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Abstract 

Vegetation growth is the key process driving landscape dynamics and carbon flux. 

Fire disturbs gross primary productivity to varying degrees depending on fire effects and 

the ability of the landscape to absorb these. Simple remote sensing diagnosis can build a 

description of vegetation growth considering physiological drivers from the top down, which 

are related to fire disturbance through time. Analysis of these disturbances in terms of 

ecosystem processes at landscape scales are not common. This method used here 

produces results showing a near constant relationship between fire severity and vegetation 

type, and time to GPP recovery in a semi-arid shrub landscape. Other landscapes with 

structurally complex vegetation show a range of GPP values and recovery trajectories with 

time after fire. The balance of radiation and conductance model components’ response to 

fire disturbance needs to be analysed further. The work here highlights the opportunities in 

remote sensing available to analysis of landscape disturbance and the potential for 

integrating such fluctuation into landscape models. 
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 Introduction 

Bushfires are a major force of change in many landscapes and for all creatures, including 

humans. They recycle the work of much productive behaviour. Gross primary production (GPP) 

is the driving force of living organisms on earth. It is also the largest global flux of carbon dioxide 

(CO2), absorbing quantities from the atmosphere (Beer et al., 2010). This process is of absolute 

importance to life with anthropogenic carbon emissions increasing concentrations to an 

unexperienced level. Far reaching changes to climate and everything within are already becoming 

evident (Ciais et al., 2013). The number of bushfires per year is increasing in Australia, partly 

because of warm, dry seasons caused by El-Nino climate oscillations (Bowman et al., 2009). It is 

estimated that bushfires contribute ~20% of global CO2 emissions (Thonicke et al., 2010). These 

disturbance events cause changes in vegetation function and structure resulting in changes to 

landscape processes. 

Calculating carbon stocks and fluxes has been of high international interest over the last two 

decades (Ciais et al., 2013). A key tension emerging from this effort is that processes influencing 

biosphere carbon capture vary greatly over space and through time, particularly those processes 

related to land surface characteristics (Beer et al., 2010). Landscape productivity is the GPP of 

all vegetative areas in a landscape, at regional to global scales. Methods to calculate this 

productivity have traditionally involved process-driven terrestrial biosphere models (TBMs) 

(Rogers et al., 2017). The emergence of accessible satellite technology has created a new data 

stream for climate and landscape researchers. This has allowed application of remote sensing 

(RS) to “extract new thematic information directly from remotely sensed imagery” (Jensen, 

2007). A data-driven approach to modelling, with consistent geographical and temporal 

representation is developing, simplifying TBMs in the process. These models are ideally suited 

to disturbance events which have dispersed spatial impacts over long periods (Turner et al., 

2006a). This analysis can be fed back to large scale models to further refine assumptions.  

Many systems determine GPP, including vegetation traits. One universal trait is the presence 

of chlorophyll in the flesh of productive individuals, which reflect green light when exposed to 

solar radiation. RS of GPP seeks to capture the dynamics in plant chlorophyll content (Tucker 

and Sellers, 1986). Diagnostic models built on the basis of these spectral signatures are 

increasingly accurate (Zhang et al., 2017). They have been applied at large scales in the interest 

of carbon fluxes (e.g. Zhao et al., 2005; Jung et al., 2009). However, downscaling these is 

considered important for analysing regional fluctuations in ecosystem processes (e.g. Goulden et 

al., 2011). With frequency of disturbance changing in a rapidly changing climate (Bradstock, 

2010), studying model response to these disturbances is critical, particularly if applied across 

disturbance boundaries. 

The first chapters will introduce how GPP is measured across scales using RS and the 

biophysical underpinnings elaborated. Theory of fire severity and landscape processes in the 
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context of vegetation regrowth will follow. Later, a methodology based on a published global 

productivity model and fire severity is introduced. 

 

1.1 Context 

Bushfire is a major disturbance of vegetation and productivity worldwide. It impacts 

vegetation dynamically, disturbing carbon stocks and fluxes of vegetation. Burning biomass is 

estimated to contribute ~20% of global CO2 emissions (Thonicke et al., 2010) and ~50% of NOx 

and CO emissions annually (Ii and Carmichael, 2002). While direct emissions are the dominant 

carbon balance impact from fire in vegetation, there is also a lost potential productivity while 

landscapes recover from fire. This response is determined by many factors relating to canopy 

ecophysiology, including regeneration strategies and characteristics of the fire itself. The fire 

intensity is dependent on the fuel biomass and availability (to ignite), as well as fire weather 

conditions, which are all related to the regime of that landscape in terms of feedbacks between 

these characteristics and fire frequency (Bradstock, 2010). The fire impact is also dependent on 

the severity, which is the intensity as expressed through the affected vegetation (Keeley, 2009). 

In this way bushfire is intrinsically linked with vegetation productivity and landscape processes. 

 Here we refer to GPP (μmol C m−2 s−1) as the product of photosynthesis at canopy scales in 

the context of landscape ecology. Landscape ecology is the functioning of the integrated 

biosphere and atmosphere and how these systems respond to ongoing disturbance. Photosynthesis 

is the primary process of landscapes with feedbacks to the atmosphere being a principal regulator 

of the global carbon cycle (Beer et al., 2010). Rates of productivity determine plant growth and 

levels of carbon sequestration. Understanding the drivers of such fluxes is fundamental to 

landscape ecology, with large scale study necessary for this. 

The characteristics of radiation reflected at landscape scales (e.g. 30m to 5km) is related to 

the composition and structure of the surface material, amongst other things. Remote sensing of 

radiation from satellites observes vegetation traits related to stomata and leaf activity from which 

rates of productivity can be inferred  (Jensen, 2007). Canopy scale processes are estimated by 

light and plant interaction throughout the canopy (De Pury and Farquhar, 1997). Laboratory 

biology has informed the interpretation of leaf and biomass reflectance. Strong relationships exist 

between plant leaf traits and such spectral variables (Asrar et al., 1984). Canopy conductance is 

defined as the movement of H20 or CO2 through the leaf to atmosphere and vice versa. This aspect 

of physiology can be related to spectral features by considering the heat fluxes associated with 

this interaction (Monteith, 1972). These two factors, canopy conductance and irradiance, govern 

productivity estimates over large scales. 
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 Gross Primary Productivity 
modelling with remote sensing 

Modelling of vegetation over a landscape can accurately determine gross primary production 

(GPP), from satellite images. The theory related to this method is expansive and requires 

understanding of multiscale process from the leaves of vegetation to atmospheric interference in 

images of the landscape. The following discussion will focus only on those aspects of plant 

physiology that directly relate to remotely sensed (RS) GPP canopy models and their parameters, 

as distinct from the biophysics at the leaf or sub-leaf scale. Satellite sampling of ecosystems 

enables spatial and temporal investigation, unavailable in plot based work. This flexibility allows 

analysis of structural attributes and parameterisation of models of ecosystem processes. Resource 

use efficiency models look from the top down, considering how the productivity of a system in 

spectral space relates to the output of complex processes in situ. Many approaches have been 

developed for calculating GPP, with a range of resource use limiting factors included. The study 

of GPP after fire using these models highlights the ability of these factors to describe disturbed 

ecosystems. 

2.1 Capabilities of satellite sampling 

Satellite sampling or imaging of landscapes has enabled the characterisation of complex 

ecological processes with timeliness and spatial discretion. RS sensors capture solar energy 

reflected from the surface, or near surface, of earth. The relative reflectance of particular 

electromagnetic wavelengths by a material is related to the quality of that material (Jensen, 2007). 

RS is enabled by extensive satellite imaging and reference to a continental network of ground 

sampling sites. The FLUXNET system of towers measure fine scale meteorology and fluxes of 

carbon and water, using eddy covariance methods, between the atmosphere and terrestrial 

biosphere (Jung, 2009). This sampling style is mimicked in RS where an exchange of light energy 

is the characteristic of interest between biosphere and atmosphere, and the distribution of sample 

sites is almost universal (Schaaf and Wang, 2015). Conceptually RS and FLUXNET sampling 

are parallel, considering both measure landscape scale vegetation fluxes. The RS approach is 

popular due to the deployment of fine temporal and spatial resolution satellite sensors (Drusch et 

al., 2012) and increased interest in climate change. In global change ecology vegetation is a 

dynamic agent through which transfers of energy are large (Beer et al., 2010). RS is the 

measurement of these fluxes and the derivation of biophysical processes, such as productivity 

with newfound consistency. 

2.2 Differentiating between modelling concepts 

RS models of GPP at canopy scales require less data collection and parameterisation than 

more complex physiological models. RS GPP diagnostic models can be conceptualised as top-
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down, data-driven approaches (Roxburgh et al., 2004). This approach represents just the 

necessary physiological processes to produce good model performance, in terms of final output 

(Yebra et al., 2013b). Physiological models of GPP aim to represent the ecosystem from the 

bottom up, including parameters from many sub-systems which interact with photosynthetic 

productivity (Rogers et al., 2017). For instance, the JULES model requires soil moisture, critical 

soil moisture concentrations for vegetation types and nitrogen distribution through the canopy as 

ecosystem specific parameters, amongst others (Clark et al., 2011). This complex 

parameterisation is a burden when multiple canopies or landscapes are of interest. The RS 

approach looks directly to the emergent properties of the physiology at large scales, rather than 

building a complex system to recreate such phenomenon (Fisher et al., 2015). Incorporating 

satellite sampling with top-down design, creates a pragmatic GPP modelling approach which has 

recently proliferated in earth system modelling. 

2.3 The resource use basis 

Top-down diagnostic GPP models simplify earth system model parameterisation, often by 

presenting the function of a plant or group of plants, as the capacity to use a finite resource. 

Monteith (1972) developed a light use efficiency formula for agricultural vegetation. It was 

derived from mesic and nutrient-rich conditions, although it has been shown to apply in most 

environments (Hilker et al., 2011). This is possibly due to the strong linearity between 

assimilation by photosynthesis and the absorbed incident solar radiation by leaves (Equation 1). 

𝐴 =  ε ×  fPAR ×  PAR 

Equation 1 - Monteith's (1972) light use function. 

 

Where A is GPP (μmol C m−2 s−1), ε the efficiency of fixed carbon conversion, or LUE (mol C 

mol−1 photons), and fPAR the fraction of the absorbed photosynthetically available radiation 

(PAR, mol photons m−2 s−1). This resource-use framework can include physical and biological 

constraints for situations where conditions are not optimal; including various solar interferences, 

environmental limitations on ε, as well as area (leaf or canopy) of productivity approximations. 

This mechanistic approach has great scope of application because radiation is necessary in all 

photosynthesis, and can be readily measured. This is true for remotely sensing and this radiation 

use framework has been adapted by a majority of models (Rogers et al., 2017).  

2.4 Vegetation indices and model parameterisation 

Vegetation indices are the predominant sampling approach to measuring primary 

productivity of vegetation remotely. The Normalised Difference Vegetation Index (NDVI) 

measures the ‘red-edge’ feature in the spectral response of a leaf target. Where high absorption 

in red wavelengths (0.62-0.67 µm) contrast strongly to low absorption in the NIR wavelengths 

(0.841-0.876 µm) (Rouse et al., 1973). This feature is characteristic of leaf chlorophyll pigment, 
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predominantly chlorophyll b (~0.64-0.67 µm) and associates the observed reflectance with 

carboxylation in the mesophyll. Chlorophyll molecules occur in the thylakoid membranes of 

chloroplasts and are necessary for the primary absorption of light photons penetrating the leaf 

structure (Collatz et al., 1991). Converted energy is then transferred to the photosynthesis process. 

Abundance of chlorophyll is therefore indicative of high photosynthetic capacity (Sims and 

Gamon, 2002). As a representation of this pigment, NDVI provides an indicator of productive 

potential through the proxy of radiation pathways to carboxylase reduction (Goerner et al., 2011).  

The normalised difference is taken between groups of NIR and red wavelengths, most commonly 

Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance bands ρ2 and ρ1 

respectively; producing a relative scale of ‘green area’ or foliage cover (Tucker, 1979; Justice et 

al., 1998). NDVI provides a simple, indirect measurement of vegetation structural status, relates 

well to process parameters and can be sampled by satellite. 

Calculating primary productivity of a canopy requires an estimate of the area of that canopy 

that is photosynthetically active. LAI is defined as the green leaf area per unit of ground area 

when considering one side of the leaf (Nemani and Running, 1989). NDVI is also linearly related 

to Leaf Area Index (LAI) when LAI < ~0.3 (Tucker, 1979). Though NDVI is representative of 

leaf area, it is not representative of how leaves necessarily interact with sunlight (Fensholt, 

Sandholt and Rasmussen, 2004). Photosynthetically available radiation (PAR) is the section of 

incident radiation (Q) that provides energy for primary productivity (~0.4-0.7 µm). A schematic 

of radiation interacting with plant leaves can be seen below (Figure 2), highlighting the interaction 

of radiation (PAR) with the ‘green’ chloroplasts in leaf cells.  

 

Figure 1 Radiation, water vapour and CO2 flux of leaves (Tucker and Sellers, 1986). 

 

If the relative area of photosynthetically active targets (i.e. NDVI) is known the fraction of 

intercepted PAR (fPAR) can be calculated based on empirical scaling. When this is combined 

with PAR (Equation 1), the total energy available to the canopy for photosynthesis can be estimated 

(Asrar et al., 1984). fPAR is scalable across species and plant functional types (PFT) (Gamon et 
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al., 1995). Ecosystem process models often use this as a starting parameter to estimate exchange 

between biosphere and atmosphere (Monteith, 1972).  

GPP models of disturbance events require regular temporal sampling, to accurately capture 

change due to discrete events. The MODIS sensor, deployed on satellites Terra (1999) and Aqua 

(2002) passively measure radiation emitted or reflected by earth’s surface in the visible to thermal 

infrared (0.6 to 14 µm) range (Justice et al., 1998). The sensors move in opposed orbit, creating 

daily coverage of global, spectral reflectance images, with a finest scale of 250m. Seasonal 

changes in canopies and landscapes are well sampled. Intra-seasonal changes, such as short term 

changes in canopy processes due to fire, are also well captured at this resolution (Gharun et al., 

2018). Contemporary sensors have  finer spatial and radiometric resolutions (Coyle et al., 2015). 

However, the temporal resolution and established theory of MODIS enable research on primary 

production. The Enhanced Vegetation Index (EVI) is another remotely sensed vegetation index 

that is used for exploring radiation pathways into primary production. It was developed partly in 

response to the problem of NDVI saturation in dense biomass such as tropical wet forest. This 

problem is function of the canopy background interfering with the canopy response within the 

pixel, resulting in overestimation (Huete et al., 2002). EVI is similar to NDVI in sensing the red 

edge feature. However, EVI incorporates another spectral feature, making it more sensitive to 

complex canopies and correlating well with LAI and canopy architecture. Complimentary indices, 

EVI and NDVI, capture consistent spatial information about vegetation which can be related to 

GPP. 

 

2.5 A range of model approaches 

Explicitly including the water cycle in GPP models improves accuracy in xeric 

environments, where light resource use is never maximised (Yebra et al., 2015). Berry developed 

a GPP model on a novel formulation of LUE, incorporating an evapotranspiration component. 

Net radiation flux, based on surface albedo and temperature extremes, was combined with latent 

heat of evaporation and a multi leaf description of the canopy to produce total evapotranspiration. 

This was then divided into transpiration of leaves based on 3 leaf functional types and respective 

water fractions. GPP is calculated by combing an empirical estimate of WUE of photosynthesis 

with the transpired mass of water for all leaf types. The requirements of data on leaf functional 

types and associated water mass, and WUE are specific and substantial.  Such biome specific 

studies often parameterise using a supervised classification of other spectral data. This is difficult 

without considerable field checking (Tempfli et al., 2001). GPP models that rely on field 

parameterisation detract from the utility of RS in post disturbance landscape analysis. 

The light use efficiency GPP model has been shown to improve in accuracy when a diffuse 

fraction of solar radiation is included. The improvement is notable in wet, diffuse-light (cloudy) 

seasons (Yan et al., 2017). It has been shown that as the fraction of diffuse radiation increases 
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(that is the portion passing through the upper layer of canopy) so too does assimilation of the 

whole canopy (De Pury and Farquhar, 1997). This is indicative of the presence of complex canopy 

structure where assimilating leaves and plants occur through the vertical profile, not just on the 

upper surface. Also leaves occurring at angles other than horizontal potentially absorb greater 

irradiance, as diffuse radiation has no uniform directionality (Mercado et al., 2009). Donohue 

(2014) confirmed the formulation of Roderick et al. (2001) by adding a diffuse component to a 

light use model parameterised with RS NDVI, which performed well across Australia. However 

the calculation of the fraction in the original work was shown to respond unpredictably when 

atmospheric particulates, namely a volcanic eruption, were present (Roderick et al., 2001). It is 

problematic to include this model component when considering large fire events, as the smoke 

may increase the diffusivity of incoming solar radiation in a diffuse fertilisation effect (Park et 

al., 2018). However interference with satellite samples may be short as smoke clears quickly. 

Given this uncertainty, GPP after fire is not considered relevant to diffuse radiation delivery.  

Studies calculating GPP from satellite data most often use the light use efficiency 

framework. It was popularised by the authors of the MODIS global GPP product (MOD17, 

Running et al., 2004). They take the light use efficiency of vegetation based on an empirical 

maximum for broad classes of biomes, combining this with a measure of the fraction of radiation 

available for plant photosynthesis (fPAR, where NDVI is proxy), and solar radiation levels. A 

further two environmental limitations, temperature and vapour pressure deficit, are applied as 

restraints on the maximum LUE variable representing varying physiological light use efficiency. 

A major problem with this approach is the lack of explicit moisture representation. A deficit of 

soil moisture tends reduce stomatal conductance and eventually GPP and evapotranspiration. This 

is the case in many dryland areas of Australia (Andela et al., 2013).  In the MOD17 framework, 

environmental scalars do not represents this, nor the resultant decrease in productivity that may 

only emerge through NDVI latterly. In dry and semi-arid, Australian, fire prone, ecosystems this 

inability to respond to soil moisture is inadequate when modelling GPP. 

The CASA model of Potter et al. (1993) incorporates soil moisture into a GPP, light use  

framework that can be adapted to RS (Field, Randerson and Malmström, 1995). The light use 

efficiency term is reduced by a factor equivalent to the difference in pan and potential evaporation. 

Assuming that the remaining potential is stored as soil moisture. In effect LUE is allowed to vary 

within seasonal limits relating to available moisture to vegetation. A maximum moisture 

constraint is used, for the case of fPAR also exhibiting effects of long term deficiencies. Where 

the reduction in leaf area due to lack of water translates to lower RS NDVI hence fPAR. This 

component may be parameterised by remote sensing making it accessible to cross biome studies. 

However the assumption that surplus potential evaporation becomes available to the vegetation 

is considerable. The inclusion of this restrain on LUE recognises the limit of water in GPP 

estimation. Models that consider canopy conductance separately to LUE achieve the same goal. 
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Including canopy conductance to carbon in modelled GPP can overcome some of issues of 

radiation alone. These include the expense of field checking and the separation of water use 

efficiency from GPP. Evapotranspiration can be derived from the inversion of the conductance 

term of the Penman-Monteith equation (Monteith, 1965; Monteith and Unsworth, 2013), 

(Equation 1). The P-M formulation considers the rate of evaporation of the canopy to be in 

proportion to the flux of heat. At the leaf boundary stomata are gatekeepers for this heat flux, 

comprised of water vapour and atmospheric CO2 exchange. Stomatal resistance is a primary 

control of the rate of carbon assimilation to sites of photosynthesis in the mesophyll cells (Leuning 

et al., 1995). This resistance is decided by many biotic and abiotic factors however it is always 

characterised by relative pressure of CO2 and water vapour molecules (Cowan and Farquhar, 

1977). This recognition is uncommon in most radiation driven GPP models (e.g. Running, Glassy 

and Thornton, 1999). Mechanisms controlling stomatal activity are many whereas those on 

radiation productivity are theoretically simplified. Many fire prone landscapes have dry and hot 

climates, at least seasonally, creating requisite fuel (Chuvieco, 2009). Also, persistent low 

humidity and soil moisture are common during the warm season (Lauer and Boyer, 1992). Here 

GPP may be limited by conductance, due to the non-linear response to radiation at extreme (both 

low and high) conditions (Wu et al., 2015). Introducing conductance limitation into models 

reduces errors in GPP estimation, in arid conditions, where over estimation is likely (Yebra et al., 

2015: Fig 3). Considering the action of stomata of leaves in fire prone ecosystems improves 

modelling of GPP. 
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 Fire disturbance and vegetation 
regrowth 

RS GPP modelling has future potential capacity for monitoring ecological impacts of fire. 

While RS is utilised successfully for predictive purposes, such as fuel monitoring (Yebra et al., 

2013), fire detection (Giglio et al., 2016) and infrastructure protection (Chuvieco, 2009), there is 

scope for tracking the recovery of ecosystems. Plot based measurements are utilised to infer 

recovery condition for various structural metrics in regrowing vegetation. For instance, basal area, 

canopy cover, and tree height may be measured through time or across a chronosequence of 

samples representing different growth ages (Ruiz, Fandiño and Chazdon, 2005). However 

repetition of these samples is difficult and the construction of time-since fire series’ thereby 

limited (Bartels et al., 2016). Also, in the absence of direct measures of ecosystem processes, like 

GPP, trends between field sample points are less certainly estimated, due to high variability within 

and between ecosystems (Beer et al., 2010). This variability depends on severity of fire, systems 

of regeneration and the accuracy of remotely monitoring these. Considering these, integration of 

GPP and fire analysis with RS modelling is highly useful. 

3.1 Fire severity and regeneration 

GPP rates of burnt vegetation are influenced by the impacts caused by fire characteristics. 

Severity is a measure of the effects on vegetation, related indirectly to intensity, during 

combustion (Keeley, 2009). It is considered an ecosystem attribute and not a fire characteristic. 

Severity indicates the inability for fire to disturb combustible material given that response may 

vary among and within vegetation groups given the same measurable fire intensity. High severity 

is broadly classified as near complete combustion of over storey, while low severity is a ground 

fire with no prescription of combustion. 

Fire effects are relative to landscape characteristics. This complicates recovery analysis, 

where structural attributes, such as regeneration strategies vary. The differenced normalised burn 

ratio (dNBR) is a commonly applied VI, observing the negative change of reflectance in the near 

infrared (NIR) and positive in the short-wave infra-red (SWIR) after fire (Lutes et al., 2006). The 

former is associated with the loss of chlorophyll containing targets, in the spectral signature, that 

occurs with leaf scorching, like the NDVI. Whereas, SWIR occurs with higher presence of woody 

targets, often as standing dead wood or exposed bark post fire. Two images, before and after, are 

differenced to see the absolute changes in that vegetation. This assumes that the samples are 

seasonally aligned with a similar soil moisture content (Lutes et al., 2006). Differencing between 

these values is prone to error, particularly in heterogeneous ecosystems or when comparing 

effects between bushfires (Kokaly et al., 2007). If a vegetated site displays lower spectral 

reflectance in both observed frequencies because of a sparse canopy structure, comparison to a 

more vegetated site renders the absolute difference of NBR less when experiencing the same fire 
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intensity. Therefore comparing absolute differences in severity measure is considered less useful 

across sites (Edwards et al., 2013). In this case a relativised dNBR is a useful adaption which 

includes pre-fire vegetation condition in the change detection (Parks et al., 2014) Severity can be 

measured spectrally as vegetation responds to fire intensity and is related to ecosystem processes. 

Tree mortality and regenerative approach of vegetation are factors in GPP recovery of fire 

prone ecosystems (Odum, 2014). Obligate re-sprouting species grow lignotubers in the roots, or 

epicormic buds under the bark. These features allow vegetative regrowth of individuals following 

disturbance (Nicolle, 2006). These communities comprise much of the mixed Eucalyptus forests 

of south-east Australia. The obligate reseeding technique relies on canopy seed and is most 

successful in a fire regime of extreme events with complete canopy scorch (Vivian et al., 2008). 

Montane wet forests contain such species (e.g. Mountain Ash, Eucalyptus regnans) (Nicolle, 

2006). Recent research in other mixed forests of pre-dominantly re-sprouters has shown that 

reseeding approaches may also be utilised here, after severe fires. Mortality was very high, 

reducing re-sprouting capacity, with significant seedling recruitment occurred compared to areas 

of moderate to low severity (Bennett et al., 2016). These facultative re-seeders are exemplified 

by Brown Barrell (Eucalyptus fastigata) of mountainous ACT. Fire adapted, re-sprouting 

communities, which are dominant in SE Australia, may experience structural change in extreme 

events, potentially affecting ecosystem processes. Such species trait are factors in GPP following 

fire of different severity. 

In canopies that experience no or low scorch, regeneration may be suppressed and GPP less 

affected. The survival of over storey individuals in obligate seeding forests increases competition 

in the lower stratum following fire, predominantly by reduced available light and moisture to 

seedlings (Bennett et al., 2016). The survival of these new individuals is low and there is little 

impact on the structure of the dominant individuals where canopy cover is maintained (Vivian et 

al., 2008). In these tall and closed forests, indices, particularly the NDVI, saturate at high values 

due to complex canopy structure (Huete et al., 2002). Any regeneration in the understorey is 

disguised by survival of the pre-fire canopy, potentially leading to underestimates of the 

photosynthetically active area for post-fire years. However, the high mortality of seedling 

regrowth, due to competition with canopy, constrains major effects on ecosystem structure and 

RS response. In mixed forest, again the canopy remains intact and seedlings may shoot in the 

understorey of facultative species, however there is epicormic and lignotuber regrowth in all 

stratums. This growth is not suppressed, and may flourish in the niches created by patchy 

mortality of over storey. Seedlings on the ground storey are likely killed by further low severity 

fire, particularly in fire managed areas (Bennett et al., 2016). The interplay between regrowth 

strategy and canopy survival is important for RS modelling of GPP capacity.  

Remote sensing of low-severity fire in grasslands has shown a reduction in primary 

production, using EVI as proxy, when validated with flux towers (Rocha and Shaver, 2011). Such 

analysis is successful in ecosystems with simple canopy structure. However, in closed forests, the 
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rdNBR index has proven less accurate in identifying low-impact areas (25% user accuracy) 

compared to high-impact (56.3) or no impact (92%). This study was validated with field samples 

in the Victorian montane forests (Bennett et al., 2016). It shows the difficulty of sensing restricted 

regrowth, particularly of re-sprouting or facultative forests, within complex stand structure. GPP 

models built on RS indices may suffer decreased accuracy for relatively low regeneration events, 

however severe fires and subsequent regrowth provide spectral definition for assessment.  

  

3.2 Vegetation regrowth and changing productivity 

GPP associated with regrowth is affected by structural changes, and physiological changes 

in the canopy. Burning reduces leaf area causing a loss of ability to intercept radiation and 

productive potential (Ehleringer and Field, 1993). This can be as severe as near-complete GPP 

loss associated with death of over storey in fire-sensitive, temperate, montane forests (Buckley et 

al., 2012). Contrastingly, a reduction of 30% GPP has been estimated in tropical forests after 

uncommon high severity events (Biswas, Lasko and Vadrevu, 2015). As new leaves expand, 

through different regeneration strategies  the canopy area returns and the capacity for productivity 

increases (Fleck et al., 1998). This expansion is critical for modelling GPP after fire using 

satellites. 

With a restored capacity for GPP the actual rate of productivity per leaf varies through time, 

regardless of environmental limitations placed on LUE (Russel, Marshall and Jarvis, 1989). The 

leaf GPP is often referred to as the photochemical efficiency. This rate depends on the maturation 

of leaf scale photosynthetic components. For instance photosynthetic pigment to protein ratios 

change with age for many species (Šesták and Šiffel, 1997). This variation in photochemical 

efficiency means fraction of absorbed photosynthetically available radiation (fAPAR) is often 

overestimated, particularly after disturbance events (Cheng et al., 2006). The authors showed 

NDVI based fAPAR to remain highly positive, with complete canopy loss, while field 

measurements dropped near zero. In the case of steady fAPAR, or productive area, a time 

averaged LUE term, will reflect the efficiency of the productive area. This assumes that under 

optimal meteorological conditions, canopies reach their maximum physiological potential. 

However the limit of photochemical efficiency through time may still be present, more so in 

young vegetation. Zhou et al. (2015) found maximum LUE to increase for the first 17 years of 

growth in evergreen needle leaf forests. This finding suggests, holding LUE fixed through time 

will underestimate GPP of younger canopies, leading to inaccuracies in vegetation recovering 

from fire and overestimation in old growth. If diagnostic GPP models are to be applied to carbon 

accounting, considering large scale disturbance, this uncertainty needs to be addressed.  

Combining time and ecosystem dependence of LUE improves GPP modelling. However this 

parameterisation is complex, due to the high spatial variability of both characteristics during 

stochastic disturbance. Madani et al. (2014) used classification of forest stand age across Canada 
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(Pan et al., 2011) to determine canopy traits such as nitrogen content and effects on GPP using a 

LUE term. They also suggested further investigation into LUE in terms of leaf trait variations 

through time. This is beyond the scope of this research, however some of this uncertainty may be 

compensated for by employing the conductance component which does not rely on fPAR based 

LUE. Also Buckley et al. (2012) found, in Mountian Ash forests of Victoria, that photosynthetic 

potential measured in the field did not vary between seven-year regeneration, after stand 

replacement, and old growth forest (71 yrs). Suggesting that productive potential of the leaf and 

the canopy are quickly recovered in these forests. This is for high severity fire, where canopy is 

removed. If the adjustment of photochemical efficiency is relative to the expansion of fPAR in 

regrowing vegetation, GPP estimates using unrestrained LUE may be effective. In many 

ecosystems including conifer forests of Oregan USA this is not the case (Turner et al., 2006b). 

Stand age affects GPP across a range of burnt and logged forests. Here a scalar is applied to the 

LUE term (ε, Equation 1) of GPP, based on a vegetation age layer. This input is from extensive 

and intensive field data collation. For large heterogeneous landscapes, without prior research, this 

is more difficult. RS GPP models assessing disturbance require further parameterisation of LUE 

through time. 

Furthermore fire can induce structural change due to vegetation succession (Huang et al., 

2013). Given an event where the regeneration strategy of the dominant vegetation destroyed is 

insufficient to compete, an overall shift in vegetation extent may occur. The succeeding species 

may be a historically lower storey species that suppresses over storey regeneration leading to 

dominance of a different ecosystem structure. To overcome these dynamics when estimating GPP 

after fire, parameters must be drawn from multi-species attributes. Where the structural difference 

of the open-forest compared to the closed-shrub land, for instance, is perceptible in spectral space. 

Also, a vegetation classification of spectral space may preclude a temporal shift in relative extent.  

The vegetation index approach of GPP modelling accounts for structural variation due to the 

correlation of such indices with leaf area index (e.g. Yebra et al 2015 in section 2.2). In turn this 

characteristic relates to vegetation height and other elements of structure. Different indices may 

be applied as representation of productive area, or combined in average representation of 

structurally dissimilar biomes.  

Water use efficiency (WUE) is an important factor in GPP of regrowth. WUE is the ratio of 

units of CO2 assimilated to units of H2O lost (Donohue, Roderick and McVicar, 2007). The lower 

LAI of regrowth vegetation reduces evapotranspiration due to lack of interception. Often 

increasing soil moisture availability in the short term (Fleck et al., 1998). Conversely young 

vegetation, regrowing from seed has higher WUE as the plant attempts to assimilate more carbon 

for plant growth (Flexas, Loreto and Medrano, 2011). The competition between CO2 substrate 

and transpiring moisture through the leaf space defines this trade-off, as both fluxes are necessary 

for plant growth (Hetherington, Smillie and Davies, 1998). Most species have adapted to this 

compromise by rapidly (minutes - hours) adjusting stomatal conductance. During regrowth after 
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fire the expanding canopy increases ET as well as adjusting stomata to balance high assimilation 

with increasing transpiration (Choinski, Ralph and Eamus, 2003). Resulting in lowered soil 

moisture and training of work toward maintenance of fixed plant material (Cernusak et al., 2006). 

ET has shown to increase significantly in seedling regrowth forest where a majority of individual 

mortality occurred, compared to pre-fire levels (Brookhouse, Farquhar and Roderick, 2013). This 

resulted in an observable streamflow reduction in effected catchments. However in mixed 

eucalypt forests in less fertile landscapes this large increase in ET was less and extended over a 

15 year period post fire (Nolan et al., 2015). GPP models that describe the relation between ET 

and GPP are more suited to post-fire environments. 
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 Aims and hypothesis 

 

This research is aimed at studying GPP across Australian vegetation types and the different 

impacts fire has on carbon flux. Of interest is the influence of fire severity and vegetation type. 

Analysing these components will highlight ongoing changes to landscape productivity due to 

disturbance. To do this a recently developed model by Yebra et al. (2015) is downscaled and 

analysed on new study sites. The original paper estimated GPP across 16 sites and globally, 

considering radiation and canopy conductance as drivers. This paper does the same at finer 

resolution across bushfire events, within the MODIS satellite data record. This application will 

calculate long term trends in GPP recovery of landscapes, considering that severity is likely a 

driver of vegetation response. Differentiating between low and high severity areas and classes of 

vegetation affected, determines the response of post-fire GPP relative to unburnt control 

locations. It is expected that fire severity is the dominant driver of GPP recovery. The hypotheses 

are: 

 GPP recovery time is dependent on burn severity. 

 GPP recovery time is dependent on vegetation type. 

In order to verify the hypothesis the following questions are considered: 

 How do rates of productivity trend with time after fire? 

 How does this rate differ by severity within the fire scar? 

 How does this rate differ by vegetation type? 

 Do remotely sensed models sufficiently capture this variation? 

 What does the variation in productivity suggest of the vegetation types? 

 What does the variation in productivity suggest of the RS approach to fire 

response? 
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 Methodology 

5.1 Overall Approach 

Vegetation was sampled from four study sites that were affected by large fires, using an 

index of burn severity (see 5.4.3, p.25). Each group of samples was paired with control areas 

outside the firescar. A satellite based GPP model was then run for the region of each study fire, 

based on 4 day satellite return, including the calender year prior. The groups of samples were 

averaged across the landscapes and timeseries produced for each. 
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5.2 Model description 

The remotely sensed GPP model of Yebra et al. (2015) is shown, diagrammatically in Figure 

3. This approach uses the lesser of radiation or conductance limited GPP, parameterized with RS 

VIs. The components of conductance and radiation, Fc and Fr, respectively (μmol C m−2 s−1), 

derived GPP both take a combination of MODIS reflectance data and meteorology as raw data 

inputs. Only two fitting parameters are required across biomes, one for each component. Fc is 

parametrized using an exponential equation (Equation 2) applied to vegetation indices, NDVI, EVI 
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and crop factor (Kc). This index combines the residual moisture index (RMI), rescaled EVI, and 

the global vegetation moisture index (GVMI), to describe the residual difference of moisture in 

the canopy through NIR reflectance. The canopy conductance to water vapor is produced by 

inversion of the Penman-Monteith formulation of latent heat flux and was validated by the authors 

at 16 FLUXNET sites in 6 different land cover types globally (Yebra et al., 2013).  

𝐺𝑐𝑤 = 𝑎 exp [𝑏 (𝑉𝐼 − 𝑉𝐼𝑚𝑖𝑛)  

Equation 2 - Canopy conductance model developed by Yebra et al. (2013). 
 

Where 𝑎 and 𝑏 are coefficients per VI and 𝑉𝐼𝑚𝑖𝑛 is the VI observed for bare soil, which Yebra et 

al. (2013) optimized after parameterizing values from literature, and the result, 𝐺𝑐𝑤, is 

conductance to water vapour (mm s-1). Best VI predictions varied between biomes (see 5.5). The 

average of the three computations of VIs was found to predict 𝐺𝑐𝑤 best overall ecosystems (Yebra 

et al., 2013), which I then applied in a H2O to CO2 conductance conversion equation at each pixel 

(Equation 3). 

𝐹𝑐 = 𝑐𝑔𝐺𝑐𝑤(1 − 𝑅0)𝐶𝑎  

Equation 3 – GPP based on conductance to vapour at the leaf boundary. 

 

Where 𝐹𝑐 is the mean GPP (μmol C m−2 s−1), 𝑐𝑔 is the conversion coefficient of H2O to CO2 

diffusion (mol C m−3), 𝐺𝑐𝑤 is the canopy conductance to H20 from the latent heat flux as described 

above (Equation 2), R0 is the ratio of minimum achieved external (𝐶𝑎) to internal (𝐶𝑖) CO2 

pressure, and 𝐶𝑎 is the atmospheric concentration of CO2 derived from a quadratic equation based 

on samples at Mauna Loa, Hawaii (Equation 4). R0 used here is based on the optimized value 

across all FLUXNET sites in Yebra et al (2015), and the same function used there to account for 

effect of vapor pressure deficit (VPD) was used here. R0 is related to stomatal conductance and 

evapotranspiration, and varies by vegetation species and growing conditions (Kelliher et al., 

1995).  Values for woody species correlate reasonably well (r2 = 0.66) with surface assimilation 

rates. However, the maximum ratio internal to external leaf CO2 has been shown to occur 

throughout the day only if soil water availability is sufficiently high (mesic environment). 

Minimum ratios may be up to half (~0.3 compared to ~0.7) for soil that is significantly drier 

(Tuzet, Perrier and Leuning, 2003). This method assumes a limited range is maintained because 

this did not degrade model performance when tested at 16 Fluxnet sites (Yebra et al., 2015). 

𝑪𝒂 = 𝟏. 𝟐𝟎𝟔 ∙ 𝟏𝟎−𝟖𝒚𝟐 − 𝟒. 𝟔𝟒𝟏 ∙ 𝟏𝟎−𝟓𝒚 + 𝟎. 𝟎𝟒𝟓  

Equation 4 – Atmospheric carbon concentration. 
 

The Fr is taken from maximum light use efficiency by the canopy based on a scaled EVI, 

where the maximum value Ɛmax was optimised across the FLUXNET sites previously mentioned. 

𝐹𝑟 = 𝜀 𝑓𝑃𝐴𝑅 𝑄  

where ε =  ε𝑚𝑎𝑥𝐸𝑉𝐼∗ and 
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𝐸𝑉𝐼∗ = max (min (
𝐸𝑉𝐼−0.05

0.90−0.05
, 1) 0)  

Equation 5 - GPP based on radiation use efficiency of the canopy. 

 

Where Fr (μmol C m−2 s−1) is GPP, ε𝑚𝑎𝑥 is the maximum light use efficiency optimised 

across biomes, represented spatially by scaled EVI, 𝑄 is incident radiation and 𝑓𝑃𝐴𝑅 is that which 

is available to the canopy based on NDVI. 

𝑓𝑃𝐴𝑅 = 𝑓𝑃𝐴𝑅,𝑚𝑎𝑥𝑁𝐷𝑉𝐼∗  

where 𝑓𝑃𝐴𝑅,𝑚𝑎𝑥 = 0.95 and 

𝑁𝐷𝑉𝐼∗ = max (min (
𝑁𝐷𝑉𝐼−0.1

0.9−0.1
, 1) 0).  

Equation 6 - Fraction of interceptable radiation based on NDVI. 

 

This formulation of radiation driven GPP uses Monteith’s standard formulation of 

productive potential (Monteith, 1972) however the parameters are adapted for RS based on strong 

relationships between VIs and physiological attributes (Yebra et al., 2015; Zhao et al., 2005). It 

is noted that assuming leaf level GPP will be scaled accurately by indirect canopy area 

measurements may be vicarious; when fPAR is decoupled from actual productive area (Myneni, 

Los and Asrar, 1995). 

𝐹𝑟 and 𝐹𝑐 components were originally validated over the IGBP land cover classes; grassland, 

cropland, evergreen needle-leaf forest, evergreen broad-leaf forest and woody savanna (Yebra et 

al., 2015). These types include the variation within Australian study sites. Therefore parameters 

The output of GPP from the two components were then compared at each pixel so that the 

conservative estimate was produced (Equation 7). 

𝑭 = 𝐦𝐢𝐧 (𝑭𝒄, 𝑭𝒓)  

Equation 7 - GPP of lesser of two remotely sensed components. 
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5.3 Study Sites 

The fires analysed here occurred in three temperate forest ecosystems, and one semi-arid 

shrub-land, Big-Desert Wilderness Park in south-eastern Australia (Figure 4 and Table 1). The 

Black-Saturday and Brindabella events were considered mega-fires, with widespread crown fires 

that covered areas of national park, reserves and private property. The four sites represent a range 

of fire characteristics, with Deua-NP having lower average intensity than the other forested sites. 

Table 1 - Study site descriptions. 

 

These fires (Table 1) are selected for their significant impact social impact and timeliness 

within the MODIS period. They have featured in some literature and represent a range of biomes 

(Table 1). The Black Saturday and Canberra 2003 have been researched elsewhere (e.g. Vivian et 

al., 2008, Buckley et al., 2012). Big-Desert Wilderness Park fire was the largest area burnt of any 

fire in the previous 20 years in Victoria (Esplin et al., 2003). The Black-Saturday site is currently 

undergoing a shortening of the fire return period. This is due to the increased fire occurrence in 

obligate seeding forests, increasing high severity events in all forests types, and logging 

disturbance over the past century. Most of the Black-Saturday site burned in a large event in 1939 

that extended along the Alps to meet the Brindabellas. Small sections of Brindabella fire scar 

have burned at various times before and since 2003, the largest being ~15% in the far southern 

section in September 1983. Deua fire scar burnt in the 1990/91 fire season, southerly, while the 

north eastern section burnt in bushfires in 1980/81. Periodical fuel management fires have 

occurred since 1991 (Yebra, 2018). 

Location Size 
(ha) 

Date Duration 
(days) 

Vegetation IGPB land 
cover 
classes 

Reference 

Brindabella 
and 
Namadgi 
NPs, 
Canberra, 
Australia 

164,914 08/01/2003 14 Mixed 
Eucalyptus sp. 
and Alpine Ash 
forests, some 
Radiata pine 

EBF, 
some 
ENF 

(Mills, 2005) 

Black 
Saturday 
fire, Victoria, 
Australia 

400,000 07/02/2009  7 Mixed 
Eucalyptus sp. 
and Mountain 
Ash forests 

EBF (Hislop et al., 
2018) 

Big Desert 
Wilderness 
Park, Vic 

181,400 17/12/2002 8 Shrub-
land/Mallee 
shrub-land 

OSH (Esplin, Gill 
and Enright, 
2003) 

Deua 
National 
Park, NSW 

46,000 24/12/2001  20 Mixed 
Eucalyptus sp. 

EBF No 
published 
literature 
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Figure 4 - Locations of study fires in South Eastern Australia. 

 

 

Figure 5 - Climatology of four sites in 
SE Australia. 
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5.3.1 Vegetation 

The Brindabella site covers a range of open and less closed sclerophyllous vegetation 

communities across mountainous gradients with minor plantation forest (Table 2). Lower slopes 

comprise open forest with shrub understorey, down to grassy understorey at lowest elevations 

(Thomas, Gellie and Harrison, 2000). NDVI values are becoming saturated in the areas of 

Eucalyptus forest and in the apparent P. radiata plantations. EVI shows better discretion in the 

dense vegetation, (Figure 7). The city of Canberra can be seen to have random values, in the north 

east. 

Table 2 - Species specific vegetation of study sites. 

Brindabella  Position 

Snow Gum (Eucalyptus. pauciflora) Upper 

Mountain Gum (E. dalrympleana) Upper 

Alpine Ash (E. delagatensis) Upper 

Brown Barrel (E. fastigata) Upper 

Apple Box (E. bridgesiana) Upper/mid 

Broad-leaved peppermint (E. dives) Upper/mid 

Brittle Gum (E. manifera) Upper/mid 

Candle bark Gum (E. rubida) Lower 

Radiata pine (P. radiata) Lower 

Black Saturday  

Mountain Ash (Eucalyptus regnans) Upper 

Alpine Ash (E. delagatensis) Upper 

Brown Stringybark (E. baxterii) Mid/lower 

Narrow-leaved Peppermint (E. radiata) Mid/lower 

Mountain Grey Gum (E. cypellocarpa) Mid/lower 

Messmate (E. obliqua) Mid/lower 

Eucalyptus low open woodlands with a shrubby understorey Mid/lower 

Other Acacia tall open shrublands and [tall] shrublands Mid/lower 

Big-Desert  

Slender-leaf Mallee (Eucalyptus leptophylla). Shrub species include, , and  Throughout 

Yellow Mallee (E. incrassata)  

Scrub-pine (Callitris verrucosa)  

Dwarf She-oak (Casuarina pusilla)  

Desert Hakea (Hakea muelleriana)  

Green Teatree (Leptospermum coriaceum)  

Heath Tea-tree (L. myrsinoides)  

Desert Banksia (Banksia ornata).  

Porcupine Grass (Triodia irritans)  

Deua-NP  

White Ash (E. fraxinoides) Throughout 

Silvertop Ash (E. sieberi)  

Mountain Grey Gum (E. cypellocarpa)  
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Messmate (E. obliqua)  

 

Big-Desert Wilderness Park is predominantly a shrub-land of sparse coverage (~40% projected 

canopy cover) with a dispersed over storey of mallee. Over the sandy dunes and soils a ground 

layer of is common (National Parks Service 

and Department of Conservation and Natural 

Resources, 1994). NDVI values of the 

vegetation range from 0.21 - 0.39 (25th- 75th 

percentile), with a mean of 0.32 (Figure 6). The 

South Australian/Victoria border can we seen 

in the west. 

 

The Black-Saturday fire occurred in 3 

different catchments, north-east of 

Melbourne, Victoria. NDVI averages 0.67 

with very high values (>~0.8) in the tall 

forests. 

The Deua National Park site is 

predominantly is Eucalyptus woodlands 

containing a shrubby understory with 

ferns, sedges, rushes, and wet tussock 

grasses in wetter locales persisting where tall open Eucalyptus forests dominate, with herbs 

Figure 7 Image of Brindabella fire scar and mean 
EVI (2002-2016). Horizontal lines indicate area of 

fire scar. 

Figure 6 - Image of Big-Desert fire scar and mean NDVI (2002-2016). 
Horizontal lines indicate area of fire scar. 

 



23 

 

appearing concurrently (NVIS Technical Working Group, 2017). Species are similar to the 

middle to higher elevation Brindabella site. NDVI values range from 0.5 in drier gullies to >0.8 

in tall forests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Image of Black-Saturday fire scar and mean EVI (2008-2016) 
Horizontal lines indicate area of fire scar. 

 

Figure 9 - Image of Deua-NP fire scar and mean EVI (2001-2016). Horizontal 
lines indicate area of fire scar. 
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5.4 Data 

Satellite sources are open source; fire scar boundaries are from the relevant state authority, 

and meteorological inputs were taken from the recent version of ANU Climate model (Table 3). 

Table 3 Spectral, meteorological and fire scar data sources 
Data  Source Resolution 

Surface reflectance 
product 

MODIS MCD43C4 Global Reflectance Product 
adjusted for Atmospheric and bi-directional 
errors (Schaaf and Wang, 2015) 

0.005o grid 

Continental 
meteorology (Daily 
surface radiation, 
maximum and minimum 
temperatures) 

ANU Climate v2 Model (Hutchinson et al., 2018) 0.01o grid, 
resampled to 
0.005o using 
cubic spline 
interpolation 

Major vegetation 
subgroups 

National Vegetation Information System (NVIS) 
(NVIS Technical Working Group, 2017) 

100m raster, 
resampled to 
0.005o using 
average 
resampling 

Fire scar boundary Site Source 

(Yebra, 2018) 

(Vector file) 

Brindabella ACT Government 

Black 
Saturday 

Victorian Gov. Open Data 
Directory 

Big-Desert As above. 

Deua-NP NSW Office of Environment and 
Heritage 

 

5.4.1 Reflectance data 

MODIS reflectance tiles, (MCD43A4, 500m resolution; Schaaf and Wang, 2015) produced 

by Land Processes Distributed Active Archive Center (LPDAAC), were acquired from the ANU 

Water and Landscapes Dynamics group via the National Computation Infrastructure (NCI) for 

each study area, over the longest time period possible. These images are adjusted with a 

bidirectional reflectance function to remove reflectance sun-target-sensor geometry issues. 

Images were then screened for poor quality using the built-in flags, with only the highest quality 

accepted. They were re-projected from sinusoidal to geographic coordinate system, WGS84 in 

the Numpy and Xarray python libraries, finally building a cube (latitude, longitude and time 

dimensions) of data for each site. 

5.4.2 Meteorology 

The ANU Climate Version 2.0 dataset is based on a range of station measurements from 

1970 to the present. For the GPP radiation component, stable daily solar radiation was used. It is 

the total received in 24-hour period and is spatially interpolated based on temperature ranges and 
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rainfall. Temperatures (maximum and minimum) are the respective values averaged for the 24 

hours after 9am, interpolated using exaggerated elevation and proximity to the coastline. VPD is 

the average of 9am and 3pm measurements at 300-700 stations, also interpolated using elevation 

and coastline. 

5.4.3 Severity 

Differenced normalised burn ratio (rdNBR) was used to measure vegetation response to fire 

impacts. The standard dNBR is an absolute measure of the fire caused change in NIR and SWIR 

signature of vegetation. To compare changes between sites, the pre-fire image of vegetation is 

used to create a relative change index. MODIS MC43A4 was again utilized for before and after 

images of the fire scar. Images were taken from the same season, to reduce effects of growth or 

senescence. The difference between images highlights response of vegetation to structure change 

(Key and Benson, 2006) across the fire period considering that pre-fire values are inherently 

different between sites (Equation 8). The index predominantly represents a reduction in moisture 

and chlorophyll containing elements from vegetation.  

𝑟𝑑𝑁𝐵𝑅 =
 𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒−  𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒

√𝑎𝑏𝑠( 𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒)

  

Equation 8 – Relative differenced normalised burn ratio 

The relativizing method has been shown to align classes of dNBR between vegetation types 

differing in spectral density, in terms of NIR and SWIR. This was evident in the Big-Desert image 

where dNBR values were scaled up relative to the more vegetated sites. Thresholds for burnt 

pixels were based on visual inspection and literature (Equation 9) (Ireland and Petropoulos, 2015).  

 

𝑝𝑖𝑥𝑒𝑙𝑓𝑖𝑟𝑒 =  5𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 <  𝑟𝑑𝑁𝐵𝑅𝑝𝑖𝑥𝑒𝑙  

and 

𝑝𝑖𝑥𝑒𝑙𝑛𝑜𝑓𝑖𝑟𝑒 =  −2𝑛𝑑 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 < 𝑟𝑑𝑁𝐵𝑅𝑝𝑖𝑥𝑒𝑙 < 2𝑛𝑑 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 

Equation 9 – Burnt sample separation using rdNBR. 
 

No fire measures of rdNBR generally appear as very small positive and negative values, where 

changes in NIR and SWIR may just be seasonal structure fluctuations (Walz et al., 2007; Lutes 

et al., 2006). A threshold for control pixels was set at less than or more than ± 2nd percentile of 

positive values, respectively, based on comparison of low scoring pixels within and without fire 

scar (Equation 9). Low and high severity pixels were chosen from separate parts of the rdNBR 

distribution based on values within the fire scar of each site (Equation 10).  

𝑝𝑖𝑥𝑒𝑙𝑙𝑜𝑤𝑠𝑒𝑣 =  10𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ≤ 𝑟𝑑𝑁𝐵𝑅𝑝𝑖𝑥𝑒𝑙 ≤ 15𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒  

and 

𝑝𝑖𝑥𝑒𝑙ℎ𝑖𝑔ℎ𝑠𝑒𝑣 =  90𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ≤ 𝑟𝑑𝑁𝐵𝑅𝑝𝑖𝑥𝑒𝑙 ≤ 95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 
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Equation 10 - Burn severity classification using rdNBR. 
 

This discrete classification ensures sample pixels represent part of the overall class of interest, 

without risking misclassifying pixel values that border ascribed class boundaries, particularly 

between sites, where vegetation is structurally different. Bennett et al. (2016) used the same logic. 

rdNBR along with other remotely sensed fire severity measures have been shown to misclassify 

when crowns of ecosystems remain intact (Collins et al., 2018). This is a common problem where 

the upper layer disguises unique spectral features of the affected understory. Values underestimate 

compared to field based measures. For this study, the boundaries of classes are less important and 

so the low severity samples allow for underestimation by selection of low rdNBR values in the 

distribution, and a large buffer to the high severity samples. 

An error occurred during severity class processing that was not identified until after outputs had 

been produced. The fire scar was not applied correctly in coding, and the control pixels were 

chosen from within the boundary in a minority of cases (<30% for both) at two of the four sites. 

The rdNBR classification (Equation 10) was applied correctly. Black Saturday and Deua-NP 

control pixels within the fire scars have values that represent minimal NIR and SWIR change due 

to fire. Using both the scar and rdNBR in control classing is the preferable approach however the 

accuracy of rdNBR alone has been shown elsewhere (Parks et al., 2014), and accuracy of fire scar 

origin may vary regardless (5.4.5, p.27). High and low severity classification was unaffected. 

5.4.4 Vegetation Classes 

Vegetation classes were drawn from the National Vegetation Information System (NVIS) 

that provides major subgroups of dominant vegetation across Australia at 100m spatial resolution 

(NVIS Technical Working Group, 2017). The grid for each site was resampled in GDAL and 

python to the MODIS 0.005o resolution. Each target pixel was taken to be the average of 

contributing pixels. Based on NVIS metadata the uncertainty associated with age, origin and 

spatial mix were all low or very low, and scale was highly uncertain for area of the Brindabella 

site occurring in NSW, and low or very low elsewhere. The vegetation types were visually 

checked against satellite imagery for major classification errors. 

 

Table 4 - Vegetation classes of sites (NVIS). 

Brindabella  % fire scar 

Eucalyptus woodlands with a tussock grass understorey 45 

Eucalyptus tall open forests and open forests with ferns, herbs, sedges, rushes 
or wet tussock grasses 

38.5 

Eucalyptus woodlands with ferns, herbs, sedges, rushes or wet tussock grassland 13.3 

Eucalyptus tall open forest with a fine-leaved shrubby understorey <1 

Eucalyptus (+/- tall) open forest with a dense broad-leaved and/or tree-fern 
understorey (wet sclerophyll) 

<1 

Eucalyptus open forests with a shrubby understorey <1 
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Eucalyptus woodlands with a shrubby understorey <1 

Eucalyptus open forests with a grassy understorey <1 

Wet tussock grassland with herbs, sedges or rushes, herblands or ferns <1 

Wet tussock grassland with herbs, sedges or rushes, herblands or ferns <1 

Heathlands <1 

Other tussock grasslands <1 

Cleared, non-native vegetation, buildings <1 

Black Saturday  

Eucalyptus tall open forests and open forests with ferns, herbs, sedges, rushes 
or wet tussock grasses  

52 

Eucalyptus (+/- tall) open forest with a dense broad-leaved and/or tree-fern 
understorey (wet sclerophyll) 

22.4 

Cleared, non-native vegetation, buildings 12 

Eucalyptus open forests with a shrubby understorey 6 

Eucalyptus woodlands with a tussock grass understorey 5 

Cool temperate rainforest <1 

Eucalyptus low open woodlands with a shrubby understorey <1 

Other Acacia tall open shrublands and [tall] shrublands <1 

Big-Desert  

Mallee with a dense shrubby understorey 67.5 

Heathlands 24.3 

Mallee with an open shrubby understorey 4.6 

Mallee with hummock grass 3 

Eucalyptus woodlands with a shrubby understorey <1 

Deua-NP  

Eucalyptus woodlands with a tussock grass understorey 45 

Eucalyptus tall open forests and open forests with ferns, herbs, sedges, rushes 
or wet tussock grasses 

38.5 

Eucalyptus woodlands with ferns, herbs, sedges, rushes or wet tussock grassland 13 

Other Acacia forests and woodlands 1.8 

Warm temperate rainforest <1 

Cleared, non-native vegetation, buildings <1 

 

5.4.5 Fire scar area 

Bushfire scars were based on fire history databases maintained by the relevant government 

authority (Table 3) (Yebra, 2018). Any inaccuracies are unable to be compensated for due to the 

historic nature of the datasets, and a wide range of collection techniques.  

5.5 Statistical analyses 

GPP of all pixels and timestamps were subset spatially using Python libraries. A time series 

analysis was undertaken in JMP, using one-way ANOVAs and Student t-tests to look between 
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individual means (SAS Institute Inc., 2007). Local data filters were applied with various month 

since fire windows.  

Cumulative GPP measures were calculated from the time series of different sites and 

severities. Simpsons rule integration was used, and odd intervals were averaged from the first and 

last samples. The integrals were subtracted from the control integral to give a quantity of change 

in primary production. This assumes that GPP of different severities would have the same rate of 

change through time, if not for the fire. Then the 12 month pre-fire mean GPP of the whole fire 

scar for each site was used to scale the difference of integrals. The resulting relative quantity 

shows the lost potential productivity due to fire. 
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 Results 

6.1 Severity and GPP recovery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - Months to recovery for different severity 
classes at each site (all pixels of class). 
Recovery based on monthly means returning 
to control means (not shown) for that severity 
(p<0.05). Empty values indicate severities that 
did not differ from control after fire (Black 
Saturday) or never returned to control in 
available data(Deua-NP). 

Figure 10 - Contour violin plot of severity (rdNBR) of 
vegetation, fire effects at each site. Area 
of each violin is weighted by number of 

observations at that site. 
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6.1.1 Cross site severity class recovery 

 

The diagnostic GPP model applied here on a fire scar scale showed trends with varying severity 

between and within 3 sites. At these sites low and high severity GPP pixels recovered at different 

times (Figure 11). This was based on difference to control, monthly means, and 12 month viewing 

windows. At Deua-NP, low severity samples recovered GPP at ~50 months, while high severity 

had not recovered at 14 years following disturbance (data extent). Black-Saturday recovery was 

different between severity classes, ~20 for high, and low severity GPP did not vary from control. 

Brindabella, low severity GPP recovered in 48 months, whereas high severity > 80 months. Big-

Desert severity classes recovered at the same time (~64 months). GPP of Big-Desert is lower 

overall (Figure 12), reflecting the semi-arid, shrub land environment (Figure 5). There is a distinct 

seasonality in GPP, with late summer peaks common (Figure 12). 

Figure 12 - GPP trends beginning 12 months before fire in two severity classes (high and low) across 4 
study fire sites in SE Australia. Points are means of all pixels in associated severity class, trend 
lines are lambda smoothed. Big Desert is shown separately to enlarge the smaller range of GPP 
values. 
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6.1.2 Black Saturday severity class recovery 

Black-Saturday generally experienced large differences in productivity for the first year after 

fire, between severity classes, and converged with control at ~20 months post-fire (Figure 12). High 

severity areas established a higher than control mean GPP rate (+7.5%) by the end of summer 

~24 months after fire. This trend continued for the rest of the time series, significantly so for the 

48-72 month period (p=0.0012 - 0.0169), annual mean GPP peaking ~84 months (+12.3% over 

control). Low severity samples were no different to high severity GPP, after ~24 months post-

fire. GPP of low severity also fluctuated from control over the remaining time series. 

6.1.3 Brindabella severity class recovery 

Brindabella experienced a consistent trend in GPP recovery (Figure 12), where the values 

corresponding to low severity were positive compared to high severity (i.e. +24% at 30 months 

and +21.9% at 70 months) and negative to control (Figure 12). GPP of low severity returned to 

control ~40 months earlier than that of high severity (Figure 11). However some negative 

fluctuation from control GPP occurred in seasons following. Post-recovery coupling of GPP in 

all severity classes was strong for the remaining data.  

6.1.4 Big-Desert severity class recovery 

GPP of low and high severity vegetation were different to control for the year following fire 

(both p=<.0001), although there was no difference between the severity classes themselves 

(p=0.9256) (Figure 12). This relationship to control was no longer significantly different ~65 

months post-fire (p>0.05), for both classes (Figure 11). ~48 months later there was some positive 

fluctuation of high severity vegetation mean GPP (4%) from control, which was different to low-

severity as well (p=<.0001). 

6.1.5 Deua-NP severity recovery 

The low severity samples of GPP showed no significant difference to control in the 11 

months before fire, whereas high severity samples did during this period (Figure 12). This 

decoupling of high severity GPP persisted after the fire and through the rest of the time-series 

(mean -27% control GPP, p=<.0001). However, low and control sample GPP were also 

significantly different for this period (-7% control, p=<.0001). The GPP of low severity samples 

recovered to control means, first at 30-40 months post-fire, however there was negative 

fluctuation over the next 36 months.  

6.1.6 Severity class to control variation across sites 

The pre-fire GPP of control samples were no different to pre-fire low severity at Big-Desert 

and Black Saturday. At these sites the high severity samples were significantly different for at 

least 12 months prior (p<0.05). Brindabella and Deua-NP showed no difference between all GPP 
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samples pre-fire. These statistics are limited in their explanation due to the possibility of inter-

annual variability. 

6.1.7 Within severity class comparison across sites 

Analysing severity class GPP recovery between sites for all comparable data (94 months 

post-fire); Black Saturday and Deua were similar in high and low GPP classes respectively 

(p=0.946) (Figure 11). Brindabella and Deua-NP also had GPP means no different to each other 

for low and high severity classes respectively, during 94 months after disturbance.  

6.1.8 Cumulative GPP of severity classes across sites 

Figure 13 shows the integral of mean GPP, for low severity, high severity and whole fire 

scar, less the integral of mean GPP of control, through 94 months after fire. Values were scaled 

using mean pre-fire GPP for each site and class. This provides a relative quantity of potential lost 

productivity for each severity sample, if the fire had not occurred. Black-Saturday had a relatively 

small cumulative loss of GPP in high severity pixels. Big-Desert had a large lost potential 

productivity across severity classes. 

 

 

 

Figure 13 – Scaled cumulative GPP difference over 8 years following fire. 
Difference is the integral through time of each severity class less the 
control integral. Values are scaled based on the pre-fire mean at 
respective sites to give relative change across sites. 
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6.2 Vegetation class and GPP recovery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 - Months to recovery for major vegetation classes at each study fire, 
including all pixels of respective class in the burnt area. Minor 
vegetation classes are < 10% of fire scar and are not shown. Recovery 
is the time at which a given vegetation class is not significantly 
different to control (p<0.05) for 12 months. Error bars indicate the 12 
months during which the class recovered. 

 

GPP recovery time varied between vegetation classes in three of four study sites (Figure 14). 

Recovery is the number of 12 month periods where means of each class differed from a control 

of the same class that was unaffected by fire. Sites, except Big-Desert, had a pattern of sequential 

between class recoveries. However, the major classes (> 10% of fire scar) tended to be closer in 

GPP recovery times (Figure 14, minor classes not shown). For the same vegetation class across 

sites there were large differences (see 6.3, following). At Black-Saturday all vegetation types had 

GPP no different to control 24-36 months after fire.  
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6.3 Vegetation and severity, and GPP recovery 

 

6.3.1 Overall highest and lowest mean GPP of sub-classes 

Warm temperate rainforest that experienced low-severity fire at Deua-NP was the most 

productive severity-vegetation sample (mean 2001-2016) (Figure 15). A similar overall GPP 

(mean 2008-2016) occurred at Black-Saturday in tall shrub lands/open shrub lands where burnt 

to low-severity (Figure 15). 

 

 

6.3.2 Range of vegetation-severity samples across sites 

Brindabella had the highest frequency of vegetation GPP classes (n=12), as well as the most 

vegetation-severity GPP classes, with 17 different means classes in the 3rd post-fire year. These 

included low severity, high severity, whole fire scar or control. Many of these vegetation-severity 

classes constitute minor landscape cover classes. The range of mean GPP, at Brindabella, between 

the highest and lowest vegetation-severity sample was 137% between non-native vegetation 

(pasture) and open forests with grassy under storey (all comparable data). Over the full-time 

series, at Black Saturday, GPP of open forests and low open woodlands with shrub control 

samples were no different than burnt equivalents. 

 

 

 

 

 

Figure 15 - Highest and lowest mean GPP 
vegetation-severity sub-samples from 
all available data (for relevant site) 
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6.3.3 Before/after comparison across all severity-vegetation classes 

GPP recovery across classes was characterised by a negative shift in values at Big-Desert 

and an increase in highly positive values at Black-Saturday (Figure 16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 - Distribution of GPP at each site prior to fire and in the third year post 
fire. Data is the mean of all fire scar pixels, including all severity 
classes. 
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6.3.4 GPP recovery in dominant vegetation class at high severity 

Black Saturday site showed a short recovery trend in major vegetation types (Figure 17a), 

particularly those burnt to high severity. Similar vegetation-severity classes at Brindabella (i.e. 

high severity, tall forest with fern) recovered more gradually and this applied for other classes 

(Figure 17b). While high severity samples at Deua-NP did not recover overall (Figure 11 and Figure 

12), the less productive woodlands and the tall forests (of high severity) recovered within the time 

series (Figure 18c). 

 

 

 

 

 

 

a) 

b) 

Figure 17 - Recovery of GPP for major vegetation types within sites. Only lambda smoothed mean time 
series shown (the delay in minimum GPP after month 0 is due to this smoothing not delay in 
data). Vertical lines reference the time at which recovery to control occur. 
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d) 

c) 

Figure 18 - Recovery of GPP for major vegetation types within sites. Only lambda smoothed mean time 
series shown (the delay in minimum GPP after month 0 is due to this smoothing not delay 
in data). Vertical lines reference the time at which recovery to control occur. 
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6.3.5 Recovery trends of high-severity, dominant-vegetation classes 

 

 

 

 

 

 

 

 

 

6.3.6 GPP recovery of Wet sclerophyll forest (Figure 19a) 

Wet sclerophyll forest recovered differently between sites Brindabella and Black Saturday 

(Figure 19a). In high severity samples, the immediate GPP loss was relatively more from fire at 

Black Saturday (~3% difference pre-fire and fire year means) followed by a rapid increase (no 

different to control in 12-24 months post-fire (p=0.7911, Figure 19a). 

6.3.7 GPP recovery of Eucalyptus tall open forests/open with ferns 
(Figure 19b) 

GPP recovery of Eucalyptus tall open forests/open forests with ferns, herbs, sedges, rushes 

or wet tussock grasses is shown in Figure 19b. The GPP of low severity samples across 3 sites 

recovered in 2nd year post-fire. High severity was similar to control GPP in the 72-84 months after 

fire and was no different the following 12 months (p=0.1888). This gradual GPP recovery with 

time is due to relatively longer recovery of the vegetation class in high severity samples at Deua-

NP and Brindabella sites (Figure 17). At Black-Saturday in high severity, tall forests rapidly 

recovered similar to Wet sclerophyll trends. There was no difference in GPP between the tall 

forests class across the 3 sites, in which they were present, for 12 months pre-fire. 

Figure 19 - GPP recovery of three vegetation classes at the three sites where they 
occurred (Brindabella: green, Black-Saturday: purple, Deua-NP: orange). 

Dashed lines represent control samples, solid lines high severity. 

a) 

c) 

b) 
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6.3.8 GPP recovery of Woodland with tussock grass (Figure 19c) 

In Open woodland with tussock grass under storey of high severity, the GPP was recovered 

at Black-Saturday but not Brindabella in the seventh year after fire (Figure 19a and Figure 18c). 

Over this period, the high severity class of the open woodland with tussock became more 

productive than low severity at all sites, except Deua-NP. However, the trend suggests that high 

would have surpassed low severity GPP in 12 to 24 months after (2017/18) available data 

finished. 
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 Discussion 

RS diagnostic GPP modelling is capable of tracking landscape recovery from fire. As well 

as differentiating vegetation sub-group response to varying fire severity. There was a positive 

trend in all vegetation classes and severities with time after fire. Overall variation between sites 

is expected as landscapes have different productive capacity across Australia (Keith et al., 2010). 

They also tend to recover differently from fire depending on many factors, a few of which are 

characterised in the results. Big-Desert fire site showed a consistent GPP recovery trend across 

and within severity and vegetation types. Conversely, rapid recovery observed at Black-Saturday 

is likely due to a regeneration strategy in the major vegetation classes, present in the area. Slower 

recovery at other sites may exemplify a different, fire tolerant regeneration strategy. Cumulative 

GPP changes showed a substantial impact on Big-Desert relative to pre-fire rates and other sites. 

Also, samples across sites had varying representativeness depending on landscape cover. Overall 

the GPP model could be refined per-site to better discern dynamic time series of all vegetation-

severity sub-classes in response to fire. 

 

7.1 The difference at Big-Desert 

Analysing the Big-Desert site led to the rejection of the hypothesis that GPP recovery is 

dependent on vegetation type. Modelled GPP of all NVIS vegetation classes within the fire scar 

returned to control at the same time (Figure 14). Classes responded similarly through time and 

were no different across major vegetation types before or after fire (any time window). This small 

GPP range across and within vegetation classes was unable to explain variation in recovery. The 

rdNBR at Big-Desert had a relatively high mean and smaller distribution than the other sites 

(Figure 10). rdNBR is an index that measures change over the disturbance period and also considers 

the pre-fire vegetation condition. Consequently the index can be compared between sites (Parks, 

et al., 2014). Therefore, fire affected all vegetative pixels to a more consistent, higher degree at 

Big-Desert relative to other fires. The distribution of average GPP was also small although low, 

before the fire, compared to other sites (Figure 16). Observed similarity in recovery time between 

classes (Figure 11) is partly due to a highly destructive fire, consistently burning a landscape that 

had small spatial gradients of GPP across and within vegetation types. Severe bushfire has shown 

to strongly affect heathland structure, between different sites of the same event (Foster et al., 

2017). Also, time since disturbance has been shown to drive changes in vegetation structure 

(Kenny et al., 2018) and may be more important than vegetation class effects on GPP recovery 

time in the Big-Desert Mallee/heathland environment.  

The other hypothesis stated that, GPP recovery time is dependent on fire severity. Again at 

Big-Desert, the two severity classes tested showed the same recovery time. Hence the hypothesis 

was rejected. Vegetation classes within severity classes also showed the same trends to recovery. 
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No difference between GPP of low and high severity, within any vegetation class, was seen for 

any 12 month window following disturbance. However, before fire there was a difference in GPP 

between low and high severity of the major vegetation classes. A difference in one minor 

vegetation cover also occurred. Therefore overall, the two severity class samples had different 

GPP rates in the 12 months before fire (p=0.0038). This difference did not last through 

disturbance. The complete simplification of GPP composition, within vegetation-severity classes, 

due to the fire event, is not seen at other sites. It indicates the strong impact of fire on landscape 

function at this site. 

The association of areas of vegetation affected to high severity with areas of elevated pre-

fire GPP is due to unique fire regime characteristics at this site. Assuming that the GPP values 

observed 12 months pre-fire are representative of vegetation classes historically, the fire was 

highly affective in more productive (higher GPP) vegetation. This is likely due to preference for 

fire to burn where there is more stored GPP through time (e.g. more fuel load). Contrastingly, at 

Deua-NP and Brindabella areas that didn’t burn or burnt to low severity were higher in 

productivity before disturbance than high severity samples. The trend at Big-Desert suggests that 

fire prefers to burn areas with high productivity. This observation supports the theory, of mallee-

heath shrubland, that “conditions required to support fire spread will lead to crown fire 

propagation and high rates of spread” (Cruz et al., 2013).  Analysing fuel loads and burnt area in 

this environment may reflect these observations of GPP accumulation. 

Lack of differentiation between GPP values of different vegetation classes occurred after the 

Big-Desert event. The study period may have been too short to capture the establishment of tree 

type over store, hence the slow spatially consistent recovery. Slow growth is characteristic of over 

storey species at this site. Also, species present require large fire intervals to regenerate from seed 

(National Parks Service and Department of Conservation and Natural Resources, 1994). Other 

areas of the site have seen a change in composition with fire because of this immature age 

composition. Notable changes include a reduction in dominant Scrub pine woodland including a 

loss of co-dominants, Desert Banksia and Dwarf She-oak, and an increase in annual lifecycle 

species in the understorey. The fire regime at this site has been classified as, infrequent medium 

intensity shrub fires in spring and summer (Murphy et al., 2013). Given high intensity fire events 

have occurred in 1959 and 1985 (also moderate severity fires in 1991 & 1999), there may be an 

increasing high intensity fire frequency which is reducing the viability of canopy dominant, seed 

regenerating species (Land Conservation Council, 1987). The low and spatially consistent post-

fire GPP across the fire scar supports these observations. A loss of indigenous tree species and 

canopy establishment of fire tolerant shrub species is a possible explanation. 

The Big-Desert GPP composition and recovery was strongly impacted by a high severity 

event. The distribution of GPP within and across severities indicates that fire completely disrupts 

landscape productivity. This may be explained by changing fire regime and fuel accumulation 

dynamics. 
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7.2 Black Saturday rapid recovery 

Both severity and vegetation class affect GPP recovery at the Black Saturday. This recovery 

occurred rapidly in major vegetation classes (> 10% of fire scar). Fastest response occurred in 

high severity samples. The model responded to the increased area of leaf photosynthetic 

components, via increasing VI derived fPAR (Donohue et al., 2008) and stomatal conductance  

(Yebra et al., 2013b). The vegetation most responsive to this change was tall and open forests, 

and wet sclerophyll. In high severity classes this is likely due to canopy mortality and subsequent 

stand replacement. Mountain Ash and associated communities, regenerate in this way 

(Brookhouse et al., 2013). Additionally 10% of the site was covered with locally sourced seed 

via helicopter within 6 months of fire (Department of Sustainability and Environment, 2012). 

This enhanced the GPP recovery time observed here. Growth to canopy closure occurs in 1.5 to 

5 years in naturally regenerating forests (Polglase and Attiwill, 1992). This aligns with the 

timeframe of recovery and maximum GPP modelled here (~24 months depending on class). 

Modelled GPP responded quickly with rapid increase of photosynthetically active area after fire 

in a mesic, stand-replacement landscape.  

Modelled GPP explicitly includes canopy conductance to CO2, via H2O coupling in the 

stomata. This mechanism drives modelled GPP in Ash forests during the growing season due to 

high temperature (Figure 5) and associated vapour pressure deficit (time series in Appendix 1), 

Therefore positive recovery trends are estimated mostly by conductance driven GPP. Buckley et 

al. (2012) found that stomatal conductance of Alpine Ash was ~200% that of mature forest three 

and four years after severe bushfire, increasing the landscape water use. In this study, over the 

same period, GPP rates of tall, high severity forests had significantly higher total GPP than the 

control samples. Therefore the conductance driven modelling represents GPP through time well 

compared to other research.  This conductance characteristic of the major vegetation class may 

be a better representation of GPP than radiation, or leaf area, during stand replacement. Buckley 

et al. (2012) also found that there was no difference in photosynthetic capacity between leaves of 

control and regrowth plots of 3 years. The importance of conductance driven GPP is less after 

this photosynthetic capacity is restored as radiation driven estimation has become more accurate. 

Given this short restoration, uncertainty of GPP at Black-Saturday is reduced to only a few years 

post-fire. This was not explicitly tested here and the GPP model inherently relies on the canopy 

productive area estimates of VIs. However modelled GPP, when driven by conductance, does not 

rely on the time averaged estimate of photosynthetic capacity (i.e. ε, Equation 1). There is good 

evidence showing that time averaged ε, over predicts GPP due to changing photosynthetic 

capacity with stand age (e.g. Cheng et al., 2006). In this study, the effect may be reduced due to 

rapid leaf expansion and action of the canopy conductance component. 
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7.3 Slower recovery 

GPP particularly of high severity classes recovered more slowly at Deua-NP and 

Brindabella. This is likely due to mixed canopy survival and mortality. The distribution of GPP 

values at 24-36 months post-fire, within high severity, particularly forest vegetation, classes tend 

to be lower than pre-fire values. GPP regrowth in majority forests at Brindabella and Deua-NP 

are characteristic of stand survival and epicormic regeneration strategy (Nicolle, 2006). After fire 

individuals slowly, relative to stand replacement, regrow into new niches and establish lost 

structure (Pausas and Keeley, 2014). A slow increase in VI values due to this regeneration is 

captured by both model components. There is a small portion of the site that likely uses reseeding 

regeneration (Vivian et al., 2008). However the extent is reduced compared to the Black-Saturday 

site. Also, severities were not high enough (Figure 10) to cause large scale canopy loss and stand 

replacement, at Deua-NP. Furthermore, Brindabella and Deua-NP have high EVI values (Figure 7 

and Figure 9), indicating structurally complex canopies (Huete et al., 2002). The productive leaf 

area of regrowth maybe hidden in complex canopy structures where reflectance below the canopy 

is not measured (e.g. Palace et al., 2015). If this is the case fPAR and Gcw may be underestimates, 

and this would explain the gradual increase of GPP in classes that may be expected to respond 

more quickly (i.e. Figure 19a). Alternately the forest structure combusted is gradually replaced by 

regrowth of photosynthetically productive area, resulting in higher VI values in the long term. 

The modelled GPP uses a combination of indices that differentiate complex vegetation, more 

(Polychronaki et al., 2014) or less well. For instance EVI deals well with complexity and 

background signals (Huete et al., 2002). GPP trends of mixed age forest regeneration and 

regrowth of individuals are captured in the recovery time series. 

At Deua-NP, high severity class overall vegetation types, did not recover during the studied 

period (14 years post-fire) (Figure 11). However some major (> 10% fire scar cover) and minor 

vegetation-high severity classes did return to control (Figure 18c). Major vegetation classes 

therefore respond with a wide range of recovery times for the same severity class. This range of 

responses occurred after an event with relatively low severity compared to other sites (Figure 10). 

Woodland with fern under storey (third largest vegetation class) of high severity had a GPP that 

was significantly negative to control and low severity before the fire (22 months, p=0.0002) and 

remained lower throughout the post-fire period. Other high severity vegetation classes did not 

show this consistent decoupling. This high severity class covers ~13% of the fire scar resulting 

in small sample sizes per timestamp (mean=0.89 pixels). However sample size is smaller in the 

low severity class, which did not have an anomalous recovery. This vegetation class is mostly 

distributed along ridgelines in linear patterns between other dominant vegetation classes. The 

anomaly of high severity GPP may be due to mixing of pixels when average rescaling was 

applied. 500m resolution is large compared to the environmental niches this vegetation 

classification prefers. While modelling disturbance scales using MODIS resolution data is 
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effective (Buma, 2012; Di Mauro et al., 2014) analysing features therein that comprise single, 

dispersed pixels may reduce accuracy. 

7.4 Productivity losses after fire 

There was a relatively large cumulative GPP loss at Big-Desert compared to other sites when 

values were scaled using pre-fire GPP of each site (Figure 13). The largest loss of potential stored 

carbon and respiration overall was at Brindabella, without considering relative size of fire scar. 

Areas of high severity at this site experienced the largest loss, as is expected with canopy 

consumption and mortality (Hicke et al., 2003). This cumulative GPP measure is assumed to be 

indicative of NPP (i.e. stored carbon) in the landscape. NPP is GPP less heterotrophic respiration, 

which varies within a limited range for a given vegetation class (Verma et al., 2017). High 

temporal resolution allowed quantification of consistent GPP time series across sites and within 

severity classes. This model driven quantification of GPP highlights relative effects of fire on 

potential NPP and carbon stocks. Further analysis of cumulative GPP of vegetation-severity 

subsamples may reveal stand scale areas of loss. However pixel size to target ratios may limit 

vegetation-severity sample representativeness (Jensen, 2007). Brindabella had the largest loss of 

potential stored GPP across severity samples. 

Potential NPP loss at Big-Desert was substantial and is due to a slow GPP recovery in all 

vegetation and severity classes. This contrasts the ostensible biomass consumption in woodlands 

or forests of the other sites. There was a minor difference through time between cumulative low 

and high severity class GPP at Big-Desert. Relatively large production potential (cumulative 

GPP) loss emphasises heath/shrub-land inability to quickly return to pre-fire vegetation vigour 

within timeframes of decades. Further field testing could indicate if vegetation classification has 

changed after this fire, in light of an increasing fire regime (Esplin et al., 2003). As previously 

described, the model shows unequal reductions in severity classes of different GPP means before 

fire and equal recovery trends post-fire. This indicates vegetation in the fire scar shifted GPP 

means classes in the long-term. The simplistic landscape scale response to high level disturbance 

is likely due to a change in composition of vegetation involving slow growing species. Long term 

cumulative GPP loss, results in NPP loss through time and ultimately reduction in fixed woody 

carbon matter. 

Low severity GPP samples studied, particularly at Black-Saturday and Deua-NP (Figure 11) 

had capacity to maintain carbon capture across the disturbance period. Many forested, 

predominantly Eucalyptus, landscapes of SE Australia maintain this tolerance (Bennett et al., 

2016). A net gain in productive potential over 8 years since fire indicates an initial landscape 

process loss was made up for by regeneration. This is likely due to fire tolerant regrowth 

strategies, mentioned earlier. Brindabella lost growth potential in low severity, however this was 

less than half that of high severity sample loss. Low severity GPP recovery times were most 

different to control (negative) and high (positive) severity samples’ GPP at this site compared to 
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other sites (Figure 11). Therefore low severity vegetation was more highly impacted at Brindabella 

than other sites and led to a net loss of cumulative GPP over 8 years. Classification of severity 

may be part of the explanation, where low severity pixels of other sites are closer to control values. 

A range of low severity class GPP response indicates the variability in vegetation response with 

severity effects. 

 

7.5 Microscale effects on severity samples 

As previously mentioned, Big-Desert GPP differed between severity classes prior to 

disturbance. This was the case at the other sites to a lesser degree. Ideally pre-treatment values 

do not vary across groups, however this is an effect of using a concurrent control sample. The 

variation represents spatial gradients in productivity, where stratification of pixels for vegetation 

type and proximity to fire may not account for other local environmental factors. Such landscape 

scale factors, like slope, aspect and moisture availability will affect GPP (Potter et al., 1993). 

Such micro-environments may cause the observed pre-fire fluctuation. Averaging a control 

sample out of pre-fire severity classes was considered, although cross-class factors would then be 

different through time. The use of stratified control pixels allows environmental factors to vary 

across all GPP groups through time (Di Mauro et al., 2014). Drought had effect on much of SE 

Australia for 2001-2010 period. This type of variance is accounted for in the change detection 

approach used here. Also the increase in atmospheric CO2 due to anthropogenic pollutants (Beer 

et al., 2010) has a fertilising effect on vegetation (Haverd et al., 2013). Using local, concurrent 

control pixels, removes uncertainty of this background variation. Discrepancies in pre-fire sample 

groups is the result of spatially explicit control sampling in a heterogeneous landscape. 

 

7.6 Model assessment 

The recovery of GPP between and within sites suggest there are some limitations to its 

application for fire assessment. Without field checking, these cannot be explicitly examined. The 

GPP model captured significant variation with fire effects. The conductance component was the 

limiting factor in hot dry summers (Appendix 1). It tended to have an earlier and lower seasonal 

peak than the radiation component. The difference is due to the contribution of humidity deficit 

limitation on conductance, the assumption being increased radiation does not always increase 

GPP (Yebra et al., 2015). The slow recovery at Brindabella and Deua-NP is partly explained by 

this relationship. A combination of factors occurs at these sites; a loss of leaf area in mixed age 

regrowth slowly increases productive area estimates (i.e. VIs). The second factor is conductance 

limitation during the growing season. Ultimately the combination lowers the maximum GPP each 

year during recovery, extending the recovery period. This feature, generally improves the GPP 

estimation by reducing the overestimation sometimes present in LUE GPP modelling (Madani et 
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al., 2014). Maximum light use efficiency will have changed in most sites at least in the short term 

recovery (e.g. Zhou et al., 2015). Reducing the influence of the LUE component in cases where 

there is varying maximum light use efficiency is considered beneficial. 

The authors of the GPP model calibrated at 16 sites globally to derive the parameters used 

here. Errors of model performance against FLUXNET measurements, were the largest in severely 

water-limited ecosystems (Yebra et al., 2015). This may have effect on GPP of semi-arid Big-

Desert site. Calpernum Station is a FLUXNET site located in similar vegetation, ~200km north 

of the study site, where validation of the outputs could be undertaken. Further analysis could 

include the fitting of site specific vegetation indices for each model component. Refining the 

model this way may increase the range of GPP between landscapes of simple and complex 

vegetation. For instance, EVI is less suited to a semi-arid, low canopy cover vegetation than 

NDVI (Huete et al., 2002). The model application and dataset established here have potential for 

revision and further analysis. 



47 

 

 Conclusions 

Landscape scale gross primary productivity is a complex process that is dramatically 

disturbed by fire. Different vegetation sub-groups and variation in severity cause fluctuation in 

the capacity of growth after fire. Monthly to yearly fluctuations due to these events are captured 

by a remotely sensed model, without field observation. Regional scale satellite resolutions, 

integrating reflectance and meteorological data are used to analyse disturbance in terms of 

ecosystem processes. This thesis applied a diagnostic GPP model across four bushfires of varying 

intensity in different fire regimes of temperate south-eastern Australia. GPP of a semi-arid heath-

mallee landscape was found to respond uniformly to a high severity bushfire. While other sites in 

different vegetation varied at high severity. Vegetation sub-groups had little variation in GPP 

recovery, at Big-Desert. Cumulative loss of GPP was relatively high at this site compared to sites 

that contain higher structural complexity, like montane forests. 

The GPP of vegetation with relatively fast regeneration was captured in moist forests of 

Victoria, where recovery to unburnt levels was within a few years. The two-part model allowed 

more subtle response to different physiological drivers, seasonally and during recovery. 

Vegetation-severity sub-samples of the Black-Saturday forest were faster to respond, where the 

model captured an increasing canopy conductance and photosynthetic potential. The utility of 

high temporal resolution of satellites was explored, allowing inter and intra-year comparison of 

disturbance recovery. Fire severity plays an important role in recovery time and trajectory in sites 

with complex vegetation structure. In these landscapes GPP of open and grassy vegetation tend 

to recover a few years before dense closed types. Major vegetation classes at Big-Desert and 

Brindabella had a long recovery period indicating a relatively large impact on landscape 

processes. 

Fire disturbance of GPP of vegetation is different between landscapes. With frequency of 

disturbance events likely to increase in coming decades, the analysis of environmental impacts of 

fire and integration of this fluctuation into subsequent modelling is considered important for 

environmental assessment. 
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Appendix 1 – Fire scar mean GPP time 
series with radiation and conductance 

components separated. 
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Appendix 2 – GPP model code (python) 

 

# coding: utf-8 

 

""" 

Process to compute Gross Primary Production (Yebra et al., 2015) 

over region of interest.  

Takes satellite reflectance and metereological data. 

 

Credit to Zac Hatfield-Dodds (https://github.com/Zac-HD) for basic 

MODIS manipulation and zooming functions. 

""" 

import xarray as xr 

import numpy as np 

import matplotlib.pyplot as plt 

import scipy.stats as sci 

import gdal 

from copy import deepcopy 

from scipy.ndimage import zoom as ndzoom 

import pandas as pd 

import glob 

import datetime 

import typing as t 

from pathlib import Path 

import re 

import subprocess as sp  

import collections 

import json 

from osgeo import gdal, gdalconst, ogr, gdal_array, osr 

import sys, os,  math, tempfile 

 

 

""" 

General purpose functions for loading MODIS data. 

This script is used for loading reflectance and restoring physical 

coordinates 

to an array for a given tile. 

""" 

 

xr_data_type = t.Union[xr.Dataset, xr.DataArray] 

 

modis_band_map = { 

    'Nadir_Reflectance_Band1': 'red_630_690', 

    'Nadir_Reflectance_Band2': 'nir1_780_900', 

    'Nadir_Reflectance_Band3': 'blue_450_520', 

    'Nadir_Reflectance_Band4': 'green_530_610', 

    'Nadir_Reflectance_Band5': 'nir2_1230_1250', 

    'Nadir_Reflectance_Band6': 'swir1_1550_1750', 

    'Nadir_Reflectance_Band7': 'swir2_2090_2350', 

} 

 

 

def add_tile_coords(tile: str, dataset: xr_data_type) -> 

xr_data_type: 

    """Restore physical coordinates to dataset.""" 

    scale = 1111950.5196669996 

    regex = re.compile('h\d+v\d+') 

    matches = regex.findall(tile) 

    extract = re.compile('\d+') 
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    h, v = extract.findall(matches[0]) 

    h = int(h) 

    v = int(v) 

    x_start = scale * (h - 18) 

    x_end = scale * (h - 17) 

    y_start = -scale * (v - 9) 

    y_end = -scale * (v - 8) 

    dataset['x'] = xr.IndexVariable('x', np.linspace(x_start, 

x_end, 2400)) 

    dataset['y'] = xr.IndexVariable('y', np.linspace(y_start, 

y_end, 2400)) 

    return dataset 

 

 

def difference_index(a: xr.DataArray, b: xr.DataArray) -> 

xr.DataArray: 

    """Get difference index between bands used in NDVI, NDII, 

etc.""" 

    return ((a - b) / (a + b)).astype('float32') 

 

def enhanced_index(a: xr.DataArray, b: xr.DataArray, 

c:xr.DataArray) -> xr.DataArray: 

    """Get enhanced difference index""" 

    return (2.5 * ((a - b) / (a + 6 * b - 7.5 * c + 

1))).astype('float32') 

 

def moisture_index(a: xr.DataArray, b: xr.DataArray) -> 

xr.DataArray: # takes gvmi and evi as parameters 

            """Get residual moisture index""" 

            krmi = 0.775 

            crmi = -0.0757 

            return ((a - (krmi * b + 

crmi)).clip(min=0,max=1)).astype('float32') 

 

def rescale(a: xr.DataArray, x_min: int, x_max: int) -> 

xr.DataArray: 

    """Rescale any array between max and min values""" 

    return ((a - x_min) / (x_max - x_min)).astype('float32') 

 

def crop_factor(l: xr.DataArray, m: xr.DataArray) -> xr.DataArray: 

# takes evir and rmi as parameters  

    kcmax, a, alpha, b, beta = 0.68, 14.12, 2.482, 7.991, 0.890 

    return (kcmax * (1-xr.ufuncs.exp(-a*(l**alpha)-

b*(m**beta)))).astype('float32') 

             

reflectance_file_cache = []  # type: t.List[str] 

 

 

def get_reflectance(yr: int, tile: str) -> xr.Dataset: 

    """Load reflectance data for one tile-year.""" 

    #global reflectance_file_cache 

    #if not reflectance_file_cache: 

    reflectance_file_cache[:] = sorted(glob.glob( 

            '/g/data/u39/public/data/modis/lpdaac-tiles-

c6/MCD43A4.006/' + 

            '{yr}.??.??/MCD43A4.A{yr}???.h??v??.006.*.hdf' 

            .format(yr=yr) 

        )) 

    files = [f for f in reflectance_file_cache if tile in 

Path(f).name] 
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    pattern = 

re.compile(r'MCD43A4.A\d{4}(?P<day>\d{3}).h\d\dv\d\d.006.\d+' 

                         '.hdf') 

    dates, parts = [], [] 

    for f in files: 

        try: 

            parts.append(xr.open_dataset(f, chunks=2400)) 

            day, = pattern.match(Path(f).name).groups() 

            dates.append(datetime.date(int(yr), 1, 1) + 

                         datetime.timedelta(days=int(day) - 1)) 

        except Exception: 

            print('Could not read from ' + f) 

 

    date_series = pd.to_datetime(dates) 

    date_series.name = 'time' 

 

    ds = xr.concat(parts, date_series) 

    out = xr.Dataset() 

    for i in map(str, range(1, 8)): 

        key = 'Nadir_Reflectance_Band' + i 

        data_ok = ds['BRDF_Albedo_Band_Mandatory_Quality_Band' + i] 

== 0 

        out[modis_band_map[key]] = 

ds[key].where(data_ok).astype('f4') 

    out['ndvi_ok_mask'] = 0.15 < difference_index(out.nir1_780_900, 

out.red_630_690) 

    out['ndii'] = difference_index(out.nir1_780_900, 

out.swir1_1550_1750) 

    out['ndvi'] = difference_index(out.nir1_780_900, 

out.red_630_690) 

    out['evi'] = enhanced_index(out.nir1_780_900, out.red_630_690, 

out.blue_450_520) 

    out['gvmi'] = difference_index((out.nir1_780_900 + 

0.1),(out.nir1_780_900 + 0.02)) 

    out['evir'] = (rescale(out.evi,0,0.9).clip(min=0, max=1))#    

evimin = 0, evimax = 0.9 

    out['rmi'] = moisture_index(out.gvmi,out.evi) # takes gvmi and 

evi as parameters 

    out['kc'] = crop_factor(out.evir,out.rmi) # takes evir and rmi 

as parameters  

     

    xy_names = {'YDim:MOD_Grid_BRDF': 'y', 'XDim:MOD_Grid_BRDF': 

'x'} 

 

    try: 

        out.rename(xy_names, inplace=True) 

    except ValueError: 

        pass 

    out.time.encoding.update(dict( 

        units='days since 1900-01-01', calendar='gregorian', 

dtype='i4')) 

    return add_tile_coords(tile, out) 

 

 

def call_gdalbash(): 

    for arr in list(glob.glob(path+'*.nc')): 

        commands ='gdalwarp -s_srs "+proj=sinu +lon_0=0 +x_0=0 

+y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs" -t_srs 

"EPSG:4326" -tr 0.005 0.005 -overwrite '+arr+' '+arr+'_latlon.tif' 

        sp.check_call('bash && module load gdal && '+commands, 

shell=True, executable='/bin/bash') 
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    return 

 

 

def subset_build_tif(time_stamps): 

    # open whole tile tif with rasterio, rename dimensions, add 

time and drop band coords/dims 

    ## write this loop for each array of input? dont want to but 

will have to open each array to memory? as dask? 

     

    for d in list(glob.glob(path+'*_latlon.tif')): 

        tif_file = xr.open_rasterio(d, chunks = dict(band=46, 

x=800, y=800)) 

        names = ['rmi','ndvi','evi','gvmi','kc'] 

        for i in names: 

            if i in d: 

                variable = str(i) 

        tif_data = 

tif_file.to_dataset(name=variable).rename({'y':'latitude', 

'x':'longitude'}) 

        tif_data.coords['time'] = ('band',time_stamps) 

        input_var = tif_data.swap_dims({'band': 

'time'}).drop('band') 

        input_sub = 

input_var.sel(longitude=slice(min_lon,max_lon),latitude=slice(max_l

at,min_lat)) 

        input_sub.to_netcdf(path+'_'+variable+'_prep.nc',mode='w') 

    # add command to catch outputs of for loop, and then return 

dataset, passing to gc and fr functions in multi_call 

    return 

 

 

def zoom_data(blocky): 

    # array in the desired 0.005 res in lat/lon (from VI 

preparation) 

    details = xr.open_dataarray(path+'_evi_prep.nc').fillna(0) 

    # use deepcopy to duplicate LUE as new zooming dataset, add in 

radiation metadata 

    # use radiation timesteps in time dimension 

    smooth = deepcopy(details) 

    smooth.attrs = blocky.attrs 

    smooth.name = blocky.name 

    smooth['time'] = blocky.time 

 

    # select cubic spline, order 3 in zoom function 

    SPLINE_ORDER = 3  # Try some other values 0 to 5 for 

SPLINE_ORDER to see what happens 

    # zoom is ratio between fine and course datasets of length of 

cells over lat and lon 

    ZOOM_FACTOR = (len(details.latitude) / len(blocky.latitude), 

                   len(details.longitude) / len(blocky.longitude)) 

     

    # It's also possible to zoom a 3D array by setting a factor of 

1 for the time 

    # dimension, but this way we preserve the timesteps correctly. 

    for timestamp in smooth.time: 

        # Start by selecting the timestamp 

        data = blocky.sel(time=timestamp) 

        # Then zoom to the desired scale, filling nodata values 

with zero so we can zoom 

        output = ndzoom(np.nan_to_num(data), zoom=ZOOM_FACTOR, 

order=SPLINE_ORDER) 
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        # Assign output to the contents of the fine_moisture array 

        fine = smooth.sel(time=timestamp) 

        fine[:] = output 

 

        # Make sure the minimum is zero, so it remains physically 

plausible 

        fine.values[fine.values < 0] = 0 

        # Last, we'll copy both sets of NaN values so that we don't 

cause spurious correlations 

        # Try commenting each of these out to see how the map 

changes! 

#         fine.values[np.isnan(details.sel(time=timestamp).values)] 

= np.nan  # from the high-res data 

        fine.values[ndzoom(np.isnan(data), zoom=ZOOM_FACTOR, 

order=0)] = np.nan  # from low-res, with nearest (blocky) zooming 

    return smooth 

 

 

def bash_rm_tif(): 

    sp.check_call(['rm '+path+'*tif'], shell=True, 

executable='/bin/bash')# could add sp.wait() if subsequent 

functions cant find produced files 

    return 

 

 

def calculate_gcVI(period,site): 

    # needs datasets as wgs84 

    # call dataset in arg or in function? 

    # need to combine arrays of tif in subset_tif() 

    if os.path.isfile(path+'*_vigc.nc'): 

        print('gc for each VI already stored in NETCDF per year') 

    else: 

        # open dataset from subset_build_tif() 

        ds = xr.open_mfdataset(path+'*_prep.nc') # add chunks 

        period = int(ds['time.year'][0]) 

        # compute gc for each VI 

        gcndvi = (0.0020 * xr.ufuncs.exp(4.11 * (ds.ndvi - 

0.4))).rename('ndviGC') 

        gcevi = (0.0025 * xr.ufuncs.exp(3.15 * (ds.evi - 

0.1))).rename('eviGC') 

        gckc = (0.0003 * xr.ufuncs.exp(5.14* (ds.kc - 

0))).rename('kcGC') 

 

        # merge all data to gc file for that year 

        vigc = xr.merge((gcndvi, gcevi, gckc)) 

        vigc.to_netcdf(path+'_vigc.nc', mode='w') 

    return calculate_gcVPD(vigc,period,site) 

 

 

def subset_latlon(dataset,date): 

    #subset nc file of radiation data 

    ds = xr.open_mfdataset(dataset, chunks=dict(lat=115, lon=176, 

time=73)) 

    layout = ds.rename({'lat':'latitude', 'lon':'longitude'})    

.sel(time=(slice(str(date),str(date),4))) 

    var = next(iter(layout.data_vars.keys())) 

    sub = 

layout.sel(longitude=slice(min_lon,max_lon),latitude=slice(max_lat,

min_lat)) 

    out = sub[str(var)] 

    return out 
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def fract_years(data: xr.DataArray): # does it need to be array? 

    time = data.time.values 

    df = pd.DataFrame({'dates':time}) 

    df['day'] = df['dates'].dt.dayofyear * (1/365) 

    fyear = df.to_xarray().day 

    return xr.concat(data, fyear).swap_dims({'index': 

'time'}).drop('index') 

 

 

def shape_mask(template,site): 

    shapefile = 

glob.glob('/g/data/xc0/user/IvanK/thesis_data/fire_area/'+site+'.sh

p')[0] 

    xmin,ymin,xmax,ymax=min_lon,min_lat,max_lon,max_lat 

    nrows,ncols=template.isel(time=0).shape 

    maskvalue = 1 

 

    xres=(xmax-xmin)/float(ncols) 

    yres=(ymax-ymin)/float(nrows) 

    geotransform=(xmin,xres,0,ymax,0, -yres) 

 

    src_ds = ogr.Open(shapefile) 

    src_lyr=src_ds.GetLayer() 

 

    dst_ds = gdal.GetDriverByName('MEM').Create('', ncols, nrows, 1 

,gdal.GDT_Byte) 

    dst_rb = dst_ds.GetRasterBand(1) 

    dst_rb.Fill(0) #initialise raster with zeros 

    dst_rb.SetNoDataValue(0) 

    dst_ds.SetGeoTransform(geotransform) 

 

    err = gdal.RasterizeLayer(dst_ds, [maskvalue], src_lyr) 

    dst_ds.FlushCache() 

 

    mask_arr=dst_ds.GetRasterBand(1).ReadAsArray() 

    return xr.DataArray(mask_arr, 

coords=(template.latitude.values,template.longitude.values), 

dims=('latitude','longitude')) 

 

 

def calculate_gcVPD(period,site): 

    D50 = 700 

    C1 = 1.94 

    if os.path.isfile(path+'*_gc+vpd.nc'): 

        print('gc and VPD adjusted gc already stored in NETCDF per 

year') 

    else: 

        # calculate canopy conductanc as average of VI gc 

        ds = xr.open_dataset(path+'_vigc.nc'), chunks = 

dict(time=46, latitude=30, longitude=30) 

        gc = ((gc_from_VIs.ndviGC + gc_from_VIs.eviGC + 

gc_from_VIs.kcGC) / 3).rename('GC') # m s-1 

         

        # calculate vdp from tmin, tmax, vp 

        # temps converted to K from oC 

        tmin = 

zoom_data((subset_latlon((glob.glob('/g/data/xc0/user/IvanK/thesis_

data/CLIM/ANUClimate_v2-0_tmin_'+site+'_*.nc')[0]),period))) 
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        tmax = 

zoom_data((subset_latlon((glob.glob('/g/data/xc0/user/IvanK/thesis_

data/CLIM/ANUClimate_v2-0_tmax_'+site+'_*.nc')[0]),period))) 

        e = 

zoom_data((subset_latlon((glob.glob('/g/data/xc0/user/IvanK/thesis_

data/CLIM/ANUClimate_v2-0_vp_'+site+'_*.nc')[0]),period))) 

         

    # convert to Pa from hPa 

        e = e / 100 

        tmin = tmin + 237.15 

        tmax = tmax + 237.15 

         

        ta = tmin + (0.75 * (tmax - tmin)) 

        esat = 610.8 * xr.ufuncs.exp((17.27 * ta)/ (ta + 237.3)) 

        VPD = (esat - e) 

         

        fD = 1/(1+(VPD/D50)) 

 

        gc_vpd = (fD * gc * C1).transpose('time', 'latitude', 

'longitude').rename('GCvpd') 

 

        vpdgc = xr.merge((gc, gc_vpd)) 

        vpdgc.to_netcdf(path+'_gc+vpd.nc', mode='w') 

    return canopy_productivity(vpdgc) 

 

 

# Converts canopy conductance to GPP using a coefficient and 

atmospheric concentration of CO2 based on year  

def canopy_productivity(final_gc): 

    Ro = 0.76 # Ro = Ci / Ca # calculated from fitting Fc below to 

validation flux towers globally, could re fit  

             # to sites of interest 

    Cg = 26 

    # call the year of gc data 

    fracyear = fract_years(final_gc.GCvpd).day #day of year 

(fractional year) of each array of conductance 

    Ca = (1.206e-8 * fracyear**2 - 4.641e-5 * fracyear + 

0.045).rename('Ca') 

        # converts from mm s-1, H20 conductance to umol C m-2 s-1, 

CO2 conductance 

        # coeficient 41.6 monm-3 follows from the ideal gas law for 

standard air pressure an 25C temperature. 

        # 1.6 accounts for the greater diffusivity of CO2 compared 

to water 

    calc = (41.6 / 1.6) * final_gc * (1-Ro) * Ca * 

(Daylight(day_years(final_gc.GCvpd))) 

    calc.to_netcdf(path+'_GPP_kc_gc.nc', mode='w') 

    return calc.rename({'GC': 'Fc_gc', 'GCvpd': 

'Fc_gcvpd'}).Fc_gcvpd.drop('day') 

 

### 

### start of GPP radiation component 

### 

 

 

# function to compute photosynthetically active radiation (PAR) 

from total surface radiation (ANUClimate v2) 

def radiation_productivity(period,site): 

    surad = 

zoom_data((subset_latlon((glob.glob('/g/data/xc0/user/IvanK/thesis_

data/CLIM/ANUClimate_v2-0_srad_'+site+'_*.nc')[0]),period))) 
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    # # convert units and for daylight hours 

    radiation = (surad * 0.45) 

    # 0.45  - percentage of surface radiation that is PAR (based on 

Monteith and Unsworth 2013) 

    # 4.4 umol photons assumed to equal 1 J PAR 

    PAR = radiation * 4.4 

 

    ds = LUE_inputs() 

    fr = ds.lue * ds.fpar * PAR * (Daylight(day_years(ds.lue))) 

    fr.to_netcdf(path+'_GPP_loc_fr.nc', mode='w') 

    return fr.rename('Fr') 

 

def day_years(data: xr.DataArray): 

    time = data.time.values 

    df = pd.DataFrame({'dates':time}) 

    df['day'] = df['dates'].dt.dayofyear 

    fyear = df.to_xarray().day 

    return xr.concat(data, fyear).swap_dims({'index': 

'time'}).drop('index') 

 

 

def Daylight(data): # takes latitudes of array and day of year 

(from day_years()) and returns fraction of day with sun for each 

cell 

    P = xr.ufuncs.arcsin(0.39795 * xr.ufuncs.cos(0.2163108 + 2 * 

xr.ufuncs.arctan(0.9671396 * xr.ufuncs.tan(.00860 * (data.day - 

186))))) 

    pi = np.pi 

    lightamounthour = 24 - (24 / pi) * 

xr.ufuncs.arccos((xr.ufuncs.sin((0.8333 * pi / 180) + 

xr.ufuncs.sin(data.latitude * pi / 180) * xr.ufuncs.sin(P)) / 

(xr.ufuncs.cos(data.latitude * pi / 180) * xr.ufuncs.cos(P)))) 

    fday = lightamounthour * (1/24) 

    fday.reset_index(['latitude', 'day'], drop=True, inplace = 

True) 

    return fday 

 

 

# function to compute light use productivity efficiency (LUE) from 

scaled enhanced  

# vegetation index, and productive area (fPAR) from scaled 

normalised vegetation index 

def LUE_inputs(): 

    # open dataset of prepared ndvi and evi 

    ds = xr.open_mfdataset(path+'*vi_prep.nc', 

chunks=dict(latitude=30, longitude=30, time=46)) 

    evimin = 0.05 

    evimax = 0.9 

    LUEmax = 0.045 #maximum light use effeciency mol mol-1 (from 

EVI scaled) 

    R0 = 0.76 #mol mol-1 achieved minimum ratio of internal to 

external CO2 concentration 

     

    fPARmax = 0.95 

    Fx= 0.9 #maximum fPAR 

    Fn= 0.1 #minumum fPAR 

    Vx= 0.67 #maximum NDVI 0.85 For Australia 0.67 

    Vn= 0.09 #minimum NDVI New global 0.15 For Australia 0.09 
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    evir = ((ds.evi - evimin) / (evimax - evimin)).clip(min=0.05, 

max=0.9) 

    LUE = ((LUEmax * 1e-6) * evir).rename('lue') 

    NDVIr = ((ds.ndvi - Fn) / (Fx - Fn)).clip(min=0, max=0.9) 

    fPAR = (fPARmax * NDVIr).rename('fpar') 

    inputs = xr.merge((LUE, fPAR)) 

    inputs.to_netcdf(path+'_LUE.nc', mode='w') 

    return inputs 

 

### 

### Calling function 

### 

 

 

# alternate call function to run across all years of given site 

# {'Big-Desert':h29v12, 'Black-Saturday':h29v12, 

'Brindabella':h30v12, 'Deua-NP':h30v12, 'Howard-Springs':h30v10}  

def multi_call(tile:str, meteor_site:str): 

     

    d = {'Big-Desert':2001, 'Black-Saturday':2008, 

'Brindabella':2002, 'Deua-NP':2001, 'Howard-Springs':2007}  

    data_extent = 2017 ## EDITED 

     

    for year in range(d[meteor_site],data_extent): 

        global path 

        path = 

'/g/data/xc0/user/IvanK/thesis_data/outputs/{}_{}'.format(year, 

meteor_site) 

        print('Computing model for {} at 

{}'.format(str(year),meteor_site)) 

        refl = get_reflectance(year,tile) 

        call(year, tile, meteor_site, refl) # takes year to 

process, MODIS tile name, and site name as in ANUCLIM data 

    print('Outputs computed for all years at 

{}'.format(meteor_site)) 

 

     

# call function for one year of MODIS data and modelling 

def call(times: int, tile:str, site:str, data: xr.Dataset): 

 

    co_mins = {'Big-Desert':(139.8548,-36.3545), 'Black-

Saturday':(144.9541,-37.8266), 'Brindabella':(148.1478,-36.0560), 

'Deua-NP':(149.4392,-36.1984), 'Howard-Springs':(131.0318,-

12.6441)} 

    co_maxs = {'Big-Desert':(142.7984,-34.3927), 'Black-

Saturday':(146.2319,-37.2262), 'Brindabella':(149.9033,-34.9068), 

'Deua-NP':(150.1130,-35.5720), 'Howard-Springs':(131.3256,-

12.3915)} 

    global min_lon, min_lat, max_lon, max_lat 

    min_lon, min_lat = co_mins[site] 

    max_lon, max_lat = co_maxs[site] 

     

    data.drop(['red_630_690', 

               'nir1_780_900', 

               'blue_450_520', 

               'green_530_610', 

               'nir2_1230_1250', 

               'swir1_1550_1750', 

               'swir2_2090_2350', 

               'ndvi_ok_mask', 

               'ndii', 
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               'evir'])  

    data.evi.to_netcdf(path+'_evi.nc') 

    data.ndvi.to_netcdf(path+'_ndvi.nc') 

    data.kc.to_netcdf(path+'_kc.nc') 

    data.gvmi.to_netcdf(path+'_gvmi.nc') 

    data.rmi.to_netcdf(path+'_rmi.nc') 

    stamps = data.time 

 

    call_gdalbash() 

    subset_build_tif(stamps) 

 

    fc = calculate_gcVI(times,site) 

    fr = radiation_productivity(times,site)    # Calls zoom_data(), 

subset_latlon() to process radiation data, and LUE_inputs() to  

                                               # process NDVI and 

EVI to fPAR and LUE respectively, and fday functions if used 

    LUE_inputs() 

    bash_rm_tif() 

 

    msk = shape_mask(fr,site) 

    GPP = xr.ufuncs.minimum(fc,fr).rename('GPP') 

    GPP['fire_mask'] = msk 

    GPP.to_netcdf(path+'_GPP_kc_final.nc')  

    print('Computed model for {} at {}'.format(str(times),site)) 

    return 

 

 

 

 


