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Abstract

This thesis develops improved protocols for studying solvation free energies, chemical
properties and reactions in solution and uses them to explore the possibility of harnessing
complex non-standard solvent environments to catalyse chemical reactions. The thesis
covers different but related topics:

Topic 1 is improving the accuracy of implicit solvent models. Implicit solvent models
are simple cost-effective strategies for modelling solvent as a polarizable continuum. How-
ever, the accuracy of this approach can be quite variable. Herein, we examine approaches
to improving their accuracy through cavity scaling, the choice of theoretical level and
the inclusion of explicit solvent molecules. For SMD, we show that the best performance
is achieved when cavity scaling is not employed, while for PCM we present a series of
ESF values that are radii, solvent and ion type dependent. For both families of method,
we also highlight the importance of choosing an appropriate level of theory, and identify
when explicit solvent molecules are required.

Topic 2 is electrostatic catalysis in complex solvent environments. The first approach
is using ordered solvent and ionic liquids. Recent nanoscale experiments have shown that
electric fields are capable of catalysing and controlling chemical reactions, but experimen-
tal platforms for scaling these effects remain elusive. Herein, two different approaches to
addressing this challenge are explored. The first is using the internal electric field of or-
dered solvents and ionic liquids. A multi-scale modelling approach was developed using a
polarizable force field based molecular dynamic simulation, post-HF, DFT, semi-empirical
quantum chemical calculations and wave function analysis techniques. We showed that
after exposure to an external electric field, ensembles of solvent or ionic liquid molecules
become ordered and this ordering can generate an internal electric field, which persists
even after the external potential is removed. Experimental collaborators subsequently
detected this field as an open-circuit potential that is strong and long-lived. Computa-
tionally we showed that this field is enough to lower reaction barriers by as much as 20
kcal/mol, and we also developed a predictive model to choose ionic liquids that optimize
this field.

In the second approach, we harnessed the electric fields of the gas-water interface.
Experimental collaborators showed that in the presence of static, inert gas bubbles, the
oxidation potential of HO anion was dramatically lowered (by more than 0.5 V), much
more than any subtle concentration effects predicted by the Nernst equation. Further
experiments showed that a high unbalanced concentration of HO− ions (as much as 5
M) accumulate at the interface. Our multi-scale modelling calculations showed that this
reduction in potential was due to the mutual repulsion of the HO anions and as little as
1 M unbalanced excess was enough to explain the experimental results. The work raises
opportunities in reducing the cost of electrochemical processes, and points to electrostatic
effects contributing to the well-known catalytic effects of “on water” reactions.
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Works in this thesis are useful in the future studies of solution-phase pKa, redox po-
tentials, electrostatic catalysis, interfaces, and ionic liquids based electrochemical devices.
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Chapter 1

Introduction

1.1 Overview

One feature of the Earth compared with other planets is the presence of water. It is
recognized that water is critical for plate tectonics on Earth and possibly shapes the
surface of Mars.[1] Water, as the molecule of life, influences the development of life.[2]
Among all the 125 important unsolved questions proposed in 2005,[3] one question was
about the structure of water, which seems simple but is actually complicated.[4]

Besides water, other solvents including organic solvents,[5] ionic liquids,[6] solvent
mixtures,[7] deep eutectic solvents[8] and electrolyte solutions,[9] are widely investigated
in chemistry. This forms a very important branch of science: solvent effects.

Generally, it is widely recognized that solvent effects can influence many aspects
of chemical reactions. Chemical reactivity,[10] reaction rate,[11] mechanisms[12] and
selectivity[13] can be dramatically different in gas-phase and solution-phase. Solvent
molecules are important for designing organic synthesis,[14] they can work as both reac-
tion media and the catalysts themselves.[15]

For photochemistry, as early as 1956, Masao and co-workers reported solvent effects
on the fluorescence spectra and the dipole moments of excitepd molecules.[16] The con-
cept of solvatochromism has been frequently discussed[17]. In addition to the absorption
wavelength of electronic spectra, spectral shape[18] and vibrational spectroscopy[19] can
also be heavily influenced by solvent effects. Further, solvent alters the excited-state dy-
namics of molecules and can directly inform the design of solar cell dyes[20], OLED[21]
and photocatalysts.[22]

Electrochemical properties such as redox potential can also be dramatically affected
by solvent effects.[23] The solid-liquid interface[24] and the associated structures and
properties of liquids under electric fields[25] determine the performance of electrochemical
devices (e.g., batteries[26] and supercapacitors[27]) and electrocatalysts[28]. Additionally,
the concept of electrosynthesis offers a new approach for efficient synthesis, and can also
be influenced by solvent effects.[29]

Considering the importance of solvent effects on different aspects of chemistry, it is
meaningful to develop methods for comprehensively understanding of them. It was pro-
posed by Hey and co-workers that scientific research has four paradigms including empir-
ical evidence, scientific theory, computational science and data science.[30] It was pointed
out by Dirac in 1929 that "The underlying physical laws necessary for the mathematical
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2 1.1. OVERVIEW

theory of a large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws leads to equations much
too complicated to be solvable. It therefore becomes desirable that approximate practical
methods of applying quantum mechanics should be developed, which can lead to an expla-
nation of the main features of complex atomic systems without too much computation".[31]
computational chemistry methods (e.g., DFT) was established on the basis of scientific
theories (e.g., quantum mechanics, classical mechanics and electrodynamics) and compu-
tational science (e.g., high-performance computing). Besides, the development of classical
MD force fields and computational solvation science is also based on both scientific theory
and largely empirical parameterization, which includes empirical evidence (for obtaining
experimental values of target properties) and data science (for efficient optimization of
parameter set). Practical quantum chemistry uses various approximate methods, usually
based on DFT or ab initio molecular orbital theory, to solve the Schrödinger equation.
However, even using modern high-performance computing, the computational cost of such
calculations remains high to the extent that only relatively small systems comprising at
most a few 100 atoms in a vacuum can be studied. For larger systems, be they an ensem-
ble of small molecules or a single larger molecule such as a protein or polymer, quantum
mechanics is typically abandoned in favour of highly parameterised classical mechanics
methods, with a concurrent loss of accuracy and generalizability. This raises a particular
challenge when attempting to use quantum-chemical methods to accurately predict the
behaviour of chemical reactions in solution, though one that is increasingly be met with
success.[32–37]. Generally, we can classify all solvation modelling methods into implicit
solvent modelling and explicit solvent modelling, which depends on whether the molec-
ular details of solvent molecules are included in calculations. Both implicit and explicit
solvent modelling can be used with computational methods at difference scales, e.g., quan-
tum chemistry methods or force field methods. Each method can be employed for both
static calculations and time-dependent dynamic simulations. A more detailed introduc-
tion about these methods and associated applications in different fields is presented in
Chapter 2 and Chapter 3.

Another key concept in this thesis is electrostatic catalysis, which means to engi-
neer electrostatic interactions in chemical systems to realize efficient catalysis. It has
been shown that electrostatic catalysis can be applied to chemical reactions regardless
of whether a redox process is involved.[38–42] Different forms of electric fields can be
employed to dramatically influence the free energy landscape of reactions by changing
the interactions between electric field and transition states, reactants and products. It
has been shown that electrostatic catalysis can be achieved by using enzymes,[43] ionic
aggregates,[44] oriented metal ions,[45] EEF,[42] tribo-electrification[46] and CFG[47, 48].
Although the STM-BJ approach successfully implemented electrostatic catalysis at molec-
ular level,[42] the prospect of electrostatic catalysis needs access to scalable platforms.[49]

Theoretical and computational tools have also been used to investigate electrostatic
catalysis. The pioneering work of Shaik and co-workers[38] has demonstrated the effects
of external electric fields on the endo/exo selectivity of Diels–Alder reactions. In recent
years, pH-switchable local electric fields have been examined. Further details on designed
local electric fields can be found in Ref[50]. Local electric fields can be obtained by
incorporating charged sites on substrates or catalysts.[47, 48, 51, 52] The choice of charged
sites can be determined by comparing the resulting electric field and the reaction axis.
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Most computational works in this regard use accurate quantum chemical methods with
and without implicit solvent models, which generally provides highly accurate modelling
of electrostatic catalysis.

One bottleneck of electrostatic catalysis is the solvent attenuation problem (see Figure
1.1), i.e., the electrostatic interactions are highly reduced in polar solvents compared with
that in the gas phase.[47] It was also shown that the solvent polarity can affect the bond
dissociation Gibbs free energy.[40] The recent work of Shaik and co-workers reported
the solvent attenuation at molecular level as well as the relationship between solvent
attenuation and solvent ordering.[53]

Figure 1.1: The scheme of solvent attenuation problem and the comparison of the effects
of external electric field in gas (A) and solvent (B).

This thesis focuses on the roles of solvent environments in electrostatic catalysis. In-
deed, it is well established that the solvent and enzyme environments themselves can
work as both the reaction media and catalyst.[43, 54] An example is the Marcus the-
ory which highlights the roles of solvent reorganization in outer-sphere electron transfer
reactions.[54] Besides the bulk solution phase, interfaces between different phases (e.g.,
air-water, solid-liquid and water-oil interfaces) usually provide unique features due to the
unbalanced local charges and hydrogen-bonding interactions.[55–57] For example, under
some circumstances, the orientation of the solvent molecules can be manipulated[58] at
the electrochemical double-layer structure at the interfaces between charged electrodes
and electrolyte.[59] To understand electrostatic catalysis in these complex solvent envi-
ronments, quantum chemical methods and implicit solvent models are usually not good
enough, thus we need both MD simulation and explicit solvent simulation techniques at
different scales for configuration sampling and energy calculations. Actually, employing
MD simulation techniques to simulate chemical systems under external electric field is
widely studied in the community by using constant potential method[60] or uniform elec-
tric fields.[61] Techniques beyond the limits of classical force fields, e.g., ReaxFF, which
allows bond dissociation in MD simulations, is also actively developed to capture reaction
details in the simulation.[62]

More details about electrostatic catalysis, ordered solvent and air-water interfaces are
presented in Chapter 2, Chapter 4 and Chapter 5.

Based on the above concepts, the aims of this thesis are:
(1) Review different computational methods for solvation modelling and associated

applications.
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(2) Compare and analyse different methods to improve the accuracy of implicit solvent
models using pKa predictions as a case study.

(3) Study electrostatic catalysis in an ordered solvent environment (with experimental
collaborators) and develop computational methods to analyse structures and properties
of ordered solvents and ionic liquids under external electric fields.

(4) Investigate the electrostatic catalysis resulting from the accumulated OH− ions at
the air-water interface (with experimental collaborators).

1.2 Outline of Thesis

This thesis is organized as the following:
Chapter 2 presents an extensive review (Publication 1 ) about solvation modelling tech-

niques and their applications in studying pKa, redox potential, photochemical properties,
reaction mechanisms and catalysis. In detail, the concepts of different solvation modelling
techniques and important factors associated with these methods are reviewed. We high-
light some solvation databases, recommended parameters and the comparisons between
different methods. A selection of important applications in last five years are introduced.
Finally the outlook for future work is given.

Chapter 3 includes our efforts to improve the accuracy of implicit solvent models
including SMD (Publication 2 ) and PCM (Publication 3 ). Details and important factors
of implicit solvent models are introduced. Different strategies for improving the accuracy
of SMD solvation energies are compared and tested with aqueous pKa calculations of a
wide range of solute types. Using the extensive MNSOL-v2012 data base, we present
a set of optimized ESF for PCM-UAHF and PCM-UAKS calculations of solvation free
energies in various solvents. The optimized ESF values are also tested via pKa predictions
in water and acetonitrile. Additionally, we present the mixed theoretical level for SMD
and mixed-ESF for PCM calculations, which can dramatically improve the accuracy.

Chapter 4 includes our work studying ordered solvents and ionic liquids, and asso-
ciated electrostatic catalysis. Details about electrostatic catalysis, the roles of solvent
environment and ordered solvents and ionic liquids are reviewed. In Publication 4 em-
ploying classical MD simulations with the Drude oscillator-based polarizable force field,
quantum chemical calculations, and ONIOM (DFT:semi-empirical) multi-scale energy
calculations, we investigate the feasibility of using ordered solvent and ionic liquids for
electrostatic catalysis. In Publication 5 collaborating with experimental chemists, dif-
ferent experimental and computational techniques to characterize the ordering degree of
different ionic liquids under external electric field are introduced. The calculated values
agree well with the observed OCP. A relationship between calculated ion dipole projec-
tions and experimental OCP is proposed for future studies of ordered ionic liquids in
electrochemical systems.

Chapter 5 introduces details about the air-water interface and its unique features.
We present our work (Publication 6 ) where we use semi-empirical MD simulations and
ONIOM(CCSD(T)/CBS:DHDFT) methods to study the effects of the concentration of
OH anions at the gas-liquid interface of bubble system on the oxidation potential of OH
anion itself.

Chapter 6 provides the summary of this thesis and outlook for future works.



1.3. LIST OF PUBLICATIONS 5
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Chapter 2

Review of Computational Methods for
Solvation Modelling

2.1 Introduction

As introduced in Chapter 1, solvent effects are important in many aspects of chemistry
including photochemistry, electrochemistry, reaction mechanisms and catalysis. Methods
at different size and time scales are proposed for solvation modelling. In this Chapter,
we provide a detailed introduction about the following methods and their applications,
which is the basis for the contents for the remaining chapters of this thesis.

(1) Implicit solvent models with quantum chemical methods. This method is the
standard and most widely used method in the community of electronic structure calcu-
lations. Popular methods include the well-known SMD,[1] various PCM,[2] COSMO[3]
and its derivatives C-PCM[4, 5] and COSMO-RS[6]. These implicit solvent models are
often used with DFT or HF calculations, although the combination of implicit solvent
models with other quantum chemical methods (e.g., semi-empirical methods[7], fragmen-
tation methods[8] and DLPNO-CCSD methods[9]) have appeared recently. With these
methods, the solute-solvent many body interactions can be simplified as the two-body
interactions between the solute and polarizable continuum medium with mean field ap-
proximation. The solvent effect is introduced as a perturbation term to the gas-phase
Hamiltonian of the solute and is solved through the standard SCF framework, which is
usually called the SCRF method.[10] Thus, the molecular details of solvent molecules
are sacrificed so that computational costs can be largely saved. As a consequence, it
is possible to model the structure and energy of solvated solute accurately by adding
minor computational costs compared with the gas-phase solute modelling. The intrinsic
drawback of these methods is that they do not perform well for systems with strong solute-
solvent explicit interactions.[11] Two examples are electrolytes and deep eutectic solvents.
Explicit interactions between Li+ and electrolyte solvent and associated solvation struc-
tures determines SEI formation and battery performance.[12] The tunable nature of deep
eutectic solvents is also closely related with explicit interactions, especially the hydrogen-
bond interactions.[13] Additionally, although some variants of SMD and COSMO, e.g.,
SMD-GIL [14] and COSMO-RS[3] attempt to solve some problems, it is still hard to use
implicit solvent models to simulate complex environments, e.g, ionic liquids,[15] solvent
mixtures,[16] solvent environments with high concentration,[17] solvent environments at
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non-standard temperature and pressure[18]. More details about these methods are pre-
sented in Section 2.2 and Chapter 3.

(2) Solvent simulation with force field methods. With force field methods, the inter-
actions between particles and the associated potential energy in the system are described
using parameter sets. The parameters can be optimized by fitting experimental quan-
tities or be directly calculated via quantum chemical calculations. As computational
costs of force field methods are much smaller than that of quantum chemical methods,
it is a typical strategy for modelling large scale systems and simulating the dynamics
of systems, e.g., proteins.[19] These methods are influenced by many factors including
force field parameters and sampling methods. Force field methods mainly include clas-
sical force fields (e.g., AMBER,[20] CHARMM[21] and OPLS-AA[22]), polarizable force
fields (e.g., AMOEBA[23] and Drude oscillator based CHARMM[24]), reactive force fields
(e.g., ReaxFF[25]) and coarse-grained force fields (e.g., Martini[26]). Another important
factor is the sampling methods, for example, end-point sampling (e.g., MM/GBSA[27])
and various alchemical and enhanced sampling based free energy methods (e.g., free en-
ergy perturbation,[28] thermodynamic integration,[29] metadynamics[30] and umbrella
sampling[31]). Although force field methods are much cheaper than quantum chemical
methods, one of their drawbacks compared with quantum chemical methods is the poor
transferability to different chemical systems, which makes re-development of force fields
usually challenging. The poor transferability of force field methods is probably one reason
to explain why machine-learning potential methods (e.g., ANI[32]) get popular. Besides,
although more advanced forms of force fields (e.g., polarizable force field and reactive force
field) have been developed, using force field methods for complex chemical reactions, such
as reactions in which different electronic states and conical intersection are involved, re-
mains a challenge. Another intrinsic drawback is that force field methods do not perform
well for chemical systems in which quantum effects (e.g., quantum tunnelling[33] and
quantum nuclear effects[34]) are important. Thus, explicit solvent simulation is not al-
ways superior to implicit solvent models, as outlined in a recent joint study from Nau,
Grimme, Gilson and co-workers on the hydrophobe challenge,[35] as well as a recent work
from Ho and co-workers.[36] Among all force field methods, the polarizable force field is
particularly essential for studying the electrostatic catalysis in this thesis. More details
about this are presented in Section 2.2 and Chapter 4.

(3) Explicit solvent simulations with quantum chemistry methods. This method com-
bines the advantages of (1) and (2) and it is becoming increasingly popular. One example
is AIMD simulation.[37] Because such methods are computationally intensive compared
to classical MD, the use of this method remains limited by the system size and simu-
lation time. Thus, many approximations are introduced on the basis of AIMD. First,
the ab initio methods can be replaced with cheaper electronic structure methods includ-
ing semi-empirical PM7, DFTB and GFN-XTB methods (e.g., see respectively Ref.[38]
for PM7-MD, Ref.[39] for DFTB-MD and Ref.[40] for GFN-XTB-MD). In addition to,
FMO-MD represents another method to reduce computational costs.[41] Other approxi-
mations include the EFP method[42], SMFA method[43] and GEBF method[44]. More
detailed explanations of above concepts can be found in corresponding references and also
in section 2.2 and chapter 5.

(4) Multi-scale methods. Multi-scale philosophy provides a good balance between
computational accuracy and costs. One example is using QM/MM-MD methods[45, 46]
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to replace AIMD methods mentioned above. Another multi-scale protocol is to run MD
simulations with a relatively cheaper method while calculating the energies with a more
accurate and expensive method using a set of configurations taken from the MD simula-
tion. For example, the use of the so-called quantum chemical cluster method is widely
used in modelling enzymatic reactions.[47] Similarly, S-QM/MM method was proposed
by Canuto and co-workers[48]. Additionally, multi-scale methods can be used in differ-
ent parts of one computational protocol, for example, we can run MD simulations with
QM/MM methods while calculating energies using QM/QM’ methods. However, further
development of multi-scale methods is needed as current methods still have issues. For
example, Cui and co-workers listed a few issues with QM/MM methods for biomolecular
modelling.[49] It was concluded that more efficient and accurate choices of QM region size,
potential function and free energy calculation methods are important. Moreover, current
treatment of long-range interactions and polarization effects also can be improved. Among
all multi-scale methods, ONIOM is the most widely used, more details are presented in
Section 2.2, Chapter 4 and Chapter 5.

(5) Other aspects. Besides equilibrium solvation, non-equilibrium solvation is impor-
tant in the study of superfast processes, such as electronic excited state and electron-
transfer reactions in solution.[50–53] Nuclear quantum effect is another aspect which has
gained increasing attention recently.[54] Quantum dynamic simulation techniques have
been applied to study various chemical properties.[55, 56] Recently, ML and chemin-
formatics techniques have been applied to many aspects of solvation modelling.[57–61]
Particularly, the recent development of DPMD techniques pushed the limits of AIMD up
to 100 million atoms.[62] Solvation modelling methods (both implicit and explicit) have
been implemented using GPU.[63, 64]

Above is a brief introduction to different computational methods for solvation mod-
elling. These solvation modelling techniques have been applied to various chemical prop-
erties and reactions, including those particularly relevant to this thesis (e.g., pKa values,
redox potentials, electrostatic catalysis). As this thesis mainly focuses on solvation mod-
elling and electrostatic catalysis, explaining all the above methods in details is beyond
the scope. More specific introductions to these methods can be found in corresponding
references. However, for methods which are important to this thesis, e.g., polarizable force
field and implicit solvent models, their theories will be elaborated in following chapters.

It is worthwhile to note that although we mainly focus on a few properties (pK a,
redox potential, photochemistry properties) in measuring the accuracy of solvation mod-
elling, there are many other critical properties that benefit from accurate solvation mod-
elling. For example, partition coefficient between different solvents is closely related with
the accuracy of solvation free energy and hydrophobic/hydrophilic properties of chemical
compounds.[65] We also need to mention that the focus of this chapter is to discuss the ac-
curacy of solvation modelling and solvent effects on these chemical properties. However,
we do not analyse the details of these applications. For example, solvatochromic shift
is one active research topic for both computational and experimental chemistry,[66, 67]
while we investigate how the accuracy of solvation free energies influence calculated ver-
tical excitation energies, we will not introduce details of other aspects of photochemistry,
e.g., nonadiabatic photochemistry, which itself is a large field and beyonds the scope of
a PhD thesis. As a contrast, we introduce theories of pK a with more details than other
properties because it is directly related with the contents in Chapter 3.
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1. Introduction 

While practical accurate quantum chemical methodologies for predicting chemical behaviour in a 
vacuum are now routine, at least for the types of species typically found in molecular synthetic 
chemistry, most practical chemistry actually occurs in solution. Unfortunately, computational 
techniques for modelling reactions in solution are comparatively less well developed and typically 
remain the largest source of error in such calculations.1-3 Indeed, our understanding of solvent 
effects at the microscopic level remains relatively limited. Even the structure of water is not well 
understood,4 let alone more complex solvents such as ionic liquids (ILs),5 deep eutectic solvents 
(DES)6 and electrolyte solutions.7  

Broadly speaking, there are two conceptually different approaches to modelling reactions in 
solution. The first is to focus on predicting the Gibbs free energy of solvation of various species, 
which can then be combined with accurate gas-phase calculations to predict behaviour in solution. 
The second is to focus on predicting the chemical behaviour in solution directly. In either case, 
there are many different computational techniques for modelling solvent, differing in their 
accuracy, complexity and computational cost, and ranging from simple continuum model 
approximations,8-11 to large-scale simulations of ensembles of explicit solvent molecules12-15 to 
macroscopic methods such as computational fluid dynamics techniques.16 Solvent is modelled 
using a wide range of computational methods including quantum dynamics (e.g., ring polymer and 
path integral molecular dynamics molecular dynamics),17 ab initio 18 and density functional theory 
(DFT) quantum mechanical (QM) methods,19 tight-binding20 and semi-empirical QM methods,21-22 
multi-scale methods with different embedding schemes,23 fragmentation methods,24 force field 
methods (classical force field, polarizable force field and reactive force field),25-29 and Ccoarse-
Grained (CG) methods.30-31 With the development of data science, cheminformatics and machine 
learning (ML) methods are also becoming important.32 Solvent modelling using graphics processing 
units (GPUs)33 are also emerging. Almost all of these approaches can be used with both implicit 
and explicit solvent simulations, and nearly all methods can be combined with static calculations 
and dynamic simulations, which generates a wide choice of methodology. 

Owing to their importance, computational solvation methods have been extensively reviewed. In 
the case of implicit solvent models, we draw attention to the classic reviews by Tomasi and co-
workers,8 Cramer and Truhlar,9 Klamt,10 Orozco and Luque,34 Mitchell and co-workers,35 as well as 
an excellent recent update by Herbert.36 For the explicit solvent simulations, we highlight the 
reviews of Jorgensen,12 Mobley and co-workers,13 Levy and Gallicchio,14 Onufriev and Izadi.15 These 
reviews extensively cover the theory and history of solvation modelling, and our aim is not to 
duplicate these. In the present work we instead focus primarily on the recent application of 
different computational methods to studying solvent effects on chemical reactions, with a 
particular emphasis on the important factors to consider when choosing computational methods 
for solvation modelling, and how these interplay with one another (see Figure 1). In what follows 
we first define the Gibbs free energy of solvation and discuss the sources and limitations of the 
solvation Gibbs free energies used for training and benchmarking solvation models. We then 
provide a brief overview of the different types of solvation models, with a focus on their 
assumptions, advantages, limitations and best practice recommendations, before finally 
highlighting some recent applications of solvation models in computational chemistry. 
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Figure 1. The main factors for solvation modelling 

2 Solvation Gibbs Free Energy 

The solvation Gibbs free energy represents the change in Gibbs free energy when a solute is 
transferred between the gas phase and solution phase at a specified temperature and pressure 
(equation 1). 37  

∆Gsolv = Gsoln – Ggas     (1) 

Solvation energies are often the focus of computational solvation modelling as they provide a 
means of converting gas-phase computational predictions, which can usually be made very 
accurately through the combination of electronic structure methods and ideal gas partition 
functions, to solution-phase predictions (Scheme 1). In applying such thermocycles one needs to 
pay close attention to the standard states at which the gas-phase Gibbs free reaction energy (∆Ggas) 
and the various Gibbs free energies of solvation (∆Gsolv) are obtained. For example, ∆Ggas is typically 
calculated using ideal gas partition functions at a specified temperature (T) and pressure (P), 
whereas ∆Gsolv is typically calculated for a standard state of 1 M. Before combining the two types 
of quantity in a thermodynamic cycle they need to be converted to the same standard state. 
Assuming, ideal gas behaviour, conversion of ∆Ggas at some specified T and P to a standard state of 
1M is achieved by adding a correction term: 

∆Gcorr = ∆nRT ln
RT

P
    (2) 

where: ∆n is the change in the number of molecules on either side of the equation and R is the 
universal gas constant. 38  

 

 

Scheme 1. Thermocycle for converting gas-phase to solution-phase Gibbs free energies 
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Experimentally Gibbs free energies of solvation are determined by measuring the equilibrium 
constant for partition of a solute between the two phases in question, though in practice this can 
be difficult for species with low vapor pressures, and becomes impossible for species that are not 
stable in isolation (e.g., ions and unstable reactive intermediates). In those cases, so-called 
experimental solvation energies are obtained by comparison of experimental gas and solution-
phase reaction energies, such as a comparison of gas-phase and solution-phase acidities. This 
yields an experimental value for the overall solvation energy contribution to a chemical reaction, 
which is then converted into a value for an individual species using experimental or computational 
values of the individual solvation energies of all of the other species in reaction to decouple their 
contributions.39 Large databases such as the Minnesota Solvation Database (MNSOL)39 have been 
compiled in this way and are used to both parameterize and to benchmark computational solvation 
models. Other useful databases include the recently updated FreeSolv database developed by 
Mobley and co-workers,13 and the CombiSolv-QM and CombiSolv-Exp data bases, which are the 
basis of Vermeire and Green’s proposed transfer-learning predictions.40 Table 1 lists the main 
databases currently available. In addition to these, the CompSol databank of Privat and co-workers 
includes over 35,000 solvation chemical potentials, entropy and enthalpy data for 1969 pure 
species and 14102 binary mixtures, Acree and co-workers have presented a data base of partition 
coefficients for more than 2800 different solute-solvent combinations, and Driver and Hunter41 
have published a database of solvent similarity indices. 

 

Table 1. An overview of popular data base of solvation free energies 

Name  No. of 
Solutes 

No. of 
Solvents 

No. of 
Solvation Free 
Energies 

Notes Reference 

MNSol-
v2012 

790 92 3037 The data base used for 
SMD development 

Ref.39 

FreeSolv 
(version 
0.5) 

643 1 (water) 643 Both experimental and 
computational data 

Ref.13 

CombiSolv-
QM 

11029 284 1 million Calculated using COSMO-
RS 

Ref.40 

CombiSolv-
Exp 

1368 291 10145 Compiled from publicly 
available databases.13, 39, 42-

43 

Ref.40 

 

3 Brief Overview of Solvation Models and their Performance for Solvation Energies 

In this section, we provide a brief overview of the types of solvation models available with a focus 
on their assumptions, advantages, limitations and best practice recommendations. Where 
available, benchmarking information on their accuracy for solvation energy predictions is also 
cited. For more detailed information on the models, the reader is referred to the original 
references and / or recent reviews which are cited as relevant.  

3.1 Continuum Models 
Theoretical Background. The simplest and most cost-effective approach to modelling solvation 
energies is using continuum models, in which one treats the solvent as an “implicit” continuous 
medium instead of an ensemble of individual “explicit” solvent molecules by constructing an 
effective Hamiltonian for the solute in the presence of a polarized dielectric.8-11, 34, 36 In this way, 

Formatted Table
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the complicated many-body interactions between solute and solvent molecules can be simplified 
as two-body interactions between solute and the polarizable medium. There are a number of 
methods used to model the electrostatic interactions between solute and solvent, the most 
popular of which is the apparent surface charge (ASC) scheme, in which the solute is embedded in 
a cavity with a charge density at its surface.44 Because the polarization of the solute by the solvent 
is the same as the polarization of the solvent by the solute, then, given the solute charge density, 
the surface charge can be determined self-consistently by solution of Poisson's equation. There 
are a variety continuum models that vary in the way in which the surface charges are defined, the 
approximations used to solve the resulting macroscopic Poisson equation, and the nature of any 
additional so-called non-electrostatic terms that are also often included in the total solvation 
energy. Important examples include the original PCM model45 model45-46 and its integral equation 
formalism IEF-PCM47, the original conductor-like screening model COSMO48 and its closely related 
variant C-PCM,49 and the Minnesota solvent models (SMx, e.g. x=650, 851, D52). COSMO-RS34-37 is 
considered a semi-implicit solvent model in that it uses an initial COSMO calculation to generate a 
set of screening charges that are then used to calculate the chemical potential or the solution free 
energy of the solute via a statistical mechanical procedure involving the interacting screening 
charges of the solute and solvent molecule. For detailed descriptions of these and related 
continuum solvent methods we refer the reader to the original references or recent reviews.8-11, 

34, 36  

Level of Theory. When using continuum models to calculate solvation energies, a number of factors 
can affect the final result, as have been highlighted by several authors.38, 53-64 In understanding 
these influences, it is important to note that, while the models themselves are based on physical 
principles, they are ultimately semi-empirical in nature, containing parameters such as radii, that 
are ultimately tuned by fitting solvation Gibbs free energy predictions to corresponding 
experimental data. Thus, their accuracy is usually maximized when applied to systems that are 
similar to their original training sets and used at the same level of theory for which they were 
originally parameterized. As an example, Table 2 collects the recommended theoretical levels as 
used when parameterizing the original SMD model.52 For this model and others, improving the 
level theory beyond the parameterization level does not always lead to improved performance as 
the parameters may implicitly already be correcting the underlying errors in the electronic 
structure method.38, 65-66 At the same, benchmarking reveals that improvements are sometimes 
needed, especially if explicit solvent molecules are included and/or systems differ substantially 
from the original parameterization training sets.65, 67 Thus, while the default recommendation is to 
apply continuum methods at their parameterization level, benchmarking is advisable, particularly 
if explicit solvent is involved. 

 

Table 2. Recommended theoretical levels for SMD solvation free energies 

Solute/Solvent Combinations Recommended 
Theoretical Levels 

Note 

All neutral solute/solvent 
combinations 

M052X/6-31G(d) More details can be found in Table 7 
and Table 8 in Ref.52 

Cations in acetonitrile M052X/6-31+G(d,p) More details can be found in Table 10 
in Ref.52 Anions in acetonitrile B3LYP/6-31G(d) 

Cations in DMSO M052X/6-31+G(d,p) a 

Anions in DMSO M052X/6-31+G(d,p) 

Cations in methanol M052X/MIDI!6D 
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Anions in methanol M052X/6-31G(d) 

Cations in water M052X/6-31+G(d,p) a 

Anions in water HF/6-31G(d) a 
a SM8 performs better than SMD 

 

Approximations for Large-Scale Systems. Although standard implicit solvent models should be used 
with the DFT or HF methods for which they are parameterized, there are implementations of 
implicit solvent models with lower-level methods for studying larger systems. For example, the 
COSMO solvent model was implemented in MOPAC to allow COSMO-PM6 and COSMO-PM7 
calculations.68 Jensen and co-workers implemented SMD with semi-empirical methods and tested 
the performance using the MNSOL data base, concluding that the errors obtained were 
unsurprisingly larger than that when using DFT but could be improved by re-optimizing the radii.69 
Implicit solvent models have also been used with QM-based fragmentation methods. For example, 
Okiyama and co-workers developed the FMO-PBSA method which combines the fragment 
molecular orbital (FMO) method with an implicit solvent model based on the Poisson Boltzmann 
surface area (PBSA).70-71 Fedorov and co-workers developed a solvent screening model for the 
molecular electrostatic potential based on FMO method, which was applied to study proteins.72 
Collins and Ho employed the systematic molecular fragmentation by annihilation (SMFA) method 
to calculate the solute-solvent interactions for a system consisting of one solute in 160 water 
molecules, the authors found with their fragmentation method, the computational costs can be 
decreased by 14 times compared with the full QM brute force calculation.73 Another strategy for 
large-scale QM simulations is the linear-scaling DFT method, using the Order-N Electronic Total 
Energy Package (ONETEP).74 Recently it was shown by Skylaris and co-workers that linear-scaling 
DFT can be used with continuum solvent simulation to simulate electrolyte solutions, which is 
useful for electrochemical studies.75 For complex large-scale systems, for example solid-liquid 
interface, methods have also been developed to efficiently model both the solid slab and 
continuum solvent.76 All of the above three families of methods provide options for employing 
implicit solvent models on large systems. 

Cavity-Scaling. While some solvent models, such as SMD,52 have been parameterized using 
solvation data for a wide range of solvents, others were originally parameterized to solvation data 
for a more limited range (e.g., PCM-UAHF was parameterized against aqueous solvation energies 
only77). The electrostatic scaling factor (ESF)8 was introduced to improve the accuracy of 
continuum models by scaling their radii for different solvents and different ion-types (i.e., treating 
cations, anions and neutral separately). ESF values are typically determined by fitting predicted 
solvation energies, or other solvent dependent properties such as pKa values or redox potentials, 
to experimental data.56, 58-60, 78-102 In doing this, one needs to be careful that the ESF is not 
correcting for other errors in the calculation. For instance, if fitting to redox potentials or pKa 
values, one needs to ensure that the correction is correcting only for errors in the solvation 
energies, and not for errors arising from the use of an inadequate level of theory to model the 
bond breaking processes in the chemical reaction. Nonetheless, when done carefully, it is clear 
that ESF can improve accuracy for some solvent models, though reassuringly they are less 
important for models such as SMD52 that are parameterized on a broad range of solvents.65 In 
Table 3 we collect a series of recommended ESF values. 
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Table 3. Summary of recommended ESF values 

Solute Type Solvent Type Quantity Solvent Model ESF  Note 

Neutral 
molecules 

Acetonitrile Solvation 
free 
energy 

IEFPCM/HF/6-31G(d) 
using UAHF radii 

1.2 The results are taken 
from Ref. 66. This 
same reference66 
also provides 
corresponding ESF 
values for: 
IEFPCM-
UAKS/PBE1PBE/6-
31G(d) 
CPCM-UAHF/HF/6-
31G(d) 
CPCM-
UAKS/PBE1PBE/6-
31G(d).  

Aniline  1.1 

Benzene  1.1 

carbon 
tetrachloride 

1.0 

Chlorobenzene 1.1 

Chloroform  1.1 

Cyclohexane  1.1 

Dichloroethane  1.2 

Diethyl ether  1.1 

Dimethyl sulfoxide  1.3 

Ethanol  1.4 

Heptane  1.1 

Methylene chloride  1.2 

Nitromethane  1.3 

Octanol  1.1 

Tetrahydrofuran  1.2 

Toluene  1.1 

water 1.2 

Neutral 
molecules 

Carbon 
tetrachloride 

Transfer 
free 
energy 

2.1 

Benzene  1.6 

Chlorobenzene  1.4 

Chloroform  1.5 

Cyclohexane  1.2 

Dichloroethane  1.2 

Diethyl ether  1.5 

Heptane  1.2  

Octanol  2.1 

CHNO 
cations 

Acetonitrile  Solvation 
free 
energy 

1.1 

Other 
cations  

1.1 

CHNO 
anions 

1.5 

Other anions  1.4 

CHNO 
cations 

Dimethyl Sulfoxide 1.1 

CHNO 
anions 

1.5 

Other anions  1.5 

CHNO 
cations 

Water  1.2 

Other 
cations  

CHNO 
anions 
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Other anions  

Organic 
univalent 
anions 

Dimethylformamide Solvation 
free 
energy  

IEFPCM/HF/6-
31+G(d,p) with 
GAMESS radii 

1.39 Taken from Ref.59 

Acetonitrile 1.36 

Anions Dimethyl Sulfoxide Solvation 
free 
energy 

IEFPCM/HF/6-
31+G(d,p) with 
GAMESS radii 

1.35 Taken from Ref.56 

Both neutral 
and anionic 
compounds 

Dimethyl Sulfoxide Solvation 
free 
energy 

PCM/HF/6-31+G(d,p) 
with Bondi radii 

1.35 Taken from Ref.57 

Organic 
acids 

Acetonitrile pKa PCM/B3LYP/6-
31+G(d,p) with Bondi 
radii 

1.2 Taken from Ref.58 

Nitroxides Acetonitrile Redox 
potential 

PCM/B3LYP/6-31G(d) 
with UAKS radii 

1.45 Taken from Ref.60 

Amino acid 
side-chain 
analogues 

Water Solvation 
free 
energy 

IEFPCM with different 
theoretical levels 
using UAKS radii 

1.2 Taken from Ref.61 

 

Thermocycles versus Direct Calculation. Another complication with continuum models is the 
treatment of any structural changes that occur upon solvation. By construction, continuum models 
calculate the Gibbs free energy of solvation as the difference in the electronic energies in the 
presence and absence of the solvent field, plus any non-electrostatic terms. These are then 
parameterized to experimental Gibbs free energies of solvation. The implicit assumption is that 
any differences between the solution-phase and gas-phase thermal and entropic contributions 
either cancel, or are built into the non-electrostatic terms when present in the model, or are 
otherwise implicitly built into the electronic energy in the solution phase through its 
parameterization.38 Either way, this is likely to be reasonable for small rigid molecules whose 
structure does not significantly change upon solvation, but is expected to be problematic for larger, 
more flexible molecules, particularly those (such as amino acids) whose solution-phase structure 
is not stable in the gas phase and vice versa.62, 103 Because solvation energies are calculated from 
the difference of solution- and gas-phase electronic energies, allowing the geometry to change 
between gas and solution is possible in principle, but in practice errors tend to be significant if large 
structural changes occur upon solvation.53, 62  

As a result, when geometries change substantially upon solvation other approaches are often used. 
These include by-passing solvation energies altogether and calculating Gibbs free energies in 
solution directly from the energies, geometries and frequencies calculated in the presence of the 
solvent field using ideal gas-phase partition functions. This is known as the direct method, and can 
be very effective for modelling reactions in solution.53 When using this approach, one must 
remember that the ideal gas partition functions are typically defined for a standard state of some 
temperature (T) and pressure (P), whereas solution-phase Gibbs free energies are defined for a 
standard state of 1M, and so the change of state correction term (equation 2 above) needs to be 
included even though the partition functions use solution-phase geometries and frequencies.38  

Another approach is to attempt to minimize the structural changes between the gas- and solution-
phases by stabilizing the solution-phase structure in the gas-phase using explicit solvent molecules, 
and by basing all calculations within the thermodynamic cycle on the solution-phase conformer of 
this solute-solvent complex. This approach, known as a cluster-continuum model, has the added 
advantage of incorporating explicit solute-solvent interactions, and helps to improve the accuracy 

Formatted: Left

Formatted: Left

Formatted: Font: Italic

Formatted: Subscript

Formatted: Left

Formatted: Left

22 2.2. PUBLICATION 1



 
9 

of thermocycle approaches to solution-phase Gibbs free reaction barriers and energies.104 
However, by incorporating explicit solvent molecules in the gas- and solution-phase calculations, 
the Gibbs free energy changes are no longer strictly Gibbs free energies of solvation, comparable 
to experimental data. Moreover, as noted below, because continuum models are parameterized 
in the absence of explicit solvent molecules, introducing them in conjunction with a solvent field 
introduces possibility of “double counting” and uncertainty over when, where and how many 
explicit solvent molecules are needed for a given problem.99, 105-110 

Temperature and Pressure Effects. Most continuum models are parameterized against 
experimental solvation Gibbs free energies at room temperature and pressure, and their 
predictions should strictly be limited to those conditions. However, some models have been 
developed to take account of temperature and/or pressure, albeit with some limitations in scope 
or functionality. A more specific review about the quantum chemical modelling of pressure effects 
was recently presented by Stauch.111 Among the available methods, Levesque and co-workers 
developed a method to include the pressure effects simply by computing an optimized vVan der 
Walls volume of the solute and removing the undue free energy to create such volume in the fluid. 
The accuracy of obtained hydration free energies of a benchmark of small neutral drug-like 
molecules was shown to reach the accuracy of more time-consuming molecular simulations.112 
Cammi113-114 introduced a modified version of PCM, called XP-PCM, in which effects of high 
pressure are introduced reducing the cavity size, increasing the step potential at the boundary 
between the solute and the solvent, and by increasing the density and dielectric permittivity of the 
solvent. COSMO-RS34-37 is often regarded as one of the most successful implicit solvation models 
for both pressure-dependent and temperature-dependent solvation properties.115 In this model, 
temperature and pressure is incorporated through a statistical mechanical procedure involving the 
interacting screening charges of the solute and that of the solvent molecule. Liu and Eisenberg 
presented a Poisson-Fermi-based method to model ionic solvation at variable temperature.116 
Models such as SM8T117 introduce temperature dependence to continuum models by 
parameterizing to temperature dependent training data for systems, and accounting for the known 
temperature dependence of parameters such as the solvent dielectric constant. Models such as 
these can be very accurate,118 but their applicability is limited to the types of solute-solvent 
systems for which temperature-dependent experimental data is available for model training. 

Benchmarking. With a large number of available implicit solvent models and tuneable parameters, 
it is natural to conduct comparisons between different solvation models. Table 4 summarizes the 
some recent comparisons of QM based implicit solvent calculations, while benchmarking of MD 
based implicit solvent models, we recommended the work of Knight and Brooks,119 and the work 
of Van der Spoel and co-workers.120 It needs to be noted explicitly that the performance of different 
implicit solvent models is heavily dependent on the computational details, the parameters used 
and the solute/solvent combinations tested. Thus, it is not meaningful to conclude which implicit 
solvent model is the best without a specific context. Nevertheless, some general insights can be 
obtained from these comparisons. The comparison in Ref.121 suggests SMD performs much better 
than generalized Born (GB) and Poisson−Boltzmann (PB) models, due to SMD’s inclusion of the 
non-electrostatic contribution to solvation free energy. The comparison in Ref.66 suggests SMD 
performs better than CPCM-UAHF and COSMO-RS. However, for the solvation free energy of ions, 
the accuracy of all three models is not satisfactory, which is one direction for future development 
of implicit solvent models. In contrast, the comparison in Ref.122 suggests the newly developed 
uESE model is more accurate than SMD, especially for ions. 
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Table 4. Benchmarking Information for different implicit solvation models. 

Test Set Solvation Model Accuracy Note 

228 combinations of 
neutral organic solvents 
and solutes 

PB Correlation R=0.51 ± 
0.05 

We only present the 
best performer 
respectively for GB and 
SMD family. Results 
were taken from Table 1 
of Ref.121 

GB-OBC-II Correlation R=0.25 ± 
0.06 

SMD/M062X/6-
31+G(d,p) 

Correlation R=0.77 ± 
0.03 

82 combinations of 
organic molecules (both 
neutral species and 
ions) in two solvents 
(water and acetonitrile) 

CPCM-UAHF Mean absolute error = 
1.32 kcal/mol for 
neutral species and 6.33 
kcal/mol for ions 

Results are taken from 
Ref.66 

SMD Mean absolute error = 
0.82 kcal/mol for 
neutral species and 5.31 
kcal/mol for ions 

COSMO-RS Mean absolute error = 
0.79 kcal/mol for 
neutral species and 8.36 
kcal/mol for ions 

2892 combinations of 
solutes in 92 solvents 

SMD Mean absolute 
error=1.33 kcal/mol 

The mean absolute 
error is calculated using 
the data in Ref.122 where 
more specific results of 
each solute and solvent 
type are presented. 

uESE Mean absolute 
error=1.16 kcal/mol 

55 solutes in 1-octanol 
and water 

SMD Mean absolute 
error=2.70 kJ/mol in 1-
octanol and 1.90 kJ/mol 
in water 

Results are taken from 
Table 1 in Ref.123 

SM8 Mean absolute 
error=2.24 kJ/mol in 1-
octanol and 2.08 kJ/mol 
in water 

SM12-MK Mean absolute 
error=5.46 kJ/mol in 1-
octanol and 5.91 kJ/mol 
in water 

SM12-CM5 Mean absolute 
error=1.84 kJ/mol in 1-
octanol and 2.25 kJ/mol 
in water 

COSMO-RS Mean absolute 
error=1.97 kJ/mol in 1-
octanol and 1.92 kJ/mol 
in water 

 

3.2. Explicit Solvent Models 
The alternative to approximating the solvent as a continuum, is to model a solute in a large 
ensemble of explicit solvent molecules. Similar to implicit solvent calculations, explicit solvent 
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simulations can be treated as part of a thermodynamic cycle, or can be used to study reactions in 
solution directly. Although most works use direct method, recent examples of the thermodynamic 
cycle method can be seen in Ref. 124-125, in which the authors calculated the gas-phase reaction 
energies using accurate quantum chemical methods while the solvation free energies were 
calculated with free energy perturbation (FEP) methods. Either way, in order to deal with the size 
and complexity of such a system, various approximations are required, both with respect to the 
level of theory used for the ensemble and the conformational sampling process. Clearly it is not 
feasible to directly study the long-time dynamics of chemical reactions in ensembles of 100s of 
solvent molecules at high levels of theory (e.g., complete basis set coupled cluster theory), while 
also ensuring the complete conformational space of the solute/solvent ensemble is sampled. 
Simplifications need to be made, the most important being the choice of method, the sampling 
approach and the system size.126 In this section, we outline the three main conceptual approaches 
to explicit solvent modelling (molecular dynamicsMD, quantum chemistry, and multi-scale 
approaches), and then discuss the various sampling methods used.  

Molecular DynamicsMolecular Dynamics. Molecular dynamicsMD (MD) using classical force fields 
are the most commonly used to study explicit solvent. The force field describes both bonded and 
non-bonded interactions between particles and associated potential energy with parameter sets, 
which are optimized by fitting to experimental data or directly calculated via quantum chemical 
calculations. Their functional forms can be different in different force fields. For water, the most 
important solvent, several force fields were developed specifically, for example TIP3P,127 TIP4P,128 
SPC/E129 and their derivatives. Recent comparisons of these water force fields can be found in 
Ref.130 While for more general organic compounds, pPopular force fields include AMBER,131 
CHARMM132 and OPLS-AA.133 One drawback of these classical force fields is that the fixed-charge 
scheme cannot properly describe the polarization effects within the system. To solve this problem, 
several polarizable force fields134-135 have been proposed, including the fluctuating point charge 
method,136 induced dipole method (e.g., the AMOEBA force field)27, the Drude oscillator method137 
and the recently developed GFN-FF.138 A massively parallel polarizable force field was recently 
implemented in the Tinker-HP program.139 Variants of these polarizable force fields have been 
developed for special cases, such as ionic liquids (CL&Pol140-141 and OPLS-2009IL142, for a review 
see Ref. 143), biomolecular systems,144 and for use with implicit solvent models.145 Classical or 
polarizable MD can be further simplified by introducing the coarse-grained approximation, in which 
a subgroups of atoms are simulated as single interaction site. The most popular method in this 
regard is the series of Martini force fields.146-147 At the other extreme, to model chemical reactions 
where bond breaking and forming occurs, reactive force fields such as ReaxFF29 have been 
developed. Another approach is using the machine learning techniques to develop force field (e.g., 
ANI-1148) or directly generate the potentials and forces (e.g., deep-potential molecular 
dynamicsMD (DPMD)149).  

The choice of force field can significantly influence the accuracy of calculated solvation free 
energies. The recent works of Hunenberger and co-workers compared the performance of 9 force 
fields from the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families using the experimental 
cross-solvation free energies. After a comprehensive benchmark, the authors found GROMOS-
2016H66 and OPLS-AA force field afforded the best accuracy with the root-mean-square errors 
(RMSEs) as low as 2.9 kJ/mol (see Figure 2).150-151 Procacci and co-workers compared different 
force field types for the solvation free energy and octanol/water partition coefficients of drug-like 
organic molecules, it was found that the GAFF2/SPCE combination gave the best results.152 Again, 
we caution that the conclusion of computational method benchmarking is dependent on the 
computational details, especially for force-field based calculations, in which the variables are many.  
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Figure 2. Calculated root mean square error (RMSE) for solvation free energies obtained with 
different force fields, original results and more details can be found from Table 2 in Ref.150 

 

All of the parameters of a force field can influence the accuracy of explicit solvation models; here 
we highlight a few critically important ones. Atomic charge is a common parameter in all force 
fields, and a focus for including polarization effects. For example, Kelly and Smith developed the 
alchemically polarized charges (APolQ) method which includes the polarization effects via tuning 
the partial charges and the tests gave satisfactory accuracy.153 The choice of partial charge should 
be based on both the force field type and the studied property. For example, for the OPLS-AA force 
field, three schemes (i.e., 1.2*CM5, 1.14*CM1A and 1.14*CM1A-LBCC) for calculating partial 
charges are frequently used. In the work of Jorgensen and co-workers,154 the performance these 
charge schemes were compared (see Table 5). After the localized bond charge corrections (LBCC) 
were introduced, the performance of 1.14*CM1A-LBCC was the best for the predicting hydration 
free energies, but the worst for heats of vaporization and densities, for which 1.2*CM5 was 
recommended instead (see Table 5). This is just one example to show the role of partial charge in 
force field-based calculations. Some partial charge schemes are widely used due to their good 
balance and excellent performance for key chemical properties. For instance, the Merz-Kollman155 
and RESP156 charges are widely used due to their advantages for the electrostatic potential. 

 

Table 5. The mean absolute deviations using different partial charge schemes with the OPLS-AA 
force field.a 

 Hydration Free Energies 
kcal· mol–1 

Heat of Vaporization 
kcal· mol–1 

Densities 
g·cm–3 

1.14*CM1A 1.26 1.40 23.79 

1.14*CM1A-LBCC 0.61 1.40 24.41 

1.2*CM5 1.21 1.20 21.50 
a Original results and more details can be found in Ref.154 

 

Another key parameter in force fields is the atomic polarizability, which is important for polarizable 
force fields. It is well-known that polarization effects are crucial for improving the accuracy of 
solvation free energies.157 For instance, York and co-workers compared a set of QM/MM protocols 
to calculate the hydration free energies with and without the Drude oscillator model, with the 
authors finding that the use of polarizable force field and the choice of QM methods are both 
important.158 Ngooskov and co-workers employed both the Drude polarizable force field and non-
polarizable CHARMM force field to analyze the protein hydration, finding that the polarizable force 
field can produce more accurate hydration free energies and protein-water interactions.159 An 
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extensive list of the atomic polarizabilities for different atom types of organic molecules can be 
found in Table 1 of Ref. 160. For atomic polarizability values of ionic liquids, we recommend the 
results in Table 2 and Table 3 of Schröder and co-workers.161 Table 6 collects the atomic 
polarizability values of key atom types from Ref. 160-161. Like other parameters in force fields, the 
atomic polarizability of atom types not included in Table 6 can be calculated with accurate 
quantum chemical methods or machine learning techniques. Example protocols can respectively 
be found in  the work of Schröder and co-workers,161 and the work of Schröder, MacKerell and co-
workers.162 

 

Table 6. Recommended atomic polarizability values taken from Ref.160-161 

Atom Type Atomic Polarizability  
Å3 

Atom Type of Ionic 
Liquids 

Atomic Polarizability of 
Ionic Liquids 

C in alkane (CH3- or -
CH2- or -CH<), carbonyl 
(aldehyde, amide, acid) 

1.334 H 0.323 

H in alkane (CH3- or -
CH2- or -CH<), hydroxyl 
(water, alcohol), acid 
(HO), amine, amide 
nitrogen, sulfhydryl 

0.496 B 0.578 

O in hydroxyl (water, 
alcohol) and carbonyl 
(aldehyde, amide, acid) 

0.496 C  1.016 for sp3, 1.122 for 
cation sp2, 1.432 for 
anion sp2, 1.587 for SP 

C in aromatic carbon 1.750 N 1.208 for cation, 1.698 
for anion 

H in aromatic (HC) 0.696 O 1.144 

N in amine nitrogen 
(ammonia, amine) and 
amide nitrogen 

1.073 F 0.625 

S in sulfur 2.800 P 1.237 

 

Quantum-Chemical Methods. Solute-solvent ensembles can be directly described using quantum 
chemical methods, e.g., the well-known Born–Oppenheimer MD,163 ab initio MD (AIMD)164 and 
Car–Parrinello MD methods165. The most frequently used method in this regard is DFT, which is 
computationally intensive for long-time dynamics of large systems. This cost can be reduced by 
making approximations, such as using semi-empirical methods (e.g.,  GFN2-XTB-MD22), 
fragmentation methods (e.g., FMO-MD166) or multi-scale methods (e.g., QM/MM-MD)23. One 
advantage of these methods is that the comparison between their accuracy is straightforward and 
less dependent on the choice of parameters compared with force field methods. Nonetheless, as 
these methods are typically more expensive, their description of the interactions may improve but 
this comes with a computational cost that leads to other compromises, such as system size and 
simulation length. For instance, although in principle AIMD methods can explain underlying physics 
for both static and dynamic properties of molecules (e.g., water167-168) because they are based on 
accurate QM methods,are more accurate than force field methods, some studies have shown that 
a classical MD simulation with properly designed force field parameters can outperform QM 
methods, especially it was found that classical MD simulation with a long time scale is better than 
a shorter AIMD simulation.169 In AIMD and its variants, the description of the interactions in the 
systems can be further improved by including the nuclear quantum effects,170 with popular 
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methods including path integral molecular dynamicsMD (PIMD)171 and ring polymer molecular 
dynamicsMD (RPMD).172  

Multi-scale modelling. Multi-scale methods strike a good balance between computational costs 
and accuracy, and are widely used in explicit solvent calculations of solvation free energies. 
However, the choice of multi-scale scheme can affect the results. The most famous method is the 
ONIOM scheme of Morokuma, which can further be separated into three classes (i.e., mechanical 
embedding, electrostatic embedding and polarized embedding) according to which method is used 
to model the mutual polarization between two or more layers.173-174 QM/MM can be carried out 
with classical force fields and polarizable force fields, with an introduction to the latter provided 
by Lipparini, Mennucci, Piquemal and co-workers.175 Besides QM/MM, another multi-scale 
embedding method is QM/QM’ methods which combine high level QM calculations with a low 
level QM’ embedding, for example, wavefunction calculations in DFT environment (WF-in-DFT). 
There are many types of QM/QM’ embedding schemes including the simple ONIOM QM/QM’ 
scheme (where mutual polarization is conducted at QM’ level), projection-based QM/QM’ 
embedding,176 and many other examples.177-178 For a recent reviews of quantum mechanical 
embedding methods, we recommend the work of Schatz, Ratner and co-workers,179 while an 
excellent review of QM/MM methods can be found in Ref. 180. 

Sampling methods. The accuracy of explicit solvent modelling also depends heavily on the sampling 
methods used. One approach is end-point sampling, which as the name suggests samples only the 
end point of a simulation.181-182 Popular end-point methods include the molecular mechanics 
Poisson−BoltzmannPB surface area (MM/PBSA) and the molecular mechanics generalized BornGB 
surface area (MM/GBSA), which are widely used for the calculations of solvation free energies and 
associated host-guest binding affinities and drug design.182-184 However, in some cases, the 
accuracy of end-point sampling is poor, and more sophisticated approaches are necessary. One 
such family of methods are alchemical free energy calculations, which gradually mutate a subset 
of atoms of a system from the initial state to the final state, through a series of intermediate steps. 
Popular methods in this family include free energy perturbation (FEP),185-186 and thermodynamic 
integration (TI)187, and these two methods have been widely used for the calculations of solvation 
free energies. The other philosophy is to apply a bias potential based on collective variables, which 
makes it easier to reach the rare events at high energies. These so-called enhanced sampling 
methods are widely used to study reactions in solution. Popular methods in this family include 
metadynamics188 and adaptive biasing force (ABF) method.189 Although alchemical and enhanced 
sampling methods are often thought to be more accurate than end-point sampling methods, their 
computational costs are high, they can be subject to convergence issues and are generally more 
complex to use, although the development of tools like PLUMED190 are helping to change this. For 
more detailed information on enhanced sampling methods and alchemical methods, the reader is 
referred to several extensive reviews in the literature.191-195 

Alchemical methods and enhanced sampling methods have been widely used for the calculations 
of solvation free energies. To name just a few recent examples, Idrissi and co-workers employed 
metadynamics simulations to calculate the solvation free energy of a model cellobiose molecule in 
different solvent environments including water, ionic liquids, solvent mixtures and supercritical 
CO2.196 Khuttan and co-workers developed a method which allows the solvation free energy to be 
calculated via a single concerted alchemical coupling step instead of the commonly used sequence 
of two distinct coupling steps for Lennard-Jones and electrostatic interactions.197 Kelly and Smith 
developed a method which calculates the alchemical free energy via fixed-charge scheme in which 
the polarization effects are corrected via updating partial charges according to QM/MM 
calculations.198 Procacci developed non-equilibrium alchemical methods for computing free 
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energies of solvation,199 which was further applied to study the ligands of the SARS-CoV-2 main 
protease.200 Recently Korshunova and Carloni employed the alchemical transformations within the 
Hamiltonian adaptive resolution scheme to study ligand binding affinities and hydration free 
energies.201 Hernandez and co-workers developed the adaptive steered molecular dynamicsMD 
(ASMD) which reduces the number of trajectories that must be sampled by discarding those 
trajectories that have deviated far from the equilibrium path in stages.202 Prasetyo and Hofer 
employed QM/MM-MD based TI method to calculate the hydration free energy of carbon dioxide 
in aqueous solution.203  

The accuracy of end-point sampling methods, alchemical and enhanced sampling methods have 
been often compared. A good summary for MMPBSA and MMGBSA methods is provided in Table 
1 of Ref. 181. The conclusions therein provide more details about how the choice of parameters 
(e.g., simulation length, dielectric constant and radii set, etc.) affect the accuracy of end-point 
methods. The MMPBSA.py script developed by Roitberg and co-workers is one frequently used 
tool for efficient calculations of end-state free energies.204 The accuracy of alchemical methods 
can be influenced by many parameters, and we refer the reader to the recent tutorial review of 
Mey, Chodera, Mobley, Shirts and co-workers.205 Of particular note, a large number of windows 
should be used to reach a good accuracy of alchemical methods.206 Effects of the choice of 
software packages on the reproducibility of alchemical calculations have been reported by Loeffler 
and co-workers.207 The recent review of Aitchison, Luo and co-workers highlights the important 
factors for end-point methods and alchemical methods on solvation modelling, binding free 
energies and associated drug discovery.208 Sun and co-workers highlighted the importance of both 
sampling methods and force field types, comparing the performance of end-point methods 
(MM/PBSA and MM/GBSA) and alchemical methods (TI and MBAR) with both the AMBER14SB and 
AMBER19SB force fields.209 Their main results are collected in Figure 3, which highlights the 
advantages of alchemical methods and the effects of force field types. 

 

 

Figure 3. Mean absolute error (MAE, unit in kcal/mol) of free energy differences. Original data and 
more details can be found in Ref.209 

 

3.4 Comparison between Implicit and Explicit Solvent Simulations 
Implicit solvent models and explicit solvent simulations each have their own advantages and 
drawbacks. There are some studies comparing the performance of the two approaches for the 
calculation of solvation free energies. Inevitably, each conclusion is usually different and depends 
on many factors including computational details and the systems under study. For example, Wang, 
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van der Spoel and co-workers121 found that the implicit solvent models are relatively poor 
compared with the explicit solvent simulation. While it is often believed that the accuracy of explicit 
solvent simulations is more accurate and can be used as benchmarking data for the development 
of implicit solvent models,120, 210 sometimes implicit solvent models can give excellent results. For 
example, Ho and co-workers125 compared different implicit solvent models and explicit solvent 
simulation (FEPfree energy perturbation), using the Menschutkin reaction as the test system. The 
authors found the explicit solvent simulation gives a much larger error compared with implicit 
solvent models due to the Lennard-Jones parameters, a finding also reported in the work of Mobley 
and co-workers.211 The error could be addressed via the end-state MM to QM correction. The good 
performance of implicit solvent models in the prediction of octanol–water partition coefficients 
was also observed by Kundi and Ho.123 Lee, Lim and Kim compared implicit and explicit solvent 
simulation of hydration free energy of non-polar solutes and provide insights into the further 
development of implicit solvent models.212 Steinmann and co-workers compared implicit and 
explicit solvation models for solvation free energies at the water/Ru(0001) interface.213 Both 
implicit solvent models and MM-FEP calculations gave good results, but it was concluded that MM-
FEP would be more easily generalized to other solvents. Additionally, polarizing the subsystem 
before running MM-FEP calculations was shown to offer benefits. Gilson, Grimme, Nau and co-
workers compared implicit and explicit solvent simulation using the HYDROPHOBE Challenge, i.e., 
host–guest binding of hydrocarbons to cucurbiturils.214 It was found that QM methods can perform 
very well for predicting the absolute binding free energies, especially for small molecules in water. 
More recent works comparing implicit and explicit solvent simulation can be found in Ref. 215-217.  

3.3. Machine Learning  
Data science has been proposed as the fourth paradigm for scientific discovery,218 and is growing 
in importance in chemistry aided by the curation extensive data sets of chemical properties such 
as MoleculeNet.219 A range of different  machine learning (ML ) and deep learning techniques have 
been employed for solvation modelling. For example, Green and co-workers established an 
extensive data base of solvation free energies based on COSMO-RS calculations and employed 
transfer learning and directed-message passing neural network to improve out-of-sample 
predictions of solvation free energies.40 Similarly, based on the calculational results of implicit 
solvent models and feed-forward neural networks, Alibakhshi and Hartke developed a method 
which can significantly increase the prediction accuracy of solvation free energies.220 Based on gas-
phase MD simulation and MM-PBSA calculations, Rauer and Bereau employed ML to predict 
hydration free energy of a large subset of the chemical space of small organic (CHNO) molecules, 
finding that the atomic-decomposition ansatz can offer significantly added transfer ability.221 

ML techniques have also been employed with QM/MM methods to predict the solvation free 
energies, for example, in the work of Yang and co-workers,222 by using the gradient boosting 
algorithms, the authors address the challenges of insufficient sampling and updating ML models 
on-the-fly. Michel and co-workers employed FEP alchemical free energy calculations with ML 
methods to calculate the hydration free energies, and the results suggest that this method 
outperforms both pure ML predictions and pure FEP calculations. Riniker, Hansen and co-workers 
employed both MD simulation and different fingerprint/ML model combinations to predict the 
self-solvation free energies. The information taken from MD simulation includes intramolecular 
and intermolecular potential energy and its LJ and electrostatic components, radius of gyration 
and solvent-accessible surface area.223 Llinas and co-workers combined ML with a 3D-RISM model 
to predict solvation free energy in multiple solvents, the authors concluded their method offers 
the possibility to predict solvation free energy of any solute in any solvent with root mean squared 
errors less than 1 kcal/mol.224 ML techniques have also been applied to generate force field 
parameters (e.g., partial charge225) by training the model using high-quality QM results, and neural 
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networks have been used to aid the design of collective variables in enhanced sampling 
simulations.226-227 

Without input from any calculations, Lim and Jung proposed the MLSolvA model in which a neural 
network was used to predict pairwise atomic interactions.228 Similarly, Priyakumar and co-workers 
employed graph neural network methods to predict solvation free energies.229 The features used 
in this work, which could guide for future related works, are collected in Table 7. With experimental 
descriptors of solvent and QM descriptors of solute, Adjiman and co-workers employed the 
quantitative structure property relationships (QSPRs) method to predict the solvation free energy 
of 295 solutes in 210 solvents with totally 1777 data points, the obtained accuracy of multivariate 
linear regression (MLR) methods yields a coefficient of determination (R2) of 0.88 and a root mean 
squared error (RMSE) of 0.59 kcal/mol for the training set.230  

 

Table 7. Atom (node) and bond (edge) features used for the graph neural network in Ref.229 

Node Features Description Edge Features Description 

Atom type H, C, N, O, F… Bond type Single, double, triple, 
aromatic 

Implicit valence Binary Bond is in conjugation Binary 

Radical electrons Binary Bond is in ring Binary 

Chirality R, S or none Bond stereochemistry E, Z 

Number of hydrogens Number   

Hybridization  sp, sp2, sp3, sp3d   

Acidic  Binary    

Basic  Binary   

Aromatic  Binary   

Donor  Binary   

Acceptor  Binary    

 

3.4 Computer Hardware 
Besides data science, the development of computer hardware is another engine for the innovation 
in computational chemistry. One example is the development of graphics processing units (GPU). 
One of the most famous contributions in this field is the TeraChem program231 of Martinez and co-
workers, which includes a GPU implementation of a polarizable continuum model.232 Chen and co-
workers implemented the generalized BornGB with molecular volume and solvent accessible 
surface area (GBMV2/SA) implicit solvent model within the CHARMM/OpenMM module. The 
authors found the GPU acceleration offers 60 to 70-fold speedup on a single NVIDIA TITAN X 
(Pascal) graphics card for MD simulations of both folded and unstructured proteins of various 
sizes.233 Huang and Simmerling compared the speed of GBSA solvation calculation on CPUs versus 
GPUs using the Amber program and they found an obvious speedup when GPU is used.234 More 
specific reports of using GPU with the AMBER program can be seen in the work of Walker, York 
and co-workers.235 Qi and Luo tested the robustness and efficiency of Poisson–Boltzmann 
modelling on GPU.236 
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3.5 Ongoing Challenges and Developments 
Although implicit and explicit solvent simulation techniques have achieved great success, some 
challenges still remain, and these are the focus of ongoing method development. The first, is the 
relatively low accuracy of non-electrostatic solvation components, especially for implicit solvent 
models (see, for example, Table 4 above). Recent steps to address this problem include the implicit 
solvation using the superposition approximation (IS-SPA), which was recently been applied to study 
peptides by  McCullagh and co-workers.237 Pettitt and co-workers developed a method in which 
the nonpolar solvation free energy is calculated by TI method using proximal distribution functions 
(pDF)-reconstructed solute–solvent interaction energy, which produced satisfied accuracy.238 
Wenzel and co-workers employed a non-polar term with atom type dependent surface tension 
coefficients which is combined with an accurate generalized BornGB term, the method gives 
satisfactory accuracy when compared with TIP3P water model. 

The second challenge is that errors in solvation free energy calculations of ionic solutes (including 
the proton239) are usually much larger than that of neutral species, as can be seen in a recent 
extensive assessment conducted by Yin and co-workers.240 Moreover, as explained in Section 2, 
the experimental Gibbs free energies of solvation for ions cannot be measured directly, and hence 
there is a lack of accurate training data for developing and benchmarking computational models. 
The structure of solvated ions (e.g., Li+), which is particularly relevant for the design of batteries,241 
is a challenge for solvation models. The cluster model is often used for improving the accuracy of 
solvation free energies of ions, as recently demonstrated by Leonhard and co-workers.242 Bardhan 
and co-workers introduced a nonlinear function of the local electric field and the microscopic 
interface potential (static potential) to the dielectric continuum model, which can be used to 
predict the solvation thermodynamics (free energy, entropy, heat capacities) and transfer free 
energy of ions in both solvent and water-cosolvent mixtures.243 Duignan, Mundy and co-workers 
studied the solvation free energy of single ions using different protocols, the authors found that 
the Ewald summation in MD simulation needs to be corrected, the authors observed a good linear 
relationship between the single ion solvation free energy and charging free energies for cations 
while a small non-linearity for small anions.244 In his review, Budkov summarized the contribution 
of developing statistical field theory of salt solutions of zwitterionic and multi-polar molecules.245 
Rempe and co-workers studied the solution free energies of metal ions employing quasi-chemical 
theory (QCT).246 Slavicek and co-workers calculated the solvation free energy of ions using a 
modified ensemble cluster-continuum approach where the solvation free energy is estimated 
using the vertical quantities of a charged-neutralized system, and an ensemble of structures from 
MD simulation was used.247 Masella and co-workers used the cluster pair approximation to 
calculate ion hydration free energies and water surface potential in water nano drops, with 
polarizable force fields based on an induced point dipole approach.248 Hofer and Hunenberger 
successfully employed QM/MM-MD to study the solvation free energy of proton, sodium and 
potassium ions, where both ions and their first solvation shell are included in QM.249 As shown in 
Table 4, the recently developed uESE solvation model performs particularly well for the solvation 
of ions.250 Keith and co-workers employed static cluster calculations,  and sketch maps and a 
nonlinear dimensionality reduction algorithmthe ML method to predict the solvation free energies 
of ions, and the obtained results for different ions having charges 2+, 1+, 1–, and 2– agree well with 
the experimental reference.251  

The third challenge is the solvation free energy calculations in complex solvent environments 
including the solvent mixtures, electrolyte solution, ionic liquids (IL), deep eutectic solvents (DES) 
and various interfaces (e.g., water-air, oil-water, etc).252 For modelling solvent mixtures with QM 
based implicit solvent models, one method is to change the parameters of implicit solvent models 
(e.g., SMD) according to the fraction of solvent mixtures. For example, Hu and Luo presented a set 
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of parameters for DMSO-methanol binary solvent mixtures.253 COSMO-RS is another well-known 
model for modelling the solvation properties in solvent mixtures.10 Stein, Herbert and Head-
Gordon introduced a linear approximation for weak electrostatic potentials, finite size of the 
mobile electrolyte ions, and a Stern-layer correction to the Poisson–Boltzmann model for implicit 
solvation of electrolyte solutions.254 Luo and co-workers compared the performance of continuum 
solvation modelling with explicit solvent modelling and experimental reference, using the molality-
dependent chemical potentials for sodium chloride (NaCl) electrolyte as the test. The authors 
found that the nonlinear PB method performs better than linear PB model, and inclusion of non-
electrostatic components is essential.255 Abdel-Azeim developed the force field for electrolyte 
solution within the framework of OPLS-AA.256 Steinmann and co-workers developed the SolvHybrid 
method which performs QM/MM calculations of solvation free energy at the metal/water 
interface.257 Force field methods have been developed and used to study the solvation of ions at 
interfaces, with the results comparing favourably to experimental surface tensions and other 
quantities.258-259 ML techniques have also been applied to model hydrated properties and complex 
solvent environments. For example, Laidi and co-workers used neural networks and support vector 
machines to calculate the activity coefficient at infinite dilution of water in ionic liquids.260 Donadio 
and co-workers showed how to use classical MD, AIMD, TDDFT and machine learning methods to 
study the absorption spectra of two phenolic molecules at the air-ice interface.261  

 

4. Applications 

Herein we provide a collectionsnapshot of recent applications of solvation modelling, with a 
particular focus on applications for which the solvent modelling is a key and demanding component 
of the calculation. 

4.1 pKa 

The pKa of an acid is defined by equation (3), where Ka is the equilibrium constant for its 
deprotonation reaction: 

pKa = −log10(𝐾a)  (3) 

The protonation state of a species is related to other aspects of its chemistry including They can 
be used to determine the protonation state of the species, which is further related to other aspects 
of its chemistry including its solubility, chemical reactivity, photochemistry, conformation, binding 
free energies, and biological activity and so forth.262-270 pKa values are strongly affected by the 
solvent environment, and are normally determined experimentally by potentiometric or 
photometric titrations. However, these can be difficult or impossible to measure for reactive 
intermediates, for very strong acids, and for species in low polarity solvents or in complex 
environments such as at interfaces or within the active site of an enzyme. Computational 
predictions of the pKa, particularly in these difficult cases, are thus critically important. Additionally 
At the same time, involving as they do charged species, computation of pKa values represents a 
difficult test of solvation models as charged species are involved., Hand hence pKa values are 
frequently used to benchmark computational solvation models. Computational predictions of pKa 
values have been extensively reviewed elsewhere,105, 271-274 here we highlight some of ongoing 
issues for field, as they relate to solvation energy calculations. As our focus in on solvation 
modelling, the use of machine learning and cheminformatics tools to predict pKa values directly is 
beyond the scope of this work, which is also true for other applications hereafter. 

Implicit Solvation. When using implicit solvation to calculate the pKa values, one of the first 
decisions that needs to be made is whether to study the solution-phase reaction directly or using 

2.2. PUBLICATION 1 33



 
20 

a thermocycle (Figure 4). As explained in Section 3, both approaches offer advantages and 
disadvantages. The direct method has to assume that ideal gas partition functions are valid in 
solution, and one has to compromise between choosing a level of theory appropriate for modelling 
the bond breaking processes versus the parameterization level of the solvent model. In contrast, 
the thermocycle method avoids these problems, but has problems closing the thermocycle when 
the gas- and solution-phase structures are significantly different to one another. Ho investigated 
the relative performance of the direct and thermocycle approach for a test set of pKa values and 
redox potentials, showing that the direct method indeed offered advantages for species such as 
amino acids, where the gas and solution phase species exist as different tautomers, but otherwise 
the approaches offered similar accuracy.275 A similar conclusion was drawn by Haworth et al.62 in 
benchmarking study of pKa values of conformationally flexible amines, though this study also 
highlighted the need for isodesmic schemes and inclusion of explicit solvent molecules in order to 
achieve accurate results. These latter factors are now discussed in turn. 

 

 

Figure 4. Thermodynamic cycles for (a) absolute or (b) relative pKa calculations. In each case, the 
solution phase reaction (shaded blue) can be calculated directly (direct method) or via the 
thermocycle shown (thermocycle method). 

 

Isodesmic schemes (Figure 4b) have been introduced to address some of larger sources of error 
when calculating pKa values, particularly when using continuum models and/or low levels of theory. 
The basic idea is that rather than calculate the absolute acidity of a compound, one calculates the 
relative acidity via a proton exchange reaction with a reference acid, which has with an accurately 
known pKa value in the same solvent. Provided the reference acid is structurally similar to the 
“analyte” one can expect systematic error cancellation, from both the bond breaking calculations 
and the solvation energies. Indeed, this systematic error cancellation can sometimes allow lower-
cost semi-empirical methods to be used with reasonable accuracy.276 Moreover, this approach 
avoids the need to calculate the proton, whose solvation energy can be a large source of error.277 
This is seen in Figure 5, which is based on data taken from an excellent recent review by Malloum 
and co-workers.278 The principle disadvantage of the isodesmic method is that it requires an 
accurately known pKa value for a reference acid in the same solvent. This becomes problematic for 
the prediction of pKa values in low polarity solvents and other environments such as enzyme active 
sites that are difficult to study experimentally, which are precisely the types of conditions for which 
theory is often needed in the first place. Nonetheless, in such cases reference values can be 
obtained through more accurate calculations and/or using empirical schemes for the conversion 
of pKa values between different solvents.279 
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Figure 5. The reported solvation free energies of proton in different solvents. The average result in 
five solvents is respectively -1100, -1099, -1200, -1058 and -1122 kJ/mol. 

 

The inclusion of one or more explicit solvent molecules in a so-called cluster-continuum or micro-
solvation method is often considered to be necessary to improve the accuracy of pKa calculations. 
However, there continue to be mixed results regarding when they are needed, and how they 
should be used. The original implicit-explicit107 and cluster-continuum280 schemes, shown in Figure 
6, were designed for aqueous solution. The former mimics the absolute pKa approach in Figure 4a, 
but with one or more explicit water molecules solvating the conjugate base (A–). This can be 
generalized to other solvents by replacing water with the relevant explicit solvent. The cluster 
continuum scheme in Figure 6b can be loosely thought of as the proton exchange analogue of the 
implicit-explicit model, albeit using water as both the reference acid as well as the explicit solvent. 
While this is less easily generalized to other solvents, there is a more general proton exchange 
version, suitable for any solvent and any reference acid, given by Figure 6c.105 Unsurprisingly, the 
cluster continuum proton exchange method generally gives better results than using either the 
implicit-explicit method or the proton exchange method in isolation.62, 105  
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Figure 6. The original (a) implicit-explicit107 and (b) cluster-continuum280 schemes for prediction of 
aqueous pKa values, and (c) the proton-exchange version of them, generalized to any solvent (Sol) 
and reference acid HRef.105 All three schemes can used  as thermocycles as shown, or can be 
implemented with direct calculation of the solution phase only. 

 

More generally, studies have shown that explicit solvent molecules can significantly improve the 
accuracy of pKa predictions but not always. For instance, it was reported by Pliego and co-workers 
that using a cluster-continuum model can improve pKa predictions by around 6 pKa unit for some 
cases.109 In a similar vein, Ho and Coote105 showed that inclusion of 1 and sometimes 2 explicit 
solvent molecules improved performance of all continuum models tested for a test set of 55 
aqueous pKa values of neutral acids, spanning carbon acids, inorganic acids, carboxylic acids, 
phenols and alcohols. However, when additional solvent molecules were included that the error 
tended to increase, presumably due to double counting of solvent effects from the implicit and 
explicit solvent.105 Studies generally recommend the inclusion of one explicit solvent molecule for 
pKa calculations involving anions, particularly in aqueous solution. 107, 281-282 For instance, Thapa 
and Schlegel found that including one explicit water reduced the error in aqueous pKa values of 
substituted alcohols, phenols and hydroperoxides by approximately 3 pKa units.283 In a related 
study they found that the improvement resulting from explicit solvent molecules in pKa values 
involving neutrals and cations was modest while that in pKa values involving neutrals and anions 
was quite significant,284

  a conclusion also echoed by Xu and Coote for nucleobases.65 Indeed 
studies have shown that the errors in the in the pKa values of the amines and anilines increased 
after adding one solvent molecule to both the neutral and cationic species.285  However, reactions 
involving multiply charged positive species, such as polyprotic amines,62 do tend to benefit from 
explicit solvation. 

Molecular Dynamics.Molecular Dynamics. Force field-based methods are used to study pKa values 
of large systems, including proteins, and/or smaller molecules in large ensembles of explicit 
solvent.274 As protonation / deprotonation are bond-breaking processes, special techniques are 
needed to predict pKa values using molecular mechanics. Warshel was one of the first to tackle this 
problem by reformulating the problem of pKa prediction as the problem of predicting the change 
in solvation energy associated with moving the charge from water to the protein.286 In this way 
one can use microscopic free energy calculations to determine the pKa values of protein residues. 
When there are multiple ionizable residues, one can essentially use brute force to evaluate the 
free energies of various possible protonation states, but this quickly becomes unmanageable for 
complex systems. Constant-pH molecular dynamicsMD (CpHMD) was developed to allow for the 
variation of the protonation states without a priori enumeration of the relevant states.287-288 
Broadly speaking, there are two different approaches, according to whether the protonation states 
are represented by discreet coordinates using Monte-Carlo sampling,289-290 or as an additional 
continuous titration degree of freedom decoupled from the conformational dynamics.291 The 
original formulations used implicit solvent; however, explicit solvent formulations have since been 
developed.292 Numerous other improvements to both approaches have been developed,287-288 
such as improving the description of long-range electrostatics,293 improving the physical 
description of the proton transfer process with empirical valence bond theory,294 improving 
conformational sampling using pH-based replica exchange,292, 295 and the development of GPU 
implementations.296 Various wrapper programs such as PypKa

297 have also been introduced to 
improve their ease of use. 

In benchmarking studies, CpHMDconstant pH molecular dynamics provides a convenient and 
potentially accurate method for studying large and conformationally complex systems, and is 
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particularly useful for determining proton states of polyprotic acids and bases like proteins.298 
Unsurprisingly, the choice of force field has a significant effect on the accuracy of pKa predictions, 
with the chosen force field needing to be capable of modelling the solute, the solvent and their 
interactions. The choice of force field is to some extent system specific; however, as with other 
solvation processes,157 it has been generally noted that polarizable force fields out performed fixed 
charge force fields for pKa caluclations.299-300 Moreover, because proton transfer is a bond breaking 
process, AIMD methods are often invoked, particularly for difficult systems such as transition-metal 
complexes,301 or water autoionization.302 Indeed, in this latter case, the incorporation of  nuclear 
quantum effects via ab initio path integral molecular dynamics PIMD is also necessary. For example 
Thomsen and Shiga showed that neglect of tunnelling effects can lead to errors of up to 4.5 ± 0.9 
pKa units in the case of liquid water.303 For larger systems, the cost of AIMD can be reduced using 
semi-empirical methods such as DFTB,304 and its accuracy can in turn be improved with data 
augmented approaches.305 

 

4.2 Photochemistry 
Photochemical processes are central to a wide range of chemical, biological and engineering 
applications including photocatalysis, photoligation, photovoltaics, photosynthesis, phytochrome 
proteins, and photodynamic therapy.306 They can be more complex to model than ground state 
reactions, both with respect to the electronic structures of solute itself and environment response 
to the electronic excitation of solute. Photochemical methods and their applications have been 
reviewed elsewhere (see for example Refs 307 and 308); in this section, we focus on the specific 
problem of modelling solvent effects on these processes. Solvent effects on a wide range types of 
spectra (from electronic to vibrational spectra) were recently reviewed by Chergui.309 The solvent 
can influence photochemistry in a variety of ways, from helping to stabilize polar excited states, 310 
to altering energy levels through hydrogen bonding with lone pairs,311-312 to displacing ligands and 
coordinating with photocatalysts,313-314 participating in and catalysing photochemical reactions, 315-

319 and even in some cases promoting intersystem crossing via the heavy atom effect.320 The 
solvent environment can influence Raman optical activity (ROA), IR, and vibrational circular 
dichroism (VCD) spectra of (R)and (S)-pantolactone.321 , linear and non-linear response properties 
in aqueous solution,322 two-photon absorption cross sections,  and the well-known vibrational 
Stark effects.323 

Non-equilibrium Solvation. Compared with the ground-state, the treatment of solvent effects in 
vertical photochemical processes is complicated by non-equilibrium solvation and solvent 
reorganization energy. These result from the different time scales for the response of electrons 
and nuclei to the change of the electronic distribution of solute: the electronic distribution of 
solvent responds to thise change immediately (fast polarization) while the nuclei response is 
relatively slow (slow polarization). This is illustrated in Figure 7 where state 2 and state 4 are non-
equilibrium states, and 1→2 and 3→4 correspond respectively to vertical excitation and emission 
process. Solvent reorganization energy is defined as the energy change that results from slow 
polarization (i.e., from state 2 to state 3 in Figure 7), while the non-equilibrium solvation energy is 
the solvation energy of the non-equilibrium species (states 2 and 4 in Figure 7). The non-
equilibrium solvation free energy and solvent reorganisation energy were originally defined within 
the general framework of Marcus theory of electron transfer324; for reviews relating specifically to 
photochemistry we refer the reader to the work of Marenich and co-workers325 and Herbert and 
co-workers.326  
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Figure 7. A simple scheme for non-equilibrium excited state and ground state 

 

Two main schemes have been proposed to calculate the non-equilibrium solvation free energy: 
linear-response and state-specific. The former calculates excited-state energies based on the 
transition density between ground and excited states, the latter is based on the excited-state 
electron density and thus provides a more complete (and accurate) account of the polarization 
between solute and solvent in excited states.327-328 Yin and co-workers used the state-specific 
polarizable force field based two-points method to calculate the total reorganization energy of 
vertical charge transfer (CT)  reactions in oligoacene crystals.329 Li and co-workers calculated the 
solvation free energy of non-equilibrium states using an auxiliary equilibrium state, the associated 
reorganization energy and vertical excitation energies obtained with the new non-equilibrium 
solvation model agree well with the experimental results.330-334 Non-equilibrium solvation effects 
have been shown to be important for accurately modelling vertical ionization energies,335 the 
dynamics of photo-dissociation in liquids,336 and intramolecular electron transfer, where it has 
been shown that reorganization of the first solvation shell is coupled with the back electron 
transfer.337 The important role of solvent reorganization of ionic liquids in electronic spectra and 
photodissociation has also been highlighted.338  

Implicit Solvent. Photochemical properties in solution are most often studied by combining time-
dependent quantum chemical methods with implicit solvent models. The thermodynamic cycle 
method is rarely used for photochemical properties such as vertical excitation energies. Although 
most works focus on the influence of method choice for excited-state electronic structure 
calculations, the choice of implicit solvent models and their parameters can also influence the 
calculated electronic spectra. For example, Mu, Wang and co-workers found that the parameters 
of SMD are in good correlation with electronic excitation index. 339 The size of solute cavity can 
dramatically affect the obtained excitation energies, for example, Provorse Long and Isborn found 
the universal force field (UFF) radii need to be scaled by a factor of 1.5 to give reasonable excitation 
energies for linear response PCM approach with explicit solvent molecules, while for the state-
specific one, an even larger PCM cavity is expected.99 It is also well-known that the spectral shift in 
solution can be correlated with solvent properties (e.g., ET(30) and others) through the Lippert-
Mataga equation and multiple linear regression analysis.340  

Explicit Solvent. Like other chemical processes, explicit solute-solvent interactions are often 
important in photochemical processes, and explicit solvent molecules need to be included in the 
excited state calculations. For example, the work of Caricato suggests that a micro-solvation 
correction can further improve the accuracy of EOM-CCSD-PCM results by capturing the missing 
hydrogen-bond interactions in PCM,341 while micro-solvation is crucial to providing an accurate 
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description of excited-state intramolecular proton transfer,342 solvent dipolarity and polarizability 
in solvatochromic sensors,343 and even Raman spectroscopy.344 A standard way to simulate the 
electronic spectra in explicit solvent environments is to perform static TDDFT calculations on 
snapshots from explicit solvent MD simulations. For example, Petrone, Rega and co-workers 
performed both force-field and AIMDab initio MD simulation for chromophores in water and 
methanol. Several configurations were taken from the trajectories and subjected to TD-DFT 
calculations in order to simulate the absorption spectra.345 Erhart, Moth-Poulsen and co-workers 
employed MD simulation and TD-DFT calculations to study the solvent effects on the 
photochemical properties and reactions of norbornadiene-quadricyclane systems, and the authors 
found that the choice of solvent can influence both the energy storage and quantum yield.346 The 
method used to generate the solvent-solute clusters is also important. For instance, Nogueira, 
Gonzalez and co-workers compared classical MM-MD, QM/MM-MD sampling, Wigner quantum 
sampling and a hybrid protocol, concluding that a QM description of the chromophore during the 
MD simulation is needed.347 Sampling is also important. For instance, Mirón and Lebrero employed 
different QM/MM Linear Response TD-DFT schemes to study the excited state properties of indole 
in complex environments, concluding that the use of different starting structures for MD 
simulation is more important than the length of a single MD trajectory.348 A more specific review 
about modelling excited states in explicit solvent was recently provided by Zuehlsdorff and 
Isborn,349 while a review of QM/MM methods for photochemistry can be found in the work of 
Boulanger and Harvey.350 

When modelling photochemistry in explicit solvent environments, polarization effects are 
particularly important to reach fully consistent mutual polarization between solvent and excited-
state solute. For example, Lipparini, Mennucci, Li and co-workers combined the real-time TDDFT 
with the polarizable mixed quantum mechanical and molecular mechanical (QM/MMPol) 
method.351 Nogueira, Gonzalez and co-workers compared the solvent effects in the calculation of 
excited states with different methods including QM/PCM and QM/MM with different embedding 
techniques. The authors concluded QM/PCM performs the best while polarized embedding is 
necessary for QM/MM.347 Technically, QM/QM’ methods can produce better treatment of the 
mutual polarization between QM (solute) and QM’ (solvent) region. For example, Bennie, Curchod, 
Manby and Glowacki employed projector-based EOM-CCSD/DFT embedding to study the 
excitation energy of acrolein solvated in water, concluding that the EOM-CCSD/DFT method can 
reproduce the accuracy of full EOM-CCSD calculation, an error of less than 0.01 eV for excitation 
energies.352 Goodpaster and co-workers performed TD-DFT-in-DFT and EOM-CCSD-in-DFT excited 
state calculations using projection-based quantum embedding methodologies.353 Caricato and co-
workers developed the QM/QM’ method to simulate UV/Vis absorption spectra including the 
polarization effects with embedded charges.354  Crespo-Otero and co-workers proposed the 
ONIOM(QM/QM’) method based on the Ewald method, which was successfully applied to study 
photochemistry in molecular crystals.355  

 

4.3 Redox Potentials 
Redox reactions are those that involve actual or formal electron transfer from one reagent to 
another, resulting in oxidation of the electron donor and reduction of the electron acceptor. Redox 
processes are crucial in many chemical and biochemical processes, as well as photoelectric devices 
and energy storage.356-357 The reduction potential E°(O|R)  is a direct measure of the 
thermodynamic feasibility of an oxidation–reduction half-reaction, and is given by equation (4) 

E°(O|R) = −
∆G

nF
− E°REF  (4) 
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where G is the Gibbs free energy change of half reaction (5), n is the number of electrons 
transferred in that half reaction and E°REF is the potential of the reference electrode under the 
same conditions. 

Osoln + n e–
gas → Rsoln    (5) 

Like pKa values, redox reactions typically involve at least one charged species and are thus heavily 
influenced by solvent effects. These in turn are further complicated by the presence of electrolyte 
in standard electrochemical experiments. There is also the added complication of how to treat the 
electron, and how to choose an appropriate and accurate value for the reference electrode (which 
in turn should treat the electron in an identical manner so it cancels from the cell potential). One 
also needs to be careful when comparing computed redox potentials, which correspond to 
conditional formal potentials, to experimental half-wave potentials from cyclic voltammetry, 
particularly for irreversible electrochemical processes. More methodological detail can found in 
the general reviews of Coote, Cramer, Truhlar and co-workers,358-359 while Johansson and co-
workers have reviewed the modelling and simulations of different types of electrolyte solution in 
the sodium-ion battery,360 Schwarz and Sundararaman have reviewed first-principle methods for 
electrochemical interfaces,361 and Borodin and co-workers have reviewed the modelling of redox 
potentials in electrolytes and solid-liquid interface structures.362 

Implicit Solvent. For the calculations of redox potentials in water and commonly used organic 
solvents, the most widely used method is still QM calculations combined with implicit solvent 
simulation, using either thermodynamic cycle method or direct method. While the choice of 
quantum-chemical method is important also critical (and beyond the scope of this review), the 
choice of implicit solvation models is also critical. Depending on the particular solute-solvent 
combination, different continuum models give superior performance, presumably due to their 
similarity or otherwise with the original training data for the solvent model. For example, Guerard 
and Arey compared the performance of SM8, SMD, C-PCM, IEF-PCM and COSMO-RS for the 
oxidation potential of a wide range of organic compounds in both water and acetonitrile (see Figure 
8A). Their results suggest that SMD is the best choice overall among all tested solvation models. 
However, in a different study Marenich et al.359 found that CPCM-UAKS was superior for a test set 
of nitroxide radicals, SMD was superior for a test set of anilines, and COSMO-RS was superior for a 
test set of phenols, and gave superior overall performance for the systems studied (see Figure 8B). 
Clearly benchmarking is necessary, and method choice should be on a case-by-case basis. What is 
worth noting from both of these studies, which are typical of the field as a whole, is that average 
accuracy achievable by the best implicit solvation methods is usually in the range of 0.1-0.2 V, 
though this can usually be improved to within “chemical accuracy” (ca. 0.05V) using isodesmic 
approaches if experimental data is available for a structurally similar reference species (see for 
example Refs. 363-365 in which this is done for the oxidation of various stable free radicals). Because 
geometries tend to change less on oxidation or reduction compared with 
protonation/deprotonation, comparative studies in which the same level of theory is used with 
thermocycles versus the direct method find negligible difference in accuracy for redox potentials.63 
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Figure 8. (A) Mean absolute error for oxidation potentials (V) of a test set of 22 organic compounds 
in water and 19 in acetonitrile (including phenols, methoxybenzenes, anilines, indoles, aliphatic 
amines and organosulfur compounds), as calculated with different solvation models in water and 
acetonitrile. Original data and more details can be found in Table 4 of Ref.366; (B) Mean absolute 
error the containing aqueous reduction potentials (V) of 30 phenols and aqueous oxidation 
potentials (V) of 15 anilines and 7 nitroxide radicals, calculated by combining high-level G3MP2-
CC(+) gas phase calculations with a range of different solvation models. Original data and more 
details can be found in Ref. 359. 

 

Explicit Solvent. When not using isodesmic methods, explicit solute-solvent interactions are usually 
important for accurate prediction of redox potentials, especially for bare ions. For instance, 
Fernades and co-workers studied the Fe3+/Fe2+ reduction potential as a function of the number of 
of explicit water molecules.367 What was interesting in this case is that the inclusion of explicit 
solvent molecules not only improves the overall accuracy, but also reduces the error in the 
electronic structure method, presumably by stabilizing the ion (Figure 9). Explicit solvent molecules 
are crucial when modelling redox reactions in complex environments like solid electrolytes368-372 
or when modelling complex species like polyoxometalates.373 Moreover, numerous studies have 
shown that electrolytes and/or ionic liquids can form ion pairs with oxidised or reduced species, 
dramatically shifting their redox potentials.374-380 In such cases, studying the relevant ion pair in a 
continuum model generally gives  good results. It should also be noted that the solvent and/or 
electrolyte can sometimes participate in or compete with electrochemical reactions (e.g. solvents 
such as acetonitrile, DMSO and THF can act as a nucleophile in SN2 reactions of oxidised 
alkoxyamines381) and clearly in those cases needs to be included explicitly.  

Depending on the size of the system and the complexity of the solvent environment, the two 
principle approaches to modelling explicit solvation in redox potentials is either through a cluster-
continuum approach or using multi-scale methods., Iin the first approach which a small number of 
explicit solvent or electrolyte molecules are included in the quantum-chemical calculation that is 
performed in an implicit solvent environment (for examples of this approach see Refs 374, 379)., or 
using multi-scaleFor the second method, QM/MM or QM/MM-MD methods are often used, which 
approaches analogous to those introduced in Section 3.2.362 In the latter case, the obtained 
accuracy is affected by many factors including the simulation time, the number of snapshots, the 
size of QM region and polarization effects, which have been shown to be particularly crucial.382 A 
recent discussion of multi-scale methods for redox potentials can be found  in the work of Sterling 
and Bjornsson.383 In their study, the authors employed GFN-XTB/MM-MD to conduct sampling for 
the end states of a redox process, and then a multi-layer scheme was designed to calculate the 
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energies so as to include both the quantum nature of solute and the polarization effects from the 
solvent environment. A similar protocol was also used by Wang and Voorhis.384 Because of the low 
computational costs and the excellent versatility of GFN-XTB methods, MD simulations using 
straight GFN-XTB without MM or running GFN-XTB energy calculations for redox potential 
calculations can also be found in recent years.385-386 The advantage of the GFN2-XTB method 
against other semi-empirical methods for redox potential calculations was highlighted in the recent 
benchmarking study of Hansen, Grimme and others.387   

 

 

Figure 9. The difference of CCSD(T)/CBS and MP2/CBS results of ∆EFe3+/Fe2+ using different numbers 
of water molecules. Original data and more details can be found in Table 5 of Ref.367 

 

4.5 Other Chemical Reactions 
The nature of the solvent affects the kinetics and thermodynamics of most chemical reactions.388-

389 To list just a few examples, solvent effects are critical in catalytic processes for biomass 
upgrading,390-391 reactions involving ion-pair intermediates,392-393 in hydrolysis reactions,394 in 
governing the competition between nucleophilic substitution and elimination processes,395-396 and 
cycloadditions.397-399 Depending on the systems, a range of different methods are used to model 
solvation effects. 

Implicit Solvent. As bond-breaking processes, most chemical reactions are studied with QM 
methods at high levels of theory, and the most cost-effective method for including the solvent 
environment in such calculations is with continuum models. Numerous benchmarking studies have 
been performed. To quote just one example, Pliego and co-workers400 studied a series of SN2 and 
SNAr reactions, showing that the accuracy of the free energy barriers depended on both the DFT 
functional and solvation model, with the best combination giving results to within 2 kcal mol–1 of 
experiment (Figure 10). In general, if the reactions involve only neutral species and explicit solute-
solvent interactions such as hydrogen bonding are not significant, implicit solvent models perform 
well, with the best choice of method being system-dependent.  
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Figure 10. RMSE of the free energy barriers of 9 SN2 and SNAr reactions obtained with different DFT 
functional (A) and implicit solvation models (B). Original data and more details can be found in 
Table 1 and Table 2 from Ref. 400. 

 

Micro-solvation. Inclusion of explicit solvent molecules is often necessary for accurate study of 
reaction mechanisms and catalysis. They are obviously essential if the solvent is itself a reagent or 
catalyst (as is the case for acetone and water in the proline-catalysed aldol reaction401-402), but 
inclusion of additional solvent molecules is also critical when hydrogen bonding and other explicit 
interactions are important in stabilizing reagents, transition states and/or intermediates. For 
example, the inclusion of two additional explicit water molecules (in addition to the HO–/H2O 
reagent itself), together with SMD implicit solvation, was necessary to reproduce experimental 
half-lives for the base-catalysed hydrolysis of benzamidine.394 In this system, the additional waters 
form a hydrogen-bonded network are added with the reagent. The importance of including 
additional explicit solvent molecules is true more generally for water-mediated reactions.403-404 The 
importance of explicit solvation has also been recently highlighted for many other cases, including 
the ring-opening reactions of donor-acceptor cyclopropanes,405 hydrosilylation of α-hydroxy 
aziridines,406 proton transfer reactions,407-409 for the methanol mediated Morita-Baylis-Hillman 
reaction,410 the zwitterionization of glycine in water,411 and when reactions are carried out in chiral 
media.412 The number and location of these molecules becomes an important variable. In their 
study of the methanol mediated Morita-Baylis-Hillman reaction, Sure and co-workers authors 
proposed a protocol to judge whether and where to include explicit solvent molecules based on 
the computed screening charge density.410 In their study of the zwitterionization of glycine, Marx 
and co-workers conducted AIMD simulations to optimize solute-solvent clusters, compared results 
obtained with different numbers of water molecules to find convergence.411 In their study of 
benzamidine hydrolysis, Coote, White and co-workers rationally designed hydrogen bonded 
networks and then subjected them to systematic conformational searching in order to find the 
most stable structures, with the resulting reaction rates then evaluated against experiment.394  

Explicit Solvent. For some reactions, micro-solvation is not sufficient, and fully explicit treatment 
of the solvent environment is necessary. For example, Bulo and co-workers studied nucleophilic 
addition to carbonyls and found that micro-solvation cannot fully reproduce the activation barrier 
obtained with conventional QM/MM simulation.413 Fully explicit solvent treatments are 
particularly important for complex solvents, such as ionic liquids,414-415 mixed-solvent 
environments416 and deep eutectic solvents,417 as well heterogenous systems,418-420 and reactions 
at various types of interfaces.421-426 They are also important if the solvent has been macroscopically 
ordered through, for example, exposure to electric fields or fluid mechanics, as this ordering 
generates internal electric fields  that can catalyse reactions.427 When modelling chemical reactions 
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in fully explicit environments, some of form of molecular dynamicsMDMD needs to be performed. 
At the same time, the chemical reaction itself needs to be treated with a sufficient electronic 
structure method to capture the bond breaking processes involved. As a result, the methods 
typically used include AIMD, often performed with lower-cost methods such as DFTB, or multiscale 
QM/MM methods, though for some applications, reactive force fields have also been developed. 
As with other solvation applications, the importance of using polarizable force fields is frequently 
highlighted (see, for example, Ref. 428). The importance of solvation dynamics and non-equilibrium 
solvation is also frequently highlighted (see for example Refs. 393, 395-396, 429-430).   

 

5. Conclusions 

As most practical chemistry occurs in solution, modelling and understanding solvents effects is a 
crucial part of modern computational chemistry. A wide range of both implicit and explicit solvent 
methods have been employed to study solvation, from ab initio to force field methods, including 
both static calculations and dynamic simulations. Machine learning either as a means to 
parameterising computational methods, or as an end itself, is also increasingly making an impact. 
For modelling chemical reactions in standard solutions under standard conditions, implicit solvent 
models continue to provide the simplest and most cost-effective method for treating the solvent 
without sacrificing the accuracy of the underlying electronic structure calculations. Moreover, as 
outlined in Section 3.5, ongoing improvements to the treatment of the non-electrostatic solvation 
components of solvation, to the treatment of ions, and to the treatment of temperature and 
pressure effects are further expanding the scope and accuracy of these models. Where explicit 
solute-solvent interactions are important, micro-solvation techniques, in which a small number of 
explicit solvents are used in conjunction with a continuum solvent model, have been extremely 
effective. These add to the cost of calculations, and deciding how many explicit solvent molecules 
to include and where to place them is not always straightforward. However, as outlined throughout 
this review, various strategies have been developed for addressing this problem, ranging from 
chemical intuition to the use of brute-force ab initio molecular dynamicsAIMD, and when used 
carefully micro-solvation methods usually provide the gold standard for modelling most solution-
phase chemical processes. 

Molecular dynamicsMD simulations of large ensembles of solvent molecules are necessary for 
many applications, but particularly heterogeneous media, reactions at interfaces, reactions in 
complex solvents like ionic liquids or deep eutectic solvents, or reactions under non-equilibrium 
conditions where, for example, external forces (such as electric fields) are used to impose a 
macroscopic structure on the solvent environment. They are also important when non-equilibrium 
solvation contributes to chemical reactivity and selectivity. For such simulations, the key ongoing 
challenges revolve around accuracy of the force-field parameters and the sampling method, with 
enhanced sampling being critical. When classical molecular dynamicsMD is used, multi-scale 
QM/MM methods are needed so that the bond breaking processes are treated an appropriate QM 
level of theory, while the MM region is treated with an appropriate polarisable force field. Such 
calculations can be both difficult to set up and expensive to run, and alternative approaches based 
on reactive force fields or ab initio molecular dynamicsAIMD are desirable. In the latter case, the 
largest challenge is still the limitations of time length and system size due to the high computational 
costs. The recent success of employing deep potential in AIMD offers a way forward. The further 
development of accurate QM/QM’ embedding schemes, and better methods for describing the 
mutual polarization between solute and solvent, remains important, especially for non-equilibrium 
states and excited states. Equally important will be the development of tools to automatize the 
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parameter generation, modelling, sampling and analysis of complex systems in a robust “black box” 
manner. Developments such as these will not only promote the better understanding of 
fundamental chemistry, but improve our ability to predict behaviour in real-world applications, 
such as energy storage or in-silico drug design. 
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2.3 Summary

In this chapter, different computational models for solvation modelling and their applica-
tions in studying pKa, redox potential, photochemical properties, reaction mechanims and
catalysis were reviewed. This chapter introduced an overview of the extensive databases
for solvation free energies. We highlighted the recommended parameters for both implicit
and explicit solvent simulations with theoretical methods at different scales. These pa-
rameters include the choice of theoretical levels, electrostatic scaling factors, atomic radii
in both implicit and explicit solvent simulations, partial charge schemes and atomic po-
larizability values in force field methods. The conclusions from benchmark works in this
chapter provides insights into the design of future computational protocols. A part of the
important works published recently in related fields were introduced. Finally an outlook
was given for future works in the development and applications of solvation modelling
techniques from our perspective. The computational theory in this chapter underpins the
approach undertaken in the subsequent chapters.
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Chapter 3

Improving the Accuracy of Implicit
Solvent Models

3.1 Introduction

Continuum solvent models are widely used in the accurate prediction of solution-phase
properties and reactions. While gas-phase single-point energies and free energies can be
treated with sophisticated methods, solvation free energies, especially those of ions are
one of the largest error sources in computational chemistry today.[1, 2]

Currently most implicit solvent models are based on the ASC scheme[3] and the SCRF
method.[4] With these methods the solute is placed in a vacuum cavity, which is immersed
in the polarizable continuum medium where the dielectric constant of solvent and other
parameters are used to model the bulk properties of the solvent environment. When the
electrostatic potential generated by the solute charge polarizes the solvent medium, the
polarized solvent medium can further polarize the solute in an iterative process until a
convergence is reached. The solute-solvent interaction is added to the gas-phase Hamil-
tonian of the solute. One key factor of these implicit solvent models is the construction
of the solute cavity. A simple scheme of a solute cavity construction is illustrated in
Figure 3.1.

In Figure 3.1, we use a water molecule as the example. The three spheres in red
represent the vdW spheres of each atom. The surface of overlapped vdW spheres of the
water molecule is vdW surface. The two spheres in purple are the solvent probe molecules,
which moves along the vdW surface of the molecule and generates two types of surface,
one is SES which is also called the Connolly surface. The other is SAS, and the SAS area,
i.e., SASA is frequently used in MD simulations[5]. More details about these concepts
can be found in the work of Quan and Stamm.[6, 7] It needs to be noted that, for some
environments, for example, solvent mixtures, ionic liquids and large solvent molecules,
the size of solvent probe is often less well-defined and explicit solute-solvent interactions
are often important. Thus, implicit solvent models are often not good enough, and a few
explicit solvent molecules near solute molecules should be modelled explicitly instead of
using fully continuum model. An example for modelling reactions in ionic liquids using a
few explicit ion pairs and implicit solvent model can be found in the work of Wylie and
co-workers.[8]

The size of solute cavity dramatically influences the computed solvation free energy.[9]
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Figure 3.1: The scheme of cavity construction in implicit solvent models.

It is mainly affected by three factors: atomic radii, cavity surface type and ESF value.
Atomic radii are key parameters for continuum solvent models, with different sets available
according to the solvation models and software packages. Generally speaking, the cavity
size should be set to exclude the solvent molecules and include the largest part of solute
charge distribution.[10] Although some simple models, e.g., sphere cavities have been
designed,[11] they are far from real shape of most solute molecules. This is the reason
why atomic radii interlocked superposition of atomic spheres was introduced to reproduce
solute shape and exclude solvent molecules. Atomic radii can be evaluated by different
ways. For example, Bondi introduced a set of atomic radii based hard volume values
of molecules,[12] these atomic radii were confirmed by the data from the Cambridge
Structural Database.[10] Some atomic radii, for example, the UFF atomic radii were
taken from corresponding force fields.[13] It was reported by Rahm and co-workers that
the decay of electron density are different for neutral and charged species, so for the
same element, cationic radii are usually smaller than neutral radii while anionic radii are
usually larger.[14] Besides giving different radii for a element with different net charges,
ESF values are often used to scale all atomic radii of a charged molecule with an uniform
value. An application of this strategy can be found in Ref.[15] Besides the dependence
of atomic radii on net charge, atomic radii are also influenced by the polarity of solvent.
Some atomic radii, e.g., those used in SMD,[16] are solvent-dependent, while others (e.g.,
UAHF radii[17]) are not. UAHF radii were designed by Barone and co-workers in 1997.
It is a type of united atomic radii for which atomic radii of hydrogen atom are not
explicitly defined while they are emerged to the radii of heavy atoms that hydrogen
atoms are attached to.[17] All UAHF atomic radii were obtained with HF calculations
using reference data in water. Another set of atomic radii, i.e., UAKS radii were later
developed in a similar way while using DFT instead of HF calculations. ESF value, again,
is introduced to scale atomic radii to make them more transferable in different solvents, so
ESF values themselves are usually solvent-dependent and charge-dependent, the default
ESF value for both UAHF and UAKS radii is 1.2. These parameters are often optimized
to reproduce accurate solvation free energies or/and solution-phase properties (e.g., pKa

and redox potential) with implicit solvent models.
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When a solute is placed in the vacuum cavity, its position-dependent electrostatic
potential ϕ(r) can be determined. The Green function inside the cavity is Gi(r). The
source electron density ρ(r), total electrostatic potential Φ(r) and the position-dependent
permittivity ϵ(r) can be connected by the Poisson equation:

∇ · [ϵ(r)∇Φ(r)] = −4πρ(r) (3.1)

where Φ(r) is the sum of solute potential ϕm(r) and the apparent potential ϕs(r). With
the boundary conditions, the equation can be solved by many strategies, and further
details can be found in Ref.[10, 18]. For the case of the ASC method, the polarized charge
σ(s) is assumed to be located at the cavity surface, and the surface is separated into
different segments using different algorithms (e.g., GEPOL.[19]). The polarized charge in
each part is usually assumed as either a constant or solute electron density (i.e., SMD).
The interaction between solute and solvent can be expressed as the interaction between
solute charge and polarized surface charge. ϕs(r) can be computed as:

ϕs(r) =
∫ σ(s)

|r − s|
ds (3.2)

Within this framework, the solution-phase free energy of species A, GA,sol can be expressed
as:

GA,sol = GA,gas +∆GA,solv + 1.89 (3.3)

where GA,gas is the gas-phase free energy and ∆GA,solv is the solvation free energy, and 1.89
kcal/mol is the correction for the change of standard states from gas-phase to solution-
phase at room temperature and pressure. The correct use of continuum solvent models
has been frequently discussed.[20–22] Many factors including the theoretical levels and
the cavity construction schemes can dramatically affect the final accuracy of ∆GA,solv and
related chemical properties, for example, see a discussion about redox potential.[23]

Although implicit solvent models have achieved great success in the past decades,
efforts to further improve the accuracy of implicit solvent models are still meaningful
because the accuracy of solvation modelling directly determines the computed properties
and energies. In this thesis, we mainly focus on two types of implicit solvent models:
SMD[16] and PCM (specifically CPCM and IEFPCM with united atom schemes)[10].
Here we choose these two solvation models as they are the most used PCM variants in
the community. Details about the development of SMD can be found in Ref.[16] and the
main parts can be illustrated by Figure 3.2. Essentially, SMD solvation free energy can
be separated into two parts: electrostatic components and non-electrostatic components.
The latter is also called CDS term, i.e., the contributions from cavitation, dispersion and
repulsion. For the electrostatic component, SMD was developed based on the framework
of IEFPCM using the electron density of the solute with the solvent-dependent atomic
radii (atomic Coulomb radii). Non-electrostatic components were calculated using a set
of parameters including atomic surface tension coefficient. These parameters, along with
the atomic Coulomb radii and the theoretical levels used for solvation free energies were
systematically optimized using the data in the MNSOL-v2012 database.[24]

Since reported in 2009, SMD has gained popularity and is widely used in the commu-
nity of quantum chemistry. Different attempts have been made to improve the accuracy in
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SMD solvation free energy

Electrostatic component: 
IEFPCM 

(solute electron density)

Non-Electrostatic component: 
CDS

Atomic Coulomb radii 
(unscaled) 

A set of parameters including 
atomic surface tension 

coefficient, etc.

Parameterization

MNSol data base

Theoretical level

Figure 3.2: Main parts in the development of SMD.

the predictions of SMD solvation free energies. The first method is tuning the theoretical
level (usually the combinations of different DFT functionals and basis sets) used for solva-
tion free energies.[20, 25] The second method is to include a few explicit solvent molecules
near the solute molecule, which is also called cluster model or mixed discrete–continuum
solvation model.[26–28] The third method is to scale the solute cavity, i.e., to change the
atomic radii, cavity surface type, or/and the ESF.[29, 30]

Although these methods can improve the accuracy of SMD for some cases, some open
questions remain unsolved:

(1) What is the best theoretical level for SMD solvation free energy? Many works
including our previous work[20] propose using M052X/6-31G(d), while a closer look at
the results from Ref.[16] suggests M052X/6-31G(d) is not the best choice for ions, which
can introduce errors when this theoretical level is applied to model chemical properties
where ions are involved, e.g., pKa and redox potential. For cations containing only C, H,
N, O atoms, using M052X/6-31+G(d,p) can produce smaller mean unsigned error than
M052X/6-31G(d) by 0.5 kcal/mol. While for anions, surprisingly using HF/6-31G(d) is
more accurate than M052X/6-31G(d) by over 1 kcal/mol.

(2) Whether using explicit solvent molecules is always helpful? Although it’s widely
recognized that introducing explicit solute-solvent interactions can be helpful, the fact
that SMD was developed using explicit solvent molecules for only few species raises the
concern that whether the explicit interactions have been, at least partially, included al-
ready implicitly in the parameterization of SMD. Thus, double counting could possibly
introduce additional errors.

(3) Is cavity scaling really necessary? Several studies have reported the use of cavity
scaling to improve the results of SMD. In a study by Schlegel and Thapa, the cavity size
was only slightly changed from its default settings (i.e., ESF = 1).[29] While in a study
by Smith and co-workers, the cavity was re-constructed using a different cavity surface
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type and direct method (instead of the thermodynamic cycle method), and the ESF value
used significantly deviated from the default value of SMD[30]. This raises the question
that if a suitable theoretical level is used and the explicit solvent molecules are properly
included, whether cavity scaling is still useful? A good example to highlight this is that
different optimized ESF values were obtained when different theoretical levels were used
for gas-phase free energies in Ref.[29] Furthermore, the generality of these cavity scaling
methods is also a concern.

To answer these questions, in Section 3.2, we conducted pKa calculations on a wide
range of solute molecules in water with the thermodynamic cycle method described in
Figure. 3.3.

Figure 3.3: Thermodynamic cycle method for pKa calculations in solution phase.

SMD was developed on the basis of IEFPCM, so it can be regarded as one specific
case of the PCM model. More generally, there are many variants of PCM, as shown in
Figure. 3.4.

PCM

Solvation Model:
 

IEFPCM, CPCM, DPCM,
...

Cavity Type: 

vdW, SES, SAS, ...

Radii Type: 

UFF, UAKS, UAHF, ...

Electrostatic Scaling
Factor: 

any value

Figure 3.4: Factors for different variants of the polarizable continuum model.

In Section 3.3, we specifically investigate the CPCM and IEFPCM solvation model
with UAHF and UAKS radii. Among all PCM methods, CPCM and IEFPCM are the
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two most used, thus improving their accuracy is highly important.UAHF and UAKS radii
were developed by Barone, Cossi and Tomasi in 1997.[17] The advantage of these two
radii types is that they were designed using an optimal theoretical level, so users do not
need to further benchmark theoretical levels. The disadvantage is that they were designed
for hydration free energy only, so if these radii are used in non-aqueous solutions, their
parameters need to be re-designed. Currently, the most widely used method is to optimize
the ESF value (also called α value) to improve their accuracy in non-aqueous solution.
Most quantum chemical programs, e.g., Gaussian[31] and Q-Chem[32] provide options
for users to specify their own ESF values. Specifying ESF values is much easier than
designing and implementing a new surface type or a new set of atomic radii. Although
cavity scaling does improve the accuracy of solvation free energies for PCM-UAHF and
PCM-UAKS, there are still some problems:

(1) First of all, in most studies on scaling solute cavities, usually only a small num-
ber of solute molecules in limited types of solvents were investigated, which means the
optimal ESF values reported in these works might be less useful for other solute/solvent
combinations.

(2) Most studies scaled the solute cavity via reproducing experimental pKa values
and/or redox potential in solution phase, usually with an less accurate but cheaper the-
oretical level for the gas-phase free energies. This means that the obtained optimal ESF
value and associated solvation free energies actually implicitly included the components
used to correct the errors of gas-phase free energies. The optimized ESF values are de-
pendent on the theoretical level used for gas-phase free energies, which limits the use of
this method.

(3) Most studies presented only an overall optimal ESF value for all species types.
Considering the fact that the optimal cavity size of ions and neutral species could be
very different, whether it is meaningful to use different ESF values for ions and neutrals
species (i.e., mixed ESF method) remains an open question, especially for pKa and redox
potential caluclations where both neutral and charged species exist.

Accordingly, a systematic optimization of the ESF values is performed in Section 3.3
where:

(1) An extensive and large data base of solute/solvent combinations (i.e., the MNSOL-
v2012 database[24]) is used.

(2) ESF values are optimized directly using the solvation free energy instead of solution-
phase properties.

(3) ESF values of neutral and ionic species are optimized separately.
A scheme for our optimization is shown in Figure 3.5.
Here we set the initial choices of ESF values for all cases as 1.1, 1.2, 1.3 with the

interval as 0.1. If the optimal ESF value is within this initial range, then the optimization
process is finished. If the optimal ESF value is not found, then extra ESF values are
added to the side towards smaller error, e.g., if the error of 1.3 is smaller than that of
1.2 and 1.1, then we further try 1.4. The loop is repeated until the optimal ESF values
with the smallest error are obtained for all solute/solvent combinations, which generates
a final ESF range from 0.9 to 2.1, with the interval as 0.1.

The performance of the optimized ESF values are tested by pKa calculations in both
water and acetonitrile using the thermodynamic cycle method as described in Figure 3.3.
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MNSol-v2012 data base
790 solutes 
18 solvents

1719 combinations

IEFPCM CPCM

UAHF (HF/6-31G*) UAKS (PBE0/6-31G*)

Different ESF values (from 0.9 to 2.1)

Minimize MAE=f(ESF), 46889 solvation free energy calculations

Figure 3.5: Method for our optimization of ESF values.
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ABSTRACT: Many approaches have been used to improve the accuracy of
implicit solvent models including solute cavity scaling, introducing explicit
solvent molecules, and changing the level of theory for the solvation
calculations. Here, we compare these strategies using a large test set of
aqueous pKa values for amines, nucleobases, carboxylic acids, thiols, peptide
carbon acids, alcohols, and anilines for the specific case of solvation model
density (SMD) within the framework of a thermodynamic cycle in which the
gas-phase component is consistently calculated via the accurate CBS-QB3
method. We show that the choice of theoretical level for solvation energies
should be based on the original parameterization of the solvent model, with
separate levels of theory for the solvation energies of neutrals, anions, or cations, outperforming the best compromise level of
theory. However, when explicit solvent molecules are introduced, a higher level of theory is needed to describe the solute−
solvent interactions. For the systems studied here, explicit solvation improved the results for acids (and hence anions) but not
for bases, for which results deteriorated. Importantly, we find that solute cavity scaling does not significantly improve the SMD
results for the CHNO compounds tested when the correct theoretical level is employed and explicit solvent effects are correctly
treated.

■ INTRODUCTION

Continuum solvent models are crucial for making quantum
chemical studies of practical chemical systems tractable.1−5 At
the same time, they are usually the largest source of error in any
calculation and the most difficult part of the calculation to
systematically improve.6−9 Apart from developing new models,
strategies for improving the accuracy of continuum solvent
calculations include changing the level of theory at which the
calculations are applied,9 scaling the solute cavity via electro-
static scaling factor (ESF) and/or surface type,10−21 and
including one or more explicit solvent molecules in the
calculation.22−25

However, all of these approaches can have problems. For
instance, because solvent models are parameterized at a specific
level of theory, improving the level of theory can sometimes
increase rather than decrease the errors. A classic example is
when UAHF radii, which were parameterized with HF/6-
31G(d), are used with correlated methods. Hartree−Fock is
known to overpolarize the solute, which is empirically corrected
by the UAHF parameters. As a result, when these parameters are
used with correlated levels of theory, they then overcorrect for
polarization and have larger errors.9

Likewise, it is intuitive that inclusion of explicit solvent
molecules should improve the accuracy of solvation calculations,
and indeed, many studies have shown them to be necessary

when direct solute−solvent interactions occur.3,15,21,22,24−29

Nonetheless, because solvent models were parameterized
without explicit solvent molecules, indiscriminate inclusion of
multiple explicit solvent molecules can often lead to double
counting and increased errors in other aspects of the calculation
such as the cavitation free energies.30

Finally, a number of studies10−21,31−45 have shown that the
scaling of cavities by an ESF and/or surface type can help to
minimize errors, particularly on changing solvents or from
neutrals to cations to anions. However, recommended values of
the ESF can vary considerably even for the same solvent model
and solvent. Hence, this raises the question as to whether they
are physical or not or whether they can help beyond the systems
to which they were fitted.
The present work aims to explore these issues and help to

identify the best method(s) for improving the accuracy of
solvation energies and solution-phase properties. We have
limited our focus to the popular solvation model density (SMD)
solvent model46 as this allows us to eliminate some but not all of
the variables. For instance, this model has in-built intrinsic
atomic Coulomb radii working with the default van der Waals
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(vdW) surface, which were optimized in the design of SMD, and
thus, we use these for the present work. This model was
parameterized for a large test set of neutral, cationic, and anionic
solvation energies across several solvents, and its recommended
ESF is 1 (i.e., no scaling is necessary any more). The model was
benchmarked over six levels of theory, but, of these, different
levels of theory were shown to perform better for neutral versus
anionic versus cationic species and with different solvents.
Hence, we have the option to compare the effects of using the
recommended level of theory for a given solvent and type of
species rather than other levels of theory.
However, despite its recommended ESF value of 1, recently,

Schlegel and co-workers47 showed that pKa predictions using
SMD could be further improved by ESF optimization. They
studied methyl-substituted nucleobases in aqueous solution
using accurate CBS-QB3 gas-phase energies in conjunction with
SMD solvation energies at the B3LYP/6-31+G(d,p) level of
theory in a thermocycle so as to minimize other sources of error.
They showed that the highest accuracy pKa results were
obtained with an ESF of 0.975 for cations (used for pKa1
calculations), 0.925 for anions (used for pKa2 calculations),
and 1 for neutrals in both cases. Alternatively, if less accurate
B3LYP gas-phase energies are used, the optimal ESF values are
1.00 for neutrals and cations and 0.90 for anions. This highlights
that ESF values can sometimes implicitly correct other errors in
the calculation, beyond merely the solvation energies.
In an independent study by Smith et al.,48 more dramatic ESF

scaling of SMD was recommended using the solvent accessible
surface (SAS) instead of the default vdW surface. In that work,

aqueous pKa values of several carboxylic acids and aliphatic
amines were computed withM062X/6-31+G(d,p) via the direct
method (i.e., entropies and thermal corrections were calculated
using gas-phase partition functions applied to solution-phase
geometries and frequencies). An optimal ESF value of 0.485 was
obtained with the use of SAS, so both atomic radii of the solute
and the solvent radius were tuned. Unlike the work of Schlegel,47

this study included a number of thiols. Sulfur-containing
compounds had been shown previously to perform very poorly
with SMD compared with C, H, N, and O species.46 With the
inclusion of an ESF scaling, the thiol results improved
dramatically.48

Although these three strategies are widely employed,
comparison of their efficacy is scarce. In the present work, we
compare them so as to address three key questions: (1) is solute
cavity scaling still necessary for SMD when suitable theoretical
procedures are used? (2) Does using explicit solvent molecules
always improve the accuracy of solvation free energies? (3)
Which one of these approaches is more general for various solute
types and thus the one to use for a new system for which there
may not be experimental data for fitting or testing?
To this end, we use the above-mentioned two prior studies as

a basis to compare the effectiveness of solute cavity scaling
against the use of explicit solvent molecules and/or simply use
the optimal level of theory for the solvation energies. At the same
time, we control other sources of error using the in-built SMD
parameters and using a thermocycle in conjunction with a high
level of theory in the gas-phase electronic energies as the
parameterization and benchmarking in original SMD design was

Scheme 1. Test Set Used in This Work, Which Includes Aqueous pKa Values of 5 Methyl-Substituted Nucleic Acid Bases (M1−
M5), 17 Carboxylic Acids (C1−C17), 10 Aliphatic Amines (A1−A10), 5 Thiols (T1−T5), 13 Neutral (N1−N13) and 10Cationic
(H1−H10) Carbon Acids, 5 Alcohols (AL1−AL5), and 5 Anilines (AN1−AN5)a

aFor bases (pKa1 of M1−M5, A1−A10, AN1−AN5), the pKa of the conjugate acid was calculated. For M1, M4, and M5 pKa2 (i.e., deprotonation of
the neutral species) was also calculated. For carbon acids, the hydrogen that is deprotonated is bolded for clarity. Species M1−M5 were originally
studied in ref 47, C1−C17, A1−A10, and T1−T5 in ref 48, N1−N13 and H1−H10 in ref 28, AL1−AL5 in ref 30, and AN1−AN5 in ref 23.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.9b04920
J. Phys. Chem. A 2019, 123, 7430−7438

7431

84 3.2. PUBLICATION 2



for solvation free energies rather than for solution-phase Gibbs
free energies.46 As our test set (Scheme 1), we consider a subset
of molecules from these previous two studies for which accurate
experimental data are available. Although we mainly focus on
compounds only containing C, H, N, and/or O in this work, we
include five thiols to show how SMD accuracy differs
significantly for these sulfur-containing species. To test the
wider applicability of the various protocols, we also employ an
independent test set to which none of the literature ESF values
have been fitted, comprising neutral and cationic carbon acids
taken from ref 28 (N1−N13 and H1−N10), alcohols (AL1−
AL5) taken from ref 30, and anilines (AN1−AN5) taken from
ref 23.

■ COMPUTATIONAL METHODS
Unless noted otherwise, we used the thermocycle method
(Scheme 2) for pKa calculations in this work. It should be noted

that according to convention, pKa values of the bases studied
here are expressed as the deprotonation of their conjugate acid.
Using the thermocycle method, the total Gibbs free energy of a
species in solution is given as9

G G G G(sol) (g)0
solv

1atm 1M* = + Δ * + Δ →
(1)

where G0(g) is the standard gas-phase Gibbs free energy,ΔGsolv*
is the solvation Gibbs free energy, andΔG1atm→1M (which equals
1.89 kcal/mol) is the Gibbs free energy change resulting from
the different standard states in the gas and solution phase. The
pKa value can then be computed as

K
G

RT
p

(sol)

2.303a
deprot= Δ *

(2)

where ΔGdeprot* (sol) is the standard state free energy change of
the deprotonation reaction in the solution phase, R is the
universal gas constant, and T is the temperature in kelvin. The
aqueous solvation free energy of proton ΔGsol* (H

+) is taken as
−265.9 kcal/mol to remain consistent with Schlegel’s work.47

For species M1−M5, there are multiple tautomers, and thus,
following the method of Schlegel and co-workers,47 we calculate
the ensemble pKa considering contributions from multiple
tautomers as

K K
f

f
p p logij j

i
a a= +

′
(3)

where pKa
ij is the tautomer-specific pKa related with the tautomer

j of the deprotonated species and the tautomer i of the
protonated species and f j′ and f i are, respectively, the population
of tautomer j and tautomer i. This treatment was applied except
in cases where explicit solvent molecules were also required; in
those cases, the dominant tautomer was considered. Moreover,
where the methods used were identical, the optimized structures
of M1−M5 were taken directly from ref 47.

All quantum chemical calculations were performedwith either
Gaussian 1649 or Molpro 2015.50 For cases without explicit
solvent molecules, the default CBS-QB3 method was used for
gas-phase free energies. In cases with explicit solvent molecules,
gas-phase Gibbs free energies were calculated using the
complete basis set method CBS-QB351//M062X/6-31+G(d,p)
so as to take dispersion into account in the geometry
optimizations and to minimize other sources of error. To
provide additional confidence in the accuracy of CBS-QB3,
results obtained with this level were compared with otherwise
identical results obtained with an alternative type of composite
ab initio method G3(MP2, CC), as well as the lower cost density
functional theory (DFT) procedures employed in some of the
literature protocols tested here. Results in the Supporting
Information (Table S1) show that the mean unsigned deviations
of G3(MP2, CC), M062X/6-31+G(d,p), and B3LYP/aug-cc-
PVTZ gas-phase reaction electronic energy are, respectively,
0.75, 0.88, and 0.89 kcal/mol compared with CBS-QB3 results.
However, the maximum unsigned deviations are, respectively,
1.45, 3.50, and 3.05 kcal/mol. Thus, CBS-QB3 and G3(MP2,
CC), both of which have been independently benchmarked on
large test sets, mutually support each other, while the two DFT
procedures also perform almost on average but show that large
random deviations are not reliable. Between the two composite
ab initio methods, we select CBS-QB3 for consistency with ref
47.
Gas-phase thermal corrections to enthalpies and entropies

were calculated using an in-house script that implemented the
quasi-harmonic oscillator (QHO) approximation. Frequencies
were scaled by their literature scale factors.52 Testing in the
Supporting Information (Tables S2−S11) using the below
protocols 1−4 showed that the results were relatively unaffected
by the QHO cutoff value over the range of 0−100 cm−1.
Unsurprisingly, the largest differences occurred when an explicit
solvent molecule was included because of the introduction of
additional low-frequency torsional modes. In those cases, 100
cm−1 provided the best agreement with the experiment. For
calculations without explicit solvent molecules, we use 25 cm−1

as it produces minimum overall mean absolute errors (MAEs)
with both protocol 1 and protocol 2.
To calculate the Gibbs free energies of solvation, solution-

phase geometries were consistently optimized in solution using
M062X/6-31+G(d,p). However, for calculating the Gibbs free
energies of solvation, four different protocols were considered.

(1) Mixed levels of theory: ΔGsolv values were calculated as
single point energies using M052X/6-31G(d) for
neutrals, M052X/6-31+G(d,p) for cations, and HF/6-
31G(d) for anions. These are (counterintuitively) the
best-performing levels of theory for each of these CHNO
species in aqueous solution in the original SMD study.46

(2) M052X/6-31G(d) level of theory: ΔGsolv values were
calculated as single points using M052X/6-31G(d) for all
species. M052X/6-31G(d) was the best overall average
performer for aqueous solvation energies in the original
SMD study.46

(3) Explicit solvent M052X/cc-pVTZ level: ΔGsolv values
were calculated as single points using the M052X/cc-
pVTZ level for all species, which is the level of theory
suggested in ref 22. One explicit solvent molecule is used.

(4) Explicit solvent M062X/6-31G(d): ΔGsolv values were
calculated as single points using the M062X/6-31G(d)
level for all species. One explicit solvent molecule is used.

Scheme 2. Thermodynamic Cycle Method for pKa
Calculations in the Solution Phase
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M062X/6-31G(d) was recommended by Truhlar and
Cramer when using SMD with an explicit solvent
molecule.27

For cases with an explicit solvent molecule, that is, protocols 3
and 4, the explicit solvent molecule is placed near the
(de)protonation site as this is the complex which most
influences the reaction (see Figure 1 for an example).24,25

Having placed the molecule there, a complete conformational
search about the rotatable covalent and noncovalent bonds is
then performed. This strategy is widely used for solute−solvent
complexes, for example, see refs.15,22 Note that the positions of
the explicit solvent molecule are different for the pKa1 and pKa2
calculations of the same molecule as different hydrogen atoms
are involved.
Finally, in addition to using our unscaled SMD protocols, the

scaled SMD methods of Schlegel and co-workers47 and Smith
and co-workers48 were also evaluated for comparison.Where the
systems were identical to their original papers, data were taken
directly from those works, for all additional system calculations
were performed exactly as per their protocols except where
otherwise noted. These protocols are outlined below for
convenience.
In the methods of Schlegel and co-workers, denoted here as

CBS-QB3_S and B3LYP_S, a thermocycle is used where gas-
phase geometries and frequencies are obtained with default
CBS-QB3 and B3LYP/6-31+G(d,p), respectively, and energies
are calculated using default CBS-QB3 and B3LYP/aug-cc-
PVTZ, respectively. The gas-phase thermal corrections and
entropic corrections are calculated using the harmonic oscillator
approximation. In both methods, solvation energies are then
calculated using SMD/B3LYP/6-31+G(d,p), with ESFs ap-
plied. ESF values for CBS-QB3_S are 1.00 for neutrals, 0.975 for
cations, and 0.925 for anions; for B3LYP_S, they are 1.00 for
cations and neutrals and 0.90 for anions.
In their paper, Smith and co-workers48 used the directmethod

(i.e., directly computed the total free energy in the solution
phase) rather than the thermodynamic cycle method (i.e.,
separately calculated gas-phase free energy and solvation free
energy). They also scaled the SAS rather than the vdW surface.
They used three different approaches to calculate the Gibbs free
energies in solution: (a) the direct method using the SMD
model based on a SAS scaled by 0.485 (SMD-sSAS); (b) the
same direct method but using an ESF of 1 (SMD-default); (c)
the direct method but with the intrinsic atomic Coulombic radii
used in the SMD model replaced by Bondi radii and other
parameters unchanged (SMD-Bondi). Figure S2 in the

Supporting Information of ref 48 provides a good comparison
between different radii types. The theoretical level used by Smith
and co-workers for the above three models is M062X/6-
31+G(d,p). Thermal and entropic corrections were calculated
using QHO approximation with a 30 cm−1 QHO cutoff. Testing
in the Supporting Information showed that the results obtained
were relatively unaffected by this value over the range of 0−100
cm−1 (Tables S12−S17). For comparison, we also introduce a
variant of SMD-sSAS, denoted SMD-sSAS-C, which is identical
to the former except that a thermocycle is used and the gas-phase
energies are calculated using the higher-level CBS-QB3 method.

■ RESULTS AND DISCUSSION
Default Solute Cavities. We initially considered the

substituted nucleic acid bases (M1−M5), carboxylic acids
(C1−C17), aliphatic amines (A1−A10), and thiols (T1−T5) of
Scheme 1 as these were previously subjected to solute cavity
scaling in either ref.47,48 To assess whether an unscaled method
could achieve similar or better accuracy, ΔGsolv* values were
calculated via our four different protocols described above and
then combined with high-level gas-phase Gibbs free energies so
as to obtain pKa values. Complete pKa results with their absolute
errors (AEs), as obtained via each protocol, are provided in the
Supporting Information (Tables S5, S6, S10, and S11); MAE
and maximum absolute errors (MAXs) of each subtest set are
shown in Figure 2. All results in Figure 2 are obtained without
solute cavity scaling, that is, using the default SMD ESF = 1.0
and default vdW surface for all species.

From Figure 2, it can be seen that the magnitude of the error
varies considerably among the subtest sets and that the relative
performance of the different protocols also varies. Generally, it is
seen that the protocols without explicit solvent molecules (1 and
2) outperform those that include them (3 and 4) for nucleobases
and aliphatic amines. However, for carboxylic acids and thiols,
the reverse is true. Additionally, within M1−M5, the explicit
solvent increases the errors for pKa1 and decreases the errors for
pKa2, especially comparing protocol 3 with protocol 1 (Table 1).
Where explicit solvents are not required, protocol 1 outperforms
protocol 2, especially for M1−M5, and hence, using the best
possible level of theory for each solvation energy in the Hess
cycle, as recommended in the original SMD paper,46 is
preferable to using the best compromise level of theory from
that work.46 Where explicit solvents are needed, protocol 3
outperforms protocol 4, especially for C1−C17 presumably

Figure 1.Optimized structures of neutral (left) and anion (right) forms
of 9-methylxanthine (M5) with one explicit solvent in aqueous solution
in pKa2 calculation.

Figure 2.MAEs and MAXs calculated for the thiols, amines, carboxylic
acids, and nucleobases of Scheme 1 with default solute cavity.
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because a higher level of theory is needed to model the
noncovalent interactions between the solute and solvent.
The results in Figure 2 and Table 1 show that when the

recommended theoretical level is respectively used for both
calculations with and without an explicit solvent, explicit
solvents do not always improve the accuracy of SMD,
presumably because of the possibility of double counting effects
that are implicitly accounted for through parameterization. On
the basis of the present results, it appears that explicit solvents
are necessary for reactions involving anions but not for neutrals
and cations. This is consistent with other studies. For instance,
Zhang23 showed that the errors in the pKa1 values of the amines
and anilines increased after adding one solvent molecule to both
the neutral and cationic species. More generally, Schlegel and
co-workers concluded that the improvement resulting from
explicit solvent molecules in pKa values involving neutrals and
cations was modest while that in pKa values involving neutrals
and anions was quite significant.24 Cramer, Truhlar, and co-
workers also concluded that an explicit solvent molecule is
especially required for anions concentrating charge on a single
exposed heteroatom.26 Other studies have also highlighted the
need for explicit solvent correction for pKa calculations of
carboxylic acids.53 Hence, the poor performance of protocol 1 in
Figure 2 for carboxylic acids, compared with protocol 3, is in
many ways more physical.
For thiols, adding an explicit solvent is generally helpful.

Indeed, an earlier study has shown that as many as three explicit
solvent molecules are required for such compounds.25 While we
attempted to include three explicit molecules for the present
work, problems finding reasonable stable geometries forced us
to abandon this approach. In any case, it is worth noting that
none of the protocols used here delivers an optimal MAE for the
thiols of comparable accuracy to the CHNO species studied. For
these latter species, the best protocol delivers average errors of
the order of around 0.5 pKa unit and maximum errors between 1
and 3 pKa units. In the case of thiols, the average errors exceed 2
pKa units. The poor performance of thiols is consistent with that
reported in the original SMD paper, which also showed larger
errors for compounds containing sulfur, and suggests that SMD
itself contains greater errors in this case.46 Because the levels of
theory used in protocols 3 and 4 are taken from papers
benchmarking CHNO compounds only, performing bench-
marking on other molecules such as thiols may help to solve this
problem. Indeed, ref 25 suggested using ωB97XD in place of
M06-2X for these particular compounds, in conjunction with the
three explicit solvent molecules. Clearly, molecules containing
atoms other than CHNO require special consideration and are
beyond the scope of the present work.
Effect of Scaling Solute Cavities. Having teased out the

differing roles of the theoretical level and explicit solvents, we
can now study the effect of solute cavity scaling on the results

and also compare our methods with the results obtained using
scaled solute cavities. For the rest of this work, we use protocol 1
for bases (pKa1 of M1−M5 and A1−A10) and protocol 3 for
acids (pKa2 of M1−M5 and C1−C17). We exclude the thiols
(T1−T5), which, as noted above, perform poorly with SMD. In
other words, one uses the recommended levels of theory without
an explicit solvent and then includes explicit solvent molecules
where physically necessary. When including explicit solvent
molecules, use of a higher level of theory is then needed to better
describe the interactions with the solvent molecule. The
questions then arise: does this approach outperform approaches
based on a scaled solute cavity and can our approach be itself
improved with solute cavity scaling?
Figure 3 shows the MAE of pKa values of M1−M5 calculated

with our above strategy, compared with CBS-QB3_S and

B3LYP_S results taken from Schlegel and co-workers,47 the
result obtained with the SMD-sSAS method of Smith and co-
workers,48 and our variant SMD-sSAS-C. Details of all methods
are described in the methods section; all individual data are
provided in the Supporting Information. For M1−M5, both
CBS-QB3_S and B3LYP_S were fitted directly to the data and
as such perform well. The difference in accuracy between CBS-
QB3 and B3LYP for the gas-phase reaction energies is clearly
compensated by different values of the ESFs in the two
protocols, at least for the systems to which these methods were
fitted. Importantly, Figure 3 shows that the unscaled SMD
protocols of the current work perform equally well, despite not
benefitting from the same direct fitting. Although the SMD-
sSAS method was not fitted to this data set, it gave good results
(MAE = 0.7 pKa unit). However, SMD-sSAS-C performs much
worse than SMD-sSAS, despite the former using a higher level of
theory. This indicates that the scale factor is correcting both
solvation errors and DFT errors in the reaction energies.
To test if tuning the solute cavity, or more specifically, tuning

ESF values, would lower errors of our results in Figure 3, ESF
values of the ions were optimized while those of neutral species
were unchanged, as in the work of Schlegel.47 The considered
range of ESF values is from 0.925 to 1.025 for cations and from
0.950 to 1.050 for anions. The dependence of AE and MAE on
ESF is plotted in Figure 4a,b for pKa1 and pKa2, respectively. It is
clear that 1.00 is the optimal ESF for both the pKa1 and pKa2
values and that for these systems, the extra computational cost
associated with determining an optimal ESF value can be
avoided if accurate gas-phase free energies are combined with
solvation energies calculated using the recommended levels of
theory for solvation free energies.

Table 1. MAE and MAXs of the M1−M5 Subset, Separated
into pKa1 and pKa2 Values

a

protocol
1 2 3 4

pKa1 MAE 0.2 2.1 2.2 2.2
pKa1 MAX 0.4 3.1 5.3 6.5
pKa2 MAE 1.7 0.9 0.9 1.1
pKa2 MAX 2.9 1.4 1.7 1.9

aFor individual data, see Tables S5, S6, S10, and S11 of the
Supporting Information.

Figure 3. MAE of calculated pKa values of M1−M5 calculated in this
work (with default solute cavity) and obtained with four solute cavity
scaling methods (see text).
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The results for C1−C17 and A1−A10 are considered together
as the two test sets are from the same literature and used the
same solute cavity scaling method.48 Figure 5 shows the MAE of

pKa values for the three methods investigated by Smith et al.48

(SMD-sSAS, SMD-default, SMD-Bondi), the CBS-QB3_S
method of Schlegel et al.,47 and our unscaled SMD method
for pKa calculations using protocol 1 involving amines (i.e., the
bases) and protocol 3 (explicit solvent) involving carboxylic
acids (i.e., the acids). The MAE for each method is collected in
Figure 5, and individual data can be found in the Supporting
Information (Table S18). The average errors produced with our
unscaled SMD protocol are smaller than those computed with
other four methods for carboxylic acids, comparable to the best
method for amines, and smallest overall. Overall, these results
suggest that again solute cavity scaling is not required for SMD
calculations on CHNO compounds if appropriate levels of
theory are used and explicit solvent molecules are included when
physically required.
To investigate whether the errors in our method can be

further decreased through tuning the ESF values, we considered
ESF values of 0.96−1.01 for C1−C17 and 0.99−1.02 for A1−
A10 (Figure 6). For more consistent comparison with the work

of Smith and co-workers,48 here ESF optimization is conducted
on all species including neutrals, although we scale only the vdW
surface. For the pKa values of the amines of A1−A10, the MAE
reaches its minimum (0.50) at the ESF values of 1.00−1.01, and
hence, scaling does not improve results. For carboxylic acids,
C1−C17, the minimum of the MAE (0.61) is located at ESF =
0.97−0.99. However, the decrease in MAE (from 0.62 pKa units
with ESF = 1.0 to 0.61 pKa units) via ESF optimization is
minimal and is much smaller than that in the work of Smith and
co-workers (MAE from 1.33 or even 1.83 to 0.96). In other
words, for these CHNO compounds, if the recommended
theoretical level and default vdW surface are used, along with
explicit solvent molecules when required, the errors are small to
begin with and ESF optimization has only minimal effects.

Performance on an Independent Test Set: Carbon
Acids, Alcohols, and Anilines. From Figures 3 and 5, we can,
respectively, see that the accuracy of our results and those
obtained with ESF optimization by Smith48 and Schlegel47 are
actually very close, despite the fact that we do not tune solute
cavity by fitting to the experimental data we are predicting.
Although neither Schlegel nor Smith claimed that their solute
cavity scaling methods can be applied to other systems, an ESF
value is only useful if it can make some independent predictions.
To fully explore whether these scaled solute cavities are useful
beyond the systems to which they were optimized and to further
test the unscaled SMD protocols of this work, we considered an
additional independent test set of neutral and cationic carbon
acids (taken from ref 28), alcohols (taken from ref 30), and
anilines (taken from ref 23) (respectively, N1−N13, H1−H10,
AL1−AL5, and AN1−AN5 of Scheme 1). These test sets were
not used in either ESF optimization training sets of Smith48 or
Schlegel.47

The pKa values for the neutral carbon acids and alcohols are
studied with protocol 3 (as anions are involved), while protocol
1 is used for the cationic carbon acids and anilines (which are
bases). For comparison, we used the SMD-sSAS direct method
of Smith and co-workers48 and the CBS-QB3_S protocol
employed by Schlegel and co-workers.47 Note that for molecule
N6 and N6-base (see Scheme 1), we use the gas-phase free
energies from ref 28 in place of CBS-QB3 because of
computational cost; however, this does not influence the
conclusions below. Figure 7 shows the MAEs obtained via the
three methods for carbon acids, split between the neutral and
cationic species, anilines, and alcohols; full data are given in the
Supporting Information (Tables S12−S17 and S27−S30).
For the neutral carbon acids, N1−N13, the errors in our

method are significantly smaller than those produced by the
SMD-sSAS method48 and CBS-QB3_S method.47 This further
reinforces the need for an explicit solvent molecule when anions
are involved and shows that this need cannot be fully addressed

Figure 4. Dependence of AE and MAE of (a) pKa1 and (b) pKa2 values
of methyl-substituted nucleic acid bases produced in this work on ESF
value change.

Figure 5.MAE of C1−C17 and A1−A10 pKa results calculated via our
method (no solute cavity scaling) and four solute cavity scaling
methods (see the text for details).

Figure 6. Dependence of MAE of pKa values of C1−C17 and A1−A10
on the change of ESF value.
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by solute cavity scaling. For the cationic carbon acids, the results
by all three methods are very similar, and the SMD-sSAS
method slightly outperforms the other two. Our method also
produces the best results among all the three methods for
alcohols. For anilines, the MAE of the SMD-sSAS method is the
smallest, while the CBS-QB3_S method performs worst. This
latter result is surprising, as anilines have similar structures to
methyl nucleobases, which is the test set used to fit the ESF
values for the CBS-QB3_S method. This indicates that even for
very similar molecules within CHNO compounds, a solute
cavity scaled for a specific solute type cannot necessarily be
directly used to another one, which limits the application of
solute cavity scaling methods. Our method shows intermediate
behavior. Overall, our unscaled SMD method significantly
outperforms the other two protocols by 1.7 and 2.5 pKa unit,
significantly outperforms them in two categories, and deviates in
an average error by less than a pKa unit from the best performer
in the other two categories.
Across these new test sets and the original ones, the unscaled

SMD was found to provide either equivalent or significantly
better performance than the scaled procedures. Nonetheless for
some test sets, particularly the carbon acids, the errors remain
very large, even with the best-performing protocols. This was
also noted in the original study of these systems, where it was
suggested that using a proton exchange approach, and
potentially other solvent models, could help to ameliorate
these problems.28 To test whether solute cavity scaling could
also be effective, we recalculated the results using a range of ESF
values. Figure 8a shows the results for carbon acids, and Figure
8b shows the results for alcohols and anilines. In Figure 8a, we
only show MAE values at several key ESF values; more details
can be found in the Supporting Information (Tables S31−S34).
It is seen that for anilines, the optimal ESF values are 0.97−

0.98, which produce a minimum MAE of 1.84 pKa unit,
compared with the default value (MAE = 2.39 pKa unit). This
23% decrease is less than a pKa unit. For alcohols, the difference
resulted from ESF optimization is smaller, and optimal ESF
(0.96) results in a 3.44 pKa unit MAE, which is smaller than
MAE (3.58 pKa unit) with the default ESF by a 0.14 pKa unit
(only around 4% decrease). ESF optimization can decrease the
MAE of H1−H10 from 4.80 (ESF = 1) to 3.94 (ESF = 1.17).
This 18% decrease is still less than 1 pKa unit, despite the results
benefitting from fitting to data. The onlyMAE change exceeding
1 pKa unit resulted from ESF optimization in this work is for
N1−N13; its minimum MAE is 3.89, with an ESF of 1.12,
compared with the MAE of 4.98 at the default ESF value. Even
here, the change is 1.09 pKa unit or around 22%. Thus, while

fitting to the data one is trying to predict can sometimes help to
reduce the errors, the optimal ESF values obtained vary with the
chemical system and for the results herein affect pKa errors by
less than or close to a single pKa unit.

■ CONCLUSIONS
Implicit solvent models are important tools for using quantum
chemistry to study solution-phase chemical reactions. Widely
used approaches to improve the results of solvation free energies
and solution-phase properties such as pKa values include
choosing the best theoretical level for the various components
of the calculation using explicit solvent molecules and solute
cavity scaling. In this work, we compared the above three
methods for SMD solvation on a broad test set of aqueous pKa
values for methyl-substituted nucleic acid bases, carboxylic
acids, aliphatic and aromatic amines, carbon acids, alcohols, and
anilines.
We show that the unscaled SMD can give better or

comparable performance to solute cavity scaling procedures
provided one uses a thermocycle method with high levels of
theory for the gas-phase component, the default surface type and
parameters, the recommended46 levels of theory for the
solvation energy, and an explicit solvent molecule when
physically necessary (e.g., for reactions involving anions).
While in some cases ESF optimization on the basis of our
method could in principle further reduce the errors for the data
to which the ESF value is fitted, we show that the improvement
in results is less than or close to a single pKa unit and any ESF
value obtained is not universal and would need to be
reconsidered on a case-by-case basis. This limits their
application to systems where experimental results are already
available.
In drawing this conclusion, we stress that it is limited to the

SMD model, which was parameterized for 2821 solvation
energies of a wide range of neutral, anionic, and cationic species
across a range of different solvents. It is also limited to
compounds containing C, H, N, and O, as other compounds
with other heteroatoms (e.g., S, F, Cl, and Br) have been shown
to perform relatively poorly with SMD and may need
modifications to their parameters or extra benchmarking.
Nonetheless, within these limits, we suggest that using

Figure 7. MAE of pKa calculations of 10 cationic (H1−10) and 13
neutral (N1−13) carbon acids, 5 alcohols (AL1−5), and 5 anilines
(AN1−5), as obtained with our recommended unscaled SMD protocol
and the SMD-sSAS and CBS-QB3_S methods.

Figure 8.Dependence of theMAE of the pKa values upon the ESF value
for the (a) neutral and cationic carbon acids and (b) alcohols and
anilines.
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appropriate theoretical levels together with the intuitive use of
explicit solvent effects is a more universal approach to accurate
solvation compared with relying on tuning the solute cavity to
eliminate all errors, particularly as experimental values of
investigated solute−solvent combinations are not always
available. This conclusion is echoed by Cramer, Truhlar, and
co-workers who have suggested that adding a small number of
explicit water molecules to a continuum solvation calculation is
much more straightforward than making large adjustments to
the boundary between the solute and the continuum solvent
(i.e., making large adjustments in the values used for the
empirical atomic radii).26
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ABSTRACT: The optimal electrostatic scaling factor (ESF) for the
calculation of solvation Gibbs free energies with the polarizable continuum
model (PCM) was determined via extensive benchmarking against 1719
experimental solvation Gibbs free energies and transfer free energies taken
from the MNSol-v2012 database, as well as 45 aqueous pKa values covering
nine solute types (amines, thiols, carbon acid cations, pyridines, alcohols,
anilines, carboxylic acids, carbon acid neutrals, phenols) and 20 pKa values in
acetonitrile covering four solute types (phenols, carbon acids, carboxylic acids,
pyridines). Optimal values for the ESF in a range of solvents are reported. For
example, in water, the optimal ESF value is 1.2 and this does not vary with
solute charge, radius type, or method. For acetonitrile, we recommend 1.1 for
neutrals, 1.0 and 1.1 respectively for cations with UAHF and UAKS radii types,
1.3 for anions for IEFPCM-UAHF, and 1.4 for other anions. At the same time,
we show that ESF optimization does not address all errors in PCM, and is thus not a substitute for the appropriate use of
explicit solvent molecules, nor for the use of isodesmic methods to enhance systematic error cancellation. For a representative
subset of the data we show that the errors in PCM are somewhat larger than in SMD and somewhat smaller than in COSMO-
RS, although the latter has not benefited from cavity scaling.

■ INTRODUCTION

The development of implicit solvent models has made it
possible to model chemical reactions and properties in solution
phase using quantum chemical methods with reasonable
accuracy. Among the various available continuum solvation
models, the two most widely used are the universal solvation
model based on solute electron density (SMD)1 and the
polarizable continuum model (PCM).2 While SMD can
generally achieve excellent accuracy in modeling common
organic molecules, PCM also remains important. One reason is
that PCM is more suitable for “self-defined” solvation
calculations as it needs fewer parameters than SMD. More
generally, PCM remains a popular choice as is evident in the
wide range of recent studies in which it has been employed,
including modeling of NMR chemical shifts,3 excited state
properties of solvated molecules,4 redox potentials,5 relative
reactivities,6 catalysis mechanisms,7 lipophilicity properties,8

infrared and Raman spectra,9 nonequilibrium solvation,10

quantum chemical calculations on graphical processing units
(GPUs),11 and combining solvation modeling with various
theoretical methods and programs.12−14

Many variables can be altered to improve the accuracy of
PCM calculations, for example, the theoretical level, surface
type, radius type, and electrostatic scaling factor (ESF). The
latter three determine how to construct the solute cavity
immersed in continuum medium. The most widely used
surface type is van der Waals surface (VDW). The most widely

used radius types include UFF, UAHF, and UAKS radii. ESF
values determine how much the atomic radii are scaled to
produce most accurate solvation Gibbs free energies. The
importance of theoretical level choice has been pointed out in
many works.15,16 Given the semiempirical nature of solvation
models, the optimal theoretical level is usually that at which
the model and radii were originally parametrized. For instance,
for the PCM solvation Gibbs free energy calculations with
UAHF and UAKS radii types, the parametrization levels are
HF/6-31G(d) and PBE1PBE/6-31G(d), respectively. If these
method/radii combinations are swapped (i.e., UAHF with
PBE1PBE and UAKS with HF), the accuracy deteriorates.
While it is relatively difficult to design and implement a new

surface type or a new set of atomic radii, the ESF is the easiest
parameter to change at will in quantum chemical programs.
That is why ESF optimization has been widely employed to
improve solvation calculations in recent years.21,23−31 How-
ever, the optimal ESF values reported often differ significantly,
and inevitably are affected by many factors including solvation
models, theoretical level, atomic radius type, surface type,
solute type, and solvent type (see Table 1).
To address this problem, here we define a standard set of

protocols for calculating the solvation energy and use a broad
test set of experimental solvation and transfer energies from
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the latest Minnesota Solvation Database, MNSol-v2012,32 to
determine optimal ESF values as a function of radius type
(UAHF and UAKS), solvent, and/or solute charge. By
focusing on solvation and transfer energies, rather than
properties such as pKa values or redox potentials, the resulting
ESF corrects only for solvation energy errors and is
disconnected from any error in reaction energies, allowing
one the freedom to change this (as part of a thermocycle)
when needed, without changing the ESF. Our recommended
ESF values are then tested for the prediction of pKa values of a
test set of amines, thiols, carbon acid cations, pyridines,
alcohols, anilines, carboxylic acids, carbon acid neutrals, and
phenols in water (Scheme 1), and phenols, carbon acids,
carboxylic acids, and pyridines in acetonitrile (Scheme 2). For
a subset of the solvation energies, the relative accuracies of
PCM, SMD, and COSMO-RS are also studied.

■ COMPUTATIONAL DETAILS

The MNSol-v201232 database contains 3037 experimental free
energies of solvation or transfer free energies for 790 solutes in
92 solvents. However, in the present work we consider a subset
of 1719 experimental free energies of solvation or transfer free
energies because we have to remove the following:
1. Remove all solutes containing iodine because the 6-

31G(d) basis set needs to be used consistently throughout this
work so as to use the parametrization level.
2. Remove solvents in which the nonelectrostatics solvation

components (cavitation, dispersion, and repulsion) are not
supported in Gaussian 16.43 This leaves the following 18
solvents for the solvation Gibbs free energy calculations of
neutrals: acetonitrile, aniline, benzene, carbon tetrachloride,
chlorobenzene, chloroform, cyclohexane, dichloroethane,
diethyl ether, dimethyl sulfoxide, ethanol, heptane, methylene
chloride, nitromethane, octanol, tetrahydrofuran, toluene, and
water. For the benchmarking of transfer free energies, the
following nine nonaqueous solvents are used: benzene, carbon
tetrachloride, chlorobenzene, chloroform, cyclohexane, di-
chloroethane, diethyl ether, heptane, and octanol. For the
benchmarking of solvation Gibbs free energies of ions, the
following three solvents are used: acetonitrile, dimethyl
sulfoxide, and water.
For each experimental free energy of solvation or transfer,

two solvation models (IEF-PCM and C-PCM) combining two
radius types (UAHF and UAKS) at their optimal theoretical
level, i.e., HF/6-31G(d) for UAHF and PBE1PBE/6-31G(d)
for UAKS, multiple ESF values are used for each solvation
Gibbs free energy or transfer free energy so as to identify the
optimal value. All solvation Gibbs free energies are calculated
with gas-phase optimized geometries at the M062X/MG3S44

theoretical level provided in the MNSol-v2012 database. All

combinations used for benchmarking are included in Scheme
3.
The thermocycle method (Scheme 4) was used for pKa

calculations in this work. It should be noted that, according to

Table 1. Some Examples of ESF Optimization with PCM

ref solute type and property solvent(s)a theoretical level radius type ESFb

17 ΔGsolv of anions DMSO IEF-PCM/HF/6-31+G(d,p) GAMESSc not reported (1.35)
18 ΔGsolv of neutral and anionic compounds DMSO PCM/HF/6-31+G(d,p) Bondi 1.20−1.45 (1.35)
19 pKa of organic acids MeCN PCM/B3LYP/6-31+G(d,p) Bondi 1.10−1.35 (1.20)
20 ΔGsolv of organic univalent anions MeCN and DMF IEF-PCM/HF/6-31+G(d,p) GAMESS 1.0−2.0 (1.36 in MeCN, 1.39 DMF)
21 redox potentials of nitroxides MeCN PCM/B3-LYP/6-31G(d) UAKS 1.1−1.5 (1.45)
22 ΔGsolv of amino acid side-chain analogues H2O IEFPCM/6 theoretical levelsd UAKS 1.1 and 1.2 (1.2)

aDMSO = dimethyl sulfoxide; MeCN = acetonitrile; DMF = dimethyl formamide. bStudied ESF range and the optimal one (in parentheses).
cRadius type implemented in GAMESS software package. dSee Figure 1 in ref 22.

Scheme 1. Test Set Used in This Work for pKa Calculations
in Aqueous Solutiona

aTest set includes five amines (A1−A5), five thiols (T1−T5), five
carbon acid cations (CA1−CA5), five pyridines (PY1−PY5), five
alcohols (AL1−AL5), five anilines (AN1−AN5), five carboxylic acids
(C1−C5), five carbon acid neutrals (N1−N5), and five phenols (P1−
P5). For the bases (A1−A5, CA1−CA5, PY1−PY5) the pKa of the
conjugate acid was calculated. A1−A5 were taken from refs 16 and 33,
T1−T5 were taken from refs 16 and 34, CA1−CA5 were taken from
ref 16, PY1−PY5 were taken from refs 35 and 36, AL1−AL5 were
taken from refs 16 and 37, AN1−AN5 were taken from refs 16 and
38, C1−C5 were taken from refs 16 and 39, N1−N5 were taken from
refs 16 and 40, and P1−P5 were taken from refs 16 and 41.
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convention, pKa values of the bases studied here are expressed
as the deprotonation of their conjugate acids. Using the
thermocycle method, the total Gibbs free energy of a species in
solution is given as15

G G G G(sol) (g) solv
1 atm 1 M* = ° + Δ * + Δ →

(1)

where G°(g) is the standard gas-phase Gibbs free energy,
ΔGsolv* is the solvation Gibbs free energy, and ΔG1 atm→1M

(which equals 1.89 kcal/mol) is the Gibbs free energy change

resulting from the different standard states in gas and solution
phases. The pKa value can then be computed as

K
G

RT
p

(sol)

2.303a
deprot= Δ *

(2)

where ΔGdeprot* (sol) is the standard state free energy change of
the deprotonation reaction in solution phase, R is the universal
gas constant, and T is the temperature in Kelvin. The aqueous
solvation Gibbs free energy of proton ΔGsol* (H

+) is taken as
−265.9 kcal/mol.45,46

All gas-phase free energies in this work were conducted
using the high-level G3 (MP2, CC) method so as to minimize
errors from this component. All quantum chemical calculations
were performed with Gaussian 1643 except for CCSD(T)
calculations, which were performed using Molpro 2015,47 and
solvation Gibbs free energy calculations with COSMO-RS,48,49

which were performed with COSMOtherm.50

■ RESULTS AND DISCUSSION
ESF Benchmarking. Optimal ESF values for neutral

species in the 18 solvents are provided in Table 2. Details of
gas-phase and solution-phase electronic energies, absolute
errors (AEs), and mean absolute errors (MAEs) of solvation
Gibbs free energy calculations can be found in Tables S1−S6
and the Supporting Information spreadsheet. While 1.2 instead
of 1.1 (the default value in Gaussian 1643) is the overall
optimal ESF for IEFPCM and CPCM calculations with UAHF
and UAKS radii types, the optimal ESF is indeed dependent on
solvent type. This is not surprising, as, for example, the UAHF
radii were designed using solvation data in water only,51 and
adjustments for nonaqueous solvents might reasonably be
expected. At the same time, due to the limited data available
for some specific nonaqueous solvents (for example, only seven
molecules in acetonitrile are used here), some solvent-specific
ESF values may need further adjustment as more data becomes
available. One way to provide this extra data is through indirect
sources, such as pKa values, which we examine below (vide
infra).
Comparing UAHF and UAKS radii types with other factors

fixed, the optimal ESF values for UAHF and UAKS radii are
the same in most solvents (Table 2). Moreover, we can see
from Tables S1 and S2 that two different radius types produce
very similar errors for solvation Gibbs free energy calculations.
Although the exact details of how the UAKS radii were
designed are not clear,52 it is highly possible that, like the
UAHF radii, UAKS radii were designed in water only.
Comparing IEFPCM and CPCM, it is clear that these two
solvation models produce very close MAEs and their optimal
ESF is the same in most solvents.
Comparing different solvents, water is the solvent affected

most by the ESF: for example, the MAE produced with ESF =
1.0 is 14.37 kcal/mol using the IEFPCM solvation model,
which can be decreased massively to 1.39 kcal/mol with ESF =
1.2. As a contrast, heptane basically is not influenced by an ESF
change. It is easy to understand that this is related to the
polarity of solvent as ESF change mainly affects the
electrostatics contribution to solvation Gibbs free energies;
the dielectric constant of water is 78.36 while that of heptane is
only 1.91. Therefore, ESF optimization plays a more important
role in strong polar solvents.
Finally, optimal ESFs in Table 2 are located in the range

from 1.0 to 1.4, which shows that ESF only needs to be slightly

Scheme 2. Test Set Used for pKa Calculations in
Acetonitrilea

aTwenty molecules include five phenols (PH1−PH5) taken from ref
19, five carbon acids (CAR1−CAR5) taken from refs 19 and 42, five
carboxylic acids (CARB1−CARB5) taken from ref 19, and five
pyridines (PYR1−PYR5) taken from ref 35. For the bases (PYR1−
PYR5), the pKa of the conjugate acid was calculated.

Scheme 3. All Combinations Used for Benchmarking in
This Work

Scheme 4. Thermodynamic Cycle Method for pKa
Calculations in Solution Phase
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changed, although this slight change of ESF can sometimes
produce massive change in solvation Gibbs free energies. This
supports the observation in our prior study16 of SMD solvation
energies, that an overlarge change of ESF usually corrects
errors from other sources, for example, inaccurate gas-phase
free energies or (and) an unsuitable choice of theoretical level.
Table 3 shows the optimal ESF values for transfer Gibbs free

energies, with full details in Tables S3 and S4. Optimal ESFs
for transfer free energies are much more variable and at times
much larger than those of solvation Gibbs free energies,
especially for carbon tetrachloride−water and octanol−water.
For these two cases, the MAE had still not reached its
minimum with ESF = 2.1, although the decrease of MAE with
0.1 ESF increment after 1.7 is ca. 0.05 kcal/mol only. While
these are extreme cases, the larger and more variable ESF
values result in part from low overall energies for transfer free
energies (generally less than 1 kcal/mol) that in turn are due to
the opportunity for systematic error cancellation between
hydration free energies and solvation Gibbs free energies.
Again, UAHF and UAKS radii produce very close results. For
example, for all nine solvent−water combinations, MAEs for

UAHF and UAKS differ by less than 0.16 kcal/mol, further
supporting our above assumption that, like UAHF, UAKS radii
were designed in water only.
In the calculations of solution-phase properties, the

quantities affecting the accuracy most are the solvation Gibbs
free energies of ions. The lack of systematic error cancellation
in reactions involving different ion types is well-known,53 and
this may be due in part to systematic differences in their
optimal radii. To examine the effect of solute charge on the
ESF value, in Table 4, we optimized the ESFs of neutrals,
cations, and anions separately in acetonitrile, dimethyl
sulfoxide, and water, respectively. In doing this we also
distinguish between molecules containing CHNO atoms only,
and all other types, as their errors differ significantly in the
original SMD paper.1

Examining Table 4, it is clear that in water the optimal ESF
value is consistently 1.2 for neutrals, cations, and anions, which
makes sense if the parameters were optimized across all solute
types in this solvent. In the nonaqueous solvents, the optimal
ESF values for cations are smaller than this and ESF values for
anions are larger. This is also intuitive as the electron density in

Table 2. Optimal ESFs and Mean Absolute Errors (MAEs, in kcal/mol) of Neutral Species in 18 Solventsa

IEFPCM-UAHF IEFPCM-UAKS CPCM-UAHF CPCM-UAKS

solvent N optimal ESF optimal MAE optimal ESF optimal MAE optimal ESF optimal MAE optimal ESF optimal MAE

acetonitrile 7 1.2 2.62 1.2 2.83 1.2 2.59 1.2 2.76
aniline 10 1.1 3.20 1.1 2.85 1.1 3.55 1.1 3.05
benzene 75 1.1 2.41 1.0 2.34 1.1 1.99 1.1 2.00
carbon tetrachloride 78 1.0 2.45 1.0 2.40 1.1 2.23 1.1 2.23
chlorobenzene 38 1.1 1.99 1.1 1.82 1.2 1.91 1.2 2.00
chloroform 108 1.1 2.31 1.1 2.30 1.1 2.54 1.1 2.51
cyclohexane 91 1.1 1.44 1.1 1.40 1.2 1.50 1.2 1.51
dichloroethane 39 1.2 1.38 1.2 1.56 1.2 1.30 1.2 1.41
diethyl ether 70 1.1 2.06 1.1 1.99 1.2 2.11 1.2 2.17
dimethyl sulfoxide 7 1.3 2.35 1.2 2.16 1.3 2.33 1.2 2.18
ethanol 8 1.4 1.57 1.3 1.51 1.4 1.57 1.3 1.51
heptane 68 1.1 1.29 1.1 1.21 1.2 1.30 1.2 1.29
methylene chloride 11 1.2 2.02 1.2 1.95 1.2 2.11 1.2 1.88
nitromethane 7 1.3 1.86 1.3 1.94 1.3 1.85 1.3 1.91
octanol 241 1.1 3.33 1.1 3.53 1.1 3.20 1.1 3.36
tetrahydrofuran 7 1.2 1.98 1.2 1.81 1.3 2.04 1.2 1.81
toluene 51 1.1 1.55 1.1 1.57 1.1 1.64 1.1 1.50
water 381 1.2 1.39 1.2 1.36 1.2 1.38 1.2 1.35
all 1297 1.2 2.72 1.2 2.79 1.2 2.50 1.2 2.56

aN is the number of experimental solvation Gibbs free energies.

Table 3. Optimal ESFs and Optimal Mean Absolute Errors (MAEs, in kcal/mol) for Transfer Free Energies of Neutral Species
in Nine Solvent/Water Combinationsa

IEFPCM-UAHF IEFPCM-UAKS CPCM-UAHF CPCM-UAKS

solvent N optimal ESF optimal MAE optimal ESF optimal MAE optimal ESF optimal MAE optimal ESF optimal MAE

carbon tetrachloride 2 2.1 0.91 2.1 0.82 2.1 0.88 2.1 0.80
benzene 4 1.6 0.74 1.6 0.60 1.5 0.70 1.6 0.60
chlorobenzene 1 1.4 0.10 1.4 0.08 1.3 0.09 1.3 0.07
chloroform 7 1.5 0.81 1.5 0.81 1.4 0.80 1.4 0.80
cyclohexane 5 1.2 1.18 1.2 1.14 1.2 1.13 1.2 1.24
dichloroethane 3 1.2 0.50 1.1 0.43 1.1 0.47 1.1 0.51
diethyl ether 8 1.5 1.29 1.5 1.27 1.4 1.25 1.4 1.22
heptane 6 1.2 1.70 1.2 1.86 1.2 1.54 1.2 1.71
octanol 103 2.1 5.05 2.1 5.04 2.1 5.00 2.1 4.99
all 139 2.0−2.1 4.32 2.1 4.03 1.8−2.1 4.30 1.7−2.1 4.29

aN is the number of experimental data.
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anions is more diffuse than neutrals and the reverse is true for
cations. Thus, using individually optimized ESF values for
cations and anions can further improve the accuracy compared
with using one uniform ESF value for all. For example, in
acetonitrile with IEFPCM-UAHF calculations, when using the
overall optimal ESF (i.e., 1.2) for CHNO cations, the MAE is
10.22 kcal/mol, which can be decreased to 5.97 kcal/mol with
ESF = 1.1 (optimal ESF for cations in acetonitrile). More
dramatically, using the CHNO anion specific optimal ESF in
acetonitrile, i.e., 1.5, can decrease MAE to 2.42 kcal/mol
compared with using ESF = 1.2, which gives MAE as 10.86
kcal/mol. Similarly, for IEFPCM-UAHF calculations in
dimethyl sulfoxide, the MAEs for CHNO cations and anions
can be reduced by 6.27 and 17.49 kcal/mol compared with
using 1.2 for all. The change can be even larger for calculations
with non-CHNO ions. This trend is common in all four types
of calculations, i.e., IEFPCM-UAHF, IEFPCM-UAKS, CPCM-
UAHF, and CPCM-UAKS calculations. Details of data can be
seen in Tables S5 and S6.
Comparison with the Literature. In the original work

designing UAHF radii types,51 1.2 was specified as the overall
optimal ESF value which is consistent with our benchmarking
results, both for the overall optimal value and for the optimal
value for water, and thus reconfirms our results are reasonable.
In 2014, Wu and co-workers conducted an extensive
benchmarking study and concluded that changing the ESF
value from 1.1 to 1.2 can dramatically improve the accuracy of
PCM-UAKS aqueous solvation Gibbs free energies of amino
acid side chain analogues,22 which is consistent with the results
in this work. Similarly, Pacureanu and co-workers also noted
that the van der Waals radii of the solute atoms should be
scaled by a factor of 1.2 with the PCM-UAHF model in their
study on Watson−Crick-type bases in aqueous solutions.54

For the more polar solvents, and particularly for the anions,
higher values have generally been reported in the liter-
ature,17,18,20,21,55 and this is also seen here. For example, in

Table 1, the ESF for DMSO had been previously reported as
1.35 for test sets of solvation Gibbs free energies of anions17 or
neutrals and anions,18 albeit with different radius types. This is
close to the values of 1.4−1.5 (depending on the radius type)
reported in Table 3. The acetonitrile values reported in Table 1
are variable,19−21 in part because only one of the three
studies20 employed the solvation energies of anions rather than
properties such as pKa values and redox potentials, for which
solvation energies of neutrals and ions are contributing
together. In the study of anion solvation energies, the value
reported, 1.36, is again similar to our values of 1.4−1.5
(depending on the radius type) reported in Table 3.
Bryantsev56 pointed out that atomic radii of ions developed
in water need to be scaled in acetonitrile and using ESF = 1.4
in acetonitrile to minimize errors, which also agrees well with
our results.

Effect of Level of Theory for the Solvation Model.
Solvation models are semiempirical and perform best when
used at the level of theory at which they were originally
parametrized, which in the case of PCM was HF/6-31G(d)
and PBE1PBE/6-31G(d), which is what is used here. For
convenience, all solvation Gibbs free energies were calculated
using the gas-phase M062X/MG3S optimized geometries
provided in the MNSol-v201232 database. As such, the
reported ESF values here should be employed in conjunction
with these theoretical levels for the solvation model. However,
by focusing on solvation energies, the ESF values can be
employed as part of a thermocycle with any gas-phase level of
theory for reaction energies, as appropriate to the problem at
hand.
Nonetheless, one can envisage situations, such as when

explicit solvent molecules might be required, where use of an
improved level of theory for the solvation energies might be
required to, for example, treat dispersion interactions. To test
how robust the ESF values are to the theoretical level, we
conducted an additional set of calculations on a representative

Table 4. Optimal ESFs and Optimal Mean Absolute Errors (MAEs, in kcal/mol) for Solvation Gibbs Free Energies of Ionsa

IEFPCM-UAHF IEFPCM-UAKS CPCM-UAHF CPCM-UAKS

solute class N optimal ESF optimal MAE optimal ESF optimal MAE optimal ESF optimal MAE optimal ESF optimal MAE

Acetonitrile
CHNO cations 36 1.1 5.97 1.1 6.38 1.1 6.04 1.1 6.43
other cations 3 1.1 10.14 1.1 10.72 1.1 10.15 1.1 10.74
all cations 39 1.1 6.29 1.1 6.72 1.1 6.35 1.1 6.76
CHNO anions 19 1.5 2.42 1.4 2.40 1.5 2.35 1.4 2.36
other anions 11 1.4 2.47 1.4 2.59 1.4 2.58 1.4 2.54
all anions 30 1.4 2.46 1.4 2.47 1.5 2.45 1.4 2.43

Dimethyl Sulfoxide
CHNO cations 4 1.1 3.35 1.1 2.87 1.1 3.22 1.1 2.73
other cations 0 N/A N/A N/A N/A N/A N/A N/A N/A
all cations 4 1.1 3.35 1.1 2.87 1.1 3.22 1.1 2.73
CHNO anions 52 1.5 4.05 1.5 4.25 1.5 4.06 1.5 4.25
other anions 15 1.5 3.59 1.5 3.75 1.5 3.61 1.5 3.75
all anions 67 1.5 3.94 1.5 4.14 1.5 3.96 1.5 4.14

Water
CHNO cations 56 1.2 4.73 1.2 4.97 1.2 4.64 1.2 4.88
other cations 4 1.2 7.92 1.2 8.64 1.2 7.92 1.2 8.65
all cations 60 1.2 4.94 1.2 5.21 1.2 4.86 1.2 5.13
CHNO anions 60 1.2 8.69 1.2 10.17 1.2 8.64 1.2 10.13
other anions 23 1.2 3.47 1.2 4.07 1.2 3.48 1.2 4.04
all anions 83 1.2 7.25 1.2 8.48 1.2 7.21 1.2 8.44

aN is the number of experimental solvation Gibbs free energies.
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subset of 82 solute/solvent combinations (see the Supporting
Information). For this set, geometries and solvation energies
were calculated using a modern dispersion-corrected func-
tional, ωB97X-D/6-31+G(d,p), and optimal ESF values were
redetermined (Table 5).
It can be seen from Table 5 that changing the theoretical

level has a small effect on the optimal ESF values and
minimum MAEs of solvation Gibbs free energies. Replacing
the default theoretical level with ωB97X-D/6-31+G(d,p) can
improve the calculations of some solvation Gibbs free energies
while not improving others. The overall accuracy of these
theoretical levels is pretty close for the 82 solute/solvent
combinations. In acetonitrile, the effect of teh theoretical level
is rather minimal: all optimal ESFs obtained with the default
theoretical level and ωB97X-D/6-31+G(d,p) are the same
except for the anions with the CPCM-UAHF method. In
contrast, the difference in water is larger: optimal ESF values
obtained with all theoretical levels are all 1.2 for neutral
species; however, optimal ESF values of ions are different.
Thus, while the ESF values are relatively robust, they should be
reoptimized if different levels of theory are to be used for the
solvation calculations. The values presented here offer a
starting point for ωB97X-D/6-31+G(d,p).
Protocol. This brings us to the recommended protocol for

PCM solvation energy calculations.
• Where possible, the recommended ESF values in Table 4

should be used according to solute charge, solvent type and
method/radii combination. With these specified, solvation
energies should be calculated with HF/6-31G(d)//M062X/
MG3S and PBE1PBE/6-31G(d)//M062X/MG3S, for UAHF
and UAKS radii, respectively.
• If a different level of theory for the solvation energy is

required, ESF values should be reoptimized and Table 5
provides examples for ωB97X-D/6-31+G(d,p).
• For solvents other than those in Table 4, values of neutral

species are provided as a function of solvent type and method/
radii combination in Table 2. However, these should be used
cautiously for charged species in polar solvents, as it is likely
that anions require higher values and cations require smaller
values than neutrals.

Having obtained solvation Gibbs free energies, these can be
used in a thermocycle in conjunction with accurate gas-phase-
reaction Gibbs free energies, as calculated at any appropriate
level of theory, to obtain reaction energies in solution.

Comparing the Performances of CPCM-UAHF, SMD,
and COSMO-RS. Following the above protocol, the same test
set of 82 solute/solvent combinations was used to compare the
best-performing PCM variant (CPCM-UAHF) with two other
popular solvent models, SMD and COSMO-RS. For SMD, we
used the optimal protocol established in our recent study of
cavity scaling for this model.16 In that work we showed that the
optimal ESF is 1, provided the recommended levels of theory
in the original SMD study are used.1 Thus, here we use (for
both water and acetonitrile) M052X/6-31G(d) for neutrals
and M052X/6-31+G(d,p) for cations, while for anions, HF/6-
31G(d) is used in water while B3LYP/6-31G(d) is used in
acetonitrile. As in PCM, all geometries were taken from the
M062X/MG3S structures in the MNSol-v2012, consistent
with ref 1. For solvation Gibbs free energies, calculations with
COSMO-RS,48,49 in which the screening charge densities of
solutes and solvents are first generated by a CPCM/BVP86/
TZVP/DGA1 calculation in Gaussian 16,43 these are then
exported as .cosmo files to COSMOtherm,50 where solvation
energies are calculated using COSMO-RS with TZVP
parametrization. Cavity scaling was not applied to COSMO-
RS.
Figure 1 shows the mean absolute errors of solvation Gibbs

free energies of the 82 solute/solvent combinations as
calculated with CPCM-UAHF, SMD, and COSMO-RS.
Overall, SMD gives the smallest error (1.75 kcal/mol) while
COSMO-RS produces the largest error (3.43 kcal/mol); our
optimized CPCM-UAHF performs slightly worse than SMD
and gives the MAE as 2.36 kcal/mol. It should be noted that,
unlike PCM and SMD, optimal ESF values have not been
determined for COSMO-RS. While this method is much more
complex, it is possible that scaling the cavities for the initial
CPCM calculation may help to address these errors, though
this may need to be done in conjunction with a
reparametrization of the COSMO-RS calculation as well.
The main take-home message is that, when appropriately

Table 5. Optimal ESFs and MAEs (in kcal/mol) of 82 Solute/Solvent Combinations Obtained with Default Theoretical Levels
and ωB97X-D/6-31+G(d,p)a

IEFPCM-UAHF IEFPCM-UAKS CPCM-UAHF CPCM-UAKS

solute class N optimal ESF optimal MAE optimal ESF optimal MAE optimal ESF optimal MAE optimal ESF optimal MAE

Acetonitrile
neutrals 7 1.2/1.2 2.62/2.79 1.2/1.2 2.83/2.50 1.2/1.2 2.59/2.79 1.2/1.2 2.76/2.50
CHNO cations 4 1.2/1.2 7.52/6.93 1.2/1.2 7.89/6.93 1.2/1.2 7.28/6.72 1.2/1.2 7.65/6.72
other cations 1 0.9/0.9 1.79/1.39 0.9/0.9 0.18/1.39 0.9/0.9 2.16/1.76 0.9/0.9 0.52/1.76
all cations 5 1.1/1.1 10.09/10.62 1.1/1.1 9.99/10.62 1.1/1.1 10.25/10.78 1.1/1.1 10.15/10.78
other anions 1 1.4/1.4 2.45/1.26 1.4/1.4 0.27/1.26 1.5/1.4 1.37/1.40 1.4/1.4 0.39/1.40
all anions 1 1.4/1.4 2.45/1.26 1.4/1.4 0.27/1.26 1.5/1.4 1.37/1.40 1.4/1.4 0.39/1.40

Water
neutrals 58 1.2/1.2 1.16/1.74 1.2/1.2 1.04/1.48 1.2/1.2 1.16/1.69 1.2/1.2 1.04/1.45
CHNO cations 5 1.2/1.1 6.59/6.48 1.2/1.1 6.90/6.48 1.2/1.1 6.50/6.71 1.2/1.1 6.82/6.71
other cations 1 1.2/1.3 0.50/0.03 1.2/1.2 0.38/0.03 1.2/1.2 0.76/0.65 1.2/1.2 0.65/0.65
all cations 6 1.2/1.3 5.57/7.23 1.2/1.2 5.82/7.23 1.2/1.2 5.54/7.17 1.2/1.2 5.79/7.17
CHNO anions 3 1.2/1.1 2.42/2.17 1.2/1.1 2.01/2.25 1.2/1.1 2.43/1.94 1.2/1.1 2.02/2.00
other anions 2 1.1/1.1 2.16/2.69 1.1/1.1 2.95/2.69 1.1/1.1 2.08/2.62 1.1/1.1 2.88/2.62
all anions 5 1.2/1.1 4.13/2.38 1.2/1.1 4.08/2.42 1.2/1.1 4.12/2.21 1.2/1.1 4.07/2.49

aESFs and MAEs obtained with default theoretical levels and ωB97X-D/6-31+G(d,p) are respectively placed before and after the slash.
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scaled, PCM shows marginally larger errors than SMD, and all
methods show large errors for ions.
pKa Tests. To test the optimal PCM ESF values in a

practical setting, we next considered test sets of aqueous
(Scheme 1) and nonaqueous (in acetonitrile, Scheme 2) pKa
values. The aqueous pKa values (Figure 2) were calculated

using ESF = 1.2. The acetonitrile values (Figure 3) were
calculated using mixed ESF values, i.e., using optimal ESF

values obtained in Tables 2 and 4 for each one of the neutrals,
anions, and cations. For example, for IEFPCM-UAHF
calculations, we use 1.2 for neutrals, 1.1 for cations, 1.5 for
CHNO anions, and 1.4 for other anions. All individual data are
provided in Tables S7 and S8.
From Figures 2 and 3, it can be seen the errors in the pKa

values are large for some species and vary considerably with
the solute and solvent type. This is not surprising given the size
of the mean absolute errors in the solvation energies of
neutrals, anions, and cations reported in Tables 2 and 4, even
after ESF optimization. For instance, on average, CHNO
cations contribute at least 6 kcal mol−1 (4.4 pKa units) to the
errors in pKa values of cations in acetonitrile, which, when
combined with an additional MAE of 2.7 kcal mol−1 (2 pKa
units) for neutrals in acetonitrile, can go a long way toward
explaining the errors in these systems, even before any
uncertainty in the solvation energy of the proton45,46 is
considered. Similar analysis can account for most of the errors
here. Although error cancellation between neutrals and ions
can help produce excellent pKa results for some species, for
example, pKa MAEs of amines (A1−A5 in Figure 2), the error
cancellation is not systematic. This is why the use of explicit
solvent molecules and isodesmic methods are usually required
for accurate pKa calculations.

53

The key question here is whether the underlying errors in
the solvent model can be improved by further optimization of
the ESF value. That is, is it helpful to include indirect measures
of the solvation energy from pKa values, particularly in the case
of acetonitrile where the available data is limited? In this
respect it is worth noting that, while the choice of method
(IEFPCM vs CPCM) has little effect on the errors in Figures 2
and 3, the radius type (UAHF vs UAKS) does, although the
results are not systematic across all solute types. Obviously
using pKa values rather than solvation energies presupposes
that the gas-phase reaction energies are accurate and any errors
arise from the solvation calculations. Here we use a high level
of theory which has been shown to reproduce gas-phase proton
acidities to within 1 kcal mol−1.53

Figure 4 shows the effect on the errors in the aqueous pKa
values of varying the ESF value away from its optimized value;

Figure 5 shows the same results for the nonaqueous values. For
the aqueous pKa values in Figure 4, the same values of ESF
were used for neutrals, anions, and cations, as there was no
variability in the optimal values in Tables 2 and 4. However, in
acetonitrile anions, cations and neutrals had different optimal

Figure 1. Mean absolute errors (MAEs) of solvation Gibbs free
energies of neutral and ionic solutes calculated with different solvation
models.

Figure 2. Mean absolute errors (MAEs) of the aqueous pKa values in
Scheme 1, as calculated using an ESF value of 1.2. pKa values of solute
types labeled in red (A1−A5, CA1−CA5, and PY1−PY5) are
calculated with cations and neutrals, while those in blue are calculated
with neutrals and anions. For all other computations, see Computa-
tional Details.

Figure 3. Mean absolute errors (MAEs) in the nonaqueous
(acetonitrile) pKa values of Scheme 2, as calculated using mixed
ESF values. pKa values of solute types labeled in red (PYR1−PYR5)
are calculated with cations and neutrals, while those in blue are
calculated with neutrals and anions. For all other computations, see
Computational Details.

Figure 4. Mean absolute errors (MAEs) of 45 aqueous pKa
calculations obtained with ESF = 1.1, 1.2, and 1.3.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00888
J. Chem. Theory Comput. 2019, 15, 6958−6967

6964

3.3. PUBLICATION 3 99



ESF values; hence, we studied various combinations to see how
they affect the pKa. For simplicity, only the results for
IEFPCM-UAKS are shown in Figure 5; results for the other
solvent models are available in Table S11 and show identical
trends to the IEFPCM-UAKS results below.
From Figure 4, we can see that, in water, ESF = 1.2 is

optimal, with errors increasing as its value is adjusted up or
down. This further confirms the optimization results above.
From Figure 5, the optimal combination in acetonitrile for
IEFPCM-UAKS is 1.1 for neutrals, 1.1 for cations, and 1.4 for
anions. This differs slightly from the optimal results in Tables
2−4 of 1.2 for neutrals, 1.1 for cations, and 1.4 for anions
which is equal to second best but gives an increase in error of
just over 1 pKa unit. This error is the same as the likely
uncertainty that the gas-phase acidity calculations contribute to
the pKa values is thus not significant. Thus, the initial
benchmarking gives close to the best results, the values for
the anions and cations are confirmed, and the change in the
neutrals is within the noise. Importantly, using our mixed ESF
values for pKa calculations can dramatically improve the
accuracy compared with using one uniform ESF value for both
neutrals and ions, especially compared with results using ESF =
1.1 (the default ESF value in the Gaussian 1643 program) for
all species. For example, for five carboxylic acids (CARB1−
CARB5), the accuracy of pKa values can be improved by
around 9 pKa units via using our mixed ESF values compared
with using ESF = 1.1 for all. Related data can be seen in Table
S12. This justifies the needs of using both our optimized ESF
values and mixed ESF values in calculating solution-phase
properties.

■ CONCLUSION
Herein we have determined optimal values of the electrostatic
scaling factor for IEFPCM and CPCM with both UAHF and
UAKS radii types in a variety of solvents as a function of solute
charge. For this purpose, we considered over 1719
experimental solvation Gibbs free energies and transfer free
energies of neutrals and ions from the MNSol-v2012 database,
as well as 45 aqueous pKa values including nine solute types
(amines, thiols, carbon acid cations, pyridines, alcohols,
anilines, carboxylic acids, carbon acid neutrals, and phenols)
and 20 pKa values in acetonitrile molecules covering four
solute types (phenols, carbon acids, carboxylic acids,
pyridines). Our key findings are as follows.

In water, the optimal ESF value is 1.2 and this does not vary
with solute charge, radius type, or whether PCM or IEF-PCM
is used, nor does it vary according to whether we consider the
MNSol-v2012 database or the prediction of a range of pKa
values. This robustness in water is likely the result of the large
amount of data available and the fact that the original
parametrization of the model was carried out in this solvent.
In acetonitrile, the optimal value of the ESF is different for

neutrals, cations, and anions, and their variation with charge is
physically intuitive. Based on the data available here, we
recommend ESF values of 1.1 for neutrals, 1.0 and 1.1
respectively for cations with UAHF and UAKS radii types, and
1.3 for anions for IEFPCM-UAHF and 1.4 for other anions.
These values are also largely consistent with those determined
from pKa calculations. Optimal ESF values in further solvents
can be found in Tables 2−4.
With 82 solute/solvent combinations taken from MNSol-

v2012 database, our calculations show that the changing
theoretical level for the solvation calculations has a small effect
on the optimal ESF values, and thus the optimal ESF values in
this work should be used according to the protocol used for
ESF benchmarking. Comparison between different solvation
models over the 82 solute/solvent combinations indicates that
our optimized CPCM-UAHF method performs slightly worse
than SMD and better than COSMO-RS, especially for
solvation of ions. However, unlike the others, optimal ESF
values (in this case for the initial CPCM calculation) have not
been determined for COSMO-RS and this may be worth
future investigation.
Despite ESF optimization, the accuracy of continuum

solvation calculations remains poor, especially for ions, and
this translates into large errors in pKa predictions. ESF
optimization is not a substitute for the appropriate use of
explicit solvent molecules when solute−solvent interactions are
important, nor the use of isodesmic methods to enhance
systematic error cancellation. Rather, one should optimize the
ESF on a very broad database of solvation energies, and treat
remaining system specific errors using these other system-
specific strategies. Considering the numerous combinations of
solvation model, surface type, radius type, theoretical level, and
solute and solvent types available, machine learning might be
useful for future works finding the suitable set of parameters
for accurate solvation modeling.
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Correction to Improving the Accuracy of PCM-UAHF and PCM-UAKS
Calculations Using Optimized Electrostatic Scaling Factors
Longkun Xu and Michelle L. Coote*
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*S Supporting Information

During the preparation of the manuscript, we inadvertently
made two mistakes: (1) We used aqueous solvation free

energy of proton for pKa calculations in acetonitrile, and (2) in
the comparison between the accuracy of SMD, our revised
CPCM-UAHF and COSMO-RS, we forgot to use the keyword
radii = klamt in generating cosmo files of 11 ions in water. Thus,
several figures and tables need to be changed; however, the
conclusions reached in the Article remain unchanged.
1. Correction to pKa Values in Acetonitrile. We

inadvertently used the aqueous solvation free energy of proton
in pKa calculations in acetonitrile in the original version. Here we
recalculate all pKas in acetonitrile using the experimental value of
the solvation free energy of proton as −260.2 kcal/mol as taken
from ref 1. All calculated pKa values in tab “pKa calculations” in
our original Supporting Information have been corrected; see
the corrected Supporting Information. It can be seen that the
accuracy of pKa calculations in acetonitrile reported previously is
underestimated. When using the correct solvation free energy of
the proton in acetonitrile, our calculated pKa results are much
improved compared that reported previously. Figures 3 and 5
and Supporting Information Tables S11 and S12 have been
changed.
In our original work, based on the results in the original Figure

5, we concluded the optimal ESF value of neutrals in acetonitrile
might need a slight change. While here, 2-1-4 gives the smallest
overall MAE, which proves using the ESF values obtained from
our benchmarking gives the best results among all possible ESF
combinations and does not need further change.

2. Correction to COSMO-RS Solvation Free Energies of
Ions inWater. In the comparison between the accuracy of SMD,
our revised CPCM-UAHF and COSMO-RS, we inadvertently
forgot to use the keyword radii = klamt in generating cosmo files

Published: December 20, 2019

Figure 1. Mean absolute errors (MAEs) of solvation Gibbs free
energies of neutral and ionic solutes calculated with different solvation
models.

Figure 3. Mean absolute errors (MAEs) in the nonaqueous
(acetonitrile) pKa values of Scheme 2, as calculated using mixed ESF
values. pKa values of solute types labeled in red (PYR1−PYR5) are
calculated with cations and neutrals, while those in blue are calculated
with neutrals and anions. For all other computations, see Computa-
tional Details.

Figure 5. Mean absolute errors (MAEs) of 20 pKa calculations in
acetonitrile obtained with different ESF combinations using the
IEFPCM-UAKS method. For example, 1-0-3 means using ESF = 1.1,
1.0, and 1.3, respectively, for neutrals, cations, and anions.

Erratum
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of the 11 ions in water, which makes the error of COSMO-RS
quite large. Related data in the “CPCM-UAHF VS SMD VS
COSMO-RS” tab in the Supporting Information and Figure 1 in
the main text need to be changed. Note that only COSMO-RS
solvation free energies of ions in water need to be changed, and
based on the new results, our revised CPCM-UAHF model still
outperforms COSMO-RS but not SMD, thus the main
conclusion and discussion in comparing these three solvation
models in our original paper does not change.
The “CPCM-UAHF VS SMD VS COSMO-RS” tab in the

Supporting Information now contains the correct solvation free
energies of 11 ions.
Thus, in Figure 1 of the publication, the mean absolute error

of the COSMO-RS solvation free energies of ions should be 8.36
kcal/mol, and that of all 82 solute/solvent combinations should
be 2.36 kcal/mol.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01191.

Detailed data of ESF benchmarking, comparison between
CPCM-UAHF, SMD, and COSMO-RS; calculation
results at ωB97X-D/6-31+G(d,p) theoretical level
(XLSX)
Main results of ESF benchmarking; raw data of pKa
calculations; optimized structures of 65 molecules (PDF)
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422.

Journal of Chemical Theory and Computation Erratum

DOI: 10.1021/acs.jctc.9b01191
J. Chem. Theory Comput. 2020, 16, 816−817

817

104 3.3. PUBLICATION 3



3.4. SUMMARY 105

3.4 Summary

Implicit solvent models are widely used in the study of chemical properties and reactions
in solution phase, and their accuracy can be affected by many factors. In this chapter, we
investigate several different protocols to improve the accuracy of the widely used SMD,
PCM-UAKS and PCM-UAHF solvation models.

For SMD, we compare three strategies including the choice of theoretical level, scaling
the solute cavity and using explicit solvent molecules. To test these different strategies,
we explore their effects on the accuracy of aqueous pKa calculations of a wide range of
solute types including methyl-substituted nucleic acid bases, carboxylic acids, aliphatic
and aromatic amines, carbon acids, alcohols, and anilines. The results suggest that the
choice of theoretical level is important for SMD, with the use of the mixed theoretical
levels for pKa calculations of cations and neutral species gives the best performance.
In contrast, the use of explicit solvent molecules does not further improve the results.
While for pKa calculations with anions involved, the use of explicit solvent molecules is
necessary. For molecules containing only C, H, O, N atoms, the cavity scaling is not
really necessary when the theoretical level and the explicit solvent molecules are dealt
with properly. Compared with the cavity scaling methods, our method is easier to use,
more versatile and more accurate.

For PCM-UAKS and PCM-UAHF, we systematically optimize the ESF values in both
aqueous and non-aqueous solution for a wide range of solute types. Using over 1719
experimental solvation Gibbs free energies and transfer free energies of neutral species
and ions from the MNSol-v2012 database, we present the optimized ESF values for the
solvation free energies of neutral species in 18 solvents, the solvation free energy of ions in 3
solvents, and the transfer free energies of neutral species in 9 solvents/water combinations.
The performance of the optimized ESF values are tested by pKa calculations of amines,
thiols, carbon acid cations, pyridines, alcohols, anilines, carboxylic acids, carbon acid
neutrals, and phenols in water and acetonitrile. It is found ESF=1.2 should be used
for hydration free energies. The mixed ESF method in non-aqueous solution that we
present can significantly improves the accuracy of pKa predictions. The tests using 82
solute/solvent combinations suggest CPCM-UAHF with our optimized parameters can
approach the accuracy of SMD.

These two publications are expected to be useful for future studies on the prediction
of solvation free energies and solution-phase properties (pKa and redox potential) of small
molecules.
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Chapter 4

Ordered Solvents and Ionic Liquids for
Electrostatic Catalysis

4.1 Introduction

Chemical reactivity can be dramatically influenced by electrostatic interactions. While
this was already known for redox reactions,[1] recently it was shown that external electric
fields can also influence the rates and selectivity of non-redox reactions.[2] More generally,
electrostatic catalysis, which catalysts are designed by tuning electrostatic interactions,
has become an important research field.[2–5] Electrostatic interactions arise in a variety of
scenarios,[6] for example, STM-BJ,[2] ionic aggregates,[7] reactant-ion interactions,[8] the
air-water interface,[9–11] solid-liquid interface,[12–14] and pH-switchable charged func-
tional groups[15, 16].

Electrostatic catalysis has been widely explored by computational techniques.[17]
The pioneering works of Shaik and co-workers provided the first simulation of a reac-
tion (in the gas phase) in an electric field, showing how the electric field affected the
reaction.[18] A series of works has investigated the effects of CFG embedded on substrates
or catalysts[15, 19–22]. These works highlight the impact of electrostatic catalysis on the
fields of electrochemistry, photochemistry and polymer chemistry. One common point of
the above works is that the reactions were in gas phase or pure organic solvents,[19, 23, 24]
and implicit solvent models were used to model the bulk solvent environment. For mod-
elling of the electrostatic catalysis in complex solvent environments, the effects of electric
field and electrostatic interactions usually require MD simulation techniques for dynamic
simulations at different time scales.[25–27]

Although electrostatic interaction shows promise in achieving efficient catalysis, and
the laboratory experiments at single-molecule level already demonstrated the effects of
external electric field[2], so far, its widespread implementation is limited by the scalability
of platforms.[6] Further, polar solvents attenuate electric fields, which is another bottle-
neck to achieve large-scale electrostatic catalysis. Chemical synthesis frequently requires
polar solvent environments, and the solubility of charged species in low-polarity solvents
is often low.[28]

Things that we explicitly highlight here are the effects of the solute-solvent and
reactant-enzyme interactions. Solvent reorganization and the associated change in solute-
solvent interactions are the driving force for outer-shell electron-transfer reactions in so-
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lution, according to Marcus theory.[29, 30] It is is widely recognised that electrostatic
effects play an important role in the catalytic power of Enzymes, Nature’s catalysts. As
discussed in the works of Warshel[31] and Boxer[32, 33], the relationship between electro-
static field from enzyme and reactants dramatically determines the kinetics of reactions.
In summary, these works showed that both the solvent and enzyme environments could
be engineered as both reaction media and catalysts, which offers a strategy to address the
above issues and to achieve large-scale electrostatic catalysis in polar solvent media.

It is also known that the degree of order in organic solvents can be influenced by many
factors. For example, water can become ordered in an external electric field. Foroutan-
Nejad and co-workers found the magnitude and directions of the external electric field
could change the orientation of water molecules to form hydrogen-up or hydrogen-down
configurations, which further influenced the ion-receptor interactions in the system.[34]
Laird and co-workers reported a decrease in dielectric constant of solvents within an
external electric field.[35] Li, Cheng and co-workers reported the changes in the orientation
of electrified interfacial water structures.[36] In addition to electrochemical interfaces, the
ordered structure of water has also been observed at the calcite-water interface.[37] The
relationship between solvent orientation and the reaction rate of the Menshutkin reaction
under an external electric field has been investigated by Shaik and co-workers.[38]

Compared with conventional organic solvents, RTILs have their advantages. For ex-
ample, RTILs hold properties including high conductivity, low volatility and low melting
temperature. These properties are important factors in designing solvents for practical
applications.[39] RTILs are widely recognized as green solvents in comparison with con-
ventional organic solvents[40]. RTILs have been applied to a wide range of fields including
synthesis, catalysis, clean technology and most commonly, electrochemistry.[40–46] Un-
like traditional organic solvents, the properties of ionic liquids can be tailored by various
combinations of the cation and anion components.[40]

For the applications of RTILs in electrochemistry, an important consideration is the
ordered structure near the charged electrodes and under external electric fields.[47, 48]
This is closely related to the electrochemical double-layer structure. Different theoretical
models have been proposed to understand the double-layer structure[49–51] and associated
electrocatalysis and the design of batteries and supercapacitors.[52, 53] Besides the Gouy-
Chapman-Stern model[54] and mean-field theory,[51], self-consistent field theory and DFT
methods have also been used.[55–57]

Many other factors in addition to external electric field can affect the ordering of ionic
liquids. For example, Padua and co-workers found that interactions between the metal
surface and ionic liquids can influence the population of ionic liquids at the surface.[58] It
was reported by Slattery and co-workers that temperature could significantly affect the
ordering of LCILs, which was shown an ordered reaction medium to change the endo/exo
ratio of the Diels–Alder reactions.[59]

Computational techniques have been applied to quantitatively investigate the ordered
structures of ionic liquids. For example, Wang employed the average reduced heterogene-
ity order parameters and average second Legendre polynomials to quantify the cationic
orientation with respect to the direction of the external electric field.[48] Although many
efforts have been made to understand the ordered structure of ionic liquids, some ques-
tions remain unclear, such as the time scale for the relaxation of ordered ionic liquids.[60]
This time scale is important to understand the dynamic details in applying ordered ionic
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liquids to electrostatic catalysis and comparing the time scales of the relaxation of ordered
ionic liquids and that of chemical reactions.[61]

In experiments, fast and staightforward measurement of ionic liquids has not been
performed yet to directly relate experimental observations with the time scale of ordered
ionic liquids. Moreover, it is meaningful to determine the correlation between the observed
quantities and calculated results.

Motivated by the above works, studies in this chapter were conducted to understand
two points:

(1) Exploring the feasibility of using ordered solvent and ionic liquids for electrostatic
catalysis.

Modelling ionic liquids is harder than pure organic solvent, and is usually beyond the
capacity of implicit solvent models. It is challenging to obtain accurate parameters such as
the dielectric constant for ionic liquids. However, this is true not only for ionic liquids, but
also for solvent mixtures, interfaces, and ordered environments. In this thesis, all solvent
environments except for pure organic solvent are called complex solvent environment.
To model electrostatic catalysis in complex solvent environments, especially in ordered
solvent environments, two factors are important. The first is system sampling as solvent
environment is hard to describe by a continuum, and hence explicit solvents are required.
The other factor is accuracy of the calculations of electrostatic interactions between solute
and the complex solvent environment, especially the mutual polarization. In this chapter,
we employ multi-scale methods. Specifically, we used a relatively cheaper method for the
MD simulation of the systems in combination with an accurate method for the calculations
of electrostatic interactions for a set of representative configurations taken from the MD
simulations. On the basis of this multi-scale protocol, a further ONIOM multi-scale energy
calculation scheme is used to more accurately describe electrostatic interactions.

To model ordered solvent environments under an external electric field, a polarizable
force field should be used to include polarization effects. There are three main types of
polarizable force field, namely the fluctuating point charge method,[62] induced dipole
method (for example, the AMOEBA force field)[63] and Drude oscillator method[64]. In
this chapter, we use the Drude oscillator method, a simple scheme of which is illustrated
in Figure 4.1. We choose this type of polarizable force field as it achieves good accuracy
while still preserving the simple particle-particle Coulomb electrostatic interactions as
those in non-polarizable force fields. Especially CL&Pol force field, which is an open-
source method developed on the basis of OPLS-AA force field. It can produce structures,
static and dynamic properties of ionic liquids under external electric field very accurately,
which has been confirmed by many works including the recent one of Kirchner, Welton
and co-workers.[65]

Figure 4.1: The Drude oscillator based polarizable force field.
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In Drude polarizable force field, the particle C1 in Figure 4.1 can be separated into an
particle C2 and D, which is an auxiliary particle attached to the polarizable atom via a
harmonic spring. The half-stiffness KD, the Drude charge qD and the atomic polarizability
α are connected as:

KD =
1

2

q2D
α

(4.1)

There are two different implementations of Drude polarizable force field, including that
proposed by Lamoureux and Roux[64] and that by Schroder and Steinhauser.[66] Details
about the difference between the two schemes and usage in LAMMPS can be found in
Ref.[67].

In this thesis, we used the ONIOM(QM:QM’) method to calculate the electrostatic
interactions between solute and solvent molecules in the systems. The energy of a full
system EQM :QM ′

full is calculated as:

EQM :QM ′

full = EQM
core + EQM ′

full − EQM ′

core (4.2)

where EQM
core is the energy of the core area (usually the isolated solute molecule) using a

high-level QM method, EQM ′

full is the energy of the full system (both solute and solvent
molecules) using a low-level QM’ method, and EQM ′

core is the energy of the core area using
the low-level QM’ method. Although more advanced and accurate QM/QM’ embedding
methods exist[68–71], the accuracy of the energy obtained with this ONIOM(QM:QM’)
scheme is well accepted, as can be seen in the discussions in Section 4.2 and Section 5.2.

(2) With the above point, the central question is how the ordered solvent environments
influence reaction kinetics. Besides, several questions remain unanswered. For example,
how to characterize and compare the order degree of different ionic liquids using both
computed and experimental techniques? How to correlate the computed and observed
quantities? Thus, the second aim of this chapter is developing both experimental and
computational methods to characterize the degree of order in ionic liquids. In short, OCP
is utilized to characterize the lifetime and degree of order of ionic liquids. The measured
OCP result is correlated with calculated quantities including ion dipole projections, diffu-
sion coefficient of cation, and its volume from the trajectory of our polarizable molecular
dynamic simulations of RTILs, for each of [EMIM][PF6], [HMIM][PF6], [EMIM][EtSO4]
and [BMIM][NTf2].

In summary, the two works in this chapter focus on structures and properties of ordered
solvent environments as well as their potential use in electrostatic catalysis. Bubble
surface, as another type of complex solvent environment for electrostatic catalysis, will be
introduced in the next chapter. Modelling these complex solvent environments beyonds
the capability of implicit solvent models mentioned in Chapter 3. Studies in this field
are useful not only for understanding catalysis effects, but also useful as a test for further
development of accurate multi-scale methods for MD simulations and energy calculations.
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ABSTRACT: Herein, we employ classical molecular dynamics simu-
lations using the Drude oscillator-based polarizable force field, quantum
chemical calculations, and ONIOM multiscale calculations to study (a)
how an external field orders the solvent environment in a chemical
reaction and then (b) whether in the absence of this same applied field
the ordered solvent environment alone can electrostatically catalyze a
chemical reaction when compared with the corresponding disordered
solvent. Our results show that a 0.2 V/Å external electric field, which is
below the threshold for bond breaking of solvent molecules, leads to
significant ordering of bulk methanol solvent and the ionic liquid
[EMIM][BF4]. Importantly, in the absence of this same field, the ordered
solvent lowers the activation energy of the hydrogen-transfer reaction of
o-alkylphenyl ketones in excess of 20 kcal/mol when the solvent is methanol and by over 30 kcal/mol for [EMIM][BF4]. Even a 0.1
V/Å external field has effects of ca. 10 and 20 kcal/mol, respectively. This work suggests a possible strategy for scaling electrostatic
catalysis by applying a pulsed external field to the reaction medium to maintain solvent ordering while allowing the reaction to
proceed largely in the absence of an external field.

■ INTRODUCTION
The role of the electrostatic environment in catalyzing
chemical reactions has long been an important research field.
Two classical examples are Marcus theory1,2 and enzyme
catalysis.3−6 In Marcus theory, solvent reorganization is the
driving force for electron-transfer reactions, though internal
reorganization can also be large. One of the explanations for
enzyme catalysis is that the enzyme can stabilize the polar
transition state via electrostatic interactions.3,4,7

In recent years, much research has been directed at
harnessing electric fields for catalyzing and manipulating
chemical reactions beyond enzymes.8−10 While much of this
work has been computational, experiments have shown that
external electric fields (EEFs) delivered via scanning tunneling
microscopy (STM) can catalyze bond-forming11 and bond-
breaking reactions.12 While these experiments are difficult to
scale for chemical synthesis, we have shown that the electric
fields from remote charged functional groups, embedded on
the substrate or a catalyst, can be used to catalyze chemical
reactions and alter their outcome.13−25 The charged group can
be a Lewis acid or Bronsted acid or base whose charge and
hence electric field can be altered with pH. While again much
of the work to date has been computational, experiments have
validated these predictions in a growing number of
systems.17−20,26,27 Others have shown that electrostatic effects
are responsible for the catalytic effect of metal-ion clusters on
gas-phase reactions28−30 and that electrostatic effects are of
general importance in heterogeneous catalysis.31

Despite these advances, there remain fundamental barriers
to taking full advantage of electrostatic catalysis. On one hand,
use of charged groups is an effective and scalable way to exert
very precise electrostatic control over chemical reactions.
However, the magnitude of such effects can be compromised
by solvent attenuation, particularly as the solubility of the
charged species in low-polarity solvents is often low. Use of
external electric fields avoids solubility issues, but STM
experiments are very small in scale, while scale up using
electrodes has thus far resulted in electrochemical reactions.12

While these may be useful in their own right32 and while the
electric fields undoubtedly influence the electrochemical
processes themselves,33,34 use of external fields to afford
significant electrostatic catalysis in solution is yet to be realized.
To use external electric fields for electrostatic catalysis

alternative approaches are required. One such approach is to
use external fields to orient the solvent environment. The
ordering of the solvent and ionic liquids (ILs) induced by an
external electric field has already been reported by several
groups. For example, Foroutan-Nejad and co-workers found
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EEFs can break the solvation shell and thus affect the ion−
receptor interactions.35 Laird and co-workers reported that the
structure of the solvent framework and associated dielectric
properties can be changed by an electric field.36 Matta and co-
workers showed that the electric field of a laser pulse can be
used to eliminate (or even invert) a potential energy barrier of
a reaction.37,38 The ordering of the network of ionic liquids,
which offer many advantages,39−41 can also be changed by
factors including the electric field, temperature, and length of
the side chain of cations and metal surfaces, as shown by
Wang, Voth, and Pad́ua.42−45

Recent computational work has shown that external fields
can both order the solvent environment and catalyze chemical
reactions.46−50 However, given the propensity for external
electric fields to trigger electrochemical reactions, a more
practical question is whether, in the absence of a field, local
electric fields within the ordered solvent environment itself are
sufficient to catalyze a chemical reaction. Thus, solvents could
be preordered with a field, and then reactions would be
allowed to proceed without the external electric present. This
could be carried out by pulsing the applied potential, thereby
minimizing exposure to the external potential. While in a
normal electrochemical cell the potential beyond the double
layer is negligible, bipolar cells51 could address this problem.
Indeed, solvents could be preordered in other ways such as
using microfluidics.
In this work, we use both Drude oscillator-based polarizable

classical molecular dynamic (MD) simulations and multiscale
quantum chemical calculations to determine if an ordered
solvent environment is enough to catalyze a chemical reaction
in the absence of an applied electric field. As a case study, we
examine a hydrogen-transfer reaction of o-alkylphenyl ketones
taken from our recent work (Figure 1).24 We consider two
solvent environments, methanol and the ionic liquid [EMIM]-
[BF4], where EMIM is the 1-ethyl-3-methylimidazolium
cation.

■ RESULTS AND DISCUSSION
Classical molecular dynamics simulations using the Drude
oscillator-based polarizable force field,53−55 quantum chemical
calculations, and ONIOM multiscale calculations were used to

study the ordering effect of an external field on the solvent
environment in a chemical reaction and the effect of this
solvent environment in the absence of the applied field. Figure
2 shows the general workflow used to order the solvent in the
electric field and simulate its effects on the reaction in Figure 1.
Full computational procedures and parameters are provided in
the Supporting Information.

Effect of External Fields on the Solvent Environment.
To visualize how the environment is ordered under the
influence of an external electric field, the representative
snapshots obtained with MD simulation of TS solute in
methanol solvent and [EMIM][BF4] ionic liquids under 0 and
0.2 V/Å electric fields are shown in Figure 3.
It can be seen from Figure 3 that the distribution of

methanol solvent molecules in the simulation box changes
obviously after a 0.2 V/Å external electric field is applied. In
Figure 3a, methanol solvent molecules are distributed
randomly, while in Figure 3b, most O atoms of methanol
point to the right because the external electric field is pointing
to the left and the O atoms have negative partial charge.
Conversely, the methyl groups which have a positive partial
charge point in the opposite direction. Thus, the internal
electric field runs from left to right, opposite to that of the
external electric field.
In contrast, the change of the distribution of [EMIM][BF4]

resulting from the external electric field is less obvious. One
possible reason is that the ionic liquids environment has two
types of molecules (cations and anions). Unlike methanol
molecules, the cations and anions move independently of one
another. Besides, the cations and anions can form strong
electrostatic interactions with their near neighbors that drown
out higher level ordering. This competition between the
external electric field and the electrostatic interactions between
ions can also be found in the work of Wang.44 Use of stronger
fields can overcome this;44 however, because the bonds of the
methanol solvent might be broken under a higher electric
field,77 as reported by Saitta and co-workers, we do not
consider electric fields larger than 0.2 V/Å for all environ-
ments.
Although the ordering of ionic liquids is less obvious, it can

be confirmed by the results of the radial distribution function
(RDF) in Figure 4. The RDFs in normal and ordered ionic
liquids are obtained using the Travis program.67 Only the
distances from 0 to 1700 pm are shown here. Full details can
be found in Table S8. The distance between the cation and the
nearest anion is around 500 pm, but the radial distribution
function g(r) obtained in normal ionic liquids is much larger
than that in ordered ionic liquids. This can be explained by
comparing the simplified structures of normal and ordered
ionic liquids in Figure 4b and 4c. In normal ionic liquids, the
cations and anions usually form the alternative charge
structures, like Figure 4b, as shown in Figure 2 of the work
of Izgorodina and co-workers.78 When an external electric field
is applied, the structure can be changed to Figure 4c, where
closer cation−cation and anion−anion distances become
possible. The most classical example for this is probably the
electrochemical double layer, for example, see Figure 3 in the
work of Sharma and co-worker79 This point has been also
discussed in the works of Kaneko80 and Kornyshev.81 With the
change from normal ionic liquids to ordered ionic liquids, the
closer cation−cation and anion−anion pairs become possible;
thus, the number of nearest cation−anion pairs decreases. As a
result, our calculated RDF in Figure 4a indicates the ordering

Figure 1. (a) Hydrogen-transfer reaction of o-alkylphenyl ketones.
Optimized structures of the reactant (b) and transition state (c) of
this reaction and the direction of the EEF. For more details of the
reaction, see ref 24. Structures are rendered using the CYLview
program.52
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Figure 2.Workflow to calculate the activation energies. CL&Pol (KSDrude) force field56−58 was used for the ionic liquid (IL) and OPLS-AA force
field59 for the methanol and solute. Force-field parameters and polarizabilities were taken from the literature and/or calculated using published
methods60−66 and are provided in Tables S1−S6 of the Supporting Information. The simulation box, with periodic boundary conditions, initially
has a size of 25 and 34 Å for methanol and the IL, respectively. Molecular dynamics simulations are performed using the Nose−́Hoover thermostat
and barostat with time steps of 0.5 and 0.4 fs for simulations in methanol and [EMIM][BF4], respectively. From the last 5 ns the NVT simulations
we extract 100 snapshots using the cut function of the Travis program.67 Energy in each snapshot is calculated with ONIOM68(M062X69/def2-
TZVPP:70PM771). Number of snapshots required to obtain an accurate barrier height is determined by benchmarking using high-level quantum
chemical results obtained with the methods presented in refs 72−75. Full details of all calculations are in the Supporting Information.

Figure 3. Snapshots obtained without and with a 0.2 V/Å external electric field of the TS solute molecule in methanol (a and b) and in
[EMIM][BF4] ionic liquids (c and d). For clarity, only non-hydrogen atoms of the solute molecule are shown in the VDW drawing method. Only
C (in green) and O (in red) atoms of the methanol molecules (a and b) are shown. Only N (in blue, atom N3 in Figure 4d) and B (in pink) atoms
representing the mass centers of the cations and anions, respectively, of [EMIM][BF4] ionic liquids (c and d) are shown. All pictures are rendered
using the VMD program.76 External electric field is applied along the z direction.
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of ionic liquids does happen, although it is less obvious in
Figure 3d.
Effect of Ordered Solvent Environment on Reactions.

Figure 5 shows the activation energy in normal and ordered

environments. We again stress that these species are calculated
without the external field present; the field strength refers to
that used to order the solvent environment. The energy used
to calculate the activation energy is obtained by averaging the
ensemble of snapshots (full details can be found in Tables S9
and S10).
From Figure 5 we can see the activation energy in both

methanol and [EMIM][BF4] is decreased in the presence of
the ordered solvent environment. In methanol, the activation
energy changes substantially from 44.20 kcal mol−1 in normal
methanol solvent to 36.96 kcal mol−1 in ordered methanol
solvent formed by a 0.1 V Å−1 electric field and then changes
to 24.19 kcal/mol in ordered methanol solvent formed by a 0.2
V Å−1 electric field. Similarly, the obtained activation energy
decreases from 44.34 kcal mol−1 in normal disordered ionic
liquids to 21.03 and 13.49 kcal mol−1 in ordered ionic liquids

formed by, respectively, 0.1 and 0.2 V Å−1 external electric
field.
The electrostatic origin of the barrier lowering is evident in

Figure 6, which shows representative snapshots from the MD
simulation without and with the 0.2 V Å−1 electric field. Also
shown are the corresponding dipole moments of the system
and the reaction axis.9 The reaction axis is the direction along
which the electrons reorganize from reactant-like to product-
like bonding (in this case, the local dipole moment across the
forming and breaking bonds). A field aligned parallel with the
reaction axis stabilizes the transition state. Without an external
electric field, solvent molecules are randomly distributed and
the dipole moment is almost is perpendicular to the reaction
axis. With the external electric field, the dipole moment is
larger, its direction is nearly parallel to the reaction axis, and its
polarity is primed to stabilize transition state, hence accounting
for the barrier lowering observed.
We note that the actual activation barrier decrease measured

from experiment might be smaller than what we calculate. The
reasons are 2-fold. First, in our MD simulation, the external
electric field is identically applied to all particles in the system
while the electric field strength felt by different particles in the
experimental electrochemical cell should be different and
depend on the distance from the charged electrodes. However,
as noted in the Introduction, use of bipolar electrochemical
cells could address this problem.
Second, we assume the solvent remains ordered through the

whole reaction process. The relaxation from ordered solvent to
normal disordered solvent is ignored. Thus, a time-dependent
nonequilibrium simulation should give more accurate results.
However, these are beyond the scope of the present work.
Instead, we note that experimental studies report that liquid
solvents such as methanol relax on the order of 0.1−10 ps,83

which is faster than the time scale of our reaction. However, for
ionic liquids relaxation times are slower and can be tuned
through cation and anion choice. Typically, relaxation times on
the order of 1 s are observed over temperature ranges of 300−
330 K,84,85 but longer times of up to 100s are frequently
reported.86 These are longer than the corresponding half-life of

Figure 4. (a) Radial distribution function (RDF) between [EMIM] C2 atoms and [BF4] B1 atoms in normal and ordered ionic liquids. (b and c)
Simplified model of normal ionic liquids and ordered ionic liquids, respectively, where the interactions between the center cation and the nearest
anion are labeled. (d and e) Structure of the cation and anion and their atomic index, respectively; pictures are rendered using the IQmol
program.82

Figure 5. Calculated activation energy obtained in methanol solvent
and the ionic liquid [EMIM][BF4] without an external electric field as
a function of the field strength used to order the surrounding solvent
environment.
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the reaction studied here in the ordered ionic liquid (102−101
s at 0.1 V Å−1 and 10−3−10−4 s at 0.2 V Å−1 for 300 and 330 K,
respectively).

■ CONCLUSION

In summary, we propose a new strategy for electrostatic
catalysis. Using ordered solvent and ionic liquids to catalyze
reactions is environmentally friendly and can effectively solve
the solvent-attenuation problem in current electrostatic
catalysis. Results of the hydrogen-transfer reaction of o-
alkylphenyl ketones obtained by combining polarizable
classical MD simulation with ONIOM energy calculation
indicate that both ordered methanol solvent and [EMIM]-
[BF4] ionic liquids can help decrease the activation energy
significantly. Using larger electric field strengths can make the
environment more ordered, which provides stronger electro-
static catalysis effects. Currently, we are undertaking
experimental work in our group to validate the computational
predictions. However, tentative experimental support for our
work comes from the results of Slattery and co-workers, who
showed that liquid-crystalline ionic liquids (ICILs) can work as
an ordered reaction medium driven by the temperature change
to change the exo/endo ratio of the Diels−Alder reaction.87
More generally, our work suggests that electrostatic effects on
solution-phase catalysis should not be ignored when studying
other ordered environments such as at electrochemical
interfaces or in nanoconfined environments.
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5 ABSTRACT: Herein we demonstrate that ionic liquids can form long-lived
6 double layers, generating electric fields detectable by straightforward open
7 circuit potential (OCP) measurements. In imidazolium-based ionic liquids an
8 external negative voltage pulse leads to an exceedingly stable near-surface
9 dipolar layer, whose field manifests as long-lived (∼1−100 h) discrete
10 plateaus in OCP versus time traces. These plateaus occur within an ionic
11 liquid-specific and sharp potential window, defining a simple experimental
12 method to probe the onset of interfacial ordering phenomena, such as
13 overscreening and crowding. Molecular dynamics modeling reveals that the
14 OCP arises from the alignment of the individual ion dipoles to the external
15 electric field pulse, with the magnitude of the resulting OCP correlated with
16 the product of the projected dipole moment of cation with the ratio of
17 predicted diffusion coefficient of cation and its volume. Our findings also reveal that a stable overscreened structure is more likely to
18 form if the interface is first forced through crowding, possibly accounting for the scattered literature data on relaxation kinetics of
19 near-surface structures in ionic liquids.

20 ■ INTRODUCTION

21 Room-temperature ionic liquids (RTILs) are liquids with
22 melting points below 100 °C, composed solely of anions and
23 cations.1,2 They have been known for over a century3 but
24 entered mainstream electrochemical research only in the middle
25 of the 1990s with the discovery of RTILs with stable anions.4

26 Several such RTILs are now commercially available, and unlike
27 conventional solvent-based electrolytes they can have exceed-
28 ingly large electrochemical windows.1,4,5 This makes them
29 valuable in applications ranging from energy generation and
30 storage to electrocatalysis.6−9

31 RTILs typically comprise large unsymmetrical ions10 that
32 form what can be approximated as a coordinated network of
33 ions,11,12 with intermolecular forces tunable through changes in
34 the molecular structure of the ions.13,14 The unique nature of
35 RTILs has important implications for the structure and
36 dynamics of their interface with solid electrodes. While large
37 molecular sizes and conformational flexibility prevent the
38 formation of an ordered solid in the bulk,15 RTILs at interfaces
39 are inherently ordered.16 Specifically, RTIL double-layer
40 structures17−19 formed in the proximity of charged electrodes
41 are of great practical importance as this phase boundary governs
42 charge transport, energy storage, and lubricating properties of
43 electrode−RTIL systems.9,20,21 As the electrode is charged away
44 from its potential of zero charge (PZC hereafter) in response to
45 an external bias, counterions are enriched in the first ionic layer,
46 where their lateral diffusivity is lower than in bulk.22 This

47charged first layer induces a second ionic layer of opposite
48charges and so on, causing the potential profile to decay with
49damped oscillations.
50Despite a general consensus on the presence of an alternating
51out-of-plane arrangement of cation- and anion-rich layers,23,24

52the exact short-range ordering of RTILs near electrodes remains
53unclear.16,25−28 To date, experimental insights on the interface
54between RTILs and electrodes have relied on technically
55demanding atomic force microscopy,24,29 X-ray reflectometry
56(XRR) experiments, and Raman spectroscopy.17,30 The lack of
57routine and straightforward measurements, suitable to probe the
58electrode−ionic liquid interface, is part of the reason why details
59of the near-electrode structure are still unclear. In the present
60work we address this problem by introducing open-circuit
61potentiometry as a rapid and technically simple method to probe
62the interface between RTILs and electrodes.
63First, quantitative data on RTIL double layer dynamics, as
64well as data on the magnitude of the potential required to trigger
65the formation of ordered layers, are scattered. While solvation
66dynamics of bulk RTILs have a time scale between picoseconds
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67 and nanoseconds,31 the relaxation of RTILs at interfaces is
68 significantly slower.32−35 But how slow is unclear, with available
69 data indicating relaxation times varying between a few seconds
70 to several minutes.32,35

71 Second, while some authors argue that at potentials close to
72 the PZC counterions will already overscreen electrode
73 charges,26,36 others advocate for such features occurring only
74 at larger biases and persisting over large potential windows.37−39

75 For instance Yamamoto and co-workers put forward data in
76 favor of RTILs overscreening at biases around +1.5 V,18 while
77 Uysal and co-workers observed this already at −0.4 V.40

78 Moreover, there is also the hypothesis of electrode “crowding” at
79 large anodic and cathodic excursions,26,41 as well as a debate
80 around whether the thickness of the first ionic layer drops with
81 increasing electrode charges42−44 or whether it remains
82 essentially unchanged.45 Addressing these issues is important
83 because the phase boundary ultimately governs how energy is
84 stored in the electric field of electrochemical devices, such as
85 capacitors,9,46,47 and how accessible the electrode surface is
86 toward charge-transfer reactions. The latter is emerging as a
87 viable strategy for controlling the balance between inner- and
88 outer-sphere competing electron transfer reactions for both
89 electrocatalysis and electrosynthesis.48,49 Moreover, recent
90 computational work has shown that ionic liquids that are
91 ordered as a result of exposure to external electric fields can

92generate strong internal electric fields that electrostatically
93catalyze chemical reactions, even when the external field is
94removed.50 Experimental confirmation of these fields, and
95measurements of their lifetime, would be the first step toward
96harnessing these electrostatic effects in chemical synthesis.51−54

97By means of open-circuit potentiometry, we demonstrate that
98at electrode surfaces RTILs assume stable ordered structures
99and generate significant endogenous electric fields that persist
100for days after an external potential is removed.

101■ RESULTS AND DISCUSSSION

102Interfacial Dynamics of [EMIM][EtSO4]. Prior to studying
103the response of RTILs to an applied potential, we conducted a
104search of the minimum of the electrode−RTIL capacitance as a
105function of the electrode potential. This minimum provides a
106baseline reading for the disordered RTILs against which the
107ordered RTILs could be compared, and it was obtained through
108electrochemical impedance spectroscopy (EIS). The potential
109where capacitance reaches a minimum generally coincides with
110the electrode PZC,43 and EIS measurements with platinum
111 f1electrodes indicate that this is close to −0.6 V vs Fc/Fc+ (Figure
112 f11a). The accumulation of counterions at the electrode surface is
113likely to occur in both bias directions,27 implying that the
114positive and negative branches of the capacitance−potential

Figure 1. (a) Representative electrochemical impedance spectroscopy (EIS) capacitance−potential plot, with a schematic depiction of the onset of
overscreening and crowding in correspondence of local capacitance maximum and minimum, respectively (platinum disk in [EMIM][EtSO4]). The
vertical arrow indicates the system initial OCP value, prior to any external biasing. Representative OCP−time measurements for platinum electrodes
immersed in [EMIM][EtSO4] were recorded after the application of negative (b, c) and positive (d) potential steps (60 s,±2.0 V relative to the initial
OCP). Dotted horizontal lines represent the average initial OCP. (b) Negative bias excursions lead to very stable OCP plateaus located between−1.1
V and −1.3 V vs Fc/Fc+. (c) A relatively short-lived and more negative OCP plateau, found between −1.9 V and −2.0 V, is evident upon close
inspection of the first 30 min of the OCP relaxation data. The gray shaded area in (b) indicates the data region shown in (c).
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115 curve around the PZC are delimiting bias regions where the
116 liquid side of the interface is enriched of either anions or cations.
117 Prior to exposure to an applied potential, the rest open circuit
118 potential (OCP) was generally only slightly positive of the PZC.
119 After a short (60 s) potential step equal to or smaller than±1.0 V
120 away from this initial OCP (dashed arrow and dashed horizontal
121 lines in Figure 1) we were only able to record a rapid, <30 min,
122 equilibration of the electrode potential back to its initial rest
123 value (Supporting Information, Figure S1). In this respect an
124 electrode−RTIL interface, such as platinum immersed in
125 [EMIM][EtSO4], behaves qualitatively similar to the interface
126 formed between electrodes and conventional molecular solvent-
127 based electrolytes, such as Bu4NClO4 in acetonitrile (Support-
128 ing Information, Figure S2). Surprisingly, the experimental OCP
129 relaxation was rapid despite the magnitude of the cathodic step
130 (−1.0 V) being more than sufficient for the interface to reach its
131 capacitance maximum (approximately −1.1 V vs Fc/Fc+, Figure
132 1a). It is therefore probable that the −1.0 V step triggered the
133 formation of an ordered overscreened interface,41,55 but this
134 structure did not persist once the external bias was removed. As
135 ordering will progressively increase with bias18 and since
136 capacitance drops under fully occupied conditions,23 the
137 presence of a minimum in the negative branch of the
138 capacitance−potential curve at approximately −1.9 V vs Fc/
139 Fc+ (Figure 1a) suggests the possibility of a thicker first layer of
140 counterions forming at this more negative bias. We
141 consequently measured the OCP relaxation that followed a
142 cathodic step of −1.5 V from the initial rest potential. Once
143 again, this bias is sufficient for the system to reach the
144 capacitance minimum (crowding), but OCPs still relaxed
145 asymptotically and very slowly (∼3 h).
146 A remarkably different response was observed when the
147 electrode potential was disturbed away from its rest potential by
148 a potential step as large as−2.0 V. Applying such a large negative
149 pulse was effective in locking the interface in a stable “cation-
150 rich” configuration. This cation-rich ordered configuration
151 manifested as an OCP plateau between −1.1 V and −1.3 V vs
152 Fc/Fc+, which persisted rarely less than 6 h (Figure 1b) and
153 occasionally up to 4 days (Supporting Information, Figures S3−
154 S6). Importantly, the position of these long-lived OCP plateaus
155 matches the onset of overscreening as assessed by EIS (Figure
156 1a). A closer inspection of the first part of the time-resolved

157OCP measurements revealed the consistent presence of a more
158negative plateau between −1.9 V and −2.0 V (Figure 1c). The
159position of this initial plateau closely matches the onset of
160crowding in the EIS data (Figure 1a). These initial cation-rich
161surface structures persist only for short times, from a few seconds
162to ∼30 min, which is of the same order of magnitude of
163relaxation times obtained for ionic liquid systems through much
164more complex techniques.32,40

165Chemisorption reactions, potentially triggered by the
166cathodic pulse, are an unlikely cause for the plateaus. For
167instance, while very gentle vibrations of the electrochemical cell
168did not disturb an overscreening OCP plateau, extracting and
169reimmersing the electrode in the liquid were enough to reset the
170initial OCP (Supporting Information, Figure S6). Molecules
171chemisorbed on surfaces are not so easily removed.56 Further
172evidence against chemisorption is the lack of a change in
173electrode active area following the pulse (Supporting
174Information, Figure S7).
175The existence of such negative plateaus is in accordance with
176the theory of Kornyshev and co-workers, where multiple layers
177of counterions balance surface charges (see schematics in Figure
1781a).26,57 Interestingly, only when the metal charge density has
179sufficiently decreased can the double layer then adjust to an
180overscreening organization, where just a monolayer of counter-
181ions balances the surface charge (Figure 1a). In brief, implicit
182from our data is that a stable overscreened arrangement forms if
183the system is first forced into crowding. On the other hand, OCP
184relaxation responses following positive potential steps were
185featureless: no plateaus were detected and OCPs relaxed
186asymptotically (Figure 1d). A similar conclusion was previously
187reached by AFM data, where the force required for an AFM tip
188to push through the first ionic liquid layer was significantly larger
189for negative biases.27,45 It was therefore not surprising that the
190occurrence of these negative OCP signatures was largely
191independent of the nature of the anion, with for instance
192[EMIM][EtSO4] behaving very similarly to [EMIM][BF4]
193(Supporting Information, Figure S8). We have not tested
194[EMIM][PF6] because, in spite of its commercial availability, it
195is not liquid at room temperature.
196Comparison of Different RTILs.To define the generality of
197OCP measurements in probing interfacial dynamics, we then
198proceeded to test a range of RTILs with different cations.

Figure 2. Representative OCP−time measurements acquired with platinum electrodes immersed in [BMIM][PF6] (a), [HMIM][PF6] (b), and
[P14666] [NTf2] (c) after a negative potential step (60 s). The potential step was −2 V away from the electrode initial rest OCP (dotted horizontal
lines). The gray shaded areas in (a, b) indicate the data plotted as figure insets. Data in (a) reveal the onset of crowding in [BMIM][PF6] as an OCP
vertical step located between −1.7 V and −1.8 V. The overscreening OCP signature is found between −0.9 V and −1.0 V. (b) OCP−time data for
[HMIM][PF6] with evidence of discernible OCP plateaus at approximately −1.7 V and poorly defined plateaus between −1.0 V and −0.75 V.
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199 Imidazolium cations with longer alkyl side chains have higher
200 permanent dipole moments, and this in turn increases the
201 strength of their electrostatic interaction with the applied
202 electric field. To illustrate this trend experimentally, we
203 measured OCP relaxations in RTILs containing butyl and

f2 204 hexyl substituents on the imidazolium ring. Data in Figure 2a,b
205 show that after an anodic step the relaxation behavior of
206 [BMIM][PF6] and [HMIM][PF6] is asymptotic and indis-
207 tinguishable from that of the smaller [EMIM][EtSO4] in Figure
208 1d. After a cathodic excursion, both [BMIM][PF6] and
209 [HMIM][PF6] form negative plateaus, but especially in the
210 case of [HMIM][PF6], these OCP signatures are not as long-
211 lived and well-defined as those observed with [EMIM][EtSO4]
212 (Figure 2a,b). OCP signatures for overscreening are still clearly
213 visible for both [BMIM][PF6] and [HMIM][PF6], although
214 shorter in the latter (insets in Figure 2). Crowding features in the
215 OCP−time plot are clearly distinguishable only for [BMIM]-
216 [PF6]. Extending the duration of the cathodic step, from 1 to 6
217 min, did not alter the dynamics of the OCP relaxation
218 (Supporting Information, Figure S9). The ability to form
219 ordered dipolar structures disappears for larger cations, such as
220 for example with [P14666][NTf2] (Figure 2c), and despite
221 previous reports suggesting that a more localized charge leads to
222 stronger surface interactions,58 pyrrolidinium-based RTILs did
223 not generate clear OCP signatures ([BMPyrr][NTf2], Support-
224 ing Information, Figure S10).
225 Effect of Electrode Material. There is also experimental
226 evidence of a relationship between ordering on the liquid side of
227 the interface and the mobility of surface atoms of the electronic
228 conductor. Similar to platinum, OCP plateaus were also
229 observed on gold surfaces, but surprisingly they were not
230 detected on covalent electrode materials of large self-diffusion
231 activation energy,59 such as silicon and carbon (Supporting
232 Information, Figures S11−S13). Further, plateaus recorded with

233gold electrodes were located at less negative voltages than for
234platinum, between−0.6 V and−0.7 V, an observation for which
235we do not yet have a satisfactory explanation (Supporting
236Information, Figure S14). Differences in double-layer structures
237for a given RTIL between platinum and gold are not
238unprecedented,60 but at present we can only speculate that a
239less negative OCP plateau for ordered dipolar structures on gold
240may relate to a difference in surface diffusivity between the two
241metals.61

242Polarizable Molecular Dynamics Studies. To under-
243stand these results, we conducted polarizable molecular
244dynamics39 simulations for [BMIM][PF6], [EMIM][EtSO4],
245and [HMIM][PF6] in the presence and absence of an applied
246electric field of 0.2 V/Å along the z-axis. Imidazolium-based
247ionic liquids are known to exhibit strong hydrogen bonding
248between the C2−H bond on the imidazolium ring and
249electronegative atom on the anions.62 Radial distribution
250 f3functions (RDFs, Figure 3a,c) of the (C2)H···F interionic
251distances indicate the significant changes in the short- and long-
252range order of both PF6-based ionic liquids upon the application
253of the electric field. [EMIM][EtSO4] and [BMIM][NTf2]
254demonstrated smaller structural changes in the (C2)H···O
255interionic distances (Figure 3e,g), suggesting that the con-
256stituent ions do not require a significant change in the bulk
257arrangement to align with the electric field. Angular distribution
258functions (ADFs) of the C2−H···X bond (where X is either F
259(PF6

−) or O (EtSO4
− and NTf2

−; Figure 3b,d,f,h) clearly
260identify that the hydrogen bond in all three ionic liquids
261undergoes a change from a more directional hydrogen-bond
262type (a peak at 130°) to a nondirectional interaction above the
263imidazolium ring (a peak at 55°). The occurrence of the latter
264strongly suggests that ionic liquid ions realign themselves in the
265electric field. Some anions become located right above the

Figure 3.Normalized radial distribution functions of (C2)H−F distances in (a) [BMIM][PF6] and (c) [BMIM][PF6] and (C2)H−O distances in (e)
[EMIM][EtSO4] and (g) [BMIM][NTf2]. Cone-corrected angular distribution functions of C2−H−F angles in (b) [BMIM][PF6] and (d)
[HMIM][PF6] and C2−H−O distances in (f) [EMIM][EtSO4] and (h) [BMIM][NTf2]. In all panels, blue lines denote behavior without an external
field, and red lines denote behavior in an external 0.2 V/Å field. Insets in (b), (d), (f), and (h) are motifs representative of the twomain peaks at 55° and
130°.
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266 imidazolium ring, which corresponds to a typical interionic
267 interaction mode in these ILs.

268The strong alignment of the ion dipole moments with the field
269 f4is presented in Figure 4. Ion dipole moments were calculated

Figure 4. Visualizations of dipole moments of ions (a) BMIM+ and (b) PF6
− in [BMIM][PF6], (c) HMIM+ and (d) PF6

− in [HMIM][PF6], (e)
EMIM+ and (f) EtSO4

− in [EMIM][EtSO4], and (g) BMIM+ and (h) NTf2
− in [BMIM][NTf2] under a 0.2 V/Å electric field in molecular dynamics

simulations. Dipole vector lengths are calibrated to 1 Å/D.

Figure 5.Average angles between ionic dipole moments and the z-axis (a) without an external electric field and (b) in an external field of 0.2 V/Å along
the z-axis. (c) displays the mean ion dipole projections along the z-axis without an external electric field and (d) in an external field of 0.2 V/Å oriented
along the z-axis. Error bars in (a)−(d) represent standard deviations.
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270 with center-of-mass reference points, with magnitudes equiv-
271 alent to the “charge arm” calculated with respect to center of
272 charge.63,64 The alignment is particularly stark for ions with
273 nonzero dipole moments such as the imidazolium cations,
274 EMIM+, BMIM+, and HMIM+, and the EtSO4

− and NTf2
−

275 anions. The PF6
− anion that does not have a nominal dipole

276 moment, when calculated in isolation, becomes strongly
277 polarized in the presence of other ions, with the dipole moment
278 also becoming aligned in the field. The alignment of the
279 individual ion dipole moments is not perfect due to strong
280 intermolecular interactions between ionic liquid ions in the
281 range of 320−420 kJ mol−1 per single ion pair.65 The deviation
282 from the field direction was estimated by calculating the average
283 θ angle between the apparent dipole moment of each ion and the

f5 284 direction of the field (Figure 5a,b). It is not surprising and rather
285 reassuring that, in the absence of the electric field, the average θ
286 value was observed to be ∼90° for all ions. This indicates a
287 random distribution, with cone-corrected angular distributions
288 in the Supporting Information (Figure S15) serving as further
289 proof.
290 The situation changes dramatically as the field is introduced,
291 with the average θ value falling between 35.6° for EtSO4

− and
292 49.4° for EMIM+. Further analysis reveals that θ only weakly
293 correlates with the dipole moment of the ions, smaller θ values
294 loosely corresponding to larger dipole moments. In addition to
295 the dipole orientation, each ion dipole moment was projected
296 along the external field axis, μZ, (Figure 5c,d). All ions besides
297 PF6

− exhibit a strong projection ranging from 2.24 D for EMIM+

298 to 9.82 D for HMIM+. This is due to the strong permanent
299 dipole moments present in the imidazolium cations, the EtSO4

−

300 and the NTf2
−, whereas the PF6

− anion does not have a
301 permanent dipole moment due to symmetry. The projected
302 induced dipole moment of PF6

− anions is not negligible,
303 averaging 0.53 D for both [BMIM][PF6] and [HMIM][PF6].
304 The alignment of these ion dipoles to the applied electric field
305 induces an opposing internal electric field that, we hypothesize,
306 is responsible for the OCP observed when the external field is
307 removed. The process of the ion realignment is also
308 accompanied by cations moving to the anode and anions
309 moving to the cathode. In our MD simulations diffusion
310 coefficients of cations and anions increased by 4 orders of
311 magnitude on average when the field was applied (see
312 Supporting Information, Tables S3 and S4). BMIM+ and
313 HMIM+ cations in the PF6-based ionic liquids were found to
314 diffuse slightly faster than cations in [EMIM][EtSO4] and
315 [BMIM][NTf2], which can be explained by stronger hydrogen
316 bonding preventing ions from moving freely in the latter. We
317 also confirmed that the NTf2

− anion maintained its trans
318 configuration throughout the entire simulation in an external
319 electric field (Supporting Information, Figure S16). The
320 calculated diffusion coefficients, ranging from 3.7 × 10−7 to
321 2.5 × 10−6 m2 s−1, suggest that ions can easily move to
322 electrodes, thus leading to crowding of cations at the anode as
323 shown in Figure 1a. It was also noticed that the mobility of
324 cations correlated with the projected dipole moment and the
325 strength of intermolecular interactions within an ionic liquid.
326 The ability of cations with a larger dipole moment and weak
327 hydrogen bonding to anions to strongly realign with an electric
328 field is reflected in their increased diffusion coefficient.
329 Since ions of opposite charge move in opposite directions in
330 an electric field, it is not surprising that the projected dipole
331 moment sum of the cation and anion did not correlate with the
332 experimental OCP plateaus (Supporting Information, Figure

333S17). It is well-known that cations will form a crowding layer
334next to the anode, thus creating a medium of different viscosity
335at the interface compared to that of the bulk of an ionic liquid.
336The density of coverage also depends on the cation size, with
337larger cations creating less dense coverage. Therefore, it was
338hypothesized that the average projected dipole moment of
339cation corrected for changed viscosity at the electrode interface
340and cation size should correlate with the OCP. Since viscosity is
341inversely proportional to diffusion coefficient, the product of the
342projected dipole moment of cation with the ratio of predicted
343diffusion coefficient of cation and its volume gives a strong
344 f6correlation to the observed OCP plateaus (Figure 6) with an R2

345of 0.907.

346This correlation suggests that the mobility of cations in an
347electric field plays a key role in the formation of a stable
348crowding interface at the anode resulting in negative OCP
349plateaus. Lower mobility of EMIM+ and BMIM+ in an electric
350field in ionic liquids with strong hydrogen bonding, reflected in
351small structural changes, allows for cations to form a more stable
352crowding interface, thus exhibiting the lower OCP plateaus
353(Figures 1c and S18, Supporting Information). This conclusion
354is further reinforced by the absence of a clear plateau in
355[P14666][NTf2] (Figure 2c), in which the cation displays a
356negligible dipole moment and hence very low mobility.63,66 The
357presented MD simulations thus confirmed that ionic liquid ions
358are able to reorient their dipole moments along the external
359electric field without sacrificing their bulk structure to a great
360extent.

361■ CONCLUSIONS
362We have described a simple and straightforward method to
363detect order and electric fields of organized and long-lived ionic
364liquid double layers by open circuit potentiometry. We show
365that overscreened and crowded near-electrode structures are
366detectable as negative open-circuit signatures occurring within
367sharp potential windows, validating ionic liquids double layer
368models proposed by Kornyshev and co-workers.26 Crowding
369manifests as negative OCP plateaus, which survive up to several
370tens of minutes. This structure rearranges into an overscreened
371double layer lasting up to several days, where just a monolayer of

Figure 6. Correlation of measured OCP values (crowding) of ionic
liquids against the product of average dipole moment projections and
diffusion coefficients in the electric field, divided by cation molar
volumes.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c06385
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

F

128 4.3. PUBLICATION 5



372 counterions balances the surface charge. These fields can
373 potentially be harnessed for the electrostatic catalysis of
374 chemical reactions,50,67,68 for the development of safe super-
375 capacitors, and can find applications in the emerging field of
376 redox-enhanced electrochemical capacitors.69,70 The presence
377 of a stable blocking layer on the electrode may limit side
378 reactions in electrosynthesis, such as reducing hydrogen
379 evolution in the presence of trace water. Further, slow double
380 layer dynamics in RTILs are known to manifest in
381 voltammetry32 and to introduce hysteresis in capacitance
382 measurements;34 here we show that RTILs forming dense
383 dielectric layers can be rapidly identified byOCPmeasurements.
384 Polarizable molecular dynamics simulations demonstrated
385 the loss of short- and long-range order in [BMIM][PF6],
386 [HMIM][PF6], and to a lesser extent [EMIM][EtSO4] and
387 [BMIM][NTf2] under an external electric field. The ionic liquid
388 ions were confirmed to align their dipole moments with the
389 external field. The alignment of ions was found to depend on the
390 presence of strong hydrogen bonding in ionic liquids. Cations
391 with larger projected dipole moments were also found to have
392 increased mobility in an electric field. The projected dipole
393 moment of the cation, corrected for its volume and mobility in
394 an electric field, correlates well with the observed crowdingOCP
395 plateaus, suggesting that increased dipole moment strength and
396 mobility prevent cations from forming a more stable crowding
397 interface. This represents an excellent design parameter to
398 predict the likelihood of forming stable ionic liquid bilayers
399 having strong endogenous electric fields.

400 ■ EXPERIMENTAL SECTION
401 Materials. Unless noted otherwise, all reagents were of analytical
402 grade and utilized without further purification. Milli-Q water (>18.2
403 MΩ cm) was used for cleaning procedures and to prepare electrolytic
404 solutions. 1-Ethyl-3-methylimidazolium ethyl sulfate (≥95%, Sigma,
405 [EMIM][EtSO4]), 1-butyl-3-methylimidazolium hexafluorophosphate
406 (≥97% Sigma, [BMIM][PF6]), 1-hexyl-3-methylimidazolium hexa-
407 fluorophosphate (≥97%, Sigma, [HMIM][PF6]), trihexyltetradecyl-
408 phosphonium bis(trifluoromethylsulfonyl)imide (>98%, Iolitec, Ger-
409 many, [P14666] [NTf2]), 1-butyl-1-methylpyrrolidinium bis-
410 (trifluoromethylsulfonyl)imide (99.5%, Iolitec, Germany,
411 [BMPyrr][NTf2]), 1-ethyl-3-methylimidazolium tetrafluoroborate
412 (>98%, Iolitec, Germany, [EMIM][BF4]), 1-butyl-3-methylimidazo-
413 lium bis(trifluoromethylsulfonyl)imide (99%, Iolitec, Germany,
414 [BMIM][NTf2]), acetonitrile (99.5%, VWR chemicals, USA,
415 MeCN), and tetrabutylammonium perchlorate (≥98%, Sigma,
416 Bu4NClO4) were used as received. The water content of all the ionic
417 liquids used in this work was estimated byKarl Fisher titration (Mettler-
418 Toledo C20S compact coulometer, Honeywell HYDRANAL Coulo-
419 mat AG reagent, Merck Water Standard 0.1%, USA), and with at least
420 three samples measured for each ionic liquid. The water content
421 readings between samples of the same ionic liquid varied less than 50
422 ppm, and the average values were the following: [EMIM][EtSO4], 930
423 ppm; [EMIM][BF4], 500 ppm; [BMIM][PF6], 490 ppm; [HMIM]-
424 [PF6], 745 ppm; [BMPyrr][NTf2], 125 ppm; [P14666][NTf2], 1215
425 ppm; [BMIM][NTf2], 100 ppm.
426 Electrochemical Methods. All electrochemical measurements
427 were carried out using a small (∼4 mL) single-compartment three-
428 electrode glass cell. Cyclic voltammetry (CV) and open circuit
429 potentiometry (OCP) experiments were performed on an Emstat3
430 Blue potentiostat (PalmSens BV, Houten, The Netherlands). Electro-
431 chemical impedance spectroscopy (EIS) experiments were carried out
432 using a CH 650D electrochemical analyzer (CH Instruments, Austin,
433 USA), imposing an AC potential amplitude of 15 mV (root-mean-
434 square) over the DC offset (Edc) of the working electrode. The AC
435 frequency was varied between 0.1 Hz and 0.1 MHz. Reproducibility of
436 the EIS data was highest at 1 kHz, as also observed by others,43,71,72 and

437therefore capacitance−voltage data in this work refer only to this
438frequency. The Edc offset of the working electrode was ramped starting
439from the system’s initial OCP and moved toward the cathodic limit of
440the sweep. The sweep rate was 40 mV/s. This sampling approach is
441common practice for EIS experiments in molten salts.73 The out-of-
442phase impedance (Z″) was used to estimate the electrode capacitance
443(C = 1/(ωZ″)−1). For all the electrochemical experiments the cell was
444loaded with a small sample (10 mL) of the ionic liquid, which was
445previous degassed by means of bubbling it with high-purity argon gas
446(99.997%, Coregas) for at least 20 min. Platinum wire was used as
447working and counter electrodes for both CV andOCP experiments (0.5
448mm diameter wire, 99.99+%, Goodfellow Cambridge Limited), while
449EIS data were recorded at platinum disk electrodes (eDAQ, ET052, 3
450mm diameter). The size of the counter electrode was in excess of 20
451times that of the working electrode. A plastic body silver/silver chloride
452“leakless” setup was used as the reference electrode (eDAQ, part
453ET072-1, 3.4 M aqueous potassium chloride as filling solution). The
454active area of the platinum wire working electrodes was either 0.28 cm2

455or 0.63 cm2, as determined from the refinement of a Emodel (DigiElch-
456Professional version 7, ElchSoft) against experimental voltammograms
457measured in 1.0× 10−1 MMeCN/Bu4NClO4 and in the presence of 1.0
458× 10−3 M ferrocene (Fc in shorthand hereafter, Supporting
459Information, Figures S19 and S20). The active surface area of the
460platinum disk was 0.08 cm2 (Supporting Information, Figure S21). The
461size of the working electrode had no measurable effect on the OCP
462versus time results. The reference electrode was calibrated before and
463after each experiment against the apparent formal potential of the
464ferrocene/ferricenium couple (Fc/Fc+) measured with the platinum
465disk using 1.0 × 10−3 M Fc in 2.0 × 10−1 M MeCN/Bu4NClO4, and
466unless specified otherwise, potentials are reported against the Fc/Fc+

467couple. Electrochemical experiments were performed at room temper-
468ature (23 ± 2 °C) inside a gastight acrylate box (Molecular Imaging,
469model GB306, USA) kept under nitrogen atmosphere. The nitrogen
470line was fitted with a Drierite gas drying unit (Sigma). Working and
471counter platinum electrodes were cleaned prior to the experiments by
472means of multiple cyclic voltammetry scans in aqueous 0.5 M sulfuric
473acid, ramping the potential between −0.2 and 1.0 V at a voltage sweep
474rate of 0.05 V s−1. Control experiments with gold, carbon, and silicon
475surfaces were done using, respectively, gold wire of 0.25 mm diameter
476(99.999+%, Goodfellow), glassy carbon plates of 12.7 mm diameter
477(TED PELLA, Inc.), and highly doped monolayer-coated oxide-free
478silicon wafers (prime grade, CZ, 111-oriented (±0.5°), 500 μm thick,
479single-side polished, boron-doped, 0.007−0.013 Ω cm, from Siltronix,
480S.A.S, Archamps, France). The gold wire was cleaned prior to the
481experiments by means of cyclic voltammetry in aqueous 50 mM sulfuric
482acid (sweeps in the −0.2 to 1.0 V range, at 0.05 V s−1). Glassy carbon
483electrodes were polished to mirror-like finish with alumina slurry (0.05
484μm, eDAQ, ET033) on a polishing cloth (Struers). After the polishing
485step, the electrodes were sonicated in water for 1 min.
486Hydrogen-terminated silicon electrodes were modified with an
487organic monolayer of 1,8-nonadiyne (98%, Sigma-Aldrich) in order to
488passivate the oxide-free surface against anodic decomposition. The
489procedure follows minor modification of literature procedures.74−76 In
490brief, silicon wafers (1 cm × 1 cm) were kept for 30 min in piranha
491solution (100 °C, a 3:1 (v/v) mixture of concentrated sulfuric acid and
49230% hydrogen peroxide), then rinsed with water, and etched for 10 min
493in deoxygenated aqueous ammonium fluoride (40 wt %). A small
494amount of ammonium sulfite was added to the etching solution as
495oxygen scavenger. Hydrogen-terminated silicon samples were then
496rinsed with water, dichloromethane, dried under a flow of nitrogen, and
497then covered with a deoxygenated sample of 1,8-nonadiyne. The silicon
498sample was then kept under nitrogen for 2 h at a distance of
499approximately 200 mm from a 312 nm UV source (Vilber, VL-215.M).
500The chemically passivated silicon electrodes were rinsed with
501dichloromethane, rested for 24 h in a sealed vial under dichloromethane
502at +4 °C, and then blown dry under a nitrogen stream before being
503analyzed. The silicon electrodes were mounted in a three-electrode and
504single-compartment polytetrafluoroethylene (PTFE) custom cell
505where a circular Viton gasket defined the geometric area of the working
506electrode to 0.28 cm2. Ohmic contact between the back of the silicon
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507 sample and a copper plate was achieved by gently scribing the back of
508 the electrode with emery paper before applying on it a small amount of
509 gallium−indium eutectic. The topography of both silicon and carbon
510 samples was estimated before the electrochemical experiments by
511 atomic force microscopy (AFM). AFM data were acquired on a Park
512 NX10 (Park Systems Corporation, Suwon, Korea). The scanning was
513 conducted in True Non-Contact mode. The silicon sample was fixed on
514 a steel plate using carbon tape and then mounted on the AFMmagnetic
515 sample holder. Imaging was done in air, at room temperature, using n-
516 type silicon AFM probes (OCML-AC160TS, Olympus Corporation,
517 Tokyo, Japan) with a nominal resonance frequency of 300 kHz and a
518 spring constant of 26 N/m. The image size was set to 5 μm × 5 μm, the
519 resolution to 256 points/line, and the scan rate to 1 Hz (Supporting
520 Information, Figures S22 and S23). Prior to the OCP−time
521 measurements, electrodes were left to equilibrate in contact with the
522 ionic liquid sample until the first derivative of the OCP versus time
523 traces (dV/dt) dropped below |0.0001|. This was normally achieved
524 within 5 min of immersing the electrodes in the liquid (Supporting
525 Information, Figures S24−S27). After this initial stabilization phase, a
526 potential step of variable magnitude and sign was applied to the working
527 electrode. Unless specified otherwise, the duration of this potential
528 pulse was 60 s. OCP recording was resumed immediately after the
529 pulse. The time that elapsed between the anodic, or cathodic, excursion
530 and the resuming of the OCP measurement was less than 2 s.
531 ComputationalMethods.TheCL&Pol77−79 force field optimized
532 for ionic liquids was enforced on periodic simulation boxes containing
533 125 ion pairs of [BMIM][PF6], [HMIM][PF6], and [EMIM][EtSO4].
534 Where necessary, kij parameters were calculated (see Supporting
535 Information Table S1). All systems had initial structures produced with
536 PACKMOL80 and were initially equilibrated for 5 ns in an NpT
537 ensemble, proving to be ample time for each system’s density to
538 converge (Supporting Information, Figure S28). Average densities from
539 the last nanosecond of equilibration were within 5% of experimental
540 values (see Supporting Information, Table S2), with corresponding
541 average volumes enforced for 10 ns NVT production runs. Separate
542 NVT runs from identical restart files were performed, with the absence
543 or presence of a 0.2 V/Å external field along the positive z-axis
544 direction. Initially, all systems were allowed 0.1 ns to deform to the
545 average box volume, and a further picosecond to align with the electric
546 field where necessary before the production run. In all simulations,
547 Nose−Hoover temperature grouped thermostats and barostats were
548 used, with atoms thermalized to 353 K and drude particles thermalized
549 to 1 K, and a 1 fs time step was used in all simulations. The LAMMPS81

550 software package was used to run all simulations, utilizing the USER-
551 DRUDE module. Trajectory analysis was performed using
552 TRAVIS82,83 software, with dipole moments calculated with force
553 field charges, and each ion’s center of mass as a reference point. The
554 magnitude of these calculated dipole moments is also known as the
555 ion’s “charge arm”. Volume of cations was calculated based on the
556 previously published methodology.66 The volume for EMIM+ was
557 taken from that work,66 and the volumes of BMIM+ and HMIM+

558 cations are given in Supporting Information, Table S5. The diffusion
559 coefficients were measured as the slope of the mean standard deviation
560 (MSD) of each ion’s center of mass. All contributions of each ion across
561 the production runs were considered, with maximum correlation times
562 set to 30% of the trajectory. Correlation times of 1.5−3.0 ns were
563 sampled and produced linear fits of correlation coefficients of at least
564 0.99 in all cases. These analyses were performed with TRAVIS.
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4.4 Summary

In this chapter, we presented two works studying ordered solvent and ionic liquids and
their applications to electrostatic catalysis.

First, we reviewed the concept of electrostatic catalysis and previous works in this
field. The bottlenecks in the practical applications of electrostatic catalysis and solvent
attenuation were examined. Ordered solvent and ionic liquids and the factors influencing
their ordering were introduced. Previous works studying the degree of order in ionic
liquids and important factors in simulation techniques were highlighted.

Subsequently, we employed Drude polarizable force field based MD simulation, post-
HF, ONIOM(DFT:PM7) and wave function analysis methods to investigate the role of the
orientation of the solvent methanol and the ionic liquids [EMIM][BF4] on the activation
energy of the hydrogen transfer reaction of o-alkylphenyl ketones. The activation energy
was decreased significantly due to the internal electric field arising from the ordered solvent
environment.

Finally, we further analysed more details of the structures and properties of ordered
ionic liquids under an external electric field, using both computational and experimental
techniques. A plateau in the OCP was observed upon application of an external electric
field and its removal, which persisted in some ionic liquids over several hours. We propose
this method as an easy and straightforward technique to characterize and compare the
degree of order of different ionic liquids. Several parameters were also calculated using the
trajectory of the polarizable molecular dynamic simulations to characterise the ordering
of different ionic liquids. Both the radial distribution function and angular distribution
functions of ionic liquids were altered after the external electric field was applied. The
alignment of the dipole moments of ions along the direction of the external electric field
was visualized. The dipole moment of the ions were separated into the components from
different directions. By considering ion dipole projection, the diffusion coefficient of the
cation and its volume, a good correlation was found between the measured OCP and the
calculated quantities for the ionic liquids [EMIM][PF6], [HMIM][PF6], [EMIM][EtSO4]
and [BMIM][NTf2].

The findings in this chapter assist in the understanding electrostatic catalysis in com-
plex solvent environment (e.g., electrochemical interfaces and nanoconfined environment)
and will aid the design of future electrostatic catalysis. This work is the first step towards
implementing efficient electrostatic catalysis in polar solvent environments. Finally, the
findings will assist future studies on the degree of order of ionic liquids in electrochemical
double-layer models and the design of electrochemical devices (e.g., batteries and super-
capacitors) using ionic liquids.
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Chapter 5

The Corona of A Surface Bubble
Promotes Electrochemical Reactions

5.1 Introduction

Interfaces between different phases are important research fields as they often possess
unique properties and play important roles in biological, environmental and atmospheric
chemistry compared with that of bulk solid, liquid or air phases.[1] For example, solid-
liquid interfaces influence outcomes of various electrochemical applications.[2–4]

Within the context of the electrochemistry, what matters is not only solid-liquid in-
terface, the water-gas interface such as the bubble surface is also a unique electrostatic
environment. Studies of the bubble surface have been undertaken. Similar with other
interfaces, bubble surface also holds interesting characters. It was reported that bubbles
were generated at nucleation sites due to the change of chemical potential of dissolved gas
molecules near the electrode surface.[5] Bubbles can flow away from the electrodes, which
can justify their negative net charge.[6] Additionally, bubbles can influence the energy
transfer and electron transfer.[5] Cooksey and co-workers concluded that bubble surface
can cause a potential drop of 0.09-0.35 V.[7] It was also reported that hydrogen-bonding
interactions are altered at the bubble surface relative to bulk solution.[8]

Another interesting feature of air-water interfaces is that these systems are not neu-
tral due to the accumulation of hydroxide ions.[9] Chaplin reported that the negatively
charged bubbles migrated towards the positive electrode.[10] It is known that the elec-
trostatic interactions resulting from ions in solution are important for both electrochem-
ical reactions[11] and the design of electrolytes for sodium-metal batteries.[12] It is well
known that reactions at water-air interfaces can be dramatically faster than that in the
bulk solution.[13] For bubble surfaces, the local electric field from the net charges of ac-
cumulated anions can be as large as 1.4 V/nm, and is influenced by the water orientation
and the ion distribution.[1] The local electric fields generated from bubble surface can
significantly influence interfacial reactivity, transport and solvation thermodynamics of
ions.[1, 8, 14] Similar with the ordered solvent environments discussed in the previous
chapter, the large local electric field at the bubble surface is an excellent platform for
making electrostatic catalysis.

In the work presented in this chapter, we studied how the concentration of hydrox-
ide ions at the bubble surface affects its oxidation potential. Obviously, it is impractical
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to model bubble surface using implicit solvent models discussed in Chapter 1, especially
when different ions concentrations are involved. Thus, in this work, GFN-xTB MD sim-
ulation method is used. This method is based on semi-empirical QM methods, so it can
relatively well describe the properties of both ions and radicals. In detail, (non-periodic)
semi-empircal GFN-xTB MD simulations are conducted for different concentrations of
hydroxide aqueous solution. As periodic condition and Ewald summation are not used,
the simulation box is not necessarily neutral, so no charge compensation is performed.
Note that non-periodic condition is often used for modelling reactions using AIMD and
semi-empirical MD techniques, especially for charged systems. One example system is pro-
vided for AIMD simulation of proton transfer reactions of [Al(H2O)6]3+ using ORCA.[15]
From these MD simulation trajectories, several snapshots are extracted for further semi-
empirical GFN2-xTB QM geometry optimizations and energy calculations. Configuration
extraction was performed using TRAVIS program,[16] where closest molecules were de-
termined by the distance between the central solute and O atoms of water molecules. For
each condition, the most stable structure is used for further ONIOM energy calculations,
where energy of core area (isolated OH anion/radical) is calculated using CCSD(T)/CBS
level (via cc-pVTZ to QZ extrapolation) while energy of the rest is calculated with dou-
ble hybrid DFT method (RI-PWPB95-D3(BJ)/def2-TZVPP). Finally, these energies are
used for the calculations of oxidation potentials versus SHE.

Our simulation conclusion, which is confirmed by the experimental results from the
OH radical induced polymerization of luminol, highlighted the importance of the ion
concentration and local electric field at the bubble surface for electrostatic catalysis. This,
together with ordered solvent environments in the previous chapter, could inspire the
design of new strategies for electrostatic catalysis in the future. For example, the specific
ion effects in salts and electrolyte solution, associated with energy decomposition analysis
with QM methods, could be possibly harnessed in this regard.[17, 18]
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The corona of a surface bubble promotes
electrochemical reactions
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The evolution of gaseous products is a feature common to several electrochemical processes,

often resulting in bubbles adhering to the electrode’s surface. Adherent bubbles reduce the

electrode active area, and are therefore generally treated as electrochemically inert entities.

Here, we show that this general assumption does not hold for gas bubbles masking anodes

operating in water. By means of imaging electrochemiluminescent systems, and by studying

the anisotropy of polymer growth around bubbles, we demonstrate that gas cavities adhering

to an electrode surface initiate the oxidation of water-soluble species more effectively than

electrode areas free of bubbles. The corona of a bubble accumulates hydroxide anions,

unbalanced by cations, a phenomenon which causes the oxidation of hydroxide ions to

hydroxyl radicals to occur at potentials at least 0.7 V below redox tabled values. The downhill

shift of the hydroxide oxidation at the corona of the bubble is likely to be a general

mechanism involved in the initiation of heterogeneous electrochemical reactions in water,

and could be harnessed in chemical synthesis.
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Major industrial processes, such as the electrolysis of
alumina1, the chloralkali process2, and the refining of
copper3, involve the evolution of gases, which are often

accompanied by gas bubbles forming at the electrode. An
adherent bubble masks a portion of the electrode; it resists the
passage of electrical currents by disrupting ionic conduction at
the solid–liquid interface. Surface gaseous cavities are therefore
generally regarded as undesirable and electrochemically inactive
entities4.

The gas–water interface is, however, not electrically neutral5,
and the interface between water and gas carries electric fields as
high as 1.4 V nm–1 6–8. Measurements of zeta potential for bub-
bles suspended in ultrapure water indicate that the corona of a
bubble is electrified due to the accumulation of hydroxide ions
(OH−)9. This is most likely caused by the increased self-
ionization constant of water at the gas–water interface10, which
coupled to the fast diffusion of protons by the Grotthuss
mechanism11, leaves the water surface with an OH– excess.
Adhesion of a bubble on a solid surface leads to two interfaces,
the solid–gas and the gas–liquid, with the gas obviously acting as
an electrically insulating cavity separating the electrode from the
liquid4,12. However, with an analogy to a suspended gas cavity, at
the point where the solid, the gas, and the liquid meet, a high
concentration of unbalanced hydroxide ions is likely to exist. We,
therefore, postulated that, due to mutual destabilization of
hydroxide ions by electrostatic repulsion, the one-electron oxi-
dation of hydroxides to hydroxyls could be significantly facilitated
around bubbles adhering to an electrified support. The oxidizing
power of hydroxyls (HO•+ e– ⇌ OH–, E0=+1.90 V vs. SHE)13

could then be harvested to trigger redox chemistry14,15.

Results
Increase in electrochemical current densities in the presence of
adherent bubbles. Starting with a simple experimental setup,
current measurements and optical images in Fig. 1a, b show,
unambiguously, that adherent oxygen bubbles (Fig. 1c) are not
electrochemically inert entities. In an electrolytic solution con-
taining only 0.1 M sodium hydroxide, the anodic current mea-
sured at an indium tin oxide (ITO) electrode, biased at +1.2 V vs.
SHE, is surprisingly higher in the presence of macroscopic
surface-adherent oxygen bubbles than it is in their absence. An
increased electrochemical current is observed in the presence of
bubbles, regardless of the gas composition (Supplementary
Fig. 1), and the electrochemical current systematically increases
by increasing the cumulative bubbles’ perimeter (C, Fig. 1a, b,
Supplementary Fig. 2, and Supplementary Table 1). Surface static
bubbles favor the oxidation of hydroxides to hydroxyls, and this is
a surprising result; a small increase in the gas–water interface
outbalances the net loss of “wet” electrode area. We note that
these macroscopic bubbles are stable over the time frame of the
electrochemical measurements (Supplementary Fig. 3); hence,
localized changes in redox reactivity are due to characteristics of
the gas–water interface, rather than to energy released during the
rapid collapse of the cavity, such as in sonochemistry16–18, to
convection enhancement19, or the cavity absorbing dissolved gas
products20.

To confirm that the increase in anodic currents, shown in
Fig. 1a, is arising from the oxidation of OH− to HO• around
adherent gas cavities, we coupled electrochemical experiments to
epifluorescence microscopy to visually detect the presence of HO•

in the corona of surface bubbles (Fig. 1d). Figure 1e, f (see also
Supplementary Video 1) shows epifluorescence microscopy data
of argon bubbles resting on an ITO electrode, with 3ʹ-(p-
hydroxyphenyl) fluorescein (HPF) present in the electrolytic
solution. When the electrode is biased anodically (+1.2 V vs.

SHE), a sharp increase in the fluorescence contrast is observed
between the bubble’s surface and electrode regions away from the
cavity. In our model system, made up of only sodium hydroxide,
water, and gas, the plausible reactive oxygen species augmenting
the fluorescence of HPF are HO• and H2O2. HPF is ca. 400 times
more selective toward HO• than to H2O2

21, strongly suggesting
that HO• is being generated in the corona of the bubble. Confocal
microscopy images, acquired at different z heights over the
electrode surface (Fig. 1g, h), show that hydroxyl radicals are
generated in proximity of the gas–water interface, but principally
at a height close to the electrode substrate (Fig. 1i).

Hydroxyl radicals from the oxidation of hydroxide ions. We
note that the increased electrochemical reactivity of surface bubbles
observed here is not simply the manifestation of higher current
densities observed at regions of an electrode that are partially
masked by a dielectric object4,22. A local increase in current density
implies a reaction rate increase for a favorable reaction, while the
oxidation of OH− to HO• is thermodynamically unfavorable at
+1.2 V vs SHE. Instead, the contra-thermodynamic shift experi-
enced by the OH– oxidation in the presence of surface-adherent
bubbles is more likely linked to the high unbalanced concentration
of OH− at the gas–liquid interface (Fig. 2a). Based on Nernst
considerations, the HO•/OH– redox potential, +1.9 V at standard
conditions13, will drop only by 59mV every order of magnitude of
increase in OH– activity (Fig. 2b, dashed line). However, if largely
unbalanced by cations, electrostatic repulsions between adjacent
OH− are likely to further lower their oxidation potential, as
demonstrated by our quantum-chemical simulations (Fig. 2b,
symbols, and Supplementary Note 1). It was, therefore, necessary to
first estimate experimentally the OH– excess concentration at the
gas–water interface of bubbles. This excess was first determined by
means of accelerating gas bubbles, suspended in ultrapure water,
under an electric field (Supplementary Note 2)9. Selected video
frames (Supplementary Video 2), reproduced in Fig. 2c, show a
microscopic (50 µm) oxygen bubble in ultrapure water moving at a
velocity of 1.3mm s−1 toward the anode under a field of ca. 40 V
cm−1. Similar results were obtained for nitrogen bubbles suspended
in water (Supplementary Fig. 4 and Supplementary Video 3). The
gas–water interface carries an unbalanced population of OH−,
causing the electrical potential to drop away from the gas–liquid
interface (Fig. 2a). A quantitative descriptor of this potential profile
is the bubble’s zeta potential ζ, that is, the potential difference
between the shear plane and the bulk solution23. We obtained a ζ
value of −526 ± 138mV from the measured bubble velocities using
the Smoluchowski equation24. The surface charge density of a
spherical particle relates to ζ, and using the relationship proposed
by Loeb et al.25, we estimated a charge density of −52 µC cm−2 or
the equivalent of 5.4 × 10−10 mol cm−2 of OH−. To confirm that
the negative charge of bubbles is linked to a local unbalanced excess
of hydroxide ions, we resorted to direct pH measurements of gas/
water emulsions (Fig. 2d). These experiments have strong con-
ceptual analogies with the “pH-stat” experiments reported by
Beattie and coworkers for oil emulsions in water26. Suspensions of
fine nitrogen bubbles are a way to access a water sample char-
acterized by the presence of a very large gas–liquid interface, and as
such, a drop in pH would be expected if an excess of OH− is
trapped at the interface of water with the gas. By generating a large
concentration of microscopic nitrogen bubbles (9.3 × 107 particles
L−1, Supplementary Video 4) in a water sample, such pH drop was
in fact observed (Fig. 2e), indicating at pH ~7 (quiescent sample) a
surface OH− excess of 4.2 × 10−11mol cm−2 (Supplementary
Note 3). At pH ~12, such as where hydroxyl radicals are detected
(Fig. 1), this excess rises to 1.3 × 10−7 mol cm−2 (Supplementary
Fig. 5).
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Anisotropic polymerization of luminol around surface bub-
bles. To demonstrate the scope and extent to which the surface of
an adherent bubble enhances the oxidizing power of an electrode,
we designed a detection scheme capable of imaging in real-time
the 2D growth of a polymer around bubbles. We coupled an
electrochemiluminescent reaction with a step polymerization,
both being redox oxidative processes and both being initiated by
reactive oxygen species. The surface electrochemiluminescent
reaction allows generating a dim internal light source, while the
polymer locally quenches it, generating a real-time 2D map of the
polymer growth (Fig. 3a, see also Supplementary Videos 5 and 6).
We used 5-amino-2,3-dihydrophthalazine-1,4-dione (hereafter
luminol) as both the source of chemiluminescence27,28 and
polymerization reactant29. Because the formed polymer is non-
conductive in its deprotonated state (Supplementary Note 4), as
commonly observed in polyaniline analogs30, it impedes electron
transfer between the electrode and the electrolyte quenching the
electrochemiluminescent reaction.

The anisotropic growth of the polymer filaments (Fig. 3a),
linking neighboring bubbles rather than growing radially from
the bubble, tracks the concentration gradient of reactive oxygen
species away from the bubble. The luminol light path in water
begins with the oxidation of the luminol monoanion31, yielding a
radical susceptible to nucleophilic attack by superoxide (O2

•−).
This intermediate collapses to a light emitter excited state of 3-
aminophthalate (Supplementary Fig. 6)15. Superoxide forms upon
the oxidation of hydrogen peroxide by HO• radicals (HO2

−+
HO•→O2

•− +H2O)32, which is evident from the inspection of
epifluorescence micrographs obtained around ITO-adherent
oxygen (Fig. 3b, and Supplementary Video 7) and argon bubbles
(Supplementary Fig. 7, Supplementary Video 8), showing that the
presence of oxygen radicals (HO• and O2

•−) at the gas–water
interface is far more dramatic in peroxide-containing solutions.
We discarded the possibility of homolytic cleavage of HO2

– to
form HO• under the strong electric field at the gas–water
interface (Supplementary Note 5). Data in Fig. 3b (and

e
OCP +1.2 V

f

O
H

–

e-

O
H

– OH
–OH–OH –O

H –O
H

–

VA

OH

c

g

In
te

ns
ity

 / 
a.

u.

0 100 200 300
Distance / µm

z = 0 µm

z = 50 µm

h

i

400

z = 0 µm z = 50 µm

a

0 10 20 30

1.4

1.2

1.8

2.2

Time / s

C = 28 cm

C = 18 cm

C = 8 cm

b

d

J/
J 0

2.0

1.6

C = 8 cm

C = 18 cm

C = 28 cm

Fig. 1 Surface-adherent gas bubbles increase electrochemical current outputs. a Normalized amperometric curves acquired in aqueous 0.1 M sodium
hydroxide using an ITO electrode, biased at +1.2 V vs. SHE, in the presence of surface-adherent oxygen cavities. The current density recorded in the
presence of surface-adherent bubbles (J) is systematically higher than that found in the absence of bubbles (J0). The experimental J/J0 ratio scales with
the total bubble corona length (C, data analysis in Supplementary Fig. 2, and Supplementary Table 1). b Optical images of the ITO electrode acquired during
the current measurements reported in (a). Scale bars are 2mm. Wide-field views of the entire electrode area are in Supplementary Fig. 2. c Representative
bright-field image (side view) of an oxygen bubble on the ITO electrode. The scale bar is 200 µm. d Schematics of the electrochemical generation, and
fluorescence detection, of HO• in the corona of an electrode-adherent bubble. e, f Epifluorescence microscopy images for the detection of HO• around an
argon bubble adhering on an ITO electrode. The electrode is immersed in an aqueous solution of sodium hydroxide (0.1 M) and 3ʹ-(p-hydroxyphenyl)
fluorescein (10 µM), and it is either rested at its open-circuit potential (e OCP), or biased at +1.2 V vs. SHE (f). See also Supplementary Video 1. g, h
Confocal microscopy images for the HO• detection around nitrogen bubbles supported on a biased (+1.2 V vs. SHE) ITO slide. The aqueous electrolyte
contains dichlorodihydrofluorescein diacetate (100 µM) and sodium hydroxide (0.1 M). The z height above the electrode surface is specified in the figure.
Scale bars in e–h are 200 µm. Emission intensities for the images (frames) in e–h are normalized to the highest-intensity value measured in each frame.
i Fluorescence emission intensity profiles measured along the dashed lines of panels g, h, showing a larger emission at the gas–liquid interface closer to the
electrode surface.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20186-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6323 | https://doi.org/10.1038/s41467-020-20186-0 | www.nature.com/naturecommunications 3

146 5.2. PUBLICATION 6



Supplementary Fig. 7) also reveal that the reach of the oxygen
radicals away from the bubbles’ surface is dramatically increased
when peroxide is present, reflecting the million-fold increase in
lifetime for O2

•− over HO•15,33. The oxygen radical gradient
around bubbles is schematized as a color map in Fig. 3c. Bubbles
continuously grow as a result of oxygen-evolving upon the
oxidation of HO2

−, and they will occasionally collapse or detach
(Fig. 3b and Supplementary Video 7).

The chemiluminescence emission is higher at the bubble
interface than on the electrode surface, Fig. 3a, as expected from a
higher concentration of HO• around bubbles (from OH−

oxidation) that react with HO2
− to generate O2

•−. Luminol can
be oxidized to its radical electrochemically (Supplementary Fig. 8),
and/or by HO•, and O2

•− forms when HO• oxidizes HO2
−. The

latter has to be present in order to observe chemiluminescence.
Therefore, both luminol and HO2

− might compete for HO•,
which would make the emission intensity reach a maximum value
at a specific HO2

−/luminol ratio, and then decrease as this ratio
further increases15, as was effectively observed (Fig. 3d).

The polymerization reaction starts at the bubble interface from
the free oxygen radical attack to luminol (Supplementary Note 6).
XPS analysis indicates that multiple pathways are operative, with
a film curiously consisting of 50% polyaminophthalate, and 50%
of polyaminophthalazine and/or polyluminol (Supplementary
Note 4). Theoretical calculations suggest that the polymerization
mechanism is a stepwise radical process in which a “step” is first
initiated via hydrogen transfer by the HO• radical from aniline
functionality of the monomer (Fig. 3e and Supplementary
Note 6). Two such resulting radicals couple to form an

intermediate that then undergoes a second hydrogen transfer
followed by coupling with the radical of a further monomer unit
to regenerate the active end group in its nonradical form. In total,
three monomer units are joined per step, and four molecules of
HO• are consumed. Calculations show that the pathway is feasible
for all monomers and hence copolymerization is likely.

Figure 3f (solid line) shows the experimental amperometric
curve (electrochemical current vs. time) for the polymerization
reaction, with a characteristic shape of an electrodeposition
process34, confirming that the electrode acts as an electron sink
rather than being a homogeneous redox reaction. The electro-
chemical current goes through a rapid initial increase due to the
formation and growth of independent nuclei under hemispherical
diffusion control. When these diffusion fronts overlap, as a result
of a small separation between nuclei, the overall current reaches a
maximum and then starts to decrease. The experimental
amperometric curves show a good fitting for a diffusion-limited
nucleation growth34. The initial exponential decay is due to the
oxidation of the adsorbed polymer, and this process was
accounted for in the fitting as an additional component over the
diffusion-limited instantaneous nucleation, see Supplementary
Note 735. The peak maxima observed in Fig. 3f represent the point
in time at which diffusion fronts theoretically overlap (tmax), and
roughly coincide with the point in Fig. 3a when the polymer films
growing between bubbles start overlapping (t= 13 s).

Our results demonstrate that at anodes operating in the water,
surface static bubbles are not inert cavities but rather highly
reactive redox sites. The electrochemical reactivity of an adherent
bubble originates from its corona’s ability to accumulate an
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unbalanced excess of hydroxide anions. In the proximity of the
electrode surface, unbalanced anions are oxidized to highly
reactive hydroxyl radicals at potentials as low as +1.2 V vs. SHE.
The gradient of reactive oxygen species surrounding adherent

bubbles can affect anisotropic oxidative redox chemistry. The
results presented here are likely to be a general mechanism to
initiate, enhance, or localize oxidative processes occurring in
water electrolytes.
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Methods
Chemicals and materials. Unless specified otherwise, all chemicals were of ana-
lytical grade and used as received. Hydrogen peroxide (H2O2, MOS Puranal, 30%,
Sigma Aldrich), luminol (97%, Sigma Aldrich), 2′,7′-dichlorodihydrofluorescein
diacetate (DCFH2-DA, ≥97%, Sigma Aldrich), 3ʹ-(p-hydroxyphenyl) fluorescein
(HPF, 5 mM solution in N,N-dimethylformamide, DMF, ThermoFisher), dimethyl
sulfoxide (DMSO, 99%, Ajax Finichem), sodium hydroxide (NaOH, 95%, Ajax
Finichem), hydrochloric acid (HCl, 37%, Sigma Aldrich), nitric acid (HNO3, 70%,
Ajax Finichem), sulfuric acid (H2SO4, 97%, Scharlab), monosodium phosphate
(NaH2PO4, 99%, Sigma Aldrich), oxygen (O2, 99.95%, Coregas), nitrogen (N2,
99.9%, Coregas), and argon (Ar, 99.997%, Coregas) were used as received. Milli-Q™

water (>18 MΩ cm) was used for surface cleaning procedures and for preparing all
solutions. ITO-coated glass slides were purchased from Delta Technologies
(8–12Ω/sq in sheet resistance).

Measurements of the zeta potential of bubbles. To measure the zeta potential of
suspended microscopic oxygen and nitrogen bubbles (50 µm in diameter), we used
a method based on the procedure of Takahashi9. In brief, oxygen or nitrogen gas
was bubbled for 1.5 h across an ultrapure water sample held inside a frit-free soda-
lime glass H cell (see Supplementary Fig. 9). The cell consisted of two vertical arms
of 10 cm in length connected by a horizontal arm 4-cm long. All arms had an
internal diameter of 1 cm. A gas dispersion tube of 25–50-µm porosity (Z408743-
1EA, Sigma) was used to pass the oxygen or nitrogen gas along with one of the
vertical arms. The oxygen or nitrogen flow was stopped, and a bias of 200 V was
applied using a Keysight source/measure unit (model B2902A) between two pla-
tinum wire electrodes (99.99+%, 0.5-mm diameter, Goodfellow Cambridge Ltd)
inserted in each of the two vertical compartments of the H cell. The bubbles’
movement (speed) in the horizontal channel, and along a horizontal direction
pointing from the cathode toward the anode, was used to estimate the bubble zeta
potential. Specifically, videos to estimate the bubble position as a function of time
were recorded at 25.13 frames per second, using a CCD camera (DCC1240C,
Thorlabs) fitted with a 6.5× zoom (MVL6X123Z and MVL133A, Thorlabs). Video
recordings were analyzed frame by frame using Fiji image processing package36. To
minimize electroosmotic forces, possibly interfering with the bubble migration
velocity in the field37, the focus of the camera was aimed toward the center of the
H-cell horizontal arm. This is to minimize surface-related artifacts on the zeta
potential measurement. The 95% confidence interval of the zeta potential means is
reported as tn−1 s/n0.5, where tn−1 depends on the number of repeats, s is the
standard deviation, and n is the number of independent measurements (which was
11 for the oxygen bubbles and 23 for the nitrogen bubbles)38.

Determination of the OH− excess at the gas–water interface. In addition to
quantitative data obtained by electrokinetic experiments (Fig. 2c), the excess of OH−

at the interface of a gas bubble suspended in water was also estimated from bulk pH
changes (Fig. 2e) recorded when forcing large fluxes of microscopic nitrogen (99.9%)
bubbles in a water sample (Fig. 2d). These vigorously aerated samples have a large
gas–water interface area (surface-to-volume ratio, determined by optical microscopy)
and were obtained by flowing an aqueous solution (800mL in a 1-L borosilicate glass
beaker) of potassium chloride (0.1M) of variable pH (adjusted by dropwise addition
of a sodium hydroxide aqueous solution (0.1M)) through a microbubble generator
nozzle (CARMIN D2, Ylec, France). The solution was first deaerated for 30min by
flowing nitrogen gas through the solution using a gas dispersion tube of 25–50-µm
porosity (Z408743-1EA, Sigma), while water was pumped (and continuously recir-
culated) by a diaphragm pump (Xylem Flojet AD49/0) at a liquid flow of 3 L/min.
The gas dispersion tube was disconnected and the pH allowed to stabilize over a time
frame >600 s (dpH/dt < 0.002 units min−1, Fig. 2e and Supplementary Fig. 5). The
nozzle was then connected to the pump circuit. The design of the aerator is that the
flowing liquid causes concomitant suction of a gas, in this case, ultra-high-purity
nitrogen gas (99.9%, Coregas), into the solution, through the nozzle. A low-
conductivity pH probe (model HI1053, Hanna Instruments), connected to a pH
meter (HI5221) with computer connectivity, was used to monitor the solution pH
over time. All measurements were performed inside an acrylate glovebox kept under
positive nitrogen pressure (99.9%, Coregas). Videos, used to estimate the total surface-
to-volume ratio of the suspended bubbles, were recorded using a CCD camera
(DCC1240C, Thorlabs) fitted with a 6.5× zoom. The experimental setup is shown in
Supplementary Fig. 10.

Deposition of bubbles on the electrode. Oxygen, nitrogen, and argon bubbles
were deposited on the ITO-coated glass electrode with the aid of a gas dispersion
tube of 10–20-µm porosity (Z408727, Sigma Aldrich). In brief, the electrochemical
cell holding the ITO electrode was initially filled with water, then the gas flow was
forced across the liquid, and after having visually inspected the ITO slide to
confirm the presence of adherent gas bubbles, a concentrated solution containing
the chemical species of interest was added so to reach a specific final concentration.

Amperometry, epifluorescence, and electrochemiluminescence microscopy. A
custom-made three-electrode single-compartment electrochemical cell (Supple-
mentary Fig. 11) was used for all electrochemical and fluorescence experiments. An
ITO-coated glass slide served as the working electrode (7.1 cm2, geometric area), a

platinum foil as the counter electrode (25.8 cm2, geometric area), and an Ag|AgCl|
KCl (sat.) electrode as reference. The cell’s ohmic resistance was 13 ohm, measured
in a 0.1 M aqueous solution of sodium hydroxide. The counter- and reference
electrodes are kept at a distance of 1 cm from the working electrode, and the cell
was generally loaded with 20 mL of electrolyte/fluorophore solutions. The three
electrodes were connected to an EmStat3 potentiostat (PalmSens BV). All poten-
tials are reported against the standard hydrogen electrode (SHE). Luminol elec-
trochemiluminescence and fluorescein fluorescence were detected using a Nikon
Eclipse Ti2 inverted fluorescence microscope equipped with a 14-bit monochro-
matic camera (Nikon DS-Qi2), Plan Fluor 10×/0.30 Ph1 objective, and Semrock
quad-band excitation/emission filter (LED-DA/FI/TR/Cy5). Images were captured
at 1024 × 1024-pixel (px) resolution. For the detection of OH• and OH−, 470-nm
excitation and 515-nm emission were used. For the detection of luminol electro-
chemiluminescence, the sample was kept in the dark and no emission filter was
used. For the wide-field videos (Supplementary Video 6), the luminol electro-
chemiluminescence was recorded using a CMOS camera (CS235CU, Thorlabs)
equipped with a focusing lens (MVL50M23, Thorlabs, 50 mm, f/2.8). For the
detection of reactive oxygen species by fluorescence, we used aqueous solutions
containing either 1.0 × 10−4 M DCFH2-DA or 1.0 × 10−5 M HPF. The 1.0 × 10−4

M DCFH2-DA solution was prepared from a 1.0 × 10−3 M DCFH2-DA stock
solution in dimethyl sulfoxide so that the final concentration of dimethyl sulfoxide
during the imaging experiments is 1% v/v. The 1.0 × 10−5 M HPF solution was
prepared from a 5.0 × 10−3 M DCFH2-DA stock solution in DMF, with a 0.4% v/v
final concentration of DMF. For the electrochemiluminescence detection, an
aqueous solution of 0.1 M sodium hydroxide, 0.05M luminol, and 0.3% v/v
hydrogen peroxide was used.

Confocal microscopy. 12-bit fluorescence and differential interference contrast
microscopy images at 512 × 512-px resolution were captured using a Nikon A1R
laser scanning confocal system attached to a Nikon Ti-E inverted microscope,
using a Plan Apo λ 10×/0.45 objective with excitation set to 488 nm, emission
to 525/50 nm, and with a DU4 detector. Images were captured at 1.00× zoom and a
pinhole size of 17.9 µm. The electrochemical cell was the same as that used for the
epifluorescence and chemiluminescence microscopy experiments.

Competition of H2O2 and luminol for HO•. The competition of hydrogen
peroxide and luminol for HO• as their oxidant was studied by electro-
chemiluminescence spectroscopy with a Cary Eclipse Fluorescence spectro-
photometer, using a spectroelectrochemical cell from BASi (EF-1362) fitted with a
platinum gauze as the working electrode, a platinum wire as the counter electrode,
and an Ag/AgCl/KCl (sat.) as the reference electrode. All electrochemical mea-
surements were performed using a potentiostat from PalmSens BV (EmStat3). All
potentials are reported against the SHE. The electrochemiluminescence intensity
was measured at the peak maxima (425 nm) at an applied potential of +1.2 V in a
solution containing 5.0 × 10−2 M luminol, 0.1 M sodium hydroxide, and con-
centrations of hydrogen peroxide ranging from 1 × 10−3 to 0.5 M. The platinum
electrodes were cleaned after each measurement by electrochemical cycling (20
cycles at a sweep rate of 0.1 V/s) in 0.5 M aqueous nitric acid and then rinsed with
Milli-Q™ water.

X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy was per-
formed with an ESCALab 250 Xi spectrometer (ThermoFisher Scientific) fitted
with a monochromated Al Kα source. The pressure in the analysis chamber during
measurements was <10−8 mbar. The pass energy and step size for narrow scans
were 20 and 0.1 eV, respectively, and the take-off angle was normal to the sample
surface. Spectral analysis was performed by using the Avantage 4.73 software and
curve fittings were carried out with a mixture of Gaussian–Lorentzian functions.
Emission peaks were calibrated by applying a rigid binding energy shift to bring the
C1s emission of the C−C signal to 284.3 eV.

Theoretical procedures. Quantum-chemical calculations were undertaken to
assess the possibility of electrostatically driven peroxide homolysis, to determine
the effect of charge repulsion on hydroxide oxidation, and to ascertain the
mechanism of luminol polymerization. A summary of the methods is given below,
further details are provided in the relevant Supplementary Notes.

Calculations on peroxide homolysis and luminol polymerization were carried
out with the Gaussian 16.C0139 software package, at the M06-2X/6-31+G(d,p)
level of theory for both geometry optimizations and frequency calculations. Where
relevant, conformational searching was also carried out at this level using the
energy-directed tree search algorithm40. For peroxide homolysis, a thermocycle
approach was used to obtain aqueous-phase Gibbs free energies from gas-phase
Gibbs free energies and SMD41 solvation energies. For the polymerization,
geometries in the gas and aqueous phases were significantly different, and so the
direct method42 was used instead. In both cases, standard partition functions for an
ideal gas under the harmonic oscillator-rigid rotor approximation were used. For
peroxide homolysis, the electric field was applied using the field command in
Gaussian with values of 2 and 10 atomic units, the former corresponding best to
the estimated field at the bubble surface6–8. Multiple directions were screened and
the most stabilizing directions applied in all cases.
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To assess the effects of charge repulsion on hydroxide oxidation, a 1 M solvent
system comprising 1 hydroxide and 52 water molecules was extracted from the
trajectory of 1 ns NVT simulation of a system containing 1 hydroxide and 100
water molecules in cubic boxes with a length of 14.46 angstrom based on the
density of water. The initial cubic box was set up using the Packmol program43,
and the Travis program44 was used to place a solute molecule (HO− or HO•) in the
center of each simulation box. For each cluster, the GFN2-xTB method45

implemented in the xtb46 code (version 6.2.3) is used to optimize the structure, and
the most stable cluster is taken for further optimization using the B97-3c method47

with the ORCA program48. Improved energies were calculated with RI-PWPB95-
D3(BJ)49,50/def2-QZVPP51 single-point energies and these were further corrected
to the CCSD(T)/CBS52,53 level via an ONIOM approximation54 in which the core
system was the isolated reagent. Oxidation potentials were computed using a value
of 4.281V55 for the reference electrode and Boltzmann statistics for the electron.
The effect of electrostatic repulsion was assessed by repeating the calculations for
simulation boxes in which 1 (2 M) or 2 (3M) extra HO− ions were included.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. The optimized coordinates for the OH− and HO•

systems are deposited at https://figshare.com/s/a547a7a21d4a2d37ba73.
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152 5.3. SUMMARY

5.3 Summary

In this chapter, the features of air-water interfaces were reviewed, and the air-water in-
terface was proposed as a platform for electrostatic catalysis. We used the semi-empirical
GFN-XTB method based MD simulation, accurate DFT calculations and ONIOM(CCSD
(T)/CBS:DFT) multi-scale energy calculations to study the effects of the concentration
of the OH anion and the associated electrostatic interactions at the bubble surface on the
oxidation potential. Our computational results, which is confirmed by the experimental
findings of the polymerization reaction, suggest that the bubble system can be used as an
excellent platform for electrostatic catalysis.
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Chapter 6

Conclusions and Outlook

In this thesis, a range of chemical properties and reactions such as solvation free en-
ergy, pKa, redox potential, electrostatic catalysis and ionic liquids under external electric
fields were studied with multi-scale computational chemistry techniques including post-
HF, DFT, semi-empirical methods, polarizable force field and wave function analysis
methods. Main contributions of this thesis and outlook for future works are summarised
herein.

6.1 Main Contributions

1. An extensive review of recent literature on the modelling of solvation free energies,
solution-phase properties (e.g., pKa, redox potential, photochemical properties), reaction
mechanisms and catalysis was undertaken. Recommended database and parameters for
solvation modelling were presented. We introduced a collection of key works published in
the last five years employing computational methods at different scales to model solvent
effects. The reported computational methods included quantum chemical methods (post-
HF, DFT, tight-binding and semi-empirical QM, multiscale and fragmentation based QM
methods), force field methods (polarizable, reactive and coarsed-grain force field methods),
as well as the use of cheminformatics, machine learning methods and GPU. This literature
review will guide the choice of computational methods and other important factors in the
future studies related with computational solvation in different systems. For example,
ESF values and theoretical level used for implicit solvent models, hydration free energy
of proton for accurate pK a predictions.

2. The theoretical background of implicit solvent models, the SCRF method, solute
cavity, SMD and PCM solvent models were reviewed. We examined various methods to
improve the accuracy of SMD solvation free energy calculations, including tuning theo-
retical levels, scaling solute cavities, and using explicit solvent molecules. These methods
were compared using pKa prediction of a wide range of solute types. pKa calculations were
conducted with thermodynamic cycle method where accurate CBS-QB3(SP)//M062X/6-
31+G(d,p) method was used for gas-phase free energy calculations. Our study suggests
incorporating explicit solvent molecules improves the accuracy of SMD solvation free en-
ergies and associated aqueous pKa predictions of anions (e.g., carboxylic acids and thiols),
but is not necessary for cations and neutral species, as confirmed by pKa calculations of
methyl-substituted nucleic acid bases and aliphatic amines. The mixed theoretical level
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method we developed performs better than M052X/6-31G(d). Effects and limitations of
cavity scaling were analysed in detail. Using mixed theoretical level for neutral species
and cations without explicit solvent while employing M052X/cc-PVTZ with one explicit
solvent molecule for anions (i.e., protocol 1 for cations and neutral species while protocol
3 for anions in Publication 2 ), outperforms two cavity scaling methods reported in the
literature. Our method for SMD solvation free energy is more accurate, easy to use and
versatile for CHNO small molecules. Additional pKa tests on carbon acids, alcohols and
anilines further confirmed above conclusions.

The advantages and shortcomings of UAHF and UAKS atomic radii were discussed in
detail. An extensive optimization of ESF with the MNSol-v2012 data base was conducted.
These benchmarking results, together with associated pKa tests for amines, thiols, carbon
acids, pyridines, alcohols, anilines, carboxylic acids and phenols in water and acetonitrile
suggest that: (1) ESF = 1.2 should be used for hydration free energy calculations with
PCM-UAHF and PCM-UAKS methods; (2) Different ESF values should be used for neu-
tral species and ions; (3) With optimized ESF values, the accuracy of CPCM-UAHF is
close to that of SMD and exceeds that of COSMO-RS for the test of 82 solute/solvent
combinations, which suggests our optimized CPCM-UAHF model is an excellent alterna-
tive to these two popular implicit solvent models.

These contributions are expected to be useful in future predictions of pKa and redox
potential in solution phase.

3. The concept of electrostatic catalysis and previous works in this field were reviewed.
Although we focused on analysing the effects of external electric field, influence of other
external factors (e.g., solid-liquid interactions and temperature) on the ordering of solvent
were briefly discussed. We highlighted the bottleneck for electrostatic catalysis in polar
solvent and how ordered solvent could be a strategy to solve this bottleneck. A workflow
was designed to study the effects of solvent ordering on the activation energy of the model
hydrogen-transfer reaction. Used methods include polarizable force field, wave function
analysis, post-HF method, DFT and semi-empirical methods, and ONIOM multi-scale
energy calculations. The effects of snapshots number on the calculated activation energy
were analysed. Different methods were used to investigate and characterize the ordered
solvent structures. The phenomenon of “breaking ion cage” and its relationship with the
decrease of RDF of ionic liquids under external electric field was examined. Further, the
change of dipole moment of solvent environment and its relationship to reaction axis of
the solute was analysed.

The structure and properties of ionic liquids under an external electric field were stud-
ied with experimental and computational techniques. The observed OCP plateau was
proposed as a simple method to characterize the ordered structure of ionic liquids.Various
computational results were discussed including RDF, angular distribution functions, the
angle between dipole moment direction and electric field direction, ion dipole projec-
tion, and the diffusion coefficient of the cation and its volume. A good correlation
was determined between the measured OCP and calculated quantities of [EMIM][PF6],
[HMIM][PF6], [EMIM][EtSO4] and [BMIM][NTf2].

These contributions provide a deep understanding of electrostatic catalysis and are
expected to be useful in the design of suitable catalysts, particularly in complex solvent
environments and polar solvents. Further, these works will assist in the future study of
ionic liquids under electric fields and associated electrochemical devices.
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4. The accumulation of anions and associated local electric field at the bubble surface
were introduced as another platform for electrostatic catalysis. We developed a work-
flow to calculate oxidation potential of the OH anion at different concentrations, using
GFN-XTB based MD simulation, semi-empirical QM, DFT, CCSD(T)/CBS methods and
ONIOM multi-scale energy calculations. Our results suggested that the high concentra-
tion of OH anions and the associated electrostatic interactions can dramatically promote
the oxidation of OH anions at the interface. The generated OH radical by the oxidation
of OH anions was proved to be useful for the polymerization of luminol.

This contribution is expected to aid the design of efficient catalysts acting at the
water-air and other interfaces.

6.2 Outlook
This thesis has led to a number of additional research questions in computational solvent
modelling and electrostatic catalysis. These are summarised below and identify where
future efforts in the field can be focussed.

1. There is still a further room for improving the accuracy of implicit solvent mod-
els. Although more extensive benchmarking might be useful, existed works have already
concluded that the error of solvation free energy of certain species, e.g., anions, are usu-
ally large.[1] Thus, the first step for future work could be including more tricky systems
like anions into current training set (e.g., MNSOL-v2012) of solvation models. Current
parameters of implicit solvent models can be updated based on the new training set us-
ing different methods. For example (1) ML could be a powerful tool for the systematic
and multi-objective optimization of the parameters in the implicit solvent models.[2, 3]
A correlation between optimized ESF values in Publication 3 and descriptors of solute
and solvent could be developed. The solute classification and solvent parameters in the
MNSOL-v2012 data base[4] could be used as descriptors. ML techniques especially deep
learning methods require a large and high quality data set, which is a potential difficulty
for ML based solvation model and other chemistry applications. Especially, computed
and experimental data are rare for solvation free energies in non-aqueous solvent. This
problem might be able to solved using transfer learning technique[5] but the prediction
accuracy needs to be further analysed; (2) ML can also be employed for direct predic-
tion of solution-phase properties. Examples include pKa[6–8], redox potential[9], pho-
tochemical properties[10], force field parameters (e.g., partial charge[11]) and reaction
mechanisms[12] without explicitly calculating the solvation free energies; (3) Further, ML
has also been employed for explicit solvent based hydration free energy calculations (e.g.,
the alchemical methods);[13] (4) Implicit solvent models should be developed for more
complicated solvent environments (e.g., solvent mixtures, ionic liquids,[14] deep eutectic
solvents, electrolyte solutions, temperature and pressure effects) without significantly in-
creasing computational costs. This is very challenging while previous works of SM8T[15]
and SMD-GIL[16] have proved the feasibility. Further works in this regard might need
expansion of training set and more sophisticated techniques for global optimization of
related parameters; (5) Finally, the mixed theoretical level method and the mixed ESF
method proposed in this thesis should be extended to the calculations of other properties
(e.g., partition coefficients in the SAMPL7 blind challenge).[17]

2. For some reactions, the prediction of activation energy using implicit solvent mod-
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els is accompanied by significant uncertainty.[18] Recently, the importance of solvation
dynamics in studying reaction mechanisms has been highlighted, as shown in some repre-
sentative works.[19, 20] Thus, it is important that future method development can further
improve the accuracy of implicit solvent models and efficiently include solvation dynamic
effects for studying reaction mechanisms.

3. Because electrostatic and polarization interactions in electrostatic catalysis is re-
lated with bond breaking and forming steps, accuracy of quantum chemical methods in
the evaluation of electrostatic interactions is critical. However, long-time MD simulations
at QM level are not practical, so this thesis has investigated electrostatic catalysis us-
ing low-level (polarizable force field and semi-empirical QM methods) MD simulations
and high-level (semi-empirical, DFT and post-HF methods) energy calculations. This
protocol can be further improved by introducing additional considerations. For exam-
ple: (1) Enhanced sampling methods[21] are usually more accurate than the end-point
sampling. While it is sometimes challenging to design reasonable collective variables or
intermediate states for a complicated chemical process, employing enhanced sampling
methods could offer new insights in understanding more details of electrostatic catalysis
in complex solvent environments; (2) Multi-scale energy calculations in this work were
conducted with the ONIOM scheme, which can be improved by using more sophisti-
cated quantum embedding methods (e.g., projector-based embedding[22]) with a more
accurate description of the mutual polarization between two scales; (3) Machine learn-
ing potential techniques such as DPMD method are ground-breaking contributions in
recent years which enable modelling complicated systems with high accuracy while af-
fordable computational costs.[23] It has recently been employed in the study of chemical
reactions in solution[24] and in the future could be employed to the modelling of electro-
static catalysis for large systems with accurate AIMD methods combined with enhanced
sampling methods; (4) Investigating the effects of solvent ordering on other properties
(e.g., excited-state properties[25]) and reaction selectivity; (5) Combining solute-solvent
non-covalent interactions[26, 27] (e.g., hydrogen-bonding interactions) with CFG[28] in
electrostatic catalysis and examining the interplay between non-covalent interactions and
CFG; (6) Further studying chemical properties and reactions in other complex environ-
ments (e.g., molecular junction[29], nanoconfined space[30], solid-liquid interactions[31],
micro-droplets[32–34]) and associated catalysis.

4. In light of our findings on the concentration of OH anions at the gas-liquid interface,
the associated electric field and application to electrostatic catalysis, further investigation
of the unique environment at this interface is warranted, and could offer distinct ad-
vantages compared to chemistry in the bulk solution. Several examples of future works
are now summarized: (1) The computational protocol used in this work can be further
improved by using a more accurate description of the gas-water interface and using ad-
ditional configurations while keeping computational costs affordable. To model reactions
at the air-water interface, effects of the size of the bubble, its curvature, and counterions
should be included. For some reactions, inclusion of nuclear quantum effects[35–38] could
also be important. Besides, bubble stability is also an important factor, which could be in-
fluenced by dissolved electrolytes and specific ion effects. The structures of electrodes and
detailed chemical interactions could also be crucial. Thus, these factors can be harnessed
to design efficient electrostatic catalysis systems; (2) The cluster size used in this work is
very large for high-level DFT calculations, it is reasonable to ignore the hydrogen bond-
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ing interactions between extracted clusters and exterior molecules. However, arriving at
a rigorous conclusion might need further works trying larger clusters. This is not easy as
we need to find a good balance between a proper size of cluster and an appropriate choice
of QM method.(3) Further exploration of other properties at the gas-water interface,
including non-equilibrium solvation, photochemical peroperties and superfast reactions.
Some experimental works have been undertaken in this field recently,[39] and compu-
tational chemistry could offer further insight; (4) Besides the gas-water interface, other
interface phenomena (e.g., "on water" reactions[40] and reactions at the water-mineral
interface[41] or even the negatively charged bilayer phospholipid membrane surface[42])
can be investigated computationally for electrostatic catalysis; (5) Further exploration of
the role of concentration of unbalanced charges in electrochemical applications besides
redox potential[43, 44].

5. Extending upon the foundation in this thesis, further investigations of the structure
and properties of ionic liquids under electric fields are warranted. For example, (1) the uni-
form external electric field employed in the MD simulations can be replaced with the more
realistic constant potential method[45–48]; (2) The explicit interactions between charged
electrodes and ionic liquids should also be included by performing AIMD simulations,[49]
which can be further combined with the machine learning potential technique mentioned
above for accelerating long-time simulations; (3) It is also worthwhile to study the direct
connections between the calculated ion projector, measured OCP plateau and the perfor-
mance of electrochemical devices, for example, batteries.

6. Developing methods for accurate and fast search of conformation and configuration
of solvated molecules and clusters. With the increase of complexity, it is often challenging
to arrive the global optimization, especially in solution phase, while it has been shown
that the combination of QM calculations and data science could be a solution.[50]

7. The design of bespoke solvents using computational techniques and their translation
to experimental chemistry is likely to provide benefit in the areas of CO2 capture by ionic
liquids[51], thermocells using ionic liquids[52] or deep eutectic solvents[53], and in energy
storage as battery electrolytes.[54] There is great opportunity for solvent modelling to
play a key role in these applications and the development of next generation devices.
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