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Abstract  

This study aims at further improving forensic text comparison (FTC) under the 

likelihood ratio (LR) framework. While the use of the LR framework to conclude the strength 

of evidence is well recognised in forensic science, studies on forensic text evidence within 

the LR framework are limited, and this study is an attempt of alleviating this situation. There 

have already been initiatives to obtain LRs for textual evidence by adopting various 

approaches and using different sets of stylometric features. (Carne & Ishihara, 2020; Ishihara, 

2014, 2017a, 2017b, 2021). However, only few features have been tested in the similarity-

only score-based approach (Ishihara, 2021), and there are many features left to be further 

investigated. To achieve the aim of the study, we will investigate some of the features in LR-

based FTC and demonstrate how they contribute to the further improvement of the LR-based 

FTC system. Statistic, word n-gram (n=1,2,3), character n-gram (n=1,2,3,4), and part of 

speech (POS) n-gram (n=1,2,3) features were separately tested first in this study, and then the 

separately estimated LRs were fused for overall LRs. The databased used was prepared by 

Ishihara (2021), and the documents of comparison were modelled into feature vectors using a 

bag-of-words model. Two groups of documents, which both contained documents of 700, 

1,400, and 2,100 words, were concatenated for each author, resulting in the total of 719 

same-author comparisons and 516,242 different-author comparisons. The Cosine similarity 

was used to measure the similarity of texts, and the similarity-only score-based approach was 

used to estimate the LRs from the scores of similarity (Helper et al., 2012; Bolck et al., 

2015). Log-likelihood ratio cost (Cllr) and their composites—Cllr
min and Cllr

cal—were used as 

assessment metrics. Findings indicate that (a) when the LRs of all the feature types are fused, 

the fused Cllr values are 0.56, 0.30, and 0.19 for 700, 1,400, and 2,100 words, respectively, 

and (b) feature selection depending on the nature of an FTC task matters to the performance 

of the FTC system and can contribute to the improvement of LR-based FTC.  
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Chapter 1 Introduction 

Since its introduction in the 1990s, the Internet has proliferated in human life in 

almost every corner of today’s world. Despite being such a world-changing innovation, the 

Internet inevitably brings out the worst of people. They take advantage of the state-of-the art 

online platform to serve their unjust causes, including, but not limited to, identity fraud, data 

theft, privacy breach, and spam. One of the most popular vessels of these malicious intents is 

text. Text is highly accessible: most people learn to write through some way since they were 

young, and once it is on the Internet, it does not take much effort to comprehend it. Besides, 

text is one of the forms of communication that can spread quickly as devices of modern 

world do not require significant data or performance usage to read text.  

It does not come as a surprise at all that people would want to put up some defensive 

measures to protect not only themselves but also society from text-based cybercrimes. Such 

urgent needs have been attracting attention to authorship analysis studies, or the studies that 

aim to answer the big question of authorship of texts in comparison. This thesis is about one 

type of authorship analysis: Forensic text comparison (FTC), the scientific evaluation of text 

to be submitted as evidence in court. In this chapter, I will discuss some background relevant 

to FTC and the framework that I will be using in this thesis, the likelihood ratio (LR) 

framework. Eventually, I will present my research aim and research questions, two 

navigation tools that will help us see through this thesis.  

1.1 Forensic Text Comparison   

As discussed earlier, FTC is the scientific evaluation of text to be submitted as 

evidence in court. It typically involves comparing two sets of text, usually of the offender 

(i.e. questioned) origin, and the suspect (i.e. known) origin, to assist the trier-of-fact in 

concluding if the suspect is guilty. FTC has its roots in authorship analysis. Authorship 

analysis is a scientific attempt to examine characteristics of text so as to conclude its 
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authorship. Modern authorship analysis makes use of techniques from different disciplines—

for example statistics, computer science, linguistics, and so on. Authorship analysis studies 

have been progressing through three major authorship analysis tasks, which are authorship 

identification/attribution, authorship verification, and authorship profiling (Rocha et al., 

2016; Stamatatos, 2009). Authorship identification/attribution is the identification of the 

anonymous author of text, authorship verification concerns the verification of text whether it 

has been written by a certain author, and authorship profiling deals with the information on 

the characteristics—for example age, sex, education, nationality, etc.—of the author of text. 

In the case of FTC, authorship verification is thus considered the most similar process to FTC 

since they both look at the authorship of two different sources, the suspect/known and the 

offender/questioned texts. However, the main difference between authorship verification and 

FTC is that while the former aims to solve the problem, the latter aims to assist with the 

problem only (Ishihara, 2014, 2017a, 2017b). As has been mentioned earlier, FTC only 

compares texts of two sources—one from the questioned origin and another the known 

origin—and then computes the strength of textual evidence; thus, the term ‘FTC’, and not the 

other terms such as ‘forensic text analysis’, ‘forensic text authorship analysis’, or ‘forensic 

text classification’, is preferred here. 

There are a number of studies that claimed themselves to be the studies that aimed to 

answer the big question of authorship the forensic context (Belsivi et al., 2020; de Vel et al., 

2001; Grant 2007, 2010; Lambers & Veenman 2009; Zheng et al. 2003). That said, they 

treated the tasks at hand as classification problems. Therefore, those studies did not pay much 

attention to the textual data as evidence whose strength need to be quantified and submitted 

to court. FTC as is conducted in this thesis does not treat the task at hand as a classification 

problem, but it rather sees the task as an assistance to the court. In the court, the forensic 

expert should only provide the strength of evidence without expressing their opinion that may 
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tamper with the court’s belief or judgement. This will be explained in more detail in Section 

1.2.  

To conclude the strength of evidence and submit it to for the court’s consideration, 

one needs a proper way of doing so. A likelihood ratio (LR) framework is widely in forensic 

identification science to conclude the strength of forensic evidence is the form of an LR (see 

Section 1.2). Some think of the LR framework as the only legally and logically correct 

framework for concluding the strength of evidence and thus advocate the use of the LR 

framework in forensic identification science (Aitken 1995; Aitken & Stoney 1991; Aitken & 

Taroni 2004; Balding & Steele 2015; Evett 1998; Robertson & Vignaux 1995), while some 

think that the LR framework is one of several available forensic frameworks that are capable 

of presenting the strength of evidence (Lund & Iyer, 2017). In LR-based FTC, the forensic 

expert is expected to provide the trier-of-fact with the strength of text evidence in the form of 

an LR. Having considered all pieces of evidence including the textual evidence, the trier-of-

fact is responsible for making a final decision regarding the case, i.e. guilty or not guilty, by 

taking into account their former belief regarding the case which was made by the other 

evidence relating to the case. Despite establishing a logically and legally correct tool for 

analysing text evidence and the presence in forensic science studies (see Section 1.3), FTC 

under the application of LR framework has been considered lagging behind the other 

branches of forensic science (Ishihara, 2014, 2017a, 2017b). Consequently, LR-based FTC 

needs not only academic but also professional attention for it to serve justice for society. 

1.2 The Likelihood Ratio Framework and Bayes’ Theorem 

 It is widely discussed in the forensic community that the role of the forensic expert in 

the court is only to provide the trier-of-fact with the strength of evidence relevant to the case, 

and not to make an implication for the suspect’s presumption of innocence in any way 

(Aitken, 1995; Aitken & Stoney, 1991; Aitken & Taroni, 2004; Balding & Steele, 2015; 
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Evett 1998; Robertson & Vignaux, 1995). In doing so, the LR framework is employed to 

quantify the strength of evidence. This can be seen as the ratio of the probability that the 

evidence (E) would occur if a hypothesis (Hp) is true and the probability that the same 

evidence would occur if the alternative hypothesis (Hd) is true. In the legal context, Hp and Hd 

are seen as ‘prosecution’ and ‘defence’ hypotheses respectively, and in FTC, Hp and Hd are 

referred to as ‘same-author’ and ‘different-author’ hypotheses respectively. The LR equation 

is formulated in Equation (1) below: 

LR = 
𝑝(𝐸|𝐻𝑝) 

𝑝(𝐸|𝐻𝑑)
 

Equation (1) shows the LR as the ratio of two conditional probabilities: the probability of E 

given Hp and the probability of given Hd. To put it simply, the LR shows the likelihood that E  

would be found in the Hp scenario (p(E|Hp)) against the likelihood that the same E would 

occur in the Hd  scenario (p(E|Hd)). It is widely discussed in the forensic community that it is 

only p(E|H) (i.e. the likelihood of E given a hypothesis), and not p(H|E) (i.e. the likelihood of 

a hypothesis given E), that is considered the province of the province of forensic expert; 

therefore, the forensic expert may only assess the strength of E, and never that of Hp or Hd. 

(Aitken, 1995; Aitken & Stoney, 1991; Aitken & Taroni; 2004; Hicks et al., 2015). If the 

numerator p(E|Hp) is higher than the denominator p(E|Hd), the LR will be higher than one, 

meaning that it is more likely that the evidence is more likely to occur under the Hp scenario 

rather than under the Hd scenario. With respect to FTC, this means that the evidence to be 

observed if the textual evidence is written by the same author rather than written by different 

authors. Meanwhile, if the numerator p(E|Hp) is lower than the denominator p(E|Hd), the LR 

will be lower than one, meaning that the evidence is more likely to occur under the the Hd 

scenario rather than the the Hp scenario. This means that for FTC cases, the evidence is more 

likely to be observed if it is written by different authors rather than written by the same 

author. From the explanations on the LR equation above, it can be concluded that the LR 

(1) 

(1) 
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higher than one supports the Hp (the same-author hypothesis), while the LR value lower than 

one supports the Hd (the different-author hypothesis). That said, the LR is not a binary 

expression of whether either hypothesis is true. The LR is instead a gradient encapsulation of 

how far the LR is from unity (i.e. one) and therefore how strong the evidence is for, or 

against, either hypothesis. As far as it moves away for one, the LR provides greater support 

for either Hp (in case that LR>1) or Hd (in case that LR<1) than LRs that are closer to one. 

On the other hand, as close as it sticks to the unity threshold, the LR provides less support for 

either Hp (in case that LR<1) or Hd (in case that LR>1) than LRs that are further from one. It 

is worth pointing out again that the LR only implies the strength of evidence, not the strength 

of hypothesis. This means that the LR can tell only the evidence is more likely to arise under 

one hypothesis than the other, and not that the evidence is written by the same author than 

different authors, or vice versa. For instance, an LR of 100 would mean that it is 100 times 

more likely for the evidence to be observed if the evidence is written by the same author 

rather than by different authors. That said, an LR of 100 would not mean that it is 100 times 

more likely that the evidence is written by the same author rather than by different authors.   

 Although the strength of hypothesis is not considered the province of the forensic 

expert and they does not know the former belief regarding the case and the strength of other 

pieces of evidence, the forensic expert may use Bayes’ Theorem to calculate the strength of 

hypothesis. Bayes’ Theorem in the odds form is provided in Equation (2) as follows:  

         
𝑝(𝐻𝑝|𝐸) 

𝑝(𝐻𝑑|𝐸)
       =      

𝑝(𝐻𝑝) 

𝑝(𝐻𝑑)
         x          

𝑝(𝐸|𝐻𝑝) 

𝑝(𝐸|𝐻𝑑)
  

 

Equation (2) illustrates how Bayes’ Theorem can be employed to calculate the strength of 

hypothesis, or what is called the posterior odds. To describe, the posterior odds is the result of 

the trier-of-fact’s beliefs of two competing hypotheses relevant to the case, or what is called 

the prior odds, being updated by the strength of evidence, which is expressed through the LR. 

(2) 

Posterior odds Prior odds Strength of evidence (LR) 



 6 

In legal casework, more than one piece of evidence related to the case at hand is often 

expected; therefore, the final LR may be composed of the strength of several pieces of 

evidence (see Section 2.5.3). After the strength of all pieces of relevant evidence is presented 

to the trier-of-fact, the trier-of-fact will take into account how that reinforces or refutes the 

competing hypotheses or their belief, which is eventually reflected in the strength of 

hypothesis or the so-called posterior odds. 

In legal casework, the forensic expert should and must not try to usurp the role of the 

trier-of-fact by influencing or implying the posterior odds or the prior odds in any way 

possible; otherwise, there would be serious logical and legal consequences (Aitken 1995; 

Evett, 1998). Logically speaking, in order to calculate the posterior odds, the forensic expert 

needs to also know the prior odds, which is only privy to the trier-of-fact. Moreover, in order 

to make an informed judgement towards the case, the trier-of-fact needs to take into account 

not only single piece of evidence (i.e. textual evidence) but every piece of evidence related to 

the case. In terms of legal wrongdoing, the forensic expert’s involvement in calculating the 

posterior odds, although logically they cannot, also violates the law as the final decision of 

whether someone is guilty or innocent should solely be the trier-of-fact’s responsibility. This 

is seen as usurping the judicial system’s role and is considered illegal. In short, the forensic 

expert cannot logically assess the strength of hypothesis since they do not have access to 

other important pieces of information (i.e. prior odds and LRs of other evidence), and they 

cannot legally do so as it is illegal to try overreaching the role of the court. The province of 

the forensic expert should therefore be to assess the strength of evidence only, and nothing 

more in the court.  

1.3 Forensic Text Comparison within the Likelihood Ratio Paradigm  

There are a handful of LR-based FTC studies that I will use to reference for my thesis 

as these are the extended versions of the other LR-based FTC studies (Carne & Ishihara, 
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2020; Ishihara, 2014, 2017a, 2017b, 2021). Despite these valuable initiatives, there are still 

several areas left to be investigated in LR-based FTC.  

One of those areas is the stylometric features untested in LR-based FTC, the main 

subject matter of this thesis. In LR-based FTC, only a handful of features have been tested, 

for example word- and character-based statistics (Carne and Ishihara, 2020; Ishihara, 2017a, 

2017b, 2021), word n-gram features (Ishihara, 2017b), and character n-gram features 

(Ishihara, 2014, 2017b). Moreover, most of the tested features have been tested in LR-based 

FTC studies that adopted the feature-based and the similarity-typicality score-based 

approaches, both of which are not what this thesis had adopted (see Section 2.5.1). This thesis 

aims to test the efficiency of the features both untested and tested in LR-based FTC within 

the similarity-only score-based approach. For more information on the features tested in this 

thesis, see Section 2.4.1 and Section 2.4.2.  

In authorship analysis tasks, what determines the performance of features is the 

number of features used for each feature set or experiment setting. In LR-based FTC studies, 

the optimal number of features that yields the best FTC system performance depends on the 

nature and the methodology of an FTC task. For instance, in Ishihara (2021) that 

experimented FTC tasks on an authorship verification corpus and adopted the similarity-only 

score-based approach, the number of the most frequent words that yielded the best results is 

260. Meanwhile, in Carne and Ishihara (2020) that worked on the same corpus but used the 

different approach (i.e. the feature-based approach), the optimal number of the most frequent 

words is 180. As an LR-based FTC study within the similarity-only score-based approach, 

this thesis aims to empirically test how many features within a specific feature type that the 

FTC system specifically designed for this thesis needs to obtain optimal results and discuss 

the underlying reasons for such a phenomenon. 
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Also worth investigating is whether the performance of the FTC system can be 

improved by means of calibration. In LR-based FTC studies, logistic regression calibration 

(LRC; Brümmer & du Preez, 2006) is employed due to its being a robust technique that is 

commonly applied in LR-based forensic studies. The LRC is used to optimise the quality of 

the LRs that have been converted from scores of similarity and may not yet be well 

calibrated. The effects of the LRC differ depending on the approach for estimating LRs 

adopted. For example, the LR-based FTC studies within the similarity-typicality score-based 

approach and the feature-based approach, demonstrated that logistic regression calibration 

was needed to optimise the quality of the LRs derived (Carne & Ishihara, 2020; Ishihara, 

2014, 2017a, 2017b). However, Ishihara (2021), the LR-based FTC study within the 

similarity-only score-based approach, demonstrated that the LRC was not needed. As an LR-

based FTC study within the similarity-only score-based approach, this thesis aims to 

empirically test whether the LRC was needed for the FTC system specifically designed for 

this thesis and the reasoning why it is so.  

1.4 Research Aim and Research Questions  

 As per the discussed background and literature relevant to this thesis, LR-based FTC 

is still in its infancy as it has yet to be recognised in the wider forensic science community. A 

number of areas are left to be investigated, and many contributions can be made to LR-based 

FTC. Therefore, the aim of this thesis is to further improve LR-based FTC by investigating 

some selected areas—untested stylometric features, the optimal number of features, and 

further optimisation of the FTC system—as mentioned in Section 1.3. To achieve the 

research aim, I will posit the research questions as followed:   

RQ1 How does the inclusion of a specific feature within a feature type improve or 

deteriorate the performance of the LR-based FTC system?  
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RQ2 How does the inclusion of a specific feature type improve or deteriorate the 

performance of the LR-based FTC system?  

RQ3 For the database used in this thesis, what is the optimal number of features for 

each feature set in the FTC system designed for this thesis?  

RQ4 Does the FTC system need further optimization, namely logistic regression 

calibration?   
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Chapter 2 Methodology 

 In typical FTC research, the procedures are usually broken down into the following 

stages for estimating the LRs: database, database partition, tokenisation, feature extraction, 

and testing.  

2.1 Database 

 This thesis makes use of the same database as was used in Carne and Ishihara (2020) 

and Ishihara (2021), and some methodological details in this chapter would be adapted from 

Ishihara (2021). The following is the summary of the database used in this thesis.  

 The database used was made by compiling data from the Amazon Product Data 

Authorship Verification Corpus (Halvani et al., 2017), which is again based on the Amazon 

Product Data Corpus (He & McAuley, 2016). Ishihara (2021) selected only the authors who 

wrote six or more product reviews in which the word length exceeds 700 words, were singled 

out, resulting in a total amount of 2,157 authors. Only first six reviews of each author would 

be used. The six reviews were then separated into two groups: the first three reviews and the 

last three reviews.  

Three different documents that differed in word length (700, 1,400, and 2,100) were 

to be created using these two groups of reviews for each author by means of concatenation. 

Word length was controlled for a reason: the word lengths of 700, 1,400, and 2,100 words 

allow us to see how the FTC system performance fluctuates with word length. Figure 1 

visually demonstrates how the two groups’ reviews were used to generate three documents of 

different word lengths. According to Figure 1, the first review of each group was used as is to 

create a 700-word document for each group. Then, for each group, the first and second 

reviews were concatenated into a document of 1,400 words, and the first, second, and third 

reviews into a document of 2,100 words. This means that each author (n=2,157) had  

 



 11 

Figure 1  

Concatenation of Three Review Texts for Generating Documents of Different Word Lengths 

for Each Group of Documents for Each Author (n=2,157) 

 

 

 

 

 

 

 

 

Note. The number ‘1’, ‘2’, or ‘3’ suggests that the document attached is the first, second, or 

third document respectively of either group, out of two groups, of one author.  

 

two separate sets of documents which each contained three documents of different word 

lengths (700, 1,400, and 2,100). 

The use of this database deserves some justification. Ishihara (2021) saw the use of 

this database to conduct an FTC experiment as the most suitable simulation of ‘the forensic 

scenario of one-to-many communication’. Currently, there are no available databases that 

contain forensic text evidence or that can be used specifically for FTC experiments. Although 

it was specifically designed for authorship verification tasks and not for forensic purposes, 

this database seemed to be the most appropriate database. Not only the ample amount of data 

is concerned, but also the nature of product reviews themselves. Ishihara (2021) claimed that 

the content in product reviews aims to ‘convey one’s views to others’, which usually 

resembles that of criminal texts (e.g. ransom notes, death threats, defamation on social media, 

Figure 1 
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etc.). That said, they usually differ in that product reviews tend to be written in a more neutral 

tone while criminal texts in a more aggressive, dramatic tone.  

2.2 Database Generation  

The database would further be divided into the following three sub-databases: test, 

background, and development. The visual representation of the sub-database generation is 

displayed in Figure 2. In Figure 2, all the three sub-databases would each contain 719 authors 

and their associated documents of different word lengths, and each author would have two 

groups of documents which differed in word length.  

2.2.1 Test Database  

 The test database was used for assessing the performance of the FTC system. To 

explain, the document stored in the test database would be used for simulating same-author 

and different-author comparisons. This means that 719 authors of the test database would 

result in 719 same-author comparisons and 516,242 different-author comparisons. While the 

generation of same-author comparisons is straightforward (i.e comparisons between two 

groups of documents per author), that of different-author comparisons is not and deserves 

some more explanation. The generation of different-author comparisons singled out two 

authors at a time to compare their documents, resulting in 258,121 (=719C2) different-author 

pairs of comparison. Since each author has two groups of documents of different word 

length, two independent comparisons between two authors were possible. This resulted in 

516,242 (=719C2 x 2) different-author comparisons in total. These same-author and different-

author comparisons were separately tested for each of the different word lengths.  

2.2.2 Background Database  

 The background database served to train the score-to-LR conversion model (see 

Section 2.5.2). In LR-based FTC within the similarity-only score-based approach, the 

measured features of two text samples are compared to each other’s, and the forensic expert  
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Figure 2 

Generation of Three Sub-databases of Test, Background, and Development Figure 2 

 

 

has to quantify the degree of similarity or difference between two text samples in the form of 

a score. However, the score obtained in this process is a simple measure of similarity between 

two documents; this is done by the Cosine distance (see Section 2.5.2.1). The forensic expert 

needs to convert the score to an LR using the score-to-LR conversion model trained by the 

same-author and different-author scores obtained from the background database. The 

background database also contains 719 authors, which also lead to 719 same-author 

comparisons and 516,242 different-author comparisons. This means that it would be expected 

to obtain 719 same-author scores and 516,242 different-author scores which would be used to 

train the score-to-LR conversion model later. The mapping from scores to LRs is regarded as 

essential to LR-based FTC within the similarity-only score-based approach since only the 

well-calibrated LRs, and not the scores, can be interpreted as the strength of evidence. 
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2.2.3 Development Database  

 Despite having converted scores to LRs by using the score-to-LR conversion model, 

the forensic expert may find the LRs obtained cannot be interpretable as the strength of 

evidence; this may occur because of inappropriate modelling assumptions or the shortage of 

training data for the score-to-LR conversion model. Consequently, these uncalibrated LRs 

need to be calibrated through an appropriate calibration model. This calibration of 

uncalibrated LRs may be termed the second calibration; however, unlike the first calibration, 

it may not be obligatory. If the second calibration, causes no improvements to the FTC 

system performance—which means that the first calibration has already yielded well 

calibrated LRs—the second calibration may be deemed unnecessary. As part of the research 

questions, this thesis aims to investigate whether the second calibration is actually needed for 

LR-based FTC under the similarity-only score-based approach.   

The calibration model used for this thesis is a logistic regression model, one that is 

widely used in LR-based forensic identification science (Morrison, 2013). At this stage, the 

LRs derived from the same-author and different-author scores obtained from the development 

database were used to train the logistic regression model, which would be used to calibrate 

the LRs derived from the score-to-LR conversion model. For more information on logistic 

regression calibration, see Section 2.5.3.  

2.3 Tokenisation 

 Tokenisation is the process of segmenting text into smaller linguistic units. For the 

purposes of this thesis, the text data were tokenised using the ‘quanteda’ R statistical package 

(Benoit et al., 2018). As part of the ‘quanteda’ library, The ‘token()’ function was utilised. 

Stemming and lemmatization were done were not applied; this means that ‘review’, 

‘reviews’, and ‘reviewing’ would be treated as different words. Nothing had been done to 
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punctuations and special characters, so all of these would be treated as separate word tokens 

from the words to which they were attached.   

2.4 Feature Extraction 

 Computer-based authorship algorithms cannot handle raw text; text data need to be 

properly represented according to authorship features. This is the definition of feature 

extraction, or the process of reducing raw, messy data into something that is more 

manageable and easier for the computer to process. For the databased used, feature extraction 

was made possible with the use of a bag-of-words approach.  

In text processing, a bag-of-words approach is a text modelling technique that is used 

widely. Within a bag-of-words approach, text data are modelled into a feature vector, which 

subsequently contains the feature values which are calculated for the text. Despite the so-

called name, a bag-of-words approach does not only handle words as other types of items, for 

example characters and part-of-speech tags, can also be handled by such an approach. 

Despite being praised for its simplicity and effectiveness (Diederich et al., 2003), a bag-of-

word approach has one major downfall: it does not take into account the sequential nature of 

linguistic items appearing in written text. This is where an n-gram approach comes in and 

shines. An n-gram is a contiguous string of every n linguistic item(s) appearing in the text 

which, when being modelled, allows the text’s sequential information to be intact. Some even 

consider an n-gram approach to text modelling as an extension of a bag-words-approach 

(Mutinda et al., 2021; Stefanovič et al., 2019). This is because an n-gram approach still 

represents text via a spatial vector, but instead of single items represented via a bag-of-words 

approach, sequences of items (e.g. sequences of words, characters, or part-of-speech tags) 

with their relative frequencies are used as feature values; therefore, sometimes an n-gram 

approach is even called a bag-of-n-grams approach (Stefanovič et al., 2019).  
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FTC operates according to one fundamental principle: people have their own styles of 

writing (McMenamin, 2001, 2002). Writing styles can be captured through a collection of 

quantifiable units in text which are called stylometric features. While Rudman (1997) posited 

there were thousands stylometric features that can be used to quantify authorship, only a 

handful of them have previously been tested in LR-based FTC (Carne & Ishihara, 2020; 

Ishihara, 2014, 2017a, 2017b, 2021).   

Basic statistics of both words and characters and word, character, and part-of-speech 

n-grams, were chosen as stylometric features in this thesis. Using these stylometric features, 

each document or text would be modelled via a bag-of-words model. Each type of 

stylometric features will be discussed in detail. 

2.4.1 Statistical Features  

 The first type of stylometric features tested in the FTC system is statistical features 

(henceforth SFs). In this thesis, SF are features that are calculated using statistical measures, 

such as the mean and the standard deviation, of the raw data. In authorship analysis tasks, 

these features are either word- or character-based, so they are subsequently categorised as 

lexical or character features respectively (Zheng et al., 2006; Stamatatos, 2009; Rocha et al., 

2017). However, such features are termed statistical features for this thesis for data modelling 

and presentation reasons. There are ten SFs tested in this thesis. Table 1 displays all the ten 

SFs with brief descriptions. 

The inclusion of the ten SFs is based on previous research on authorship analysis. 

Previous authorship studies including Iqbal et al (2010), de Vel et al. (2001), Grieve (2007), 

and Zheng et al. (2006) demonstrated that the stylometric features displayed in Table 1 yield 

good results and therefore are robust for authorship analysis tasks. There are some initiatives 

aimed at testing these stylometric features within the LR framework. Within the LR 

framework, Ishihara (2017a, 2017b) demonstrated that most of the statistical features in  
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Table 1 

List of 10 Statistical Features Tested in the Statical Feature Experiment Table 1 

Statistical Features Descriptions 

1. TTR  Type-token ratio (the total number of unique words (types) 

divided by the number of words (tokens) in text)  

2. K Vocabulary richness as defined by Yule  

3. Hapax Hapax legomenon (i.e. words that appear only once) 

4. FK Flesch-Kincald readability score (i.e. how difficult it is to 

understand one text in English) 

5. DigitRatio The ratio of digits 

6. PuncRatio The ratio of punctuation marks (eight punctuation marks , . ? ! ; 

: ' \ " ) 

7. SpecialCharRatio The ratio of special characters (twenty two special characters < 

> % | [ ] } { @ # ~ + - * $ ^ & = \ / ( ) ) 

8. UppercaseRatio The ratio of uppercase characters  

9. CharNumberPerWord The average number of characters per word 

10.FreqUnusualWordUS The frequency of unusual words (en_US dictionary) 

 

Table 1 are robust for LR-based FTC tasks. Some of the features, for example hapax 

legomenon and Flesch-Kincald readability scores, have never been tested in research on the 

LR-based FTC, so this thesis will be the first of its kind to test these two features within the 

LR paradigm. The usefulness of hapax legomenon has been explored by Savoy (2012a, 

2012b) in authorship attribution tasks; Savoy found that it can contribute to a good 

classification algorithm when used with other features that also focus on extracting 

information on specific vocabulary. Regarding the Flesch-Kincaid readability scores, to the 

best of my knowledge, this feature has not seen to be tested in authorship analysis studies. 

However, the Flesch-Kincaid readability gets extensively used in clinical research (Eloy et 

al., 2012; Johnstone & Giles, 2017) to analyse the readability of clinical materials, so I 
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reckoned this feature may be a discriminating feature when it came to analysing the 

readability of product reviews and therefore the authors behind them.  

Among to the ten SFs tested, there are five that deserve more explanations, which are 

the number 1, type-token ratio (TTR), the number 2, Yule’s K (K), the number 3, hapax 

legomenon (Hapax), the number 4, Flesch-Kincald readability score (FK), and the number 

10, the frequency of unusual words (FreqUnusualWordUS). TTR, K, and FK were computed 

using the package ‘quanteda’ in R (Benoit et al., 2018), while FreqUnusualWordUS was 

computed using the package ‘hunspell’ in R (Ooms, 2020).  

TTR stands for type-token ratio, which is the total number of unique words (types) 

divided by the total number of words (tokens) in text. The formula used to calculate TTR is 

displayed as in Equation (3):  

TTR = 
 𝑉

𝑁
 

where V refers to the total number of types and N refers to the total number of tokens.  

 K is the measurement of vocabulary richness proposed by George Udny Yule (1944), 

a British statistician. The formula used to calculate Yule’s K for this experiment is displayed 

as in Equation (4):  

𝐾=104×[−
1

𝑁
 + ∑ 𝐹𝑣

𝑣
𝑖=1 (𝑖,𝑁)(

𝑖

𝑁
)2] 

where V refers to the number of types, N refers to the number of tokens, and Fv(i,N) refers to 

the number to types occurring i times in the length N (Yule, 1944, as cited in Tweedie & 

Baayen, 1988, p. 330).   

 Two vocabulary richness features, namely TTR and Yule’s K, were selected for this 

thesis since for different reasons. As TTR is merely the ratio between the total number of 

word types and that of word tokens in disregard of the length of the whole test, it is not robust 

to be used with texts of different length. Therefore, another vocabulary richness measure that 

(4) 

(3) 
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considers the weight of each word type given the total number of word tokens, which in this 

case is Yule’s K, is used in this thesis to help deal with texts of different length.  

 FK, or Flesch-Kinclad readability score, is the measurement used to calculate the 

readability of text, which was developed by Rudolf Flesch and J. Peter Kincald (Flesch, 

1948; Kincald et al., 1975). The formula used to calculate Flesch-Kinclad readability score is 

displayed as in Equation (5): 

FK = 0.39×𝐴𝑆𝐿+11.8×
𝑁𝑠𝑦

𝑁𝑤
 −15.59 

where ASL refers to the average length of the sentence (the number of words divided by that 

of sentences), 𝑁𝑠𝑦 refers to the number of syllables, and 𝑁𝑤 refers to the number of words.  

 Hapax is shortened for the frequency of hapax legomena, words that appear only once 

in text. The formula used to calculate Hapax is displayed as Equation (6):  

Hapax = 
𝐻𝑎𝑝

𝑁𝑡
  

where Hap refers to the number of hapax legomena, and 𝑁𝑡 refers to the number of tokens in 

text.  

 FreqUnusualWordUs is the frequency of unusual words based on the American 

English dictionary called ‘en_US dictionary’. As part of the ‘hunspell’ R package, the en_US 

dictionary serves as a baseline for detecting misspelt or unusual words that do not appear in 

the dictionary. The en_US is an open spelling dictionary that is commonly used in natural 

language processing tasks. The formula used to calculate FreqUnusualWordUs is displayed 

as in Equation (7):  

FreqUnusualWordUs = 
𝑁𝑢𝑤

𝑁𝑡
 

where 𝑁𝑢𝑤 refers to the number of words that do not appear in the en_US dictionary, while 

𝑁𝑡 refers to the number of tokens in text.  

 

(5) 

(6) 

(7) 

(5) 

(7) 
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2.4.2 N-gram Features  

Another type of stylometric features that would be tested for this thesis is n-gram 

features. Three sub-types of n-gram features were tested, which are word n-grams (WNGs), 

character n-grams (CNGs), and part-of-speech n-grams (PNGs).  

 2.4.2.1 Word N-gram Features. A word n-gram (WNG) is a continuous sequence of 

every n word(s) appearing in the text. Previous authorship analysis literature, for example 

Coyotl-Morales et al. (2006) and Sanderson and Guenter (2006), had proposed the use of 

word n-gram features to acquire word-order and contextual information of text. This thesis 

would be using WNGs with an n of one (word unigrams; WN1s), two (word bigrams; 

WN2s), and three (word trigrams; WN3s). The number of features fixed for WNGs ranged 

from 5 features to 600 features at one experiment setting. That is, 5 to 600 sequences of n 

words would be tested separately for each word length. In LR-based FTC, Ishihara (2014, 

2017b) used WNGs (n=1,2,3) in the FTC system and achieved good results with an ample 

amount of data. However, the technique to estimate the LRs in Ishihara (2014, 2017b) is 

different from the other one I adopted for this thesis (namely the similarity-only score-based 

approach; see Section 2.5.1); therefore, this thesis will be the first to trial WN1s, WN2s, and 

WN3s with application to LR-based FTC within the similarity-only score-based approach. 

This thesis made use of the token() function in the ‘quanteda’ R library (Benoit et al., 2018) 

to parse text into tokens and the tokens_ngram() function to construct WNGs.  

 2.4.2.2 Character N-gram Features. A character n-gram (CNG) is a continuous 

sequence of every character(s) appearing in the text. CNGs’ efficiency in capturing 

contextual and stylistic information of text has been emphasised in a number of authorship 

analysis studies (Koppel et al., 2011; Stamatatos, 2013). This may partly result from that 

CNGs are easier to process than other types of features, making generated CNGs are 

supported by data more than being calculated from elsewhere. The number of CNGs tested at 
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each experiment setting varies between the different CNGs; CN1s were tested only from 5 to 

90 features, while CN2s, CN3s, and CN4s were tested from 5 to 1,000 features. The reason is 

that there are far less characters than words, resulting in the much smaller range of CN1s (5-

90) than that of WN1s (5-600). Note that 90 CN1s include both uppercase and lowercase 

characters, special characters, and punctuation marks. For the testing range of CN2s and 

CN3s (5-1,000), as mentioned earlier, CNGs are considered more statistically auspicious than 

the other types of features as sequences of characters appear more often than sequences of 

words or part-of-speech tags. As with WNGs, CNGs have already been tested in LR-based 

FTC and yielded satisfactory results (Ishihara, 2014, 2017b). That said, this thesis will be the 

first in trialing using the similarity-only score-based approach to estimate the LRs derived 

with CN1s, CN2s, CN3s, and CN4s. Much like the case with WNGs, this thesis used the 

token() function of the same library to parse text into characters and the tokens_ngram() 

function to construct CNGs. 

 2.4.2.3 Part-of-speech N-gram Features. A part-of-speech n-gram (PNG) is a 

continuous sequence of every part-of-speech tag(s) appearing in the text. PNGs can be built 

in the same way as are word and character n-gram features, but it needs a robust part-of-

speech tagger to accurately designate what part-of-speech of the words in the text is and thus 

to contribute to the usefulness of part-of-speech information in modelling authorial analysis. 

A handful of authorship analysis studies, including Diederich et al. (2003) and Kukushkina et 

al. (2001), have tested PNGs in their studies, and although they showed some promising 

signs, the results obtained from PNGs were not as satisfactory as those obtained from lower-

level features such as WNGs or CNGs. Nonetheless, it is reported that PNGs, if modelled and 

trained correctly, can capture both morphological and syntactic information, something that 

WNGs and CNGs find hard to do (Gamon, 2004; Sidorov et al., 2014). For example, Sidorov 

et al. (2014) made use of PNGs in their authorship attribution task on a corpus of three 
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authors as a baseline feature set and found that PNGs, especially PN2s and PN3s, generally 

perform better than WNGs and SNGs. 

In this thesis, PN1s would be tested from 5 to 40 features, while PN2s and PN3s from 

5 to 600 features. Part-of-speech tags are far less than words or characters, leading to that 

there were 40 part-of-speech tags that would be tested at one experiment setting for PN1s. 

PNGs have not yet been tested in LR-based FTC. This thesis will be the first of its kind to 

prove the efficiency of part-of-speech n-gram features in LR-based FTC within the 

similarity-only score-based approach. The ‘spacy_parse()’ function of the ‘spacyr’ R library 

(Benoit & Matsuo, 2020) was used to parse text of which the outcomes contain part-of-

speech information. Using the part-of-speech tags, PNGs were constructed using the 

‘tokens_ngrams()’ function of the ‘quanteda’ R library (Benoit et al., 2018).  

2.5 Simulation of Same-author and Different-author Comparisons   

  The processes of the similarity-only score-based approach to calculating the LRs for 

the same-author and different-author comparisons of the test database are visualised in Figure 

3. To explain, the simulation of the same-author and different-author comparisons was 

computed, and the outcomes were in the forms of scores. That said, these scores were not yet 

ready to be interpretable; they had to go through the score-to-LR conversion model, which 

was trained by the scores of the same-author and different-author comparisons from the 

background database. These LRs might or might be not well calibrated due to inappropriate 

modeling assumption or the shortage of data to train the score-to-LR conversion model. 

Therefore, the LRs derived from the score-to-LR conversion model might go through another 

calibration, which is logistic regression calibration (LRC). The LRC model was trained by 

the scores of the same-author and different-author comparison from the development 

database. Whether the FTC system in this thesis needs the LRC would be be empirically 

tested in this thesis.  
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 Figure 3 

Processes of Similarity-only Score-based Approach to Obtain LRs Figure 3  

 

Note. ‘SA’ stands for ‘same-author’, while DA ‘different-author’. Note that logistic 

regression calibration may or may not be needed depending on whether the LRs derived from 

the score-to-LR conversion model are well calibrated; this will be empirically tested in this 

thesis.  

 

The metrics of performance used to assess the quality of the LRs derived are log-

likelihood-ratio cost (Cllr), which can be broken down into a discrimination loss (Cllrmin) and  

a calibration loss (Cllrcal). The magnitude of the LRs derived are to be visualised via Tippett 

plots.  

2.5.1 Similarity-only Score-based approach  

 In forensic identification science, there are several approaches that the forensic expert 

can adopt to obtain the LRs for their evidence. For example, score-based approaches, either 

similarity-only or similarity-typicality, are widely used to estimate the LRs (Block et al., 

2015; Chen et al., 2018; Helper et al., 2012; Leegwater et al., 2017). There is also an 

alternative approach to estimating the LRs, which is the featured-based approach (Aitken & 

Gold, 2013; Carne & Ishihara; 2020).  
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This thesis has made use of the similarity-scored based approach. Since there are 

several available approaches for estimating the LRs, the use of the similarity-only score-

based approach warrants some justification. In calculating LRs, the similarity-only score-

based approach considers only the similarity of the evidence and does not take into account 

the typicality of evidence. This results in that some forensic scientists did not agree with the 

use of the similarity-only score-based approach as they saw that both similarity and typicality 

are necessary to calculate LRs that can be used as the strength of evidence in the court 

(Morrison & Enzinger, 2018; Neumann & Ausdemore, 2020). Some studies (Block et al., 

2015; Garton et al., 2020) also found that the magnitude of the LRs derived with the 

similarity-only score-based approach was likely to be smaller than those derived with the 

other approaches.  

However, despite disadvantages, the similarity-only score-based approach is regarded 

as the approach that can handle the multidimensionality of features well (Bolck et al., 2015; 

Garton et al., 2020). The similarity-only score-based method converts the multidimensional 

feature space to a univariate score space. One advantage of the univariate score space is that 

it can be effectively trained and modeled by even a limited amount of data. Despite being 

weaker than derived with the other approaches, the magnitude of LRs derived with the 

similarity-only score-based approach was found it was more stable than derived with the 

other approaches (Block et al., 2015; Garton et al., 2020). Actually, Garton et al. (2020) 

argued for the similarity-only score-based approach that it is the only viable approach to 

obtain the LRs for the high dimensional evidence. Ishihara (2021) argued for the use of the 

similarity-only score-based approach that since the authorship features tested in FTC are 

highly dimensional and most of the time are correlated, the similarity-only score-based 

approach seems to be the most viable option in LR-based FTC. These facts regarding 

stylometric features pose some challenges to the other approaches of estimating the LRs for 
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the evidence since they cannot effectively handle the multivariate structure of stylometric 

features and cannot consider the correlations between them.   

2.5.2 Mapping from Score to Likelihood Ratio 

 In the similarity-only score-based approach, the scores of similarity obtained from the 

same-author and different-author comparisons from the test database, need to go through the 

score-to-LR conversion model. This results in the scores of similatiy being transformed into 

the LRs that, if well-calibrated, are ready to be interpreted as the strength of evidence. For 

this thesis, the Cosine similarity was used to calculate the scores of similarity between the 

documents of comparison (see Section 2.5.2.1). The LR of the score needed to be assessed 

against the probabilistic distributions trained from the same-source and different scores. The 

LR can then be mathematically expressed as in the following Equation (8): 

LR  =
f(∆(x,y)|𝐻𝑝)

f(∆(x,y)|𝐻𝑑)
 

                                       =
f(∆({𝑤1

𝑥, 𝑤2
𝑥…𝑤𝑛

𝑥},{𝑤1
𝑦

, 𝑤2
𝑦

…𝑤𝑛
𝑦

)}|𝐻𝑝)

f(∆{𝑤1
𝑥, 𝑤2

𝑥…𝑤𝑛
𝑥},{𝑤1

𝑦
, 𝑤2

𝑦
…𝑤𝑛

𝑦
)}|𝐻𝑑)

       

where f refers to a probability densitiy function, x and y the feature vectors of relative 

measured values (𝑤𝑖
𝑗
, i ∈ {1 … 𝑁}, j ∈ (𝑥, 𝑦}) of the documents of comparison (x = 

{𝑤1
𝑥 ,  𝑤2

𝑥 … 𝑤𝑛
𝑥}, and y = {𝑤1

𝑦
,  𝑤2

𝑦
… 𝑤𝑛

𝑦
)).  

For Hp and Hd, the probability density functions are required to be trained from the 

scores of the same-author and different-author comparisons respectively from the background 

database. Therefore, the proposition Hp is that the two documents of comparison (x, y) are 

written by the same author, while the proposition Hd is that the two documents of comparison 

(x,y) are written by different authors.  

2.5.2.1 Cosine Distance Measure. For this thesis, the Cosine distance measure was 

used to calculate the scores of similarity. Figure 4 visualises the Cosine distance measure, 

along with the Euclidean and Manhattan distance measures, in a bi-dimensional space. The  

(8) 
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Figure 4 

Cosine Distance Measure with Euclidean and Manhattan Distance Measures in a Two-

dimension Space Figure 4 

 

 

Note. Adapted from ‘Score-based likelihood ratios for linguistic text evidence with a bag-of-

words model’ by S. Ishihara, 2021, Forensic Science International, 327, 8.  

 

Cosine distance (Dc) concerns about only the angle θ of the feature vectors A and B, as in 

Figure 4, and not the scalar properties of the feature vectors. The Cosine distance can be 

mathematically expressed in Equation (9) as follows:  
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Dc(A, B) = 1 – cos(θ) = 1 – 
∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖

√∑ 𝐴𝑖
2𝑛

𝑖
√∑ 𝐵𝑖

2𝑛
𝑖

 

In Ishihara (2021), the three distance-based measures, namely the Euclidean, 

Manhattan, and Cosine distance measures, were used to calculate the scores of similarity of 

the documents of comparison which were generated from the same database. The fluctuation 

of the performance of the FTC system was being investigated as a function of the three 

different distance measures. Ishihara found that the Cosine similarly consistently worked best 

for the documents of any word length. Therefore, this thesis would use the Cosine similarty 

measure so as to attempt to obtain the most optimal results possible from the FTC system. 

For this thesis, the function ‘t.cosine()’ of the ‘stylo’ R library was used to measure 

the Cosine similarity between two documents of comparison.  

 2.5.1.2 Probabilistic Distribution Models The probability density functions under 

Hp and Hd are required to be trained by the scores of the same-author and different-author 

comparisons from the background development, and such functions are used to convert 

scores into LRs. In this thesis, the distributions of scores were modelled using Normal, Log-

normal, Gamma and Weibull distribution models, but the best-fitted model was selected via 

Akaike Information Criteria separately for same-author and different-author scores. The main 

reason why there were four distribution models used in this thesis is that the distributions of 

scores did not always conform to normality (i.e. Normal distribution; Ishihara, 2021). The 

other three distribution models, namely Log-normal, Gamma, and Weibull distributions, can 

better handle the skewed distributions of scores than Normal distribution.  

2.5.3 Logistic-regression Calibration and Fusion  

  The LRC is a calibration of a set of LRs that may or may not be well calibrated by 

applying the linear shifting and scaling to those LRs based on the weights of the LRs derived 

from the development database. That is, the LRs of the same-author and different-author 

(9) 
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comparisons from the development database are used to train the LRC model, or specifically, 

the logistic regression line. The logistic regression line then applies linear shifting and scaling 

to the LRs of the testing database and derive the newly calibrated LRs. The aim of the LRC is 

straightforward: to minimise the magnitude of counterfactual LRs that support the incorrect 

hypotheses and contrast the correct hypotheses, and also to maximise the magnitude 

consistent-with-fact LRs that support the correct hypotheses.  

 The LRC can only calibration a single set of LRs; however, the logistic regression 

fusion (LRF) offers a calibration of multiple related sets of LRs (e.g. the LRs derived with 

SFs, WNGs, CNGs, and PNGs). The aim of the LRF is the same as outlined for the LRC: to 

minimise contrary-to-fact LRs and maximise consistent-with-fact LRs, which leads to a 

better FTC system performance. For the LRF, the logistic regression weight is calculated for 

each set of LRs; this is mathematically expressed in Equation (10):  

log(fused likelihood ratio) = a1x1 + a1x1 + a1x1 + … + anxn + b 

where x1, x2, x3, … xn are the LRs of the first to the set of n, a1, a2, a3, … an are the logistic 

regression weight for scaling, and b is the logistic regression weight for shifting. The logistic 

regression weight for both scaling and shifting is obtained from the development database. 

This thesis would be fusing the different numbers of WNGs, CNGs, and PNGs separately for 

each type of feature. After that, the fused FTC systems of every feature type (i.e. of WNGs, 

CNGs, and PNGs) and the best-performing combinations of SFs would eventually be fused 

together. If the FTC system perform gets better following the LRF, this means that the 

authorial information extracted from the different features or feature types are actually 

complementary. To apply the LRF, the FoCal Toolkit was used in R (Brümmer & du Preez, 

2006). This thesis aims to empirically test whether the LRC is needed to further optimise the 

LRs derived via the score-to-LR conversion model (as specified in one of the research 

questions in Section 1.4). 

(10) 
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2.5.4 Metrics of Performance 

 To assess the FTC system performance, log-likelihood-ratio cost (Cllr) is used in this 

thesis (Brümmer & du Preez, 2006). Cllr is calculated as in the following Equation (11):  

Cllr = 
1

2
([

1

𝑁𝑆𝐴
∑ 𝑙𝑜𝑔2

𝑁𝑆𝐴
𝑖 (1 + 

1

𝐿𝑅𝑆𝐴𝑖

 )] + [
1

𝑁𝐷𝐴
∑ 𝑙𝑜𝑔2

𝑁𝐷𝐴
𝑖 (1 + 𝐿𝑅𝐷𝐴𝑖

)]) 

where the equation in the first square brackets evaluates the same-authors LRs, and that in the 

second square brackets evaluates the different-author LRs. In the first square brackets, 𝑁𝑆𝐴 

refers to the number of the same-author comparisons, while 𝐿𝑅𝑆𝐴𝑖
 the LRs derived from the 

same-author comparisons. In the second square brackets, 𝑁𝐷𝐴 refers to the number of the 

different-author comparisons, while 𝐿𝑅𝐷𝐴𝑖
 refers to the LRs derived from the different-author 

comparisons.  

 Cllr penalizes all the likelihood ratios except zero and + infinity. Furthermore, the 

contrary-to-fact LRs are penalised more than the consistent-with-fact LRs, and the extent of 

the penalty will increase as the contrary-to-fact LRs move father away from unity (i.e. one). 

For example, the contrary-to-fact same-author LR of -10 would be penalised more than the 

consistent-with-fact same-author LR of 10. However, the contrary-to-fact different author LR 

of 30 would be penalised more than the contrary-to-fact different-author LR of 20 since the 

former is more misleading than the latter. Note that for a perfect FTC system, the consist-

with-fact same-author LRs would exceed unity (>1) while the consistent-with-fact different-

author LRs would go below unity (<1). The penalties of all the likelihood ratios are 

accumulated into one single Cllr value for each feature set or experiment setting; the lower 

the Cllr value is, the better the FTC system performance will be. 

Cllr further comprises two sub-components: a discrimination loss (Cllrmin) and a 

calibration loss (Cllrcal). Cllrmin is the minimum Cllr value gained after applying a pooled-

adjacent-violators (PAV) transformation to the derived LRs, while Cllrcal is calculated by 

subtracting the Cllrmin from the Cllr. In this thesis, the Cllrmin  value is used to investigate the 

(11) 
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discrimination power of each feature set or experiment setting; the lower the Cllrmin  value, 

the less the loss of the discrimination power is and the better the discrimination power will 

be. The Cllrcal is used to investigate the calibration performance of each feature set or 

experiment setting; the lower the Cllrcal value is, the less the loss in calibration performance 

is and the calibration performance will be. In calculating these metrics of performance for 

this thesis, the FoCal Toolkit in R was used (Brümmer & du Preez, 2006).  

2.5.5 Tippett Plots 

 To visually present and assess the quality of the LRs derived, Tippett plots are 

employed in this thesis. Figure 5 displays an example of a Tippett plot which can tell us a lot 

of things regarding the quality of the LRs derived.  

Considering Figure 5, what is the most obvious is the magnitude of the same-author 

LRs and the different-author LRs. As mentioned earlier, the FTC system will work perfectly 

if the same-author LRs exceed unity and the different-author LRs go below unity. However, 

since the LRs are presented in the log10 scale, unity has shifted from one to zero (log10(1) = 

0). The magnitude of the consistent-with-fact same-author LRs (represented in red line right 

to the zero threshold) is approximately the magnitude of 3, while the magnitude of the 

consistent-with-fact different-author LRs (represented in blue line right to the zero threshold) 

is approximately the magnitude of -1 only. This means that this feature set or experiment 

setting provides a stronger support for the same-author hypothesis than for the different-

author hypothesis. However, there is also the noticeable magnitude of contrary-to-fact LRs 

for both same-author (approximately -1.5) and different-author comparisons (approximately 

2.5). All the LRs presented all contribute to the Cllr value of the experiment setting of this 

Tippett plot, with the contrary-to-fact LRs being more penalised and therefore resulting in the 

increase of the Cllr value more than the consistent-with-fact LRs. 
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Figure 5 

Example of Tippett Plot Visually Presenting Quality of Derived LRs  

Figure 5 

 

Note. For Tippett plots presented in this thesis, the red line represents the LRs derived from 

the same-author comparisons, while the blue line represents the LRs derived from the 

different-author comparisons. For the LRs derived from the same-author comparisons, the 

LRs beyond the zero threshold (>0) are the consistent-with-fact LRs, while the LRs below the 

zero threshold are the contrary-to-fact LRs (<0). For the LRs derived from different-author 

comparisons, the LRs below the zero threshold are the consistent-with-fact different-author 

LRs, while the LRs beyond the zero threshold are the contrary-to-fact different-author LRs.  

 

We can also see whether the LRs derived are well calibrated or not by considering 

Tippett plots. From Figure 5, the crossing point between the red and blue lines is visually 

aligned with the zero threshold; this means that the LRs derived presented in this Tippett plot 

are well-calibrated. Moreover, the crossing point reflects the Cllrcal value, which tells us 

about the calibration performance: the lower the Cllrcal value is, the better the calibration 

performance will be.  

Consistent-with-fact 
Same-author LRs (>0) 

Contrary-to-fact Same-
author LRs (<0) 

Consistent-with-fact 
Different-author LRs (<0) 

Contrary-to-fact 
Different-author LRs (>0) 

Zero Threshold 
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Chapter 3 Logistic Regression Calibration: Results and Discussion 

 The aim of this chapter is to investigate whether the LR-based FTC system further 

needs another calibration, as known as logistic regression calibration. I will also attempt to 

discuss why the logistic regression is or is not necessary in the LR-based FTC system.  

 To see whether the LRC is necessary for the FTC system and whether the LRs needs 

to be calibrated through a second calibration, I will display the results of the best-performing 

pairs of statistical features (SFs) before and after the LRC in Table 2. What stands out from 

Table 2 is that the pre-LRC and post-LRC Cllr values of the same pairs of features are very 

similar to each other for every document length. As mentioned in Section 2.5.4, the closer to 

zero the Cllr value gets, the better the FTC system performance will be. This means that the 

LRC brings little improvement, or even deterioration in some cases, in the Cllr values and thus 

the FTC system performance.   

 In assessing how well LRs are calibrated in LR-based FTC, as important as the Cllr 

values are the Cllr
cal values, which are used to quantify calibration loss. The closer to zero the 

Cllr
cal value gets, the better the calibration performance will be. As observed from the Table 2, 

much like the case of the Cllr values, the pre-LRC and post-LRC Cllr
cal are much alike, 

suggesting that the LRC does not bring any significant change to the calibration performance. 

Furthermore, considering the pre-LRC the Cllr
cal values, they are already very close to the 

zero threshold. This suggests that by using only the first calibration which is via the score-to-

LR conversion model, the FTC system has already been well calibrated.  

 Another way to manifest that the second calibration, or the LRC, is unnecessary is by 

visual comparison of pre-LRC and post-LRC LRs. This can be done by using Tippett plots 

(see Section 2.5.5). Figure 6 displays the Tippett plots of the LRs derived with the same-

author and different-author comparisons using only the best-performing pair for each 
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Table 2 

Table 2 

Pre-Logistic Regression Calibration and Post-Logistic Regression Calibration Results of 

the Best-Performing Pairs of Statistical Features Separately for Documents of 700, 1,400, 

and 2,100 words 

Sample Word 

Number 

Pair of Features Cllr Cllr
cal 

Pre-LRC Post-LRC Pre-LRC Post-LRC 

700 (4,6) 0.909 0.907 0.022 0.021 

(6,9) 0.917 0.918 0.024 0.025 

(4,7) 0.934 0.931 0.024 0.021 

(4,9) 0.937 0.939 0.027 0.028 

(7,9) 0.938 0.937 0.032 0.019 

(1,6) 0.945 0.940 0.029 0.024 

(3,6) 0.945 0.942 0.024 0.020 

(1,4) 0.948 0.945 0.022 0.019 

(1,7) 0.953 0.950 0.025 0.022 

(1,9) 0.955 0.954 0.019 0.017 

1,400 (6,7) 0.839 0.838 0.028 0.027 

(4,6) 0.840 0.833 0.033 0.025 

(6,9) 0.858 0.858 0.035 0.034 

(1,6) 0.867 0.867 0.033 0.033 

(4,7) 0.876 0.868 0.027 0.019 

(7,9) 0.877 0.875 0.030 0.028 

(1,7) 0.887 0.888 0.029 0.030 

(3,6) 0.888 0.887 0.029 0.028 

(1,4) 0.891 0.891 0.022 0.022 

(4,9) 0.893 0.893 0.035 0.035 

2,100 (6,7) 0.777 0.776 0.036 0.036 

(4,6) 0.792 0.787 0.027 0.022 

(6,9) 0.801 0.773 0.801 0.773 

(1,6) 0.809 0.809 0.026 0.026 

(4,7) 0.826 0.821 0.024 0.019 

(7,9) 0.829 0.826 0.033 0.030 

(3,6) 0.831 0.829 0.028 0.026 

(1,7) 0.840 0.839 0.022 0.021 

(3,7) 0.852 0.852 0.028 0.027 

(1,4) 0.856 0.856 0.021 0.022 
 

 

Note. Pre-LRC stands for ‘pre-logistic regression calibration’; Post-LRC stands for ‘post-

logistic regression calibration’. The combinations rank based on their Cllr values; the higher 

in rank they are, the lower the Cllr value and the better the FTC system performance is. For 

more information on how to interpret Cllr and Cllrcal, see Section 2.5.4 
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Figure 6 

Tippett Plots of Best-performing Pairs of Statistical Features Separately for Documents of 

700, 1,400, and 2,100 words 

Figure 6 

 

Note. Solid lines represent pre-LRC LRs, dotted lines represent post-LRC LRs, red lines 

represent same-author LRs; blue lines represent different-author LRs. For more 

information on how to read Tippett Plots, see Section 2.5.5 

 

 

(6,7)  
1,400 Words 

(4,7)  
700 Words 
 
 

(6,7)  
2,100 Words 
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document length. It can be observed in Figure 6 that the dotted lines, representing the pre-

LRC LRs, and the solid lines, representing the post-LRC LRs, differ only to a small extent as 

they are almost aligned with each other. Not only that, those intersections of the pre-LRC 

LRs are also neatly aligned with the zero threshold. This coincides with the Cllr
cal values of 

the pre-LRC FTC system that are already very close to zero. These facts indicate that pre-

LRC FTC system has already been well calibrated and does not need another calibration.  

These facts help emphasise that the pre-LRC LRs, are only minimally impacted by 

the LRC calibration even if the impact is favorable and thus make the LRC unnecessary. In 

conclusion, there has been proof in several ways that the LRC rarely brings any significant 

improvement, or in some cases, deterioration, to the FTC system performance. This suggests 

that the LRs derived from the same-author and different-author comparisons of the pre-LRC 

are ready to be interpreted as the weight of evidence.  

So far, I have only presented the results of the LRC on the FTC system with two SFs. 

That said, according to my observation of the results of the LRC on the other SFs and also the 

other feature types, the minimal impacts of the LRC as described in this chapter well resonate 

across all the features. That is, the LRC is deemed to be unnecessary for all the FTC 

experiments conducted for this thesis, irrespective of the features or features types and of the 

dimension of the feature vectors on which the LRC is tested 

Such impacts of the LRC on the FTC system does not strike as a surprise. Although 

Carne and Ishihara (2020) and Ishihara (2014, 2017a, 2017b) demonstrated that the LRC was 

actually needed to calibrate the scores obtained, this need of the LRC occurred because of the 

approaches they used (i.e. the feature-based and similarity-typicality score-based 

approaches). In this thesis, the similarity-only score-based method, unlike the other two said 

approaches, converts the multidimensional feature space to a univariate score space. Since it 

is univariate, it can be appropriately modelled even with a limited amount of data. In the 
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similarity-only-score-based method, if there is a decent amount of data (e.g. the database 

used in this thesis) that can be used to train the score-to-LR conversion model, the score-to-

LR conversion model should return well-calibrated LRs. Previous studies also demonstrated 

that the similarity-only score-based method yielded well-calibrated LRs (Block et al., 2015; 

Garton et al., 2020). Based on LR-based FTC, Ishihara (2021) also showed that the 

similarity-only score-based approach yielded well-calibrated LRs and the LRC was not 

needed.  

Since it is already known that the FTC system built for the purposes of this thesis 

does not need to be calibrated again via LRC, from this point onwards, I would only consider 

and present the pre-LRC LRs which will be assessed via the Cllr values in the following 

experiments conducted for each type of features.  
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Chapter 4 Statistical Features: Results and Discussion 

 The aim of this chapter is to present the results of the experiment on using statistical 

features (SFs) to capture writing idiosyncrasies via likelihood ratios (LRs) and then explore 

meaning of those numerical results in relation to how those results can imply subtleties of 

individuals’ writing styles. In this chapter, I will be presenting the best-performing feature 

combinations for each type of stylometric features in tables and visualising how the FTC 

system performance changes as a function of feature numbers. Then I will be disccusing the 

results’ implications to authors’ differing writing styles.  

 In this thesis, I will only present the most important tables of results in the main text, 

so findings presented here will be as concise as possible. I will be putting full results of all 

the experiments in the Appendices of this thesis for the reader’s reference. For full results of 

SFs, see Appendix A.  

4.1 Best-performing Statistical Features 

 Table 3 summarises the best-performing combinations of SFs across all the 

combinations for each document length with their associated Cllr and Cllr
min

, values. The 

combinations in Table 3 rank according to the Cllr values for each document length. All the 

combinations displayed in Table 3 has one thing in common: they all feature the SFs number 

4 (FK), number 6 (PuncRatio), number 7 (SpecialCharRatio), number 8 (UpperCaseRatio), 

and number 9 (CharNumberPerWord). This makes it safe to conclude that these five features 

are the best performing SFs across all the combination points and all the document lengths. 

Three other SFs that perform well when added to the existing five best performing features, 

especially in the document lengths of 1,400 and 2,100, are the SFs number 1 (TTR), number 

2 (K), and number 5 (DigitRatio). Meanwhile, the SF number 10 (FreqUnusualWordUs) 

seems to be the worst-performing SF among the ten SFs tested in this FTC system as it 

appears only two or three times in the bottom list of the document lengths of 1,400 and 2,100,  



 38 

Table 3 Table 3  

Best-performing Combinations of Statistical Features Separately for Documents of 700, 

1,400, and 2,100 words 

Sample Word 

Number 

Combination of features Cllr  Cllrmin 

700 (3,4,6,7,8,9) 0.814 0.792 

(4,6,7,8,9) 0.814 0.791 

(1,4,6,7,8,9) 0.816 0.791 

(1,4,5,6,7,8,9) 0.817 0.797 

(3,4,5,6,7,8,9) 0.818 0.799 

(2,3,4,5,6,7,8,9) 0.819 0.801 

(1,2,4,5,6,7,8,9) 0.819 0.8 

(1,2,4,6,7,8,9) 0.82 0.8 

(2,3,4,6,7,8,9) 0.821 0.804 

(4,5,6,7,8,9) 0.822 0.8 

1,400 (1,2,4,5,6,7,8,9) 0.669 0.652 

(1,2,4,6,7,8,9) 0.67 0.648 

(1,4,5,6,7,8,9) 0.671 0.655 

(1,4,6,7,8,9) 0.671 0.65 

(2,3,4,5,6,7,8,9) 0.673 0.653 

(2,3,4,6,7,8,9) 0.674 0.656 

(1,2,4,5,6,7,8,9,10) 0.678 0.664 

(3,4,5,6,7,8,9) 0.68 0.662 

(2,3,4,5,6,7,8,9,10) 0.681 0.665 

(1,2,4,6,7,8,9,10) 0.681 0.663 

2,100 (1,4,6,7,8,9) 0.594 0.571 

(1,4,5,6,7,8,9) 0.595 0.575 

(1,2,4,6,7,8,9) 0.596 0.575 

(1,2,4,5,6,7,8,9) 0.597 0.575 

(4,6,7,8,9) 0.601 0.578 

(2,3,4,6,7,8,9) 0.601 0.579 

(1,2,4,5,6,7,8,9,10) 0.601 0.581 

(2,3,4,5,6,7,8,9) 0.601 0.579 

(1,2,4,6,7,8,9,10) 0.602 0.584 

(3,4,5,6,7,8,9) 0.603 0.582 

  

Note. The combinations rank based on their Cllr values; the higher in rank they are, the 

lower the Cllr value and the better the FTC system performance is. For more information 

on how to interpret Cllr and Cllrmin, see Section 2.5.4 
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Table 4 

Table 4 

Results of All the Ten Statistical Features Combined as a Benchmark Comparison to Best-

performing Combinations of Statistical Features Separately for Documents of 700, 1,400, 

and 2,100 words 

Document length Cllr Cllr
min 

700 0.834 0.819 

1,400 0.688 0.671 

2,100 0.611 0.593 
 

 

and does not appear at all in the document length of 700. It is worth noting that the SF 

number 3 (Hapax), although yielding mediocre results when used under the document length 

of 1,400 and 2,100, works considerably well when used under the document length of 700, as 

reflected in it being part of the combination (3,4,6,7,8,9), the best performing SF combination 

of the document length of 700.  

From Table 3, there is no trace of all the ten SFs combined as the best-performing 

combinations for SFs. This means that it does not take all the available SFs for the FTC 

system to get optimal results. Table 4 displays the Cllr and Cllr
min

, values of the combinations 

of all the ten SFs tested at the same experiment setting. It can be observed that the Cllr values 

of the best-performing SF combination in Table 3 are less than those of all the ten SFs in 

Table 4, with the Cllr discrepancies of 0.020, 0.019, and 0.017, for the documents of 700, 

1,400, and 2,100 words respectively. The discriminating power, as reflected in Cllr
min, of 

those ten-feature combinations in Table 4 are also worse than those best-performing 

combinations in Table 3, with the Cllrmin discrepancies of 0.027, 0.019, and 0.022 for the 

documents of 700, 1,400 and 2,100 words respectively. In fact, as in reflected in Table 3 and 

Table 4, one can even surpass the level of results of all the ten SFs as soon as there are only  
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Figure 7 

Visualisation of the Change of Cllr Values as a function of the Number of Statistical 

Features Separately or Documents of 700, 1,400, and 2,100 words  

Figure 7 

 

five features in the experiment. For example, for the documents of 700 words, while the best-

performing combination of all the ten SFs has the Cllr value of 0.834, the five-feature 

combination (4,6,7,8,9)—the second-to-best-performing combination—performs even better 

than the ten-feature combination, boasting the Cllr value of 0.814.  

4.2 Performance of Statistical Features as a Function of the Number of Features 

Figure 7 presents how the increase or decrease in the number of SFs  

correlates with the Cllr values of the best-performing combinations for each combination 

number of SFs. For the documents of 700 words, the FTC system performance starts to 

hardly get any better when there are six SFs at the same experiment setting as the Cllr value 

does not change (Cllr = 0.814) when the number of SFs in one feature combination increases 
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from five to six. The FTC system performance starts to deteriorate in a gradual fashion when 

there are seven or more SFs in the FTC system.  

For 1,400 words, the shift from eight to nine SFs is where the FTC system 

performance gets saturated as the Cllr value increases from 0.669 to 0.678, and the FTC 

system performance starts gradually deteriorating afterwards.  

For 2,100 words, it is not until there are eight SFs in that the FTC system performance 

gets saturated since there is the increase in the Cllr value from 0.595 to 0.597 when the 

number of SFs increases from seven to eight. As with the other two document lengths, the 

FTC system performance continually deteriorates after performance saturation for 2,100 

words.  

4.3 Tippett Plots of the LRs Derived with Statistical Features 

Figure 8 illustrates the Tippett plots of the best-performing combinations of the SFs 

for each document length. The six-feature combination (3,4,6,7,8,9) works best for the 

document length of 700, boasting the Cllr value of 0.814. For 1,400 and 2,100, the eight-

feature combination (1,2,4,5,6,7,8,9) (Cllr = 0.669) and the six-feature combination 

(1,4,6,7,8,9) (0.594) work best respectively. As reflected in the magnitude of the consistent-

with-fact same-author LRs surpassing that of the consistent-with-fact different-author LRs, 

the experiments using a series of SFs provide stronger support for the same-author hypothesis 

more than they do for the different-author hypothesis. For example, considering Figure 4(c), 

the strongest consistent-with-fact same-author LR is 4.619, but the strongest consistent-with-

fact same-author LR is only -1.960.  

However, considering Figure 8, this FTC system using only SFS is still not perfect as 

there is the considerable magnitude of the contrary-to-fact same-author LRs (represented in 

red lines left to the zero threshold) and the contrary-to-fact different-author LRs (represented 

in blue lines right to the zero threshold) in every combination. The magnitude of the contrary- 
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Figure 8 

Tippett Plots of Best-performing Combinations of Statistical Features for Each Document 

length (700, 1,400, and 2,100 Words)  

Figure 8 

 

 

to-fact different-author LRs is even greater than that of the consistent-with-fact different 

author LRs. These contrary-to-fact LRs serve to prove that there are still some errors which 
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Cllr = 0.814 
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contradict the correct hypotheses, especially in the different-author comparisons, and it 

therefore leaves room for improvement. Approaches to the improvement of LR-based FTC in 

terms of counterfactual LRs may be a subject of future study. 

4.4 Discussion 

Now it is known from the SF experiment (see Section 4.1) that if one selects some 

certain features—for example the Flesch-Kincaid readability scores, the ratio of punctuation 

marks, the ratio of special characters, etc—the FTC performance tends to yield good results 

than using the other SFs. I will be discussing these best-performing features in the follow 

discussion. 

The first two well-performing SFs that will be discussed are the Flesch-Kincaid 

readability scores and the average number of characters per word. As explained in Section 

2.4.1, the Flesh-Kincaid readability scores determines how hard it is to read the text. It 

considers the average length of sentence and the number of syllables and words; the longer 

the text is, the harder the text can be read. This makes the Flesch-Kincaid readability scores 

and the average number of characters per word quite alike in the sense that the longer an 

author writes, the more likely the FTC system will be able to discriminate the author’s 

writing from the others’ writings. However, these two features are different in their 

equations, and one has already been tested in LR-based FTC while another has not. My 

speculation regarding the usefulness of the Flesch-Kincaid readability scores and the average 

number of characters per word is that some authors tend to write more difficult, longer 

sentences than others regardless of topics or platforms on which they are writing. There are 

certainly some authors who like to keep it short and simple irrespective of writing settings. 

Therefore, my speculation is that it would not be such a daunting task to discriminate either a 

difficult text which contains a lot of long sentences and long words or a surprisingly short 

text from texts of normal difficulty and length. 
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The other three best-performing SFs are the ratios of punctuations, special characters, 

and uppercase characters. The calculation of these SFs is straightforward: the accumulation 

of these features is divided by the length of sentence within a specific feature type. Thus, 

according to the calculation of these ratios, if an author uses these features more or less than 

usual in their writing, the FTC will be able to discriminate that writing from the others more 

easily than if the author uses these features in a conventional manner as with the other 

authors. My argument for the usefulness of these features is that some writers have a fixated 

way of using punctuations, special characters, and uppercase characters in their writings. For 

example, some authors, especially when they write in an informal manner, write in lowercase 

in most of their writings. Some have a habit of frequently or infrequently using punctuation 

marks and special characters, and sometimes this may be a result of another writing habit. For 

instance, those who write in short sentences tend to end up with more periods than those who 

write in long sentences. Another example is that when there is a need to exemplify what has 

been written prior, some authors tend to use parentheses rather than commas.  

There are also some SFs that perform not as well as the five well-performing SFs that 

have been discussed earlier, especially hapax legomenon (i.e. the frequency of words that 

appear only once) for the documents of 1,400 and 2,100 words, and also the frequency of 

unusual words. Despite featuring in the best-performing SF combination (3,4,6,7,8,9) for the 

documents of 700 words, hapax legomenon, the SF that has yet to be tested in LR-based 

FTC, produces subpar performance compared to the other SFs. The possible explanation for 

this phenomenon is that for the documents of longer length (i.e. 1,400 and 2,100 words), 

hapax legomena have more chance to appear more than once than for the documents of 

shorter length (i.e. 700 words). When there are less hapax legomena, the ratio of hapax 

legomena are supposed to be low across the documents of lower length and regardless of 

topics, making hapax legomenon not as useful as it is for the documents of shorter length. On 
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the other hand, when there are more hapax legomena, there is more chance for its ratio to be 

more varied across the documents of shorter length, making hapax legomena a useful SF for 

the documents of 700 words.  

For the frequency of unusual words, this comes as a surprise since it has been proved 

to work considerably well in FTC within the LR paradigm despite being calculated by 

different spelling dictionaries and on different writing genres and platforms (Ishihara, 2017a, 

2017b). My speculation as to the unusefulness of the frequency of unusual words is that as 

the documents tested in the FTC system are product reviews, they tend to be written in a 

casual manner and not to consist of many unusual words compared to text of more formal 

genres. That said, Ishihara (2017a, 2017b) experimented on LR-based FTC on chatlog 

messages, which can be argued to fall in the informal end of writing genres. One possible 

explanation is that in chatlog messages, it is more likely than in product reviews for authors 

to write unusual words by the standard of a spelling dictionary, which can include personal 

information, abbreviations, acronyms, slangs, etc. In writing chatlog messages, when an 

author overtly or scarcely used unusual words, it may be easier to single out that author from 

the rest than in writing product reviews.  

Within LR-based FTC, Ishihara (2017a, 2017b) made use of lexical features to 

conduct distance-based FTC experiments in chatlog messages and found that the most 

outstanding features are the type-token ratio (TTR) and Yule’s K, while one of the other well 

performing features is the ratio of digits. This is somewhat contrasting to my findings: TTR 

and Yule’s K are not ones of the most robust SFs in the FTC system with which I was 

working, and they are best used as an addition to the existing combinations of the well-

preforming SFs. Regarding the ratio of digits, it functions well when it is tested along with 

the aforementioned robust SFs, but it is not one of the most robust SFs in my FTC system. I 

reckon that this again has to do with different writing platforms on which the FTC systems of 
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this thesis and Ishihara (2017a, 2017b) were built. Chatlog messages are likely to be shorter 

than product reviews, which can determine the discriminating power of vocabulary richness 

measures (i.e. TTR, Yule’s K, Honoré’s R) differently from product reviews. Chatlog 

messages are also expected to include more digits (e.g. personal information, time, etc.), 

leading to the ratio of digits being more powerful for chatlog messages than for product 

reviews. These results from my thesis can also suggest that some certain features (e.g. the 

frequency of unusual words, the vocabulary richness measures, etc.) are more suitable to use 

in an FTC task on one-to-one communication than on one-to-many communication as is the 

case for this thesis. 

The fact that the longer document takes more SFs in order to reach its potential also 

warrants some discussion. To my understanding, the documents of shorter length (i.e. 700 

words) do not provide a great amount of data for the FTC system to work with. This means 

that short documents are likely to be saturated in the FTC system performance more quickly 

than long documents. On the other hand, the documents of longer length (i.e. 1,400 and 2,100 

words) are more auspicious than those of shorter length in terms of an amount of data. 

Consequently, long documents are open for possibilities for the reoccurrences of features 

more than short documents, which leads to that it takes longer for long documents to reach a 

performance saturation point.  
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Chapter 5 Word N-gram Features: Results and Discussion 

 The aim of this chapter is to present the results of the FTC system built by using only 

word n-gram features (WNGs) to derive same-author and different-author likelihood ratios 

(LRs) for different experiment settings. In this chapter, I will be presenting the best-

performing experiment settings using WNGs in tables and visualising how the FTC system 

performance changes as a function of feature numbers. After that, I will be presenting the 

results of the fused FTC system where all the numbers of WNGs are fused together. Lastly, I 

will also discuss the significance of the numerical results where necessary. For full results of 

the experiment settings using WNGs at each number of WNGs, see Appendix B. 

5.1 Best-performing Word N-gram Features  

 Table 5 displays the best-performing experiment settings of WNGs. The most notable 

is that word unigrams (n=1, WN1s) overwhelmingly excel for every document length with 

only several appearances of word bigram (n=2; WN2s) in the bottom half for 1,400 and 2,100 

words. When they reach their potential, the best-performing experiment settings of WNGs, 

which are all WN1s, yield the Cllr values of 0.711, 0.438, and 0.302, and the Cllrmin values of 

0.695, 0.424, and 0.292 for the documents of 700, 1,400, and 2,100 words respectively. What 

is also interesting here is that the numbers of word n-gram features that perform best are not 

around the proximity of 600 features—which are the maximum number of features tested for 

the WNG experiments—but instead are the numbers in the middle range. As can be observed 

in Table 3, 300 WNGs yield the most optimal result for every document length, and the 

middle numbers, such as the likes of 275, 325, 350, and 375 WNGs, dominate the top half of 

the best-performing WNGs for each document length. This is once again the proof that 

sometimes we do not need all available features tested at the same experiment setting to have 

the most optimal results possible. 
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Table 5 

Table 5 

Best-performing Experiment Settings of Word N-gram (n=1,2,3) Features for 700, 1,400, 

and 2,100 Word Lengths 

Sample Word 

Number 

Number of N-gram Number of Features Cllr  Cllrmin 

700 1 300 0.711 0.695 

1 275 0.712 0.697 

1 325 0.721 0.704 

1 350 0.728 0.711 

1 225 0.728 0.712 

1 250 0.728 0.716 

1 125 0.728 0.714 

1 450 0.729 0.712 

1 375 0.729 0.711 

1 175 0.729 0.715 

1,400 1 300 0.438 0.424 

1 275 0.441 0.427 

1 325 0.449 0.435 

1 350 0.452 0.441 

1 375 0.457 0.446 

1 250 0.457 0.443 

1 400 0.46 0.445 

1 225 0.461 0.448 

1 450 0.462 0.45 

2 575 0.464 0.453 

2,100 1 300 0.302 0.292 

1 275 0.305 0.294 

1 350 0.308 0.297 

1 325 0.308 0.298 

1 375 0.311 0.300 

2 600 0.312 0.300 

2 575 0.314 0.300 

2 550 0.314 0.301 

2 525 0.319 0.305 

1 400 0.318 0.307 
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Figure 9 

Cllr Values Plotted against Number of Features of Word Unigrams (n=1), Word Bigrams 

(n=2), and Word Trigrams (n=3) for 700, 1,400, and 2,100 Word Lengths 

Figure 9 

  

(a)  700 Words 

(b) 1,400 Words 

(c) 2,100 Words 
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5.2 Performance of Word N-gram Features as a Function of the Number of Features 

 Although WN1s perform best, it is wise to look at how well WN2s and word trigrams 

(WN3s) perform compared to word unigrams; this is visualised in Figure 9. First off, the FTC 

system performances using different numbers of WNGs fluctuates to a certain degree for 

1,400 and 2,100 words, while the FTC system performs more consistently when the word 

length is 700 words. WN2s and WN3s also take more features than WN1s  to reach their 

peaks. For WN1s, it is known from Table 5 and Figure 9 that the number of features that 

yields the most optimal results is 300 words across every document length. For WN2s and 

WN3s, the numbers of features that yield the best results fall near the maximum end of the 

number of features tested, which are 600 features, as seen in Figure 9(b) and Figure 9(c). 

Unlike WN1s, as the number of features increases, WN2s and WN3s rarely drop in 

performance as they have already taken longer than word unigrams to hit their performance 

ceilings, especially for the documents of 1,400 and 2,100 words. For the documents of 1,400 

words, the FTC system performance of WN2s even starts to overtake that of WN1s when 

there are roughly 475 to 500 features in the FTC system. This also reinforces my stance that 

WN1s cannot effectively handle the higher numbers of features as well as the higher numbers 

of WNGs. 

5.3 Fused FTC System between Word N-gram Features  

The different nature of the different WNGs (n=1,2,3) tested for this thesis might 

extract different pieces of authorial information from text. Those bits of authorial information 

may even complement each other and build up stronger support for authorship hypotheses. 

Provide that this is true, the fusion of the LRs derived with different WNGs will be expected 

to improve the FTC system performance. To investigate whether this is true, the LRs derived 

with different word n-grams were logistic regression fused (LRF).  
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Table 6 

Table 6 

Results of Fused FTC System Using Word N-gram Features (n=1,2,3; Top Table) in 

Comparison to Best Performing Experiment Settings of Word N-gram Features (Bottom 

Table) for 700, 1,400, and 2,100 Word Lengths 

Sample Word 

Number 

Cllr  Cllrmin 

700 0.665 0.651 

1,400 0.363 0.349 

2,100 0.230 0.219 
 

 

Sample Word 

Number 

Number of N-gram Number of Features Cllr  Cllrmin 

700 1 300 0.711 0.695 

1,400 1 300 0.438 0.424 

2,100 1 300 0.302 0.292 
 

 

Table 6 presents the results of the fused FTC system using three different WNGs in 

comparison to those of the best-performing combinations of WNGs adapted from Table 5. 

Overall, the fused FTC system performs considerably better than its corresponding FTC 

systems, especially when the length of the documents in comparison is long. For the 

documents of 700 words, the Cllr value of the fused system is better than that of the best-

performing experiment setting of WNGs by a Cllr of 0.046. Nonetheless, for the documents of 

longer length (1,400 and 2,100 words), the Cllr values of the fused system beat those of the 

corresponding best-performing settings by a Cllr of 0.075 and 0.072 respectively. The 

dricriminating power, as reflected in the Cllrmin values, also see an improvement following 

the LRF, with the Cllrmin improvements of 0.044, 0.075, and 0.085 for the documents of 700, 

1,400, and 2,100 words respectively. The fact that the LRF leads to the better FTC system 

performance has proved that different numbers of WNGs can tell us distinctive yet 

complementary authorial information on written text.  
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The success following the LRF implies the strong complimentary relations between 

the three different numbers of WNGs. To explain, although WN1s manage to give us the best 

results for WNGs, they cannot capture sequential information in the way WN2s and WN3s 

do since WN1s are the orderless presentations of text (i.e. the presentations where only the 

most frequent WNGs and their relative frequencies are extracted). With the assistance of the  

LRF, the fused FTC system may take advantage of the high discriminating power of WN1s 

and the order-minded representation of text of WN2s and WN3s. 

5.4 Tippett Plots of Fused FTC System between Word N-gram Features 

 Figure 10 displays the Tippett plots of the fused FTC system with the three different 

WNGs (n=1,2,3) in comparison to the FTC system with each of the n-gram which performs 

the best for each document length. Visual inspection may not say much about the changing 

magnitude of LRs before and after fusion, especially for the documents of 700 words. That 

said, a closer visual inspection reveals that when the FTC system performance improves 

because of the LRF and the Cllr value increases, the magnitude of the fused LRs is seen to be 

somewhat bigger than before the LRF. For example, for the documents of 2,100 words, the 

magnitude of the fused same-author LRs (Figure 10(f)) is seen to be farther away from the 

threshold of log10LR of 0 (i.e. exceeding the magnitude of log10LR of 15) than the same-

author LRs of the best-performing experiment setting in the pre-fusion FTC system (Figure 

9(c)); this is reflected in the Cllr discrepancy of 0.072 and the Cllrmin discrepancy of 0.073. 

However, there is still the same problem as in Section 4.3 occurs here as well. That is, 

the bigger magnitude of the consistent-with-fact LRs comes with the cost of the bigger 

magnitude of the contrary-to-fact, especially different-author, LRs. As can be observed in 

Figure 10(b) and Figure 10(c), the magnitude of the contrary-to-fact different-author LRs is 

seen to be somewhat bigger than that of the corresponding pre-fusion FTC systems. 
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Figure 10 

Tippett Plots of Fused System between LRs Derived with Different Word N-gram (n=1,2,3) 

Features in Comparison to Those of Best-performing Experiment Settings of Word N-gram 

Features for 700, 1,400, and 2,100 Word Lengths 

Figure 10 

 

 

 

 

Note. N stands for the number of word n-gram, while FN stands for the number of features.  

700 Words 
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Figure 10 (Continued) 

 

 

Note. The magnitude of the consistent-with-fact different-author LRs (represented in blue 

solid lines left to the zero threshold) goes beyond the range of x-axis. 

 

Minimising the magnitude of contrary-to- fact LRs, both before and after the LRF, while 

maintaining, or even improving, the magnitude of consistent-with-fact LRs, is a future study 

topic that should be pursued. 

5.5 Discussion  

Although low in dimensional compared to WN2s and WN3s, WN1s have 

outperformed the other numbers of WNGs. Moreover, it does not take long at all for WN1s 

(300 WN1s) to achieve their full potential for every document length. The high 

discriminating power of WN1s in this thesis resonates some observations in the previous 

author analysis studies. An observation made by Coyotl-Morales et al. (2006) and Sanderson 

and Guenter (2006) suggested that stylometric features built on a WNG model with the 

higher numbers of n do not yield an outstanding classification accuracy compared to 

individual word features or WN1s. This is because the dimensionality of the identification 

2,100 Words 
Fused 

2,100 Words 
N=1, 300FN 

(c) (f) 
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task increases as an n increases to account for the increasing possible WNG combinations. 

WNGs with the high number of n may result in the sparse representation of WNGs as most 

WNG combinations will not be found in an WNG-modelled document, especially in a short 

one (Stamatatos, 2009). Furthermore, Gamon (2004) also pointed out higher numbers of 

WNGs may unintentionally capture content-specific information instead of individual 

stylistic information. Meanwhile, Sari et al. (2018) also supported this stance, saying that the 

content-based features, including WN1s, are highly effective in dealing with authorship 

analysis tasks on data that have high topic diversity.  

With regard to LR-based FTC, I think the observations made in authorship analysis 

studies also apply to the phenomenon we are experiencing now. One possible explanation is 

when the documents in comparison are modelled using the WN1 model, the documents are 

modelled into the strings of the resultant individual word features, or to put it simply, words, 

with their associated frequencies. When individual words are used as features, they are more 

likely to be found used in the testing database than WN2s or WN3s. This makes the model 

representation of WN1s denser, making WN1s able to capture the stylistic information better 

than the higher numbers of WNGs. According to Sari et al. (2018), WN1s are supposed to 

work well since product reviews are written in a variety of topics. That said, ambiguity still 

prevails as to why only 300 features, or in this case words, outperform the higher numbers. I 

reckon that due to a short amount of data (i.e. only 700 to 2,100 words), the documents in 

comparison cannot handle the high dimensionality of the FTC task generated by the high 

numbers (~600) of features (words) as effectively as the lower (~300) numbers. The 

fluctuation of the FTC system performance as a function of the number of features here may 

warrant a future study.   
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Chapter 6 Character N-gram Features: Results and Discussion  

 The aim of this chapter is to present the results of the FTC system built by using 

character n-grams (CNGs) to derive same-author and different-author LRs for different 

experiment setting. I will be presenting the best-performing experiment settings using CNGs 

in a table and visualising how the FTC system performance changes as a function of feature 

numbers. The fused FTC system between different CNGs (n=1,2,3,4) will then be presented. 

Discussion as to the implications of the numerical results and the visualisation of the LRs 

derived will then be made. For full results of the experiment settings at each number of 

CNGs, see Appendix C.  

6.1 Best-performing Character N-gram Features 

Table 7 presents the best-performing experiment settings of CNGs for every 

document length. Unlike word n-gram features (WNGs), an n-gram of two (n=2) of CNGs, or 

character bigrams (CN2s), is the best-performer for character n-gram features, securing a 

place in every experiment setting in Table 7. At its highest capacity, the best-performing 

experiment settings of CNGs, which are all CN2s, yield the Cllr values of 0.722, 0.498, and 

0.356, and the Cllrmin values of 0.710, 0.483, 0.342, for the documents of 700, 1,400 and 

2,100 words respectively. Worth notetaking is that the number of CNGs that performs best is 

now the maximum number of CNGs features tested, which is 1,000. This is also unlike the 

experiments on WNGs where the best-performing number of features is only 300 with 

WN1s.   

6.2 Performance of Character N-gram Features as a Function of the Number of 

Features 

The performances of the three different CNGs can be visually observed in Figure 11. 

In general, when the lower numbers of features (<400 features) are used, the point 

representing the Cllr values of all the numbers of CNGs are closely grouped together as 
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Table 7 

Table 7 

Best-performing Experiment Settings of Character N-gram Features for 700, 1,400, and 

2,100 Word Lengths 

Sample Word 

Number 

Number of N-gram Number of Features Cllr  Cllrmin 

700 2 1,000 0.722 0.710 

2 875 0.722 0.708 

2 825 0.723 0.710 

2 975 0.724 0.710 

2 850 0.724 0.711 

2 900 0.724 0.711 

2 950 0.725 0.711 

2 925 0.726 0.710 

2 800 0.726 0.713 

2 775 0.729 0.714 

1,400 2 1,000 0.498 0.483 

2 875 0.500 0.487 

2 700 0.501 0.487 

2 975 0.501 0.489 

2 900 0.501 0.487 

2 950 0.502 0.488 

2 850 0.502 0.489 

2 675 0.503 0.491 

2 825 0.503 0.489 

2 725 0.504 0.490 

2,100 2 1,000 0.356 0.342 

2 875 0.356 0.344 

2 850 0.357 0.344 

2 950 0.357 0.342 

2 900 0.358 0.347 

2 975 0.358 0.343 

2 925 0.358 0.344 

2 825 0.359 0.346 

2 675 0.360 0.349 

2 700 0.362 0.350 
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Figure 11 

Cllr Values Plotted against Number of Features of Character Unigrams (n=1), Character 

Bigrams (n=2), Character Trigrams (n=3), and Character Quadgrams (n=4) for 700, 

1,400, and 2,100 Word Lengths 

Figure 11 

 

 

Note. The maximum number of character unigrams (n=1) tested is 90.  

(a) 700 Words 

(b) 1,400 Words 

(c) 2,100 Words 
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Table 8 Table 8 

Results of Fused FTC System Using Character N-gram Features (n=1,2,3,4; Top Table) in 

Comparison to Results of Best Experiment Settings of Character N-gram Features (Bottom 

Table) for 700, 1,400, and 2,100 Word Lengths 

Sample Word 

Number 

Cllr  Cllrmin 

700 0.679 0.666 

1,400 0.433 0.421 

2,100 0.297 0.228 
 

 
Sample Word 

Number 

Number of N-gram Number of Features Cllr  Cllrmin 

700 2 1,000 0.722 0.710 

1,400 2 1,000 0.498 0.483 

2,100 2 1,000 0.356 0.342 
 

 

observed in Figure 10, which means that the FTC system performances of different numbers 

of character n-grams tend not to differ from each other much during the lower numbers of 

features. However, when there are more than 400 features in the FTC system, the FTC 

system performances across CN2s, character trigrams (CN3s), and character quadgrams 

(CN4s) start to part from each other. Like character bigrams, CN3s and CN4s all take very 

long in term of the number of features to reach their peaks, with CN4 slightly outperforming 

CN3s (see Figure 10). CN1s, despite being tested only at 90 features maximum (in this case 

characters) due to the reason mentioned in Section 2.4.2.2, yield surprisingly good results 

with their best performers providing the Cllr values of 0.807, 0.655, and 0.553 for 700, 1,400, 

and 2,100 words respectively. Interesting is the fact that it does not take long for CN1s to hit 

their performance ceilings for 700 (50 features) and 1,400 words (60 features); but for the 

longer documents as in those of 2,100 words, it takes 90 features for CN1s to reach their 

peak. This resonates with the authorship discrimination performance of WN1s which also 

needs the mid-range number of n-grams tested (300 out of 600 features) to reach their 

optimal point.  



 60 

6.3 Fused FTC System Between Character N-gram Features 

 When the LRs derived from different CNGs (n=1,2,3,4) are logistic regression fused 

(LRF), the fused FTC system once again considerably outperforms the separate pre-fusion 

FTC systems as shown in Table 8. The LRF results in the improvements of the Cllr values of 

0.043, 0.065, and 0.059, and the improvements of the Cllrmin values of 0.044, 0.062, and 

0.114, for the documents of 700, 1,400, and 2,100 words respectively.  

 What the fused FTC system of CNGs have in common with that of WNGs is that the 

LRF seems to work better with documents of longer length (i.e. 1,400 and 2,100 words) as 

the Cllr and Cllrmin improvements for the documents of longer length are higher than that of 

the documents of shorter length for both fused systems.  

6.4 Tippett Plots of Fused FTC System Between Character N-gram Features  

The magnitude of the LRs derived with the different CNGs, in comparison to that of 

the corresponding systems, can be visually observed in Figure 12. Although the degree of 

improvement in terms of Cllr is smaller in CNGs than in WNGs after the LRF, the effects of 

the LRF can still be observed. For instance, visual inspection of Figure 12(b) and Figure 

12(e) reveals that for the documents of 1,400 words the LRF has the magnitude of the fused 

contrary-to-fact different-author LRs smaller than that of the pre-fusion counterparts (i.e. 

from exceeding the magnitude of 20 to around the magnitude of 13). For the documents of 

2,100 words, the LRF also causes the magnitude of the fused contrary-to-fact different-author 

LRs to be smaller than the unfused counterparts. However, partly because of the lower Cllr 

discrepancies, the Tippett plots for the documents of 700 words are almost identical to each 

other with only minor improvements in fused consistent-with-fact LRs. In sum, the logistic 

regression is seen to bring some positive improvement towards the fused FTC system 

performance, especially in minimising the magnitude of the contrary-to-fact LRs.  
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Figure 12 

Tippett Plots of Fused System between LRs Derived with Different Character N-gram 

(n=1,2,3,4) Features in Comparison to Those of Best-performing Experiment Settings of 

Character N-gram Features for 700, 1,400, and 2,100 Word Lengths 

Figure 12 

 

Note. The magnitude of the consistent-with-fact LRs in Figure 11(e) goes beyond the range 

of x-axis 
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700 Words 
Fused 
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Figure 12 (Continued)  

 

Note. The magnitude of the consistent-with-fact same-author LRs in Figure 11(c) and 

Figure 11(f), and the magnitude of the contrary-to-fact different-author LRs goes beyond 

the range of x-axis. 

 

In terms of fixing errors, the LRF does wonders to the fused LRs derived with different 

CNGs. However, it cannot be denied that there are still the considerable magnitude of 

contrary-to-fact LRs to help correct, especially for the documents of 1,400 and 2,100 words. 

The reduction in the magnitude of contrary-to-fact LRs also comes at the cost of the 

reduction in the magnitude of consistent-with-fact LRs. For example, considering Figure 

12(b) and Figure 12(e), the counterfactual same-author LRs gets much more conservative 

after the LRF (from exceeding the magnitude of 20 to around the magnitude of 17). Ways to 

minimise the counterfactual LRs while also maintain or improve the consistent-with-fact LRs 

are a topic of focus in future research. 

2,100 Words 
Fused 

2,100 Words 
N=2 1,000FN 
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6.5 Discussion 

The fact that CN2s work best in the FTC system of CNGs here may contribute a 

surprising finding to authorship analysis studies. As several authorship analysis studies 

discussed, the higher numbers of CNGs, usually from three to five, yielded best results for 

documents of medium (~1,000) to long (>10,000) length (Stamatatos, 2009; Peng et al., 

2003). For instance, Keselj et al. (2003) found out that the higher numbers of CNGs, 

including four, five, six, seven, and eight, yielded the best classification accuracies for 

authorship attribution tasks on their English datasets. Despite the high discriminating power 

of the higher numbers of CNGs in many authorship analysis studies, several studies also 

report the high discriminating capacity of WN2s as well. Testing CNGs from the range of 

two to nine in attribution tasks on a newspaper corpus, Grieve (2007) achieved high 

classification accuracies for using CN2s. Forsyth and Holmes (1996) conducted a study to 

find out who the original writer of the Federalist Papers was, and found that that CN2s, 

when used in conjunction with other types of features, can effectively capture both stylistic 

and content information of the documents in comparison.  

 What is obvious now is that CN2s may not work as effectively as for this thesis in 

other author attribution tasks or different experiment settings; however, ambiguity still looms 

as to the reason why. One possible explanation is that since the previous authorship analysis 

studies (Stamatatos, 2009; Peng et al., 2003) made use of long documents, accurate CNG 

models could be built with the high numbers of CNGs. Thus, if this thesis had made use of 

documents of longer length, CN3s or CN4s might have worked better than CN2s. Another 

possible reason is the topic diversity of the FTC task conducted for this thesis. Grieve (2007) 

pointed out that although the higher numbers of CNGs may be a good indicator of topic, they 

cannot be a good indicator of authorship or style at the same time. Grieve also argued that 

since his study conducted on a newspaper corpus achieved good classification accuracies 
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with CN2s, the lower numbers of n-grams may be good at discriminating authorship. For this 

thesis, product reviews of various topics were pooled together to be concatenated into author 

profiles, so such an FTC task is not a topic-based classification as in Peng et al.(2003) or 

Keselj et al. (2003). This may be the reason why CN2s work best for the topic-diverse FTC 

task conducted for this thesis.  

 Another worth discussing topic is the number of features that yields the optimal 

results for CNGs. As discussed earlier, 1,000 CNGs work best for every document length. 

This seems to be the case for many authorship analysis studies irrespective of which number 

of CNGs works best. For example, Houvadas and Stamatatos (2006) conducted an 

experiment using the higher numbers of CNGs (from three to five) to identify authorship in a 

newspaper corpus, and their classification algorithm works best when it is working with the 

highest number of CNGs. In Grieve (2007), the classification algorithm works best for the 

lower numbers of CNGs when the highest number of CNGs that has the minimum count of 

ten is set. Stamatatos (2013) argued for the usefulness of CNGs in dealing with the high 

dimensional data that since they are smaller than the other types of features (e.g. WNGs and 

PNGs), each number of CNGs can be better trained with a higher amount of data. According 

to the previous studies, I suspect that the CNGs would work even better if the maximum 

number of features went beyond 1,000. For now, based on this thesis, it seems to me that 

CNGs work best when they are used at the maximum number that a text comparison can 

manage. However, the optimal number of features may change depending on different 

conditions of authorship analysis experiments.  
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Chapter 7 Part-of-speech N-gram Features  

 The aim of this chapter is to explore the results of the FTC system with part-of-speech 

n-gram features (PNGs). As with the other results chapters, I will be presenting the best-

performing experiment settings of PNGs and visualizing how the FTC system performance 

changes as a function of feature numbers. After that, the fused FTC system between PNGs 

and the magnitude of the fused LRs derived with PNGs will be presented. Eventaully, I will 

discuss the significance of the results. For full results of the experiment settings at each 

number of PNGs, see Appendix D.  

7.1 Best-performing Part-of-speech N-gram Features  

Table 9 gives us an overview of the best-performing experiment settings of PNGs for 

every document length with their Cllr and Cllrmin values. The best performers among PNGs 

are part-of-speech bigrams (PN2s) with their appearances in the top-ten best performers for 

every document length. The numbers of features that perform best here are those that fall in 

the mid-to-high tested range (out of 600 features), which are 525 for the documents of 700 

words and 400 for those of 1,400 and 2,100 words. The FTC system performance with PNGs 

under the best experiment circumstances yields the Cllr values of 0.714, 0.486, and 0.342, 

and the Cllrmin values of 0.696, 0.473, 0.329 for the documents of 700, 1,400, and 2,100 

words respectively. What is also worth pointing out is that the documents of shorter length 

(i.e. 700 words) require the higher number of features (i.e. 525 features) for PNGs to reach 

their performance potential, while those of longer length (i.e. 1,400 and 2,100 words) need 

the lower number of features (i.e. 400 features) to do so. A question may arise as to why 525 

PN2s work best for the documents of shorter length but not for those of longer length. This is 

counterintuitive as, in my opinion, the shorter documents should need the lower number of 

features while the longer documents the higher number of features.   
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Table 9 

Table 9 

Best-performing Experiment Settings of Part-of-speech N-gram Features for 700, 1,400, 

and 2,100 Word Lengths  

Sample Word 

Number 

Number of N-gram Number 

of 

Features 

Cllr  Cllrmin 

700 2 525 0.714 0.696 

2 450 0.715 0.698 

2 475 0.715 0.700 

2 425 0.717 0.696 

2 500 0.717 0.701 

2 550 0.718 0.700 

2 400 0.719 0.697 

2 600 0.721 0.708 

2 575 0.722 0.705 

2 375 0.725 0.703 

1,400 2 400 0.486 0.473 

2 425 0.487 0.474 

2 525 0.488 0.474 

2 600 0.488 0.476 

2 500 0.489 0.477 

2 450 0.489 0.478 

2 475 0.489 0.476 

2 550 0.489 0.476 

2 375 0.490 0.478 

2 575 0.491 0.479 

2,100 2 400 0.342 0.329 

2 425 0.343 0.331 

2 525 0.344 0.331 

2 475 0.345 0.332 

2 450 0.347 0.334 

2 500 0.348 0.334 

2 550 0.350 0.335 

2 600 0.350 0.336 

2 375 0.351 0.340 

2 575 0.355 0.340 
 

 

7.2 Performance Saturation of Part-of-speech N-gram Features  

The comparison of the performances of different PNGs is visually represented in 

Figure 13. The performances of all the numbers of PNGs seem to work in a similar tendency; 

that is, they tend to significantly improve until approximately 50 to 75 features and then 
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hardly improve or deteriorate at all. Considering Figure 13, after the three FTC subsystems 

have around 50 to 75 features, the points plotted for the Cllr values hardly fluctuate at all. 

This results in that the Cllr values of the performance peaks of the three different PNGs for 

every document length are not much higher than those that are around the peaks.  

Although being tested at only 40 features due to that part-of-speech categories are far 

less than words or characters, PN1s put in a competitive performance, with their top-

performers boasting the Cllr values of 0.752, 0.564, and 0.439 for the documents of 700, 

1,400, and 2,100 words respectively. PN1s seem to work best at the higher numbers of 

features (30 to 40 or part-of-speech tags). PN3s at their best experiment settings are not 

losing to PN2s by much, with only little Cllr discrepancies when compared to the top 

performers (PN2s) as PN3s claim the Cllr values of 0.764, 0.535, and 0.399 for the documents 

of 700, 1,400 and 2,100 words respectively. Note that for the documents of shorter length 

(i.e. 700 words), PN1s (Cllr=0.752) perform better than PN3s (Cllr=0.764).  

7.3 Fused FTC System between Part-of-speech N-gram Features 

The logistic regression fusion (LRF) was applied to the LRs derived with the different 

PNGs (n=1,2,3), and the Cllr and Cllr
min values of the fused FTC system with the different 

PNGs and of the pre-fusion FTC system of PNGs can be observed in Table 10. The fused 

FTC system performs better than the pre-fusion FTC systems. The fused FTC system of 

PNGs reports the Cllr improvements of 0.036, 0.033, and 0.021 and the Cllr
min improvements 

of 0.036, 0.046, and 0.032 for the documents of 700, 1,400, and 2,100 words respectively. 

Another phenomenon that is unlike what we saw in the previous experiments that the LRF 

seems not to work with the documents of longer length (i.e. 1,400 and 2,100 words) than 

those of shorter length anymore as the Cllr improvements for the documents of 700 words is 

the highest (0.036) compared to 1,400 (0.033) and 2,100 (0.021) respectively. 

  



 68 

Figure 13 

Cllr Values Plotted against Number of Features of Part-of-speech Unigrams (n=1), Part-

of-speech Bigrams (n=2), and Part-of-speech Trigrams (n=3) for 700, 1,400, and 2,100 

Word Lengths Figure 13 

 

 

 

Note. Part-of-speech unigrams (PN1s) are tested at only 40 features maximum.  

(a) 700 Words 

(b) 1,400 Words 

(c) 2,100 Words 
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Table 10 Table 10 

Results of Fused FTC System Using Part-of-speech N-gram Features (n=1,2,3; Top Table) in 

Comparison to Results of Best Experiment Settings of Part-of-speech N-gram Features 

(Bottom Table) for 700, 1,400, and 2,100 Word Lengths 

Sample Word 

Number 

Cllr  Cllrmin 

700 0.678 0.660 

1,400 0.453 0.440 

2,100 0.321 0.310 

 

Sample Word 

Number 

Number of N-gram Number of 

Features 

Cllr  Cllrmin 

700 2 525 0.714 0.696 

1,400 2 400 0.486 0.473 

2,100 2 400 0.342 0.329 

 

7.4 Tippett Plots of Fused FTC System Between Part-of-speech N-grams 

 Figure 14 displays the Tippett plots of the fused FTC system between the different 

PNGs compared to those of the pre-fusion FTC system of PNGs. The performance 

improvement in terms of Cllr between pre- and post-fusion in not extensive for PNGs; 

accordingly, the magnitude of improvement manifested in the Tippett plots of the fused LRs 

is not as evident. Considering Figure 14(a) and Figure 14(d), even the fused and pre-fusion 

FTC systems for the documents of 700 words, which have the highest Cllr improvement 

(0.036) out of three, only see some minimal improvements to the consistent-with-fact 

different-author LRs and the contrary-to-fact same-author LRs. Unlike the document of 700 

words, the effect of the LRF is more noticeable for the documents of longer lengths (i.e. 

1,400 and 2,100 words). For the document of 1,400 words, the magnitude of the fused 

consistent-with-fact different-author LRs of extends to the magnitude of Log10LR of -20. For 

the documents of 2,100 words where the Cllr improvement is lowest (0.021), there are 
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Figure 14 

Tippett Plots of Fused System between LRs Derived with Different Part-of-speech N-gram 

(n=1,2,3) Features in Comparison to Those of Best-performing Experiment Settings of 

Part-of-speech N-gram Features for 700, 1,400, and 2,100 Word Lengths Figure 14 

 

 

 

Note. The magnitude of the consistent-with-fact different-author LRs in Figure 13(b) goes 

beyond the range of x-axis. 
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Figure 14 (Continued) 

  

Note. The magnitude of the consistent-with-fact different-author LRs in Figure 13(c) and 

Figure13(f) goes beyond the range of x-axis.  

 

barely any visual differences between the Tippett plots of the fused and pre-fusion FTC 

system. Having been minimised to a small extent, the magnitude of contrary-to-fact LRs for 

both fused and pre-fusion FTC systems are still noticeable. This again would be a subject of 

future study to see to these faults.  

7.5 Discussion 

  Unlike the previous studies, it is interesting to see the superior performance of PN2s 

in the current study. PN2s can capture sequential information, something that PN1s cannot 

comprehend. Between PN2s and PN3s, the occurrences of the latter are naturally less than 

PN1s and PN2s; this naturally makes PN3s less supported by data. Therefore, PN2s can be 

seen to be a perfect balance of PN1s and PN3s: they can capture hidden individual authorial 

information of text and allow the reoccurrences of PNGs as they are not as high dimensional 

as PN3s.  

2,100 Words 
Fused 

2,100 Words 
N=2 400FN 
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Different performance saturation points among PNGs warrants some discussion. For 

every number of PNGs, there is in need of higher numbers of features to achieve the optimal 

results. However, PNGs does not need to reach the maximum number of features tested in 

this thesis to reach their optimal points. I believe that this has to do with nature of PNGs. 

That said, for this thesis, the high, but not maximum, numbers of PNGs may be enough to 

best capture stylistic information, as the individual features themselves (words/POS tags or a 

string of words/POS tags) can at least tell us something without complementarities with the 

other features in their respective types of features. Unlike CNGs which are considered more 

statistically auspicious than the other types of n-gram features, they need the highest number 

of features allowed to be able to have the same level of the discriminating power as the other 

types of features because the individual features themselves (characters or a string of 

characters) do not tell much as to individual writing style. The FTC system performance of 

PNGs, especially of PN2s and PN3s, seems to be stable, or deteriorating by a slight margin, 

after they reach their optimal points. This is probably because when the number of features 

increases, there tends to be the problem of data sparsity which causes a lot of zero 

occurrences of PNGs of higher feature numbers for some documents of some authors, forcing 

the FTC system performance not be able to gain new information more than those features of 

lower feature numbers. 

 

 

  



 73 

Chapter 8 Fused FTC System between Statistical, Word N-gram, Character N-gram, 

and Part-of-speech N-gram Features 

 The aim of this chapter is to present and discuss the results of the fused FTC system 

between the different types of features tested in this thesis. Firstly, I will be presenting and 

discussing the fused FTC system performance of each feature type and compare it to one 

another. Eventually, we will be investigating and discussing the fused FTC system 

performance between all the types of features to see how much it is improved from the fused 

FTC systems of each feature type.   

8.1 Fused FTC System Performance of All Feature Types 

  Table 11 displays the performances of the best-performing combinations of statistical 

features (SFs; Section 4.1), and the fused FTC systems of word n-grams (WNGs; Section 

5.3), character n-grams (CNGs; Section 6.3), and part-of-speech n-grams (PNGs; Section 

7.3). As is evident, comparing the different fused systems of the different feature types, 

WNGs yield the best fused results, claiming the Cllr values of 0.665, 0.363, and 0.230, and 

the Cllrmin values of 0.651, 0.349, and 0.219 for the documents of 700, 1,400 and 2,100 

words respectively as observed in Table 11(b). The second-to-best performing fused FTC 

system is that between the different character n-gram features (Table 11(c)), while the 

second-to-last performing fused FTC system is that between the different part-of-speech n-

gram features (Table 11(d)). Note that for the documents of shorter length (i.e. 700 words), 

the fused FTC system between PNGs works slightly better than that between CNGs, as can 

be seen in the Cllr discrepancy of 0.001 and the Cllrmin discrepancy of 0.006 between the two 

fused FTC systems. The best-performing combinations of SFs (Table 11(a)) generally 

perform worse than the three fused FTC systems; their Cllr values differ to those of the best-

performing fused FTC system (that of WNGs) by margins of 0.149, 0.309, and 0.364, and  
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Table 11 

Table 11 

Performances of Fused FTC Systems of Statistical Features (a), Word N-gram Features 

(b), Character N-gram Features (c), and Part-of-speech N-gram Features (d) for 700, 

1,400, and 2,100 Word Lengths with the Highest Cllr and Cllrmin values Highlighted in 

Bold Separately for Each Word Length 

(a) Statistical Features  

Sample Word 

Number 

Combination of features Cllr  Cllrmin 

700 (3,4,6,7,8,9) 0.814 0.792 

1,400 (1,2,4,5,6,7,8,9) 0.669 0.652 

2,100 (1,4,6,7,8,9) 0.594 0.571 

(b) Word N-gram Features 

Sample Word 

Number 

Cllr  Cllrmin 

700 0.665 0.651 

1,400 0.363 0.349 

2,100 0.230 0.219 

(c) Character N-gram Features  

Sample Word 

Number 

Cllr  Cllrmin 

700 0.679 0.666 

1,400 0.433 0.421 

2,100 0.297 0.228 

(d) Part-of-speech N-gram Features  

Sample Word 

Number 

Cllr  Cllrmin 

700 0.678 0.660 

1,400 0.453 0.440 

2,100 0.321 0.310 
 

Note. (a) is the best-performing combinations of statistical features for every word length 

(700, 1,400, and 2,100 words). (a) is adapted from Table 3 (Section 4.1), (b) Table 6 

(Section 5.3), (c) Table 8 (Section 6.3), and (d) Table 10 Section (7.3). 
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Table 12 

Table 12 

Performances of Fused FTC Systems All Types of Features Including Statistical Features, 

Word N-gram Features, Character N-gram Features, and Part-of-speech N-gram Features 

for 700, 1,400, and 2,100 Word Lengths  

Sample Word 

Number 

Cllr  Cllrmin 

700 

0.569 0.554 

1,400 

0.309 0.298 

2,100 

0.192 0.183 
 

 

their Cllrmin values by margins of 0.141, 0.303, and 0.352, for the documents of 700, 1,400, 

and 2,100 words respectively.   

8.2 Fused FTC System Performance between All Types of Features 

 Table 12 displays Cllr and Cllrmin values of all the types of features tested for thesis 

combined, which are SFs, WNGs, CNGs, and PNGs. In comparison to the best-performing 

fused FTC system of a feature type, which is that of WNGS as mentioned in Section 8.1, the 

fused FTC system between all the feature types enjoys the Cllr improvements of 0.096, 

0.054, and 0.042, and the Cllrmin improvements of 0.097, 0.051, and 0.036, for the documents 

of 700, 1,400, and 2,100 words respectively. Evident is that the improvements in the fused 

FTC system performance between all the feature types fluctuate with the document length. It 

can be observed that the LRF obviously improves the fused FTC system performance 

between all the feature types, but as the document length increases, the Cllr and Cllrmin 

improvements gradually weaken.  
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Figure 15 

Tippett Plots of Fused System between LRs Derived with Different Types of Features 

Including Statistical, Word N-gram (n=1,2,3), Character N-gram (n=1,2,3,4), and Part-of-

speech N-gram (n=1,2,3) Features in Comparison to Those Derived with Different Word 

N-gram Features for 700, 1,400, and 2,100 Word Lengths 

Figure 15 

 

 

Note. ‘All’ indicates that the Tippett plots show the LRs derived with all the feature types, 

while ‘WNGs’ indicates that the Tippett plots show the LRs derived with fused word n-

gram features. The magnitude of the consistent-with-fact same-author LRs goes beyond the 

range of x-axis in Figure 14(f).  
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Figure 15 (Continued) 

 

 

 

8.3 Tippett Plots of Fused FTC System Performance between All Types of Features  

 Figure 15 visualises the quality of the derived LRs of the fused FTC system 

performance between all the features in comparison to those of the fused FTC system 

performance between the different WNGs, the best-performing individual fused FTC system.  

 In comparison to the Tippett plots showing the fused LRs derived with the different 

WNGs, the magnitude of the fused LRs derived with all the types of features has seen some 

improvements. For example, for the documents of 700 words, the magnitude of the fused 

consistent-with-fact same-author and different-author LRs derived with all the types of 

features in Figure 15(a) goes farther away from the zero threshold than that with the different 

WNGs in Figure 15(d). For the documents of 1,400 words, the fused consistent-with-fact 

LRs, both same-author and different-author, derived with all the types of features are also 

generally greater, as in Figure 15(b), than that of the fused consistent-with-fact LRs derived 

with the different WNGs, as in Figure 15(e). The LRF also helps minimise the magnitude of 

the fused contrary-to-fact LRs; as for the documents of 2,100 words, the magnitude of the 
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fused contrary-to-fact different-author LRs derived with all the types of features, as in Figure 

15(c), is weaker than that with the different WNGs, as in Figure 15(f). All the improvements 

in the magnitude of the fused LRs described above contribute to improved values for the 

metrics (as reflected in the Cllr improvements described in Section 8.2) and the better 

discriminating power (as reflected in the Cllrmin improvements in Section 8.2) than the fused 

FTC system with the different WNGs. 

 Despite some improvements, the LRF also brings about some downgrades to the 

fused FTC system performance between all the types of features. The most obvious is the 

greater fused contrary-to-fact different-author LRs for the documents of 700 words (from the 

magnitude of almost 5 in Figure 15(d) to almost 8 in Figure 15(a)). The magnitude of The 

LRF also weakens the fused consistent-with-fact LRs in some cases; as for the documents of 

2,100 words, it weakens the magnitude of the fused consistent-with-fact same-author LRs 

(from the magnitude of exceeding 20 in Figure 15(f) to approximately 20 in Figure 15(c). As 

I have been constantly saying throughout this thesis, future research that looks into how to 

improve the LRF performance in LR-based FTC or techniques that can minimise the 

magnitude of the contrary-to-fact LRs while maintain, or in a better case, improve, the 

magnitude of the consistent-with-fact LRs. 

8.4 Discussion 

8.4.1 Observation about Fused FTC System Performance of Each Type of Features 

The best performance of the fused FTC system between WNGs in this thesis has not 

been foretold by existing literature. To begin with, in authorship analysis studies that 

experimented on various types of features, the complementarities of WNGs, when two or 

more numbers of WNGs are combined, have often been regarded as not as useful as those of 

the other types of features and therefore should be used in conjunction with other types of 

features (Gamon, 2004; Sari et al, 2018). For example, Sari et al. (2018) conducted an 
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authorship attribution task on various datasets (e.g. judgment writings, newspapers, and 

movie reviews, etc.), featuring the combination of WNGs, the combination of CNGs, and the 

combination of both in their classification algorithm; they found that the combination of 

CNGs and the combination of WNGs and CNGs are generally superior to that of only WNGs 

in terms of the classification accuracies across all the datasets. It is reported that the lesser 

contribution of WNGs to a classification algorithm as a whole may result from that WNGs, 

especially of higher numbers, may not be found at all in the testing database, especially for 

short documents, forcing bits of stylistic information to go undetected (Stamatatos, 2009, 

Tambouli & Prasad, 2019).  

 What I can say now is that the best performance of the fused FTC system between 

WNGs in this thesis results from topic diversity of the actual database. As discussed in 

Section 5.5, the database I am working with now had been built by concatenating the authors’ 

product reviews into the author profiles regardless of topics they were writing on; this leads 

to the database being topic-diverse. As Sari et al. (2018) suggested, content-based features, 

including WNGs, tend to work better with data that vary in topic. We saw in Section 5.1 that 

word unigrams (WN1s) work best in the FTC system of WNGs because of how frequent they 

are found in the testing database regardless of the document lengths. That said, there must be 

some stylistic or contextual information that WN1s cannot detect, but the LRF would allow 

word bigrams (WN2s) and word trigrams (WN3s) to fulfill these gaps while also considering 

the correlations between them. Therefore, when the LRs derived with the different WNGs are 

fused, the complementarities of those WNGs are bonded, which in turn lead to the better Cllr 

and Cllrmin values.   

 The same reasoning may also be applied to the fused FTC system performances of 

CNGs and PNGs. Such system performances are not significantly lower than that of WNGs 

as observed in Table 11, and that probably results from the nature of CNGs and PNGs. In 
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authorship analysis, CNGs are considered features that are efficient in detecting both style 

and content, while PNGs features that excel in detecting only style (Diederich et al., 2003; 

Koppel et al., 2011, 2013; Stamatatos, 2013). Working with the actual database that is rich in 

content, the fused CNGs are able to yield the better fused FTC system performance than 

PNGs. That said, the fused FTC can still give us new stylistic information as reflected in that 

the fused FTC system between PNGs is not significantly lower than those of WNGs and 

CNGs. This may result from the strong complementarities between different stylistic 

information extracted from the different PNGs.  

 Another worth notetaking finding is the worst FTC system performance of the best-

performing combinations of SFs. Several authorship analysis studies claim that features that 

are based on word or character statistics are efficient in detecting writing idiosyncrasies in 

less topic-diverse data more than in more topic-diverse data (Sari et al., 2018; Stamatatos, 

2009; Tambouli & Prasad 2019). This is supported by some LR-based FTC studies conducted 

on the databases that were not as much topic-diverse as the actual database I am working 

with now. Ishihara (2017a, 2017b) conducted an FTC experiment using the best-performing 

combinations of SFs on chatlog messages, and under the best experiment setting, Ishihara 

obtained the Cllr value of 0.217 for the documents of 2,500 words. My speculation is that for 

such a topic-diverse database as the one used in this thesis, the fused SFs may not create 

strong bonds among all the ten SFs, resulting in the lowest Cllr and Cllrmin values as seen in 

Table 11. This also tells us that there may be few to no features that excel in every kind of 

text; the performance of features highly depends on the quality, quantity, nature, and type of 

text on which an FTC system is working.  

8.4.2 Observation about Fused FTC System Performance between All Types of Features 

 The improvements in the fused FTC system performance between all the types of 

features are what we had expected as a successful result of the LRF. However, as mentioned 
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earlier in Section 8.2, the different degrees of the improvements in the fused FTC system 

performance between all the types of features also warrant some discussion. That is, when the 

document length increases, the degree of improvement in the fused FTC system performance 

tends to be less, meaning that the LRF works better for the documents of shorter length than 

for those of longer length (Ishihara, 2017b, 2021). There is no definitive answer as to this 

issue now. Further research endeavours that probe into how the performance of the LRF 

fluctuates as a function of the amount of data may help us answer this big question. 

 With reference to the other LR-based FTC studies that included maximalising an FTC 

system performance with the LRF, the degrees of the improvements in this thesis are 

generally greater. In reference to Ishihara (2017b), the fused FTC system between the three 

types of features (SFs, WNGs, and CNGs) sees the Cllr improvements of 0.014, 0.011, 0.020, 

and 0.01, and the Cllrmin of 0.020, 0.013, 0.018, 0.005, for the documents of 500, 1,000, 

1,500, and 2,500 words respectively. In comparison to Ishihara (2021), the fused FTC system 

between the three distance measures (Euclidean, Manhattan, and Cosine distance measures) 

gains the Cllr improvements of 0.039, 0.076, and 0.072, and the Cllrmin improvements of 

0.037, 0.075, and 0.070, for the documents of 700, 1,400, and 2,100 words respectively. One 

main possible reason is that the features used in these LR-based FTC studies are not as 

extensive as in this thesis, so the improvements in terms of Cllr and Cllrmin are not as great as 

those in this thesis. 
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Chapter 9 Conclusion 

 Now we are approaching the end of this thesis. What I will firstly be doing now is to 

revisit the research questions posited in Section 1.4 and explicitly answered them. Then I will 

evaluate how findings contribute to the further improvement of LR-based FTC. Limitations 

of this thesis will also be discussed, and future research endeavours that could help answer 

the unanswered questions in this thesis will be suggested.  

9.1 Research Questions Revisited 

 Along this thesis, the research questions posited in Section 1.4 have already been 

answered question by question. That said, I will take advantage of this section to explicitly 

answer all the research questions as follows:  

9.1.1 Answering RQ1: ‘How well does a specific feature within a feature type perform in the 

LR-based FTC system?’ 

 As far as we have seen, a specific feature type usually has a specific feature(s) that 

outperforms the others. As in Section 4.1, findings have already suggested that the best 

performing SFs are the Flesch-Kincaid readability scores, the ratio of punctuations, the ratio 

of uppercase characters, the ratio of special characters, and the average number of characters 

per word. These best-performing SFs, when they are working together, tend to yield the best 

FTC system performance among the other combinations of SFs. The other well-performing 

SFs are the vocabulary richness measures such as the type-token ratio (TTR) and Yule’s K 

and the ratio of digits; these SFs can yield good results if they are used with the five best-

performing SFs. The worst-performing features are hapax legomenon (i.e. words that appear 

only once) and the frequency of unusual words.  

 Section 5.1 probes into the best-performing WNGs. WN1s generally work better than 

word bigrams (WN2s) and word trigrams (WN3s).  
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Section 6.1 and Section 6.2 reveal that the best-performing CNGs are CN2s as they 

generally yield the better Cllr values than CN1s and CN3s (see Figure 10 in Section 6.2).  

Findings in Section 7.1 and Section 7.2 suggest that PN2s generally yield better 

performance than PN1s and PN3s  

9.1.2 Answering RQ2: ‘How well does a specific feature type perform in the LR-based FTC 

system?’ 

 As presented and discussed in Chapter 8, when all the features within the specific 

types are fused, the fused FTC systems lead to the better performance than the pre-fusion 

FTC systems irrespective of which feature type we are talking about (for full results on the 

LRF of each feature type, see Section 4.1 for SFs, Section 5.3 for WNGs, Section 6.3 for 

CNGs, and Section 7.3 for PNGs). As presented in Section 8.1, the best-performing fused 

FTC system is that between the different WNGs. The second-best fused FTC systems are 

those with the different CNGs and with the different PNGs; these two fused FTC systems 

yield competitive results, with that of CNGs performing slightly well than that of PNGs. The 

best-performing combinations of SFs perform worse than the three fused FTC systems. When 

all the fused FTC systems are fused together, the fused FTC system between all the types of 

features even yields a greater system performance.  

9.1.3 Answering RQ3: ‘What is the optimal number of stylometric features for each feature 

set or experiment setting in the FTC system designed for this thesis?’ 

 Each feature set (for SFs) or experiment setting (for WNGs, CNGs, and PNGs) 

requires different numbers of features to reach their performance ceilings. The optimal 

combination number of SFs in each feature set depends on the document length. Only five to 

six well-performing SFs can yield optimal results for the documents of 700 words, while the 

document of longer length (i.e. 1,400 and 2.100 words) may need a combination of robust 

seven to eight SFs to achieve best results (see Section 4.2). WNGs, on the other hand, need 
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300 features, out of the maximum of 600 features per experiment setting, to reach their best 

discriminating capacity for every document length (see Section 5.1 and Section 5.2). Unlike 

WNGs which need only the middle-range number of features (300 out of 600 features), 

CNGs require the maximum number of features allowed in this thesis (1,000 features) to hit 

their peaks for every document length (see Section 6.1 and Section 6.2). It is more 

complicated for PNGs as the different word lengths needs different numbers of features to 

yield the best results; the documents of shorter length (i.e. 700 words) need 525 features 

while those of longer length (i.e. 1,400 and 2,100 words) need only 400 features.   

9.1.4 Answering RQ4: ‘Does the FTC system need further optimization, namely logistic 

regression calibration?’  

 The honest answer of RQ4 is no. In Chapter 3, I have already demonstrated that the 

LRC does not need any significant improvements to the LRs derived via the score-to-LR 

conversion model. The reason is that the FTC system that has been calibrated once by such a 

model are well-calibrated already, and the LRs derived are ready to be interpreted as the 

weight of evidence (see Chapter 3).  

9.2 Thesis Evaluation   

 Overall, this thesis has filled some of the research gaps mentioned in Section 1.3. As 

there have been a number of features that have yet to be tested in LR-based FTC, it is always 

wise to try new features and see which feature works well and which feature does not. This 

thesis is the first of its kind to introduce some new features to LR-based FTC, which are for 

example the Flesch-Kincaid readability score and PNGs (n=1,2,3). Findings suggest that the 

newly introduced features work well in LR-based FTC within the similarity-scores 

approaches. Some features that worked well in the previous LR-based FTC studies conducted 

using the feature-based and similarity-typicality score-based approached by Ishihara (2014, 

2017a, 2017b), have been proven not to be as effective for the FTC task in this thesis, for 



 85 

instance the vocabulary richness measures (TTR and Yule’s K) and the ratio of digits. Apart 

from the different approaches used in the previous LR-based FTC studies and in my thesis, 

another possible explanation is that the previous LR-based FTC studies conducted FTC 

experiments on the database of chatlog messages, while this thesis does so on the database of 

product reviews. Further optimisation—especially the logistic regression calibration (LRC)—

of an FTC system is also explored in this thesis. While the previous FTC experiments 

demonstrated a mixed reception towards the LRC, as discussed in Chapter 3, the LRC is not 

needed for the FTC system in this thesis. This is mainly because of the different approaches 

for calculating LRs in the previous LR-based FTC studies and in my thesis. The similarity-

only score-based approach converts the multidimensional feature space to a univariate score 

space. The univariate score space can be appropriately trained and modelled even with a 

limited amount of data, resulting in that the score-to-LR conversion model, trained by 719 

same-author scores and 516,242 different-author scores obtained from the background 

database, yielded well-calibrated LRs.  

 It is worth noting that this LR-based FTC thesis is highly context-dependent. That is, 

there may be no such things as the best-performing features and the most optimal numbers of 

features that excel in every FTC task regardless of the type of text and the amount of data. As 

I have shown throughout this thesis, within a specific type of feature, the FTC system 

performance fluctuates as a function of the number of features and the amount of data put to 

test at one experiment setting. What I am saying now is that in LR-based FTC, there may be a 

need to properly select and empirically decide the types of features and the numbers of 

features every time there is an FTC task, so the experiment conditions can suit the nature of 

that FTC task and can, to a certain extent, guarantee that they can yield the most optimal 

outcomes for that FTC task. This is beneficial for FTC casework since there is no one that 

can predict the nature of an upcoming FTC task. Nonetheless, this has been made one-step 
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easier by findings of the FTC system specifically designed for this thesis. Future research 

endeavours to improve LR-based FTC can also ensure that there will be enough resources 

available for empirically deciding testing conditions for various FTC tasks.  

9.3 Limitations  

 As mentioned in Section 1.1 and Section 2.1, this thesis is solely focused on 

experimenting an FTC task on one-to-many communication, the mode of communication 

where one communication sender communicates with multiple communication recipients 

(e.g. reviews, advertisement, social media posts, etc.). As you would imagine, these two 

modes are highly different in their nature. Consequentially, what has been shown to 

discriminate writings well in one communication mode may not do well in another. 

Furthermore, other platforms of one-to-many communication apart from product reviews also 

need to be tested in LR-based FTC; it is my suspicion that the set of features will work in 

other mediums as effectively as in product reviews. Although LR-based FTC on one-to-one 

communication has already been trailed (Ishihara, 2014, 2017a, 2017b), the features tested 

and the other procedural details in those previous studies and this thesis are not the same, 

making it difficult to let the previous studies judge the efficiency of LR-based FTC on one-

to-one communication. Only this thesis and few LR-based FTC studies, including Carne and 

Ishihara (2020) and Ishihara (2021) that have experimented an FTC task on a mode of one-to-

many communication, allowing future research opportunities to be undertaken in other modes 

of one-to-many communication. Therefore, future research attempts aimed at addressing this 

problem by using the same set of features as trialed in this thesis would be highly beneficial 

to LR-based FTC studies.  

 Another worth mentioning limitation of this thesis concerns the availability of data in 

typical FTC scenarios. As you may have noticed, in order to work at its full potential, LR-

based FTC needs a considerable amount of data to partition them into three separate 
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databases of test, background, and development (in case that the LR-based FTC system needs 

a second calibration or the LRF, see Section 2.2). While this thesis takes advantage of an 

available online corpus to do so, typical FTC casework sometimes cannot afford the luxury of 

having well categorised and populated pool of authors and such a large amount of text data. 

Currently, there are no available databases that consist of text data that have been used in a 

forensic scenario or as forensic evidence. This is to remind that this thesis is just a simulation 

of a forensic scenario where there is the need to discriminating writings in one-to-many 

communication. Therefore, this thesis may not be able to speak for typical FTC casework 

directly. However, it surely serves as a good gateway for future research endeavours that aim 

at introducing new scientific techniques based on the best-performing features reported in 

this thesis to remedy this situation. An attempt could also be made to form a database that are 

designed to be used in an FTC task, so research outputs based on the said database can say 

more about typical FTC cases.  

9.4 Future Research   

 Although this thesis has come to an end, LR-based FTC is still far from an end since, 

there are a number of contributions that can be made to improve LR-based FTC. 

 This thesis has been experimenting an FTC task on product reviews which were 

written in all kinds of topics. The topic diversity of product reviews may more or less play a 

part in dictating which feature can perform robustly than the others. Moreover, when there is 

topic mismatch occurring in the documents of comparison as shown in Section 4.4, how a 

specific feature or feature type fares in this kind of situation is also of great interest in LR-

based FTC.  

 This thesis has also been speculating regarding the optimal number of features for 

each feature set or experiment setting. There is even no speculation at all for the optimal 

numbers of PNGs for different word lengths. Research that can clearly illustrate how the FTC 
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system performance changes as a function of the number of features would greatly confirm 

these speculations or answer some unanswered questions.  

 Another improvement that is immediately needed is the way to minimise the 

magnitude of counterfactual LRs while maintain, if not improve, that of the consistent-with-

fact LRs for both pre-fusion and logistic regression fused LRs. As have been demonstrated 

through Tippett plots throughout this thesis, there often is the considerable magnitude of 

contrary-to-fact same-author and different-author LRs for every feature type and every word 

length. After the LRF, these errors could not still be fixed. The large magnitude of contrary-

to-fact LRs only serves to contrast the consistent-with-fact LRs, which should be rectified at 

all cost so as to contribute to the improvements of LR-based FTC. 

 This thesis has also been talking about how the LRF makes the features interact 

within their types of features and how the types of features interact with one another in the 

fused FTC system between all the types of features. Nevertheless, it has not yet come to a 

satisfactory conclusion. Future research can show us more clearly how a feature interacts 

with another within a specific type of feature and how a feature type interacts with another 

when they all are logistic regression fused.  

(21,994 Words Exclusive of Figures, Tables, References, and Appendices) 
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Appendix A Statistical Features: Full Results  

Table A1 

Best-performing Combinations of Two Statistical Features for 700, 1,400, and 2,100 Word 

Lengths  

Sample 

Word 

Number 

Pair of 

Features 

Cllr  Cllrmin Cllrcal EER 

Pre Post Pre Post Pre Post Pre Post 

700 (4,6) 0.909 0.907 0.887 0.887 0.022 0.021 0.330 0.330 

(6,9) 0.917 0.918 0.893 0.893 0.024 0.025 0.328 0.328 

(4,7) 0.934 0.931 0.910 0.910 0.024 0.021 0.346 0.346 

(4,9) 0.937 0.939 0.910 0.910 0.027 0.028 0.355 0.355 

(7,9) 0.938 0.937 0.906 0.926 0.032 0.019 0.906 0.367 

(1,6) 0.945 0.940 0.916 0.916 0.029 0.024 0.350 0.350 

(3,6) 0.945 0.942 0.921 0.921 0.024 0.020 0.358 0.358 

(1,4) 0.948 0.945 0.926 0.926 0.022 0.019 0.367 0.367 

(1,7) 0.953 0.950 0.928 0.928 0.025 0.022 0.369 0.369 

(1,9) 0.955 0.954 0.936 0.936 0.019 0.017 0.374 0.374 

1,400 (6,7) 0.839 0.838 0.811 0.811 0.028 0.027 0.276 0.276 

(4,6) 0.840 0.833 0.807 0.807 0.033 0.025 0.287 0.287 

(6,9) 0.858 0.858 0.824 0.824 0.035 0.034 0.293 0.293 

(1,6) 0.867 0.867 0.834 0.834 0.033 0.033 0.296 0.296 

(4,7) 0.876 0.868 0.848 0.848 0.027 0.019 0.298 0.298 

(7,9) 0.877 0.875 0.847 0.847 0.030 0.028 0.300 0.300 

(1,7) 0.887 0.888 0.858 0.858 0.029 0.030 0.316 0.316 

(3,6) 0.888 0.887 0.859 0.859 0.029 0.028 0.307 0.307 

(1,4) 0.891 0.891 0.869 0.869 0.022 0.022 0.316 0.316 

(4,9) 0.893 0.893 0.858 0.858 0.035 0.035 0.319 0.319 

2,100 (6,7) 0.777 0.776 0.741 0.741 0.036 0.036 0.247 0.247 

(4,6) 0.792 0.787 0.764 0.764 0.027 0.022 0.255 0.255 

(6,9) 0.801 0.773 0.028 0.261 0.801 0.773 0.027 0.261 

(1,6) 0.809 0.809 0.783 0.783 0.026 0.026 0.264 0.264 

(4,7) 0.826 0.821 0.802 0.802 0.024 0.019 0.279 0.279 

(7,9) 0.829 0.826 0.796 0.796 0.033 0.030 0.264 0.264 

(3,6) 0.831 0.829 0.803 0.803 0.028 0.026 0.274 0.274 

(1,7) 0.840 0.839 0.818 0.818 0.022 0.021 0.286 0.286 

(3,7) 0.852 0.852 0.825 0.825 0.028 0.027 0.288 0.288 

(1,4) 0.856 0.856 0.834 0.834 0.021 0.022 0.285 0.285 
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Table A2 

Best-performing Combinations of Three Statistical Features for 700, 1,400, and 2,100 Word 

Lengths  

Sample Word 

Number 

Combination of features Cllr Cllrmin Cllrcal EER 

700 (6,7,9) 0.862 0.831 0.032 0.293 

(4,6,7) 0.872 0.837 0.035 0.300 

(4,6,9) 0.875 0.849 0.026 0.304 

(1,6,7) 0.889 0.859 0.030 0.317 

(6,7,8) 0.889 0.857 0.032 0.313 

(3,6,7) 0.891 0.859 0.032 0.315 

(4,6,8) 0.896 0.867 0.029 0.316 

(6,8,9) 0.896 0.869 0.028 0.322 

(1,4,6) 0.901 0.865 0.035 0.322 

(4,7,9) 0.901 0.868 0.033 0.323 

1,400 (6,7,9) 0.762 0.729 0.034 0.244 

(4,6,7) 0.763 0.729 0.035 0.242 

(1,6,7) 0.777 0.741 0.036 0.254 

(4,6,9) 0.785 0.746 0.039 0.255 

(1,4,6) 0.790 0.756 0.034 0.257 

(3,6,7) 0.794 0.762 0.032 0.260 

(6,7,8) 0.797 0.765 0.031 0.263 

(4,6,8) 0.808 0.776 0.032 0.270 

(1,6,8) 0.810 0.779 0.030 0.265 

(6,8,9) 0.812 0.775 0.037 0.277 

2,100 (6,7,9) 0.680 0.652 0.028 0.203 

(4,6,7) 0.689 0.659 0.030 0.214 

(1,6,7) 0.694 0.667 0.027 0.215 

(3,6,7) 0.713 0.685 0.028 0.222 

(4,6,9) 0.720 0.685 0.035 0.226 

(1,4,6) 0.728 0.703 0.025 0.229 

(6,7,8) 0.730 0.696 0.034 0.232 

(3,4,6) 0.742 0.715 0.027 0.233 

(6,8,9) 0.745 0.716 0.029 0.236 

(1,6,8) 0.745 0.720 0.026 0.239 
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Table A3 

Best-performing Combinations of Four Statistical Features for 700, 1,400, and 2,100 Word 

Lengths  

Sample Word 

Number 

Combination of features Cllr  Cllrmin Cllrcal EER 

700 (4,6,7,9) 0.830 0.802 0.027 0.283 

(6,7,8,9) 0.838 0.813 0.025 0.293 

(4,6,7,8) 0.847 0.823 0.024 0.292 

(1,4,6,7) 0.849 0.819 0.030 0.299 

(3,6,7,9) 0.852 0.829 0.023 0.300 

(1,6,7,9) 0.852 0.826 0.026 0.300 

(3,4,6,7) 0.854 0.825 0.029 0.298 

(4,6,8,9) 0.859 0.834 0.026 0.300 

(6,7,9,10) 0.860 0.841 0.019 0.305 

(5,6,7,9) 0.861 0.836 0.024 0.298 

1,400 (4,6,7,9) 0.711 0.683 0.029 0.222 

(1,4,6,7) 0.715 0.689 0.027 0.233 

(6,7,8,9) 0.724 0.696 0.028 0.235 

(1,6,7,9) 0.730 0.698 0.032 0.241 

(4,6,7,8) 0.733 0.707 0.026 0.239 

(1,6,7,8) 0.733 0.708 0.025 0.237 

(3,4,6,7) 0.735 0.711 0.024 0.236 

(3,6,7,9) 0.739 0.711 0.028 0.243 

(5,6,7,9) 0.742 0.721 0.021 0.239 

(2,6,7,9) 0.743 0.724 0.020 0.244 

2,100 (4,6,7,9) 0.626 0.602 0.024 0.191 

(6,7,8,9) 0.639 0.612 0.027 0.190 

(1,4,6,7) 0.640 0.616 0.024 0.196 

(1,6,7,9) 0.649 0.628 0.022 0.199 

(1,6,7,8) 0.654 0.631 0.023 0.201 

(3,4,6,7) 0.655 0.632 0.023 0.202 

(3,6,7,9) 0.662 0.642 0.020 0.203 

(4,6,7,8) 0.662 0.631 0.031 0.207 

(5,6,7,9) 0.665 0.645 0.020 0.211 

(3,6,7,8) 0.669 0.644 0.025 0.205 
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Table A4 

Best-performing Combinations of Five Statistical Features for 700, 1,400, and 2,100 Word 

Lengths  

Sample Word 

Number 

Combination of features Cllr  Cllrmin Cllrcal EER 

700 (4,6,7,8,9) 0.814 0.791 0.022 0.283 

(1,4,6,7,9) 0.826 0.800 0.026 0.287 

(3,4,6,7,9) 0.826 0.804 0.022 0.286 

(4,5,6,7,9) 0.834 0.811 0.024 0.286 

(4,6,7,9,10) 0.834 0.817 0.017 0.292 

(3,6,7,8,9) 0.835 0.816 0.019 0.290 

(1,6,7,8,9) 0.835 0.814 0.022 0.295 

(1,4,6,7,8) 0.835 0.809 0.026 0.294 

(3,4,6,7,8) 0.837 0.815 0.022 0.290 

(2,4,6,7,9) 0.839 0.820 0.019 0.298 

1,400 (4,6,7,8,9) 0.688 0.663 0.025 0.216 

(1,4,6,7,8) 0.689 0.665 0.025 0.221 

(1,4,6,7,9) 0.692 0.666 0.026 0.225 

(1,6,7,8,9) 0.701 0.675 0.026 0.226 

(3,4,6,7,9) 0.703 0.677 0.026 0.225 

(4,5,6,7,9) 0.704 0.685 0.019 0.224 

(2,4,6,7,9) 0.705 0.686 0.019 0.227 

(3,4,6,7,8) 0.707 0.681 0.025 0.218 

(3,6,7,8,9) 0.710 0.686 0.024 0.225 

(1,4,5,6,7) 0.716 0.695 0.021 0.233 

2,100 (4,6,7,8,9) 0.601 0.578 0.023 0.180 

(1,4,6,7,9) 0.612 0.592 0.020 0.187 

(1,4,6,7,8) 0.616 0.591 0.025 0.190 

(1,6,7,8,9) 0.621 0.597 0.024 0.187 

(3,4,6,7,9) 0.625 0.606 0.019 0.192 

(4,5,6,7,9) 0.626 0.606 0.020 0.199 

(3,4,6,7,8) 0.631 0.606 0.024 0.190 

(2,4,6,7,9) 0.631 0.610 0.021 0.202 

(3,6,7,8,9) 0.633 0.607 0.026 0.188 

(2,6,7,8,9) 0.636 0.618 0.018 0.199 
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Table A5 

Best-performing Combinations of Six Statistical Features for 700, 1,400, and 2,100 Word 

Lengths  

Sample Word 

Number 

Combination of features Cllr  Cllrmin Cllrcal EER 

700 (3,4,6,7,8,9) 0.814 0.792 0.022 0.277 

(1,4,6,7,8,9) 0.816 0.791 0.025 0.282 

(4,5,6,7,8,9) 0.822 0.800 0.022 0.276 

(2,4,6,7,8,9) 0.825 0.803 0.022 0.295 

(4,6,7,8,9,10) 0.826 0.809 0.017 0.288 

(1,4,5,6,7,9) 0.827 0.806 0.022 0.289 

(1,4,6,7,9,10) 0.828 0.812 0.016 0.290 

(3,4,5,6,7,9) 0.829 0.808 0.020 0.284 

(3,4,6,7,9,10) 0.831 0.815 0.016 0.292 

(1,2,4,6,7,9) 0.832 0.813 0.019 0.297 

1,400 (1,4,6,7,8,9) 0.671 0.650 0.022 0.211 

(3,4,6,7,8,9) 0.682 0.657 0.024 0.211 

(2,4,6,7,8,9) 0.683 0.666 0.017 0.216 

(1,4,5,6,7,9) 0.688 0.671 0.017 0.217 

(1,2,4,6,7,9) 0.688 0.668 0.021 0.227 

(4,5,6,7,8,9) 0.689 0.672 0.016 0.214 

(1,2,4,6,7,8) 0.691 0.672 0.020 0.228 

(2,3,4,6,7,9) 0.694 0.673 0.021 0.229 

(3,4,5,6,7,9) 0.696 0.678 0.018 0.222 

(1,4,5,6,7,8) 0.696 0.678 0.018 0.220 

2,100 (1,4,6,7,8,9) 0.594 0.571 0.023 0.180 

(2,4,6,7,8,9) 0.605 0.586 0.019 0.185 

(3,4,6,7,8,9) 0.606 0.581 0.025 0.181 

(4,5,6,7,8,9) 0.610 0.592 0.017 0.192 

(1,4,5,6,7,9) 0.610 0.591 0.019 0.196 

(1,2,4,6,7,9) 0.617 0.594 0.022 0.200 

(3,4,5,6,7,9) 0.618 0.601 0.017 0.199 

(1,5,6,7,8,9) 0.619 0.600 0.019 0.198 

(1,4,6,7,9,10) 0.620 0.603 0.018 0.191 

(1,2,6,7,8,9) 0.621 0.600 0.020 0.195 
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Table A6  

Best-performing Combinations of Seven Statistical Features for 700, 1,400, and 2,100 Word 

Lengths  

Sample Word 

Number 

Combination of features Cllr  Cllrmin Cllrcal EER 

700 (1,4,5,6,7,8,9) 0.817 0.797 0.020 0.281 

(3,4,5,6,7,8,9) 0.818 0.799 0.019 0.278 

(1,2,4,6,7,8,9) 0.820 0.800 0.020 0.289 

(2,3,4,6,7,8,9) 0.821 0.804 0.017 0.285 

(1,4,6,7,8,9,10) 0.822 0.805 0.017 0.288 

(2,4,5,6,7,8,9) 0.824 0.804 0.021 0.293 

(3,4,6,7,8,9,10) 0.824 0.808 0.016 0.289 

(1,4,5,6,7,9,10) 0.829 0.813 0.016 0.291 

(1,2,4,5,6,7,9) 0.830 0.812 0.018 0.296 

(2,3,4,5,6,7,9) 0.830 0.812 0.018 0.288 

1,400 (1,2,4,6,7,8,9) 0.670 0.648 0.021 0.218 

(1,4,5,6,7,8,9) 0.671 0.655 0.016 0.210 

(2,3,4,6,7,8,9) 0.674 0.656 0.018 0.217 

(3,4,5,6,7,8,9) 0.680 0.662 0.018 0.216 

(1,2,4,5,6,7,9) 0.683 0.667 0.016 0.223 

(2,4,5,6,7,8,9) 0.684 0.669 0.015 0.220 

(2,3,4,5,6,7,9) 0.688 0.668 0.020 0.226 

(1,4,6,7,8,9,10) 0.689 0.667 0.022 0.225 

(1,2,5,6,7,8,9) 0.694 0.677 0.017 0.229 

(1,2,4,5,6,7,8) 0.695 0.676 0.019 0.230 

2,100 (1,4,5,6,7,8,9) 0.595 0.575 0.020 0.188 

(1,2,4,6,7,8,9) 0.596 0.575 0.021 0.186 

(2,3,4,6,7,8,9) 0.601 0.579 0.022 0.182 

(3,4,5,6,7,8,9) 0.603 0.582 0.021 0.192 

(1,4,6,7,8,9,10) 0.606 0.588 0.019 0.189 

(2,4,5,6,7,8,9) 0.610 0.593 0.017 0.189 

(1,2,4,5,6,7,9) 0.612 0.590 0.022 0.198 

(2,4,6,7,8,9,10) 0.614 0.599 0.014 0.192 

(3,4,6,7,8,9,10) 0.614 0.594 0.020 0.189 

(1,2,4,6,7,9,10) 0.615 0.596 0.019 0.191 
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Table A7  

Best-performing Combinations of Eight Statistical Features for 700, 1,400, and 2,100 Word 

Lengths  

Sample Word 

Number 

Combination of features Cllr  Cllrmin Cllrcal EER 

700 (2,3,4,5,6,7,8,9) 0.819 0.801 0.018 0.285 

(1,2,4,5,6,7,8,9) 0.819 0.800 0.020 0.292 

(1,4,5,6,7,8,9,10) 0.823 0.808 0.015 0.287 

(3,4,5,6,7,8,9,10) 0.826 0.810 0.016 0.287 

(1,2,4,6,7,8,9,10) 0.828 0.811 0.017 0.294 

(2,3,4,6,7,8,9,10) 0.829 0.809 0.020 0.293 

(2,4,5,6,7,8,9,10) 0.829 0.812 0.018 0.298 

(1,2,4,5,6,7,9,10) 0.831 0.816 0.014 0.295 

(2,3,4,5,6,7,9,10) 0.831 0.816 0.015 0.292 

(1,3,4,5,6,7,8,9) 0.832 0.812 0.021 0.288 

1,400 (1,2,4,5,6,7,8,9) 0.669 0.652 0.017 0.217 

(2,3,4,5,6,7,8,9) 0.673 0.653 0.020 0.222 

(1,2,4,6,7,8,9,10) 0.681 0.663 0.018 0.224 

(2,3,4,6,7,8,9,10) 0.685 0.667 0.018 0.222 

(1,4,5,6,7,8,9,10) 0.686 0.672 0.014 0.219 

(1,2,3,4,6,7,8,9) 0.689 0.670 0.019 0.221 

(1,2,4,5,6,7,9,10) 0.690 0.673 0.016 0.224 

(3,4,5,6,7,8,9,10) 0.691 0.676 0.015 0.219 

(2,3,4,5,6,7,9,10) 0.692 0.678 0.014 0.226 

(1,3,4,5,6,7,8,9) 0.693 0.672 0.021 0.222 

2,100 (1,2,4,5,6,7,8,9) 0.597 0.575 0.022 0.188 

(2,3,4,5,6,7,8,9) 0.601 0.579 0.022 0.189 

(1,2,4,6,7,8,9,10) 0.602 0.584 0.018 0.186 

(2,3,4,6,7,8,9,10) 0.605 0.586 0.019 0.185 

(1,4,5,6,7,8,9,10) 0.606 0.589 0.017 0.189 

(3,4,5,6,7,8,9,10) 0.612 0.596 0.016 0.191 

(1,2,4,5,6,7,9,10) 0.613 0.591 0.022 0.190 

(2,3,4,5,6,7,9,10) 0.615 0.594 0.021 0.191 

(2,4,5,6,7,8,9,10) 0.616 0.601 0.016 0.191 

(1,2,3,4,6,7,8,9) 0.616 0.599 0.018 0.190 
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Table A8  

Best-performing Combinations of Nine Statistical Features for 700, 1,400, and 2,100 Word 

Lengths  

Sample Word 

Number 

Combination of features Cllr  Cllrmin Cllrcal EER 

700 (1,2,4,5,6,7,8,9,10) 0.825 0.809 0.016 0.293 

(2,3,4,5,6,7,8,9,10) 0.825 0.808 0.017 0.291 

(1,2,3,4,5,6,7,8,9) 0.830 0.811 0.019 0.292 

(1,3,4,5,6,7,8,9,10) 0.836 0.818 0.018 0.295 

(1,2,3,4,6,7,8,9,10) 0.838 0.821 0.017 0.300 

(1,2,3,4,5,6,7,9,10) 0.840 0.824 0.016 0.299 

(1,2,3,5,6,7,8,9,10) 0.850 0.835 0.015 0.309 

(1,2,3,4,5,6,7,8,10) 0.850 0.834 0.016 0.306 

(1,2,3,4,5,6,8,9,10) 0.863 0.846 0.017 0.315 

(1,2,3,4,5,7,8,9,10) 0.868 0.852 0.015 0.317 

1,400 (1,2,4,5,6,7,8,9,10) 0.678 0.664 0.014 0.218 

(2,3,4,5,6,7,8,9,10) 0.681 0.665 0.015 0.219 

(1,2,3,4,5,6,7,8,9) 0.684 0.664 0.020 0.224 

(1,2,3,4,6,7,8,9,10) 0.695 0.676 0.019 0.227 

(1,3,4,5,6,7,8,9,10) 0.699 0.682 0.017 0.229 

(1,2,3,4,5,6,7,9,10) 0.700 0.682 0.018 0.231 

(1,2,3,5,6,7,8,9,10) 0.708 0.691 0.018 0.232 

(1,2,3,4,5,6,7,8,10) 0.712 0.693 0.019 0.234 

(1,2,3,4,5,6,8,9,10) 0.727 0.710 0.017 0.246 

(1,2,3,4,5,7,8,9,10) 0.742 0.727 0.016 0.247 

2,100 (1,2,4,5,6,7,8,9,10) 0.601 0.581 0.020 0.183 

(2,3,4,5,6,7,8,9,10) 0.604 0.585 0.018 0.185 

(1,2,3,4,5,6,7,8,9) 0.613 0.591 0.022 0.193 

(1,2,3,4,6,7,8,9,10) 0.615 0.599 0.016 0.188 

(1,3,4,5,6,7,8,9,10) 0.620 0.603 0.017 0.195 

(1,2,3,4,5,6,7,9,10) 0.623 0.602 0.021 0.193 

(1,2,3,5,6,7,8,9,10) 0.629 0.611 0.017 0.197 

(1,2,3,4,5,6,7,8,10) 0.636 0.618 0.018 0.195 

(1,2,3,4,5,6,8,9,10) 0.657 0.639 0.018 0.210 

(1,2,3,4,5,7,8,9,10) 0.678 0.659 0.018 0.221 
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Appendix B Word N-gram Features: Full Results 

Table B1  

Best-performing Experiment Settings for Word Unigrams (n=1) for 700, 1,400, and 2,100 

Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 300 0.711 0.695 0.016 0.235 

275 0.712 0.697 0.015 0.241 

325 0.721 0.704 0.016 0.235 

350 0.728 0.711 0.017 0.242 

225 0.728 0.712 0.016 0.239 

250 0.728 0.716 0.013 0.244 

125 0.728 0.714 0.015 0.251 

450 0.729 0.712 0.017 0.235 

375 0.729 0.711 0.018 0.240 

175 0.729 0.715 0.014 0.241 

1,400 300 0.438 0.424 0.014 0.129 

275 0.441 0.427 0.014 0.127 

325 0.449 0.435 0.014 0.131 

350 0.452 0.441 0.011 0.133 

375 0.457 0.446 0.011 0.136 

250 0.457 0.443 0.014 0.132 

400 0.46 0.445 0.015 0.136 

225 0.461 0.448 0.013 0.137 

450 0.462 0.45 0.013 0.142 

425 0.466 0.452 0.014 0.142 

2,100 300 0.302 0.292 0.010 0.086 

275 0.305 0.294 0.011 0.082 

350 0.308 0.297 0.010 0.083 

325 0.308 0.298 0.010 0.083 

375 0.311 0.300 0.011 0.084 

400 0.318 0.307 0.011 0.085 

450 0.320 0.308 0.012 0.087 

225 0.321 0.308 0.012 0.089 

250 0.322 0.308 0.014 0.087 

425 0.323 0.311 0.012 0.091 
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Table B2 

Best-performing Experiment Settings for Word Bigrams (n=2) for 700, 1,400, and 2,100 

Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 575 0.763 0.738 0.025 0.251 

550 0.765 0.741 0.024 0.253 

600 0.766 0.741 0.025 0.254 

525 0.767 0.745 0.022 0.255 

500 0.772 0.749 0.023 0.262 

450 0.775 0.751 0.023 0.257 

475 0.776 0.750 0.026 0.260 

200 0.776 0.759 0.017 0.275 

425 0.777 0.753 0.024 0.262 

175 0.778 0.758 0.019 0.268 

1,400 575 0.464 0.453 0.011 0.139 

600 0.464 0.452 0.012 0.140 

550 0.467 0.455 0.012 0.140 

525 0.468 0.453 0.015 0.142 

475 0.477 0.465 0.013 0.146 

500 0.478 0.463 0.014 0.147 

450 0.480 0.468 0.011 0.145 

375 0.485 0.473 0.012 0.144 

425 0.486 0.470 0.016 0.146 

400 0.487 0.474 0.012 0.147 

2,100 600 0.312 0.300 0.012 0.083 

575 0.314 0.300 0.014 0.083 

550 0.314 0.301 0.014 0.085 

525 0.319 0.305 0.014 0.087 

500 0.323 0.311 0.012 0.088 

475 0.328 0.316 0.011 0.094 

450 0.329 0.317 0.011 0.094 

425 0.334 0.322 0.012 0.090 

400 0.342 0.332 0.010 0.096 

375 0.344 0.332 0.011 0.097 
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Table B3 

Best-performing Experiment Settings for Word Trigrams (n=3) for 700, 1,400, and 2,100 

Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 425 0.875 0.863 0.013 0.332 

600 0.876 0.862 0.014 0.327 

450 0.877 0.864 0.013 0.333 

475 0.877 0.863 0.014 0.331 

550 0.878 0.861 0.017 0.329 

500 0.878 0.864 0.015 0.329 

575 0.879 0.863 0.015 0.331 

525 0.879 0.865 0.015 0.330 

350 0.879 0.867 0.012 0.330 

400 0.880 0.867 0.013 0.335 

1,400 550 0.668 0.653 0.015 0.221 

575 0.671 0.655 0.016 0.220 

525 0.674 0.660 0.013 0.224 

600 0.675 0.661 0.013 0.221 

500 0.675 0.663 0.012 0.223 

475 0.675 0.662 0.013 0.220 

450 0.678 0.663 0.015 0.224 

425 0.680 0.667 0.013 0.227 

400 0.690 0.677 0.013 0.230 

350 0.692 0.679 0.013 0.230 

2,100 550 0.526 0.507 0.019 0.153 

575 0.528 0.512 0.016 0.155 

600 0.531 0.515 0.016 0.157 

525 0.533 0.515 0.018 0.157 

500 0.534 0.517 0.017 0.158 

475 0.536 0.519 0.017 0.160 

425 0.540 0.524 0.016 0.164 

450 0.542 0.525 0.016 0.167 

400 0.553 0.538 0.015 0.170 

375 0.559 0.543 0.016 0.176 
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Appendix C Character N-gram Features: Full Results 

Table C1 

Best-performing Experiment Settings for Character Unigrams (n=1) for 700, 1,400, and 

2,100 Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 50 0.807 0.796 0.011 0.286 

60 0.811 0.798 0.013 0.284 

70 0.813 0.801 0.012 0.293 

90 0.814 0.797 0.017 0.291 

80 0.815 0.801 0.014 0.290 

40 0.819 0.807 0.011 0.293 

30 0.838 0.827 0.011 0.301 

20 0.952 0.943 0.009 0.392 

10 0.968 0.959 0.009 0.417 

5 0.988 0.980 0.008 0.441 

1,400 90 0.656 0.644 0.012 0.210 

70 0.661 0.648 0.013 0.208 

80 0.661 0.649 0.013 0.210 

50 0.662 0.651 0.011 0.211 

60 0.663 0.651 0.012 0.212 

40 0.679 0.667 0.013 0.218 

30 0.712 0.702 0.010 0.235 

20 0.879 0.869 0.010 0.331 

10 0.919 0.912 0.007 0.357 

5 0.956 0.948 0.008 0.389 

2,100 60 0.553 0.538 0.015 0.169 

90 0.553 0.541 0.012 0.165 

50 0.554 0.542 0.012 0.170 

70 0.555 0.542 0.013 0.166 

80 0.557 0.547 0.011 0.168 

40 0.566 0.554 0.012 0.179 

30 0.609 0.596 0.013 0.200 

20 0.787 0.777 0.010 0.279 

10 0.867 0.859 0.008 0.320 

5 0.938 0.925 0.013 0.374 
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Table C2 

Best-performing Experiment Settings for Character Bigrams (n=2) for 700, 1,400, and 2,100 

Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 1000 0.722 0.710 0.012 0.240 

875 0.722 0.708 0.014 0.239 

825 0.723 0.710 0.013 0.243 

975 0.724 0.710 0.014 0.241 

850 0.724 0.711 0.013 0.242 

900 0.724 0.711 0.013 0.243 

950 0.725 0.711 0.014 0.243 

925 0.726 0.710 0.015 0.242 

800 0.726 0.713 0.014 0.246 

775 0.729 0.714 0.015 0.245 

1,400 1000 0.498 0.483 0.015 0.150 

875 0.500 0.487 0.014 0.150 

700 0.501 0.487 0.015 0.152 

975 0.501 0.489 0.013 0.154 

900 0.501 0.487 0.014 0.152 

950 0.502 0.488 0.014 0.153 

850 0.502 0.489 0.013 0.153 

675 0.503 0.491 0.011 0.153 

825 0.503 0.489 0.014 0.153 

725 0.504 0.490 0.013 0.152 

2,100 1000 0.356 0.342 0.014 0.101 

875 0.356 0.344 0.012 0.104 

850 0.357 0.344 0.013 0.105 

950 0.357 0.342 0.015 0.101 

900 0.358 0.347 0.012 0.102 

975 0.358 0.343 0.015 0.103 

925 0.358 0.344 0.015 0.101 

825 0.359 0.346 0.013 0.105 

675 0.360 0.349 0.010 0.103 

700 0.362 0.350 0.012 0.106 
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Table C3 

Best-performing Experiment Settings for Character Trigrams (n=3) for 700, 1,400, and 

2,100 Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 925 0.817 0.797 0.019 0.287 

900 0.817 0.799 0.018 0.288 

950 0.819 0.796 0.023 0.288 

875 0.819 0.800 0.019 0.288 

850 0.820 0.801 0.019 0.287 

1000 0.821 0.802 0.019 0.287 

975 0.821 0.801 0.021 0.285 

825 0.822 0.805 0.017 0.291 

800 0.823 0.806 0.017 0.291 

550 0.823 0.807 0.016 0.299 

1,400 950 0.580 0.567 0.013 0.182 

975 0.581 0.566 0.015 0.181 

1000 0.583 0.566 0.017 0.183 

925 0.583 0.571 0.013 0.184 

875 0.584 0.571 0.014 0.186 

900 0.585 0.572 0.013 0.186 

850 0.590 0.578 0.012 0.186 

825 0.593 0.582 0.012 0.187 

800 0.598 0.586 0.012 0.189 

750 0.601 0.587 0.014 0.191 

2,100 950 0.429 0.418 0.012 0.128 

975 0.432 0.420 0.012 0.128 

1000 0.432 0.420 0.013 0.128 

925 0.436 0.424 0.011 0.130 

875 0.437 0.425 0.012 0.134 

900 0.438 0.428 0.011 0.131 

850 0.446 0.436 0.010 0.134 

825 0.449 0.438 0.011 0.136 

800 0.452 0.442 0.010 0.137 

775 0.457 0.444 0.013 0.136 
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Table C4 

Best-performing Experiment Settings for Character Trigrams (n=3) for 700, 1,400, and 

2,100 Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 1000 0.784 0.769 0.014 0.274 

975 0.789 0.772 0.018 0.275 

900 0.792 0.774 0.018 0.276 

950 0.793 0.774 0.018 0.277 

925 0.793 0.777 0.016 0.276 

875 0.796 0.777 0.019 0.276 

825 0.796 0.777 0.019 0.277 

850 0.796 0.777 0.020 0.275 

800 0.798 0.780 0.018 0.278 

775 0.801 0.784 0.017 0.279 

1,400 1000 0.531 0.516 0.015 0.160 

825 0.535 0.520 0.015 0.166 

900 0.536 0.522 0.014 0.165 

800 0.536 0.522 0.014 0.167 

925 0.536 0.522 0.015 0.164 

975 0.537 0.522 0.015 0.163 

950 0.537 0.521 0.016 0.165 

850 0.539 0.524 0.015 0.166 

875 0.539 0.523 0.016 0.168 

775 0.542 0.528 0.014 0.167 

2,100 1000 0.387 0.375 0.012 0.111 

800 0.388 0.377 0.011 0.114 

825 0.389 0.377 0.012 0.113 

975 0.392 0.377 0.014 0.111 

775 0.392 0.380 0.012 0.114 

900 0.392 0.379 0.013 0.113 

875 0.393 0.382 0.011 0.114 

850 0.394 0.382 0.012 0.115 

950 0.395 0.381 0.014 0.111 

925 0.396 0.381 0.014 0.111 
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Appendix D Part-of-speech N-gram Features: Full Results 

Table D1 

Best-performing Experiment Settings for Part-of-speech Unigrams (n=1) for 700, 1,400, and 

2,100 Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 40 0.752 0.741 0.011 0.259 

30 0.758 0.743 0.015 0.261 

20 0.809 0.797 0.012 0.295 

10 0.862 0.848 0.013 0.322 

5 0.938 0.926 0.012 0.377 

1,400 40 0.564 0.549 0.015 0.173 

30 0.573 0.556 0.016 0.171 

20 0.645 0.632 0.013 0.204 

10 0.732 0.721 0.011 0.248 

5 0.860 0.837 0.023 0.307 

2,100 30 0.439 0.425 0.014 0.129 

40 0.440 0.427 0.013 0.128 

20 0.522 0.510 0.012 0.158 

10 0.630 0.619 0.011 0.199 

5 0.792 0.772 0.020 0.265 
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Table D2 

Best-performing Experiment Settings for Part-of-speech Bigrams (n=2) for 700, 1,400, and 

2,100 Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 525 0.714 0.696 0.018 0.237 

450 0.715 0.698 0.017 0.234 

475 0.715 0.700 0.016 0.238 

425 0.717 0.696 0.021 0.230 

500 0.717 0.701 0.016 0.239 

550 0.718 0.700 0.017 0.238 

400 0.719 0.697 0.023 0.234 

600 0.721 0.708 0.014 0.237 

575 0.722 0.705 0.017 0.237 

375 0.725 0.703 0.022 0.238 

1,400 400 0.486 0.473 0.013 0.144 

425 0.487 0.474 0.013 0.147 

525 0.488 0.474 0.013 0.146 

600 0.488 0.476 0.012 0.146 

500 0.489 0.477 0.012 0.146 

450 0.489 0.478 0.011 0.148 

475 0.489 0.476 0.013 0.148 

550 0.489 0.476 0.013 0.146 

375 0.490 0.478 0.012 0.145 

575 0.491 0.479 0.012 0.146 

2,100 400 0.342 0.329 0.012 0.093 

425 0.343 0.331 0.013 0.093 

525 0.344 0.331 0.012 0.094 

475 0.345 0.332 0.013 0.094 

450 0.347 0.334 0.013 0.094 

500 0.348 0.334 0.014 0.093 

550 0.350 0.335 0.015 0.095 

600 0.350 0.336 0.014 0.097 

375 0.351 0.340 0.011 0.095 

575 0.355 0.340 0.014 0.099 
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Table D3 

Best-performing Experiment Settings for Part-of-speech Trigrams (n=3) for 700, 1,400, and 

2,100 Word Lengths 

Sample Word 

Number 

Number of Features Cllr  Cllrmin Cllrcal EER 

700 600 0.764 0.743 0.020 0.256 

575 0.764 0.740 0.024 0.255 

550 0.767 0.744 0.023 0.256 

500 0.771 0.750 0.021 0.257 

525 0.771 0.746 0.025 0.254 

375 0.773 0.760 0.013 0.269 

325 0.774 0.759 0.015 0.266 

475 0.775 0.752 0.024 0.256 

300 0.777 0.764 0.013 0.264 

450 0.781 0.757 0.024 0.258 

1,400 600 0.535 0.516 0.018 0.162 

575 0.536 0.517 0.020 0.163 

550 0.539 0.519 0.020 0.163 

525 0.546 0.528 0.018 0.167 

500 0.547 0.530 0.017 0.167 

475 0.553 0.537 0.016 0.170 

425 0.554 0.543 0.011 0.177 

450 0.556 0.542 0.014 0.174 

400 0.557 0.546 0.011 0.176 

375 0.560 0.547 0.013 0.179 

2,100 600 0.399 0.387 0.012 0.118 

575 0.406 0.394 0.012 0.121 

500 0.408 0.393 0.015 0.128 

550 0.408 0.395 0.013 0.123 

525 0.409 0.397 0.012 0.127 

475 0.417 0.404 0.013 0.131 

450 0.419 0.407 0.012 0.132 

425 0.424 0.413 0.011 0.130 

400 0.428 0.416 0.012 0.133 

375 0.434 0.418 0.016 0.130 
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