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1
Introduction

1.1 Historical origins

It is said that there were two revolutions in 20th-century physics: quantum theory,
and relativity. But in a sense there was a third, less-publicised one: the revolution in
nonlinear physics.

To a large extent, the roots of this subject which led to its flourishing in the last
century go back to the mid to late 19th-century study of water waves. Pioneering
studies in nonlinear water waves were carried out by Stokes [1], then Boussinesq [2, 3],
and Korteweg and de Vries [4]. Boussinesq, as well as Korteweg and de Vries, were
in part motivated by Scott Russell’s observations of the solitary wave [5], which was
a wave which had important features which marked it as something that could not
be explained by the linear theories of the time.

The solitary wave was able to propagate long distances with neither a change in
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4 1.1. HISTORICAL ORIGINS

shape nor a change of its momentum. According to the predictions of the linear
theory, such a wave should have decayed away, or become so steep that it became
unstable and collapsed [6]. Most striking of all was the fact that these solitary waves
were also able to collide with each other and emerge asymptotically unchanged, and
a solitary wave with a height too large to propagate in the fluid might also break up
into several smaller ones, which all shared these same characteristic properties. These
properties were more akin to those of particles than those of a typical wave. These
particle-like properties later motivated the name: ‘soliton.’

The key difference between the linear and nonlinear descriptions of wave propaga-
tion is that the presence of nonlinear effects allows for the possibility of balancing
the dispersive forces. If the nonlinear effects produce focusing forces which exactly
balance the dispersive forces, then the wave will be able to preserve its shape as it
moves, without any loss in momentum. When nonlinear effects are accounted for in
the hydrodynamic theory, it was shown that solitons and nonlinear periodic (cnoidal)
waves could collide and be reflected and emerge with the same shape [7]; that is, they
were only temporarily altered in shape near an interaction.

The striking observation of the soliton makes it very easy to focus on the hydro-
dynamic origins of the field. We will return to this topic in a moment, but the
development of nonlinear physics is really a much bigger story. In the late 19th cen-
tury, the theory of nonlinear dynamics was also being developed by Henri Poincaré in
the realm of celestial mechanics [8–10]. This work gave many of the techniques used
in the analysis of nonlinear systems, such as the modern theory of stability for fixed
points and orbits (or trajectories) in phase space. Of particular note was the notion
of a homoclinic orbit, which is a trajectory connecting a saddle point to itself. This
causes the orbit of the system in phase space to have a high degree of sensitivity to
initial conditions, and in some cases may lead to chaotic motion.

In the early-to-mid 20th century, there was also a burgeoning interest in nonlinear
oscillations. A spring is, after all, only linear so long as certain approximations remain
valid; most importantly, that the displacement be small. Georg Duffing [11] investi-
gated a model of the damped and driven oscillator with a cubic nonlinearity. Unlike
the simple harmonic oscillator, the frequency of the nonlinear oscillator depends on



CHAPTER 1. INTRODUCTION 5

its amplitude, and when the frequency of a driving force is varied, the Duffing oscilla-
tor also exhibits hysteresis. Nonlinear oscillations were of great interest in electrical
circuits. Van der Pol considered a non-conservative nonlinear circuit which exhibited
relaxation oscillations when the nonlinearity was sufficiently large [12]. These were
oscillations which behave almost like sawtooth functions, where the system exhibits
a sudden jump. Van der Pol and van der Mark [13] observed an interval of determin-
istic chaos which occurs as the circuit jumps from one frequency to another. This
was an early observation of deterministic chaos decades before the famous work of
Lorenz [14] in 1963. Nonlinear dynamics were also applied to the biological sciences,
such as the van der Pol model of the heartbeat [15], and the Lotka-Volterra models
of predator-prey populations [16].

It took until the 1960s before nonlinear physics took on its modern form. De-
spite all this interest in nonlinear dynamics, and despite the fact that the Boussinesq
equations, and the Korteweg-de Vries (KdV) equations were respectively discovered
in 1871 and 1877 by Boussinesq, the latter independently rediscovered by Korteweg
and de Vries in 1895, and despite both being immediately found to provide accurate
descriptions of the solitary wave in shallow water, both remained undeveloped for
a long time. Their full significance was not discovered until the numerical work of
Zabusky and Kruskal [17] on the problem of FPU recurrence. The FPU problem was
the numerical simulation, carried out by Fermi, Pasta, and Ulam, of the oscillations of
a system of point masses and springs with a nonlinear force law F (x) = −kx(1 + δx)

[18] where k is the spring constant, x the displacement between two masses, and δ

the nonlinear coefficient. As initial conditions, the n masses, labelled by the index
r = 1, . . . , n − 1, were chosen to be placed at points sin rπ/n, while their initial
momenta were set to zero.

It was expected that there would be no reason that one normal mode would be
preferred over any other, so the system should tend towards thermal equilibrium,
with all normal modes eventually having an equal share of the total energy. Instead,
the system was observed to return back to the initial state. This phenomenon be-
came known as FPU recurrence, and the apparent contradiction with what should be
physically expected known as the FPU paradox. Zabusky and Kruskal were intrigued
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by this phenomenon, and due to the advances in computing power, were able to do
numerical experiments with continuous models rather than with a chain of a small
number of nonlinear oscillators. They investigated the KdV equation, and they found
that when the KdV equation was given the initial condition of a sinusoidal pulse, the
wave would break up and split into a train of solitons with various amplitudes and
velocities. These solitons would collide elastically, and retain their shape after inter-
acting, so that when considered with periodic boundary conditions, the KdV system
exhibited a near return to the initial state when eventually the solitons would return
to the same point in space and approximately reform the initial pulse, except with the
solitons having a small change in phase. This recurrence to the initial condition was
qualitatively similar to the recurrence in the FPU problem. After twice the initial
recurrence time, the recurrence was less close to the initial state, and the third recur-
rence was even further away. This gave some insight into how the interplay between
dispersion and nonlinear focusing effects were able to reproduce the near-recurrence
phenomenon in certain physical systems.

It should be mentioned that it is actually true that the FPU system will also
eventually arrive at thermal equilibrium, given a long enough time [19], so there was
really no violation of the equipartition theorem to begin with; it only seemed this
way because of the computational time limits. Nevertheless, this apparent paradox
marks the beginning of modern soliton research.

Shortly thereafter, Gardner, Kruskal, Greene, and Miura published a series of
papers [20–26], after which the theory of the KdV equation exploded. They demon-
strated a method of solution given certain initial data using the technique of inverse
scattering, and showed that the KdV equation had infinitely many conservation laws.
Peter Lax then proved that the KdV equation was actually an example of a class
of nonlinear equations which could be treated as equivalent to the integrability of a
linear system, and showed, using what is now known as a Lax pair, how the system’s
infinity of conservation laws emerges from its underlying structure [27].

The nonlinear Schrödinger (NLS) equation was the next major soliton equation to
be studied in detail. In the mid 1960s, it appeared as an equation which described
the self-focusing of wave envelopes in nonlinear media. In the context of water waves,



CHAPTER 1. INTRODUCTION 7

the nonlinear Schrödinger equation was given explicitly by Zakharov [28] to answer
the question of whether the Stokes wave was stable, and was shown by Zakharov and
Shabat [29] to be solvable by inverse scattering, to have a Lax pair, and admit soliton
solutions, like the KdV equation.

It had been shown only slightly earlier by Benjamin and Feir that the Stokes wave
had a particular kind of instability, now known as modulation instability, which meant
that a small, low-frequency modulation applied to the carrier wave would grow at an
exponential rate [30]. This could then lead to the wavetrain breaking up. The NLS
equation was also shown to describe this effect.

Modulation instability is the linear stage of a more interesting nonlinear phe-
nomenon. Exponential growth of the initial perturbation cannot continue indefinitely.
Saturation must eventually be reached. When the maximum amplitude is reached,
the modulation will begin to decay. The growth and decay processes are symmetric,
which is not something which is immediately obvious. As a result, the modulation
will decay and the wave eventually returns to its constant-amplitude initial state, up
to a change in phase. In other words, modulation instability is the first stage in the
growth-decay cycle of a periodic perturbation of a wavetrain.

This means that modulation instability can manifest as what is known as a breather,
which is localised in the evolution variable, but periodic in the transverse dimension.
Breathers generated by modulation instability were theoretically predicted in the NLS
equation by Akhmediev, Eleonskii, and Kulagin [31], and Akhmediev and Korneev
[32]. These breathers, also called Akhmediev breathers, are part of a family of so-
lutions which depend on a variable parameter determined by the frequency of the
perturbation. This parameter determines the rate of the growth-decay cycle of these
breathers.

Because a constant amplitude wave is unstable as a solution of the NLS equation,
it represents a saddle point in the phase space of the NLS system. Modulation
instability provides a linear approximation of a trajectory through this saddle point.
The orbit returns to a saddle point which is equivalent to its starting point up to a
phase shift. The Akhmediev breather can be thought of as giving the analytic form
of this trajectory. Because the saddle point the trajectory goes to is not exactly the
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same as the one it started from, this is generally a heteroclinic orbit, but will be a
homoclinic orbit in the limit as the modulation frequency goes to zero.

The spectral evolution of an Akhmediev breather also shows the growth-decay cy-
cle [32]: it begins with a single fundamental frequency, which is the frequency of the
background. A small modulation adds two sidebands each side of the fundamental,
and further evolution then adds an infinite number of equally spaced sidebands on
both sides. This spectral widening occurs due to the four-wave mixing process, which,
as already mentioned, is described by the NLS equation. After maximal spreading
of the spectrum, it returns back to the initial state of the original fundamental fre-
quency. The evolution of the frequency components thus shows the same pattern as
the evolution of the normal modes in the FPU problem, and the solution of the NLS
equation in the form of an Akhmediev breather provides theoretical background for
the explanation of FPU recurrence.

A soliton on a constant background can be considered another kind of NLS breather.
These were found first by Kuznetsov [33], and studied in detail by Ma [34]. These
are known as Kuznetsov-Ma solitons, also sometimes called Kuznetsov-Ma breathers
[35]. Periodicity in this case is caused by the beating between the soliton and the
constant background, which have different propagation constants. These breathers
also form a one-parameter family of solutions, with the soliton amplitude being the
free parameter.

These breathers are also particular cases of a more general two-parameter family
of solutions, which are periodic in both space and time [36]. The two periods of this
solution are both free parameters. When one of the periods tends to infinity, the
doubly-periodic solution tends to a limit in the form of an Akhmediev breather, or a
Kuznetsov-Ma soliton. On the other hand, when the periods both become infinitely
large, only one peak remains. This will be a large, sudden, isolated peak which grows
from a calm background.

These peaks are known as rogue waves. Their defining characteristic is that they
are waves which ‘appear from nowhere and disappear without a trace’ [37]. Put
another way, they are highly localised in both space and time. Rogue waves were the
next major discovery in the quickly growing field of nonlinear physics. The simplest
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solution of the NLS equation localised in both space and time, in which the wave
amplitude is given as a rational function, was given by Peregrine [38], and its relevance
to rogue wave formation is now well-known [37]. The Peregrine rogue wave is also
equivalent to the limiting case of the Akhmediev breather as the frequency goes
to zero. This gave strong evidence that modulation instability could actually be
responsible for generating a rogue wave from a plane wave background.

It is critical to note that this type of rogue wave formation is a completely distinct
mechanism to that of the sudden appearance of large water waves caused by focusing
effects such as obstacles or the geometry of the seabed. Even though the sudden
formation of very large water waves is known to be possible in the linear theory [39],
these explanations rely on additional effects also being present, rather than solely on
the inherent properties of the fluid itself. Geometrical focusing effects, for instance,
may produce a very large wave, apparently without warning [40]. However, it is
now known that the linear theory cannot explain the appearance of rogue waves in
general, because rogue waves are also readily generated from modulation instability
in the ideal conditions provided by water tank experiments. This is something that
cannot happen in a linear theory of water waves. It is therefore clear that these two
ideas of rogue waves refer to very different physical processes. While the linear theory
can explain the appearance of some large, sudden waves, it does not explain how they
may be generated by a uniquely nonlinear mechanism. That said, it is worth noting
that models do exist which incorporate both nonlinear focusing due to the water itself
[41], as well as extrinsic factors, such as wind forcing, and these have shown that both
effects may combine to enhance the effects of modulational instability [42, 43]. In this
thesis, by a rogue wave we will mean only the nonlinear phenomenon.

The NLS equation was also found to be applicable to optical fibres [44, 45]. It
was shown that a wave propagating through a dielectric fibre could form solitons if
the quadratic dependence of the index of refraction on the electric field intensity was
taken into account in a special optical frequency range. The effect of the nonlinear
refractive index on a slowly-varying wave envelope can act to balance the group ve-
locity dispersion. This enables the wave packet to form a stable coherent structure.
Anomalous dispersion led to bright solitons, which form on zero background, char-
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acterised by a local increase in field intensity, whereas normal dispersion led to dark
solitons, which form on non-zero background, characterised by a local decrease in field
intensity.

The quadratic dependence of a medium’s refractive index on the electric field,
known as the optical Kerr effect, is mainly due to the medium having an optical
susceptibility, or polarisation response function, which is cubic as a function of the
field. However, the action of the second-order nonlinear optical susceptibility can also
contribute to the quadratic term of the refractive index. This is known as cascaded
nonlinearity [46].

Nonlinear optical susceptibilities lead to the generation of waves with different
frequencies to the frequency of the applied field when the intensity of the field is
sufficiently high. The NLS equation is one of the equations that describes these
frequency transformation phenomena; in this case, it is four-wave mixing which results
in the modulation instability of the wave envelope. In optics, modulation instability
is also known as Bespalov-Talanov instability [47].

This was a big step forward with important practical consequences for experiments
and empirical studies of nonlinear phenomena, as we will discuss.

1.2 Experiments and observations

Although this work is theoretical, it is important to recognise that the development
of nonlinear physics is also significantly driven and led by empirical observations and
experiment. This has been true ever since the first recorded observation of a soliton.

Nowadays, there is a large body of experimental data on the observation and re-
production of nonlinear phenomena in controlled conditions. It is now possible to
generate solitons, breathers, and rogue waves easily, safely, and to put them to good
use.

In water tank experiments [48, 49], rogue waves have been successfully generated,
and their features have been found to agree well with theoretical predictions. In 2014,
experimentalists were able to successfully generate breathers in water waves [50], and
in later experiments, breathers were also successfully generated even in the wind-
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forced regime [51]. Water tank experiments have also successfully recreated solitons
in approximately the same way in which they were first seen in the FPU simulations
[52], providing additional, experimental justification for the resolution of the problem
which led to the development of modern soliton theory.

Rogue waves had actually been part of nautical lore for a very long time prior to
the formal observation of them striking gas platform in the Norwegian North Sea [53].
Sailors would tell stories of ships being damaged or sunk by enormous waves which
appeared without any warning. A significant part of why these observations were
not always taken seriously may have been the lack of place for rogue waves in the
underdeveloped linear theories of the time. In fact, some physicists, such as François
Arago, were so confident that they could not exist that they even ridiculed accounts
of sailors who claimed to see waves over 30 metres tall [54]. By contrast, in modern
times there is a wealth of empirical and theoretical knowledge on rogue waves in the
ocean [55]. Seamen used to speak of rogue waves striking ships in threes, and even
this has gone from ridiculed folklore to being replicated in wave tanks [56]. As the
strength of the nonlinear description of water waves has become better known, there
has been recognised a need to build ships to withstand a possible strike from rogue
waves, and to develop rogue wave prediction mechanisms [57].

That said, rogue waves are not something which we would usually like to encounter
in the ocean. More to the point, we would like some easier way of generating them
than in water. This is one reason why the fact that equations like the NLS equation
describing both hydrodynamic situations as well as optical ones is so important.
This correspondence has enabled nonlinear phenomena to be studied far more easily
with a laser than they could have been studied otherwise. To give an example of
this, breathers were actually first observed not in water, but in optical fibres [58–
60]. Rogue waves are now very well-studied in optical environments, where they can
appear in supercontinuum generation [61–63].

One special advantage of the optical exploration of rogue waves is that while ob-
serving one rogue wave in the ocean may be difficult, the theory predicts much more
intricate structures to be possible. We have mentioned sailors’ stories of triplets of
rogue waves, but it is predicted to also be possible for rogue waves to appear in
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atom-like clusters of specific numbers. To observe this spontaneously in the ocean
would be a hopeless task, and to generate these even in a wave tank may also be too
complicated. Lasers offer what is currently the most plausible environment for ex-
perimentally probing these structures. The study of modulation instability in optics
is also useful for determining the maximum intensity of a wave which can propagate
without being significantly changed as it moves through a medium [64].

All of this is still to say nothing of the large variety of more exotic nonlinear
phenomena, such as spiny solitons [65], creeping solitons [66], and exploding solitons
[67, 68], which have been discovered in non-integrable systems. Although the theory of
integrable soliton equations is intricate and aesthetically pleasing, integrable systems
are almost always built upon simplifying assumptions which can be difficult to achieve
in reality. It is more common that real situations are more aptly described by non-
integrable systems, about which we cannot say too much in exact mathematical terms.

1.3 The Korteweg-de Vries equation

Why did it take the better part of a century before the theory of the KdV equation
was properly developed? The answer is that nonlinear partial differential equations
are hard to solve, and there is no general method of exact solution which can be
applied to all of them. Only late last century was it noticed that the KdV equation
has an incredibly rich structure, and that this could be exploited to generate very
complicated solutions in a simple way.

The first approach to solving the KdV equation in a systematic way was through
the method of inverse scattering. The inverse scattering technique operates a lot like
a nonlinear version of the Fourier transform [69]. The idea is to treat the solution
of the KdV equation as the potential in a Sturm-Liouville equation. If, given the
potential, i.e. a solution to the KdV equation, at an initial time, say t = 0, the
asymptotic scattering data of the unknown function in the Sturm-Liouville problem
are then determined at the spatial boundary. The time evolution of the scattering
data must be determined by the KdV equation, since the potential is a solution of
the KdV equation, so this allows the scattering data to be ‘propagated forward,’ so
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to speak, to a later time t > 0. Finally, the potential can be reconstructed at the time
t with the Gelfand-Levitan-Marchenko equation [70]. This constructs a solution to
the KdV equation at a time t from known initial conditions. The idea of the inverse
scattering technique is succinctly shown in the following diagram.

KdV solution at t = 0 scattering data at t = 0

KdV solution at t > 0 scattering data at t > 0

Sturm-Liouville

time evolution KdV equation

GLM equation

Figure 1.3.1: A rough scheme of the inverse scattering technique

Since then, the theory has grown and developed methods more elegant and easily
applied.

Lax [27] showed that the KdV equation

∂u

∂t
− 6u

∂u

∂x
+
∂3u

∂x3
= 0 (1.1)

is equivalent to the compatibility condition of an overdetermined linear system:

−∂
2ψ

∂x2
+ uψ = λψ (1.2)

∂ψ

∂t
= −4

∂3ψ

∂x3
+ 6u

∂ψ

∂x
+ 3

∂u

∂x
ψ (1.3)

where λ is a constant which should be thought of as the eigenvalue, or spectral
parameter, of the system. This is often expressed in the equivalent way

Lψ = λψ, L = − ∂2

∂x2
+ u (1.4)

∂ψ

∂t
= Bψ, B = −4

∂3

∂x3
+ 6u

∂

∂x
+ 3

∂u

∂x
(1.5)
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so that the KdV equation is just

∂L

∂t
= [L,B] (1.6)

where [·, ·] denotes the commutator. The operators L and B are called the Lax pair for
the KdV equation. When a Lax pair for a nonlinear partial differential equation exists,
the equation will have infinitely many conserved quantities, and thus be completely
integrable.

This equivalence eventually led the way for the KdV equation, a nonlinear problem,
to be treated by linear methods. It was shown by Matveev [71, 72] that these equations
had a certain symmetry: if (u0, ψ0) is already known to be a solution with a fixed
eigenvalue λ0, the system is covariant under the transformation

u 7→ u− 2
∂2

∂x2
logψ0 (1.7)

ψ 7→ ∂ψ

∂x
− ψ

∂

∂x
logψ0 (1.8)

This is known as a Darboux transformation (after its original discoverer [73, 74],
although it was originally mentioned in a different context).

This made finding solutions far easier. Given a solution to the KdV equation,
all that was now required was to solve a linear system for an associated function
ψ and a certain fixed eigenvalue, and then a second solution could be generated by
applying a Darboux transformation. Since this was again another solution to the
KdV equation/its associated linear system, the same transformation could be applied
arbitrarily many times in order to generate a family of solutions (often called a hier-
archy), starting from only one, much simpler solution (often called a seed solution).
Crum’s theorem [75] could be used to write down the result un of an n-times iterated
Darboux transformation as

un = u0 − 2
∂2

∂x2
logW (ψ1, . . . , ψn) (1.9)

where u0 is the seed solution, ψ1, . . . , ψn are linearly independent solutions to the
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linear system with distinct eigenvalues, and W denotes a Wrońskian.
Multi-soliton solutions of the form (1.9) were first given explicitly by Wahlquist [76].

The Wrońskian method in general was further developed by Freeman and Nimmo [77].
When eigenvalues coincide, the solution is called degenerate. Degenerate cases are

broad, and include such things as degenerate breathers and rational solutions (when
they exist).

We will make use of the degenerate Darboux transformation for the KdV equation
in chapter 4. In fact, we will show that the rational solutions of the KdV equation
have certain properties which allow more general solutions to be constructed by adding
together a particular linear combination of the Wrońskians. It is possible that this
indicates the existence of a more general kind of transformation of the KdV equation
which remains to be discovered.

It was also shown that the inverse scattering method for soliton equations is closely
related to auto-Bäcklund transformations [78]. These are transformations which stem
from geometry, essentially being transformations between equivalent surfaces [79].
Originally, they were derived as maps between pseudospherical surfaces, and shown
to generate hierarchies of solutions to the sine-Gordon equation [80–82], but were
later found to be widely applicable to many soliton equations, such as the KdV
equation [83]. In a sense, the Bäcklund transformation is the procedure which ‘adds’
an additional soliton to an already-known soliton solution. From the existence of
a Bäcklund transformation, it is equally possible to conclude that a given soliton
equation is completely integrable.

Another very powerful method was developed by Ryogo Hirota [84–87]. Referred
to as either the direct method, or the bilinear method, the idea is that with the
right substitution, nonlinear equations can be written as bilinear expressions. These
bilinear forms can often be written in terms of Hirota derivatives. When this is
possible, the special properties of Hirota derivatives make it easy to find a solution
by a method almost as simple as perturbation series.

The theory of the KdV equation quickly acquired a lot of theoretical depth. Similar
ideas led to the development of the theory of the τ -function [88], which was both
a powerful method for giving general solutions, and was deeply rooted in algebraic
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geometry, an area seemingly far from physics yet one which was nonetheless intimately
connected to the theory of solitons [89]. In fact, the entire idea of inverse scattering
for a large class of integrable nonlinear systems can be viewed as a Riemann-Hilbert
problem, which makes this an interesting point of view to take regarding solitons and
nonlinear waves in general [90]. This is also known as finite-gap integration, where the
central idea is that many nonlinear integrable systems can be solved by finding certain
characteristic theta functions [91–93]. This technique can also be used to describe the
asymptotic behaviour of soliton equations under short-range perturbations [94, 95].

It is also common to think of the KdV equation as part of a more general family
of nonlinear evolution equations. The rough idea of this is simple, and due to Lax
[27]. A key observation in KdV theory, first made by Gardner, Kruskal, and Miura
[20], was that the eigenvalue of the (time-independent) Schrödinger operator (1.4) is
invariant as long as the evolution of u is given by the KdV equation. However, this
property is not unique to the KdV equation. In fact, by choosing the operator B to
be an arbitrary antisymmetric differential operator of odd order, its coefficients can
be uniquely determined so as to leave the eigenvalues of L fixed. This means that the
KdV equation is really part of an infinite hierarchy of nonlinear partial differential
equations, all of which are completely integrable, share the same invariants, and share
the same remarkable properties. This is called the KdV hierarchy.

It has been shown that the KdV hierarchy does actually have physical meaning in
hydrodynamics, where each member of the hierarchy describes the evolution of long
waves over an infinite sequence of long time scales [96], the higher order equations
corresponding to slower changes.

As the theory grew, so too did the number of applications which the KdV equation
found. What began as a theory of weakly nonlinear shallow water waves now appears
in a variety of physical contexts [97]. The KdV equation has been found to accurately
describe the physics of internal waves in the ocean [98], acoustics of bubbly liquids
[99], and also appears in geophysics where it can be used to model magma migration
[100, 101], where such solitons are sometimes called magmons. It was suggested
that the KdV equation could also describe the formation of solitons in atmospheric
Rossby waves [102] and the KdV equation was even famously proposed as a model
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for the Great Red Spot on Jupiter [103–105]. Ion-acoustic waves were predicted to be
described by the KdV equation [106], and were subsequently observed in a double-
plasma device [107]. The KdV equation also comes up in conformal field theory [108],
where it is noted that when considered with periodic boundary conditions, its Poisson
structure is equivalent to a classical limit of the Virasoro algebra [109]; its Fourier
modes are a scalar multiple of the generators. It is certainly intriguing that the KdV
equation appears at once in something so plain to us as shallow water waves, while
also sharing an algebraic structure with theories in high-energy physics; two fields
which do not seem to have much in common at first sight. Such observations as these
very quickly give an impression of great depth to the study of shallow water waves.

In fact, it is possible to make a more general statement about the KdV equation.
In some sense, it is a universal equation, in that the KdV equation will describe
the physics of a very wide class of weakly nonlinear systems with long characteristic
wavelengths [23].

1.4 The nonlinear Schrödinger equation

The nonlinear Schrödinger equation gained a lot of attention when it was discovered
that it could be used to describe a variety of self-focusing phenomena in nonlinear
media. When the refractive index of a dielectric depends on the square of the electric
field intensity, the envelope of a slowly-varying monochromatic electric field can ex-
hibit self-focusing or self-defocusing behaviour [110]. Equivalently, the NLS equation
appears as an approximation to Maxwell’s equations when the polarisation is taken
to have cubic nonlinearity.

The NLS equation quickly appeared in several different areas describing wave en-
velopes with self-focusing properties. In optics, the NLS equation was put forth to
describe light propagation in nonlinear optical fibres and waveguides, and in hydro-
dynamics to describe the modulation instability of the Stokes wave.

In dimensionless units, the NLS equation has the form

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
± |ψ|2ψ = 0 (1.10)
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where |ψ| is the amplitude of the wave envelope. The variables x and t can have
different meanings, depending on the context. In hydrodynamics, t is typically time
while x is the horizontal coordinate, whereas in optics t and x are generally swapped in
place, and the independent variables are the transverse and longitudinal coordinates.
The choice of sign is decided by whether the nonlinear effects tend to focus or defocus
a wave envelope. When the sign is positive, (1.10) is called the focusing NLS equation,
whereas when the sign is negative, it is called the defocusing NLS equation. In optics,
this term is due to the Kerr effect [111]. In this context, the sign of the nonlinear term
is determined by the ratio of the quadratic term to the leading term in the refractive
index. Rays are attracted to regions which have higher refractive indices, so if this
term is positive, the rays will tend to move towards the centre of the beam where the
field intensity is greater and thus the refractive index higher; that is, a positive sign
on the nonlinear term corresponds to a self-focusing effect. For the same reason, a
negative sign on the nonlinear term corresponds to self-defocusing.

Like the KdV equation, the NLS equation was shown to have a Lax pair. Zakharov
and Shabat [29] showed that the split NLS equations

i
∂q

∂t
= −1

2

∂2q

∂x2
+ q2r (1.11)

i
∂r

∂t
=

1

2

∂2r

∂x2
− r2q (1.12)

(which are a special case of the AKNS system, after the work of Ablowitz, Kaup,
Newell, and Segur [112]), are equivalent to the compatibility condition of another lin-
ear system, which is now known as the Zakharov-Shabat system. They are, therefore,
completely integrable. When r = ±q, this reduces to the NLS equation.

The AKNS system was first introduced as a means of explaining why inverse scatter-
ing was able to generate solutions to so many nonlinear evolution equations [112], and
the Zakharov-Shabat system was introduced to apply the inverse scattering method
to generate soliton solutions of the NLS equations. That is to say, these were intro-
duced as little more than an abstract mathematical construct which was not directly
related to anything physical at all. We will return to the split NLS equations above
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in chapter 3, where we give a physical meaning to them for what we believe is the
first time.

Because the NLS equation is a nonlinear integrable system, it is treatable with the
same family of techniques. For example, soliton solutions can be generated from the
solution of the associated Riemann-Hilbert problem [90, 113], and Hirota’s method
[84] can also be used to generate solutions with relative ease. It was also shown
that the NLS equation had a Darboux transformation [114, 115]. As in the KdV
equation, this enabled the construction of whole families of solutions, such as n-
soliton solutions [116], multi-breathers [117], degenerate breathers, and multi-rogue
waves [118], all from simple seeds such as the trivial or plane wave solutions. Rogue
wave multiplets were especially interesting. It may seem reasonable to suspect that
rogue waves should appear in arbitrary numbers. This turns out to be false. For
example, the NLS equation has a rogue wave triplet solution [119], but not a doublet.
Rogue waves of the NLS equation appear only in very particular multiplet structures,
which, when plotted in the xt-plane, are striking in their resemblance to atomic shells
[120, 121].

There are also solutions to the NLS equation which do not seem to be easily ob-
tainable by Darboux transformations. A two-parameter family of doubly-periodic
solutions have been derived by assuming a t-varying linear relationship between the
real and imaginary parts (up to a phase term) for both the focusing [36] and defocus-
ing [122–124] cases. These are known to reduce to the first-order solutions generated
from Darboux transformations in various limits. These doubly-periodic solutions
have been themselves used in the Darboux transformation in order to generate rogue
waves which form on a doubly-periodic background [125], rather than growing from
the plane wave, as they are usually considered.

The NLS equation is now widely applied in physics. We have already mentioned
the original work wherein the NLS equation was shown to describe the stability of
the Stokes wave. In optics, largely because of how generally the NLS equation can
be derived from Maxwell’s equations, it has a very broad range of applicability, such
as pulses in optical fibres and nonlinear guided waves [126].

It was even shown that while the KdV equation could describe ion-acoustic waves



20 1.5. THESIS OVERVIEW

with long wavelengths, ion waves with short wavelengths were described by the NLS
equation [127]. This led to the experimental observation of the Peregrine rogue wave
in plasmas [128]. The Hashimoto transformation establishes an equivalence between
the NLS equation and the motion of vortex filaments [129, 130], for which breathers
have been theoretically predicted [131]. The Heisenberg ferromagnet equation is
equivalent to the NLS equation, making it applicable to the description of spin chains
[132]. The NLS equation can also be seen as a particular case of the Gross-Pitaevskii
equation, which means that it also describes the physics of Bose-Einstein condensates
[133].

These may seem disconnected. However, similar to the KdV equation, the NLS
equation can also be said to be a kind of universal equation for the equation of a weakly
nonlinear monochromatic wavetrain [134, 135]. This justifies the natural appearance
of the NLS equation describing the self-focusing effects of weakly nonlinear wave
envelopes in diverse areas of physics, even though they may not seem to be connected
in an immediately obvious way.

1.5 Thesis overview

This thesis is on the development of the theory of nonlinear waves. We explore
new theoretical foundations for the theory of shallow water waves, by revisiting the
Korteweg-de Vries equation. We develop a new theory based on treating the complex
KdV equation, by which we mean the KdV equation where both the spatial variable
and the independent variable are complex functions, as the fundamental equation of
motion for the whole body of fluid. We build on this theory by reinterpreting its
conservation laws, showing consistency, and linking it to the split NLS equations. We
also give several new solutions to both the KdV equation, and an integrable extension
of the nonlinear Schrödinger equation.

Chapter 2 is based on the paper [136], and builds the theory of the complex KdV
equation from first principles. We consider an ideal fluid in a flat channel, and from
Levi-Cività’s equation, show that the first-order approximation of its complex velocity
is given by the complex KdV equation. We also show that this is consistent with the
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more familiar real KdV equation describing the amplitude. This is done with a direct
proof that the complex KdV equation describing velocity throughout the channel
implies that the surface elevation satisfies the real KdV equation. Unlike the real
KdV equation, the complex KdV equation allows for the direct calculation of particle
motion at all points within the fluid. We give an example, and show that this is
qualitatively almost identical to numerical simulations by other authors.

Chapter 3 is based on the manuscript [137], and continues the theory of the complex
KdV equation. We give examples of conservation laws of the complex KdV equation,
and show that they have especially natural physical interpretations, some of which are
‘hidden’ when considering only the real KdV equation as a theory for shallow water
waves. We also point out that the complex KdV equation describing the velocity
field of the fluid implies that the split NLS equations in fact have a direct physical
meaning – that is, the split NLS equations directly give the fundamental modes of
the components of velocity. This also reduces to the defocusing nonlinear Schrödinger
equation when talking about the wave amplitude.

Chapter 4 gives examples of a previously unnoticed symmetry in the rational so-
lutions of the KdV equation. It is found that when writing the rational solutions of
the KdV equation in terms of Wrońskians, a linear combination of the Wrońskians
of orders n and n + 2 also gives a solution of the KdV equation. When considering
complex solutions, there are regions off the real axis for which the solutions may
be nonsingular. By varying the constant which gives relative ‘weight’ to the two
Wrońskians, it is shown that the peak of the rational solution can actually split into
multiple peaks. Chapter 4 is based on the paper [138].

Chapters 5 and 6 deal with solutions to the class I integrable extension of the
NLS equation. These handle cases in which we want to incorporate higher order
nonlinear and dispersive effects as part of an extension of the same integrable system.
The solutions are found by taking the known solution for the NLS equation, and
solving for frequency-like and velocity-like parameters which are given in terms of the
strengths of the higher-order terms. Chapter 5 is based on the work [139], and gives
the one-parameter doubly-periodic solution to the infinite extension. This is the most
general known one-parameter family of solutions to the extended NLS equation. The
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solutions found include special cases, such as the Akhmediev breather.
Chapter 6 is based on the paper [140], and is on two-breather solutions to the class I

integrable extension to the NLS equation. This requires the introduction of additional
free parameters corresponding to the second breather component. We give exact
solutions, and discuss several special cases. In particular, we examine degenerate
breathers, breather-to-soliton transformations, as well as rogue wave triplets. These
solutions also generalise some earlier work on solutions to extended NLS equations
which incorporated fourth-order nonlinearities and dispersions. We also point out
that the form of the general solutions is related to the single breather solution in a
very simple way.

Chapter 7 is the concluding chapter. We discuss some possibilities for future re-
search, and the ideas of this thesis as a whole.



2
The Complex Korteweg-de Vries Equation

Using Levi-Cività’s theory of ideal fluids, we derive the complex Korteweg-de Vries
(KdV) equation, in which both the spatial variable and the dependent variable are
complex, and show that it describes the complex velocity of a shallow fluid up to first
order. We use perturbation theory, and the long wave, slowly varying velocity ap-
proximations for shallow water. The complex KdV equation describes the nontrivial
dynamics of all water particles from the surface to the bottom of the water layer.
A crucial new step made in our work is the proof that a natural consequence of the
complex KdV theory is that the wave elevation is described by the real KdV equation.
The complex KdV approach in the theory of shallow fluids is thus more fundamental
than the one based on the real KdV equation. We demonstrate how it allows direct
calculation of the particle trajectories at any point of the fluid, and that these results
agree well with numerical simulations of other authors.

23
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2.1 Introduction

Water waves can be classified into many types [141]. One shared feature is, as Feyn-
man put it, that they have all the possible complications that a wave can have. For
instance, when treated with full generality, water waves are commonly considered to
be nonlinear phenomena [142]. Consequently, to precisely describe water waves is
infamously difficult. One convenient approximate method of describing water waves
is to give an evolution equation for the elevation of the water surface [143, 144]; in the
lowest order nonlinear approximation, this leads to the nonlinear Schrödinger equa-
tion for the complex envelope of waves in deep water [145], and the real Korteweg-de
Vries (KdV) equation for the elevation of a nonlinear shallow water wave [3, 4, 146].
Higher-order physical effects can be incorporated in each of these equations for more
descriptive power [144, 147–149]. However, these approaches still restrict us to only
the motion of the surface.

When a fluid is ideal, we can also describe its state of motion with the potential. As
is often detailed in many standard texts on hydrodynamics [6], a well-behaved poten-
tial can be treated as the independent variable in the description of the fluid, rather
than a spatial coordinate. This approach was pioneered by Levi-Cività in 1907, who
derived an equation satisfied by all fluid motions without singularities in a channel
of arbitrary depth [150]. The theory was developed in the early twentieth century,
but due to the difficult nature of the resulting equation it has fallen by the wayside.
Modern interest in this approach has been partly revived by Levi [151].

In this work, we give a thorough derivation of a complex KdV equation describing
first order perturbations in the complex velocity around steady flow. Importantly,
not only the dependent function in the KdV equation but the spatial variable is con-
sidered to be complex as well. This approach provides a complete description of the
flow in the fluid up to first order, and is not limited to describing only the water
elevation. Thus, the main advantage of the complex KdV equation in hydrodynamics
is that it describes the dynamics of water particles not only at the surface but also
throughout the entire body of the fluid.

A new step forward in our work is that if the complex KdV equation describes a
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first-order perturbation of the complex velocity for a shallow fluid, then the fluid’s
elevation is naturally determined by a solution of the standard real KdV equation.

As an example application of this theory, we give a simple demonstration of how
the motion of the entire fluid may be described with a basic periodic solution to the
complex KdV equation. We illustrate how the particle displacement from a given
point may be determined, along with their trajectories, and show that in the limit as
the period becomes infinite, the familiar soliton solution may be correctly described.

2.2 The Levi-Cività theory of flow in ideal fluids

Water of depth h occupies a channel with a flat bottom, and waves of a height
η = η(x, t) above the mean level propagate along the surface, the axis of x being
taken along the bottom, and in the direction of propagation, while y represents a
vertical coordinate. A diagram is shown in Fig.2.2.1. At any point x at a time t the

x

y

h

η(x, t)

Figure 2.2.1: Schematic of water layer with average depth h. The function η(x, t) de-
scribes the water elevation above the average level.

water surface is described by the equation y = h+ η(x, t). Thus,

∂η

∂t
+ u

∂η

∂x
= v,

where u and v are the horizontal and vertical components of the fluid velocity, re-
spectively.

When the ratio of wave height to wavelength is very small, we have the linearised
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theory
∂η

∂t
=
∂ψ

∂x

where ψ is the stream function, with the convention dψ = vdx−udy. If we additionally
suppose that the motion is irrotational, and that the wave is long enough that surface
tension can be neglected, then the pressure just inside the fluid’s surface must be very
nearly equal to the pressure just outside the fluid’s surface, and this implies that,
approximately,

gη ' ∂ϕ

∂t
,

where ϕ is the velocity potential, with dϕ = −udx− vdy.
Since there is no flow through the bottom of the channel, the stream function is

constant on the bottom of the channel, and we can choose ψ = 0 when y = 0. The
complex potential w = ϕ + iψ is then real when y = 0, and w can be analytically
continued into the region −h ⩽ y < 0. Doing so leads to Cisotti’s equation,

∂2

∂t2
{w(z + ih, t) + w(z − ih, t)}+ ig

∂

∂z
{w(z + ih, t)− w(z − ih, t)} = 0, (2.1)

where z = x+ iy, and w is a holomorphic function of z on its domain.
More details can be found in the well-known book by Milne-Thomson [6]. The

equation (2.1) is complex but linear. However, we are also interested in nonlinear
waves.

Beginning from just Bernoulli’s principle, if we let q =
√
u2 + v2 be the total speed

of the fluid at a given position and time, then

−∂ϕ
∂t

+ 1
2
q2 + gy +

p

ρ
= f(t)

where ρ is the density of the fluid, p is the pressure, and the time-derivative of the
velocity potential is the energy due to acceleration within the fluid.

Now we suppose that the fluid surface is free to move along a variable curve given
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by y = h+ η(x, t). Along the free surface, the pressure is constant, so we have

−∂ϕ
∂t

+ 1
2
q2 + gη = 0. (2.2)

We can define the velocity potential ϕ such that any constant or function of time on
the right hand side can be set to zero. Note also that for surface waves, 0 ⩽ |ψ| ⩽ |ψ0|,
where ψ = ψ0 on the free surface y = h+ η(x, t).

Let us denote β = u− iv. We reiterate

β = −∂w
∂z

. (2.3)

Since w and β are both real along the bottom of the channel, and certainly assumed
to be holomorphic throughout the body of fluid, we can analytically continue both
functions to the region where −h ⩽ y < 0. Also, since w is holomorphic at every
point of the flow, we can invert the relationship to write z, and the complex velocity
β, as functions of the potential w rather than position. The velocity potential and
stream function satisfy, by (2.3), the differential equation

dx+ idy = −dϕ+ idψ

u− iv
.

Streamlines are defined by dψ = 0, so, with

ds2 = dx2 + dy2

defining the line element on the free surface, and after collecting real and imaginary
parts, which are respectively

dx = −udϕ− vdψ

q2
,

dy = −vdϕ+ udψ

q2
,
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we have
∂y

∂s
= − v

q2
∂ϕ

∂s

on a streamline. We also have, by definition,

−dϕ = udx+ vdy,

so it is easy to see that
∂ϕ

∂s
= −q,

and consequently
∂η

∂s
=
v

q

on a streamline. Bernoulli’s equation (2.2) can now be differentiated with respect to
an arc length s along the free surface y = h+ η(x, t) to give

∂q

∂t
+ q

∂q

∂s
+
gv

q
= 0,

or
∂q2

∂t
+ q

∂q2

∂s
+ 2gv = 0. (2.4)

As stated only shortly before, we can recast Bernoulli’s principle, now in the form
(2.4), in terms of the complex velocity β and the complex potential w. We obtain
through a simple change of variable dϕ = −qds the equation

∂

∂t
|β|2 − |β|2 ∂

∂ϕ
|β|2 − ig(β − β) = 0. (2.5)

Here, instead of the condition that the free surface be defined by y = h + η(x, t),
we have instead the free surface defined by the streamline ψ = ψ0, and the complex
velocity should be understood as a function β = β(ϕ + iψ0, t), with the conjugate
velocity β given by β = β(ϕ − iψ0, t). Lastly, since ψ = 0 and therefore w is real
along the bottom of the channel, y = 0, we can extend the differential equation for β
to all w, rather than just for w = ϕ. The differential equation (2.5) can therefore be



CHAPTER 2. COMPLEX KDV EQUATION 29

presented in the form

− ∂

∂t
log{β(w + iψ0, t)β(w − iψ0, t)}+

∂

∂w
{β(w + iψ0, t)β(w − iψ0, t)}+

+ ig

{
1

β(w + iψ0, t)
− 1

β(w − iψ0, t)

}
= 0. (2.6)

This equation was first derived by Levi-Cività [150] over a century ago, albeit in a
more limited form, dealing only with steady flow. However, due to the fact that a
differential equation of this type is difficult to solve, there has been only relatively
minor attention given to this particular equation. Having said that, even though
this equation is challenging to solve in the general case, it is nonetheless possible
to gain insight into possible fluid dynamics by applying certain techniques, such as
perturbation series.

2.3 Linear perturbations around steady uniform flow

Suppose that the complex velocity of the wave has the form of a small perturbation
around an otherwise constant flow parallel to the bottom of the channel, so

β(w, t) = c{1 + εα(w, t)},

where ε is a small parameter, α is a complex function of the potential and c is a real
constant. Since we are restricting ourselves to considering only small perturbations
around a steady horizontal flow, most of the flow across the surface at any given
point will be due to the horizontal movement, and therefore we can take the flux over
the free surface to be approximately ψ0 = −ch. This will clearly be true for periodic
functions, but also for the general problem of the solitary wave [6], since the fluid
must return to steady motion infinitely far away from the travelling pulse.

By hypothesis, ε2 ' 0, so we can disregard those terms of all but first order. To
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first order, the perturbation satisfies

− ∂

∂t
log[1 + ε{α(w + ich, t) + α(w − ich, t)}]+

+ c2ε
∂

∂w
{α(w + ich, t) + α(w − ich, t)}+

+
igε

c
{α(w + ich, t)− α(w − ich, t)} = 0. (2.7)

This is the equation which will determine the stability of a small perturbation in the
velocity.

For simplicity, first, we will consider motion which can be reduced to steady flow,
such as, for example, a solitary wave or periodic motion. When the motion is steady,
all the time dependence will be implicit, and contained in the potential, so that (2.7)
becomes {

d

dw
cos

(
ch

d

dw

)
− g

c3
sin

(
ch

d

dw

)}
α(w) = 0. (2.8)

Here, the sine and cosine terms should be understood, like the exponential, in the
sense of formal power series of an operator. That is,

cos

(
d

dw

)
=

∞∑
n=0

(−1)n

(2n)!

d2n

dw2n
, (2.9)

and similar for the sine operator.
The ease of manipulation which results from the form (2.8) immediately suggests

a simple solution for steady flow in the form

α(w) = α0e
iµw, (2.10)

where µ is a solution of the transcendental equation

tanh chµ =
c3µ

g
, (2.11)
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and α0 a constant. Integration gives the equation

z = −1

c

{
w +

iεα0

µ
eiµw +O(ε2)

}
and thus

η =
εα0

µ
echµ cosµcx+O(ε2) (2.12)

for the stationary form of the free surface, up to first order. We see that µ = k/c,

approximately, where k is the wavenumber of the flow, and that (2.11) is just the
dispersion relation for waves in an inviscid fluid of depth h.

Now suppose the motion is steady. We can write the potential purely as a function
of z; w = w(z), and to lowest order in ε, we have

w = −cz +O(ε).

To lowest order in the z-plane:

− d

dz
{β(z + ih) + β(z − ih)} =

ig

c2
{β(z + ih)− β(z − ih)}. (2.13)

This is effectively equivalent to Cisotti’s equation (2.1).
For the case in which the channel is shallow, with a flat bottom, we can obtain

an approximate equation of motion by expanding in powers of h, which will be a
convergent series when h is sufficiently small.

2.4 The nonlinear theory

We can more generally consider a perturbation series in powers of the small parameter
ε of the form

β = c(1 + εβ1 + ε2β2 + · · ·+ εnβn + · · · ), (2.14)

where βn = βn(z, t). We can expand (2.6) to each order of ε, and solve the equations
obtained at each order sequentially. The constant flow velocity c will have distinct
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values for the shallow and deep regimes, and these must be treated as two separate
limiting cases to make the problem manageable.

2.4.1 The complex KdV equation

For shallow fluids, we consider perturbations around a constant flow of uniform speed
c =

√
gh. We can expand β(w± ich, t) in powers of h, since h is small. We then apply

the change of variable β(w, t) 7→ β(z, t), under which the derivative transforms as

∂β

∂w
7→ − ∂

∂z
log β(z, t). (2.15)

Higher order derivatives transform as

∂2β

∂w2
7→ 1

β

∂2

∂z2
log β,

∂3β

∂w3
7→ − 1

β2

∂3

∂z3
log β +

1

β3

∂β

∂z

∂2

∂z2
log β,

and so on. Truncating the series at third order gives the approximate equation

−β2∂β

∂z
+ (gh)

3
2
∂

∂z
log β+

+
gh3

2

(
∂3β

∂z3
− 3

1

β

∂β

∂z

∂2β

∂z2

)
+

+
g

5
2h

9
2

6

(
1

β3

∂β

∂z

∂2

∂z2
log β − 1

β2

∂3

∂z3
log β

)
' 2β

∂β

∂t

after a change of variable to the z-plane. We then assume a perturbation series
solution of the form

β(z, t)√
gh

=
∞∑
n=0

εnβn(z, t).
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The lowest order term is identically zero with this substitution, as we have seen. The
only surviving coefficient of ε gives the first order approximation

2(gh)
3
2

3

(
h2
∂3β1
∂z3

− 3√
gh

∂β1
∂t

)
ε,

while the second-order terms read{
− 6β1

∂β1
∂z

− 5h2

3

∂β1
∂z

∂2β1
∂z2

+ h2β1
∂3β1
∂z3

−

− 2√
gh
β1
∂β1
∂t

+
2h2

3

∂3β2
∂z3

− 6√
gh

∂β2
∂t

}
(gh)

3
2 ε2.

Since the same stray terms that appear as the coefficients of ε appear as coefficients
of ε2 with β2 instead of β1, it is reasonable to suspect that these terms actually belong
to a higher order of smallness.

If we let a typical wave in the fluid have a characteristic length scale l, and typical
amplitude a, then to say that the wave is long is only the statement that the fraction
h/l is much less than 1, and to say that the fluid is shallow is to say that the fraction
a/h is small. When the complex potential exists and is holomorphic, the fluid must be
irrotational, and this requires that the wave amplitude be sufficiently small compared
to its depth. This suggests taking the small parameter

a

h
= ε.

For a wave which is typically long, the wave will normally appear to change only
slowly, and over a long horizontal distance of the same order as l. We can thus put(

h

l

)2

= δ,

where δ is small. This suggests defining the holomorphic dimensionless coordinate

Z = X + iY =
z

l
.
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Assuming that these orders of magnitude are both equally small, ε = δ, the condition
that the fluid is shallow is now that the vertical coordinate Y is much smaller than 1
everywhere in the fluid; more specifically, Y = O(ε

1
2 ).

Writing equations in terms of Z, we see that the variation of the first order per-
turbation β1 must be infinitesimal with respect to t. This is physically intuitive since
the characteristic length scale of the wave is large. However, upon the introduction
of a longer time scale, t′ = εt, β1 can be seen to have a nontrivial slow variation; we
have at first order a complex Korteweg-de Vries (KdV) equation:

l√
gh

∂β1
∂t′

= −3β1
∂β1
∂Z

+
1

3

∂3β1
∂Z3

.

If we take the ratio of t′ to the characteristic time l/
√
gh, we can define a dimensionless

long time scale T by
t′

T
=

l√
gh
.

In terms of Z and T, we have the fully dimensionless form of the complex KdV
equation,

∂β1
∂T

= −3β1
∂β1
∂Z

+
1

3

∂3β1
∂Z3

. (2.16)

The conditions of validity are that the wave is generally long, and the perturbation
varies slowly with time.

The idea of reviving the theory of the complex KdV equation comes from the work
of Levi [151]. However, some fundamental errors made in previous work [151, 152]
did not allow this theory to be used in practice. Namely, in [151], the water elevation
h was directly replaced by the expression h = h0ε

1
3 with h0 being an unspecified

parameter. The smallness parameter introduced this way is incompatible with ap-
proximations required for establishing correspondence with the real KdV equation.
In the work [152], an intended small parameter ε was not dimensionless, making the
idea of smallness in a perturbation series poorly defined. Here, by instead scaling
the complex variable by a characteristic length scale l, the typical length of the wave
enters through the derivative terms, providing a physically clear interpretation of how
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small each of the terms are. The scales of the flow, a, h, and l, then naturally form
the dimensionless parameter ε, which is also the same order of smallness as in the
real KdV equation [153], up to a possible constant factor.

Unlike the better-known real KdV equation [4], the complex KdV equation de-
scribes a perturbation of the complex velocity around an otherwise steady, uniform
flow. It thus describes the entire fluid motion, not just the elevation of the free sur-
face. Consequently, our approach allows us to describe the trajectories of the fluid
particles across the whole layer of liquid. This has not actually been carried out at all
up until now, although this is one of the important advantages of the complex KdV
equation. Below, we provide the first demonstration of how this is done, as well as
point out its excellent qualitative agreement with numerical results of other authors.

But before we do, we will show, for the first time, how the complex KdV the-
ory leads naturally to the standard theory of the real KdV equation for the surface
elevation of shallow water.

2.4.2 Relation to the real KdV equation

We can construct a similarly dimensionless potential w̃ by the scaling

w̃ =
w√
ghl

= −Z + εγ1 + ε2γ2 + · · · (2.17)

The corresponding first order perturbation of the potential in dimensionless form will
give β1 through

−∂γ1
∂Z

= β1(Z, T ). (2.18)

Substituting this into (2.16) gives the potential KdV equation for the function γ1:

∂γ1
∂T

=
3

2

(
∂γ1
∂Z

)2

+
1

3

∂3γ1
∂Z3

. (2.19)

The complex potential also gives one of the simplest methods for obtaining the
elevation η. We have assumed that, whatever the form of the free surface, it corre-
sponds to the constant value of the stream function ψ = −ch. The imaginary part of
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the dimensionless potential w̃ = ϕ̃+ iψ̃ on the surface is then just

ψ̃ = −h
l
.

Suppose that a holomorphic solution for the first order perturbation of the potential
γ1 = γ1(Z, T ) is obtained. If γ1 has imaginary part ψ̃1, then we must have on the free
surface y = h+ η the equation

η

l
' εψ̃1|Y=(h+η)/l (2.20)

in terms of the dimensionless variables, accurate to first order in ε. In general, this
will give an implicit equation for η.

In fact, since Y has already been required to be small, of order
√
ε, we can avoid

the complications of implicit equations for the free surface by approximating the first
order perturbation of the potential as

γ1(Z, T ) ' γ1(X,T )− iY β1(X,T ).

Recalling that the stream function vanishes on the bottom of the channel, it follows
that γ1(X,T ) is real, so the first order perturbation in the stream function must be
approximately

ψ̃1 ' −Y β1(X,T ).

From (2.20), the surface elevation η can be given in terms of β1(X,T ) as

η(X,T ) ' −ε{h+ η(X,T )}β1(X,T ),

or
η(X,T ) ' −hεβ1(X,T ) (2.21)

to first order in ε.
The vanishing of the stream function along the bottom is equivalent to the van-

ishing of the vertical component of the velocity. We see then that β1(X,T ) must be
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real.
Given that β1(X,T ) is a real solution to (2.16) with the real variable X instead

of the complex variable Z, we have obtained in (2.21) the result that the surface
elevation η of a shallow fluid is described by a real solution of the KdV equation in
X and T , up to a constant of proportionality, and accurate to first order in ε.

We therefore make the claim that the complex KdV equation is more fundamental
than the real KdV equation, since we have shown that the description of the surface
elevation by the real KdV equation naturally emerges as a consequence of a pertur-
bation of the complex velocity being described by the complex KdV equation. The
complex KdV equation, however, also allows for a full picture of the motion of the
entire fluid up to first order, not just the surface elevation to which we are limited
by considering only its real solutions. Not only mathematically, then, but also phys-
ically, we have thus justified the claim that it is the complex KdV equation which
takes the most fundamental place in the hydrodynamic theory of shallow fluids.

It is also worth mentioning that the τ -function for the complex KdV equation,
which provides maybe the simplest mathematical lens through which to view the
KdV equation [84], can be simply related to the first order perturbation of the po-
tential, since

log τ(Z, T ) ∝
∫ Z

γ1(Z
′, T )dZ ′. (2.22)

In the complex KdV equation, the τ -function is thus a logarithmic measure of flux
in the fluid due to perturbations around steady flow. To develop any more sophisti-
cated physical connection between the complex potential and the τ -function further
would be beyond the scope of this work, so we leave this as what we believe to be an
interesting comment.

Terms of the third order of smallness give an equation for β2. Naturally, the calcu-
lations are more complicated for higher orders of the perturbation series, and are less
immediately enlightening, so we relegate these to the appendix. However, we stress
that higher-order corrections to the wave motion can be naturally calculated in an
extended version of this theory.
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2.5 Particle motion in periodic waves

Ignoring the constant background flow, from a fixed point Z a fluid particle will move
to the point Z + dZ ′ in a time dT under the influence of the perturbation β1. In this
section, we will drop the subscript without confusion, since we are only working to
first order in ε, in the KdV regime.

The rate of change of the particle’s position will be given by the differential equation

dZ
′

dT
= β, (2.23)

where, again, the bar denotes complex conjugation.
A periodic wave will have the form β = β(mZ − nT ). Integrating with respect to

T gives
Z

′
=
γ(mZ − nT )

n
. (2.24)

As before, we can make the lowest order approximation

γ(mZ − nT ) ' γ(mX − nT )− imY β(mX − nT ),

so that the new position of the particle is given by the horizontal and vertical coor-
dinates

X ′ =
1

n
γ(mX − nT ) + C1,

Y ′ =
m

n
Y {β(mX − nT ) + C2},

where C1 and C2 are constants of integration (when seeing that a term of the form
C2Y can appear, it must be remembered that the initial position (X,Y ) is fixed).

To be definite, we will consider a particular periodic solution of the complex KdV
equation. From (2.16), we see that we have a periodic solution of the form

β(Z, T ) = −4
3
k2m2 cn2(mZ + nT, k), (2.25)
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where k is the modulus while the frequency is

n = −4
3
(2k2 − 1)m3.

We also have one of the form

β(Z, T ) = −4
3
m2 dn2(mZ + nT, k), (2.26)

where
n = −4

3
(k2 − 2)m3,

and another of the form cn2 +k cn dn [154]. As k → 1, the first two tend to the same
sech2-type solution, while the third tends to 0. Also, because of the identity

dn2(u, k) = k′2 + k2 cn2(u, k), (2.27)

where k′ is the complementary modulus, the cn2 and dn2-type solutions can be simply
transformed into one another through Galilean symmetry. We will therefore use the
term cnoidal wave to refer to both of these solutions.

Corresponding to the dn2-solution, the perturbation in the potential is

γ(Z, T ) = −4
3
mE(am ζ, k), (2.28)

where E(u, k) is the elliptic integral of the second kind, and ζ = mZ−nT. If we look
at the cn2-solution instead, γ just picks up an extra term which is just a multiple
of ζ from the relation (2.27). Again, because Z refers to a constant position in the
fluid, not a coordinate which follows the particle, this will not lead to qualitatively
different behaviour up to Galilean symmetry.

The coordinates of the fluid particle are given by

X ′ = −4m

3n
E(am ξ, k) + C1, (2.29)

Y ′ = −4m3Y

3n
{dn2(ξ, k) + C2}, (2.30)
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where ξ = mX − nT. By use of the identity

E(am u, k) = Z(u, k) +
Eu

K
,

where K = K(k), E = E(k) are the complete elliptic integrals of the first and second
kind, respectively, and Z(u, k) is the Jacobi zeta function with modulus k, we can
write

ξ′ − ξ′0 = −4m2

3n
Z(ξ, k). (2.31)

Here ξ′ represents horizontal position in the comoving frame and ξ′0 is a fixed con-
stant. The fluid motion is now easily seen to be periodic, with identical motion at
points separated by a horizontal distance 2K in the comoving frame, i.e. ξ ∼ ξ+2K.

The trajectory of any particle in the fluid must be a closed curve (up to the constant
horizontal flow). However, it cannot be the usual ellipse, which is characteristic of
linear flow. It is easy to see this by physical principles alone. Because cnoidal waves
are characterised by long, relatively flat regions between narrow peaks, the trajectory
of a particle cannot be symmetric in two axes. Instead, it will travel along a nearly
flat line, and then its vertical velocity will increase and decrease quickly. This means
that its trajectory must be a curve which has a broad, flat base. The width of this
curve will also increase with the modulus k, and be constant with respect to Y, since
ξ′ is independent of Y . The height of the trajectory will also decrease until it is
completely flat at the bottom of the channel.

We give an illustration of the periodic motion of a cnoidal wave in the complex
KdV equation in Fig.2.5.1, taking k large enough that the flat regions between peaks
becomes clearly defined. The surface has the form of a cnoidal wave, while the curves
on and within the fluid display the trajectories of fluid particles as we descend to the
bottom. The trajectories in the cnoidal wave are most similar to bean curves, rather
than ellipses or circles, which are familiar from the linear theory. However, when k

is small enough, the trajectories may be well-approximated by ellipses. The particle
trajectories are in close agreement with earlier numerical approximations [155], but
in the framework of the complex KdV theory, they appear naturally with very little
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Figure 2.5.1: An illustration of the paths of the particles in a rightward-propagating
cnoidal wave (not to scale). The surface elevation is described by the real KdV equation,
but the motion of the particles within the fluid is described by the complex KdV equation
(2.16). The motion of the particle at a given point is determined by (2.30, 2.31). The tra-
jectory depends on the wave modulus, frequency, and depth in the fluid.

work.
As k → 1, we have also K → ∞, so the motion is no longer periodic. Instead, we

have the well-known sech2-shaped soliton solution. In this case, the particle trajecto-
ries become parabolic arcs [156].

Lastly, we will give an example calculation of the elevation from the complex KdV
equation. The simplest case to work with is that of a first order perturbation in the
potential of the form

γ = 4
3
a tanh a(Z + 4

3
a2T ). (2.32)

This leads to the implicit equation for the surface

η

l
'

4
3
εa sin 2a(h+ η)/l

cos 2a(h+ η)/l + cosh 2a(X + 4
3
a2T )

.

An initial measurement taken at T = 0 will have a maximum of η0 located at X = 0,

roughly given by the transcendental equation

η0
l
' 4

3
εa tan

(
a
h+ η0
l

)
.
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When h and l are known and the dimensionless parameter a is fixed, this allows
an approximation of η0. Assuming that h + η0 is much smaller than l, we can take
tan θ ∼ θ, and estimate the maximal elevation as

η0 ' 4
3
a2hε, (2.33)

which agrees with the result (2.21). It follows that η can be put in terms of η0 as

η ' η0 sech
2 a(X + 4

3
a2T ) (2.34)

up to first order. This characterises the form of the free surface traced out by a
solitary wave. This was first derived from the tanh-potential (2.32) by McCowan
[156], but this connection is more quickly and easily obtained by the simple relation
(2.21), given a solution to (2.16) or (2.19).

2.6 Conclusion

In this chapter, we derived the complex KdV equation for shallow water waves. We
showed that it describes a small perturbation of the complex velocity around steady
flow, for the slowly-varying propagation of long waves in a shallow, incompressible,
inviscid fluid. An important conclusion of our derivation is that if the complex KdV
equation describes a complex velocity for a shallow fluid, then the elevation must be
given by a real solution of the KdV equation. In other words, the theory of the real
KdV equation is just a particular case of what we have derived here.

We reproduced the periodic waves in terms of elliptic functions and the well known
result for the soliton solution. However, the complex KdV equation allowed us to cal-
culate not only the surface wave profile, but also the trajectories of particles within
the fluid, and show that particles in cnoidal waves move along bean curve-like tra-
jectories. Our results were in close agreement with numerical work based on the real
KdV equation [155], but had the bonus of being a natural and easy consequence of
the theoretical framework. This gives even more evidence for the validity of the link
between the two approaches established in the present work.
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Having complete information about the dynamics of all fluid particles, not only
at the surface but also throughout the whole body of fluid, may make it possible to
solve more complicated problems. For example, this may include the class of problems
related to internal waves when the fluid is stratified, or may allow the techniques of
complex analysis [157] to be applied, such as conformal transformations, which may
help to solve problems involving special bottom profiles or underwater barriers and
obstacles.

For simplicity, we restricted ourselves to only one type of boundary condition at
the bottom, with zero friction. We have no doubt this can be generalised to other
conditions that will result in more general solutions. Generalisation to higher-order
corrections is also straightforward in principle. The choices here have no limits.

We should also mention that the complex KdV equation has a greater variety of
solutions than the real one. This includes regular [158–160], blow-up [161, 162] or
complexiton [163] solutions. This expands the range of phenomena that the complex
KdV equation may describe. On the other hand, we stress that exact solutions, even
if they are highly involved, can be found using well known techniques such as the
Darboux transformation.

Applications of the complex KdV equation are not limited to water waves. This
equation can be also used in the seemingly unrelated problem of unidirectional crystal
growth [164]. Last but not least, the theory of shallow water waves is spreading into
the optical domain [165] which could be another area of future application.

Appendix

For completeness, we give the results of the calculations for second order perturba-
tions. The second order terms β2 in a shallow fluid satisfy the equation

∂β2
∂T

= β 2
1

∂β1
∂Z

+
β1
18

∂3β1
∂Z3

− 5

18

∂β1
∂Z

∂2β1
∂Z2

+

+
1

9

∂3β2
∂Z3

− 3
∂(β1β2)

∂Z
. (2.35)
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where β1 = β1(Z, T ) is a solution of (2.16). Having β1 in explicit form provides the
possibility for higher-order extensions of the present theory. That is, working to higher
order in perturbation theory will result in equations which include nonlinear and
dispersive effects for shallow fluids, accurate to higher powers of the small parameter
ε = (h/l)2. We note here that taking terms which are of higher order in h/l will
never result in a theory which is valid for anything other than shallow fluids, which
are defined by h/l not being small in the first place.



3
Complex KdV equation with complex

spatial variable: Conservation laws, and
relation to the split NLS equations

The complex KdV equation, with a complex spatial variable, describes the complex
velocity of a unidirectional weakly nonlinear shallow water wave. This provides much
more information about the wave motion than the real KdV equation. This more
general equation requires rethinking of the whole theory. Firstly, the complex con-
servation laws have to be derived and their relation to the conservation laws of the real
KdV equation has to be found; we show they are consistent with the hydrodynamic in-
terpretation of both equations. Secondly, the defocusing nonlinear Schrödinger equa-
tion is known to be obtained from the real KdV equation in the quasi-monochromatic
approximation. In the complex KdV equation, we show that this leads to the split

45
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system of nonlinear Schrödinger equations, and that this describes the fundamental
modes of velocity.

3.1 Introduction

The real KdV equation [4] is well known to describe the water elevation of a long,
small amplitude wave in a shallow, horizontal channel. However, the more general
complex KdV equation gives much more information about the whole motion of the
fluid than the real one. Based on the work of Levi-Cività [150], we have shown earlier
[136] that the complex KdV equation describes the two-dimensional wave motion of
an ideal fluid in a canal of small depth. In contrast to the real KdV equation, the
complex KdV equation describes not only the elevation in the canal, but is actually
an equation for the evolution of the complex velocity at each point, thus being an
equation of motion for the whole layer of fluid. When looking at only the surface,
it also follows from this more general equation for the whole fluid that the water
elevation does satisfy the real KdV equation. On the other hand, it was also shown
[4, 136] that the water elevation can be approximated by the velocity along the bottom
of the channel. Thus, the two equations are tightly linked to each other and describe
the same physical phenomenon. However, the advantage of placing the complex KdV
equation in the more fundamental position is that in this case we work with a function
which defines the entire flow. This opens up clear advantages that do not exist when
considering only the surface elevation obtained using the real KdV equation. One
of them is the possibility of applying conformal transformations, which may help to
solve for flows in channels with nontrivial geometries.

We write the complex KdV equation in the standard dimensionless form as

∂β

∂t
− 6β

∂β

∂z
+
∂3β

∂z3
= 0. (3.1)

where β = u − iv is the complex velocity of a water particle located at the fixed
spatial point (x, y), and z = x+ iy is the complex spatial variable. Here, the velocity
vector u has horizontal and vertical components u and v. The constant coefficients in



CHAPTER 3. COMPLEX KDV EQUATION: CONSERVATION LAWS AND
THE SPLIT NLS EQUATIONS 47

Eq.(3.1) can be rescaled to other values if needed. As we are dealing with the shallow
water, only the values of variable y small compared to 1 are considered. The only
remaining real variable in Eq.(3.1) is the time t, which represents the long timescale
over which the wave evolves.

The complex velocity β is a holomorphic function of z for all t. It is taken to be
real along the real axis, y = 0. The latter is a boundary condition in this problem:
the vertical component of velocity vanishes on the bottom of the channel. Not every
imaginable solution of Eq.(3.1) satisfies this boundary condition. Only holomorphic
functions β which are real on the line y = 0 describe shallow water waves. This is the
physical constraint necessary to describe the motion of an ideal fluid in a horizontal
channel.

The horizontal velocity on the bottom of the channel, β(x, t), is proportional to
the water elevation

η(x, t) ' −hεβ(x, t) (3.2)

where ε is a small parameter (see Eq.(21) of [136]). Moreover, it was shown that
η(x, t) satisfies the real KdV equation. This means that in the hydrodynamic context
and with proper scaling, the solution of the complex KdV equation can be considered
as an analytic continuation of the corresponding solution of the real KdV equation.
For example, a soliton solution of the complex KdV equation can be considered an
analytic continuation of the soliton solution of the real KdV equation, up to a constant
factor.

An illustration of the relevant physical quantities is given in Fig.3.1.1. Thus, Eq.
(3.1) describes velocities of the water particles in a horizontal layer of shallow water
with the average height h [136] as shown in Fig.3.1.1. The blue line in Fig.3.1.1
corresponds to the water’s surface, and on the surface, the velocity vector u is a
tangent to this curve. The water elevation η(x, t) evolves in time according to the
real KdV equation, while the velocity of particles at any fixed point evolves in time
according to the complex KdV equation (3.1).

The fact that we can describe the physics of waves in a shallow ideal fluid with
analytic solutions of the complex KdV equation means that this equation should also
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Figure 3.1.1: Water waves in a channel with average depth h. The vector u = (u, v)
is the water particle velocity at a fixed point and can be given as the complex velocity
β = u − iv. η gives water elevation around the average level. In the KdV regime they
are related by (3.2).

have conservation laws. Some of the lowest order ones are derived in this work. More
generally, we will show that when there is a conservation law in the real KdV equation,
it is possible to define a similar integral over the whole area occupied by the fluid.

We will also demonstrate one interesting difference in these two equations. When
a periodic wave is expanded via the quasi-monochromatic approximation in the real
KdV equation, it can be shown that the wave envelope is described by the nonlinear
Schrödinger (NLS) equation [135, 166]. We will demonstrate that there is a key
difference in the complex KdV equation. Instead, the result is the split NLS equations
[167], which is a particular case of the AKNS system [112]. This does not describe the
wave envelope directly, but rather describes the fundamental modes of the velocity
field. We will also show that this is not inconsistent with the usual theory, but rather
complementary. This is also what we believe to be the first directly physical origin
of the split NLS equations to be given so far, showing that this system of equations
should be considered as more than an abstract construct.

3.2 Conserved quantities

It is immediately clear from the physics of the problem that the complex KdV theory
must incorporate some conservation laws. For example, in the derivation of the
governing equation, it was implicitly assumed that there was no significant dissipation,
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so we should have some notion of energy conservation. We already know that when
looking at only the motion of the surface of the fluid, we will return to real KdV
theory, in which there are infinitely many conserved quantities which can be put in
terms of the surface elevation, but because we have a theory of the two-dimensional
fluid motion, we must have some way of linking these concepts.

3.2.1 Density, vorticity, and centre of mass velocity

The very simplest conserved quantities are in fact assumed in the derivation of the
complex KdV theory. The vorticity is assumed to vanish, and the fluid is assumed
incompressible. From these requirements we are able to give a description of the fluid
in terms of a holomorphic potential function. This is equivalent to the vanishing of
the integral ∮

βdz

around any closed contour in the fluid, and this follows by definition. Because this is
a local statement; i.e. it is true for any contour around any point in the fluid except
the particles on very surface, this is technically a stronger statement than in real KdV
theory, but we can recover the more familiar conservation laws as a particular case of
this.

If we suppose that at a fixed moment in time, we can stretch the contour out to
follow the surface of the fluid, the bottom of the channel, together with two horizontal
parts at infinity closing the contour, then we can return to a familiar conserved
quantity from the real KdV theory. Since β → 0 as x → ±∞ at all times and all
values of y within the fluid, the horizontal parts of the contours will give an arbitrarily
small contribution to the integral and can be taken to be zero in the limit. Over the
surface, say y = H(x, t) in dimensionless coordinates, the integral is just∫ ∞

−∞
β(x+ iH, t)dx = ∆ϕ

where ∆ϕ is the change in the velocity potential from x = −∞ to x = ∞ on the
surface. By assuming that the fluid returns to steady flow at infinity, it follows that
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we can always take ∆ϕ to be constant.
There must be an equal and opposite contribution to the integral from the bottom

of the channel, and because the horizontal velocity u0(x, t) along the bottom is directly
proportional to the surface elevation η(x, t) above the mean, this implies

d

dt

∫ ∞

−∞
η(x, t)dx = 0 (3.3)

This is the trivial conservation law of the real KdV equation. Viewed this way, it is
easily seen to be really just a statement of mass density conservation for an irrotational
fluid.

We can see something similar by considering the contour integral

Figure 3.2.1: The contour of integration over which we integrate to evaluate a conserved
quantity. The vertical segments of the contour can be pushed out to infinity, and give only
zero contribution to the total integral in the limit.

∮
C

βzdz = 0 (3.4)

for any closed contour C. If we let position and velocity be given in rectangular
coordinates by the vectors x = (x, y) and u = (u, v), then the real and imaginary
parts of βz can be written

βz = u · x+ i det(u,x) (3.5)

The imaginary part is proportional to the angular momentum of the particle at x
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about the origin. This has no direct analogue in terms of the conserved quantities of
the real KdV equation.

The real part of (3.5) gives ∮
C

u · xds = 0 (3.6)

where ds is a line element on the contour.
When u · x > 0, the particle at x with velocity u will be moving away from the

origin, whereas when u ·x < 0, it will be moving nearer to the origin. When summing
up u · x over the free surface, like that shown in Fig. (3.2.1), we will generally be
left with a function of time, because the integral will depend on the shape of the
surface at a given moment. Oscillatory motion will not give a net contribution to the
integral, because the contributions from the rising parts (increasing potential energy)
and falling parts (increasing kinetic energy) will cancel out, but translational motion
will give a net contribution. A solitary wave, for example, moves a particle along a
parabolic path [156].

We can therefore say that the nonzero parts of the integral (3.6) over the free
surface will be due to a net translational motion of the horizontal coordinate of the
centre of mass of the fluid. This is cancelled by the integral over the bottom of the
channel, and both of these will generally be a function of time. Any number of peaks
can be written either as a series of solitons or a periodic wave, and these progress in
the same direction, without a change in speed when they are not overtaking. This
means that the horizontal coordinate of the centre of mass must also move with a
constant speed. Equivalently, each half of the integral (3.6) is only a linear function
of time. Cancelling out the surface integral with the integral over the bottom justifies∫ ∞

−∞

∂u0
∂t

xdx ∝
∫ ∞

−∞

∂η

∂t
xdx

as a conserved quantity. Toda [153] gives this the interpretation of momentum. In
fact, we can see from the above argument that this more specifically represents the
constant momentum of the fluid’s centre of mass.



52 3.2. CONSERVED QUANTITIES

3.2.2 Kinetic and potential energy

For the non-trivial conservation laws, we will require some idea of area integrals. We
therefore want to emphasise thinking of the fluid as occupying a thin region of the
complex plane rather than requiring everything to be transferred back to the two-
dimensional real plane. To do this, recall that every smooth function on the plane
can be written in terms of z and z, and that areas can be defined in terms of complex
2-forms; i.e. oriented two-dimensional area elements dz ∧ dz, where ∧ denotes the
exterior product. For shorthand we will write

d2z = dz ∧ dz

which is equivalent to d2z = −2idxdy.
The (dimensionless) kinetic energy at a point z will be proportional to |β|2, so we

expect that ∫
Ω

|β|2d2z (3.7)

where the integration is carried out over the entire body Ω of fluid at a given time,
will be a constant of the motion. If we take

β = −∂w
∂z

(3.8)

then the energy integral transforms under (3.8) as a conformal transformation z 7→ w

with Jacobian determinant |β|2, i.e.∫
Ω

∂w

∂z

∂w

∂z
d2z =

∫
Ω

d2w

The range of values the potential w takes was assumed to be completely independent
of time, so the total area represented by the integral must be a constant of the motion.
The imaginary part of w was also required to be small, and we can always arrange
that the real part of w is bounded by applying a Galilean transformation if necessary,
so the integral can always be given a finite value. It follows that (3.7) is conserved,
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and can be given some finite value, say

T =

∫
Ω

|β|2d2z (3.9)

with
Ṫ = 0

where the dot denotes a total derivative with respect to time.
If we look at only the horizontal component of velocity along the bottom, u0(x, t),

we get the continuity equation

∂

∂t
(u 2

0 ) =
∂

∂x

{
4u 3

0 +

(
∂u0
∂x

)2

− 2u0
∂2u0
∂x2

}
(3.10)

This is more than just a rote check; this actually gives another more intuitive way to
see that T should be constant. Since u0 ∝ η, we have

d

dt

∫ ∞

−∞
η2dx = 0 (3.11)

Because η represents displacement from equilibrium, we can identify the constant

V =

∫ ∞

−∞
η2dx (3.12)

with the total potential energy of the fluid, up to some unimportant scalar factor.
Again, in deriving the KdV equation, we have assumed that there be no dissipative

effects on the fluid, such as frictional forces between the fluid and the channel itself,
so the total energy has already implicitly been assumed constant. Since the potential
energy V of the motion is constant and the atmospheric pressure has also been as-
sumed constant, the kinetic energy T must also be constant. T is clearly proportional
to the integral of the square of the speed at any point, taken over the whole fluid, so
we can identify T with the integral (3.7), which gives us another proof. Alternatively,
we could start from Ṫ = 0 to obtain the result V̇ = 0.
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3.2.3 General conservation laws

The complex KdV equation may lead to equations of the form

∂ρ

∂t
+
∂Jz
∂z

+
∂Jz
∂z

= 0 (3.13)

but this is not enough to entail any conservation law. The reason for this is because
the region Ω which the fluid occupies is only a thin strip in the plane, and it is not
necessary for the relevant physical quantities to vanish at the boundaries, since there
is still nontrivial motion on the surface.

If we define
Q =

∫
Ω

ρ(z, z, t)id2z (3.14)

then Q evolves in time as

Q̇ = −
∫
Ω

(
∂Jz
∂z

+
∂Jz
∂z

)
id2z (3.15)

= i

∮
∂Ω

Jzdz − Jzdz (3.16)

by Stokes’ theorem. Here ∂Ω denotes the boundary of the region Ω. It is obvious that
Q̇ = 0 if its density ρ is a holomorphic function. But this is somewhat trivial. More
generally, we will require the contribution to the integrals from the real axis to cancel
with the surface terms when the functions Jz and Jz are only smooth, not necessarily
holomorphic.

There is no loss in generality in considering our conserved quantity Q to be real,
since (3.13) can be separated into real and imaginary parts if not. When Q is real,
then we must have Jz = Jz = J . Then

Q̇ = −2=
(∮

∂Ω

Jdz

)
(3.17)
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where = denotes the imaginary part. There is a clear geometric interpretation here:
with the same idea as in (3.5) can write∮

∂Ω

Jdz =

∮
∂Ω

J∥ds+ i

∮
∂Ω

J⊥ds (3.18)

where J∥ and J⊥ are the parts of the corresponding current vector J = (Jx, Jy) which
are respectively tangential and normal to the boundary curve ∂Ω. This makes it clear
that (3.18) is just the physical statement that Q is constant if and only if the amount
of the current J entering the fluid at any given moment in time is balanced by the
amount leaving.

However, it is not immediately clear when (3.18) holds. This makes for some
difficulties, because (3.13) only implies the existence of a conserved quantity when
the integral over the boundaries vanishes. This means that a transformation which
converts one equation of the continuity type to another, like Gardner’s transformation,
is not necessarily enough.

We can gain some clarity by approximating these terms with a first-order series
expansion in y. There is no real loss in information by doing so, since we have already
done this repeatedly when dealing with the derivation of the complex KdV equation
and its relation to the real KdV equation [136]. There we applied an expansion in
perturbation series with a small parameter ε, and the shallow-fluid condition was
equivalent to the estimate that y = O(ε

1
2 ) at most. Without loss of generality, each

term in the perturbation series was taken to be O(1). In particular, β = O(1), so in
any approximation of β, O(ε) terms can be neglected, since they should appear at
the next order of smallness. With this in mind, if we take the series expansion

J(z, z, t) = J(x, x, t) + iy

[
∂J

∂x
− ∂J

∂y

]
y=0

+O(y2) (3.19)

then the real and imaginary parts of the current

J = Jx + iJy
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can be identified with

Jx = J(x, x, t), Jy = y

[
∂J

∂x
− ∂J

∂y

]
y=0

(3.20)

Return to (3.13), and notice that it can also be written in terms of real and imaginary
parts of J as the more familiar

∂ρ

∂t
+
∂Jx
∂x

+
∂Jy
∂y

= 0 (3.21)

which can also be written to first order as

∂ρ

∂t
+ 2

∂Jx
∂x

+
∂Jy
∂y

∣∣∣∣
y=0

' 0 (3.22)

Because Jx, the real part of J , is taken as the value of J on the real axis, this provides
a very simple way of seeing where these area integrals (3.17) will be constant: If (3.13)
reduces to one of the members of the well-known infinite family of conservation laws
of the real KdV equation when taken solely on the real axis, then (3.13) would reduce
to

∂ρ

∂t
+ 2

∂Jx
∂x

= 0

and we must therefore have, for all of these forms of conservation laws, that the y-
component must change an order of magnitude more slowly than the other terms, so
that it is justified to neglect the term

∂Jy
∂y

∣∣∣∣
y=0

' 0

in (3.22).
These are both equations of motion for ρ. It follows that a conserved area integral

of the form (3.14) can be given when there is a corresponding conserved quantity∫ ∞

−∞
ρ(x, x, t)dx
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in the real KdV equation. This establishes an equivalence between the conserved
quantities of the complex KdV equation, taken as integrals over the area occupied by
the fluid, and the real KdV equation, taken as integrals over the real axis.

We have already seen an example of this with kinetic energy and potential energy.
For the kinetic energy, we can take the current

J = −3|β|2β − β
∂2β

∂z2
(3.23)

which reduces to the conservation law (3.10) when y = 0, remembering that ∂zβ =

∂zβ = 0.

The next simplest example is

J = 6β

∣∣∣∣∂β∂z
∣∣∣∣2 + ∂β

∂z

∂3β

∂z3
+ 4|β|2β2 + 3|β|4 + β

2∂2β

∂z2
+

+ 2|β|2∂
2β

∂z2
− β

(
∂β

∂z

)2

and this is associated with the conserved quantity

∫
Ω

{∣∣∣∣∂β∂z
∣∣∣∣2 − |β|2(β + β)

}
id2z (3.24)

These two can be simply motivated by considering the already-known conserved quan-
tities, and then seeking to generalise them to an area integral over Ω. For these two
cases, there are only so many choices which even make sense. For example, in gener-
alising (3.10), an integral of β2 does not give any new information, since we already
know that β is holomorphic, so this could be trivially put in the form (3.13) with the
term Jz = 0. Similar holds for β2

. This leaves the only possible choice which holds
non-trivial information as |β|2. In a similar way, the integral (3.24) is also the only
non-trivial choice.

It is easy to see that this becomes more complicated quite quickly. This natu-
rally raises the question of how these may be generated in some recursive process.
As already pointed out, Gardner’s transformation is not sufficient here, because the
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boundary of the fluid, ∂Ω, is not pushed out to infinity. This remains a problem
which may be answered in future research.

Lastly, we have dealt only with simple analogues of the conservation laws of the
real KdV equation. This argument does not preclude the existence of more con-
served quantities of the form (3.14) which do not have simple analogues, or even any
analogues, in the real KdV equation at all.

3.3 Physical origin of the split NLS equations

Next, we will point out an interesting physical connection between the complex KdV
theory and the split NLS equations.

It is well known that the nonlinear Schrödinger equation can be derived from the
KdV equation in the quasi-monochromatic approximation [135, 166, 168]. However,
this is typically done when the KdV equation is assumed to be a strictly real-variable
entity. When the KdV equation is considered with a complex spatial variable, things
are slightly different. This is because when considering the Fourier series of a complex
solution to the KdV equation, the real and imaginary parts are generally independent,
so there is no need to assume that each term also comes with its complex conjugate
in the sum.

We will show that this has consequences.
Let ε be a small real parameter, let ζ = εz, τ = εt, and let a solution to the KdV

equation (3.1) be formally given by the Fourier series

β(z, t) = ε2A0(ζ, τ) +
∞∑
n=1

εn{An(ζ, τ)e
niθ + A−n(ζ, τ)e

−niθ} (3.25)

where θ = kz− ωt and ω is a function of the wavenumber k. In order that the lowest
order terms vanish in (3.1), the frequency and wavenumber must be related by the
dispersion relation

ω = −k3 (3.26)

The Fourier series (3.25) represents the decomposition of a KdV-type wave into a
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superposition of slowly-modulated harmonics.

The linear terms are easily given in series form. The first few terms in the expansion
of the nonlinear part of the KdV equation are

β
∂β

∂z
= ikA 2

1 e
2iθε2 +

(
A1
∂A−1

∂ζ
+ ikA0A1e

iθ+

+ ikA0A1e
2iθ

)
ε3 + [+ ↔ −] +O(ε4)

For (3.25) to satisfy the KdV equation (3.1), we find that the following series must
vanish: {(

∂A1

∂τ
− 3k2

∂A1

∂ζ

)
eiθ − ik(k2A2 + A 2

1 )e
2iθ

}
ε2+

+

{
∂A0

∂τ
+ 3ik

(
∂2A1

∂ζ2
− 2A0A1

)
eiθ + · · ·

}
ε3+

+ [+ ↔ −] + · · · = 0

We use the notation [+ ↔ −] to mean all the rest of the terms obtained by replacing
Ane

niθ ↔ A−ne
−niθ. In the real-variable case, this would represent the complex

conjugate terms. Again, here they do not, since there is no requirement that the
terms in the Fourier series be real.

The coefficients of eniθ in (3.1) must vanish, since these terms are linearly indepen-
dent. This leads to the immediate conditions

A±2 = −
(
A±1

k

)2

(3.27)

and
∂A0

∂τ
= 6

∂(A−1A1)

∂ζ
(3.28)

In a frame moving with the group velocity ω′(k) = −3k2, say

ζ 7→ ζ + 3k2τ (3.29)
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it is easy to see that (3.28) implies

A0 '
2

k2
A−1A1

to leading order. This change of variable also eliminates the first order ζ-derivative
at O(ε2).

Over a higher order time scale, i.e. if we make the additional scaling

τ 7→ ετ, (3.30)

the vanishing of the coefficients of the fundamental mode give the equation

∂A1

∂τ
+ 3ik

∂2A1

∂ζ2
− 6i

k
A−1A

2
1 = 0 (3.31)

Following through the same procedure for the coefficients of e−iθ gives a similar
equation with A−1 in place of A1, and we are left with the coupled pair of equations

i
∂A1

∂τ
− 3k

∂2A1

∂ζ2
+

6

k
A−1A

2
1 = 0

i
∂A−1

∂τ
+ 3k

∂2A−1

∂ζ2
− 6

k
A1A

2
−1 = 0 (3.32)

which are the split nonlinear Schrödinger equations [167] for a complex variable ζ.
The split NLS system (3.32) therefore physically represents the evolution of the

slowly-modulated fundamental mode of a periodic solution to the complex KdV equa-
tion. Because the complex KdV equation physically represents the first order pertur-
bations of a velocity field [136], the split NLS equations can be physically interpreted
as determining the evolution of the velocity of the fundamental mode.

If we take the real and imaginary parts of the solutions to the split NLS equations
as

A±1 = P±1 + iQ±1 (3.33)

and set β = u − iv, then we can see that the horizontal and vertical components of
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velocity have fundamental modes

u = {(P1 + P−1) cos θ − (Q1 −Q−1) sin θ}ε+O(ε2)

v = −{(Q1 +Q−1) cos θ + (P1 − P−1) sin θ}ε+O(ε2)

i.e. the sum and difference of A1 and A−1 directly give the coefficients of the funda-
mental.

This way of looking at the split NLS equations is also completely consistent with
the usual interpretation of the usual NLS equation in hydrodynamics.

In keeping with our physical interpretation, when the spatial variable z is real,
the function β(z, t) also becomes real, because it represents a complex velocity in
a channel with a horizontal bottom, and there is only horizontal flow at the very
bottom. Recall from (3.2) that the horizontal velocity on the bottom, i.e. β(x, t), is
directly proportional to the elevation of the surface, which satisfies a real-variable KdV
equation [136]. So in the context of the hydrodynamic problem, when z is reduced to
a real variable x, and ζ to a real variable ξ, we are forced to take A−n = An so that
β(x, t) is real. The coefficients An then represent the modes in the expansion of the
surface elevation, up to a constant of proportionality. The split NLS system (3.32)
reduces to the familiar defocusing nonlinear Schrödinger equation

i
∂A1

∂τ
+ 3k

∂2A1

∂ξ2
− 6

k
|A1|2A1 = 0 (3.34)

together with its usual interpretation: describing the evolution of the amplitude |A1|
of a slowly modulated wavetrain [28].

Another less formal way to see that the split NLS equations come out of the complex
KdV equation as a description of shallow water waves is the following. It is known [4]
that the cnoidal solution of the real KdV equation, representing the wave amplitude,
approaches the Stokes approximation for values of the wave modulus near 1. This
wave has a Fourier series the same as (3.25) except that A−n = An for all n. As
just mentioned, the NLS equation is known to physically describe the evolution of
the fundamental mode in a Stokes wave. In shallow water, the Stokes wave suffers
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a defocusing effect, so it is the defocusing NLS equation [28] which must govern the
evolution of the fundamental term A1.

If we now look at a solution of the complex KdV equation, and replace the complex
conjugate terms in the Fourier series, then we must replace the nonlinear term |A1|2A1

in the NLS equation with A 2
1 A−1. The defocusing NLS equation would then look like

i
∂A1

∂τ
+
∂2A1

∂ξ2
− ν|A1| 2A1 = 0

↓

i
∂A1

∂τ
+
∂2A1

∂ζ2
− νA 2

1 A−1 = 0

where A±1 and ζ are complex and ν > 0 is a positive constant, so that the dispersive
and nonlinear terms have opposite sign. Because of the KdV dispersion relation (3.26)
making the frequency ω, and thus also the phase θ, an odd function of k, the Fourier
series is unchanged by making the replacements An ↔ A−n, k 7→ −k. So we must
also have

−i∂A−1

∂τ
+
∂2A−1

∂ζ2
− νA 2

−1A1 = 0

as the evolution equation for A−1. It follows that A1 and A−1 are given by the split
NLS equations, which, again, are now the slowly-evolving fundamental modes in the
expansion of the complex velocity.

We have now shown that the split NLS equations both physically stem from the
complex KdV equation, and have an interpretation as the equation of a velocity
field, which is entirely consistent with the hydrodynamic theory of the nonlinear
Schrödinger equation.

3.4 Conclusion

In this work, we have discussed some of the consequences of considering the complex
KdV equation as the fundamental evolution equation of a weakly nonlinear shallow
water wave. We discussed its conservation laws, and showed that considering solutions
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to the complex KdV equation to define a complex velocity leads to physically natural
conservation laws defined over the whole body of fluid in the simplest few cases. In
particular, while the simplest nontrivial conservation law of the real KdV equation
is associated with potential energy, the analogous conserved quantity in the complex
KdV equation is associated with a conserved kinetic energy. We showed that even
in the more complicated, less physically obvious cases, it is still possible to define
conserved quantities which correspond to the known conserved quantities of the real
KdV equation.

By considering a periodic solution of the complex KdV equation, we showed that
in the quasi-monochromatic approximation, it is possible to derive the split NLS
equations. The split NLS equations were shown to directly describe the fundamental
modes of the velocity of a periodic wave in the KdV equation. This gives possibly
the first directly physical interpretation of the system of split NLS equations, thus
showing that it is not merely a mathematical tool, as it was originally introduced, but
rather that it emerges on its own in hydrodynamics. When considering the special
case in which both spatial variables are real, the relation (3.2) between the horizontal
velocity on the bottom of the channel and the elevation of the surface reduced the
split NLS equations to the defocusing nonlinear Schrödinger equation, and gave the
correct interpretation: an equation of the amplitude of the wave envelope.

The real KdV equation is one of the foundational keystones of modern physics
[17, 20, 22, 97]. The knowledge gained while studying this equation provided several
crucial contributions to mathematical physics [169–171]. Its direct extension to the
equation with a complex valued function of real temporal and spatial variables is also
known [172], and these solutions can also be treated in analogy with the solutions of
the real KdV equation [158, 173–175]. However, the real complications start when one
of the independent variables (spatial one) is also taken to be complex. It is especially
beneficial that this complication occurred to be not a mathematical artefact, but to
describe the real physical problem of shallow water waves and to include much more
detail in their description [136]. Our present work sheds more light on this technique
adding more tools that can be used in using this approach in practice. We believe
these new steps may lead to a whole new strategy of problem solving in the theory
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of shallow water waves and, potentially, some other fields based on the complex KdV
equation [164, 165, 176].



4
Rogue Wave Mutliplets in the Complex

Korteweg-de Vries Equation

We present a multi-parameter family of rational solutions to the complex Korteweg–de
Vries (KdV) equations. This family of solutions includes particular cases with high-
amplitude peaks at the centre, as well as a multitude of cases in which high-order
rogue waves are partially split into lower-order fundamental components. We present
an empirically-found symmetry which introduces a parameter controlling the splitting
of the rogue wave components into multi-peak solutions, and allows for nonsingular
solutions at higher order.
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4.1 Introduction

Rogue waves are known to exist on deep ocean surfaces [55, 145], within water in
the form of internal rogue waves [177, 178], in optical fibres in supercontinuum gen-
eration [59, 61], in the vacuum in the form of quantum fluctuations [179] and even
in the theory of gravitational waves [180]. Their universality has been confirmed by
water tank experiments [181], in quadratic nonlinear crystals [182], and, most strik-
ingly, in our encounters with extreme natural phenomena [183]. The most common
approach to the description of rogue waves is using the exact solutions of integrable
evolution systems such as three-wave interaction [184], nonlinear Schrödinger (NLS)
[148, 185], Kadomtsev-Petviashvili [186, 187], and Davey-Stewartson [188] equations,
among others [189]. Rational Peregrine-like solutions of these equations provide a
good approximation to describing rogue wave formation in a variety of physical situ-
ations [190, 191].

The real Korteweg-de Vries (KdV) equation [4] is the basis of the most common tool
for the (1+1)-dimensional modelling of shallow water waves, which has been in use
since the work of Boussinesq [3]. Numerical modelling done by Zabusky and Kruskal
revealed the presence of soliton solutions of this equation [17], and the inverse scat-
tering technique developed for the KdV equation enabled the derivation of analytic
solutions for given initial conditions with zeros at infinity [20]. Being the historic
first among the integrable nonlinear evolution equations, the KdV equation attracted
significant attention from both physicists and mathematicians [169, 171, 192, 193].

Despite such extensive interest, until very recently, the KdV equation was thought
to lack rogue wave solutions. This is true, but only if the wave described by the KdV
equation is purely real. If we consider complex-valued solutions to the KdV equation,
it is possible to derive rogue wave solutions [194]. Being the first work on this subject,
the paper [194], however, presented only selected (fixed-parameter) rogue wave solu-
tions and did not reveal the large variety of possible features of this important class
of solutions. In this work, we provide a more detailed mathematical treatment and
derive families of rogue wave solutions with free parameters that determine a range
of features. The presence of several parameters in our equations makes our approach
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much more powerful than in previous work [194]. Here, by use of a simple symmetry
of the n-fold Darboux transformation, we show that rational solutions to the KdV
equation can be substantially generalised to describe a much larger variety of rogue
waves. In principle, depending on the choice of parameters involved, these rational
solutions may be either singular or nonsingular. We also show that higher order rogue
waves in the complex KdV equation can appear in multi-peak formations, in a similar
way to the rogue waves of the NLS equation [119, 121, 195].

4.2 The n-th order rational solution for the complex
KdV equation

We will consider the complex KdV equation in the form

∂u

∂t
− 6u

∂u

∂z
+
∂3u

∂z3
= 0. (4.1)

where z = x+iy is a complex variable, and u = u(z, t) a complex function. Regardless
of whether u is real or complex, (4.1) is also the condition of compatibility of the
system

∂ψ

∂t
= −4

∂3ψ

∂z3
+ 6u

∂ψ

∂z
+ 3

∂u

∂z
ψ, (4.2)

− ∂2ψ

∂z2
+ uψ = λψ. (4.3)

This equivalence has several consequences. One of the most important for our pur-
poses is that the system (4.2, 4.3) is Darboux covariant, giving us a dressing method
to construct nontrivial solutions to (4.1) from simple ones. Given an initial (seed)
solution u = u0 to the KdV equation, and n linearly independent solutions ψ1, . . . , ψn

to the associated linear system (4.2, 4.3), with corresponding spectral parameters
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λ = λ1, . . . , λ = λn, the n-fold Darboux transformation of u0 is given by [71]

un = u0 − 2
∂2

∂z2
logWn+1, (4.4)

where Wn is the Wrońskian determinant of the functions ψ1, . . . , ψn with respect to
z:

Wn =

∣∣∣∣∣∣∣∣∣∣
ψ1 ψ2 . . . ψn

∂zψ1 ∂zψ2 . . . ∂zψn

... ... . . . ...
∂ n−1
z ψ1 ∂ n−1

z ψ2 . . . ∂ n−1
z ψn

∣∣∣∣∣∣∣∣∣∣
, (4.5)

and u = un will be another solution to the KdV equation (4.1). To be more concise
we omit writing explicitly the dependence of Wn on the functions ψ1, . . . , ψn.

In order that the transformation (4.4) be non-trivial, the parameters λk must be
distinct. In order to obtain a Darboux transformation in the degenerate case λk → λ

for all k = 1, 2, . . . , n, we define ψ1, . . . , ψn such that ψ(z, t;λk) = ψk(z, t). Then,
expanding the matrix element ∂ i

z ψj as a Taylor series with respect to λk, we have

lim
λk→λ
1⩽k⩽n

Wn =

∣∣∣∣∣∣∣∣∣∣
ψ ∂λψ . . . ∂ n−1

λ ψ

∂zψ ∂λ∂zψ . . . ∂ n−1
λ ∂zψ

... ... . . . ...
∂ n−1
z ψ ∂λ∂

n−1
z ψ . . . ∂ n−1

λ ∂ n−1
z ψ

∣∣∣∣∣∣∣∣∣∣
, (4.6)

i.e. in the degenerate limitWn becomes the Wrońskian of the functions ψ, ∂λψ, . . . , ∂ n−1
λ ψ.

So if we take, for example, the simple constant seed solution u0(z, t) = c, we can
take as linearly independent solutions to the system (4.2, 4.3) the functions

ψk(z, t) = coshωk{z + 2(3c− 2ω 2
k )t} (4.7)

where ωk =
√
c− λk for λk 6= c. In (4.7), each eigenvalue λk is distinct.

We will also note here that due to the translational invariance u(z, t) 7→ u(z−z0, t−
t0) of the KdV equation (4.1), we can introduce a second constant, via t 7→ t−t0. This
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will not affect the choice of ψ in any substantial way, but this will be relevant later,
so we allow for arbitrary shifts in z and t. For simplicity’s sake, we set a background
c = 0, and the function ψ in (4.7) becomes

ψ(z, t;λk) = cos
√
λk{z + 4λk(t− it0)}, (4.8)

from which we get

W2(z, t) = −1
2
z − 6λ(t− it0)−

sin 2
√
λ{z + 4λ(t− it0)}

4
√
λ

,

with W2(z, t) → −z as λ→ 0.

The imaginary part of z ensures that the Wrońskian W2(z, t) has no zeros in z and
t except for the origin, and in the limit as λ→ c, in this case as λ→ 0, the Wrońskian
becomes a polynomial in x and t. The corresponding degenerate solution u1 to the
complex KdV equation will thus always be a non-singular rational function as λ→ 0

if y is chosen appropriately. In the simplest case, u1(x, t) becomes

u1(z, t) =
2

z2
=

2

(x+ iy)2
.

The 3× 3 Wrońskian becomes in the limit

lim
λ→0

W3(x, t) = −2
3
(x+ iy0)

3 − 8(t− it0).

For better clarity, we will write Kn for the limit of the Wrońskian Wn+1 as λ→ 0,

i.e.
Kn(x+ iy0, t− it0) = lim

λ→0
Wn+1, (4.9)

so that in general, the n-th order rational solution of the KdV equation is given by

un(x, t) = −2
∂2

∂x2
logKn(x, t). (4.10)
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Singularities do not appear in all parts of the complex plane. If we choose the
parameters of the solution such that the system

<{Kn(x+ iy, t− it0)} = 0, ={Kn(x+ iy, t− it0)} = 0

has no solution in real values of x and t. To find a nonsingular second-order solution,
we observe that if t0 is strictly real, then

={K2(x+ iy, t− it0)} = 2(x2y − 1
3
y 2 − 4t0),

and this is a quadratic in x with no real zero in x in the region

y 3 + 12t0
y

< 0.

In this region of the complex plane, the solutions will not have any singularities for
any values of x.

The constant t0 allows us to avoid any real zeros in the denominator of the second-
order solution, since if t0 = 0, the equation K2(x + iy, t − it0) = 0 always has roots
in real values of x and t for any choice of y.

The second-order rational solution of the complex KdV equation is

u2(z, t) = 6z
z3 − 24(t− it0)

{z3 + 12(t− it0)}2
. (4.11)

The plot of this function for fixed parameters y and t0 is shown in Fig. 4.2.1. With
these restrictions on y, this has the form of a rogue wave with the maximal amplitude
at the origin, being given in terms of y and t0 by

|u2(0, 0)| = 6
|y 4 + 24yt0|
(y 3 − 12t0)2

.

It is a straightforward exercise to write rational solutions of any order n. To give a
few more examples, the Wrońskians Kn as λ→ 0 for the third to fifth-order solutions
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Figure 4.2.1: (a) The plot of the second-order rogue wave (4.11) with y = 3
2 and t0 = 1

2 .
The maximal amplitude is |u2(0, 0)| = 20.0816. (b) The plot of the third-order rogue wave,
defined by (4.13). Parameters are y = 1

2 , t0 = − 1
24 , and g = −6

5 i. The maximal amplitude
is |u3(0, 0)| = 50. The background for both cases is c = 0.

are

K3(z, t) =
4

15
(z6 + 60z3t− 720t2),

K4(z, t) =
32

515
(z10 + 180z7t+ 302400zt3),

K5(z, t) =
256

33075
(z15 + 420z12t+ 25200z9t2 +

+ 2116800z6t3 − 254016000z3t4 −

− 1524096000t5).
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up to translations z 7→ z + z0, t 7→ t− it0.

Since Kn(z, t) is an (n + 1) × (n + 1) determinant, the explicit formulae quickly
become more cumbersome with increasing n, although the description in terms of
the determinant holds for all n. The second-order rogue wave in Fig. 4.2.1(a) is the
simplest one among the hierarchy of KdV rogue waves. It has a single maximum, and
smoothly growing and decaying fronts.

The symmetry
u(z, t) 7→ c+ u(z + 6ct, t) (4.12)

of the KdV equation allows us to chose the background c arbitrarily, but at the expense
of a travelling velocity of 6c. The two lowest order solutions with this adjustment
become

u1(z, t) = c− 2

(z + 6ct)2
,

u2(z, t) = c− 2
∂2

∂z2
log{(z + 6ct)3 + 12(t− it0)}.

These are generalisations of previously obtained rogue wave solutions. Namely, when
c = −1, y = −1

2
and t0 = 1

24
, the above solutions coincide with those derived in [194]

by the complex Miura transformation.

Multi-peak solutions

The higher-order solutions of the hierarchy are more complicated. Moreover, the usual
expressions for them are always singular and may not describe physical situations.
In order to obtain solutions which can be nonsingular, we have to go beyond the
standard dressing technique.

Solutions of order n ⩾ 3 can be further generalised by making use of an empirically
found symmetry which allows us to replace the functions Kn with linear combinations
of Kn and Kn−2 : If

Vn(z, t; g) = Kn(z, t)− gKn−2(z, t), n = 3, 4, . . . , (4.13)
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where g is an arbitrary constant, then

u = un(z, t; g) = −2
∂2

∂z2
log Vn(z, t; g) (n ⩾ 3) (4.14)

is also a solution of the KdV equation (4.1). This symmetry can be verified by direct
substitution as we have done for all cases found here, i.e. up to n = 5, and we
conjecture it holds in general for all n.

If we were to extend this symmetry to the n = 2 case, then it would make sense to
identify K0 as simply a constant, since this would generate the solution u = 0. Then
(4.13) for n = 2 would just be introducing a complex additive constant. If <(g) = 0,

it is identical to the substitution t 7→ t− it0.

When n = 3, we recover a third-order rational solution,

u3(z, t; g) =
P3(z, t− it0; g)

{V3(z, t− it0; g)}2
, (4.15)

P3(z, t; g) = 450g2 + 2160gz5 + 8294400zt3+

+ 1036800z4t2 + 192z10, (4.16)

up to the symmetry (4.12). The parameters t0, g and c here allow us to control
the shape of the rogue wave. One example of this solution for background c = 0,
with y = 1

2
, t0 = − 1

24
and g = −6

5
i is shown in Fig. 4.2.1(b). This same choice of

parameters with background c = −1 again reduces to the particular third-order rogue
wave solution given in [194]. This, like (4.11), has a single central peak at the origin,
but now there are two sets of tails, resembling a two-soliton collision.

When the parameter g is purely imaginary, the rogue wave is dominated by its
central peak. The imaginary part of g affects the relative heights of the peaks and
the tails. When =(g) becomes large, the peaks reduce in size relative to the tails, and
for sufficiently large values, the peaks may be even smaller than the tails. On the
other hand, the real part of g causes splitting of the lower order components, so that
they do not directly collide at the origin. Instead, with <(g) 6= 0, we see growth of
multiple peaks. In Fig. 4.2.2(a), the central peak splits into two smaller ones, their
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locations and amplitudes depending on g and t0. Another example is shown in Fig.
4.2.2(b), in which we see that the effect of the parameter t0, and position y on the
imaginary axis, can be to transfer amplitude from one peak to another.

Figure 4.2.2: Two plots of the third-order rogue wave. (a) Parameters are the same as in
Fig. 4.2.1(b) except now g = −5 − 6

5 i. A second peak has grown and the larger peak has
decreased in total amplitude and moved out from the origin. (b) Parameters are the same
as in (a) except now t0 = − 1

40 . One of the peaks has faded and the other peak has gained
more amplitude.

The general fourth-order rational solution in explicit form is given by

u4(z, t; g) =
P4(z, t− it0; g)

{K4(z, t)− gK2(z, t)}2
, (4.17)

P4(z, t; g) = 50{32z9 + 4032z6t+ 967680t3 + 105gz2}2−

− 60z{35g + 48z4(z3 + 84t)}{16z10+

+ 2880z7t+ 4838400zt3 + 175g(z3 + 12t)}. (4.18)
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The explicit form of the fifth-order rational solution is

u5(z, t; g) =
P5(z, t− it0; g)

{K5(z, t)− gK3(z, t)}2
, (4.19)

P5(z, t; g) = 60z{972405g2(43200t3 + 5400t2z3 + z9)+

+ 2048(−154857907814400000t9+

+ 19357238476800000z3t8 + 184354652160000z6t7+

+ 17667320832000z9t6 + 512096256000z12t5+

+ 1447891200z15t4 + 120960z21t2 + 504z24t+ z27)}−

− 282240g(9144576000t6 − 21772800z6t4−

− 483840z9t3 + 22680z12t2 + 252z15t+ z18). (4.20)

Higher order rational solutions can also be written in similar form, but quickly exceed
reasonable limits of presentability.

Two examples of the fourth-order solution for given sets of parameters and zero
background c are shown in Fig. 4.2.3. The profile of this solution can again take a
multiplicity of forms. When the parameter g is purely imaginary, as in Fig. 4.2.3(a),
most of the rogue wave amplitude is concentrated in the central peak, although two
small, symmetrically located side peaks are also present. The maximal amplitude of
the central peak here is 82.

An example of the fourth order rogue wave for g with nonzero real part is shown in
Fig. 4.2.3(b). Again, the real part of g causes multiple peaks to grow. There we have
three distinct large peaks but of smaller amplitudes, each roughly 20 to 30. Their
relative locations and values of velocity are again determined by g and t0.

This extreme localisation shown in all graphs is the characteristic feature of rogue
waves [37].
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Figure 4.2.3: Two plots of the fourth-order rogue wave. (a) Parameters are y = −1
2 ,

t0 = 1
24 , g = −6i and c = 0. The maximal velocity is |u4(0, 0)| = 82. (b) Parameters

are the same except now g = 1888 − 12i. With g having nonzero real part, the main peak
has decreased in amplitude and the smaller peaks have grown and moved away from the
origin.

4.3 Conclusion

The crucial step taken in our work is the generalisation (4.13). Despite being as
simple as a linear superposition law for the Wrońskians, it has important nontrivial
consequences for the whole family of rational solutions, allowing them to be non-
singular i.e. physically relevant rogue waves. It also adds the complex parameter g
that is essential in the higher order rational solutions for removing singularities and
for splitting the higher-order rogue wave into its fundamental components. When
the real part of g is zero, then the rogue wave has the highest peak at the origin
and smaller local maxima around it, as shown in Fig. 4.2.3(a). On the other hand,
when g has nonzero real part, the central large peak decreases and smaller side peaks
grow while separating from each other. This type of splitting of higher order rogue
waves into multiplet structures has also been observed in the case of NLS rogue waves
[119, 121, 195] and their extensions [140]. However, the splitting of the higher-order
rogue waves of the complex KdV equation is more complicated. The complete clas-
sification of all forms of rogue waves here remains open for investigation.

Lastly, we point out that complex solutions of the KdV equation are also applica-
ble to unidirectional crystal growth [164] and complex KdV-like equations serve to
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model dust-acoustic waves in magnetoplasmas [176]. The KdV hierarchy itself also
finds applications in modern theories of quantum gravity [196].

As such, these new solutions presented in this work, previously not thought to
exist, may find much wider use in various areas of physics.
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5
Doubly-Periodic Solutions of the Class I

Infinitely Extended Nonlinear Schrödinger
Equation

We present doubly-periodic solutions of the infinitely extended nonlinear Schrödinger
equation with an arbitrary number of higher-order terms and corresponding free real
parameters. Solutions have one additional free variable parameter that allows to
vary periods along the two axes. The presence of infinitely many free parameters
provides many possibilities in applying the solutions to nonlinear wave evolution.
Being general, this solution admits several particular cases which are also given in
this chapter. We give a thorough introduction to the key ideas which will be used for
both the current chapter and the next.
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5.1 Introduction

Evolution equations are a powerful tool for describing a great variety of physical
effects. Using evolution equations, one can explain phenomena that would otherwise
be difficult to interpret. Examples of such phenomena include solitons [17, 197],
modulation instability [30, 198, 199], supercontinuum generation [59], Fermi-Pasta-
Ulam recurrence [200], rogue waves [55, 184, 188, 191, 201], etc. It is especially helpful
when the evolution equations under study are integrable [202]. Unfortunately, this
is not always the case. Not all evolution equations are integrable [143, 144, 203].
Finding new integrable equations [149, 201, 204], and extending the existing ones
to allow for incorporating new, physically relevant terms [205–209], is therefore an
important direction of research in nonlinear dynamics.

The nonlinear Schrödinger (NLS) equation is one of the fundamental examples of a
completely integrable equation [29, 167] which finds application in such areas as the
description of water waves [28, 55, 145, 191], pulses in optical fibres [44, 210, 211],
Bose-Einstein condensates [212–215], waves in the atmosphere [216], as well as plasma
[217] and many other physical systems [218–222]. However, in none of these fields
is the NLS equation absolutely accurate. Extensions of the NLS equation that have
physical relevance are therefore essential.

Various extensions of the NLS equation have been considered [223–225] that in-
crease the accuracy of the description of nonlinear wave phenomena in these systems
by incorporating higher-order effects [184, 206, 207, 226]. Higher-order terms in these
extensions are responsible for linear dispersion, as well as nonlinear effects such as
self-phase modulation, pulse self-steepening, the Raman effect, and so on [208, 210].
These higher-order terms are important in nonlinear optics [227, 228], ocean wave
dynamics [143, 144, 148] and especially in modelling high-amplitude rogue wave phe-
nomena [188, 191, 201].

In general, these extensions lift the integrability for most particular physical prob-
lems. However, in special cases, we can obtain extensions which remain integrable,
and, in addition, we can add infinitely many higher-order terms with variable coeffi-
cients representing the strength of these effects, adding substantial flexibility to the
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evolution equation.

There are two types of extensions of the NLS equation [229–232]. For clarity, we
call them here the class I and class II extensions. The next higher-order terms in
the class I extension correspond to the Hirota equation [229–231], while the next
higher-order terms in the class II extension correspond to the Sasa-Satsuma equation
[232, 233].

Both of these extensions take into account higher order dispersive effects, without
any restriction on the magnitude of these effects, i.e. without requiring them to be
small perturbations. In practice, waves are affected by more than just second-order
dispersion, so solutions to the infinite equations are an important development in
that they allow a generalisation of the fundamental structures which appear in the
‘basic’ nonlinear Schrödinger equation to account for these effects. When the number
of higher-order terms is limited to the third order, integrability can be achieved with
variation of two free parameters [125]. For infinitely extended equations, the number
of free parameters is also infinite.

The presence of two classes of integrable extensions thus widens the range of prob-
lems that can be solved analytically. Remarkably, solutions to both classes can be
found in general form, even for the case of an infinite number of terms, and an in-
finite number of corresponding parameters. In order to find these solutions, we can
start with the known solutions of the NLS equation and extend them, recalculating
the parameters of the solution. This can be done for soliton, breather and rogue
wave solutions [230, 231]. In the present work, we further expand this approach to
doubly-periodic solutions. They include as particular cases solitons and breathers.

5.2 The class I infinitely extended NLS equation

First, we give a brief exposition of the class I infinitely extended nonlinear Schrödinger
equation. It is the integrable equation written in general form [229, 230]

iψx + F (ψ, ψ∗) = 0, (5.1)



82 5.2. THE CLASS I INFINITELY EXTENDED NLS EQUATION

where the operator F (ψ, ψ∗) is defined through

F =
∞∑
n=1

(α2nK2n − iα2n+1K2n+1), (5.2)

with the operators Kn defined recursively by the integrals of the nonlinear Schrödinger
equation [229], and where each coefficient αn is an arbitrary real number; that is,

Kn(ψ) = (−1)n
δ

δψ∗

∫
pn+1dt,

where pn is the n-th integral of the basic nonlinear Schrödinger equation, and pn+1

can be defined recursively as

pn+1 = ψ
∂

∂t

(
pn
ψ

)
+

n∑
r=1

pn−rpr, p1 = |ψ|2.

Exact forms for the class I form of the operators Kn(ψ) are given in [230]. The four
lowest order operators Kn are presented below.

K2(ψ) = ψtt + 2|ψ|2ψ, (5.3)
K3(ψ) = ψttt + 6|ψ|2ψt,

K4(ψ) = ψtttt + 8|ψ|2ψtt + 6ψ|ψ|4 +

+4ψ|ψt|2 + 6ψ2
tψ

∗ + 2ψ2ψ∗
tt.

K5(ψ) = ψttttt + 10|ψ|2ψttt + 10(ψ |ψt|2)t +

+20ψ∗ψtψtt + 30|ψ|4ψt.

The coefficients αn determine the strength of the dispersive effects of order n, as well
as higher-order nonlinear effects. The whole infinite equation (5.1) is integrable for
arbitrary values of αn.
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To be specific, we start with the standard focusing NLS equation:

i
∂ψ

∂x
+ α2

(
∂2ψ

∂t2
+ 2|ψ|2ψ

)
= 0 (5.4)

where ψ = ψ(x, t) is the wave envelope, x is the distance along the fibre or along
the water surface, while t is the retarded time in the frame moving with the group
velocity of wave packets. The coefficient α2 scales the dispersion and nonlinear terms
in a way convenient for the extensions.

The equation with the terms up to the third order is the Hirota equation

i
∂ψ

∂x
+ α2

(
∂2ψ

∂t2
+ |ψ|2ψ

)
− iα3

(
∂3ψ

∂t3
+ 6|ψ|2∂ψ

∂t

)
= 0 (5.5)

while including up to fourth order terms gives the Lakshmanan-Porsezian-Daniel
(LPD) equation [205], and so on. Particular solutions of the first-order to the equa-
tion (5.1) have been given in [230, 231]. Solutions of the mKdV equation, which is
another particular case of (5.1), are provided in [234]. Any of the extensions of (5.1)
with only a few nonzero terms can be considered individually.

As mentioned, the numbers αn can take any values whatsoever, and do not need to
be viewed as representing small perturbations for the equation (5.1) to be completely
integrable. This allows us to find solutions for which any order of dispersion can
be taken into account without the need for approximation or numerical techniques.
This extension substantially widens the range of applicability of the NLS equation
for solving nonlinear wave evolution problems. However, physical applications, in
general, do require dispersive effects to decrease rapidly in strength with increasing
order n. Convergence will thus not be an issue in practice for series involving αn,

and we will therefore be comfortable leaving the operator F for the whole equation
(5.1), as well as any other associated parameters, in the form of an infinite series
when necessary.

Among the more general families of solutions to the nonlinear Schrödinger equation
(5.4) are the doubly-periodic solutions [36]. The two periods of this family can be
varied, thus providing particular cases in the form of solitons, breathers, cnoidal,
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dnoidal and Peregrine waves when one or two of these periods tend to infinity or
zero [36]. Unlike breather solutions, however, these doubly-periodic solutions do not
decay in either space or time, and instead have the special property of being periodic
in both the x and t variables.

In this work, we show that doubly-periodic solutions can be found for the class I
equation. This solution includes infinitely many parameters αn in full generality. We
also show that particular limiting cases of this family include the Akhmediev breather
and soliton solutions.

5.3 Doubly-periodic solutions

There are two types of doubly periodic solutions to the nonlinear Schrödinger equa-
tion, which can be classified as type-A and type-B [235]. Each of them is expressed
in terms of Jacobi elliptic functions, with the modulus k as the free parameter of the
family. First, we consider the type-A solutions.

5.3.1 Type-A Solutions

Type-A solutions of Eq. (5.1) are of the form

ψ(x, t) =
k sn (Bx/k, k)− iC(t+ vx) dn (Bx/k, k)

k − kC(t+ vx) cn (Bx/k, k)
eiϕx (5.6)

where

C(t) =

√
k

1 + k
cn

(√
2

k
t,

√
1− k

2

)
.

The constants B, v and ϕ in the solution (5.6) are given in terms of the coefficients
αn of the equation (5.1). Taking into account the lowest order terms, step by step,
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we find:

B = 2α2 + 8α4 +

(
32− 4

k2

)
α6 +

+

(
128− 32

k2

)
α8 +

(
512− 192

k2
+

12

k4

)
α10 +

+

(
2048− 1024

k2
+

144

k4

)
α12 + · · · (5.7)

ϕ = 2α2 +

(
8− 2

k2

)
α4 +

(
32− 12

k2

)
α6 +

+

(
128− 64

k2
+

6

k4

)
α8 +

(
512− 320

k2
+

60

k4

)
α10 +

+

(
2048− 1536

k2
+

432

k4
− 20

k6

)
α12 + · · · (5.8)

v = 4α3 +

(
16− 2

k2

)
α5 +

(
64− 16

k2

)
α7 +

+

(
256− 96

k2
+

6

k4

)
α9 +

(
1024− 512

k2
+

72

k4

)
α11 +

+

(
4096− 2560

k2
+

576

k4
− 20

k6

)
α13 + · · · (5.9)

An important observation here is that the expression for v which is responsible for
the ‘tilt’ in (x, t)-plane discussed below includes only odd-order coefficients αn. If
these are zero, v is also zero.

In order to determine the general forms, with all αn included, we note that only one
of these sets of polynomial coefficients is algebraically independent. For n ⩾ 1, the
coefficient of α2n−1 in v is half the coefficient of α2n in B, and is also the sum of the
coefficients of α2n in B and ϕ. It is therefore sufficient to determine the coefficients
of B, since, if we let

B =
∞∑
n=1

Bnα2n,

then
v =

∞∑
n=1

1
2
Bn+1α2n+1, ϕ =

∞∑
n=1

(1
2
Bn+1 − Bn)α2n.
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Calculating further the other terms of Bn, we find that they are the polynomials

Bn = 22n−1

⌊ 1
2
n⌋∑

r=0

(−1)r(2r)!(n− r − 1)!

24r(r!)3(n− 2r − 1)!

1

k2r
,

b·c being the floor function, i.e. bmc is the largest integer which is no greater than
m. Now the full expression for B is given explicitly by the series formula

B =
∞∑
n=1

22n−1

⌊ 1
2
n⌋∑

r=0

(−1)r

24r

(
2r

r

)(
n− r − 1

r

)
1

k2r
α2n. (5.10)

It also follows that

v =
∞∑
n=1

22n
⌊ 1
2
(n+1)⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n− r

r

)
1

k2r
α2n+1, (5.11)

and the phase factor ϕ is

ϕ =
∞∑
n=1

22n−1

{
2

⌊ 1
2
(n+1)⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n− r

r

)
1

k2r
−

−
⌊ 1
2
n⌋∑

r=0

(−1)r

24r

(
2r

r

)(
n− r − 1

r

)
1

k2r

}
α2n (5.12)

We plot an example of the type-A solution for Eq. (5.1) in Fig. 5.3.1. For this
example, we take the modulus k = 0.7, and the coefficients αn = 1/n! up to n = 10,
restricting ourselves with the case when all terms higher than n = 10 are zero. We
can see from Fig. 5.3.1 that v introduces a tilt to the solutions and appears to operate
similarly to a velocity parameter in a boost transformation. However, note that v
cannot be interpreted exactly as a velocity, as there is no function f such that we
could write ψ(x, t) = f(t + vx) as we could do with a travelling wave, except in the
case that ϕ = B = 0.
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Figure 5.3.1: Type-A solution for Eq. (5.1), with k = 0.7, αn = 1/n! up to n = 10 and all
other αn = 0. Notice that v is nonzero.

From equation (5.6), we can see that the parameter B/k can be associated with a
frequency of the modulation along the x axis when v = 0. On the other hand, the
real quarter-period along the t axis is:√

k

2
K

(√
1− k

2

)
,

where K(k) denotes the complete elliptic integral of the first kind with modulus k.
However, just as v cannot be precisely interpreted as a velocity, neither can B/k be
thought of as a modulation frequency exactly, except when v = 0 and the solution is
periodic along the x-axis.
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5.3.2 The Akhmediev Breather Limit

In the limit as modulus k → 1, we have

lim
k→1

B =
∞∑
n=1

(
2n

n

)
nF (1− n, 1; 3

2
; 1
2
)α2n, (5.13)

lim
k→1

ϕ =
∞∑
n=1

(
2n

n

)
α2n (5.14)

lim
k→1

v =
∞∑
n=1

(
2n

n

)
(2n+ 1)F (−n, 1; 3

2
; 1
2
)α2n+1 (5.15)

where F (a, b; c; z) is Gauss’ hypergeometric function. The type-A solution then re-
duces to the Akhmediev breather with modulation parameter

√
2 [230]; i.e. the

solution becomes

lim
k→1

ψ(x, t) =

√
2 sinhBx− i cos

√
2(t+ vx)√

2 coshBx− cos
√
2(t+ vx)

eiϕx (5.16)

with B, ϕ, and v given by (5.13), (5.14), and (5.15), respectively. An example of this
limiting case is plotted in Fig. 5.3.2.

5.3.3 Type-B Solutions

Type-B solutions can be considered as the analytic continuation of the type-A solu-
tions for values of the modulus k > 1. Using the corresponding transformations of
the elliptic functions with modulus κ = 1/k, these solutions take the form

ψ(x, t) = κeiϕx
√
1 + κ sn(Bx, κ)− iA(t+ vx) cn(Bx, κ)√

1 + κ− A(t+ vx) dn(Bx, κ)
(5.17)

where the function A(t) is given by

A(t) = cd

(
√
1 + κt,

√
1− κ

1 + κ

)
,
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Figure 5.3.2: The limiting case k → 1 of the type-A solutions, with αn = (n!)2/(2n)! up
to n = 12, all other αn = 0. This is the Akhmediev breather solution of Eq. (5.1), periodic
in t and with the growth-decay cycle in x.

and κ is in the range 0 < κ < 1. In this case, we find:

B =
∞∑
n=1

22n−1

⌊ 1
2
n⌋∑

r=0

(−1)r

24r

(
2r

r

)(
n− r − 1

r

)
κ2rα2n, (5.18)

ϕ =
∞∑
n=1

22n−1

{
2

⌊ 1
2
(n+1)⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n− r

r

)
κ2r−

−
⌊ 1
2
n⌋∑

r=0

(−1)r

24r

(
2r

r

)(
n− r − 1

r

)
κ2r
}
α2n (5.19)

v =
∞∑
n=1

22n
⌊ 1
2
(n+1)⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n− r

r

)
κ2rα2n+1. (5.20)

These are just the same polynomials as previously given for the type-A solutions, but
with reciprocal argument κ = 1/k.

We plot an example of type-B solutions in Fig. 5.3.3. The solution is qualitatively
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Figure 5.3.3: The type-B solution (5.17), where κ = 0.7, αn = 1/n! up to n = 8, with all
other αn = 0. The peaks of this solution are aligned along lines of constant τ = t+ vx.

different from the type-A solution as the location of maxima are now different.
The limit as κ → 1 is identical to the limit as k → 1 for the reasons just stated

previously, and we again recover the separatrix breather solution (5.16). However,
by changing the parameter κ, we can vary the periods of the type-B solutions while
always keeping the functions analytic, so that in the limit κ → 0 we recover the
soliton solution

lim
κ→0

ψ(x, t) = 2eiϕx sech(2t+ vx) (5.21)

with
v =

∞∑
n=1

22n−1α2n+1

and
ϕ =

∞∑
n=1

22nα2n,

which is the general soliton solution for the equation (5.1), up to scaling [230].
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5.4 Phase portrait of solutions

The transformation of the two periodic solutions into the Akhmediev breather (AB)
when k → 1 and κ → 1 can be illustrated by the phase portrait of these solutions
which is shown in Fig. 5.4.1. Although the dynamical system that we are dealing with
is infinite-dimensional, the dynamics of the solutions still can be presented on a two-
dimensional plane which can be considered as a projection of the infinite-dimensional
phase space onto a plane. The Akhmediev breather solution (5.16) on this plane is
represented by the heteroclinic orbits connecting two saddle-points. It is a separatrix
between the type-A and type-B solutions, represented respectively by the periodic
orbits A and B.

The projection of infinite-dimensional phase space onto a plane requires certain
tricks, as the solutions involve drift. In order to avoid the corresponding shifts, we
make the change of variable ξ = Bx, τ = t+ vx, and define the new function

u(ξ, τ ) = ψ(x, t)e−iϕx. (5.22)

The counterbalancing exponential factor allows us to stop the rotation of ψ around the
origin in the complex plane. Then it is easy to see that the trajectory corresponding
to the AB solution satisfies the equation

{Re u(ξ, T )}2 + {Im u(ξ, T )− 1}2 = 2, T =
nπ√
2
, (5.23)

where Re u and Im u are the real and imaginary parts of u, respectively, and n is any
integer. The trajectories defined by Eq. (5.23) are circular so long as we trace the
evolution in ξ along these lines of constant τ . They are shown as black curves in Fig.
5.4.1. Similar precautions should be taken for the doubly-periodic orbits.

The difference between the type-A and type-B solutions can be seen clearly from
Fig. 5.4.1. Trajectories for the type-A solutions never cross the real axis, whereas
trajectories for the type-B solutions do. Therefore, each time they complete one full
path, the phase change is either zero or 2π. The periodicity of solutions along the
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Figure 5.4.1: The phase portrait of the periodic dynamics around the Akhmediev breather
shown by the black curves. The type-A solution is shown by the red curve while the type-B
solution is shown by the blue curve. Here u is defined by (5.22), and the two saddle points
are at u = ±1. The trajectories are drawn along the lines ξ = Bx and τ = t + vx. Thus,
evolution is in ξ along lines of constant τ.

x-axis depends on the strength of the dispersion, or the values of the coefficients αn,
through ϕ, B, and v.

5.5 The case with zero even-order terms

In the absence of any even order terms in Eq. (5.1), it becomes real:

∂ψ

∂x
−

∞∑
n=1

α2n+1K2n+1[ψ] = 0, (5.24)
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Then we have ϕ = 0 and B = 0, and the type-B solution takes the real-valued form

ψ(x, t) = u(τ) =
κA(τ)√

1 + κ− A(τ)
, (5.25)

where τ = t + vx. Note that here v can be interpreted as a velocity since u has the
form of a travelling wave.

The real quarter-period in τ is equal to the real quarter-period in t of the usual
type-B solutions, which is

1√
1 + κ

K

(√
1− κ

1 + κ

)
.

The real quarter-period in x, for fixed t, is
√
κK(κ)/v since ϕ = B = 0.

In particular, with the normalisation α3 = −1 and all other αn = 0, this becomes
the periodic solution to the mKdV equation

ψx + ψttt + 6ψ2ψt = 0,

given by

ψ(x, t) =
κ cd

(√
1 + κ(t− 4x),

√
1−κ
1+κ

)
√
1 + κ− cd

(√
1 + κ(t− 4x),

√
1−κ
1+κ

) . (5.26)

We plot an example of this solution in Fig. 5.5.1.
The degree of generality of our solutions allows one to consider many other particu-

lar cases. For example, some of the polynomial coefficients have real zeros for certain
values of n. Taking k2 = 1

4
causes the influence of fourth-order dispersion on ϕ to

vanish, as well as the effect of the sixth-order dispersion on the modulation frequency
B, and similar for eighth-order dispersion in ϕ when k2 = 1

2
. Considering all these

cases can be useful for practical application of these solutions.
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Figure 5.5.1: Plot of real-valued mKdV equation solution ψ given by (5.26), where k =
1
2 . Here the type-B solution (5.17) reduces to a periodic solution propagating with speed
v = 4.

5.6 Conclusion

We have presented doubly-periodic solutions of type-A and type-B for the class I
infinitely extended nonlinear Schrödinger equation. These solutions are expressed in
terms of Jacobi elliptic functions, and have two variable periods along the two axes of
the system. Being rather general, they include important cases of solutions: among
them, the Akhmediev breather and the soliton solution are the limiting cases when
the modulus of the elliptic functions is one or zero. As another particular case, we
give a periodic solution of the mKdV equation.

As the equation under consideration has an infinite number of free parameters,
this can be useful in modelling various physical problems of nonlinear wave evolution
with a large degree of flexibility in choosing the parameters. The integrability of this
equation allows one to write all solutions in explicit form, adding significantly more
power into the analysis.



6
Two-breather solutions for the class I

infinitely extended nonlinear Schrödinger
equation and their special cases

We derive the two-breather solution of the class I infinitely extended nonlinear Schrödinger
equation. We present a general form of this multi-parameter solution that includes in-
finitely many free parameters of the equation and free parameters of the two-breather
components. Particular cases of this solution include rogue wave triplets, and spe-
cial cases of ’breather-to-soliton’ and ‘rogue wave-to-soliton’ transformations. The
presence of many parameters in the solution allows one to describe wave propagation
problems with higher accuracy than with the use of the basic NLS equation.

95
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6.1 Introduction

In this chapter, we build upon the work introduced in the previous chapter, and con-
sider 2-breather solutions of the class I infinitely extended NLS equation equation.
These are multi-parameter solutions that involve both the free parameters of the
equation, and free parameters of the solution, which together control the features of
the two breather components, such as their localisation, propagation, and their rela-
tive position and frequencies. The presence of an infinite number of free parameters
allows us to consider many particular cases, such as breather-to-soliton conversion,
which is exclusive to higher-order extensions of the basic equation.

We also derive several limiting cases, the most important one of which is the gen-
eral second-order rogue wave solution, a particular case of the 2-breather collision.
However, only a limited number of special cases can be given in the frame of the
present thesis. We leave others for future work in this direction.

As mentioned in the previous chapter, even though the operatorsKn in (5.3) rapidly
become more complicated and the resulting differential equation of order n becomes
much harder to solve, exact solutions can be found explicitly by using already known
solutions to the NLS equation as a guide, and a large class of breather and soliton
solutions are already known [230, 231]. In previous works [230, 231], it has been
seen that the effect of nonzero odd order operators is to transform t as t 7→ t + vx

with v being a function of all coefficients α2n+1. The effect of the nonzero even order
operators is to transform x as x 7→ Bx, with B being a function of the parameters
α2n.

However, it is easily seen that it is not quite so simple in the case of higher-order
solutions involving more parameters, such as 2-breather solutions, because in this case,
the solutions can be thought of as asymptotically separating into several components.

In this chapter we extend the approach from chapter 5 to a general family of second-
order solutions, so we introduce parameters B1 and B2, and v1 and v2, to play an
analogous role for the two distinct breather components. This enables us to generalise
the 2-breather to the infinite extension of the NLS equation, and we now proceed to
the analysis of these solutions.
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6.2 The 2-breather solution

Higher analogues of the Akhmediev breathers can be obtained through iterations of
the Darboux transformation [116, 120]. After transforming the plane wave solution
eix with a Darboux transformation, with an eigenvalue λ such that λ2 6= −1, and
repeating this transformation twice, we get the 2-breather solution to the basic NLS
equation. This can then be generalised to the 2-breather solution of the extended
equation. The general 2-breather solution is of the form

ψ(x, t) =

{
1 +

G(x, t) + iH(x, t)

D(x, t)

}
eiϕx, (6.1)

where

G(x, t) = −(κ 2
1 − κ 2

2 )

{
κ 2
1 δ2
κ2

cosh δ1B1x cosκ2t2 −

− κ 2
2 δ1
κ1

cosh δ2B2x cosκ1t1 −

− (κ 2
1 − κ 2

2 ) cosh δ1B1x cosh δ2B2x

}
, (6.2)

H(x, t) = −2(κ 2
1 − κ 2

2 )

{
δ1δ2
κ2

sinh δ1B1x cosκ2t2 −

− δ1δ2
κ1

sinh δ2B2x cosκ1t1 −

− δ1 sinh δ1B1x cosh δ2B2x+

+ δ2 cosh δ1B1x sinh δ2B2x

}
, (6.3)

D(x, t) = 2(κ 2
1 + κ 2

2 )
δ1δ2
κ1κ2

cosκ1t1 cosκ2t2 + 4δ1δ2 ×

× (sinh δ1B1x sinh δ2B2x+ sin κ1t1 sinκ2t2)−

− (2κ 2
1 − κ 2

1 κ
2
2 + κ 2

2 ) cosh δ1B1x cosh δ2B2x−

− 2(κ 2
1 − κ 2

2 )

{
δ1
κ1

cosh δ2B2x cosκ1t1 −

− δ2
κ2

cosh δ1B1x cosκ2t2

}
, (6.4)
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Here κ1 and κ2 are the modulation parameters,

δm = 1
2
κm
√

4− κ 2
m

is the growth rate of the modulational instability for each breather component, and
the shorthand notation tm indicates tm = t+vmx for m = 1, 2. Note that whenever tm
appears, we have ignored a constant of integration, and we have also done the same
whenever δmBmx appears. The most general solution allows for the replacements
tm 7→ tm − Tm, and δmBmx 7→ δmBm(x−Xm), where Tm and Xm are real constants
which determine relative positions along the axes of t and x, respectively, which we
might include to incorporate a time delay in one breather component, for instance.
For the time being, we set these constants to be both zero without substantial loss,
to address their significance later.

The phase factor ϕ is independent of the modulation, since this part has no physical
effect on the modulation when it is real, and here it takes the same real value as it
does for the plane wave solution, i.e.

ϕ =
∞∑
n=1

(
2n

n

)
α2n. (6.5)

The values Bm determine the modulation frequency of each component, and the
parameters vm, although they cannot be considered velocities in the usual sense,
introduce a tilt to |ψ| relative to the axes of x and t. They are given explicitly by

Bm =
∞∑
n=1

(
2n

n

)
nF (1− n, 1; 3

2
; 1
4
κ 2
m)α2n, (6.6)

vm =
∞∑
n=1

(
2n

n

)
(2n+ 1)F (−n, 1; 3

2
; 1
4
κ 2
m)α2n+1, (6.7)

with m = 1, 2, where F (a, b; c; z) is the Gaussian hypergeometric function. Note that
there is a simple relationship between vm and Bm: the coefficient of α2n in Bm is twice
the coefficient of α2n−1 in vm. The first two terms of Bm for the two-breather solution
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have been previously given in [236]. Our new solution extends these coefficients to
arbitrary orders of dispersion and nonlinearity.

Also notice that the parameters are the same functions of κm, for both m = 1, 2.

This is at least suggested by symmetry. If two successive Darboux transformations
generate a 2-breather solution, then there must be two independent eigenvalues, cor-
responding to two independent modulation parameters. Physically, we could reason
that there should be no way of knowing which breather component is which, so the
order in which each component was generated by Darboux transformation should be
equally irrelevant. If so, it should then follow that B1 is the same function of κ1 as
B2 is of κ2, and similar for v1 and v2, and this would also imply that Bm and vm

are the same functions as for the single-breather solution, which are already known
[231]. It is worth considering whether this property extends to the general n-breather
solution: i.e. whether, in general, we can find B1, . . . , Bn and v1, . . . , vn which are the
same functions of their respective modulation parameters κ1, . . . , κn, but we do not
answer this question here.

The growth rate δm in both components will be real when κm is real, but the
eigenvalues of the Darboux transformation are free to take any complex value at all,
although the transformations are trivial when the eigenvalues are real, and thus so
are the modulation parameters. Real-valued modulation parameters correspond to
Akhmediev breathers, whereas imaginary-valued modulation parameters correspond
to Kuznetsov-Ma solitons, the functional form of the breathers being otherwise equiv-
alent. An example of the 2-breather solution for a fixed ratio of two real modulation
parameters is shown in Fig. (??), and an example which shows the difference between
real and imaginary modulation parameters is given in Fig. (6.2.2). In Fig. (6.2.3)
we give an example of the effects of altering the ratio of the modulation of the two
components.
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Figure 6.2.1: The 2-breather solution (6.1) of Eq.(??). The modulation parameters are at
a ratio κ1 : κ2 = 1 : 2. Parameters of the equation are: α2 = 1

2 , α3 = 1
6 , α4 = 1

24 , α5 = 1
30 ,

α6 = 1
144 , with all higher αn = 0. The wave profile is tilted in the (x, t)-plane due to the

nonzero vm.

6.3 Breather-to-soliton conversion

If we choose parameters αn such that Bm = 0, the 2-breather solution may then
behave in a way which is unique to the extension of the nonlinear Schrödinger equation
[236], in the sense that it is only when higher orders of dispersion and nonlinearity
are accounted for that it is possible to take Bm = 0 without obtaining a trivial or
otherwise degenerate solution.

For example, if we choose α2 such that B2 = 0 for all κ2, then writing B1 = B, it
is easy to show that B must take the value

B =
∞∑
n=1

(
2n+ 2

n+ 1

)
(n+ 1)E

(
−n, 1; 3

2
; 1
4
κ 2
1 |14κ

2
2

)
α2n+2,

where we define the function E as the difference of hypergeometric functions:

E(a, b; c; z1|z2) = F (a, b; c; z1)− F (a, b; c; z2).
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Figure 6.2.2: A collision between an Akhmediev breather and Kuznetsov-Ma soliton, with
κ1 = 1, and κ2 = i. Here αn = 1/n! up to n = 8, with all higher αn = 0.

We can then simplify the general 2-breather solution considerably. We obtain

G(x, t) = (κ 2
1 − κ 2

2 )

{
κ 2
1 δ2
κ2

cosh δ1Bx cosκ2t2−

− κ 2
2 δ1
κ1

cosκ1t1 − (κ 2
1 − κ 2

2 ) cosh δ1Bx

}
,

H(x, t) = 2δ1(κ
2
1 − κ 2

2 ) sinh δ1Bx

(
1− δ2

κ2
cosκ2t2

)
,

D(x, t) = 2(κ 2
1 + κ 2

2 )
δ1δ2
κ1κ2

cosκ1t1 cosκ2t2+

+ 4δ1δ2 sinκ1t1 sinκ2t2−

− (2κ 2
1 − κ 2

1 κ
2
2 + κ 2

2 ) cosh δ1Bx−

− 2(κ 2
1 − κ 2

2 )

(
δ1
κ1

cosκ1t1−

− δ2
κ2

cosh δ1Bx cosκ2t2

)
. (6.8)
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Figure 6.2.3: The 2-breather solution with αn = 1/n! up to n = 8, with all higher αn = 0,
but now with κ1 = 3

2 , and κ2 = 1.

An example of this solution is given in Fig. 6.3.1. The difference of this solution
from the one shown in Fig. 6.2.1 is that the wave profiles at x → ±∞ are not plane
waves. The periodic set of tails from each breather maximum extends to infinity,
reminiscent of periodically repeating solitons. This is the phenomenon that is known
as breather-to-soliton conversion [236]. Clearly, these ‘solitons’ do not have a separate
spectral parameter related to them.

Figure 6.3.1: A wave profile of a ‘breather-to-soliton conversion’. We use the same set
of parameters as in Fig. 6.2.3, except α2 is now chosen such that B2 = 0. This choice
extends to infinity the tails of the breathers that would otherwise decay.
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6.4 The 2-breather solution in the semirational limit

When one of the modulation parameters, say κ2, tends to zero, we obtain the semi-
rational limit, i.e. a solution obtained as a combination of polynomials and circular
or hyperbolic functions. Then, writing κ for κ1, and δ for δ1, the functions G, H, and
D become

G(x, t) = 1
8
κ2{κ2(1 + 4t 22 + 4B 2

2 x
2)− 1} cosh δB1x+

+ κδ cosκt1,

H(x, t) = 2κB2x(δ cosκt1 − κ cosh δB1x) +

+ 1
4
δκ2(1 + 4t 22 + 4B 2

2 x
2) sinh δB1x

D(x, t) =
δ

κ
{4− 1

4
κ2(1 + 4t 22 + 4B 2

2 x
2)} cosκt1 +

+ 4δB2x sinh δB1x+ δt2 sinκt1 −

− {4 + 1
4
κ2(1 + 4t 22 + 4B 2

2 x
2)} cosh δB1x, (6.9)

and the parameters B2 and v2 are reduced to

B2 =
∞∑
n=1

(
2n

n

)
nα2n, (6.10)

and
v2 =

∞∑
n=1

(
2n

n

)
(2n+ 1)α2n+1. (6.11)

This semirational 2-breather solution is a superposition of a Peregrine solution with
the Akhmediev breather, since taking the limit κ2 → 0 reduces the frequency of one
of the breathers to zero, meaning that it is transformed to a Peregrine solution. A
plot of this solution is shown in Fig. 6.4.1. Here, the central feature is roughly the
second order rogue wave while the peaks away from the origin belong to the remaining
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first-order breather.

Figure 6.4.1: The 2-breather solution in the semirational limit. Here the nonzero modu-
lation parameter is κ = 1, with αn the same as in Fig. (6.2.1). It can be considered as a
superposition of the Akhmediev breather with the Peregrine solution.

6.5 The degenerate two-breather limit

If both eigenvalues of the Darboux transformation are taken to be equal, so that both
modulation parameters κm are also equal, we obtain the case of degenerate breathers.
Direct calculations provide no solution. In this case, one modulation parameter should
instead be taken as a small perturbation from the other, say |κ1 − κ2| = ε. Then, we
take the limit as the perturbation ε becomes arbitrarily small, so that the solution
remains well-defined at all times. Namely, if we put κ1 = κ, and κ2 = κ+ ε, we have

B2 =
∞∑
n=1

(
2n

n

)
nF (1− n, 1; 3

2
; 1
4
(κ+ ε)2)α2n,

and
v2 =

∞∑
n=1

(
2n

n

)
(2n+ 1)F (−n, 1; 3

2
; 1
4
(κ+ ε)2)α2n+1.
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Next, recalling the identity

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z),

take the Maclaurin series of the G(x, t), H(x, t), and D(x, t) with respect to ε. In
the limit as ε→ 0, the ratio of these series will be a well-defined solution with equal
eigenvalues; it is thus sufficient to consider only the lowest-order non-vanishing terms
in the series expansion for D(x, t) in ε, which in this case happen to be the coefficients
of ε2. By this method we obtain the degenerate 2-breather solution in the form (6.1)
with

G(x, t) = 2κ2
[
1 + cosh 2δBx+

{(
κB − 2δ2

κ
B −

− δ2B′
)
x sinh δBx−

− κ

δ

(
1− δ2

κ2

)
cosh δBx

}
cosκ(t+ vx)−

− {t+ (v + κv′)x}δ cosh δBx sinκ(t+ vx)

]
,

H(x, t) = 2κ

[{(
2δ2

κ2
− 1

)
κB + 2δ2B′

}
x+

+ 1
2
δ

{
1
2

(
2δ2

κ2
− 1

)
Bx− δ2

κ
B′
}
x cosh δBx×

× cosκ(t+ vx) +
κ

δ

(
2δ2

κ2
− 1

)
sinh 2δBx−

− δ2 sinh δBx{cosκ(t+ vx) +

+ κ sinκ(t+ vx)}{t+ (v + κv′)x}
]
,
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D(x, t) =
κ2

32δ2

[
− 8κ2

(
1 +

δ2

κ2

)
− 64δ4

κ2
(t+ vx)2 −

− 64δ2
(
1− 2δ2

κ2

)2

B2x2 − 32 cosh 2δBx−

− 128δ2

κ

{(
2− 4δ2

κ2

)
B − δ2

κ
B′
}
x sinh δBx×

× cosκ(t+ vx)− 32δ

{
κ cosκ(t+ vx) +

+
4δ2

κ2
{t+ (v + κv′)x} sinκ(t+ vx)

}
cosh δBx+

+
32δ2

κ2

{
cos 2κ(t+ vx) +

(
4

(
1− 2δ2

κ2

)
κBB′x−

− 2δ2B′2
)
κ2x− 2v′{2t+ (v + κv′)x}

)}]
, (6.12)

where B = B1, and we use B′ and v′ to denote the partial derivatives of B2 and v2

with respect to ε evaluated at the point ε = 0, i.e. when κ2 → κ. That is,

B′ = 1
3
κ

∞∑
n=1

(
2n

n

)
n(1− n)F (2− n, 2; 5

2
; 1
4
κ2)α2n,

and
v′ = −1

3
κ

∞∑
n=1

(
2n

n

)
(2n+ 1)nF (1− n, 2; 5

2
; 1
4
κ2)α2n+1,

etc. We drop the subscripts due to the fact that as ε→ 0 both modulation parameters
take equal values anyway. A plot of this solution is given in Fig.6.5.1.

The degenerate breather solution is a one-parameter family of solutions which rep-
resents the collision of two breathers with the same modulation parameter κ, or,
equivalently, with equal frequencies. It can be considered a generalisation of the
known 2-soliton solution for the class I extension of the nonlinear Schrödinger equa-
tion [232].
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Figure 6.5.1: The degenerate 2-breather solution. We take the set of αn the same as in
Fig. 6.2.1, and the modulation parameters κ1 = κ2 =

1
2 . The two breathers collide with the

high peak at the origin due to the synchronised phases.

6.6 Second-order rogue wave solution

When the frequency of the degenerate breather tends to zero, the spacing between the
successive peaks in Fig. 6.5.1 becomes infinitely large, pushing them out to infinity.
What remains at the origin is the second-order rogue wave. In order to derive this
solution, we take the limit κ → 0 in the expressions (6.12). However, calculations
show that this limit cannot be found directly. In order to find it, we repeatedly apply
l’Hôpital’s rule to the degenerate breather solution as κ → 0. The derivatives of G,
H, and D with respect to κ at the point κ = 0 vanish up to O(ε6). The resulting
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functions G, H, and D become polynomials:

G(x, t) = 12{−3 + 24(3B2 − BB′′ − vv′′)x2+

+ 80B4x4 − 192v′′xt+ 96B2x2(t+ vx)2+

+ 24(t+ vx)2 + 16(t+ vx)4}, (6.13)
H(x, t) = 576B′′x+ 2304B′′x(t+ vx)2 − 24Bx{15−

− 8(B + 16B′′)Bx2 − 16B4x4+

+ 192v′′x(t+ vx)− 32B2x2(t+ vx)2+

+ 24(t+ vx)2 − 16(t+ vx)4}, (6.14)
D(x, t) = −9− 36{11B2 − 48BB′′ + 64B′′2−

− 16(v − v′′)v′′}x2 − 48{9B4 − 6B2v2+

+ 16(3v2 − B2)BB′′ + 16(v2 − 3B2)vv′′}x4−

− 64(B4 + 3B2v2 + 3v4)B2x6 + 576v′′xt−

− 768v′′xt3 + 288(B2 − 8BB′′ − 8vv′′)x2t2−

− 192B2x2t4 + 576{(B − 8B′′)Bv+

+ 4(B2 − v2)v′′}x3t− 768B2vx3t3−

− 192(B2 + 6v2)B2x4t2 − 384(B2+

+ 2v2)B2vx5t− 108(t+ vx)2−

− 48(t+ vx)4 − 64(t+ vx)6, (6.15)

where, in the same limit as κ→ 0,

B =
∞∑
n=1

(
2n

n

)
nα2n,

v =
∞∑
n=1

(
2n

n

)
(2n+ 1)α2n+1.
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The first-order derivatives B′ and v′ vanish as κ→ 0, but the second-order derivatives
still remain, and in the limit as κ→ 0 are

B′′ = −1

3

∞∑
n=1

(
2n

n

)
n(n− 1)α2n,

v′′ = −1

3

∞∑
n=1

(
2n

n

)
(2n+ 1)nα2n+1.

This solution is shown in Fig. 6.6.1. It is, naturally, the second-order rogue wave,
but slanted and rescaled in the (x, t)-plane relative to the second-order rogue wave of
the NLS equation [31, 37].

Figure 6.6.1: The second-order rogue wave, Eqs.(6.13),(6.14),(6.15) obtained from the
degenerate 2-breather solution shown in Fig. 6.5.1 in the limit κ → 0, with some stretch-
ing due to higher-order effects.

6.7 Rogue wave triplets

It is well known that the general n-th order rogue wave has the remarkable property
of being able to split into 1

2
n(n + 1) first-order components [195]. The second-order

rogue wave discussed above is only a particular case of a more general rogue wave
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structure, where all three first-order components are located at the origin, and have
merged into one single peak. In order to obtain the more general solution where the
three components are not merged together, known as the rogue wave triplet [119], we
re-introduce the constants of integration into the general 2-breather solution, i.e.

δmBmx 7→ δm(Bmx− εXm),

t+ vmx 7→ t− Tmε+ vmx,

where Xm and Tm are arbitrary, and the parameter ε is introduced to make sure
that the Taylor series in the degenerate limit still vanishes up to O(ε2). The values
of Xm and Tm determine the location of the components of the breather components.
They add additional free parameters to the solution which we have previously given
for the restricted case in which Xm = Tm = 0. Notice also that we do not make the
replacement x 7→ x − Xmε directly, but, for simplicity’s sake, instead define Xm to
account for the higher-order terms in Bm.

In order to further simplify parametrisation, we assume that Xm and Tm are func-
tions of the modulation parameter κ, and are of the order O(κ). Then, defining free
parameters ξ and η independent of κ, such that

κξ = 48(X1 −X2),

κη = 48(T1 − T2),

we have in the limit as κ→ 0 the rogue wave triplet solution in the form

ψ(x, t) =

{
1 +

Ĝ(x, t) + iĤ(x, t)

D̂(x, t)

}
eiϕx, (6.16)
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with

Ĝ(x, t) = G(x, t)− 48ξBx− 48η(t+ vx), (6.17)
Ĥ(x, t) = H(x, t) + 12ξ − 48ξB2x2 −

− 96ηBx(t+ vx) + 48ξ(t+ vx)2, (6.18)
D̂(x, t) = D(x, t)− (ξ2 + η2) + 12{ξ(3B − 4B′′)−

− 4ηv′′}x+ 16ξB3x3 + 12η(1 + 4B2x2)×

× (t+ vx)− 48ξBx(t+ vx)2

− 16η(t+ vx)3, (6.19)

where Ĝ, Ĥ and D̂ now contain two new free parameters, ξ and η, which determine
the separation of the fundamental rogue wave components in the triplet [119], and
where G, H, and D are as given in Eqs. (6.13)-(6.15), for the particular case in which
ξ = η = 0. An example of the formation of rogue wave triplets, corresponding to
nonzero ξ and η, is shown in Fig. 6.7.1. When both ξ = 0 and η = 0, all three
components merge at the origin, as in Fig. 6.6.1.

Generally, the coefficient B in Eq. (6.16) determines the degree of localisation along
the x-axis. Larger values of B will correspond to narrower peaks, whereas smaller
values of B will correspond to broader peaks, and B = 0 to minimal localisation. A
point of interest here is that it is again possible to choose a parametrisation for which
B is any fixed constant. If we choose, for instance,

α2 = c− 1

2

∞∑
n=1

(
2n+ 2

n+ 1

)
(n+ 1)α2n+2,

we end up with B = c, where c is a free parameter. However, B′′ is entirely inde-
pendent of the choice of c, since the coefficient of α2 in B′′ is zero. As the simplest
example, we consider the completely de-localised case, B = 0, with B′′ remaining
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Figure 6.7.1: The second-order rogue wave triplet (6.16), with separation parameters ξ =
−η = 480, and the extended equation parameters given by α2 = 1

2 , α3 = 1
27 , α4 = 1

50 ,
α5 = 1

81 , α6 = 1
200 , α7 = 1

343 . For this choice of parameters, we have B = 77
50 , v = 1324

1323 ,
B′′ = − 7

25 , and v′′ = −2894
3969 .

arbitrary. The rogue wave solution then reduces to (6.16) with

Ĝ(x, t) = G0(x, t)− 48η(t+ vx),

Ĥ(x, t) = H0(x, t) + 12ξ + 48ξ(t+ vx)2,

D̂(x, t) = D0(x, t)− (ξ2 + η2)− 48(ξB′′ + ηv′′)x+

+ 12η(t+ vx)− 16η(t+ vx)3.
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where

G0(x, t) = 12{−3− 192v′′x(t+ vx) + 24(t+ vx)2+

+ 16(t+ vx)4},

H0(x, t) = 576B′′x{1 + 4(t+ vx)2},

D0(x, t) = −9− 576{4B′′2 + v′′2}x2 + 576v′′x(t+ vx)−

− 768v′′x(t+ vx)3 − 108(t+ vx)2−

− 48(t+ vx)4 − 64(t+ vx)6.

Here, G0, H0, and D0 are as given for the case where the components are merged and
B = 0, and Ĝ, Ĥ, D̂ incorporate the shifting of the first-order components through ξ
and η.

When B = 0, the second-order rogue wave acquires soliton-like tails similar to
those in Fig. 6.3.1. When, additionally, ξ = η = 0, rogue waves merge at the origin

Figure 6.7.2: The second-order rogue wave solution with ‘soliton’-like tails when α2 cho-
sen such that B = 0, and ξ = η = 0. Other parameters are the same as in Fig. 6.7.1.

to form a second-order rogue wave with extended tails. This case is shown in Fig.
6.7.2. When ξ or η is not zero, the components split, resulting in the disappearance



114 6.7. ROGUE WAVE TRIPLETS

of the central peak. This case is shown in Fig. 6.7.3. Here, the central peak is absent
but the long tails remain, consisting of delocalised first-order components.

Figure 6.7.3: The second-order rogue wave solution with ‘soliton’-like tails when B = 0,
but now ξ = η = 48.

Conclusions

We have derived the general 2-breather solution for the class I infinitely extended
nonlinear Schrödinger equation, and given many limiting cases; namely, breather-to-
soliton conversions, the semirational limit, the degenerate 2-breather, and, probably
most importantly, the general second-order rogue wave solution. These solutions
completely describe a large family of second-order solutions to the class I extension
of the NLS equation, and exhibit rich behaviour.

These results provide a more detailed analysis of the formation of nonlinear wave
structures such as breathers and rogue waves when higher-order effects come into
play, and leaves a large range of future related work wide open.



7
Final Remarks

This thesis has been on the study of nonlinear waves; both the analysis of solutions to
nonlinear partial differential equations and the physics they describe, and a deriva-
tion of new physical models for describing nonlinear behaviour in hydrodynamics in
particular.

We presented a derivation of the Korteweg-de Vries equation as a description of
the complex velocity of a unidirectional, weakly nonlinear wave in a shallow, ideal
fluid, and showed that it also reduces to the real KdV equation when considering only
the surface elevation. We showed that there is a physically consistent interpretation
of the conserved quantities in complex KdV theory, and we also showed that in the
quasi-monochromatic approximation, Fourier modes of complex KdV solutions are
described by the split NLS system.

We also showed that a more general kind of rational solution to the KdV equation
exists than was previously known. These solutions were found by a process nearly the
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same as linear superposition, except that only one specific combination was found to
generate new solutions. Recently, it has been suggested that other nonlinear PDEs
may have similar symmetries which would lead to solutions being generated by the
same process [237].

Finally, we obtained solutions for the class I infinite extension of the NLS equation.
We obtained both the general one-parameter family of first-order solutions, and a large
class of solutions of the second order. These solutions describe the effects of higher
order nonlinearity and dispersion.

Because the derivation of the complex KdV equation as a new way of looking at
the dynamics of a weakly nonlinear shallow water wave is quite closely connected to
fundamentals, this work is open-ended in a sense, and provides a lot of fertile ground
for further growth. One of the strongest advantages of putting the complex KdV
equation first is the fact that it allows us to speak in terms of complex potentials.
This offers far greater possibilities than discussing the elevation alone. Not only
does the potential immediately provide complete information on the motion of the
entire body of fluid, but it offers a flexibility that is entirely absent when focusing
on the elevation. When we think of the KdV regime in terms of its complex variable
description first, then it becomes clear that the typical KdV equation can be related
to a much broader variety of fluid flows via conformal transformations. In particular,
in chapter 2 we considered only those flows for which the complex potential is real
precisely on the real axis. This restriction is completely artificial, and was made
only to make the simplification of Levi-Cività’s equation as easy as possible. In
principle, though, the stream function can take constant values on any boundary
we like. By applying a conformal transformation, the streamlines can be mapped
onto other conformally equivalent but generally nontrivial geometries. These would
then give weakly nonlinear flows over geometries other than a channel with a flat,
horizontal bottom, such as channels with an obstacle introduced into them. Problems
such as these can often be nearly intractable with real methods alone.

At the very beginning of this thesis, the field of nonlinear physics was described
as something of a revolutionary development akin to that of quantum mechanics and
relativity of the past century. It seems fitting to end by returning to this original
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statement.
Major leaps forward in physics have, historically, also gone together with a new

way of describing, and talking about, the new physics. This began with Newton
and Leibniz and the development of calculus to describe the problems of classical
mechanics in a mathematically precise way. Quantum mechanics is often put in the
language of functional analysis, and general relativity is most effectively discussed in
the language of differential geometry. In the field of integrable nonlinear systems, it
seems that we are persistently led towards the field of algebraic geometry.

This connection is in fact immediately suggested by the form of the KdV equation.
Ignoring the time derivative, the nonlinear and dispersive terms form the differential
equation of an elliptic curve, in this case parameterised by the Weierstrass ℘-function.
This makes Hirota’s method, often associated with the substitution (4.4) (often with
u0 = 0) quite suggestive, because this substitution takes us from speaking about
elliptic functions to speaking directly about a theta function. Similar is true of the
sine-Gordon equation; in fact, the pendulum equation is one of the simplest nonlinear
systems conceivable, and leads very directly to the theory of elliptic functions. The
Kadomtsev-Petviashvili (KP) equation also emerges naturally in the field of algebraic
geometry in the resolution of Novikov’s conjecture [238–240]. The fact that a very
physical system emerges from an apparently unrelated and very abstract area of
mathematics is surprising, and perhaps ought to suggest to us that there may be a
more natural language for nonlinear systems.

None of this is to advocate for unnecessary abstraction in physics, but rather, in
the spirit of Freeman Dyson’s famous lecture Missed Opportunities [241], to say that
greater cooperation between pure mathematics and physics is likely to bring about
an easier way of looking at nonlinear systems, and make what were once fearsome
problems simple, and clear.
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