed, S.; Liwicki, M.; and Afzal, M. Z., 2017. Tac-gan-
text conditioned auxiliary classifier generative adversarial network. arXiv preprint
arXiv:1703.06412, (2017). (cited on page 14)

Decelle, A.; Krzakala, F.; Moore, C.; and Zdeborová, L., 2011. Asymptotic analysis
of the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84, 6 (2011), 066106. (cited on page 3)

Deco, G. and Brauer, W., 1995. Nonlinear higher-order statistical decorrelation
by volume-conserving neural architectures. Neural Networks, 8, 4 (1995), 525–535.
(cited on page 20)

Defferrard, M.; Bresson, X.; and Vandergheynst, P., 2016. Convolutional neural net-
works on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375,
(2016). (cited on pages 57 and 207)

218 BIBLIOGRAPHY

Defferrard, M.; Milani, M.; Gusset, F.; and Perraudin, N., 2020. Deepsphere: a
graph-based spherical cnn. arXiv preprint arXiv:2012.15000, (2020). (cited on page 2)

Dehaene, S.; Lau, H.; and Kouider, S., 2017. What is consciousness, and could
machines have it? Science, 358, 6362 (2017), 486–492. (cited on page 7)

Denton, E. L.; Chintala, S.; Fergus, R.; et al., 2015. Deep generative image models
using a laplacian pyramid of adversarial networks. In NeurIPS, 1486–1494. (cited
on pages 16 and 153)

Deshpande, A.; Lu, J.; Yeh, M.-C.; Jin Chong, M.; and Forsyth, D., 2017. Learning
diverse image colorization. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (cited on page 199)

Dinh, L.; Krueger, D.; and Bengio, Y., 2014. Nice: Non-linear independent com-
ponents estimation. arXiv preprint arXiv:1410.8516, (2014). (cited on pages 20
and 118)

Dinh, L.; Sohl-Dickstein, J.; and Bengio, S., 2016. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, (2016). (cited on pages 20 and 118)

Donahue, C.; McAuley, J.; and Puckette, M., 2018. Synthesizing audio with
generative adversarial networks. arXiv preprint arXiv:1802.04208, 1 (2018). (cited on
page 14)

Dong, H.-W.; Hsiao, W.-Y.; Yang, L.-C.; and Yang, Y.-H., 2018. Musegan: Multi-
track sequential generative adversarial networks for symbolic music generation and
accompaniment. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32.
(cited on page 14)

Driscoll, J. R. and Healy, D. M., 1994. Computing fourier transforms and convolu-
tions on the 2-sphere. Advances in applied mathematics, 15, 2 (1994), 202–250. (cited
on pages 151 and 190)

Du, Y. and Mordatch, I., 2019. Implicit generation and modeling with energy based
models. In Advances in Neural Information Processing Systems 32 (Eds. H. Wallach;
H. Larochelle; A. Beygelzimer; F. d Alché-Buc; E. Fox; and R. Garnett),
3608–3618. Curran Associates, Inc. (cited on page 199)

Dumoulin, V. and Visin, F., 2016. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, (2016). (cited on page 2)

Dupoux, E., 2018. Cognitive science in the era of artificial intelligence: A roadmap for
reverse-engineering the infant language-learner. Cognition, 173 (2018), 43–59. (cited
on pages xvii and 4)

Durkan, C.; Bekasov, A.; Murray, I.; and Papamakarios, G., 2019a. Cubic-spline
flows. arXiv preprint arXiv:1906.02145, (2019). (cited on pages 118, 125, and 127)

BIBLIOGRAPHY 219

Durkan, C.; Bekasov, A.; Murray, I.; and Papamakarios, G., 2019b. Neural spline
flows. arXiv preprint arXiv:1906.04032, (2019). (cited on pages 20, 118, 125, and 127)

Džeroski, S.; De Raedt, L.; and Driessens, K., 2001. Relational reinforcement
learning. Machine learning, 43, 1 (2001), 7–52. (cited on page 7)

El Mallahi, M.; Zouhri, A.; El Affar, A.; Tahiri, A.; and Qjidaa, H., 2017. Radial
hahn moment invariants for 2d and 3d image recognition. International Journal of
Automation and Computing, (2017), 1–13. (cited on page 24)

El Moselhy, T. A. and Marzouk, Y. M., 2012. Bayesian inference with optimal maps.
Journal of Computational Physics, 231, 23 (2012), 7815–7850. (cited on page 20)

Elad, M.; Tal, A.; and Ar, S., 2002. Content based retrieval of vrml objects—an
iterative and interactive approach. In Multimedia 2001, 107–118. Springer. (cited on
page 64)

Engel, J.; Agrawal, K. K.; Chen, S.; Gulrajani, I.; Donahue, C.; and Roberts, A.,
2019. Gansynth: Adversarial neural audio synthesis. arXiv preprint arXiv:1902.08710,
(2019). (cited on page 14)

Esling, P.; Masuda, N.; Bardet, A.; Despres, R.; et al., 2019. Universal audio
synthesizer control with normalizing flows. arXiv preprint arXiv:1907.00971, (2019).
(cited on page 117)

Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.; et al., 1996. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Kdd, vol. 96, 226–231.
(cited on page 56)

Esteves, C.; Allen-Blanchette, C.; Makadia, A.; and Daniilidis, K., 2018a. Learn-
ing so (3) equivariant representations with spherical cnns. In Proceedings of the
European Conference on Computer Vision (ECCV), 52–68. (cited on pages 2, 11,
and 190)

Esteves, C.; Allen-Blanchette, C.; Makadia, A.; and Daniilidis, K., 2018b. Learn-
ing so(3) equivariant representations with spherical cnns. In The European Conference
on Computer Vision (ECCV). (cited on pages 52, 53, 63, 64, 80, and 207)

Farber, R. M.; Lapedes, A. S.; Rico-Martínez, R.; and Kevrekidis, I. G., 1993. Iden-
tification of continuous-time dynamical systems: Neural network based algorithms
and parallel implementation. arXiv preprint comp-gas/9305001, (1993). (cited on
page 205)

Farouki, R. T. and Goodman, T. N. T., 1996. On the optimal stability of the Bernstein
basis. Mathematics of Computation, 65, 216 (1996), 1553—-1566. (cited on pages 122,
123, and 126)

220 BIBLIOGRAPHY

Farouki, R. T. and Rajan, V. T., 1987. On the numerical condition of polynomials in
Bernstein form. Computer Aided Geometric Design 4, 4, 3 (1987), 191—-216. (cited on
pages 122, 123, and 126)

Fetaya, E.; Jacobsen, J.-H.; Grathwohl, W.; and Zemel, R., 2020. Understanding the
limitations of conditional generative models. In International Conference on Learning
Representations. (cited on page 159)

Fikes, R. E. and Nilsson, N. J., 1971. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2, 3-4 (1971), 189–208.
(cited on page 7)

Flusser, J.; Boldys, J.; and Zitová, B., 2003. Moment forms invariant to rotation and
blur in arbitrary number of dimensions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25, 2 (2003), 234–246. (cited on pages 24 and 64)

Fortunato, S., 2010. Community detection in graphs. Physics reports, 486, 3-5 (2010),
75–174. (cited on page 3)

Fotenos, A. F.; Mintun, M. A.; Snyder, A. Z.; Morris, J. C.; and Buckner, R. L.,
2008. Brain volume decline in aging: evidence for a relation between socioeconomic
status, preclinical alzheimer disease, and reserve. Archives of neurology, 65, 1 (2008),
113–120. (cited on page 80)

Frome, A.; Huber, D.; Kolluri, R.; Bülow, T.; and Malik, J., 2004. Recognizing
objects in range data using regional point descriptors. In European conference on
computer vision, 224–237. Springer. (cited on page 25)

Fukushima, K. and Miyake, S., 1982. Neocognitron: A self-organizing neural network
model for a mechanism of visual pattern recognition. In Competition and cooperation
in neural nets, 267–285. Springer. (cited on page 3)

Furuya, T. and Ohbuchi, R., 2016. Deep aggregation of local 3d geometric features
for 3d model retrieval. In BMVC. (cited on pages 52, 53, 77, and 80)

Gabrié, M.; Tramel, E. W.; and Krzakala, F., 2015. Training restricted boltzmann ma-
chines via the thouless-anderson-palmer free energy. arXiv preprint arXiv:1506.02914,
(2015). (cited on page 4)

Gainza, P.; Sverrisson, F.; Monti, F.; Rodola, E.; Boscaini, D.; Bronstein, M.; and

Correia, B., 2020. Deciphering interaction fingerprints from protein molecular
surfaces using geometric deep learning. Nature Methods, 17, 2 (2020), 184–192. (cited
on page 208)

Gallot, S.; Hulin, D.; and Lafontaine, J., 1990. Riemannian geometry, vol. 2. Springer.
(cited on page 89)

BIBLIOGRAPHY 221

Gao, Z.; Zhai, G.; Zhang, J.; Yang, Y.; and Yang, X., 2020. Pai-gcn: Permutable
anisotropic graph convolutional networks for 3d shape representation learning.
arXiv preprint arXiv:2004.09995, (2020). (cited on page 207)

Garcia-Garcia, A.; Gomez-Donoso, F.; Garcia-Rodriguez, J.; Orts-Escolano, S.;
Cazorla, M.; and Azorin-Lopez, J., 2016. Pointnet: A 3d convolutional neural
network for real-time object class recognition. In Neural Networks (IJCNN), 2016
International Joint Conference on, 1578–1584. IEEE. (cited on page 49)

Gardner, E., 1988. The space of interactions in neural network models. Journal of
physics A: Mathematical and general, 21, 1 (1988), 257. (cited on page 3)

Gaudelet, T.; Day, B.; Jamasb, A. R.; Soman, J.; Regep, C.; Liu, G.; Hayter, J. B.;
Vickers, R.; Roberts, C.; Tang, J.; et al., 2020. Utilising graph machine learning
within drug discovery and development. arXiv preprint arXiv:2012.05716, (2020).
(cited on page 208)

Gauss, C. F., 1828. Disquisitiones generales circa superficies curvas, vol. 1. Typis Dieterichi-
anis. (cited on page 88)

Germain, M.; Gregor, K.; Murray, I.; and Larochelle, H., 2015. Made: Masked
autoencoder for distribution estimation. In International Conference on Machine
Learning, 881–889. PMLR. (cited on page 20)

Gerstenberg, T.; Goodman, N. D.; Lagnado, D. A.; and Tenenbaum, J. B., 2015.
How, whether, why: Causal judgments as counterfactual contrasts. In CogSci. (cited
on page 4)

Ghosh, A.; Kulharia, V.; Namboodiri, V. P.; Torr, P. H.; and Dokania, P. K., 2018.
Multi-agent diverse generative adversarial networks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (cited on page 199)

Girdhar, R.; Fouhey, D. F.; Rodriguez, M.; and Gupta, A., 2016. Learning a
predictable and generative vector representation for objects. In ECCV, 484–499.
Springer. (cited on page 152)

Gong, S.; Chen, L.; Bronstein, M.; and Zafeiriou, S., 2019. Spiralnet++: A fast
and highly efficient mesh convolution operator. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, 0–0. (cited on page 207)

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;
Courville, A.; and Bengio, Y., 2014a. Generative adversarial nets. In Advances in
neural information processing systems, 2672–2680. (cited on pages 16, 83, 90, 166, 167,
and 207)

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;
Courville, A.; and Bengio, Y., 2014b. Generative adversarial nets. In Advances in
Neural Information Processing Systems 27, 2672–2680. (cited on page 198)

222 BIBLIOGRAPHY

Goodwin, G. P. and Johnson-Laird, P., 2005. Reasoning about relations. Psychological
review, 112, 2 (2005), 468. (cited on page 6)

Gould, S.; Hartley, R.; and Campbell, D., 2019. Deep declarative networks: A new
hope. arXiv preprint arXiv:1909.04866, (2019). (cited on pages 4 and 205)

Gould, S.; Hartley, R.; and Campbell, D. J., 2021. Deep declarative networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, (2021). (cited on pages 4
and 205)

Goyal, A. and Bengio, Y., 2020. Inductive biases for deep learning of higher-level
cognition. arXiv preprint arXiv:2011.15091, (2020). (cited on pages 2 and 3)

Grathwohl, W.; Chen, R. T.; Bettencourt, J.; Sutskever, I.; and Duvenaud, D.,
2018. Ffjord: Free-form continuous dynamics for scalable reversible generative
models. arXiv preprint arXiv:1810.01367, (2018). (cited on page 118)

Grathwohl, W.; Wang, K.-C.; Jacobsen, J.-H.; Duvenaud, D.; Norouzi, M.; and

Swersky, K., 2020. Your classifier is secretly an energy based model and you should
treat it like one. In International Conference on Learning Representations. (cited on
page 160)

Guo, J.; Lu, S.; Cai, H.; Zhang, W.; Yu, Y.; and Wang, J., 2018. Long text generation via
adversarial training with leaked information. In Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32. (cited on page 14)

Guo, X., 1993. Three dimensional moment invariants under rigid transformation. In
International Conference on Computer Analysis of Images and Patterns, 518–522. Springer.
(cited on pages 24 and 64)

Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J.; and Kwok, N. M., 2016. A
comprehensive performance evaluation of 3d local feature descriptors. International
Journal of Computer Vision, 116, 1 (2016), 66–89. (cited on pages 25 and 65)

Györgyi, G. and Tishby, N., 1990. Neural networks and spin glasses ed wk theumann
and r köberle. (cited on page 3)

Han, Z.; Liu, Z.; Vong, C.-M.; Liu, Y.-S.; Bu, S.; Han, J.; and Chen, C. P., 2018. Deep
spatiality: Unsupervised learning of spatially-enhanced global and local 3d features
by deep neural network with coupled softmax. IEEE Transactions on Image Processing,
27, 6 (2018), 3049–3063. (cited on page 78)

Han, Z.; Shang, M.; Liu, Y.-S.; and Zwicker, M., 2019. View inter-prediction
gan: Unsupervised representation learning for 3d shapes by learning global shape
memories to support local view predictions. In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 8376–8384. (cited on page 196)

Hayes-Roth, B. and Hayes-Roth, F., 1979. A cognitive model of planning. Cognitive
science, 3, 4 (1979), 275–310. (cited on page 3)

BIBLIOGRAPHY 223

He, K.; Zhang, X.; Ren, S.; and Sun, J., 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 770–778. (cited on page 21)

He, Y.; Schiele, B.; and Fritz, M., 2018. Diverse conditional image generation by
stochastic regression with latent drop-out codes. In Proceedings of the European
Conference on Computer Vision (ECCV), 406–421. (cited on page 167)

Henaff, M.; Bruna, J.; and LeCun, Y., 2015. Deep convolutional networks on
graph-structured data. arXiv preprint arXiv:1506.05163, (2015). (cited on page 57)

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and Hochreiter, S., 2017.
Gans trained by a two time-scale update rule converge to a local nash equilibrium.
In NeurIPS, 6626–6637. (cited on page 148)

Hewitt, E. and Savage, L. J., 1955. Symmetric measures on cartesian products.
Transactions of the American Mathematical Society, 80, 2 (1955), 470–501. (cited on
page 139)

Hinton, G. E., 2002. Training products of experts by minimizing contrastive diver-
gence. Neural computation, 14, 8 (2002), 1771–1800. (cited on page 4)

Ho, J.; Chen, X.; Srinivas, A.; Duan, Y.; and Abbeel, P., 2019. Flow++: Improving
flow-based generative models with variational dequantization and architecture
design. In International Conference on Machine Learning, 2722–2730. (cited on page
117)

Hobson, E. W., 1931. The theory of spherical and ellipsoidal harmonics. CUP Archive.
(cited on page 141)

Holyoak, K. J., 1987. Parallel distributed processing: explorations in the microstruc-
ture of cognition. Science, 236 (1987), 992–997. (cited on page 3)

Hopfield, J. J., 1982. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79, 8 (1982),
2554–2558. (cited on page 3)

Horie, M.; Morita, N.; Ihara, Y.; and Mitsume, N., 2020. Isometric transfor-
mation invariant and equivariant graph convolutional networks. arXiv preprint
arXiv:2005.06316, (2020). (cited on page 11)

Hu, M.-K., 1962. Visual pattern recognition by moment invariants. IRE transactions on
information theory, 8, 2 (1962), 179–187. (cited on pages 24 and 64)

Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; and Leskovec,
J., 2020. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, (2020). (cited on page 208)

224 BIBLIOGRAPHY

Huang, C.-W.; Krueger, D.; Lacoste, A.; and Courville, A., 2018a. Neural autore-
gressive flows. In International Conference on Machine Learning, 2078–2087. PMLR.
(cited on page 20)

Huang, C.-W.; Krueger, D.; Lacoste, A.; and Courville, A., 2018b. Neural autore-
gressive flows. ICML, (2018). (cited on page 125)

Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q., 2017a. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 4700–4708. (cited on page 2)

Huang, J.; Zhang, H.; Yi, L.; Funkhouser, T.; Nießner, M.; and Guibas, L. J., 2019a.
Texturenet: Consistent local parametrizations for learning from high-resolution
signals on meshes. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 4440–4449. (cited on page 63)

Huang, W.; Lai, B.; Xu, W.; and Tu, Z., 2019b. 3d volumetric modeling with
introspective neural networks. In AAAI. (cited on pages 147 and 148)

Huang, X.; Li, Y.; Poursaeed, O.; Hopcroft, J.; and Belongie, S., 2017b. Stacked
generative adversarial networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (cited on pages 135 and 154)

Huang, X.; Liu, M.-Y.; Belongie, S.; and Kautz, J., 2018c. Multimodal unsupervised
image-to-image translation. In The European Conference on Computer Vision (ECCV).
(cited on page 199)

Ibarra-Berastegi, G.; Saénz, J.; Esnaola, G.; Ezcurra, A.; and Ulazia, A., 2015.
Short-term forecasting of the wave energy flux: Analogues, random forests, and
physics-based models. Ocean Engineering, 104 (2015), 530–539. (cited on page 4)

Iizuka, S.; Simo-Serra, E.; and Ishikawa, H., 2016. Let there be color! joint end-to-end
learning of global and local image priors for automatic image colorization with
simultaneous classification. ACM Transactions on Graphics (ToG), 35, 4 (2016), 1–11.
(cited on pages 167, 170, 174, and 199)

Ilse, M.; Tomczak, J. M.; and Welling, M., 2018. Attention-based deep multiple
instance learning. arXiv preprint arXiv:1802.04712, (2018). (cited on pages 53 and 55)

Ingraham, J.; Garg, V. K.; Barzilay, R.; and Jaakkola, T. S., 2021. Generative models
for graph-based protein design. (2021). (cited on page 208)

Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A., 2017. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 1125–1134. (cited on pages xix, 6, 8, 83, 84, 85, 87, 90,
96, 100, 101, 160, 170, 174, 181, 198, and 199)

BIBLIOGRAPHY 225

Jain, V. and Zhang, H., 2007. A spectral approach to shape-based retrieval of
articulated 3d models. Computer-Aided Design, 39, 5 (2007), 398–407. (cited on page
64)

Jaini, P.; Selby, K. A.; and Yu, Y., 2019. Sum-of-squares polynomial flow. arXiv preprint
arXiv:1905.02325, (2019). (cited on pages 18, 20, 118, 125, 126, and 127)

Janssen, M. H.; Janssen, A. J.; Bekkers, E. J.; Bescós, J. O.; and Duits, R., 2018.
Design and processing of invertible orientation scores of 3d images. Journal of
mathematical imaging and vision, 60, 9 (2018), 1427–1458. (cited on page 24)

Javanmard, A. and Montanari, A., 2013. State evolution for general approximate
message passing algorithms, with applications to spatial coupling. Information and
Inference: A Journal of the IMA, 2, 2 (2013), 115–144. (cited on page 4)

Ji, S.; Xu, W.; Yang, M.; and Yu, K., 2012. 3d convolutional neural networks for human
action recognition. IEEE transactions on pattern analysis and machine intelligence, 35, 1
(2012), 221–231. (cited on page 207)

Jia, X.; Willard, J.; Karpatne, A.; Read, J. S.; Zwart, J. A.; Steinbach, M.; and

Kumar, V., 2020. Physics-guided machine learning for scientific discovery: An
application in simulating lake temperature profiles. arXiv preprint arXiv:2001.11086,
(2020). (cited on page 4)

Jiang, C.; Wang, D.; Huang, J.; Marcus, P.; Nießner, M.; et al., 2019. Convolutional
neural networks on non-uniform geometrical signals using euclidean spectral
transformation. arXiv preprint arXiv:1901.02070, (2019). (cited on page 63)

Jing, L. and Tian, Y., 2020. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence,
(2020). (cited on page 160)

Johns, E.; Leutenegger, S.; and Davison, A. J., 2016. Pairwise decomposition of
image sequences for active multi-view recognition. In Computer Vision and Pattern
Recognition (CVPR), 2016 IEEE Conference on, 3813–3822. IEEE. (cited on pages 49,
50, and 75)

Johnson, J.; Alahi, A.; and Fei-Fei, L., 2016a. Perceptual losses for real-time style
transfer and super-resolution. In European conference on computer vision, 694–711.
Springer. (cited on page 104)

Johnson, M. J.; Duvenaud, D.; Wiltschko, A. B.; Datta, S. R.; and Adams, R. P.,
2016b. Structured vaes: Composing probabilistic graphical models and variational
autoencoders. arXiv preprint arXiv:1603.06277, 2 (2016), 2016. (cited on pages 4
and 205)

Junginger, A.; Hanselmann, M.; Strauss, T.; Boblest, S.; Buchner, J.; and Ulmer,
H., 2018. Unpaired high-resolution and scalable style transfer using generative
adversarial networks. arXiv preprint arXiv:1810.05724, (2018). (cited on page 83)

226 BIBLIOGRAPHY

Kac, M., 1938. Une remarque sur les polynomes de M. S. Bernstein. Studia Math., 7
(1938), 49–51. (cited on page 121)

Kahneman, D., 2011. Thinking, fast and slow. Macmillan. (cited on page 6)

Kalfaoglu, M. E.; Kalkan, S.; and Alatan, A. A., 2020. Late temporal modeling
in 3d cnn architectures with bert for action recognition. In European Conference on
Computer Vision, 731–747. Springer. (cited on page 1)

Kanezaki, A.; Matsushita, Y.; and Nishida, Y., 2016. Rotationnet: Joint object
categorization and pose estimation using multiviews from unsupervised viewpoints.
arXiv preprint arXiv:1603.06208, (2016). (cited on page 52)

Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J., 2017. Progressive growing of gans
for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, (2017).
(cited on page 16)

Kauwe, S. K.; Graser, J.; Vazquez, A.; and Sparks, T. D., 2018. Machine learning pre-
diction of heat capacity for solid inorganics. Integrating Materials and Manufacturing
Innovation, 7, 2 (2018), 43–51. (cited on page 4)

Kazi, A.; Cosmo, L.; Navab, N.; and Bronstein, M., 2020. Differentiable graph
module (dgm) graph convolutional networks. arXiv preprint arXiv:2002.04999, (2020).
(cited on page 208)

Kazi, A.; Shekarforoush, S.; Krishna, S. A.; Burwinkel, H.; Vivar, G.; Kortüm,
K.; Ahmadi, S.-A.; Albarqouni, S.; and Navab, N., 2019. Inceptiongcn: receptive
field aware graph convolutional network for disease prediction. In International
Conference on Information Processing in Medical Imaging, 73–85. Springer. (cited on
page 208)

Kemp, C. and Tenenbaum, J. B., 2008. The discovery of structural form. Proceedings of
the National Academy of Sciences, 105, 31 (2008), 10687–10692. (cited on page 6)

Khalil, M. I. and Bayoumi, M. M., 2001. A dyadic wavelet affine invariant function for
2d shape recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23, 10 (2001), 1152–1164. (cited on pages 24 and 64)

Khan, S. H.; Guo, Y.; Hayat, M.; and Barnes, N., 2019. Unsupervised primitive
discovery for improved 3d generative modeling. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 9739–9748. (cited on pages 135, 138, 147,
152, and 196)

Khan, S. H.; Hayat, M.; and Barnes, N., 2018. Adversarial training of variational
auto-encoders for high fidelity image generation. In Applications of Computer Vision
(WACV), 2018 IEEE Winter Conference on, 1312–1320. IEEE. (cited on pages 25
and 65)

BIBLIOGRAPHY 227

Khrulkov, V. and Oseledets, I., 2018. Geometry score: A method for comparing
generative adversarial networks. arXiv preprint arXiv:1802.02664, (2018). (cited on
pages 88 and 90)

Kim, T. Anime Sketch Colorization Pair. https://www.kaggle.com/ktaebum/
anime-sketch-colorization-pair. (cited on page 101)

Kingma, D. P. and Dhariwal, P., 2018. Glow: Generative flow with invertible 1x1
convolutions. In Advances in Neural Information Processing Systems, 10215–10224.
(cited on page 117)

Kingma, D. P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I.; and Welling,
M., 2016. Improving variational inference with inverse autoregressive flow. arXiv
preprint arXiv:1606.04934, (2016). (cited on page 20)

Kingma, D. P. and Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, (2013). (cited on pages 2, 89, 135, 147, and 159)

Kingma, D. P. and Welling, M., 2014. Auto-encoding variational bayes. CoRR,
abs/1312.6114 (2014). (cited on page 198)

Klein, F., 1893. A comparative review of recent researches in geometry. Bulletin of the
American Mathematical Society, 2, 10 (1893), 215–249. (cited on page 11)

Klokov, R. and Lempitsky, V., 2017. Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models. In 2017 IEEE International Conference on
Computer Vision (ICCV), 863–872. IEEE. (cited on pages xix, 49, 50, 61, 62, 75,
and 147)

Knothe, H., 1957. Contributions to the theory of convex bodies. Michigan Mathematical
Journal, 4, 1 (1957), 39–52. (cited on page 20)

Kobyzev, I.; Prince, S.; and Brubaker, M., 2020. Normalizing flows: An introduction
and review of current methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (2020), 1––1. (cited on pages 18 and 117)

Kodali, N.; Abernethy, J.; Hays, J.; and Kira, Z., 2017. On convergence and stability
of gans. arXiv preprint arXiv:1705.07215, (2017). (cited on pages 160 and 167)

Koller, D.; Friedman, N.; Džeroski, S.; Sutton, C.; McCallum, A.; Pfeffer, A.;
Abbeel, P.; Wong, M.-F.; Meek, C.; Neville, J.; et al., 2007. Introduction to statistical
relational learning. MIT press. (cited on page 7)

Kondor, R., 2018. N-body networks: a covariant hierarchical neural network architec-
ture for learning atomic potentials. arXiv preprint arXiv:1803.01588, (2018). (cited
on page 24)

Kondor, R.; Lin, Z.; and Trivedi, S., 2018. Clebsch-gordan nets: a fully fourier space
spherical convolutional neural network. arXiv preprint arXiv:1806.09231, (2018).
(cited on page 24)

https://www.kaggle.com/ktaebum/anime-sketch-colorization-pair
https://www.kaggle.com/ktaebum/anime-sketch-colorization-pair

228 BIBLIOGRAPHY

Kosslyn, S. M. and Osherson, D. N., 1995. An invitation to cognitive science: Visual
cognition, vol. 2. MIT Press. (cited on page 3)

Krizhevsky, A.; Nair, V.; and Hinton, G., 2009. Cifar-10 (canadian institute for
advanced research). (2009). http://www.cs.toronto.edu/~kriz/cifar.html. (cited on
page 181)

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E., 2012. Imagenet classification
with deep convolutional neural networks. Advances in neural information processing
systems, 25 (2012), 1097–1105. (cited on pages 1 and 21)

Krzakala, F.; Moore, C.; Mossel, E.; Neeman, J.; Sly, A.; Zdeborová, L.; and

Zhang, P., 2013. Spectral redemption in clustering sparse networks. Proceedings of
the National Academy of Sciences, 110, 52 (2013), 20935–20940. (cited on page 3)

Ktena, S. I.; Parisot, S.; Ferrante, E.; Rajchl, M.; Lee, M.; Glocker, B.; and

Rueckert, D., 2017. Distance metric learning using graph convolutional networks:
Application to functional brain networks. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, 469–477. Springer. (cited on page 208)

Kukačka, J.; Golkov, V.; and Cremers, D., 2017. Regularization for deep learning: A
taxonomy. arXiv preprint arXiv:1710.10686, (2017). (cited on page 2)

Kulon, D.; Wang, H.; Güler, R. A.; Bronstein, M.; and Zafeiriou, S., 2019. Single im-
age 3d hand reconstruction with mesh convolutions. arXiv preprint arXiv:1905.01326,
(2019). (cited on page 207)

Kumaraswamy, P., 1980. A generalized probability density function for double-
bounded random processes. Journal of Hydrology, 46, 1–2 (1980), 79–88. (cited on
page 125)

Kumawat, S. and Raman, S., 2019. Lp-3dcnn: Unveiling local phase in 3d convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 4903–4912. (cited on page 75)

Kurtek, S.; Klassen, E.; Ding, Z.; and Srivastava, A., 2010. A novel riemannian
framework for shape analysis of 3d objects. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 1625–1632. IEEE. (cited on page 57)

Lake, B. M.; Ullman, T. D.; Tenenbaum, J. B.; and Gershman, S. J., 2017. Building
machines that learn and think like people. Behavioral and brain sciences, 40 (2017).
(cited on page 3)

Lavoué, G., 2012. Combination of bag-of-words descriptors for robust partial shape
retrieval. The Visual Computer, 28, 9 (2012), 931–942. (cited on pages 52 and 78)

Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.;
Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al., 2017. Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 4681–4690. (cited on page 14)

http://www.cs.toronto.edu/~kriz/cifar.html

BIBLIOGRAPHY 229

Lee, C.-H.; Liu, Z.; Wu, L.; and Luo, P., 2020. Maskgan: Towards diverse and
interactive facial image manipulation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (cited on page 101)

Lee, H.-Y.; Tseng, H.-Y.; Huang, J.-B.; Singh, M.; and Yang, M.-H., 2018. Diverse
image-to-image translation via disentangled representations. In The European Con-
ference on Computer Vision (ECCV). (cited on pages 90, 198, and 199)

Lee, S.; Ha, J.; and Kim, G., 2019a. Harmonizing maximum likelihood with GANs
for multimodal conditional generation. In International Conference on Learning
Representations. (cited on pages 8, 83, 84, 85, 87, 88, and 90)

Lee, S.; Ha, J.; and Kim, G., 2019b. Harmonizing maximum likelihood with GANs
for multimodal conditional generation. In International Conference on Learning
Representations. (cited on pages 160, 167, 174, 198, and 199)

Lees, R. B., 1957. Syntactic structures. (cited on page 7)

Lerer, A.; Gross, S.; and Fergus, R., 2016. Learning physical intuition of block
towers by example. In International conference on machine learning, 430–438. PMLR.
(cited on page 4)

Levie, R.; Huang, W.; Bucci, L.; Bronstein, M. M.; and Kutyniok, G., 2019.
Transferability of spectral graph convolutional neural networks. arXiv preprint
arXiv:1907.12972, (2019). (cited on page 207)

Levie, R.; Monti, F.; Bresson, X.; and Bronstein, M. M., 2018. Cayleynets: Graph con-
volutional neural networks with complex rational spectral filters. IEEE Transactions
on Signal Processing, 67, 1 (2018), 97–109. (cited on page 207)

Li, C.-L.; Zaheer, M.; Zhang, Y.; Poczos, B.; and Salakhutdinov, R., 2018a. Point
cloud gan. arXiv preprint arXiv:1810.05795, (2018). (cited on pages 138 and 139)

Li, H.-B.; Huang, T.-Z.; Zhang, Y.; Liu, X.-P.; and Gu, T.-X., 2011. Chebyshev-type
methods and preconditioning techniques. Applied Mathematics and Computation, 218,
2 (2011), 260–270. (cited on pages 34 and 99)

Li, J.; Chen, B. M.; and Lee, G. H., 2018b. So-net: Self-organizing network for point
cloud analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 9397–9406. (cited on pages xix, 49, 50, 61, 62, 75, 76, and 147)

Li, J.; Wang, N.; Zhang, L.; Du, B.; and Tao, D., 2020a. Recurrent feature reasoning
for image inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 7760–7768. (cited on page 170)

Li, J.; Zhang, S.; Liu, T.; Ning, C.; Zhang, Z.; and Zhou, W., 2020b. Neural inductive
matrix completion with graph convolutional networks for mirna-disease association
prediction. Bioinformatics, 36, 8 (2020), 2538–2546. (cited on page 208)

230 BIBLIOGRAPHY

Li, Y.; Bu, R.; Sun, M.; and Chen, B., 2018c. Pointcnn. arXiv preprint arXiv:1801.07791,
(2018). (cited on pages xxv and 76)

Li, Y.; Pirk, S.; Su, H.; Qi, C. R.; and Guibas, L. J., 2016. Fpnn: Field probing neural
networks for 3d data. In Advances in Neural Information Processing Systems, 307–315.
(cited on pages 25 and 65)

Lin, C. and Chellappa, R., 1987. Classification of partial 2-d shapes using fourier
descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, , 5 (1987),
686–690. (cited on pages 24 and 64)

Litany, O.; Bronstein, A.; Bronstein, M.; and Makadia, A., 2018. Deformable
shape completion with graph convolutional autoencoders. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 1886–1895. (cited on page 207)

Litman, R.; Bronstein, A.; Bronstein, M.; and Castellani, U., 2014. Supervised
learning of bag-of-features shape descriptors using sparse coding. In Computer
Graphics Forum, vol. 33, 127–136. Wiley Online Library. (cited on page 64)

Liu, W.; Zhang, Y.-M.; Li, X.; Yu, Z.; Dai, B.; Zhao, T.; and Song, L., 2017. Deep
hyperspherical learning. In Advances in Neural Information Processing Systems, 3950–
3960. (cited on pages 54, 55, and 78)

Long, J.; Shelhamer, E.; and Darrell, T., 2015. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 3431–3440. (cited on page 2)

Loquercio, A.; Segù, M.; and Scaramuzza, D., 2019. A general framework for
uncertainty estimation in deep learning. arXiv preprint arXiv:1907.06890, (2019).
(cited on page 196)

Lu, Y. and Huang, B., 2020. Woodbury transformations for deep generative flows.
Advances in Neural Information Processing Systems, 33 (2020). (cited on pages 117
and 118)

Maaløe, L.; Fraccaro, M.; Liévin, V.; and Winther, O., 2019. Biva: A very
deep hierarchy of latent variables for generative modeling. In Advances in neural
information processing systems, 6548–6558. (cited on page 198)

Maaløe, L.; Sønderby, C. K.; Sønderby, S. K.; and Winther, O., 2016. Auxiliary
deep generative models. arXiv preprint arXiv:1602.05473, (2016). (cited on pages 90,
159, and 200)

Mao, Q.; Lee, H.-Y.; Tseng, H.-Y.; Ma, S.; and Yang, M.-H., 2019. Mode seeking
generative adversarial networks for diverse image synthesis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 1429–1437. (cited on
pages 84, 88, 90, and 160)

BIBLIOGRAPHY 231

Mao, X.; Li, Q.; Xie, H.; Lau, R. Y.; Wang, Z.; and Paul Smolley, S., 2017. Least
squares generative adversarial networks. In Proceedings of the IEEE international
conference on computer vision, 2794–2802. (cited on page 16)

Maron, H.; Ben-Hamu, H.; Shamir, N.; and Lipman, Y., 2018. Invariant and
equivariant graph networks. arXiv preprint arXiv:1812.09902, (2018). (cited on pages
57 and 59)

Marzouk, Y.; Moselhy, T.; Parno, M.; and Spantini, A., 2016. An introduction to
sampling via measure transport. arXiv preprint arXiv:1602.05023, (2016). (cited on
page 20)

Masci, J.; Boscaini, D.; Bronstein, M.; and Vandergheynst, P., 2015. Geodesic
convolutional neural networks on riemannian manifolds. In Proceedings of the IEEE
international conference on computer vision workshops, 37–45. (cited on page 57)

Mathieu, M.; Couprie, C.; and LeCun, Y., 2015a. Deep multi-scale video prediction
beyond mean square error. arXiv preprint arXiv:1511.05440, (2015). (cited on page
85)

Mathieu, M.; Couprie, C.; and LeCun, Y., 2015b. Deep multi-scale video prediction
beyond mean square error. CoRR, abs/1511.05440 (2015). (cited on page 198)

Maturana, D. and Scherer, S., 2015. Voxnet: A 3d convolutional neural network for
real-time object recognition. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on, 922–928. IEEE. (cited on pages 52, 56, 75, and 76)

Mazoure, B.; Doan, T.; Durand, A.; Pineau, J.; and Hjelm, R. D., 2020. Leveraging
exploration in off-policy algorithms via normalizing flows. In Conference on Robot
Learning, 430–444. PMLR. (cited on page 117)

Meagher, D., 1982. Geometric modeling using octree encoding. Computer graphics
and image processing, 19, 2 (1982), 129–147. (cited on page 61)

Meyers, M.; Weiss, G.; and Spanakis, G., 2020. Fake news detection on twitter using
propagation structures. In Multidisciplinary International Symposium on Disinformation
in Open Online Media, 138–158. Springer. (cited on page 208)

Mirza, M. and Osindero, S., 2014. Conditional generative adversarial nets. ArXiv,
abs/1411.1784 (2014). (cited on page 198)

Monti, F.; Bronstein, M. M.; and Bresson, X., 2017. Geometric matrix completion
with recurrent multi-graph neural networks. arXiv preprint arXiv:1704.06803, (2017).
(cited on pages 57 and 208)

Moravčík, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.; Bard, N.; Davis,
T.; Waugh, K.; Johanson, M.; and Bowling, M., 2017. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 356, 6337 (2017), 508–513.
(cited on page 1)

232 BIBLIOGRAPHY

Nalisnick, E.; Matsukawa, A.; Teh, Y. W.; Gorur, D.; and Lakshminarayanan,
B., 2019. Do deep generative models know what they don’t know? International
Conference on Learning Representations, (2019). (cited on page 159)

Navon, D., 1977. Forest before trees: The precedence of global features in visual
perception. Cognitive psychology, 9, 3 (1977), 353–383. (cited on page 6)

Newell, A. and Simon, H. A., 1961. Gps, a program that simulates human thought.
Technical report, RAND CORP SANTA MONICA CALIF. (cited on page 3)

Newell, A.; Simon, H. A.; et al., 1972. Human problem solving, vol. 104. Prentice-hall
Englewood Cliffs, NJ. (cited on page 3)

Noether, E., 1918. Invariant variation problems. Transport theory and statistical physics,
1, 3 (1918), 186–207. (cited on page 11)

Nowack, P.; Braesicke, P.; Haigh, J.; Abraham, N. L.; Pyle, J.; and Voulgarakis, A.,
2018. Using machine learning to build temperature-based ozone parameterizations
for climate sensitivity simulations. Environmental Research Letters, 13, 10 (2018),
104016. (cited on page 4)

Osada, R.; Funkhouser, T.; Chazelle, B.; and Dobkin, D., 2002. Shape distributions.
ACM Transactions on Graphics (TOG), 21, 4 (2002), 807–832. (cited on page 25)

Papadakis, P.; Pratikakis, I.; Theoharis, T.; Passalis, G.; and Perantonis, S., 2008.
3d object retrieval using an efficient and compact hybrid shape descriptor. In
Eurographics Workshop on 3D object retrieval. (cited on pages 52 and 78)

Papamakarios, G.; Pavlakou, T.; and Murray, I., 2017. Masked autoregressive flow
for density estimation. arXiv preprint arXiv:1705.07057, (2017). (cited on page 20)

Parisot, S.; Ktena, S. I.; Ferrante, E.; Lee, M.; Guerrero, R.; Glocker, B.; and

Rueckert, D., 2018. Disease prediction using graph convolutional networks: appli-
cation to autism spectrum disorder and alzheimer’s disease. Medical image analysis,
48 (2018), 117–130. (cited on page 208)

Parkhi, O. M.; Vedaldi, A.; Zisserman, A.; and Jawahar, C. V., 2012. Cats and dogs.
In IEEE Conference on Computer Vision and Pattern Recognition. (cited on page 181)

Pathak, D.; Krähenbühl, P.; Donahue, J.; Darrell, T.; and Efros, A., 2016a. Context
encoders: Feature learning by inpainting. (cited on pages xxii, 160, 167, 170, 172,
and 198)

Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; and Efros, A. A., 2016b.
Context encoders: Feature learning by inpainting. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2536–2544. (cited on pages xxii, 83, 84, 85,
87, 104, and 172)

BIBLIOGRAPHY 233

Pineda, F. J., 1987. Generalization of back-propagation to recurrent neural networks.
Physical review letters, 59, 19 (1987), 2229. (cited on page 205)

Plaut, D. C.; McClelland, J. L.; Seidenberg, M. S.; and Patterson, K., 1996.
Understanding normal and impaired word reading: computational principles in
quasi-regular domains. Psychological review, 103, 1 (1996), 56. (cited on page 6)

Portilla, J. and Simoncelli, E. P., 2000. A parametric texture model based on joint
statistics of complex wavelet coefficients. IJCV, (2000). (cited on page 137)

Prashnani, E.; Cai, H.; Mostofi, Y.; and Sen, P., 2018. Pieapp: Perceptual image-
error assessment through pairwise preference. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1808–1817. (cited on pages 174 and 180)

Prenger, R.; Valle, R.; and Catanzaro, B., 2019. Waveglow: A flow-based generative
network for speech synthesis. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 3617–3621. IEEE. (cited on page
117)

Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J., 2017a. Pointnet: Deep learning on
point sets for 3d classification and segmentation. Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 1, 2 (2017), 4. (cited on pages xix, 25, 50, 57, 61, 62, 65,
75, 76, and 143)

Qi, C. R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; and Guibas, L. J., 2016. Volumetric
and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 5648–5656. (cited on pages 25,
52, and 148)

Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J., 2017b. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural Information
Processing Systems, 5099–5108. (cited on pages xix, 25, 61, 62, 65, and 76)

Radford, A.; Metz, L.; and Chintala, S., 2015. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, (2015). (cited on page 16)

Rajan, V. T.; Klinkner, S. R.; and Farouki, R. T., 1988. Root isolation and root
approximation for polynomials in Bernstein form. Technical Report RC14224, IBM
Research Division, T. J. Watson Research Center, Yorktown Heights, N.Y. 10598.
(cited on page 124)

Ramasinghe, S.; Fernando, K.; Khan, S.; and Barnes, N., 2021. Robust normalizing
flows using bernstein-type polynomials. arXiv preprint arXiv:2102.03509, (2021).
(cited on pages 2 and 20)

Ramasinghe, S.; Khan, S.; and Barnes, N., 2019a. Volumetric convolution: Automatic
representation learning in unit ball. arXiv preprint arXiv:1901.00616, (2019). (cited
on pages 24, 63, 64, 65, 66, 67, 77, and 195)

234 BIBLIOGRAPHY

Ramasinghe, S.; Khan, S.; Barnes, N.; and Gould, S., 2019b. Blended convo-
lution and synthesis for efficient discrimination of 3d shapes. arXiv preprint
arXiv:1908.10209, (2019). (cited on page 25)

Ramasinghe, S.; Khan, S.; Barnes, N.; and Gould, S., 2019c. Representation learning
on unit ball with 3d roto-translational equivariance. International Journal of Computer
Vision, (2019), 1–23. (cited on pages 2, 11, 64, 190, and 207)

Ramasinghe, S.; Khan, S.; Barnes, N.; and Gould, S., 2019d. Spectral-gans for
high-resolution 3d point-cloud generation. arXiv preprint arXiv:1912.01800, (2019).
(cited on pages 90 and 196)

Ramasinghe, S.; Khan, S.; Barnes, N.; and Gould, S., 2020a. Blended convolution
and synthesis for efficient discrimination of 3d shapes. In The IEEE Winter Conference
on Applications of Computer Vision, 21–31. (cited on page 190)

Ramasinghe, S.; Ranasinghe, K.; Khan, S.; Barnes, N.; and Gould, S., 2020b.
Conditional generative modeling via learning the latent space. arXiv preprint
arXiv:2010.03132, (2020). (cited on pages 83, 84, 85, and 87)

Rangan, S.; Fletcher, A. K.; Goyal, V. K.; and Schniter, P., 2012. Hybrid generalized
approximate message passing with applications to structured sparsity. In 2012 IEEE
International Symposium on Information Theory Proceedings, 1236–1240. IEEE. (cited
on page 4)

Rao, Y.; Lu, J.; and Zhou, J., 2019. Spherical fractal convolutional neural networks for
point cloud recognition. In CVPR, 452–460. (cited on page 11)

Redlich, A. N., 1993. Supervised factorial learning. Neural Computation, 5, 5 (1993),
750–766. (cited on page 20)

Reininghaus, J.; Huber, S.; Bauer, U.; and Kwitt, R., 2015. A stable multi-scale
kernel for topological machine learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4741–4748. (cited on page 59)

Reiss, T., 1992. Features invariant to linear transformations in 2d and 3d. In 11th IAPR
International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and
Signal Analysis,, 493–496. IEEE. (cited on pages 24 and 64)

Rezende, D. and Mohamed, S., 2015. Variational inference with normalizing flows.
In International Conference on Machine Learning, 1530–1538. PMLR. (cited on pages 2,
18, 90, 117, 159, and 200)

Rico-Martinez, R. and Kevrekidis, I. G., 1993. Continuous time modeling of nonlin-
ear systems: A neural network-based approach. In IEEE International Conference on
Neural Networks, 1522–1525. IEEE. (cited on page 205)

BIBLIOGRAPHY 235

Riegler, G.; Osman Ulusoy, A.; and Geiger, A., 2017. Octnet: Learning deep 3d
representations at high resolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 3577–3586. (cited on page 61)

Rippel, O. and Adams, R. P., 2013. High-dimensional probability estimation with
deep density models. arXiv preprint arXiv:1302.5125, (2013). (cited on page 18)

Robbins, H. E., 2007. A stochastic approximation method. Annals of Mathematical
Statistics, 22 (2007), 400–407. (cited on page 161)

Ronchi, C.; Iacono, R.; and Paolucci, P. S., 1996. The “cubed sphere”: a new method
for the solution of partial differential equations in spherical geometry. Journal of
Computational Physics, 124, 1 (1996), 93–114. (cited on page 21)

Ronneberger, O.; Fischer, P.; and Brox, T., 2015. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, 234–241. Springer. (cited on page 104)

Rosenblatt, M., 1952. Remarks on a multivariate transformation. The annals of
mathematical statistics, 23, 3 (1952), 470–472. (cited on page 20)

Rossi, E.; Chamberlain, B.; Frasca, F.; Eynard, D.; Monti, F.; and Bronstein, M.,
2020. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, (2020). (cited on page 208)

Royer, A.; Bousmalis, K.; Gouws, S.; Bertsch, F.; Mosseri, I.; Cole, F.; and

Murphy, K., 2020. Xgan: Unsupervised image-to-image translation for many-to-
many mappings. In Domain Adaptation for Visual Understanding, 33–49. Springer.
(cited on page 14)

Russell, S. and Norvig, P., 2002. Artificial intelligence: a modern approach. (2002).
(cited on page 7)

Rustamov, R. M., 2007. Laplace-beltrami eigenfunctions for deformation invariant
shape representation. In Proceedings of the fifth Eurographics symposium on Geometry
processing, 225–233. Eurographics Association. (cited on page 64)

Ryan, K.; Lengyel, J.; and Shatruk, M., 2018. Crystal structure prediction via deep
learning. Journal of the American Chemical Society, 140, 32 (2018), 10158–10168. (cited
on page 4)

Sagong, M.-c.; Shin, Y.-g.; Kim, S.-w.; Park, S.; and Ko, S.-j., 2019. Pepsi : Fast image
inpainting with parallel decoding network. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (cited on page 199)

Saito, M. and Saito, S., 2018. Tganv2: Efficient training of large models for video
generation with multiple subsampling layers. (2018). (cited on page 14)

236 BIBLIOGRAPHY

Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; and Chen,
X., 2016. Improved techniques for training gans. In NeurIPS, 2234–2242. (cited on
page 180)

Sanchez-Gonzalez, A.; Bapst, V.; Cranmer, K.; and Battaglia, P., 2019. Hamilto-
nian graph networks with ode integrators. arXiv preprint arXiv:1909.12790, (2019).
(cited on page 206)

Sauder, J. and Sievers, B., 2019. Self-supervised deep learning on point clouds by
reconstructing space. In Advances in Neural Information Processing Systems, 12942–
12952. (cited on page 196)

Schank, R. C., 1972. Conceptual dependency: A theory of natural language under-
standing. Cognitive psychology, 3, 4 (1972), 552–631. (cited on page 3)

Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural
networks, 61 (2015), 85–117. (cited on page 3)

Schmidt, V.; Luccioni, A.; Mukkavilli, S. K.; Balasooriya, N.; Sankaran, K.;
Chayes, J.; and Bengio, Y., 2019. Visualizing the consequences of climate change
using cycle-consistent adversarial networks. arXiv preprint arXiv:1905.03709, (2019).
(cited on page 4)

Sedaghat, N.; Zolfaghari, M.; Amiri, E.; and Brox, T., 2016. Orientation-boosted
voxel nets for 3d object recognition. arXiv preprint arXiv:1604.03351, (2016). (cited
on page 52)

Seung, H. S.; Sompolinsky, H.; and Tishby, N., 1992. Statistical mechanics of learning
from examples. Physical review A, 45, 8 (1992), 6056. (cited on page 3)

Shaham, T. R.; Dekel, T.; and Michaeli, T., 2019. Singan: Learning a generative
model from a single natural image. In The IEEE International Conference on Computer
Vision (ICCV). (cited on page 154)

Shanahan, M., 2006. A cognitive architecture that combines internal simulation with
a global workspace. Consciousness and cognition, 15, 2 (2006), 433–449. (cited on
page 7)

Shanahan, M., 2010. Embodiment and the inner life: Cognition and Consciousness in the
Space of Possible Minds. Oxford University Press, USA. (cited on page 7)

Shanahan, M., 2012. The brain’s connective core and its role in animal cognition.
Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1603 (2012),
2704–2714. (cited on page 7)

Shao, H.; Kumar, A.; and Thomas Fletcher, P., 2018. The riemannian geometry of
deep generative models. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 315–323. (cited on pages 84, 88, and 90)

BIBLIOGRAPHY 237

Sharma, A.; Grau, O.; and Fritz, M., 2016. Vconv-dae: Deep volumetric shape
learning without object labels. In ECCV, 236–250. Springer. (cited on pages 147
and 196)

Shi, B.; Bai, S.; Zhou, Z.; and Bai, X., 2015. Deeppano: Deep panoramic representation
for 3-d shape recognition. IEEE Signal Processing Letters, 22, 12 (2015), 2339–2343.
(cited on pages 49, 50, and 75)

Shu, D. W.; Park, S. W.; and Kwon, J., 2019. 3d point cloud generative adversarial net-
work based on tree structured graph convolutions. arXiv preprint arXiv:1905.06292,
(2019). (cited on pages 135, 137, 138, and 149)

Shuman, D. I., 2020. Localized spectral graph filter frames: A unifying framework,
survey of design considerations, and numerical comparison. IEEE Signal Processing
Magazine, 37, 6 (2020), 43–63. (cited on page 207)

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van Den Driessche,
G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al.,
2016. Mastering the game of go with deep neural networks and tree search. nature,
529, 7587 (2016), 484–489. (cited on page 1)

Simonovsky, M. and Komodakis, N., 2017. Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In Proc. CVPR. (cited on pages 50, 75,
and 147)

Smith, E. and Meger, D., 2017. Improved adversarial systems for 3d object generation
and reconstruction. arXiv preprint arXiv:1707.09557, (2017). (cited on pages 138
and 152)

Smolensky, P., 1986. Information processing in dynamical systems: Foundations of
harmony theory. Technical report, Colorado Univ at Boulder Dept of Computer
Science. (cited on page 4)

Sohn, K.; Lee, H.; and Yan, X., 2015. Learning structured output representation using
deep conditional generative models. In Advances in Neural Information Processing
Systems 28. (cited on page 198)

Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.; Ermon, S.; and Poole, B.,
2020. Score-based generative modeling through stochastic differential equations.
arXiv preprint arXiv:2011.13456, (2020). (cited on page 206)

Sosnovik, I.; Szmaja, M.; and Smeulders, A., 2019. Scale-equivariant steerable
networks. arXiv preprint arXiv:1910.11093, (2019). (cited on page 11)

Souza, R. and Frayne, R., 2018. A hybrid frequency-domain/image-domain deep net-
work for magnetic resonance image reconstruction. arXiv preprint arXiv:1810.12473,
(2018). (cited on page 137)

238 BIBLIOGRAPHY

Spelke, E. S., 1990. Principles of object perception. Cognitive science, 14, 1 (1990), 29–56.
(cited on page 3)

Spencer, M. R., 1994. Polynomial Real Root Finding in Bernstein Form. Ph.D. thesis,
Brigham Young University. (cited on pages 124 and 126)

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov,
R., 2014. Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, 15, 1 (2014), 1929–1958. (cited on pages 2 and 83)

Stokes, J. M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N. M.;
MacNair, C. R.; French, S.; Carfrae, L. A.; Bloom-Ackermann, Z.; et al., 2020.
A deep learning approach to antibiotic discovery. Cell, 180, 4 (2020), 688–702. (cited
on page 208)

Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.; Yang, M.-H.; and Kautz, J.,
2018. Splatnet: Sparse lattice networks for point cloud processing. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2530–2539. (cited on
page 59)

Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E., 2015. Multi-view
convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE
international conference on computer vision, 945–953. (cited on pages xix, 50, 62,
and 75)

Suk, T. and Flusser, J., 1996. Vertex-based features for recognition of projectively
deformed polygons. Pattern Recognition, 29, 3 (1996), 361–367. (cited on pages 24
and 64)

Sutskever, I.; Vinyals, O.; and Le, Q. V., 2014. Sequence to sequence learning with
neural networks. arXiv preprint arXiv:1409.3215, (2014). (cited on page 1)

Szegedy, C.; Ioffe, S.; Vanhoucke, V.; and Alemi, A., 2017. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 31. (cited on page 1)

Tabak, E. G. and Turner, C. V., 2013. A family of nonparametric density estimation
algorithms. Communications on Pure and Applied Mathematics, 66, 2 (2013), 145–164.
(cited on page 18)

Tabia, H.; Laga, H.; Picard, D.; and Gosselin, P.-H., 2014. Covariance descriptors for
3d shape matching and retrieval. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 4185–4192. (cited on pages 52 and 78)

Tabia, H.; Picard, D.; Laga, H.; and Gosselin, P.-H., 2013. Compact vectors of
locally aggregated tensors for 3d shape retrieval. In Eurographics workshop on 3D
object retrieval. (cited on page 52)

BIBLIOGRAPHY 239

Talagrand, M., 1996. Transportation cost for gaussian and other product measures.
Geometric & Functional Analysis GAFA, 6, 3 (1996), 587–600. (cited on page 20)

Tatsuma, A. and Aono, M., 2009. Multi-fourier spectra descriptor and augmentation
with spectral clustering for 3d shape retrieval. The Visual Computer, 25, 8 (Aug 2009),
785–804. (cited on pages 52 and 80)

Thanh-Tung, H.; Tran, T.; and Venkatesh, S., 2019. Improving generalization and
stability of generative adversarial networks. arXiv preprint arXiv:1902.03984, (2019).
(cited on page 160)

Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.; Kohlhoff, K.; and Riley, P.,
2018. Tensor field networks: Rotation-and translation-equivariant neural networks
for 3d point clouds. arXiv preprint arXiv:1802.08219, (2018). (cited on page 24)

Tieng, Q. M. and Boles, W. W., 1995. An application of wavelet-based affine-invariant
representation. Pattern Recognition Letters, 16, 12 (1995), 1287–1296. (cited on pages
24 and 64)

Tombari, F.; Salti, S.; and Di Stefano, L., 2010. Unique signatures of histograms for
local surface description. In European conference on computer vision, 356–369. Springer.
(cited on page 25)

Tramel, E. W.; Gabrié, M.; Manoel, A.; Caltagirone, F.; and Krzakala, F., 2018.
Deterministic and generalized framework for unsupervised learning with restricted
boltzmann machines. Physical Review X, 8, 4 (2018), 041006. (cited on page 4)

Tulyakov, S.; Liu, M.-Y.; Yang, X.; and Kautz, J., 2018. Mocogan: Decomposing
motion and content for video generation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 1526–1535. (cited on page 14)

TURING, A. M., 1950. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind,
LIX, 236 (10 1950), 433–460. doi:10.1093/mind/LIX.236.433. https://doi.org/10.1093/
mind/LIX.236.433. (cited on page 3)

Tyleček, R. and Šára, R., 2013. Spatial pattern templates for recognition of objects
with regular structure. In Proc. GCPR. Saarbrucken, Germany. (cited on page 181)

Uria, B.; Côté, M.-A.; Gregor, K.; Murray, I.; and Larochelle, H., 2016. Neural
autoregressive distribution estimation. The Journal of Machine Learning Research, 17,
1 (2016), 7184–7220. (cited on page 20)

Valiant, L. G., 1984. A theory of the learnable. Communications of the ACM, 27, 11
(1984), 1134–1142. (cited on page 3)

Valsesia, D.; Fracastoro, G.; and Magli, E., 2018. Learning localized generative
models for 3d point clouds via graph convolution. (2018). (cited on pages 135, 137,
138, 149, and 157)

http://dx.doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433

240 BIBLIOGRAPHY

Veselkov, K.; Gonzalez, G.; Aljifri, S.; Galea, D.; Mirnezami, R.; Youssef, J.;
Bronstein, M.; and Laponogov, I., 2019. Hyperfoods: Machine intelligent mapping
of cancer-beating molecules in foods. Scientific reports, 9, 1 (2019), 1–12. (cited on
page 208)

Vidaurre, R.; Santesteban, I.; Garces, E.; and Casas, D., 2020. Fully convolutional
graph neural networks for parametric virtual try-on. In Computer Graphics Forum,
vol. 39, 145–156. Wiley Online Library. (cited on page 207)

Villani, C., 2009. Optimal Transport: Old and New. Springer. (cited on page 124)

Vitoria, P.; Raad, L.; and Ballester, C., 2020. Chromagan: Adversarial picture
colorization with semantic class distribution. In The IEEE Winter Conference on
Applications of Computer Vision, 2445–2454. (cited on pages 160, 167, 170, 174, 198,
and 199)

Voronovskaya, E., 1932. Détermination de la forme asymptotique d’approximation
des fonctions par les polynômes de M. Bernstein. Doklady Akademii Nauk SSSR,
(1932), 79—-85. (cited on page 121)

Vranic, D. V. and Saupe, D., 2002. Description of 3d-shape using a complex function
on the sphere. In Multimedia and Expo, 2002. ICME’02. Proceedings. 2002 IEEE
International Conference on, vol. 1, 177–180. IEEE. (cited on pages 25 and 65)

Vranic, D. V.; Saupe, D.; and Richter, J., 2001. Tools for 3d-object retrieval:
Karhunen-loeve transform and spherical harmonics. In Multimedia Signal Processing,
2001 IEEE Fourth Workshop on, 293–298. IEEE. (cited on page 64)

Wang, C.; Samari, B.; and Siddiqi, K., 2018. Local spectral graph convolution for
point set feature learning. In Proceedings of the European Conference on Computer
Vision (ECCV), 52–66. (cited on page 76)

Wang, F.; Liu, H.; Samaras, D.; and Chen, C., 2020a. Topogan: A topology-aware
generative adversarial network. In European Conference on Computer Vision. (cited
on pages 88 and 90)

Wang, P.-W.; Donti, P.; Wilder, B.; and Kolter, Z., 2019. Satnet: Bridging deep
learning and logical reasoning using a differentiable satisfiability solver. In Inter-
national Conference on Machine Learning, 6545–6554. PMLR. (cited on pages 205
and 206)

Wang, T.; Liu, M.; Zhu, J.; Tao, A.; Kautz, J.; and Catanzaro, B., 2018. High-
resolution image synthesis and semantic manipulation with conditional gans. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8798–8807.
(cited on pages 83, 85, and 154)

Wang, W.; Axelrod, S.; and Gómez-Bombarelli, R., 2020b. Differentiable molecular
simulations for control and learning. arXiv preprint arXiv:2003.00868, (2020). (cited
on page 206)

BIBLIOGRAPHY 241

Wang, X. and Gupta, A., 2016. Generative image modeling using style and structure
adversarial networks. In ECCV. (cited on page 154)

Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M. M.; and Solomon, J. M., 2018a.
Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829,
(2018). (cited on pages 57 and 76)

Wang, Y.; Tao, X.; Qi, X.; Shen, X.; and Jia, J., 2018b. Image inpainting via generative
multi-column convolutional neural networks. In Advances in Neural Information
Processing Systems 31. (cited on page 199)

Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P., 2004. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13, 4 (2004), 600–612. (cited on page 174)

Wang, Z.; Simoncelli, E. P.; and Bovik, A. C., 2003. Multiscale structural similarity
for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers, 2003, vol. 2, 1398–1402. Ieee. (cited on page 174)

Ward, P. N.; Smofsky, A.; and Bose, A. J., 2019. Improving exploration in soft-actor-
critic with normalizing flows policies. arXiv preprint arXiv:1906.02771, (2019). (cited
on page 117)

Wei, H.; Zhao, S.; Rong, Q.; and Bao, H., 2018. Predicting the effective thermal
conductivities of composite materials and porous media by machine learning
methods. International Journal of Heat and Mass Transfer, 127 (2018), 908–916. (cited
on page 4)

Weiler, M.; Geiger, M.; Welling, M.; Boomsma, W.; and Cohen, T., 2018a. 3d
steerable cnns: Learning rotationally equivariant features in volumetric data. arXiv
preprint arXiv:1807.02547, (2018). (cited on page 24)

Weiler, M.; Geiger, M.; Welling, M.; Boomsma, W.; and Cohen, T., 2018b.
3d steerable cnns: Learning rotationally equivariant features in volumetric
data. In Advances in Neural Information Processing Systems 31 (Eds. S. Ben-
gio; H. Wallach; H. Larochelle; K. Grauman; N. Cesa-Bianchi; and

R. Garnett), 10381–10392. Curran Associates, Inc. http://papers.nips.cc/paper/
8239-3d-steerable-cnns-learning-rotationally-equivariant-features-in-volumetric-data.
pdf. (cited on page 65)

Welling, M., 2019. Do we still need models or just more data and compute? University
of Amsterdam, April, 20 (2019). (cited on pages 1 and 2)

Wellman, H. M. and Gelman, S. A., 1992. Cognitive development: Foundational
theories of core domains. Annual review of psychology, 43, 1 (1992), 337–375. (cited
on page 3)

Weyl, H., 1929. Elektron und gravitation. i. Zeitschrift für Physik, 56, 5-6 (1929), 330–352.
(cited on page 11)

http://papers.nips.cc/paper/8239-3d-steerable-cnns-learning-rotationally-equivariant-features-in-volumetric-data.pdf
http://papers.nips.cc/paper/8239-3d-steerable-cnns-learning-rotationally-equivariant-features-in-volumetric-data.pdf
http://papers.nips.cc/paper/8239-3d-steerable-cnns-learning-rotationally-equivariant-features-in-volumetric-data.pdf

242 BIBLIOGRAPHY

Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; and Kumar, V., 2020. Integrating physics-
based modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919,
(2020). (cited on page 4)

Wirnsberger, P.; Ballard, A. J.; Papamakarios, G.; Abercrombie, S.; Racanière, S.;
Pritzel, A.; Jimenez Rezende, D.; and Blundell, C., 2020. Targeted free energy
estimation via learned mappings. The Journal of Chemical Physics, 153, 14 (2020),
144112. (cited on page 117)

Wolpert, D. H., 1996. The lack of a priori distinctions between learning algorithms.
Neural computation, 8, 7 (1996), 1341–1390. (cited on page 2)

Wong, K. W.; Contardo, G.; and Ho, S., 2020. Gravitational-wave population
inference with deep flow-based generative network. Physical Review D, 101, 12
(2020), 123005. (cited on page 117)

Worrall, D. E. and Brostow, G. J., 2018. Cubenet: Equivariance to 3d rotation and
translation. European Conference on Computer Vision, (2018). (cited on page 24)

Worrall, D. E.; Garbin, S. J.; Turmukhambetov, D.; and Brostow, G. J., 2017.
Harmonic networks: Deep translation and rotation equivariance. In Computer Vision
and Pattern Recognition (CVPR), 2017 IEEE Conference on, 7168–7177. IEEE. (cited on
page 24)

Wu, J.; Zhang, C.; Xue, T.; Freeman, B.; and Tenenbaum, J., 2016. Learning a
probabilistic latent space of object shapes via 3d generative-adversarial modeling.
In Advances in Neural Information Processing Systems, 82–90. (cited on pages 25, 52,
61, 65, 75, 135, 138, 147, 148, and 152)

Wu, Y. and He, K., 2018. Group normalization. In Proceedings of the European Conference
on Computer Vision (ECCV), 3–19. (cited on page 74)

Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; and Xiao, J., 2015. 3d
shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 1912–1920. (cited on pages 25,
49, 50, 75, 76, 135, 144, and 147)

Xiao, J.; Hays, J.; Ehinger, K. A.; Oliva, A.; and Torralba, A., 2010. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 3485–3492. IEEE. (cited on
page 151)

Xie, J.; Fang, Y.; Zhu, F.; and Wong, E., 2015. Deepshape: Deep learned shape
descriptor for 3d shape matching and retrieval. In Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on, 1275–1283. IEEE. (cited on pages 52,
64, and 78)

BIBLIOGRAPHY 243

Xie, J.; Wang, M.; and Fang, Y., 2016. Learned binary spectral shape descriptor for
3d shape correspondence. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 3309–3317. (cited on page 64)

Xie, J.; Zheng, Z.; Gao, R.; Wang, W.; Zhu, S.-C.; and Nian Wu, Y., 2018a. Learning
descriptor networks for 3d shape synthesis and analysis. In CVPR, 8629–8638.
(cited on pages 135, 147, and 148)

Xie, Y.; Franz, E.; Chu, M.; and Thuerey, N., 2018b. tempoGAN: A Temporally
Coherent, Volumetric GAN for Super-resolution Fluid Flow. ACM Transactions on
Graphics (TOG), 37, 4 (2018), 95. (cited on page 198)

Yang, B.; Flusser, J.; and Suk, T., 2015. 3d rotation invariants of gaussian–hermite
moments. Pattern Recognition Letters, 54 (2015), 18–26. (cited on page 24)

Yang, C.; Lu, X.; Lin, Z.; Shechtman, E.; Wang, O.; and Li, H., 2017a. High-resolution
image inpainting using multi-scale neural patch synthesis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 6721–6729. (cited on page 83)

Yang, C.-N. and Mills, R. L., 1954. Conservation of isotopic spin and isotopic gauge
invariance. Physical review, 96, 1 (1954), 191. (cited on page 11)

Yang, D.; Hong, S.; Jang, Y.; Zhao, T.; and Lee, H., 2019a. Diversity-sensitive
conditional generative adversarial networks. arXiv preprint arXiv:1901.09024, (2019).
(cited on pages xix, 84, 85, 87, 88, 90, 96, and 170)

Yang, G.; Huang, X.; Hao, Z.; Liu, M.-Y.; Belongie, S.; and Hariharan, B., 2019b.
Pointflow: 3d point cloud generation with continuous normalizing flows. In The
IEEE International Conference on Computer Vision (ICCV). (cited on page 135)

Yang, G.; Huang, X.; Hao, Z.; Liu, M.-Y.; Belongie, S.; and Hariharan, B., 2019c.
Pointflow: 3d point cloud generation with continuous normalizing flows. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 4541–4550.
(cited on page 206)

Yang, G.; Yu, S.; Dong, H.; Slabaugh, G.; Dragotti, P. L.; Ye, X.; Liu, F.; Arridge, S.;
Keegan, J.; Guo, Y.; et al., 2017b. Dagan: deep de-aliasing generative adversarial
networks for fast compressed sensing mri reconstruction. IEEE transactions on
medical imaging, 37, 6 (2017), 1310–1321. (cited on page 137)

Yang, Y.; Feng, C.; Shen, Y.; and Tian, D., 2018. Foldingnet: Point cloud auto-encoder
via deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 206–215. (cited on page 196)

Yi, L.; Kim, V. G.; Ceylan, D.; Shen, I.; Yan, M.; Su, H.; Lu, C.; Huang, Q.; Sheffer,
A.; Guibas, L.; et al., 2016. A scalable active framework for region annotation in
3d shape collections. ACM Transactions on Graphics (TOG), 35, 6 (2016), 210. (cited
on page 148)

244 BIBLIOGRAPHY

Yi, L.; Su, H.; Guo, X.; and Guibas, L. J., 2017. Syncspeccnn: Synchronized spectral
cnn for 3d shape segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2282–2290. (cited on page 207)

Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; and Huang, T. S., 2018a. Generative image
inpainting with contextual attention. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 5505–5514. (cited on page 170)

Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; and Huang, T. S., 2018b. Generative image
inpainting with contextual attention. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (cited on page 199)

Yu, T.; Meng, J.; and Yuan, J., 2018c. Multi-view harmonized bilinear network for
3d object recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 186–194. (cited on pages 75 and 76)

Yu, W.; Tan, J.; Liu, C. K.; and Turk, G., 2017. Preparing for the unknown: Learning
a universal policy with online system identification. arXiv preprint arXiv:1702.02453,
(2017). (cited on page 2)

Zdeborová, L. and Krzakala, F., 2016. Statistical physics of inference: Thresholds
and algorithms. Advances in Physics, 65, 5 (2016), 453–552. (cited on page 3)

Zeinali, H.; Wang, S.; Silnova, A.; Matějka, P.; and Plchot, O., 2019. But sys-
tem description to voxceleb speaker recognition challenge 2019. arXiv preprint
arXiv:1910.12592, (2019). (cited on page 1)

Zeng, H.; Zhang, R.; Wang, X.; Fu, D.; and Wei, Q., 2018. Dempster–shafer evidence
theory-based multi-feature learning and fusion method for non-rigid 3d model
retrieval. IET Computer Vision, 13, 3 (2018), 261–266. (cited on page 78)

Zeng, Y.; Fu, J.; Chao, H.; and Guo, B., 2019a. Learning pyramid-context encoder
network for high-quality image inpainting. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 1486–1494. (cited on page 83)

Zeng, Y.; Fu, J.; Chao, H.; and Guo, B., 2019b. Learning pyramid-context encoder
network for high-quality image inpainting. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1486–1494. (cited on pages 90, 160, 167, 170,
198, and 199)

Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D., 2017a. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, (2017). (cited on page
2)

Zhang, H.; Goodfellow, I.; Metaxas, D.; and Odena, A., 2019. Self-attention
generative adversarial networks. In International conference on machine learning,
7354–7363. PMLR. (cited on page 16)

BIBLIOGRAPHY 245

Zhang, H.; Xu, T.; Li, H.; Zhang, S.; Wang, X.; Huang, X.; and Metaxas, D. N.,
2017b. Stackgan: Text to photo-realistic image synthesis with stacked generative
adversarial networks. In The IEEE International Conference on Computer Vision (ICCV).
(cited on page 154)

Zhang, L.; Zhang, L.; Mou, X.; and Zhang, D., 2011. Fsim: A feature similarity
index for image quality assessment. IEEE transactions on Image Processing, 20, 8
(2011), 2378–2386. (cited on page 174)

Zhang, R.; Isola, P.; and Efros, A. A., 2016. Colorful image colorization. In European
conference on computer vision, 649–666. Springer. (cited on pages 90, 159, 160, 170,
174, 180, 198, and 199)

Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; and Wang, O., 2018. The
unreasonable effectiveness of deep features as a perceptual metric. In CVPR. (cited
on pages 174 and 180)

Zhang, S. Y., Zhifei and Qi, H., 2017. Age progression/regression by conditional ad-
versarial autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE. (cited on pages 101 and 181)

Zhang, X.; Wang, X.; Kong, B.; Yin, Y.; Song, Q.; Lyu, S.; Lv, J.; Shi, C.; and

Li, X., 2020. Domain embedded multi-model generative adversarial networks for
image-based face inpainting. ArXiv, abs/2002.02909 (2020). (cited on page 199)

Zhi, S.; Liu, Y.; Li, X.; and Guo, Y., 2017. Lightnet: A lightweight 3d convolutional
neural network for real-time 3d object recognition. In 3DOR. (cited on page 147)

Zhong, Y. D.; Dey, B.; and Chakraborty, A., 2019. Symplectic ode-net: Learning
hamiltonian dynamics with control. arXiv preprint arXiv:1909.12077, (2019). (cited
on page 206)

Zhu, B.; Liu, J. Z.; Cauley, S. F.; Rosen, B. R.; and Rosen, M. S., 2018. Image
reconstruction by domain-transform manifold learning. Nature, 555, 7697 (2018),
487. (cited on page 137)

Zhu, J.-Y.; Krähenbühl, P.; Shechtman, E.; and Efros, A. A., 2016. Generative visual
manipulation on the natural image manifold. In Proceedings of European Conference
on Computer Vision (ECCV). (cited on page 199)

Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A., 2017a. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, 2223–2232. (cited on page 83)

Zhu, J.-Y.; Zhang, R.; Pathak, D.; Darrell, T.; Efros, A. A.; Wang, O.; and

Shechtman, E., 2017b. Toward multimodal image-to-image translation. In Advances
in neural information processing systems, 465–476. (cited on pages xix, 85, 87, 90, 96,
and 170)

246 BIBLIOGRAPHY

Zhu, J.-Y.; Zhang, R.; Pathak, D.; Darrell, T.; Efros, A. A.; Wang, O.; and

Shechtman, E., 2017c. Toward multimodal image-to-image translation. In Advances
in Neural Information Processing Systems 30. (cited on pages 174 and 198)

Zitnik, M.; Agrawal, M.; and Leskovec, J., 2018. Modeling polypharmacy side
effects with graph convolutional networks. Bioinformatics, 34, 13 (2018), i457–i466.
(cited on page 208)

	Acknowledgments
	Abstract
	Contents
	Introduction
	Introduction
	Inductive bias
	Machine learning vs human intelligence
	Intuitive physics
	Combinatorial generalization

	Thesis Outline
	List of Publications

	Background and Related Work
	Group equivariant networks
	Symmetry of neural networks
	Orbits and equivalance relations

	Generative adversarial networks
	Equilibrium of GANs
	Problems in GANs

	Normalizing flows
	Optimization
	Triangular maps

	Equivarient Representation Learning in Unit Ball
	Related works
	Preliminaries
	Moments
	Equivariance
	Spherical Harmonics
	Spherical Convolution
	3D Zernike Polynomials

	Volumetric Convolution
	Problem Formulation
	Convolution of functions in B3
	Convolution as a function on SO(3)
	Convolution as a function on S2

	Shape modeling of functions in B3 using 3D Zernike polynomials
	Convolution in B3 using 3D Zernike polynomials
	Equivariance to 3D rotation group

	Axial symmetry measure of a function in B3 around an arbitrary axis
	A case study: Representation Learning on 3D objects
	Equivariance to 3D radial translation
	Adaptive Weighted Frequency Pooling
	Experimental Architectures
	Single convolution layer architecture
	Multi-convolution layer architecture

	Experiments
	Datasets
	3D object classification
	3D Object Retrieval
	Ablation Study
	Classification of highly non-polar and textured objects
	Equivariance to local pattern movements
	Robustness against information loss
	Approximation Accuracy of 3D Zernike moments calculation approach

	Comparison with Invariant Approaches
	Chapter summary

	Blended Convolution and Synthesis for Efficient Discrimination of 3D shapes.
	Related Work
	Preliminaries
	Complete Orthogonal Systems
	Convolution in Unit Ball B3

	Methodology
	Learned Mapping for Shape Synthesis
	Compact Representation of Point Clouds
	Derivation of orthogonal functions in B3
	Completeness in B3
	Relaxation of orthogonality of functions in B3

	Convolution of functions in B3
	Network Architecture

	Experiments
	3D Object Classification Performance
	3D Object Retrieval Performance
	Ablation Study
	Classification of Complex Shapes
	Ablation study on input point cloud density

	Chapter summary

	Rethinking Conditional-GAN Training
	Introduction
	Motivation
	Mismatch b/w adversarial & reconstruction losses
	Conditional mode collapse
	Loss of structure b/w output & latent manifolds

	Discussion on Related works
	Methodology
	Geodesics and global bi-lipschitz mapping
	Encouraging the local bijective conditions
	Univariate distributions
	Multivariate distribution

	Experiments
	Hyper-parameters and datasets
	Image-to-image translation
	Geometrical interpretations
	Ablation study
	Generalizability
	Qualitative results

	Chapter summary

	Robust normalizing flows using Bernstein-type polynomials
	Introduction
	Bernstein polynomials
	Strict monotonicity
	Universality
	Theoretical error bound
	Robustness
	Inversion
	Examples of Bernstein-type approximations

	Theoretical comparison with other methods
	Approximations and error bounds
	Numerical stability
	Applicability to compact densities
	Intepretability

	Bernstein-type Normalizing Flow
	Hyper-parameters and training details
	Experiments
	Modeling sample distributions
	Validation of the theoretical error upper-bound
	Robustness

	Ablation study
	Chapter summary

	Efficient high-resolution point cloud generation on unit sphere
	Related Work
	Problem Formulation
	Spectral GAN
	Spherical Harmonics for 3D Objects
	Cascaded GAN Structure
	Forward pass
	Backward pass

	Spatial domain regularizer
	Network architecture and training
	3D reconstruction from single image
	Experiments
	3D shape generation
	Unsupervised 3D Representation Learning
	3D reconstruction results

	Sampling and reconstruction
	Literature on cascaded generative designs
	Computational complexity analysis
	Chapter summary

	Conditional Generative Modeling via Learning the Latent Space
	Proposed Methodology
	Convergence at inference
	Momentum as a supplementary aid

	Overall Design
	Motivation
	Lipschitz continuity and structuring of the latent space

	Experiments and discussions
	Experiments
	Experimental architectures
	Corrupted Image Recovery
	Automatic image colorization
	Image completion
	Diversity predictions and generalizability.

	Scalability
	Convergence
	Model complexity
	Denoising of 3D objects in spectral space
	Towards a measurement of uncertainty

	Related work
	Chapter summary

	Conclusions
	Summary
	Emerging directions
	Deep implicit layers
	Geometric deep learning
	Manifolds
	Graphs

