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Abstract

The Internet of Things (IoT) paradigm is paving the way for many new emerg-
ing technologies, such as smart grid, industry 4.0, connected cars, smart cities, etc.
Mobile Edge Computing (MEC) provides promising solutions to reduce service de-
lays for delay-sensitive IoT applications, where cloudlets (edge servers) are deployed
in the proximity of IoT devices. With the advent of Network Function Virtualiza-
tion (NFV) technology, more and more mobile users use virtual network services
in MEC networks. Such services usually have specified service requirements such
as Service Function Chains (SFCs), where an SFC is a sequence of Virtual Network
Functions (VNFs) to form a full-scale network service. Meanwhile, the surging of
deep learning brings new vigour and vitality to shape the prospect of IoT, and edge
intelligence arises to provision real-time Deep Neural Network (DNN) inference ser-
vices for users. To accelerate the DNN inference of a request in an MEC network,
the DNN inference model can be partitioned into two parts: one is processed on the
local IoT device of the request; and the other is processed on a cloudlet in the MEC
network. Also, the DNN inference can be further accelerated by allocating multiple
threads in a cloudlet in which the request is assigned. Furthermore, the resource
demands during the implementation of a request are dynamically evolving. This
uncertainty of resource demands at different execution stages of the request does
impact the service quality and the profit of network service providers.

In this thesis, we will focus on virtual service provisioning for IoT applications in
MEC environments. Considering the unique characteristics of MEC and IoT, it poses
several important challenges. That is, (1) how to maximize the accumulative user
satisfaction on the use of the IoT services provided by the MEC, (2) how to minimize
the operational cost of service provisioning for multi-source IoT applications while
meeting their SFC requirements, (3) how to maximize the number of delay-aware
DNN service requests admitted, by accelerating each DNN inference through jointly
exploring DNN partitioning and inference parallelism, and (4) how to maximize the
expected profit collected by the network service provider of an MEC network, under
the uncertainty assumption of both computing resource and data rate demands. To
this end, in this thesis we will address the challenges. We achieve the following
contributions.

Firstly, we consider the user satisfaction problem of using services jointly pro-
vided by an MEC network and a remote cloud for delay-sensitive IoT applications,
through maximizing the accumulative user satisfaction when different user services
have different service delay requirements. A novel metric to measure user satisfaction
of using a service is proposed, and efficient approximation and online algorithms for
the defined problems under both static and dynamic user service demands are then
devised and analyzed.
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Secondly, we study service provisioning in an MEC network for multi-source IoT
applications with SFC requirements with the aim of minimizing service provisioning
cost, where each multi-source IoT application has multiple data streams from differ-
ent sources to be uploaded to the MEC network for processing and storage, while
each data stream must pass through the network functions of the SFC of the IoT
application, prior to reaching its destination. A service provisioning framework for
such multi-source IoT applications is proposed, through uploading stream data from
multiple IoT sources, VNF instance placement and sharing, in-network aggregation
of data streams, and workload balancing among cloudlets. Efficient algorithms for
service provisioning of multi-source IoT applications in MEC networks, built upon
the proposed framework, are also proposed.

Thirdly, we investigate a novel DNN inference throughput maximization prob-
lem in an MEC network with the aim to maximize the number of delay-aware DNN
service requests admitted, by accelerating each DNN inference through jointly ex-
ploring DNN partitioning and inference parallelism. We devise a constant approxi-
mation algorithm for the problem under the offline setting, and an online algorithm
with a provable competitive ratio for the problem under the online setting, respec-
tively.

Fourthly, we address a robust SFC placement problem with the aim to maximize
the expected profit collected by the service provider of an MEC network, under the
assumption of both computing resource and data rate demand uncertainties. We
start with a special case of the problem where the measurement of the expected
demanded resources for each request admission is accurate, under which we propose
a near-optimal approximation algorithm for the problem by adopting the Markov
approximation technique, which can achieve a provable optimality gap. Then, we
extend the proposed approach to the problem of concern, for which we show that
the proposed algorithm still is applicable, and the solution delivered has a moderate
optimality gap with bounded perturbation errors on the profit measurement.

Finally, we summarize the thesis work and explore several potential research
topics that are based on the studies in this thesis.
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Chapter 1

Introduction

In this chapter, we first introduce Mobile Edge Computing (MEC), Internet of
Things (IoT), Network Functions Virtualization (NFV), and edge intelligence. We
then introduce the system architecture considered in this thesis. We also survey
the related research topics on virtual service provisioning for IoT applications in
MEC environments, through identifying the key problems and the related challenges
in each research topic. We finally state the contributions made in this thesis, and
provide the organization of the thesis.

1.1 Mobile Edge Computing

Cloud computing, introduced around 2007, has imbued industry and academia
with flexible and high-quality computing platform services, including Hardware as a
Service (HaaS), Software as a Service (SaaS), Data as a Service (DaaS), and Infrastruc-
ture as a Service (IaaS) [99]. Cloud computing provisions network services to users
and empowers end devices with limited resources, through centralizing abundant
computing resources and storage resources in the clouds [71]. Cloud computing has
pushed the rapid development of many global IT giants. For example, Amazon’s
business for cloud services has shown tremendous profits, which has made Amazon
a leader in the cloud computing business [101].

Nowadays, mobile applications have become an indispensable part of the current
generation of people, driven by the technological advancement of mobile devices.
The increasing popularity of memory-hungry and computation-intensive mobile ter-
minals has imposed an uttermost effect on cellular and wireless networks, promoting
the development and advancement of Mobile Cloud Computing (MCC) technology
in mobile environments [48]. In other words, MCC extends cloud computing and fo-
cuses on network service provisioning in mobile environments by running the mobile
applications on the clouds. The MCC technique has several merits, such as enabling
compute-intensive and storage-intensive applications on mobile devices, and pro-
longing the battery lifetime of mobile devices through task offloading to the clouds.
Nevertheless, traditional cloud infrastructures usually suffer from some difficulties
to guarantee high Quality of Services (QoS) in mobile environments, in terms of
long latency, vulnerable security, and high bandwidth demands. The major concern
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of the service provisioning in MCC lies in the long propagation delay due to the long
distance between the users and the remote clouds, which significantly degrades the
service quality and triggers challenges for service provisioning in mobile networks.
Therefore, the MCC technique is not suitable for pervasive latency-critical mobile
applications, especially those required to initiate intermediate response actions. It
is widely agreed that the cloud computing platform is inadequate to optimize the
service latency in millisecond-scale for the next-generation networks [2].

To handle the hailed challenges by MCC, Mobile Edge Computing (MEC), borne
out of the European Telecommunications Standards Institute (ETSI), is the state-of-
the-art paradigm shift after the MCC systems to place edge servers (cloudlets) with
moderate capacities at the close locations of mobile users (the edge of the core net-
work) to deliver user-centered network services [41]. The MEC paradigm provides a
viable and promising solution to significantly alleviate the latency and jitter experi-
enced by the end-users within their proximate access for both network services and
data access [62]. In the context of MEC, the cloudlets have been employed at the net-
work edges to provision seamless cloud services to mobile users without the hassle of
traversing the core network [59]. Meanwhile, the core network facilitates the resource
sharing among the distributed cloudlets to improve the system performance.

The emerging MEC platform is constructed based on recent techniques, such as
Information-Centric Networking (ICN), Software-Defined Networking (SDN), and
Network Function Virtualization (NFV). In particular, the MEC is characterized by
the white paper from ETSI as follows [78].

• On-Premises: The distributed edge servers process the data locally, and send
the important information to the remote cloud (or another edge server) for
further processing and storage if necessary. In other words, the on-premises
MEC platforms can not only run in an isolated manner and retain the data
privacy, but also have access to the rest network resources.

• Proximity: The edge servers cover the network users in the local vicinity and
enable highly-responsive cloud services, improving user experience and col-
lecting information for big data analytics.

• Lower Latency: The MEC platforms are established at the proximate locations
of the mobile devices to diminish the service latency and alleviate the network
congestion.

• Location Awareness: The MEC platforms are able to generate location infor-
mation of mobile devices through leveraging low-level signalling. The location
awareness of MEC enhances network management and facilitates handling the
mobility of mobile devices in mobile environments.

• Network Context Information: Besides location awareness, MEC also has the
context awareness to make edge servers to gather network context informa-
tion from mobile devices, which will be utilized to make efficient offloading
decisions and enable context-related service provisioning.
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1.2 Internet of Things

The Internet of Things (IoT) paradigm permeates our modern lives in every
aspect, and defines a system of billions of interrelated pervasive objects to collect
and exchange data, bridging the gap between the physical and cyber worlds. The
number of connected devices is foreseen to increase from 700 million to 3.2 billion
by 2023 [19]. The IoT architecture is endowed with the power to create a system
for interrelated computing and communication among an immense number of real-
world objectives (things). At the same time, massive raw data are produced by the
IoT devices and analyzed to extract high-level knowledge through adopting data
mining approaches.

The geographically distributed IoT devices sense real-time information to ob-
serve the physical world, and generate the data streams in large volume and high
velocity [16; 93]. Therefore, the data collected from IoT devices need to be analyzed
in real time such that the hidden patterns and insights can be extracted in almost no
time. Along with the proliferation of the delay-critical and resource-hungry IoT ap-
plications, such as online gaming, facial recognition, Virtual Reality (VR), Augmented
Reality (AR), and unmanned vehicles, the IoT devices have the natural resource lim-
itation and encounter noticeable challenges to meet the increasing computation de-
mands and the stringent delay requirements for such real-time IoT applications [85].
Conventional IoT devices usually transmit their data to remote clouds for storage
and processing [60]. Nevertheless, due to the remoteness of clouds and increasingly
congested core networks, it incurs prohibitive long transmission delays and leads to
the violation of the real-time data processing requirements of many IoT applications.
Also, it consumes much bandwidth resource and energy cost to transmit a large vol-
ume of data to the remote cloud [93]. Thus, conventional clouds may not be suitable
for delay-sensitive IoT applications [88].

The Mobile Edge Computing (MEC) concept emerges to pull the cloud services
from the remote clouds to the network edges to mitigate the experienced network
delay. Thus, the IoT devices can make use of the computing resource at the network
edges, while the edge servers, rather than the remote clouds, locally collect and
analyze the raw data generated by the IoT devices. The MEC paradigm empowers
the IoT architecture to improve the efficiency of IoT data processing and remarkably
alleviate the workload on the core network.

1.3 Network Function Virtualization

With the advance of mobile communication technology and mobile device fab-
rications, more and more mobile devices, including mobile phones, tablets, and vari-
ous sensors, are deployed for business, entertainment, social networking, smart cities,
and the Internet of Things (IoT) [50; 51]. Nowadays, mobile users have an increasing
demand for diverse and agile network services with high quality [113]. Traditional
network service providers provide services to their users with Network Functions
(NFs) that are implemented on dedicated middleboxes, such as Network Address
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Translator (NAT), firewalls, Intrusion Detection System (IDS) [43]. However, the de-
ployment of various middleboxes for different NFs usually incurs high instantiation
expenses, complex management, and weak extensibility [123]. This is because the
dedicated middleboxes require manual configuration and management, and the net-
work service providers have to make utilization of a large variety of dedicated mid-
dleboxes to offer a series of network services to users. Therefore, the traditional NFs
based on dedicated middleboxes face the challenges of fulfilling the ever-growing
QoS demands of users, especially in terms of the CAPital EXpenditures (CAPEX)
and OPerational EXpenditures (OPEX) [112].

Network Function Virtualization (NFV) is introduced as a promising technology
to implement Virtualized Network Functions (VNFs) as software running on Virtual
Machines (VMs), through replacing the dedicated hardware applications [82]. De-
coupling the NFs from the hardware, the NFV technology enables network service
providers to dynamically scale up or scale down their service provisioning to cope
with the dynamic user demands [61]. Especially, the benefits of the NFV technique
are as follows [6].

• Independence: With the NFV technique, the software is decoupled from the
hardware, therefore, the software and hardware evolve independently from
each other.

• Flexibility: The network service provider adopts the NFV technique to adapt to
the dynamic user demands with various deployment options through software
updating, and avoids unnecessary hardware updating, thereby facilitating the
flexible network service provisioning.

• Scalability: The NFV technique improves the service quality by flexibly scaling
the VNFs with finer granularity to cater to variations of user requests and meet
the changing user demands. This is because a single server is able to run several
VMs, the capacities of which are easily scaled up and down to improve service
efficiency based on the resources.

• Security: Security has been a challenge of concern in network service pro-
visioning. A network service provider manages and maintains the network,
while granting the users to run the requested services in a virtual space beside
a firewall within the network.

The NFV framework was standardized by ETSI in [28], and an example of a
high-level NFV framework is illustrated in Figure 1.1. Then the main architectural
components of the NFV framework are identified as follows.

• NFV Infrastructure (NFVI): This component consists of the virtual resources,
virtualization layer, and hardware resources to build a base environment for
the execution of the virtual network services.
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Virtualized Network Functions (VNF)
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Figure 1.1: An illustrative example of a high-level NFV framework [28].

• Virtualized Network Functions (VNFs): The VNFs are the software imple-
mentations of NFs running on the VMs, providing the same functionality and
external operation interfaces of physical NFs.

• NFV Management and Orchestration: This component consists of NFV Or-
chestrator (NFVO), VNF Manager (VNFM) and Virtualized Infrastructure Man-
ager (VIM). Especially, NFVO is responsible for the lifecycle management of
network services, VNFM manages the lifecycle of VNFs, and VIM coordinates
the resource allocation for NFVI and manages the interaction between NFVI
and VNFs.

In the context of NFV, a full-scale network service is implemented by a sequence
of VNFs running on generic servers, known as a Service Function Chain (SFC) [112].
For each mobile user request, a specific SFC is requested to be coordinated and
embedded into some physical nodes (cloudlets) in an MEC network. The SFC directs
the data traffic flow of the request to pass through the listed VNFs in their specified
order through automatic interconnection and resource allocation [29]. Figure 1.2
illustrates an example of an SFC consisting of the VNFs: NAT, firewall and IDS.
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Source DestinationNAT firewall IDS

Figure 1.2: An illustrative example of an SFC consisting of NAT, firewall, and IDS,
and the data traffic flow traverses the VNFs of the SFC in order.

1.4 Edge Intelligence

Thanks to the rapid development of Artificial Intelligence (AI), nowadays, AI
technique has the advantage in capturing insights to make strategic decisions and
collect business benefits in various fields, exemplified by computer vision, natural
language processing, board games, and robotics [122]. It is widely recognized that
the AI-enabled applications will promote the building of smart homes and smart
cities to unleash the collective intelligence of the society, thereby preserving citizens’
overall quality of life.

The progress of deep learning in the last decade has unlocked the potential to
learn deep features of data through leveraging Deep Neural Networks (DNNs) [23].
Meanwhile, it injects new vitality into the computation-intensive deep learning appli-
cations by deploying a series of hardware accelerators, such as graphics processing
units (GPUs) and tensor processing units (TPUs), due to the high computing de-
mands of DNN training and inference [102]. Benefiting from the breakthroughs of
deep learning and the related hardware improvement, the AI technique is becom-
ing an appealing solution to make swift and agile data analysis locally for a large
amount of data generated by the IoT devices, rather than sending the data to the
remote cloud for analysis. This promotes the marriage of AI and MEC techniques to
give rise to edge intelligence. Namely, the MEC technique is moving towards a new
paradigm of edge intelligence, through applying AI techniques to process the data
generated by IoT devices and applications in many fields, such as facial recognition,
traffic monitoring, and speech recognition [122].

Edge intelligence, an emerging paradigm in its early stage currently, interweaves
a wide spectrum of technologies and concepts to integrate AI and MEC to achieve
intelligent IoT service provisioning, including intelligent task offloading to edge
servers, intelligent edge server collaboration, and intelligent data analysis [65]. As
suggested by the work from [23], we distinguished edge intelligence into two cate-
gories: AI for edge and AI on edge.

• AI for edge: This studies how to efficiently adopt the AI technologies to solve
the constrained optimization problems in MEC environments, thereby granting
edge with intelligence.

• AI on edge: The AI modules and applications are usually compute-intensive,
while the edge is endowed with limited computing resource. We then need to
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design an efficient framework for both model training and inference on edge to
fulfil the QoS requirements.

1.5 System Architecture

In this thesis, we consider an MEC network, which consists of a set of Access
Points (APs) located on a geographical area (e.g., a metropolitan area). The APs are
situated at different locations, such as shopping malls, parks, libraries and restau-
rants. Co-located with some of the APs, there is a set of cloudlets, each of which
possesses limited resource capacities for task offloading and service implementation.
Each cloudlet and its co-located AP are connected by a high-speed optical cable, and
the delay between them is assumed to be negligible. A mobile user then can offload
its task to a cloudlet through connecting to an AP within its transmission coverage.
Figure 1.3 illustrates an MEC network that consists of six APs and three cloudlets
co-located with APs.

Cloudlet

Access 
Point
 (AP)

Figure 1.3: An illustrative example of an MEC network consisting of six APs and
three cloudlets co-located with APs.
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1.6 Research Topics

Fueled by the surging demands of mobile users, Mobile Edge Computing (MEC)
is emerging as a promising technology to bring mobile users to the edge of networks
to immensely cut down the propagation delays in the evolution to 5G and beyond 5G
networks. The rapid development of the Internet of Things (IoT) has promoted the
proliferation of numerous mobile applications, including Augmented Reality (AR),
Virtual Reality (AR), mobile games, and surveillance, which rely on edge devices
(EDs) such as laptops, tablets, and smartphones [51]. This thesis focuses on the
following four main research topics:

(1) How to maximize the total user experience of using the services provided by
the MEC network, where a user satisfaction is inversely proportional to the extra
service delay beyond the user’s delay threshold;

(2) How to minimize the total operational cost of implementing multi-source IoT ap-
plications in an MEC network, where each multi-source IoT application has mul-
tiple data streams from different sources to be uploaded to a location (a cloudlet)
in the MEC network for aggregation, processing and storage;

(3) How to maximize the number of Deep Neural Network (DNN) inference requests
admitted while meeting their inference delay requirements, through jointly ex-
ploring DNN model partitioning and inference parallelism;

(4) How to maximize the expected profit collected by the network service provider of
an MEC network through robust Service Function Chain (SFC) placement, under
the uncertainty assumption of both computing resource and data rate demands
in the implementation of user requests;

These topics are interrelated with each other. Topic (1) designs a novel model
to quantify a user satisfaction of using a service provided, and proposes efficient
algorithms to provide high efficiency and seamless user experience. Because the op-
erational cost to provide such high-quality network services is a matter of concern, in
the sequel, Topic (2) strives to optimize the network performance by minimizing the
total operational cost of the service provisioning for multi-source IoT applications in
a general case. With edge intelligence arising to provision real-time DNN inference
services for users, Topic (3) studies the joint adoption of DNN model partitioning
and inference parallelism in maximizing the number of DNN inference requests ad-
mitted, while meeting the delay requirement of each request. So far, Topics (1), (2)
and (3) assume that the amounts of different resources demanded by each request
are given and do not change during the execution of the request. Topic (4) considers
the uncertainty assumption of both computing resource and data rates demanded
by request executions, and devises an efficient algorithm to maximize the expected
profit collected by the network service provider of an MEC network.
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1.6.1 Maximizing User Service Satisfaction for Delay-Sensitive IoT Appli-
cations

With the emergence of complicated and resource-hungry mobile applications in
the Internet of Things (IoT) and smart cities, implementing user tasks on cloudlets of
an MEC network becomes an important approach to shorten service response delays,
reduce the energy consumption of mobile devices, and improve the user experience
of using services ultimately. One fundamental problem of a network service provider
is how to maximize the user service satisfaction. We consider an integrated platform
consisting of the remote cloud and a set of local cloudlets forming an MEC network
for IoT service provisioning. The IoT users offload their tasks to the integrated MEC
platform for processing with different service delay requirements. In this thesis,
we aim to develop efficient approximation and online algorithms for delay-sensitive
service provisioning for IoT applications in the integrated MEC platform. This poses
the following challenges.

For a set of offloading task requests, which requests should be assigned to a
local cloudlet and which ones should be assigned to the remote cloud for processing,
considering the heterogeneity of both computing resource and processing capabil-
ity of cloudlets and the remote cloud; how to assign different requests to different
cloudlets or the remote cloud such that the average user experience of using the ser-
vices provided by the platform is maximized while keeping the workload among all
cloudlets as balanced as possible, where a user satisfaction is inversely proportional
to the extra service delay beyond the user’s delay threshold; and how to develop a
cost model to quantify a user satisfaction of using a service provided by the platform.

Task offloading in MEC networks has been extensively studied in recent years.
Most existing work focused on minimizing the energy consumption of mobile de-
vices or the end-to-end delay of a task execution, through partitioning a task into
two parts: one part is offloaded to the cloudlets in the MEC for execution and an-
other part is processed by the mobile device itself. Most task offloading concentrated
on such a single task offloading.

There are extensive investigations on admitting a set of requests with the aim
to minimize the average service delay of offloaded tasks. For example, Gouareb
et al. [33] considered the problem of minimizing the total service delay of imple-
mentation of a service function chain in MECs, by proposing a heuristic. Huang et
al. [38] considered the delay-sensitive service placement and migration in an MEC
network by presenting heuristic algorithms for the problem. Jia et al. [42] studied
task offloading in an MEC network with the aim to minimize the average delay of all
admitted requests, by incorporating queuing delays at both Access Points (APs) and
cloudlets. Lyu et al. [67] investigated the joint optimization of both task admission
decisions and efficient resource allocation to minimize the total energy consumption
in an MEC network while the delay requirements of mobile devices are met. They
proposed a task admission approach to achieve the asymptotic optimality by pre-
admitting resource-restrained mobile devices. Xia [104] considered a set of delay-
aware tasks to be offloaded to an MEC network with the aim to minimize the service
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cost of offloaded tasks. They provided a cost model, and proposed a heuristic for the
problem based on the built cost model. Xu et al. [109] studied delay-aware service
placement in MEC to minimize the operational cost, by assuming that the speci-
fied delay of each request cannot be violated, and they developed an approximation
algorithm for the problem. Xu et al. [108] also considered the delay-aware service
offloading problem in MEC with each request having a specific service requirement.
They aimed to minimize the service cost through Virtual Network Function (VNF)
instance placement, sharing, and migration, by developing online algorithms for re-
quest admissions. They, however, did not include the remote cloud as an alternative
processing source.

Although the aforementioned investigations on delay-aware task offloading have
been extensively studied in the past several years, only a handful of studies take into
account service provisioning in MEC platforms for delay-sensitive IoT applications.
For example, Arisdakessian et al. [8] adopted game theory and designed preference
functions for IoT devices and edge nodes based on several metrics. By adopting the
preference functions, they developed centralized and distributed algorithms for the
assignment of services of IoT devices to edge nodes to minimize the IoT service de-
lay and execution makespan. Alameddine et al. [3] studied a joint task offloading for
application assignment and resource allocation in an MEC network, by formulating
a dynamic task offloading and scheduling problem. They developed a mixed integer
linear programming solution and a heuristic solution for the problem. Samanta et
al. [83] developed a dynamic microservice provisioning scheme for IoT devices in
MEC environments, by formulating a novel model that incorporates both the ser-
vice delay and service price into consideration. Song et al. [90] investigated the task
assignment for IoT applications in an MEC network while meeting the Quality of
Service (QoS) requirement of each task. They developed an efficient heuristic algo-
rithm for the problem. They proposed a heuristic algorithm to achieve efficient net-
work resource utilization for each microservice admission. Xu et al. [106] considered
the operational cost minimization problem for implementing IoT applications with
Service Function Chain (SFC) requirements, by focusing on IoT application place-
ment in an MEC network by developing both randomized and heuristic placement
algorithms. Yu et al. [115] studied the problem of IoT service provisioning with the
objective to meet computing, network bandwidth and QoS requirements of each IoT
application. They devised approximation algorithms to deal with the IoT service
provisioning under various scenarios, respectively.

Unlike the aforementioned works focusing on either the cost minimization prob-
lem or the delay-aware service placement problem in MEC networks, here we con-
sider a set of offloading task requests from IoT devices with different service delay
requirements, in which all requests must be served by either cloudlets in an MEC
network or a remote cloud. We aim to maximize the accumulative user satisfac-
tion of using the services provided by the integrated platform of the MEC network
and the remote cloud. We first devise a novel metric to measure user satisfaction
of using a service. We then propose efficient approximation and online algorithms
for the defined problem under both static and dynamic user service demands when
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the bandwidth capacity constraint is negligible. We also present efficient heuristic
algorithms for the problem with the bandwidth capacity constraint.

1.6.2 Service Provisioning for Multi-Source IoT Applications

Most IoT applications usually impose Service Function Chain (SFC) enforcement
on their data transmission, where each data packet from its source gateway of an IoT
device to the destination (a cloudlet) of the IoT application must pass through each
Virtual Network Function (VNF) in the SFC in an MEC network. However, little
attention has been paid to such a service provisioning of multi-source IoT applica-
tions in an MEC network with SFC enforcement. It poses the following challenges to
enable efficient service provisioning in an MEC network for multi-source IoT appli-
cations with SFC requirements.

First, the provisioning of an IoT service requires the joint consideration of many
complicated data processing procedures, such as uploading sensory data streams
from multiple sources through different gateways to a single destination, data stream
aggregation and routing in the MEC network, and the aggregated data streams
are processed by the VNF instances of network functions in the SFC. To minimize
computing and bandwidth resource usages, a routing tree rooted at the destina-
tion cloudlet and spanning each source (access point) of an IoT application is built,
instead of uploading the data stream of each source to the destination separately.
The uploaded data streams are aggregated at non-leaf tree nodes, and appropriate
numbers of the VNF instances of service functions should also be deployed at the
tree nodes for streaming data processing. Building such a routing tree involves a
non-trivial interplay between VNF instance placement, aggregation node selections,
and routing path selections, which is the first fundamental challenge. The comput-
ing and bandwidth resources in an MEC network are usually very precious and
costly. The operational cost of service provisioning for multi-source IoT applications
depends on not only various resource consumptions but also workload balancing
among cloudlets of the MEC network. How to minimize the operational cost of ser-
vice provisioning while meeting the SFC requirements of IoT applications poses the
second challenge. The data streams of each IoT application are allowed to be merged
or aggregated at intermediate nodes of the routing tree before reaching their desti-
nation. Also, VNFs for such data merging and aggregation usually can be shared
among the data streams from different gateways of the IoT application. The last
challenge is how to further reduce the operational cost of service provisioning of IoT
applications through VNF sharing. In this thesis, we will address the aforementioned
challenges.

There are a few investigations of service provisioning of NFV-enabled network
services for IoT applications in MEC networks. For example, Song et al. [90] consid-
ered the QoS-based task allocation in MEC for IoT applications by proposing efficient
algorithms. However, they did not incorporate the SFC requirement into considera-
tion. Yu et al. [115] studied the problem of IoT service provisioning with the objective
to meet computing, bandwidth and QoS requirements of an IoT application. They,
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however, did not consider the processing of IoT data traffic with SFC enforcement.
Mouradian et al. [73] proposed an architecture of NFV and SDN-based distributed
IoT gateways for large-scale disaster management. They, however, did not focus on
operational cost minimization and workload balancing. Xu et al. [110] studied the
QoS-aware VNF placement of SFCs in MEC for one-source IoT applications. They
considered the operational cost minimization problem for the implementation of IoT
applications with SFC requirements, and concentrated on IoT application placement
in MEC by proposing randomized and heuristic algorithms. Although we also deal
with the operational cost minimization problem of service provisioning for multi-
source IoT applications, the problem in this study is essentially different from the
mentioned work [110] as follows. We here deal with multi-source IoT applications
to minimize the operational cost of service provisioning, where data streams from
different sources need to be uploaded, aggregated, and processed in the MEC, while
the demanded number of NFV instances of each service function in the SFC needs
to be placed in cloudlets, and the workload among cloudlets needs to be balanced.
We aim to construct a data routing tree for each multi-source IoT application such
that the operational cost is minimized, and the work in [110] considered a single
SFC chain placement, where there is no data stream aggregation, data routing tree
construction, and workload balancing among cloudlets.

Closely related to the problem studied here are the NFV-enabled unicast and
multicast problems. There are extensive studies of user unicast and multicast request
admissions through resource provisioning and allocations in MEC networks [4; 13;
30; 42; 44; 69; 70; 81; 91; 109; 118]. For example, Jia et al. [42] considered assigning
user requests to different cloudlets in a Wireless Metropolitan Area Network with
the objective of minimizing the maximum delay among requsts. They then devel-
oped heuristics for the problem. They [44] also studied workload balancing among
cloudlets to reduce the maximum response delay of user requests. Xu et al. [109] de-
vised approximation algorithms to offload user requests to different cloudlets under
different conditions efficiently. Xia et al. [104] considered opportunistic task offload-
ing under link bandwidth, mobile device energy, and cloudlet computing capacity
constraints. Ma et al. [70] studied dynamically admitting NFV-enabled unicast re-
quests with QoS requirements with the aim to maximize the profit in MEC. They
developed an efficient heuristic and an online algorithm for the problem without the
QoS requirement. Although they considered the sharing of existing VNF instances
among different unicast requests. It can be seen that the problem of NFV-enabled uni-
cast request admissions in [70] is a special case of the NFV-enabled multicast request
admissions where the destination set contains only one node. Recently, there have
been several studies extending the NFV-enabled unicast routing to NFV-enabled mul-
ticast routing in MEC environments. For example, Alhussein et al. [4] investigated
the embedding of a multicast request with both computing and bandwidth resource
requirements to a 5G core substrate network, by enabling multi-path routing between
two consecutive VNFs of an SFC. Ceselli et al. [13] considered the design optimization
such as the VM placement and migration, and user request assignment, by formulat-
ing a Mixed Integer Linear Programming (MILP) solution and heuristic algorithms
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for the problem. Feng et al. [30] proposed an algorithm with a performance guarantee
for placing VNFs in distributed cloud networks and routing service flows among the
placed VNFs under the constraints of SFCs of the requests. Xu et al. [107] considered
the cost minimization of admitting a single NFV-enabled multicast request with the
QoS requirement in MEC, where the implementation of the SFC of each request is
consolidated to a single cloudlet. They aim to minimize the admission cost by plac-
ing no more than constant numbers of VNF instances of the SFC of the request in
different branches of the found pseudo-multicast tree for the request. Ma et al. [69]
studied admissions of NFV-enabled multicasting requests under both static and dy-
namic admission scenarios, by proposing approximation and online algorithms for
the problems with provable performance guarantees. Soni et al. [91] proposed a scal-
able multicast group management scheme and a workload balancing method for the
routing of best-effort traffic and bandwidth-guaranteed traffic. Zhang et al. [118] in-
vestigated the NFV-enabled multicasting problem in SDNs. They assumed that there
are sufficient computing and bandwidth resources to accommodate all multicast re-
quests, for which they provided a 2-approximation algorithm if only one server is
deployed for implementing the SFC of each multicast request. Unfortunately, the
applicability of their method is very limited and cannot be extended for the general
case where multiple servers are employed. Ren et al. [81] also considered request
admissions of NFV-enabled multicasting under the end-to-end delay constraint by
developing both approximation and heuristic algorithms for the problem.

Although there are some similarities between the cost minimization problem
for multi-source IoT applications studied here and the NFV-enabled multicasting
problem in MEC [69; 81], due to the fact that they both aim to build a routing tree
for their solutions, the main difference between them lies in the following. In the
multicasting case, a packet from the source (the tree root) will be broadcast to all
destinations (leaves) such that a VNF instance of each service function in the SFC is
installed along the path from the root to each leaf. In contrast, in the routing tree
for a multi-source IoT application, all leaves are data sources. The data streams will
converge to the tree root, and the data streams from the children of a non-leaf node in
the tree will be aggregated at the node. The number of VNF instances instantiated at
a tree node in the path from a leaf to the tree root is determined by the accumulative
volume of the data streams at the node, while the accumulative volumes of data
streams at different tree nodes are different. Thus, the construction of such a data
routing tree for each multi-source IoT application is much more challenging, because
the volume of the data stream at each tree node is not fixed, which is determined
by the number of children and the data volume of each of the children. Also, the
VNF instance placement must meet certain restrictions while keeping the workload
among involving cloudlets balanced.

Different from these mentioned studies, here we study the multi-source IoT ap-
plication service provisioning in an MEC environment. We aim to minimize the op-
erational cost of service provisioning while balancing the workloads among cloudlets
in an MEC network. We then propose efficient algorithms to deal with the cost mini-
mization problem for a single multi-source IoT application and a set of multi-source
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IoT applications, respectively.

1.6.3 Throughput Maximization of Delay-Aware DNN Inference

Mobile Edge Computing (MEC) delivers a promising solution to delay-aware
task offloading services, complementary to traditional cloud computing. With the
emerging edge intelligence, it has become a hot topic to provide real-time DNN infer-
ence services in MEC environments. For accelerating DNN inference, we consider a
widely adopted DNN inference acceleration method – the DNN partitioning method,
where the DNN inference model can be partitioned into two parts: one is processed
on the local IoT device of the request; and another is processed on a cloudlet in the
MEC network. We also adopt the inference parallelism method to leverage multiple
threads in a cloudlet for processing the offloaded DNN model part. In this thesis, we
jointly adopt DNN partitioning and inference parallelism methods for accelerating
DNN inference to meet the inference delay requirements of users. The delay-aware
DNN inference service provisioning thus poses the following challenges.

For a DNN inference request with a trained DNN model and a given infer-
ence delay requirement, how to determine which cloudlet in an MEC network to
accommodate the request? How to partition the DNN model between its local IoT
device and its assigned cloudlet such that the inference delay meets its inference
delay requirement? How many threads in its assigned cloudlet should be allocated
for processing the offloaded DNN part while meeting the inference delay require-
ment of the request? In this chapter, we will address these challenges, and devise
performance-guaranteed approximation and online algorithms for the DNN infer-
ence throughput maximization problem in an MEC network under both offline and
online request arrival settings, respectively.

The delay-aware task offloading in MEC environments has drawn much atten-
tion in recent years. For example, Bozorgchenani et al. [12] proposed an evolutionary
algorithm to address a task offloading problem in an MEC network, with the aim to
minimize not only the task processing delay but also the energy consumption of the
processing. Liu et al. [64] dealt with the stochastic arrivals of heterogeneous tasks
in a three-layer MEC network, and developed an online algorithm to shorten the
inference delay of each task processing.

Recently, edge intelligence arises to provision real-time DNN inference services
for users and much effort focused on investigating DNN inference accelerations
through task offloading in MEC environments. Mohammed et al. [72] devised a novel
DNN partitioning scheme in an MEC network, and applied the matching theory to
distribute the DNN parts to edge servers, with the aim to minimize the total com-
putation time. Tang et al. [95] considered the admissions of DNN inference requests
of multiple users with the assistance of an edge server to minimize the maximum
end-to-end delay among users, by developing an efficient algorithm to achieve the
optimal solution. Xu et al. [111] investigated the DNN inference offloading in an
MEC network, assuming that each requested DNN has been partitioned. They then
provided a randomized algorithm and an online algorithm to minimize the total en-
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ergy consumption and deal with the real-time request admissions, respectively. Zeng
et al. [116] introduced the cooperation of multiple edge devices with heterogeneous
computing capacities for DNN inference, and studied the dynamic DNN workload
partitioning and the workload assignment optimization over the edge devices, with
the aim to minimize system energy consumption. Kang et al. [45] proposed a promis-
ing DNN partitioning strategy between a mobile device and a cloud to optimize the
experienced inference service delay and the energy consumption, based on the DNN
layer granularity. Their strategy, however, only works for chain-topology DNNs. Hu
et al. [36] studied the DNN partitioning problem in an integrated network consist-
ing of edge servers and a cloud by proposing an optimal DNN partitioning strategy
DSL, with the aim to minimize the delay for processing one video frame when the
network workload is light. They reduced the problem to a minimum cut problem.
Unfortunately, the optimal partitioning claim is suspicious, which will be detailed
later.

There are existing approaches for multi-threading DNN inference acceleration,
e.g., adopting the frameworks such as TensorFlow [1] and PyTroch [77]. For ex-
ample, Liu et al. [66] designed a customized thread pool for Convolutional Neural
Network (CNN) inference through multi-threading on multi-core central processing
units (CPUs). Nori et al. [76] leveraged a multi-level cache hierarchy to improve
the performance of inference parallelism with multi-core CPUs. Furthermore, the
resource allocation problem under DNN inference parallelism has also been investi-
gated by researchers [75; 105]. Niu et al. [75] proposed a novel framework to execute
a DNN model on mobile CPUs and graphics processing units (GPUs) with thread-
level parallelism, by adopting a pruning-based model compression technique. Xi-
ang et al. [105] included the multi-threading on multi-core CPUs with the assistance
of GPUs. They presented a pipeline-based real-time DNN inference framework to
deliver an efficient scheduling of CPU and GPU resources. However, their frame-
works [75; 105] cannot be applied in this work, since important constraints in the
problem such as the inference delay requirements of requests have not been consid-
ered.

In comparison with existing work, here we deal with the delay-aware DNN in-
ference service provisioning in an edge computing environment under both offline
and online settings of request arrivals. We jointly perform DNN partitioning, allo-
cate offloaded tasks to different cloudlets, and explore inference parallelism through
deploying multiple threads. We aim to maximize the number of DNN inference
requests admitted while meeting their inference delay requirements, subject to com-
puting capacities on cloudlets. Specifically, we consider the problem under both
offline and online request arrival settings: a set of DNN inference requests is given
in advance, and a sequence of DNN inference requests arrives one by one without
the knowledge of future arrivals, respectively. We then devise a novel constant ap-
proximation algorithm for the problem under the offline setting. We also propose an
online algorithm with a provable competitive ratio for the problem under the online
setting.
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1.6.4 Robust Service Provisioning with Service Function Chain Require-
ments

Service robustness is an important QoS indicator for IoT service provisioning in
MEC. Most existing studies considered resource allocation and scheduling in MEC
for user request admissions, under the assumption that the amounts of different re-
sources demanded by each request are given a prior and do not change during the
execution of the request. In practice, the resource demands during the implementa-
tion of a request are dynamically evolving, which substantially impacts the service
quality and the profit of network service providers. Thus, providing robust services
to users against their resource demand uncertainties is a critical issue. In this thesis,
we assume that the demanded computing resource and data rate of a request are
different at its different execution stages. To provide robust IoT services with SFC
requirements in MEC, it poses the following three challenges.

(1) Optimization of SFC placements: The requested VNF instances are first instan-
tiated into cloudlets under the cloudlet capacity constraint. Then, VNF instances
will be chained in the specified order in the SFC, subject to both the link capacity
constraint and the latency requirement of the request. (2) Uncertain resource demands:
During the request execution period, the request may demand more resources than
the ones initially allocated to it, then the scheduling will be infeasible, and an admit-
ted request may never be fully executed. Consequently, the network service provider
will earn much less profits due to underestimating the resource demands of each ad-
mitted request. (3) Inaccurate measurements: As the RSFCP problem depends heavily
on real-time measurements of system features in the MEC network (e.g., dynamic
resource consumptions of different components such as cloudlets and links), it is dif-
ficult to obtain accurate measurements on these features in order to achieve global
optimality. The actual profit collected could be perturbed from the initially expected
one.

The extensive effort on the Service Function Chain Placement (SFCP) problem
and its variants have been conducted in the past several years under both datacenter
networks and MEC environments. Particularly, most studies of SFC request admis-
sions were based on the fixed resource allocation mode, i.e., all resource demands
are fixed prior to the execution of a request. For example, Beck et al. [9] proposed
a heuristic to coordinate the composition of SFCs and their embedding into a sub-
strate network with the aim to minimize bandwidth utilization. Jalalitabar et al. [40]
studied how to efficiently accommodate SFC requests while taking into account the
function dependence in SFCs, the computing demand, and the bandwidth demand
by SFC requests. They devised a heuristic algorithm for constructing and mapping an
SFC by incorporating Dependence Sorting and Independent Grouping. Liu et al. [63]
dealt with a profit maximization problem by jointly deploying the SFCs of incoming
user requests and readjusting the SFC placement of accepted user requests. They
developed a column generation based algorithm, considering the resource capacity
constraint and the operational overhead constraint. Sun et al. [92] devised two heuris-
tic algorithms for the SFC orchestration problem considering the distinct domains
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provisioned by different network providers. They proposed two SFC partitioning
methods, and a bidding mechanism-based sub-SFC mapping solution. Tomassilli et
al. [96] studied the problem of deploying reliable SFCs over a virtualized network
function architecture. They then applied the column generation technique to deal
with the decomposition model derived from the Integer Linear Programming (ILP)
formulation. Zhu et al. [123] took both link bandwidth and node computing resource
capacities into consideration. They devised an efficient online heuristic algorithm to
improve the resource utilization rate by reducing resource fragmentation in phys-
ical networks. Zheng et al. [121] aimed to minimize the service delay considering
the composition and embedding of hybrid SFCs. They proposed an Eulerian Cir-
cuit based approximation algorithm for the problem under a special case where each
substrate node is assumed to provide only one unique VNF. They also applied the
betweenness centrality technique to devise a heuristic algorithm for the problem un-
der the general case. Zhang et al. [119] studied an SFC placement problem with the
aim to minimize the total energy consumption in a telecom network. They developed
efficient algorithms based on the Markov approximation technique for the problem
under offline and online scenarios, respectively.

On the other hand, there are also several studies focusing on request admissions
through dynamic resource allocation in MEC, under uncertain resource demands
of request implementations. For example, Ali et al. [5] proposed a novel metric to
measure the robustness of resource allocation in distributed systems against vari-
ous perturbations applied to system parameters. They also described a procedure
to guide efficient resource allocation based on the metric. Chen et al. [15] devised a
QoS-guaranteed SFC outsourcing algorithm based on the Hidden Markov Model to
plan the outsourcing of SFCs, by predicting state sequences with the highest prob-
ability. Esposito et al. [27] designed an SFC instantiation prototype to deal with the
random failures of processes or communication links, based on a fully distributed
asynchronous consensus mechanism. Eshraghi et al. [117] studied a task offloading
problem with unknown processing time for a three-tier cloud computing network
with multi-processor access points. They developed an efficient algorithm for the
problem by constructing a series of locally tight approximate geometric program-
ming problems, which are iteratively updated. Nguyen et al. [74] investigated the
deadline-aware SFC orchestration problem under the co-located and geo-distributed
schemes, respectively, and developed approximation algorithms for SFC placement
and routing with the partial knowledge of traffic demands. Psychas et al. [80] con-
sidered a job scheduling problem with random resource requirements to maximize
the throughput. They proposed two scheduling algorithms for the problem based
on a ‘Best-Fit’ packing method and a ‘universal partitioning’ method, respectively.
Wang et al. [100] studied a parallelized SFC placement problem with the aim to en-
sure efficient data transmission while reducing the end-to-end delay of an SFC. They
proposed resource-efficient VNF placement methods to enhance the resiliency of a
parallelized SFC via multi-flow backups. Zhang et al. [120] investigated a task of-
floading problem in a 5G small cell network considering the uncertainty of both the
resource consumption and the reward of a task. They developed a multi-armed ban-
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dit based online learning algorithm, and its regret and violations are proved to be
bounded sub-linearly.

We distinguish our work from existing ones as follows. Most existing studies as-
sumed that the resource demands of each SFC request are given in advance [9; 40; 63;
92; 96; 123; 121; 119], however, this assumption may not be realistic as the precise re-
source demands of a request implementation are not known until its completion [89].
There are a few other studies that considered the uncertainty of the other metrics,
such as the execution time, throughput, etc. [5; 15; 27; 117; 74; 80; 100]. The study
of [120] includes the uncertainty of the resource consumption in task offloading,
however, the efficient SFC placement is not taken into consideration. Here we study
the robust SFC problem under the assumption that both computing resource and the
data rate demand of each request dynamically change during its implementation.
We aim to maximize the expected profit collected by the network service provider
through admitting as many requests as possible. To the best of our knowledge, we
are the first to study this robust SFC placement problem under the uncertainty of
both computing resource and data rate demands of all admitted requests, by devis-
ing the very first near-optimal approximation algorithm with a provable performance
gap to the problem.

1.7 Thesis Contributions

The main contributions of this thesis are to systematically study the resource
allocation and scheduling of virtual service provisioning for IoT applications in MEC
environments, through formulating novel system models and optimization frame-
works for the aforementioned problems. We aim to improve the user experience of
using IoT services, and endow IoT service provisioning with flexibility, pervasive-
ness, robustness and cost-efficiency. We then propose efficient algorithms to judi-
ciously manage network resources in MEC networks and optimize the system per-
formance with the objective of maximizing the user service satisfaction, minimizing
the operational cost, maximizing the number of requests admitted, and maximizing
the expected profit, respectively. The contributions of this thesis are summarized as
follows.

• For the problem of the service provisioning of delay-sensitive IoT applications
in MEC environments, we study how to maximize the total user service sat-
isfaction under both static and dynamic user service demands in Chapter 2,
where a user satisfaction is inversely proportional to the extra service delay
beyond the user’s delay threshold. Specifically, we consider an integrated MEC
platform consisting of the remote cloud and a set of local cloudlets, and an IoT
user can offload his task with a delay requirement to either the remote cloud or
a cloudlet. The contributions involved in this topic include: (1) a novel metric
to measure user satisfaction of using an IoT service, (2) approximation and on-
line algorithms with provable performance guarantees for special cases of the
defined problems when the bandwidth capacity constraint is negligible, and
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(3) efficient heuristic algorithms for the problems with the bandwidth capacity
constraint.

• For the problem of service provisioning in an MEC network for multi-source
IoT applications with Service Function Chain (SFC) requirements, we aim to
minimize the operational cost of such service provisioning in Chapter 3. Each
multi-source IoT application has multiple data streams from different sources
to be uploaded to a destination in the MEC network for aggregation, process-
ing, and storage purposes, while each data stream must pass through the net-
work functions in the SFC of the IoT application prior to reaching its destina-
tion. The contributions involved in this topic include: (1) a service provisioning
framework in the MEC network for multi-source IoT applications that consists
of uploading the stream data from multiple sources of the IoT application,
VNF instance placement and sharing, data stream aggregation and routing,
and workload balancing among cloudlets in the MEC network, (2) an efficient
algorithm for the cost minimization problem for a single multi-source IoT ap-
plication, and (3) an efficient algorithm for the cost minimization problem for
a set of multi-source IoT applications.

• For the Deep Neuron Network (DNN) inference throughput maximization
problem, we consider how to maximize the number of delay-aware DNN infer-
ence requests admitted in Chapter 4. To meet the inference delay requirement
of a DNN inference request, we first consider adopting the DNN partitioning
method to partition the DNN inference model between the local IoT device of
the request and the assigned cloudlet in the MEC network. To further acceler-
ate the DNN inference of the request, we then adopt the inference parallelism
method by leveraging multiple threads in the assigned cloudlet to process the
offloaded DNN model part. Through jointly exploring DNN partitioning and
inference parallelism, we consider the problem under both offline and online
request arrival settings, and the proposed algorithms handle DNN inference
service request admissions with the objective of maximizing the number of re-
quests admitted. The contributions involved in this topic include: (1) a constant
approximation algorithm for the problem under the offline setting, and (2) an
online algorithm with a provable competitive ratio for the problem under the
online setting.

• For the robust SFC placement problem, we investigate how to maximize the ex-
pected profit collected by the network service provider of an MEC network in
Chapter 5. The dynamic resource demands of IoT services significantly affect
the service robustness and the system performance. To provide robust IoT ser-
vices with SFC requirements, we consider the uncertainty of both computing
resource and data rate demands in the implementation of user requests. We
then devise a Markov based approximation algorithm for the problem, with
the aim of maximizing the expected profit of the network service provider. The
contributions involved in this topic include: (1) a Quadratic Integer Program-
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ming (QIP) formulation for the problem, and (2) a near-optimal approximation
algorithm by adopting the Markov approximation technique, which can achieve
a provable optimality gap.

It is also worth noting that the devised algorithms, as well as the proposed
algorithm design and analysis techniques, will be of independent interests in many
other domains, especially the combinatorial optimization.

1.8 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 addresses the
total utility maximization problems under both static and dynamic offloading task
request settings, with the aim to maximize the accumulative user satisfaction on the
use of the services provided by the MEC. Chapter 3 investigates service provisioning
in an MEC network for multi-source IoT applications with SFC requirements, where
each multi-source IoT application has multiple data streams from different sources
to be uploaded to a location (a cloudlet) in the MEC network for aggregation, pro-
cessing, and storage, with the aim to minimize the operational cost of such service
provisioning. Chapter 4 studies a novel DNN inference throughput maximization
problem with the aim to maximize the number of delay-aware DNN service requests,
by accelerating each DNN inference through jointly exploring DNN partitioning and
inference parallelism. Chapter 5 formulates a novel robust SFC placement prob-
lem with the aim to maximize the expected profit collected by the network service
provider, under the uncertainty assumption of both computing resource and data
rate demands in the implementation of user requests. Chapter 6 summarizes the
thesis and proposes future work.



Chapter 2

Maximizing User Service
Satisfaction for Delay-Sensitive IoT
Applications

In this chapter, we first introduce two novel optimization problems for delay-
sensitive Internet of Things (IoT) applications, i.e., the total utility maximization
problems under both static and dynamic offloading task request settings, with the
aim to maximize the accumulative user satisfaction on the use of the services pro-
vided by the Mobile Edge Computing (MEC). We then devise efficient approxima-
tion and online algorithms with provable performance guarantees for the problems
in a special case where the bandwidth capacity constraint is negligible. We also de-
velop efficient heuristic algorithms for the problems with the bandwidth capacity
constraint.

2.1 Introduction

Fuelled by the 5G technology, it is expected that the 5G-supported MEC will be
the promising platform for delay-sensitive IoT services for various IoT applications.
To explore the potential of MEC to support IoT applications, in this chapter, we deal
with offloading task services in MEC for delay-sensitive IoT applications, where IoT
devices are resource-constrained, by offloading their tasks to cloudlets or a remote
cloud for processing. We here consider an integrated platform consisting of the
remote cloud and a set of local cloudlets forming an MEC network for IoT service
provisioning. IoT devices or mobile users can offload their tasks to the platform
for processing, and different offloading task service requests have different service
delay requirements. We aim to devise efficient scheduling algorithms for assigning
requests to different cloudlets or the remote cloud while meeting their service delay
requirements.

The novelty of the work in this chapter lies in that we consider the user satisfac-
tion of using services provided by an MEC network and a remote cloud for delay-
sensitive IoT applications, through maximizing the accumulative user satisfaction

21
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when different users offload their tasks with different service delay requirements. A
novel metric to measure user satisfaction of using a service is proposed, and efficient
approximation and online algorithms for the defined problems under both static and
dynamic user service demands are then devised.

The main contributions of this chapter are presented as follows.

• We consider user service satisfaction of using services provided by an MEC
network and a remote cloud for delay-sensitive IoT applications, by formulating
two novel user service satisfaction problems. We also show that the defined
problems are NP-hard.

• We devise approximation and online algorithms with provable performance
guarantees for special cases of the defined problems when the bandwidth ca-
pacity constraint is negligible. We also develop efficient heuristic algorithms
for the problems with the bandwidth capacity constraint.

• We evaluate the performance of the proposed algorithms through experimental
simulations. Experimental results demonstrate that the proposed algorithms
are promising.

The rest of the chapter is organized as follows. Section 2.2 introduces the sys-
tem model, notions, notations, problem definitions, and NP-hardness proofs of the
defined problems. Section 2.3 devises an approximation algorithm and an efficient
heuristic algorithm for the total utility maximization problem without and with the
bandwidth capacity constraint, respectively. Section 2.4 deals with dynamic user ser-
vice request admissions without the knowledge of future arrivals for a given time
horizon, and efficient online algorithms for the problem are developed. Section 2.5
evaluates the proposed algorithms empirically, and a summary is given in Section 2.6.

2.2 Preliminaries

In this section, we first introduce the system model. We then give notions, no-
tations, and the modelling of user service satisfaction of using services. We finally
quantify the user satisfaction on a provided service in an MEC network, and define
the problems precisely.

2.2.1 System model

Consider a heterogeneous MEC network that is represented by an undirected
graph G = (AP ∪V ∪ {v0}, E), where AP is the set of Access Points (APs), V is the
set of cloudlets, v0 is the remote cloud, and E is the set of links between APs [56;
55]. Each cloudlet (edge cloud) v ∈ V is co-located with an AP, and connected
through a high-speed optical cable, and the communication delay between them thus
is negligible. However, not each AP is co-located with a cloudlet, and the number of
cloudlets usually is far smaller than that of APs. Each cloudlet v ∈ V is associated
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with a computing capacity Cv > 0 and a packet processing rate µv. Node v0 is a
remote cloud with unlimited computing and storage resources. Thus, the remote
cloud v0 has the maximum packet processing rate, compared with cloudlets. Each
link e ∈ E has a bandwidth capacity B(e). We further assume that each AP in the
MEC network is connected to the remote cloud v0 through a gateway in the MEC
network, and the communication delay is far larger than the communication delay
between any pair of APs in the MEC network. Figure 2.1 illustrates a heterogeneous
MEC network that consists of five APs, three cloudlets co-located with APs, and a
remote cloud.

Access Point (AP)

server

IoT application

core network

remote cloud

Figure 2.1: An illustrative example of a heterogeneous MEC network that consists of
five APs, three cloudlets co-located with APs, and a remote cloud.

We assume that different cloudlets have different computing resource capacities
and different processing capabilities. For a given offloading task, the assignment
of the task to different cloudlets will result in different computing delays as the
workloads and computing capabilities at different cloudlets are different.

We consider a given time horizon that is further divided into T equal time slots.
Within each time slot t, let µt

vj
represent the processing rate of cloudlet vj ∈ V,

and C′tvj
the residual computing capacity of vj at time slot t, where C′1vj

= Cvj for all
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vj ∈ V, and µt
v0

is the processing capability of node v0, which is the maximum one,
i.e., µt

v0
= max{µt

vj
| 0 ≤ j ≤ |V|}. We further assume that the data rate γt

li
for task

offloading of a request ri from its nearby AP li at time slot t is fixed.
Although data uploading from an IoT device to its nearby AP is the bottleneck

of some delay-sensitive applications, it becomes insignificant with adopting the 5G
technology. Also, given a communication metric (e.g., the link congestion or the
Euclidean distance between the two endpoints of each physical link), let dt(e) be the
transmission delay on a link e in the MEC, which is fixed at each time slot t. However,
the values of the mentioned parameters may change at different time slots. For the
sake of convenience, we will drop index t from these parameters if no confusion
arises from the context.

2.2.2 The service delay of an offloading task for service

Consider a set R of requests, each user service request ri ∈ R can be expressed
by a tuple ri = ⟨si, bi, li, Di, βi⟩, where si is the task size (volume), bi is the demanded
bandwidth resource, the user of ri is under the coverage of AP li, Di is the service
delay requirement threshold, and βi ·Di is the maximum service delay the user could
tolerate with a constant βi ≥ 1. Denote by c(si) the demanded computing resource
to process the offloaded task of request ri. The service delay of a request consists of the
uploading delay, the communication delay of routing the data from the data source
to the cloudlet (or the remote cloud) for the data processing, and the processing delay
of the task at the cloudlet (or the remote cloud), which are as follows.

The uploading delay dupload(ri) of an offloading task ri through its located AP li is

dupload(ri) =
si

γli
, (2.1)

where γli is the uplink data rate of AP li, which can be calculated by the following
Shannon-Hartley formula [98].

γli = Wli log2(1 +
κi

σ2 ), (2.2)

where Wli is the total bandwidth of AP li divided by the number of users under its
coverage, κi is the transmission power of IoT device of request ri, and σ2 is the noise
power.

An offloading task will be served by either a cloudlet or the remote cloud vj ∈
V ∪ {v0}, the communication delay dcomm(ri, vj) of offloading task ri to node vj is

dcomm(ri, vj) =

{
∑e∈Pi(vj) d(e), if vj ∈ V

dcomm(ri, v0), otherwise (vj = v0),
(2.3)

where Pi(vj) is a routing path of request ri between its AP location li and the AP
location of cloudlet vj, d(e) is the communication delay on a link e, and dcomm(ri, v0)
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is the communication delay of routing the task of ri from AP li to the remote cloud
through the gateway.

The processing delay dcomp(ri, vj) of an offloading task ri at cloudlet or the remote
cloud vj is

dcomp(ri, vj) =
si

µvj

, (2.4)

where si is the task size of request ri, and µvj is the processing rate of cloudlet (or the
remote cloud).

The service delay d(ri, vj) of offloading task ri to node vj for service thus is defined
as follows.

d(ri, vj) = dupload(ri) + dcomm(ri, vj) + dcomp(ri, vj). (2.5)

Note that we do not include the delay of returning the result to the user as
the result usually is no larger than the uploading volume of data, and the delay of
returning the result thus is omitted.

2.2.3 User service satisfaction of using a service

In most IoT applications, each service request does have its expected delay
threshold and maximum tolerable delay requirement. A task offloading request usu-
ally can be represented by a tuple ri = ⟨si, bi, li, Di, βi⟩, where Di is its delay threshold,
if the actual service delay is beyond its threshold Di, the service may still be accept-
able by the user. However, in terms of the service experience, the user of request
ri may not be happy about the service. In other words, the service satisfaction of a
user for his requested service can be expressed by a non-increasing function of the
service delay he experienced. If a service delay is within the specified threshold, the
user satisfies the service with 100%; otherwise, his satisfaction with the service is
inversely proportional to the extra service delay beyond the user’s delay threshold.
Specifically, assume that a user request ri ∈ R is assigned to cloudlet or the remote
cloud vj for service, then its service delay is d(ri, vj) by Eq. (2.5). If d(ri, vj) is no
greater than Di, the user satisfies the service with 100%; otherwise, his satisfaction
on the service will dramatically decrease with the increase on the value of d(ri, vj),
and the maximum tolerant service delay of the user is βi · Di, where βi ≥ 1 is a
constant, representing a certain degree of the delay tolerance of the user. If a service
delay is beyond the maximum tolerant service delay of the user, the user satisfaction
on the service will become zero. We thus model a user service satisfaction of using
a service provided by an MEC network and a remote cloud through a non-increasing
utility function as follows.

u(ri, vj)=

 (λ− λ
[d(ri ,vj)−Di ]

+

βi ·Di ), if d(ri, vj) ≤ βi · Di

0, otherwise
(2.6)
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where [x]+ = max{x, 0}, and λ > 1 is a constant that indicates the delay sensitivity.
It can be seen from Eq. (2.6) that if the service delay is no greater than Di,

[d(ri, vj) − Di]
+ = 0, then λ0 = 1, and the utility gain of the user is u(ri, vj) =

λ − 1 > 0, implying the user is 100% satisified. Otherwise, if the service delay is
within the delay range of (Di, βi · Di], i.e., 0 < d(ri, vj) − Di ≤ (βi − 1) · Di, then
[d(ri ,vj)−Di ]

+

βi ·Di
=

d(ri ,vj)−Di
βi ·Di

≤ (βi−1)·Di
βi ·Di

= βi−1
βi

< 1, and the utility value u(ri, vj) =

λ− λ
d(ri ,vj)−Di

βi ·Di ≤ λ− λ
βi−1

βi < λ− 1, i.e., the user satisfaction decreases with the growth
of the delay duration and is impacted by both λ and βi. A larger value of λ means
that the utility obtained is more sensitive than that of a smaller λ, and a larger βi
implies that the user of request ri is more tolerable to his service delay. When the
actual service delay d(ri, vj) > βi · Di that is beyond the maximum tolerant service
delay of the user of ri, then u(ri, vj) = 0 by the utility function definition, and the
user satisfaction is 0%. Thus, the value of βi reflects the service delay tolerance of the
user of request ri at a certain extent.

2.2.4 Problem definitions

In this chapter, we consider the service provisioning in an integrated platform
that consists of an MEC network and a remote cloud for delay-sensitive IoT applica-
tions, by formulating two novel optimization problems.

Problem 1: Given an MEC network G = (AP ∪ V ∪ {v0}, E) with a given set
R of requests, each request ri = ⟨si, bi, li, Di, βi⟩ in R is expressed by a tuple, where
si is the size of the offloading task, bi is the demanded bandwidth resource, li is
the physical location of the offloading task, Di is the ideal tolerable delay threshold,
and βi · Di is the maximum tolerable service delay of the request. The total utility
maximization problem is to maximize the utility sum of all requests in R, i.e., the
total user experience of using the services provided by the MEC network, subject to
computing capacities on cloudlets and bandwidth capacities on links in G.

As network service providers provide continuing services for their consumers,
in the defined problem so far, we have only considered user requests at a given time
slot t, where the data rate γt

l assigned for each user under the coverage of an AP
l ∈ AP is fixed at time slot t. However, the value of γt′

l will change at a different
time slot t′ ̸= t which will be determined by the number of users under the coverage
of AP l at that time slot. Meanwhile, the transmission delay dt′(e) on a link e in G
at time slot t′ can also be changed, which is impacted not only by the link length
but also the congestion on the link. The processing rate µt

v of a node v ∈ V ∪ {v0}
may vary at different time slots too. In the following we consider the dynamic user
service request admissions within a finite time horizon that consists of T equal time
slots.

Problem 2: Given an MEC network G = (AP ∪ V ∪ {v0}, E) and a finite time
horizon that consists of T equal time slots, assume that user service requests arrive
one by one without the knowledge of future arrivals, the online average total utility
maximization problem is to maximize the average sum of accumulative utilities of all
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admitted requests per time slot within the given time horizon, subject to both com-
puting capacities on cloudlets and bandwidth capacities on links in G.

Theorem 2.1. The total utility maximization problem in an MEC network G = (AP ∪V ∪
{v0}, E) is NP-hard.

Proof. We show the claim by a reduction from a well-known NP-hard problem –
the maximum profit Generalized Assignment Problem (GAP) that is defined as fol-
lows [22]. Given n items and m bins, if item i is packed to bin j, it results in a profit pi,j
and a size si,j. Usually the size of each item i at different bins is fixed, i.e., si,j = si,j′

even if j ̸= j′. Each bin j has a capacity, the problem is to pack as many items as
possible to the m bins such that the total profit of the packed items is maximized,
subject to bin capacities.

We consider a special case of the total utility maximization problem where the
bandwidth resource consumption of each request is negligible, by assuming that
there is abundant bandwidth resource on each link in the MEC network. Thus, the
routing path of routing the offloaded task of request ri to cloudlet v is the routing
path from AP li to cloudlet v with the least communication delay. There are (|V|+
1) bin, where bin B0 corresponds to the remote cloud with unlimited computing
capacity, and each of the other bins corresponds to a cloudlet v with the capacity of
Cv. Each item i corresponds to a request ri. For each bin Bj, each item has the size
si,j = c(si) and profit pi,j = u(ri, vj). The total utility maximization problem for this
special case is to maximize the total utility gain by admitting as many requests as
possible, subject to the computing capacities on cloudlets. It can be seen that this
special problem is equivalent to the maximum profit GAP. Hence, the total utility
maximization problem is NP-hard.

2.3 Algorithms for the total utility maximization problem

In this section, we deal with the total utility maximization problem. We first
consider a special case of the problem where there are abundant bandwidth resources
on links, for which we formulate an Integer Linear Programming (ILP) solution for
the problem when the problem size is small. Otherwise, we devise an approximation
algorithm with a provable approximation ratio for the problem, by reducing the
problem to the maximum profit GAP problem. An approximate solution to the latter
in turn returns an approximate solution to the former. We also devise an efficient
heuristic algorithm for the problem under the bandwidth capacity constraint.

2.3.1 ILP and approximation algorithms for the problem without the
bandwidth capacity constraint

We deal with the total utility maximization problem without the bandwidth
capacity constraint on links, by assuming that each link has abundant bandwidth
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resource. We start with the ILP formulation as follows.

Maximize
|R|

∑
i=1

|V|

∑
j=0

u(ri, vj) · xi,j, (2.7)

subject to the following constraints.

Eq. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6),

∀i, j, 1 ≤ i ≤ |R|, 0 ≤ j ≤ |V|
|V|

∑
j=0

xi,j ≤ 1, ∀i, 1 ≤ i ≤ |R| (2.8)

|R|

∑
i=1

xi,j · c(si) ≤ Cvj , ∀j, 0 ≤ j ≤ |V| (2.9)

xi,j ∈ {0, 1}, ∀i, j, 1 ≤ i ≤ |R|, 0 ≤ j ≤ |V|, (2.10)

where variable xi,j is a binary decision variable, and xi,j = 1 implies that offloading
task ri will be served by cloudlet/the remote cloud vj with 0 ≤ j ≤ |V|. Con-
straint (2.8) ensures that each request is assigned to at most one node for service.
Constraint (2.9) ensures that the accumulative resource demand by all requests as-
signed to a node is no more than the capacity of the node. Recall that we assume that
the remote cloud is node v0 with unlimited computing resource. Note that for each
request ri in Eq. (2.3), its routing path Pi(vj) to cloudlet vj ∈ V is a shortest path in
G between AP li and cloudlet vj, and the weight of each link e in Pi(vj) is the trans-
mission delay, i.e., de, because each link is assumed to have abundant bandwidth
resource.

We then devise an approximation algorithm for the problem by reducing it to
the maximum profit GAP, which is a well-known NP-hard problem, and there is an
efficient approximation algorithm for it [22].

The reduction is as follows. There are (|V|+ 1) bins, where bin B0 corresponds
to the remote cloud with unlimited computing resource, the rest |V| bins correspond
to the |V| heterogeneous cloudlets, where Bj with 1 ≤ j ≤ |V| represents cloudlet
vj ∈ V with capacity Cvj . There are |R| requests. Recall that request ri ∈ R is
located at AP li if it is assigned to cloudlet vj for service with the computing resource
consumption c(si), then the utility gain is u(ri, vj) by Eq. (2.6), which is determined
by the experienced service delay d(ri, vj). In other words, if we pack request ri to
bin Bj, it generates a profit u(ri, vj) with size c(si), where 1 ≤ j ≤ |V|; otherwise
(if ri is sent to the remote cloud v0 for service), its service delay is d(ri, v0), and the
utility gain is u(ri, v0). Note that when the utility obtained by packing a request to
a bin is zero, the request will not be admitted. The detailed algorithm is given in
Algorithm 1.
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Algorithm 1 An approximation algorithm for the total utility maximization problem
without the bandwidth capacity constraint
Require: |V| cloudlets with each vj ∈ V having computing capacity Cvj , a remote

cloud v0 with unlimited computing capacity, i.e., Cv0 = ∞, a set of requests R
with each request ri = ⟨si, bi, li, Di, βi⟩.

Ensure: Admit as many requests as possible from R that maximizes the utility sum
of admitted requests.

1: Calculate the shortest path between each cloudlet and each AP, and the weight
of each link is the communication delay on the link.

2: Construct an instance of the GAP, where each request ri ∈ R has a corresponding
item i with size c(si) and the profit u(ri, vj). Each cloudlet vj or the remote cloud
corresponds to a bin Bj with bin capacity cap(Bj) = Cvj , where 0 ≤ j ≤ |V|;

3: Find an approximate solution A to the GAP problem with maximizing the utility
sum, by invoking the approximation algorithm due to Cohen et al. [22];

4: for any request r ∈ A with utility zero do
5: A← A \ {r}; /* remove request r from the solution */;
6: end for;
7: return the solution A as the solution of the total utility maximization problem

without the bandwidth capacity constraint.

2.3.2 Heuristic algorithm for the problem with the bandwidth capacity
constraint

We now consider the problem under the bandwidth capacity constraint by de-
veloping a greedy algorithm that proceeds iteratively.

At each iteration, for a request ri ∈ R to be offloaded, we first identify the set
of cloudlets V ′ ⊆ V and the set of links E′ ⊆ E with sufficient residual computing
resource and bandwidth resource to accommodate request ri, respectively. We then
find a routing path Pi(vj) in the induced subgraph G′ = (AP ∪ V ′ ∪ {v0}, E′) of
graph G = (AP ∪ V ∪ {v0}, E) with the least communication delay from location li
of request ri to cloudlet vj ∈ V ′, through links in E′. Then, the utility gain of assign-
ing request ri to cloudlet vj through the routing path Pi(vj) can be obtained. Among
all nodes in V ′ ∪ {v0}, we then identify a node v̂i with the maximum utility gain
for request ri. Because the remote cloud v0 has the unlimited computing resource,
the remote cloud can be identified as the offloading node of the request too. How-
ever, if the maximum utility gain of assigning request ri to the node v̂i is zero, the
request ri will be rejected. Then, among all requests to be offloaded, we identify a
request ri′ with the maximum utility gain for its admission. If request ri′ is assigned
to a cloudlet, the residual computing resource on the cloudlet and residual band-
width resource on the links in the routing path are then updated accordingly. This
procedure continues until all requests are either admitted or rejected. The detailed
algorithm is given in Algorithm 2.
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Algorithm 2 A heuristic algorithm for the total utility maximization problem with
the bandwidth capacity constraint
Require: |V| cloudlets with each vj ∈ V having computing capacity Cvj , a remote

cloud v0 with unlimited computing capacity, i.e., Cv0 = ∞, each link e ∈ E
connecting cloudlets has a bandwidth capacity, and a set of requests R with each
request ri = ⟨si, bi, li, Di, βi⟩.

Ensure: Admit as many requests as possible from R that maximizes the utility sum
of admitted requests.

1: R← R; /* the requests to be offloaded */
2: A← ∅; /* the solution */
3: while R ̸= ∅ do
4: for each request ri ∈ R do
5: Identify the set of cloudlets V ′ ⊆ V and the set of links E′ ⊆ E with

sufficient residual resource for ri;
6: Find the routing path Pi(vj) from AP li to each cloudlet vj ∈ V ′ with the

least communication delay, through links in E′;
7: Calculate the utility gain u(ri, vj) if ri is assigned to each cloudlet vj ∈ V ′

through the routing path Pi(vj);
8: Calculate the utility gain u(ri, v0) if ri is assigned to the remote cloud v0.
9: Find node v̂i ∈ V ′ ∪ {v0} with the maximum utility gain u(ri, v̂i) for re-

quest ri;
10: if u(ri, v̂i) = 0 then
11: ri is rejected;
12: R← R \ {ri};
13: end if;
14: end for;
15: Find request ri′ ∈ R with the maximum utility gain, and admit request ri′ by

assigning request ri′ to node v̂i′ ;
16: A← A ∪ {ri′}; R← R \ {ri′};
17: if v̂i′ is a cloudlet then
18: Update the residual resource on cloudlet v̂i′ and the links on the routing

path Pi′(v̂i′);
19: end if;
20: end while;
21: return the solution A as the solution of the total utility maximization problem

with the bandwidth capacity constraint;
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2.3.3 Algorithm analysis

In the following, we first analyze the approximation ratio and time complexity
of the approximation algorithm, Algorithm 1. We then analyze the time complexity
of the heuristic algorithm, Algorithm 2.

Lemma 1. Given an MEC network G = (AP ∪ V ∪ {v0}, E) and a set R of user
requests, the upper bound on the optimal solution of the total utility maximization
problem in G is (λ− 1) · |R|.

Proof. The claim of that the optimal solution is upper bounded by (λ − 1) · |R|
is shown as follows. If a request ri ∈ R can be served within its specified de-
lay threshold, i.e., d(ri, vj) ≤ Di, the utility obtained by this service is (λ − 1); if

Di < d(ri, vj) ≤ βi · Di, its utility is λ − λ
d(ri ,vj)−Di

βi ·Di < λ − 1; otherwise, its utility is
0.

Theorem 2.2. Given an MEC network G = (AP ∪V ∪ {v0}, E) and a set R of offloading
task requests, there is an approximation algorithm, Algorithm 1, for the total utility maxi-
mization problem without the bandwidth capacity constraint, which delivers an approximate
solution with a 1

2+ϵ approximation ratio. The time complexity of the approximation algorithm

is O(|V| · |AP|2 + (|V|+ 1) · |R| · log 1
ϵ +

|V|+1
ϵ4 ), where ϵ is a constant with 0 < ϵ ≤ 1.

Proof. The approximation ratio of the proposed algorithm, Algorithm 1 can be ob-
tained directly by adopting the analysis of the approximation algorithm due to Co-
hen et al. [22]. The solution delivered by the algorithm is no less than 1

2+ϵ times the
optimal one, where ϵ is a constant with 0 < ϵ ≤ 1.

The running time of Algorithm 1 is analyzed as follows. Finding the shortest
paths between each cloudlet and each AP takes O(|V| · |AP|2) time, while the ap-
proximation algorithm due to Cohen et al. [22] takes O((|V|+ 1) · |R| · log 1

ϵ +
|V|+1

ϵ4 )
time. Thus, the time complexity of Algorithm 1 is O(|V| · |AP|2 + (|V| + 1) · |R| ·
log 1

ϵ +
|V|+1

ϵ4 ).

Theorem 2.3. Given an MEC network G = (AP ∪V ∪ {v0}, E) and a set R of offloading
task requests, there is an algorithm, Algorithm 2, for the total utility maximization prob-
lem with the bandwidth capacity constraint, which delivers a feasible solution, and its time
complexity is O(|R|2 · |AP|2).

Proof. It can be seen that the solution delivered by Algorithm 2 is feasible because
no specified constraint is violated. The time complexity of Algorithm 2 is analyzed
as follows.

There are at most |R| iterations. Within each iteration, a request with the max-
imum utility gain from the remaining requests is admitted. The time of calculating
the utility gain of admitting a request ri is dominated by the time of finding the short-
est path from the location of request ri to each cloudlet with sufficient computing re-
source through links with sufficient bandwidth resource for ri, which takes O(|AP|2)
time. Thus, the time complexity of the proposed algorithm is O(|R|2 · |AP|2).
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2.4 Online algorithms for the online average total utility max-
imization problem

In this section, we study dynamic user service request admissions, where user
service requests arrive one by one without the knowledge of future arrivals. All ar-
rived requests will be considered at the beginning of the next time slot. We start with
a special case of the problem where the bandwidth capacity constraint is not con-
sidered, for which we devise an online algorithm with a provable competitive ratio.
We then develop an efficient online algorithm for the problem with the bandwidth
capacity constraint.

Notice that once an admitted request finishes its service, its occupied resources
will be released back to the system in the end of the time slot it leaves. Thus, the
available capacity of each cloudlet or link at each time slot is its residual capacity
at that time slot, and those occupied resources are not available for new request
admissions at the next time slot.

2.4.1 Online algorithm for the problem without the bandwidth capacity
constraint

Denote by Cv(i) the residual computing resource at cloudlet v ∈ V before con-
sidering request ri, and Cv(1) = Cv initially. If request ri is assigned to cloudlet v for
service, Cv(i + 1) = Cv(i)− c(si), where c(si) is the demanded computing resource
of request ri. Otherwise, request ri is assigned to the remote cloud for service, and
nothing has to be done because the remote cloud has unlimited resource. To capture
the computing resource usage on cloudlets, a computing resource usage cost model
is introduced as follows.

wv(i) = Cv(α
1− Cv(i)

Cv − 1), (2.11)

where α > 1 is a turning parameter reflecting the sensitivity of the workload at each
cloudlet v, and 1− Cv(i)

Cv
is the utilization ratio of cloudlet v.

The normalized computing resource cost of assigning offloading request ri to
cloudlet v thus is

ψv(i) =
wv(i)

Cv
= α1− Cv(i)

Cv − 1 (2.12)

Upon the arrival of request ri, we first identify the set V ′ ⊆ V of cloudlets with
sufficient residual computing resource to accommodate request ri. Then we find the
shortest routing path from the located AP li of request ri to each cloudlet v ∈ V ′ and
calculate the utility gain if request ri is assigned to cloudlet v through the shortest
routing path. Among all cloudlets in V ′, we identify the set of cloudlets Qi ⊆ V ′ with
the positive utility gains for request ri, and request ri is assigned to the cloudlet in
Qi with the minimum normalized computing resource cost by Eq. (2.12). If no such
cloudlet exists, request ri can then be assigned to the remote cloud with unlimited
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computing resource. However, if the utility gain brought by assigning request ri to
the assigned node is 0 (i.e., d(ri, vj) > βi · Di), the request can be rejected.

We now assume that request ri is assigned to node v′ ∈ V ∪ {v0} with the utility
gain ui. If request ri is assigned to the remote cloud (i.e., v′ = v0) with a positive
utility gain, it indicates that the request will be admissible. Although ri is admissible,
its admission needs further examined to avoid its admission will consume too much
resource, by adopting an admission control policy. That is, request ri will be rejected
if both the following conditions are met. (i) The normalized computing resource
cost of cloudlet v′ ∈ V that will accommodate request ri is greater than |V| · ui, i.e.,
ψv′(i) > |V| · ui; and (ii) assigning request ri to the remote cloud will result in the
zero utility gain (i.e., exceeding the maximum tolerable service delay). Note that
if condition (i) is met while condition (ii) is violated (i.e., assigning request ri to the
remote cloud will result in a positive utility gain), request ri is admitted and assigned
to the remote cloud.

The detailed online algorithm with a provable competitive ratio is given in
Algorithm 3.

2.4.2 Online algorithm for the problem with the bandwidth capacity con-
straint

We then deal with the online average total utility maximization problem with the
bandwidth capacity constraint by devising an efficient online algorithm as follows.

Recall that for the problem without the bandwidth capacity constraint, we in-
troduce a computing resource cost model to capture the dynamic consumptions of
computing resources on cloudlets. Similarly, we here introduce the bandwidth re-
source cost model to capture the dynamic bandwidth resource consumptions of links
as follows.

we(i) = Be(δ
1− Be(i)

Be − 1), (2.13)

where δ > 1 is a turning parameter reflecting the sensitivity of the workload at each
link e, Be is the bandwidth capacity of link e ∈ E, Be(i) is the residual bandwidth
resource on link e ∈ E before considering request ri, and 1− Be(i)

Be
is the utilization

ratio of link e.
The normalized bandwidth cost of link e ∈ E for request ri thus is

ψe(i) =
we(i)

Be
= δ1− Be(i)

Be − 1. (2.14)

The normalized bandwidth cost on a routing path Pi(v) of request ri then is
∑e∈Pi(v) ψe(i).

The total normalized cost of assigning request ri to cloudlet v through the routing
path Pi(v) consists of the normalized computing resource cost ψv(i) on v and the
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Algorithm 3 Online algorithm for the online average total utility maximization prob-
lem without the bandwidth capacity constraint
Require: |V| cloudlets with each vj ∈ V having computing capacity Cvj , a remote

cloud v0 with unlimited computing capacity, i.e., Cv0 = ∞, a set of requests R
with each request ri = ⟨si, bi, li, Di, βi⟩ arrived one by one, there is no knowledge
of future request arrivals.

Ensure: Maximize the average total utility gain of admitted requests per time slot
within the time horizon.

1: A← ∅; /* the solution */
2: while request ri arrives do
3: Identify the set of cloudlets V ′ ⊆ V with sufficient residual computing re-

source for ri, and find the routing path Pi(vj) from AP li to each cloudlet vj ∈ V ′

with the smallest communication delay;
4: Qi ← ∅; /* the set of candidate cloudlets for ri */
5: for each cloudlet vj ∈ V ′ do
6: Calculate the utility gain of assigning request ri to cloudlet vj;
7: if its utility gain is positive then
8: Qi ← Qi ∪ {vj};
9: end if;

10: end for;
11: if Qi = ∅ then
12: if assigning ri to remote cloud makes positive utility then
13: Admit ri by assigning ri to remote cloud;
14: else
15: Reject ri;
16: end if;
17: else
18: Identify the cloudlet v′ ∈ Qi with the minimum normalized cost by

Eq. (2.12). And calculate the utility gain ui if request ri is assigned to cloudlet v′;
19: if ψv′(i) > |V| · ui then
20: if assigning ri to remote cloud makes positive utility then
21: Admit ri by assigning ri to remote cloud;
22: else
23: Reject ri;
24: end if;
25: else
26: Admit ri by assigning ri to cloudlet v′;
27: end if;
28: end if;
29: if ri is admitted then
30: A← A ∪ {ri};
31: end if
32: end while;
33: return a feasible solution A to the online average total utility maximization prob-

lem without the bandwidth capacity constraint;
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normalized bandwidth cost on Pi(v), i.e.,

ϕ(Pi(v)) = ψv(i) + ∑
e∈Pi(v)

ψe(i). (2.15)

Similar to Algorithm 3, the proposed online algorithm proceeds as follows.
Upon the arrival of request ri, we first identify the set of cloudlets V ′ ⊆ V and
the set of links E′ ⊆ E with sufficient computing and bandwidth resources to accom-
modate request ri. We then assign each cloudlet v ∈ V ′ and each link e ∈ E′ with a
normalized computing resource cost ψv(i) by Eq. (2.12) and a normalized bandwidth
resource cost ψe(i) by Eq. (2.14), respectively. We thirdly find a routing path Pi(vj) in
the induced subgraph G′ = (AP ∪ V ′ ∪ {v0}, E′) of graph G = (AP ∪ V ∪ {v0}, E)
with the least communication delay on the path from location li of request ri to
each cloudlet vj ∈ V ′. Hereafter, among all cloudlets in V ′, we finally identify the
set of cloudlets Qi ⊆ V ′ with the positive utility gains for request ri through the
associated routing paths. Then, among all cloudlets in Qi, we assign request ri to
cloudlet v′ ∈ Qi through its routing path with the minimum total normalized cost
by Eq. (2.15). If no such a cloudlet exists, the request can be assigned to the remote
cloud v0. However, if the utility gain brought by such an assignment is 0, the request
will be rejected.

Assuming that request ri is assigned to node v′ ∈ V ∪ {v0} with the utility
gain ui. If request ri is assigned to the remote cloud (i.e., v′ = v0) with a positive
utility gain, it will be admitted. Although ri is admissible with the utility gain ui
when it is assigned to cloudlet v′ ∈ V, its admission needs further to be examined
to avoid consuming too much resource through an admission control policy. That
is, request ri will still be rejected if both the following conditions are met: (i) The
normalized computing resource cost of cloudlet v′ or the normalized bandwidth
resource cost of the routing path Pi(v′) is greater than |V| · ui, i.e., ψv′(i) > |V| · ui or
∑e∈Pi(v′) ψe(i) > |V| · ui; and (ii) the utility gain is zero if the request is assigned to
the remote cloud. Note that if condition (i) is met while condition (ii) is violated (i.e.,
assigning request ri to the remote cloud will result in a positive utility gain), request
ri is admitted and assigned to the remote cloud.

The detailed algorithm is given in Algorithm 4.

2.4.3 Algorithm analysis

The rest is to analyze the competitive ratio and time complexity of Algorithm 3.
The time complexity of Algorithm 4 is also analyzed.

Let R be the set of requests arrived for the given time horizon. Denote by Z(i) ⊆
R the set of requests admitted by Algorithm 3 prior to the arrival of request ri, and
umax and umin the maximum and minimum utility gains of admitting any request,
respectively. Following Eq. (2.6), for a request ri, umax = λ− 1 when d(ri, vj) ≤ Di,

while umin = minri∈R{λ− λ
βi−1

βi } when d(ri, vj) = βi · Di, and both umax and umin are
constants.
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Algorithm 4 A heuristic algorithm for the online average total utility maximization
problem with the bandwidth capacity constraint
Require: |V| cloudlets with each vj ∈ V having computing capacity Cvj , a remote

cloud v0 with unlimited computing capacity, i.e., Cv0 = ∞, each link e ∈ E
connecting cloudlets has a bandwidth capacity, and a set of requests R with each
request ri = ⟨si, bi, li, Di, βi⟩ arrived one by one with no future knowledge.

Ensure: Maximize the average total utility gain of admitted requests per time slot
within the time horizon.

1: A← ∅; /* the solution */
2: while request ri arrives do
3: Identify the set of cloudlets V ′ ⊆ V and the set of links E′ ⊆ E with suffi-

cient residual resource for ri, and find the routing path Pi(vj) from AP li to each
cloudlet vj ∈ V ′ with the least communication delay, through links in E′;

4: Qi ← ∅; /* the set of candidate cloudlets for ri */
5: for each cloudlet vj ∈ V ′ do
6: if the utility gain u(ri, vj) of assigning ri to vj via Pi(vj) is positive then
7: Qi ← Qi ∪ {vj};
8: end if;
9: end for;

10: if Qi = ∅ then
11: if assigning ri to remote cloud makes positive utility then
12: Admit ri by assigning ri to remote cloud;
13: else
14: Reject ri;
15: end if;
16: else
17: Identify the cloudlet v′ ∈ Qi and its routing path Pi(v′) with the minimum

total normalized cost by Eq. (2.15), and calculate the utility gain ui by assigning
ri to v′ through Pi(v′);

18: if ψv′(i) > |V| · ui or ∑e∈Pi(v′) ψe(i) > |V| · ui then
19: if assigning ri to remote cloud makes positive utility gain then
20: Admit ri by assigning ri to remote cloud;
21: else
22: Reject ri;
23: end if;
24: else
25: Admit ri by assigning ri to cloudlet v′ through Pi(v′);
26: end if;
27: end if;
28: if ri is admitted then
29: A← A ∪ {ri};
30: end if
31: end while;
32: return a feasible solution A to the online average total utility maximization prob-

lem with the bandwidth capacity constraint;
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Lemma 2. Given an MEC network G = (AP ∪V ∪ {v0}, E) and a finite time horizon
that consists of T time slots, let R be the set of requests arriving one by one within
the given time horizon, denote by Z(i) the set of requests admitted by Algorithm 3
prior to the arrival of request ri. Then, the sum of usage cost of all cloudlets is

∑
v∈V

wv(i) ≤ 2 · |V| · log2 α · ∑
ri′∈Z(i)

(c(si′) · ui′), (2.16)

where α is a constant with 2|V| · umax + 2 ≤ α ≤ 2
Cmin
cmax , umax = λ − 1, Cmin =

min{Cv | v ∈ V}, and cmax = max{c(si) | ri ∈ R}.

Proof. If request ri′ ∈ R is rejected, or admitted by being assigned to the remote cloud,
the usage cost of all cloudlets do not change. Otherwise (request ri′ is admitted and
assigned to cloudlet v′), we have Cv′(i′ + 1) = Cv′(i′)− c(si′). Then,

wv′(i′ + 1)− wv′(i′)

=Cv′ · (α
1− Cv′ (i

′+1)
Cv′ − 1)− Cv′ · (α

1− Cv′ (i
′)

Cv′ − 1)

=Cv′ · α
1− Cv′ (i

′)
Cv′ · (α

Cv′ (i
′)−Cv′ (i

′+1)
Cv′ − 1)

≤Cv′ · α
1− Cv′ (i

′)
Cv′ · (α

c(si′ )
Cv′ − 1)

=Cv′ · α
1− Cv′ (i

′)
Cv′ · (2

c(si′ )
Cv′
·log2 α − 1)

≤Cv′ · α
1− Cv′ (i

′)
Cv′ · c(si′)

Cv′
· log2 α. (2.17)

=c(si′) · α
1− Cv′ (i

′)
Cv′ · log2 α, (2.18)

where Ineq. (2.17) holds because 2x − 1 ≤ x with 0 ≤ x < 1.
If request ri′ is not assigned to cloudlet v, the usage cost of cloudlet v does not

change. Then, the difference in the sums of the usage costs of all cloudlets before
and after admitting request ri′ is

∑
v∈V

(wv(i′ + 1)− wv(i′)) = wv′(i′ + 1)− wv′(i′)

≤c(si′) · α
1− Cv′ (i

′)
Cv′ · log2 α, by Eq. (2.18)

= log2 α · c(si′) · ((α
1− Cv′ (i

′)
Cv′ − 1) + 1)

= log2 α · c(si′) · (ψv′(i′) + 1), by Eq. (2.12)

≤ log2 α · c(si′) · (|V| · ui′ + 1) (2.19)

≤2 · log2 α · |V| · c(si′) · ui′ , (2.20)

where Ineq. (2.19) holds because request ri′ is admitted by the admission control
policy.
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The sum of the usage costs of all cloudlets prior to the arrival of request ri is

∑
v∈V

wv(i) =
i−1

∑
i′=1

∑
v∈V

(wv(i′ + 1)− wv(i′))

= ∑
ri′∈Z(i)

∑
v∈V

(wv(i′ + 1)− wv(i′))

≤ ∑
ri′∈Z(i)

(2 · log2 α · |V| · c(si′) · ui′), by Eq. (2.20)

=2 · |V| · log2 α · ∑
ri′∈Z(i)

(c(si′) · ui′). (2.21)

Denote by D(i) the set of requests admitted by the optimal solution but rejected
by Algorithm 3 prior to the arrival of request ri, and denote by H(i) the set of
requests admitted by both the optimal solution and Algorithm 3 prior to the arrival
of request ri. It can be seen that set D(i)∪H(i) is the set of admitted requests by the
optimal solution. Then, for each request ri ∈ H(i), we have

u∗i ≤
umax

umin
· ui, (2.22)

where u∗i and ui are the utility gains of admitting request ri by the optimal solution
and Algorithm 3, respectively, while umax and umin are the maximum and minimum
utilities by admitting any request, which are constants.

Lemma 3. Given an MEC network G = (AP ∪V ∪ {v0}, E) and a finite time horizon
that consists of T time slots, let R be the set of requests arriving one by one over the
time horizon, denote by D(i) the set of requests admitted by the optimal solution
but rejected by Algorithm 3 prior to the arrival of request ri. Denote by v∗i′ the node
in the optimal solution to which request ri′ ∈ D(i) is assigned. We have v∗i′ ∈ V,
∀ri′ ∈ D(i), i.e., the requests in the set D(i) are assigned to cloudlets instead of the
remote cloud in the optimal solution.

Proof. We prove the lemma by contradiction. We assume that there is a request
ri′ ∈ D(i) that is assigned to the remote cloud in the optimal solution. It can be seen
that if a positive utility gain can be obtained when ri′ is assigned to the remote cloud,
then ri′ can be assigned to the remote cloud by Algorithm 3. However, request ri′ is
rejected by Algorithm 3. This results in a contradiction.

Lemma 4. Given an MEC network G = (AP ∪V ∪ {v0}, E) and a finite time horizon
that consists of T time slots, let R be the set of requests arriving one by one over the
time horizon, denote by D(i) the set of requests admitted by the optimal solution
but rejected by Algorithm 3 prior to the arrival of request ri. Denote by v∗i′ the node
in the optimal solution to which request ri′ ∈ D(i) is assigned, and denote by u∗i′ the
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utility for request ri′ ∈ D(i) in the optimal solution. Then, for each request ri′ ∈ D(i),

ψv∗i′
(i′) > |V| · umin

umax
· u∗i′ , (2.23)

when 2|V| · umax + 2 ≤ α ≤ 2
Cmin
cmax .

Proof. We show the claim by distinguishing two cases when request ri′ is rejected:
Case 1. there is no sufficient computing resource on cloudlet v∗i′ to admit request ri′

by Algorithm 3; and Case 2: there is sufficient computing resource on cloudlet v∗i′
to admit request ri′ in Algorithm 3. But the selected cloudlet vi′ to admit request ri
violates the admission control policy in Algorithm 3.

Case 1. As v∗i′ is the cloudlet with no enough computing resource to accommo-
date request ri′ prior to the arrival of ri′ in Algorithm 3, i.e., Cv∗i′

(i′) < c(si′), then

ψv∗i′
(i′) = α

1−
Cv∗

i′
(i′)

Cv∗
i′ − 1 > α

1− c(si′ )
Cv∗

i′ − 1

≥ α
1− 1

log2 α − 1, since α ≤ 2
Cmin
cmax ≤ 2

Cv∗
i′

c(si′ )

=
α

2
− 1 ≥ |V| · u∗i′ , since α ≥ 2|V| · umax + 2

≥ |V| · umin

umax
· u∗i′ . (2.24)

Case 2. Because we assign request ri to the cloudlet vi′ with the minimum nor-
malized computing resource cost by Eq. (2.12) in Algorithm 3 (cloudlet vi′ could be
cloudlet v∗i′), we have

ψv∗i′
(i′) ≥ ψvi′ (i

′). (2.25)

Since the admission control policy is violated if request ri′ is assigned to cloudlet
vi′ in Algorithm 3, according to the condition (i) of the admission control policy, then

ψvi′ (i
′) > |V| · ui′ ≥ |V| ·

umin

umax
· u∗i′ . (2.26)

Thus, we have

ψv∗i′
(i′) > |V| · umin

umax
· u∗i′ . (2.27)

Lemma 5. Given an MEC network G = (AP ∪V ∪ {v0}, E) and a finite time horizon
that consists of T time slots, let R be the set of requests arriving one by one over the
time horizon, denote by D(i) the set of requests admitted by the optimal solution
but rejected by Algorithm 3 prior to the arrival of request ri. Denote by Popt(i) and
P(i) the total utilities of admitted requests by an optimal solution and the solution
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delivered by Algorithm 3 prior to the arrival of request ri, respectively. We have

Popt(i) ≤
umax

umin
·P(i) + ∑

ri′∈D(i)
u∗i′ . (2.28)

Proof. Recall that D(i) ∪H(i) is the set of admitted requests by the optimal solution.
We have

Popt(i) = ∑
ri′∈H(i)

u∗i′ + ∑
ri′∈D(i)

u∗i′

≤ umax

umin
· ∑

ri′∈H(i)
ui′ + ∑

ri′∈D(i)
u∗i′ , by Eq. (2.22)

≤ umax

umin
·P(i) + ∑

ri′∈D(i)
u∗i′ . (2.29)

Ineq. (2.29) holds as H(i) is the subset of admitted requests by Algorithm 3.

Theorem 2.4. Given an MEC network G = (AP ∪V ∪ {v0}, E) and a finite time horizon
that consists of T time slots, let R be the set of requests arriving one by one over the time
horizon, there is an online algorithm with a competitive ratio of O(log |V|), Algorithm 3,
for the online average total utility maximization problem without the bandwidth capacity
constraint, which takes O(|AP|2) time to admit each request when α = 2|V| · umax + 2,
where umax is the maximum utility gain of a request.

Proof. Recall that D(i) is the set of requests admitted by the optimal solution but
rejected by Algorithm 3 prior to the arrival of request ri. Let D(i, v) be the set
of requests in D(i) which are assigned to cloudlet v by the optimal solution, i.e.,
D(i, v) = {ri′ | ri′ ∈ D(i), v∗i′ = v}. It can be seen that D(i) = ∪v∈VD(i, v). We have

|V|·(Popt(i)−
umax

umin
·P(i)) ≤ |V|· ∑

ri′∈D(i)
u∗i′ , by Lemma 5

= ∑
ri′∈D(i)

|V| · u∗i′ <
umax

umin
· ∑

ri′∈D(i)
ψv∗i′

(i′), by Lemma 4

≤umax

umin
· ∑

ri′∈D(i)
ψv∗i′

(i) (2.30)

=
umax

umin
· ∑

ri′∈D(i)

wv∗i′
(i)

Cv∗i′
=

umax

umin
· ∑

v∈V
∑

ri′∈D(i,v)

wv(i)
Cv

(2.31)

≤umax

umin
· ∑

v∈V
wv(i) ∑

ri′∈D(i,v)

1
Cv

(2.32)

≤umax

umin
· ∑

v∈V
wv(i) (2.33)

≤2 · |V| · umax

umin
· log2 α · ∑

ri′∈Z(i)
(c(si′) · ui′), by Lemma 2,
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where Ineq. (2.30) holds because the utilization of the computing resource does
not decrease. Eq. (2.31) holds because D(i) = ∪v∈VD(i, v). Ineq. (2.32) holds by
∑

p
i=1 ∑

q
j=1AiBj ≤ ∑

p
i=1Ai ∑

q
j=1 Bj. Ineq. (2.33) holds because the computing resource

consumption of each cloudlet is within its capacity, by assuming that the demanded
computing resource of each request ri′ is no less than 1, i.e., c(si′) ≥ 1, and each
cloudlet v can accommodate at most ⌊C(v)⌋ requests. We thus have

Popt(i) <
umax

umin
·P(i)+2 · umax

umin
· log2 α · ∑

ri′∈Z(i)
(c(si′) · ui′)

≤ umax

umin
·P(i)+2 · umax

umin
· log2 α · cmax · ∑

ri′∈Z(i)
·ui′ .

Then,

Popt(i)
P(i)

<

umax
umin
·P(i)+2 · umax

umin
·log2 α·cmax ·∑ri′∈Z(i) ui′

P(i)

=

umax
umin
·∑ri′∈Z(i) ui′+2· umax

umin
·log2 α·cmax ·∑ri′∈Z(i) ui′

∑ri′∈Z(i) ui′

=
umax

umin
+ 2 · umax

umin
· log2 α · cmax

= O(log |V|), when α = 2|V| · umax + 2.

The time complexity of Algorithm 3 is dominated by the time of finding the
shortest paths (delay) from AP li to cloudlets, which takes O(|AP|2) time.

Theorem 2.5. Given an MEC network G = (AP ∪ V ∪ {v0}, E) and a finite time hori-
zon that consists of T time slots, let R be the set of requests arriving one by one over the
time horizon, there is an online algorithm, Algorithm 4, for the online average total utility
maximization problem with the bandwidth capacity constraint.

Proof. It can be seen that the solution delivered by Algorithm 4 is feasible because
all constraints imposed on the problem are met.

The time complexity of Algorithm 4 for a request admission is dominated by
the time of finding the routing paths with the least communication delay from AP li
to cloudlets with sufficient resource for request ri, which takes O(|AP|2) time.

2.5 Performance Evaluation

In this section, we conduct the performance evaluation of the proposed algo-
rithms. We also investigate the impact of important parameters on the performance
of the proposed algorithms.
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2.5.1 Environment setting

We consider a heterogeneous MEC network consisting of 200 APs, 10% of which
are co-located with cloudlets [109]. The topologies of MEC networks are generated
by GT-ITM [34]. For each AP, the bandwidth at each time slot is drawn from 20
MHz to 40 MHz randomly [97], the signal-to-noise ratio (i.e., κi

σ2 ) of an AP is set as 30
dB [103]. For each cloudlet, the capacity varies from 3, 000 MHz to 7, 000 MHz [108]
and its processing rate varies from 0.5 MB to 2 MB per ms [70]. For each request,
its task size is randomly drawn from 1 MB to 5 MB [90], the demanded computing
resource is randomly drawn from 20 MHz to 300 MHz [109] and the demanded
bandwidth resource ranges from 5 Mbps to 50 Mbps [115]. The delay requirement
threshold of a request is randomly drawn from 10 ms to 50 ms [70], and βi ranges
from 1 to 3. The bandwidth capacity of each link varies from 200 Mbps to 2, 000
Mbps [70], and the transmission delay of a link at each time slot is chosen from 2 ms
to 5 ms randomly [108], while the transmission delay from an AP to the remote cloud
through the gateway varies from 80 ms to 100 ms. We further assume the processing
rate of the remote cloud is 20 MB per ms. λ is set as 2 and ϵ is set as 0.5. The turning
parameters α and δ are set as 2|V| · umax + 2, where |V| is the number of cloudlets
and umax = λ− 1. We assume that there are 100 time slots and 1000 requests arrive
at each time slot one by one. The duration of each request is randomly drawn from 1
to 3 time slots [70]. The result in each figure is the mean of the results by applying an
algorithm on 20 MEC network instances of the same size, where the running time of
an algorithm is the actual amount of time of finding a solution, based on a desktop
with a 3.60 GHz Intel 8-Core i7-7700 CPU and 16 GB RAM. Unless specified, the
above parameters will be adopted in the default setting.

To evaluate Algorithm 1 (referred to as Alg.1) for the total utility maximization
problem without the bandwidth capacity constraint, we propose two comparison
benchmarks. One is the ILP solution (2.7) (referred to as Optimal) which is the op-
timal solution to the problem; another is a greedy algorithm (referred to as Gdy.1),
which picks requests in R randomly, and assigns the picked request to the cloudlet
(or the remote cloud) with the maximum utility gain, this procedure continues until
all requests are assigned. To study Algorithm 2 (referred to as Alg.2) for the total
utility maximization problem with the bandwidth capacity constraint, we also give a
comparison algorithm for it, which is a greedy algorithm (referred to as Gdy.2) that
requests are picked randomly. For each picked request, it first finds a routing path
with the least communication delay from the location of the request to each cloudlet
with sufficient computing resource, through the links with sufficient bandwidth re-
source for the request. It then assigns the request to the cloudlet (or the remote
cloud) with the maximum utility gain. This procedure continues until all requests
are assigned.

To investigate the performance of Algorithm 3 (referred to as Alg.3) for the
online average total utility maximization problem without the bandwidth capacity
constraint, a comparison online algorithm (referred to as Gdy.3) is proposed, which
is the online version of Gdy.1. To evaluate Algorithm 4 (referred to as Alg.4) for
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the online average total utility maximization problem with the bandwidth capacity
constraint, a greedy algorithm (referred to as Gdy.4), which is the online version of
Gdy.2, is also proposed for the performance evaluation purpose.

2.5.2 Performance evaluation of the proposed algorithms for the total util-
ity maximization problem

We first studied the performance of Alg.1 against algorithms Optimal and Gdy.1,
by varying the number of requests from 100 to 1, 000. We then evaluated the perfor-
mance of Alg.2 against algorithm Gdy.2, by varying the number of requests from 100
to 1, 000. Fig. 2.2 and Fig. 2.3 depict the accumulated utilities and running times of
different algorithms for the total utility maximization problem without and with the
bandwidth capacity constraint. It can be seen from Fig. 2.2(a) that when the number
of requests reaches 1, 000, the performance achieved by algorithm Gdy.1 is 88.5% of
that by Alg.1 while the performance achieved by Alg.1 is 85.2% of that by algorithm
Optimal. Meanwhile, it can be seen from Fig. 2.3(a) that Alg.2 outperforms algorithm
Gdy.2 on the performance improvement by at least 10.8% with 1, 000 requests. The
rationale behind is that both Alg.1 and Alg.2 better utilize the network resource by
provisioning satisfied services to more users, compared with the greedy algorithms,
and they take much less running time in comparison with the ILP solution that takes
a much longer running time.
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Figure 2.2: Performance of different algorithms for the total utility maximization
problem without the bandwidth capacity constraint.

We then studied the impact of network size on the proposed algorithms with
1, 000 requests, by varying the number of APs from 50 to 250. Recall that 10% of APs
are co-located with cloudlets. Fig. 2.4(a) and Fig. 2.4(b) demonstrate the accumulated
utilities by different algorithms for the total utility maximization problem without
and with the bandwidth capacity constraint. We can see from Fig. 2.4(a) that when
the network size is 250, the performance achieved by algorithm Gdy.1 is 76.3% of that
by Alg.1 while the performance achieved by Alg.1 is 84.8% of that by Optimal. The
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Figure 2.3: Performance of different algorithms for the total utility maximization
problem with the bandwidth capacity constraint.

similar performance behaviors can be observed in Fig. 2.4(b) too. This is because
both Alg.1 and Alg.2 facilitate the efficient cooperation between the remote cloud
and local cloudlets to maximize the accumulated user satisfaction when the network
size is large.
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Figure 2.4: The impact of network size on the performance of the proposed algo-
rithms

2.5.3 Performance evaluation of the proposed algorithms for the online
average total utility maximization problem

We first studied the performance of Alg.3 and Alg.4 against algorithms Gdy.3
and Gdy.4, respectively, by varying the number of requests arriving at each time
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slot from 100 to 1, 000, over the time horizon (100 time slots). Fig. 2.5 and Fig. 2.6
plot the average utilities and running times of different algorithms for the online
average total utility maximization problem without and with the bandwidth capacity
constraint. With 1, 000 requests arriving at each time slot, in Fig. 2.5(a) algorithm
Alg.3 outperforms Gdy.3 by 22.1%, while in Fig. 2.3(a) algorithm Alg.4 outperforms
Gdy.4 by 16.4%. This can be justified by that either Alg.3 or Alg.4 establishes an
efficient admission control policy to admit requests with larger utility gain but less
resource consumption, without any knowledge of future request arrivals.
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Figure 2.5: Performance of different algorithms for the online average total utility
maximization problem without the bandwidth capacity constraint.
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Figure 2.6: Performance of different algorithms for the online average total utility
maximization problem with the bandwidth capacity constraint.

The rest is to investigate the impact of important parameters on the performance
of the proposed algorithms, including parameter βi, parameter α and parameter δ.
We also study the performance of the online algorithms with and without adopting
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the admission control policy. Recall that parameter βi reflects the service delay tol-
erance of user ui, while parameter α and parameter δ reflect the sensitivity of the
workload at each cloudlet and link, respectively. For the sake of convenience, in the
rest experimental simulations, it is assumed that the time horizon consists of 100
time slots and 1, 000 requests arrive at each time one by one.

We first evaluated the impact of parameter βi on the performance of the pro-
posed algorithms, by varying the network size from 50 to 250. Fig. 2.7 illustrates the
impact of parameter βi on the proposed algorithms Alg.3 and Alg.4 when βi = 1,
2, and 3 respectively. It can be seen from Fig. 2.7(a) that when the network size is
50, the performance of Alg.3 with βi = 1 is 24.8% of itself with βi = 3. And when
the network size is 250, the performance of Alg.3 with βi = 1 is 76.2% of itself with
βi = 3. The similar performance behavior can be found in Fig. 2.7(b). The rationale
behind is that a larger βi leads to a larger tolerable service delay, and more requests
can be admitted. In addition, when the network size is small (i.e., the available com-
puting resource is very limited), the mobile users have to utilize the remote cloud
better to process their requests, resulting in longer service delays. Thus, a larger βi
is important in admitting requests when the network size is small.
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Figure 2.7: The impact of βi on the performance of the proposed algorithms.

We then studied the impact of parameter α on the performance of the algorithm
Alg.3, and the impacts of parameter α and δ on the performance of the algorithm
Alg.4, by varying the network size from 50 to 250. Fig.2.8(a) demonstrates the perfor-
mance of Alg.3 with parameter α = 2|V| · umax + 2, 4|V| · umax + 2, and 8|V| · umax + 2,
respectively, where |V| is the number of cloudlets, and umax = λ− 1 is the maximum
possible utility gain for a request. While Fig.2.8(b) shows the performance of Alg.4
with parameter α = δ = 2|V| · umax + 2, 4|V| · umax + 2, and 8|V| · umax + 2, respec-
tively. As depicted by Fig.2.8(a), when the network size is 250, the performance of
Alg.3 with α = 8|V| · umax + 2 is 89.3% of itself with α = 2|V| · umax + 2. The sim-
ilar performance behavior can be found in Fig. 2.8(b). The justification is that with
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a larger α or δ, the normalized cost of computing resource or bandwidth resource
becomes higher by Eq. (2.12) and Eq. (2.14), and it intends to be conservative and
reject requests.
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Figure 2.8: The impacts of the parameter α and δ on the performance of the proposed
algorithms.

We finally investigated the impact of the admission control policy, by varying
the network size from 50 to 250. Fig. 2.9(a) and Fig. 2.9(b) plot the performance
of Alg.3 and Alg.4 with and without the admission control policy. It can be seen
from Fig. 2.9(a) that when the network size is 250, the performance of Alg.3 without
the admission control policy is 86.9% of itself with the admission control policy. The
similar performance behavior can be found in Fig. 2.9(b). This can be justified by that
with a reasonable admission control policy, the requests with larger utility gains but
less computing resource consumption will be admitted. Thus, the admission control
policy is important to deal with the dynamic request admissions.

2.6 Summary

In this chapter, we studied the user satisfaction on the use of services for delay-
sensitive IoT applications in an edge computing environment, by offloading user
service requests to either the remote cloud or local cloudlets in an MEC network. We
first formulated two novel optimization problems and showed their NP-hardness. We
then proposed efficient approximation and heuristic algorithms for the admissions of
a set of requests. We also developed online algorithms for the admissions of dynamic
requests without the knowledge of future arrivals. We finally evaluated the perfor-
mance of the proposed algorithms through experimental simulations. Experimental
results demonstrate that the proposed algorithms are promising.
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Figure 2.9: The impacts of the admission control policy on the performance of the
proposed algorithms.



Chapter 3

Service Provisioning for
Multi-Source IoT Applications

In this chapter, we first formulate two novel optimization problems: the cost
minimization problem for a single multi-source Internet of Things (IoT) application,
and the cost minimization problem for a set of multi-source IoT applications, re-
spectively. We then propose a service provisioning framework in the Mobile Edge
Computing (MEC) network for multi-source IoT applications. We also devise an ef-
ficient algorithm for the cost minimization problem built upon the proposed service
provisioning framework, and further extend the solution for the cost minimization
problem for a set of multi-source IoT applications.

3.1 Introduction

With the fast development of 5G, MEC promises to greatly reduce data process-
ing delays of IoT services, by deploying computing resource (e.g., cloudlets) in the
proximity of IoT devices [2]. Thus, IoT devices can directly forward their streaming
sensory data to virtual services instantiated in Virtual Machines (VMs) in cloudlets
of the MEC network. A typical IoT application usually collects sensory data from
multiple sources (e.g., different IoT devices) located at different geographical loca-
tions, aggregates the streaming data at some intermediate nodes (cloudlets), and
ultimately routes the aggregated data stream to a destination (a cloudlet) for further
processing and storage. To ensure the security and privacy of data stream routing
in the MEC network, various network service functions such as firewalls, intrusion
detection systems, proxies, and load balancers may also be deployed. For example,
IoT applications usually need a sequence of network service functions for data aggre-
gation and filtering, to guarantee the real-time in-network processing (summation,
averaging, maximum or minimum) of IoT data streams. Such a sequence of network
service functions is referred to as a Service Function Chain (SFC). Conventional net-
work functions are implemented by dedicated hardware - middleboxes, making their
deployment and maintenance very expensive and not agile. Network Function Virtu-
alization (NFV) [20; 21; 35] as a new technology promises to provide inexpensive and
flexible network services, and implements the Virtual Network Functions (VNFs) as

49
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software in VMs or containers in cloudlets. NFV makes virtual service provisioning
becomes affordable, and easy to adopt and maintain.

The novelties of the work in this chapter lie in formulating two novel cost mini-
mization problems for multi-source IoT applications in an MEC network, where each
multi-source IoT application has multiple data streams from different sources to be
uploaded to the MEC network for processing and storage, while each data stream
must pass through the network functions in the SFC of the IoT application prior to
reaching its destination. A service provisioning framework for such multi-source IoT
applications is proposed through VNF instance placement and sharing, workload
balancing among cloudlets, and in-network aggregation of data streams. Efficient
algorithms for service provisioning of multi-source IoT applications, built upon the
proposed framework, are also proposed. To the best of our knowledge, this is the
first work on service provisioning for multi-source IoT applications in MEC networks
with multiple critical constraints.

The main contributions of this chapter are given as follows. We consider the
service provisioning in an MEC network for multi-source IoT applications with SFC
requirements. We first formulate two optimization problems: the cost minimization
problem for a single multi-source IoT application and the cost minimization problem
for a set of multi-source IoT applications, respectively, and show that both problems
are NP-hard. We then propose a novel service provisioning framework in an MEC
network for a single multi-source IoT application, which consists of multiple data
streams uploading from different subnetworks through wireless access points (gate-
way nodes), data stream in-network aggregation and routing, VNF instance place-
ment and sharing, and workload balancing among cloudlets in the MEC network.
Due to the NP-hardness of the two defined problems, we thirdly devise efficient
heuristic algorithms for them. We finally evaluate the performance of the proposed
algorithms through experimental simulations. Experimental results demonstrate that
the proposed algorithms are promising, and outperform their comparison counter-
parts.

The rest of the chapter is organized as follows. Section 3.2 introduces notions,
notations, and the problem definitions. Section 3.3 shows that the defined problems
are NP-hard. Section 3.4 proposes a novel service provisioning framework for multi-
source IoT applications with SFC requirements. Section 3.5 devises an algorithm for
the cost minimization problem for a single multi-source IoT application. Section 3.6
extends the proposed algorithm to the service provisioning of a set of multi-source
IoT applications through network slicing. Section 3.7 evaluates the proposed algo-
rithms empirically, and a summary is given in Section 3.8.

3.2 Preliminaries

In this section, we first introduce the system model, notions, and notations. We
then give problem definitions.
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Access  
Point 
(AP)

cloudlet

sensor

multi-source  
IoT application

Figure 3.1: An illustrative example of an MEC network that consists of 6 APs, and
there are 6 cloudlets co-located with the APs. There is a destination cloudlet (service
provisioning) for a multi-source IoT application, where the multi-source IoT applica-
tion contains 3 data stream sources with each from a different sensor subnetwork of

the IoT application.

3.2.1 System Model

An MEC network is represented as an undirected graph G = (V, E), where V is
the set of nodes and E is the set of links between nodes. Each node v ∈ V is an Access
Point (AP). Associated with each AP, there is a co-located cloudlet v ∈ V (edge cloud)
with computing capacity Cv > 0. The AP and its co-located cloudlet are connected
through a high-speed optical cable, and the communication delay between each AP
and its co-located cloudlet thus is negligible. Assume that the MEC network supports
a set of services in which each service is associated with a set of VNFs. Denote by
F = ⟨ f1, f2, . . . , f|F |⟩ the set of VNFs in the system, where the implementation of
VNF f j ∈ F consumes the amount c f j of computing resource of a cloudlet. One
implementation of f j is termed as one of VNF instances of the function and each such
a VNF instance has a data processing capacity µ f j , where 1 ≤ j ≤ |F|. Figure 3.1 is
an illustrative example of an MEC network.
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3.2.2 Problem definitions

Given an MEC network G = (V, E), we consider a multi-source IoT application,
which provides continuous surveillance to monitor different geographical areas (e.g.,
public parks) in a metropolitan region, and different types of IoT sensory devices are
deployed in the monitoring areas. The data streams generated from these IoT devices
can then be aggregated within their subnetworks and uploaded to the MEC through
their gateways (APs). We further assume that there is a destination node (cloudlet) in
the MEC for the aggregated data storage of each IoT application, where all updated
streaming data from the gateways (APs) of the IoT application will be stored for user
ad hoc queries. When the stream data from each gateway is routed to the destination
node, the data stream may be merged or aggregated with the data streams from the
other gateways of the application. However, each data stream from a gateway to the
destination node must pass through the specified VNF instances in the SFC to ensure
the security and privacy of the data stream and network performance. Thus, the VNF
instances of each function in the SFC must be instantiated in the cloudlets of their
routing paths and some of the VNF instances can be shared among the data streams
from different gateways of the IoT application. For the sake of convenience, in the
rest of our discussion, we assume that there are sufficient computing and bandwidth
resources in the MEC to accommodate the VNF instances and data stream routing
for the IoT application. In summary, we aim to build a VNF network slicing for
each multi-source IoT application such that the operational cost of implementing the
application is minimized, in terms of the computing and communication resource
consumptions, and the workload balancing among cloudlets involved. We refer to
this IoT-driven optimization problem as the cost minimization problem for a single multi-
source IoT application in MEC. An illustrative example of such an IoT application is
given in Figure 3.1.

Definition 1. Given an MEC G = (V, E), and a multi-source IoT application
with a Service Function Chain (SFC) requirement ⟨ f1, f2, . . . fL⟩, in which there is a
set S = {s1, s2, . . . , sK} ⊂ V of sources and one destination d ∈ V for the application.
Each source si has a streaming data rate ρsi with 1 ≤ i ≤ K, the cost minimization
problem for a single multi-source IoT application is to find a data routing tree T in G
rooted at d ∈ V and spanning all nodes in S, and place the demanded number of
VNF instances of each f j in the SFC with 1 ≤ j ≤ L at some nodes in T that meets the
following conditions: (1) the operational cost of implementing the IoT application is
minimized; (2) the data stream in the tree path from each si to the destination d must
pass through the VNF instances of functions in the SFC in order; (3) there is a defined
data aggregation function g(v) at each non-leaf node v in T, and the value of g(v) is
determined by the values of its l children: g(v1), g(v2), . . . , g(vl), where v1, . . . , vl are
the children of node v. Particularly, g(v) = ρv for each leaf node (source) v in T.
For example, the value of function g(·) can be the sum of the data rates of all data
streams of its children, or the average of the data rates of its children, depending on
which types of IoT applications; and (4) the workload at each cloudlet (in terms of the
total amount of computing resource consumed for hosting VNF instances of different
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functions) is as balanced as possible. The optimization objective is to minimize the
operational cost of T, where the operational cost of implementing a multi-source
IoT application consists of the computing cost, communication cost, and workload
balancing cost that are defined as follows.

The computing cost: For each node v in the data routing tree T with the accu-
mulative data steam g(v), the computing cost at node v for accommodating the VNF
instances of the multi-source IoT application is

Ccomp(v) =
L

∑
j=1

I(v, f j) · ⌈
g(v)
µ f j

⌉ · c f j · ccomp, (3.1)

where I(v, f j) is an indication function, which is 1 if there is any VNF instance of

f j in cloudlet v; otherwise 0, and the range of j is 1 ≤ j ≤ L, and v ∈ V. ⌈ g(v)
µ f j
⌉ is

the number of VNF instances of f j required to process the accumulative data stream
at node v, and c f j is the amount of computing resource of an instance of VNF f j.
The value of ccomp is the price of a unit computing resource consumption at any
cloudlet v ∈ V. If node v is a leaf node in T and assuming that node v is source
si, then g(v) = ρsi ; otherwise, assuming that v has l children v1, . . . , vl , then g(v) =
g(g(v1), . . . , g(vl)), where g(v) is an aggregation function at node v, e.g., g(v) can be
a summation function with g(v) = ∑l

i=1 g(vi).
The communication cost: The communication cost of transmitting a volume

ρ(u, v) of data on an edge (u, v) from node u to node v in G is

Ccomm(u, v) = ρ(u, v) · bcomm(u, v), (3.2)

where ρ(u, v) is the accumulative volume of data streams transmitted from node u
to node m, and bcomm(u, v) is the price of unit data transfer along edge (u, v).

The workload balancing cost: As the workload Wv of each cloudlet v ∈ V is the
actual computing resource consumption of cloudlet v, it is well-known that a heavily
loaded cloudlet usually has a much longer processing delay, compared to a lightly
loaded cloudlet. Therefore, a penalty cost of this delay should be taken into account,
which can be expressed by the workload utility of the cloudlet as follows.

Denote by γv the workload utility of cloudlet v for an IoT application which is
defined as

γv =
Wv

Cv
=

∑L
j=1 I(v, f j) · ⌈ g(v)

µ f j
⌉ · c f j

Cv
, (3.3)

where Wv = ∑L
j=1 I(v, f j) · ⌈ g(v)

µ f j
⌉ · c f j is the computing resource consumption on

cloudlet v, and Cv is the computing capacity of cloudlet v.
The workload balancing cost at each cloudlet v thus is defined as follows.

costload(v) = βload · (2γv − 1), (3.4)
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where βload is a given coefficient of the workload balancing cost with βload > 0, and
0 ≤ costload(v) ≤ βload since 0 ≤ γv ≤ 1. Note that the workload balancing cost is
modeled as an exponential function of the workload utility, as a workload balancing
cost increases with the increase on the workload utility, while the increasing rate of
the workload balancing cost is supposed to become faster with the increase of the
workload utility.

The optimization objective of the cost minimization problem for a single multi-
source IoT application thus is to find a data routing tree T in G such that its opera-
tional cost c(T) is minimized, where

c(T) = ∑
v∈V(T)

Ccomp(v) + ∑
(u,v)∈E(T)

Ccomm(u, v) + ∑
v∈V(T)

costload(v),

where V(T) and E(T) are the set of nodes and edges in the data routing tree T,
respectively. Notice that the solution of the problem consists of the construction of
a data routing tree T, the placement of VNF instances of each VNF f j in the SFC at
some cloudlet nodes in T, and the workload balancing among cloudlets involved.

Remark 1. We may define another weighted version of the objective function as
follows:

c′(T) =α · ∑
v∈V(T)

Ccomp(v) + (1− α) · ∑
(u,v)∈E(T)

Ccomm(u, v),

where ∑v∈V(T) Ccomp(v) and ∑(u,v)∈E(T) Ccomm(u, v) are the computing cost and the
communication cost, respectively, while α is a constant with 0 ≤ α ≤ 1.

Through adopting such a weighted version of the objective function, we can
configure the value of α and investigate the impact of different network resource
types.

So far, we have formulated a cost minimization problem for a single multi-source
IoT application in an MEC network, through performing NFV-enabled network slic-
ing to accommodate the IoT service. However, the MEC network as a public service
platform is expected to accommodate different IoT applications for different users
while minimizing the accumulative operational cost of implementing the IoT appli-
cations. We thus define another cost minimization problem for a set of multi-source
IoT applications in the MEC network as follows.

Definition 2. Given an MEC network G = (V, E) and a set I of multi-source IoT
applications with each having an SFC requirement, assume that the VNF instances
of different IoT applications cannot be shared with each other due to security and
privacy concerns. The cost minimization problem for a set of multi-source IoT applications
is to implement all IoT applications in I by finding a data routing tree in G for
each application in I such that the total operational cost of implementing all IoT
applications in I is minimized, assuming that there are sufficient resources in G to
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accommodate all the IoT applications, i.e., the optimization objective is to minimize

∑
ri∈I

c(Tri), (3.5)

where ri ∈ I is an IoT application, Tri is the data routing tree in G for ri ∈ I , and
c(Tri) is the operational cost of Tri in Eq. (3.5) with 1 ≤ i ≤ |I|. In other words,
the problem is to build |I| VNF-enabled network slicing in the MEC for all IoT ap-
plications in I . In case the MEC network G does not have sufficient resources to
accommodate all IoT applications, the problem then is to admit as many IoT appli-
cations as possible while minimizing the accumulative operational cost of admitted
IoT applications.

3.3 NP-hardness of the defined problems

In this section, we show that the defined two problems are NP-hard.

Theorem 3.1. The cost minimization problem for a single multi-source IoT application in an
MEC network G = (V, E) is NP-hard.

Proof. We consider a very special case of the problem of concern, where the work-
load balancing at each cloudlet will not be considered, and the data stream rates of
all sources of an IoT application are identical, i.e., ρ = ρ1 = ρ2 = . . . = ρK, the aggre-
gate function g(·) at each node is the average of the sum of data stream rates of its

children, i.e., g(v) = ∑l
i=1 g(vi)

l = ρ, where node v has l children v1, v2, . . . , vl , and all
VNF instances of each service function in the SFC are instantiated at the destination
node d of the IoT application. This special cost minimization problem for a single
multi-source IoT application then is equivalent to the Steiner tree problem in G that
finds a Steiner tree rooted at the destination node d and spanning all source nodes
in S ⊂ V such that the weighted sum of edges in the tree is minimized. It is well
known that the Steiner tree problem is NP-hard [14], the cost minimization problem
for a single multi-source IoT application thus is NP-hard, too.

Theorem 3.2. The cost minimization problem for a set of multi-source IoT applications in
an MEC network G = (V, E) is NP-hard.

Proof. When |I| = 1, the problem becomes the cost minimization problem for a
single multi-source IoT application in MEC, which is NP-hard by Theorem 3.1. Thus,
the cost minimization problem for a set of multi-source IoT applications is NP-hard,
too.

3.4 A novel framework for IoT-driven service provisioning

In this section, we provide a generic service provisioning framework for multi-
source IoT applications in an MEC network. We consider an IoT application that



56 Service Provisioning for Multi-Source IoT Applications

consists of multiple sources, where each source is a base station (an AP) of a sensor
subnetwork. The streaming sensory data from the sensors in the subnetwork are
collected at the source (the base station or the gateway) and will be uploaded to the
MEC network for further processing and storage. We assume that there is a destina-
tion node d in the MEC for the aggregated data storage. To ensure the security and
privacy of transferring data stream, each data stream from its source to the destina-
tion must pass through a specified SFC as the requirement of the IoT application.
For example, in a metropolitan region, there are many public parks. Assuming that
a sensor network is deployed for each park, the monitored data stream from each
sensor network will be uploaded to the MEC through its nearby AP. The collected
data will be finally stored at the destination node for storage and processing.

A naive approach for sensory data collection from sources to the destination
node is to build a routing path in the MEC network from each source (an AP) to the
destination node, and place the demanded number of VNF instances of each service
function in the SFC along the cloudlets in the routing path to meet the data rate of
the source. This IoT-driven service in an MEC network is expected for a long run,
which implies that the owner of the IoT application will pay its IoT service at the
cost proportional to the resource occupied by the service. However, running IoT ser-
vices through this naive method is not economical, because the data streams from
different sources of an IoT application can be aggregated or merged through explor-
ing temporal-spatial data correlations. A much less accumulative volume of data
streams of these sources can be routed to the destination node, thereby reducing the
communication cost. On the other hand, the certain number of VNF instances of
each service function in the SFC for the data stream of each source must be instanti-
ated in the nodes in the routing path. The number of VNF instances of each service
function in the SFC for the aggregated data stream could be significantly reduced if
the data stream aggregation at each intermediate node is performed, implying that
less computing resource will be consumed.

To provide a cost-effective service in MEC for a multi-source IoT application, a
data routing tree rooted at the destination node and spanning all source nodes in the
MEC can be built to reduce both computing and communication costs through data
aggregation and VNF instance instantiations at nodes in the routing paths. Each non-
leaf node v in the tree except the destination has a parent node and a set of children
nodes. There is an aggregation function g(v) at v that aggregates the data streams
from its children, e.g., a simple aggregation function is the sum of the data streams
of its children. Also, less numbers of VNF instances of a VNF in the SFC can be
instantiated at node v for its aggregated data processing. However, the data stream
along the unique routing path in the tree from each source to the destination must
pass through its demanded number of VNF instances in the SFC. Thus, both commu-
nication and computing resources for the IoT application can be shared among the
data streams from different sources of the application through the data routing tree.
Figure 3.2 is an illustrative example of a data routing tree for an IoT application.
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Source 1 Source 2 Source 3 Source 5Source 4

Destination SFC

Figure 3.2: An illustrative example of a data routing tree for a multi-source IoT
application with three service functions in its SFC. There are 5 sources s1, s2, . . . , s5,
and the data stream from each source to the destination node (the tree root) must

pass through the VNF instances of each service function in the SFC.

3.5 Algorithm for cost minimization problem for a single
multi-source IoT application

Since the cost minimization problem for a single multi-source IoT application in
MEC is NP-hard, in this section we first develop an efficient algorithm for it, based
on the proposed service framework. We then analyze the properties of the solution
delivered and the time complexity of the proposed algorithm.

3.5.1 Overview of the proposed algorithm

The proposed algorithm proceeds greedily. We assume that the destination (a
cloudlet) of each multi-source IoT application is given in advance. Let S be the set
of all sources of the IoT application. For each source node s ∈ S, a data routing
tree T(s) is constructed by setting the destination node d as the tree root, adding
node s ∈ S as the first source node to the tree, followed by adding the other source
nodes to T(s) greedily, one by one. Each time, a source node with the minimum cost
increment compared with the previous cost of T(s) will be chosen to add to the tree
until all source nodes are added to the tree. Thus, a data routing tree T(s0) with the
minimum operational cost is chosen from the |S| trees, which will be the solution to
the problem. Specifically, we first choose a source node s ∈ S as the very first node
to add to the data routing tree T(s). To this end, we find a shortest path P1 in G
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from s to the destination d, and place the VNF instances of each function f ∈ SFC
to the nodes along path P1 while balancing the workload of the nodes in the path
(the detailed VNF instance placement will be discussed later), where the number of
VNF instances of each service function in the SFC is determined by the data rate of
source s. Let S′ = S \ {s} be the set of the rest source nodes that have not been added
to T(s) yet. The rest source nodes in S′ then are added to tree T(s) iteratively, one
by one. We claim that the data stream along the tree path from each source node to
the destination must pass through its demanded number of VNF instances of each
service function only once, i.e., no VNF instances of a service function is wrongly
placed, or placed in multiple nodes in the path.

Let T(s, k) be a partial data routing tree of T(s) by adding the first k source
nodes into the tree with 1 ≤ k ≤ K. When k = 1, the partial data routing tree
T(s, 1) is a shortest path P1 in G from s to d, where each edge (vi, vi+1) ∈ P1 with
v1 = s, v|P1|+1 = d, and vi+1 is the parent of vi in the tree. The accumulative data
stream on edge (vi, vi+1) in P1 is g(vi), where g(v) is an aggregate function at node v.
Therefore, the communication cost on edge (vi, vi+1) is bcomm(vi, vi+1) · g(vi), where
bcomm(vi, vi+1) is the communication cost of one unit data transfer on edge (vi, vi+1).
The number of VNF instances of each service function f j will be deployed to some
of the nodes along path P1, i.e., the placement order of these VNF instances in P1

from s to d is f1, f2, . . . , fL. We will deal with the VNF instance placement later, by
incorporating the workload balancing among the cloudlets in P1. It can be seen that
the claim holds for this initial tree construction.

We assume that T(s, k− 1) has been constructed, and the first (k− 1) sources are
added to the tree. We now construct T(s, k) by adding a new source node s′ to the
tree.

Let Pk(u, s′) be a shortest path in G \ T(s, k − 1) between a tree node u and a
source node s′ that has not been contained in T(s, k − 1) yet. Let PT

k (u, d) be the
unique tree path in T(s, k− 1) between node u and destination d. The VNF instances
of functions of the subchain ⟨ f j, f j+1, . . . , fL⟩ of the SFC are deployed in PT

k (u, d), i.e.,
no VNF instances of function f j′ with 1 ≤ j′ ≤ j − 1 are deployed in any node in
PT

k (u, d). For the VNF instances of f j′ placed at the node v in path PT
k (u, d) with

j ≤ j′ ≤ L, the accumulate data dream g(v) at node v then is recomputed, by incor-
porating the data stream ρs′ from source s′ through branch Pk(u, s′). Therefore the
number of VNF instances of f j′ at node v in path PT

k (u, d) is ⌈ g(v)
µ f j′
⌉.

For the data stream along a routing path from s′ to d that consists of two seg-
ments PT

k (u, d) and Pk(s′, u), although the data stream along the tree path PT
k (u, d)

has been processed by the VNF instances in the subchain ⟨ f j, . . . , fL⟩ in PT
k (u, d), the

data stream along path Pk(s′, u) from node s′ to node u has not been processed by
the VNF instances of each service function in the subchain ⟨ f1, f2, . . . , f j−1⟩ of the
SFC. We thus need to place the number of VNF instances for each of them in the
nodes in Pk(s′, u) in their specified order, where the rate of data stream on each
edge in Pk(s′, u) is ρs′ . In the following, we show how to place the VNF instances of
each function in ⟨ f1, f2, . . . , f j−1⟩ to cloudlets (nodes) in Pk(s′, u) to process the data
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stream while balancing the workload among the cloudlets, by developing a dynamic
program solution for this workload-aware VNF instance placement problem.

3.5.2 Workload-aware VNF instance placement in a routing path

We here consider the workload-aware VNF instance placement on the nodes in
a routing path. We assume that there is a data stream from source s′ with data rate
ρs′ , the number of VNF instances of each function f j′ in the SFC needs to be placed
to a node in path Pk(u, s′) in order, where 1 ≤ j′ ≤ j− 1. We aim to place the VNF
instances to minimize the sum of the workload balancing costs among the nodes by
formulating the following workload-aware VNF instance placement problem.

Let u0, u1, u2, . . . , up be the node sequence in path Pk(s′, u) starting from u with
u0 = u, up = s′ and p ≥ 1, where the computing resource consumption and comput-
ing capacity of each cloudlet node ui ∈ V are Wui and Cui , respectively. The workload
utility of node ui is γui =

Wui
Cui

by Eq. (3.3).

There is a subchain ⟨ f j−1, f j−2, . . . , f1⟩ of the SFC for the data stream from source
s′ with data rate ρs′ . The number of VNF instances of f j′ to be placed along path
Pk(u, s′) is ⌈ ρs′

µ f j′
⌉, where µ f j′

is the data processing capacity of an VNF instance of

function f j′ in any cloudlet and 1 ≤ j′ ≤ j− 1. The amount of computing resource
consumed by the VNF instances of f j′ is

w f j′
= ⌈ ρs′

µ f j′
⌉ · c f j′

. (3.6)

Let y1, y2, . . . , yq represent the function sequence ⟨ f j−1, f j−2, . . . , f1⟩ with y1 =
f j−1 and yq = f1. Each yj′ has a workload wyj′ by Eq. (3.6) with 1 ≤ j′ ≤ q. The
workload-aware VNF instance placement problem is to place the VNF instances of func-
tions in the subchain ⟨y1, y2, . . . , yq⟩ to the nodes in path u1, u2, . . . , up such that the
sum of the workload balancing cost is minimized, assuming that there is sufficient
computing resource at each cloudlet ui to accommodate all VNF instances of function
yj′ in the subchain with 1 ≤ i ≤ p and 1 ≤ j′ ≤ q.

We devise a dynamic programming algorithm for the workload-aware VNF in-
stance placement problem as follows.

Let Ui = u1, u2, . . . , ui be the subsequence of u1, . . . , up and Yj′ = y1, y2, . . . , yj′

the subsequence of y1, . . . , yq with 1 ≤ i ≤ p and 1 ≤ j′ ≤ q.

Denote by B(i, j′) the optimal cost of workload balancing by placing the VNF
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Algorithm 5 Algorithm for the workload-aware VNF instance placement problem.
Require: A node sequence u1, u2, . . . , up, a function sequence y1, y2, . . . yq, and the

date rate ρs′ of a source s′, assuming that the current workload Wui and capacity
Cui of each cloudlet node ui is given.

Ensure: the number of VNF instances of each function yj is placed to a node in the
node sequence such that the function order does not change and the sum of the
workload balancing cost among the nodes is minimized.

1: for i← 1 to p do
2: for j′ ← 1 to q do
3: if i = 1 then

4: B(i, j′)← βload · (2
γu1+

∑
j′
l=1 wyl
Cu1 − 1);

5: else
6: if j′ = 1 then

7: B(i, j′)← βload · (∑i
i′=1(2

γui′ − 1)+min{2
γui′

+
wy1
Cui′ − 2γui′ |1 ≤ i′ ≤ i});

8: else
9: B(i, j′)← min{B(i− 1, j′) + βload · (2γui − 1), B(i− 1, j′ − 1) + βload ·

(2
γui+

wyj′
Cui − 1)};

10: end if;
11: end if;
12: end for;
13: end for;
14: return the solution B(p, q).

instances of service functions in Yj′ to nodes in Ui. Then,

B(i, j′) =



βload · (2
γu1+

∑
j′
l=1 wyl
Cu1 − 1) i = 1,

βload · (∑i
i′=1(2

γui′ − 1)+

min{2
γui′

+
wy1
Cui′ − 2γui′ |1 ≤ i′ ≤ i}) j′ = 1,

min{B(i− 1, j′) + βload · (2γui − 1),

B(i− 1, j′ − 1) + βload · (2
γui+

wyj′
Cui − 1)} i > 1 & j′ > 1,

where γui is the workload utility of node ui, B(1, j′) = βload · (2
γu1+

∑
j′
l=1 wyl
Cu1 − 1) implies

that there is only one cloudlet u1 and the VNF instances of the chain will be hosted

by the cloudlet, while B(i, 1) = βload · (∑i
i′=1(2

γui′ − 1) + min{2
γui′

+
wy1
Cui′ − 2γui′ |1 ≤

i′ ≤ i}) indicates that the VNF instances of y1 is added to such a cloudlet that
results in the minimum increase of the workload balancing cost among the cloudlets.
B(i, j′) = B(i− 1, j′) + βload · (2γui − 1) implies that the VNF instances of the subchain
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Yj′ are placed to the first (i − 1) nodes in the node sequence Ui. B(i, j′) = B(i −

1, j′ − 1) + βload · (2
γui+

wyj′
Cui − 1) implies that the VNF instances of the subchain Yj′−1

are placed to the nodes in the node sequence Ui−1, and the VNF instances of yj′ are
placed on node ui.

The value of the solution to the workload-aware VNF instance placement prob-
lem thus is B(p, q). The time complexity of the proposed algorithm is O(p · q) =
O(|V| · L) as p ≤ |V| and q ≤ L, where L is the length of the SFC. The detailed
algorithm is given in Algorithm 5.

It can be seen that the data stream from source s′ to the destination node d passes
through the demanded VNF instances of each function f j in the SFC with 1 ≤ j ≤ L,
while the data streams of the first (k − 1) sources in tree T(s, k) pass through their
demanded numbers of VNF instances of each service function in the SFC, following
the proposed tree construction.

The cost gain ∆(T(s, k − 1), u, s′), by connecting source s′ to tree T(s, k − 1)
through the tree node u, is the sum of the increased computing cost, communica-
tion cost and workload balancing cost by adding source s′ to tree T(s, k− 1).

The detailed algorithm for the construction of a potential partial routing tree,
by connecting source s′ to tree T(s, k − 1) through the tree node u, is given in
Algorithm 6.

3.5.3 Algorithm for cost minimization problem for a single multi-source
IoT application

In the following, we propose an efficient algorithm for the cost minimization
problem for a single multi-source IoT application, by making use of Algorithm 6 as
its subroutine. Specifically, we first construct |S| data routing trees, where S is the set
of sources of the IoT application. Each data routing tree T(s) is constructed by setting
the destination node d as the tree root and source s ∈ S as the first node added to
the tree. Then each of the rest source nodes in S \ {s} is added to T(s) iteratively.
In each iteration, the source node with the minimum cost increment compared with
the previous cost of T(s) will be chosen to add to the tree until all source nodes are
added, by invoking Algorithm 6. Having constructed |S| data routing trees, the data
routing tree T(s0) with the minimum operational cost is chosen as the solution to the
problem. The detailed algorithm is presented in Algorithm 7.

3.5.4 Analysis of the proposed algorithm

The rest is to address some important properties of the built data routing tree
and the time complexity of the proposed algorithm. Recall that f1, f2, . . . fL are the
service functions in the SFC of the IoT application.
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Algorithm 6 A potential routing tree construction by connecting source s′ to tree
T(s, k− 1) through the tree node u.
Require: An MEC network G = (V, E) and a multi-source IoT application with an

SFC = ⟨ f1, f2, . . . , fL⟩, a destination d ∈ V, K sources s1, s2 . . . , sK, and each source
si has a data stream rate ρsi with 1 ≤ i ≤ K.

Ensure: A potential partial routing tree rooted at d and spanning k source nodes with
the first joining in source s, and assuming that the first (k− 1) sources are added
already and the partial routing tree is T(s, k − 1), a routing tree is constructed
with the minimum cost where source s′ is joining to the tree through a path
Pk(s′, u) and u is the tree node.

1: if k = 1 then
2: Find a shortest path P1 in G from s′ to d;
3: Place the demanded number of VNF instances of f j to the nodes along path

P1 with 1 ≤ j ≤ L by invoking Algorithm 5;
4: else
5: Update the number of VNF instances of each function f j at each node v in the

tree path PT
k (u, d) from u to d, considering to add an extra ρs′ data stream to each

edge along path PT
k (u, d);

6: /* assuming f j−1 is the first service function in the subchain from f1 to fL

whose VNF instances do not appear in a node in PT
k (u, d); */

7: Place the demanded number of VNF instances of each function f j′ with 1 ≤
j′ ≤ j− 1 to the nodes of a shortest path Pk(s′, u) in G \ T(s, k− 1) from s′ to u′

with the data rate ρs′ by invoking Algorithm 5, where (u′, u) is the tree edge with
endpoints u′ and u, and u′ is a child of u in the tree, by balancing the workload
among the nodes in the path;

8: ∆(T(s, k− 1), u, s′)← c(T(s, k− 1)∪ Pk(s′, u))− c(T(s, k− 1)); /* T(s, k− 1)∪
Pk(s′, u) is the partial routing tree by connecting source s′ to tree T(s, k − 1)
through the tree node u */

9: end if;
10: return the constructed partial routing tree T(s, k− 1)∪ Pk(s′, u) and the increased

cost ∆(T(s, k− 1), u, s′).
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Algorithm 7 Heuristic algorithm for the cost minimization problem for a single
multi-source IoT application in MEC.
Require: An MEC network G = (V, E) and an IoT application with an SFC =
⟨ f1, f2, . . . , fL⟩ and K sources s1, s2 . . . , sK and a destination d ∈ V, each source
si has a data rate ρsi with 1 ≤ i ≤ K.

Ensure: A data routing tree rooted at d and spanning all source nodes, and different
numbers of VNF instances of the SFC are placed in the nodes of the tree such
that the total operational cost outing of the IoT application is minimized.

1: cost← ∞; /* the operational cost of the solution */
2: T ← ∅; /* the data routing tree for the IoT application */
3: for s ∈ S do
4: /* The construction of a routing tree T(s) with the minimum cost*/
5: Find a shortest path P1 in G from s to d;
6: Construct the partial routing tree T(s, 1) through placing the VNF instances

of service function in the SFC along the nodes in P1 with the data rate ρs, by
calling Algorithm 5;

7: k← 1;
8: S′ ← S \ {s};
9: while S′ ̸= ∅ do

10: k← k + 1
11: for each s′ ∈ S′ do
12: for each u ∈ T(s) do
13: Construct the partial routing tree T(s, k− 1) ∪ Pk(s′, u) by connect-

ing source s′ to tree T(s, k− 1) through the tree node u along the path Pk(s′, u),
by calling Algorithm 6;

14: Compute the total cost gain ∆(T(s, k − 1), u, s′) if path Pk(s′, u) is
added to T(s, k− 1);

15: end for;
16: end for;
17: u0, s′0 ← min argu∈T(s),s′∈S′{∆(T(s, k− 1), u, s′)};
18: T(s, k)← T(s, k− 1) ∪ Pk(s′0, u0); /* adding a source s′0 with the minimum

cost gain to the data routing tree */
19: S′ ← S′ \ {s′0};
20: end while
21: T(s)← T(s, K);
22: if c(T(s)) < cost then
23: cost← c(T(s));
24: s0 ← s;
25: end if;
26: end for;
27: return the solution T(s0) with the total operational cost c(T(s0)).
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Lemma 6. Let e1, e2, . . . , eq be the edges on the routing path in the data routing tree T
from a source node s to the destination d, and let v1, v2, . . . , vq+1 are the correspond-
ing nodes in the path with v1 = s and vq+1 = d. We have (i) The VNF instances of
each function f j ∈ SFC are installed in the nodes in its specified order with 1 ≤ j ≤ L,
i.e., if the VNF instances of f j are deployed in node vi, then the VNF instances of f j′

cannot be deployed to any node vi′ with j′ > j and i′ < i. We term this as the VNF
deployment order by the SFC; and (ii) The VNF instances of any service function
f ∈ SFC cannot appear in multiple nodes in any routing path in the tree from a
source to the destination, i.e., it is prohibited that VNF instances of function f are
deployed into two different nodes vi and vj in the routing path with i ̸= j. Otherwise,
the data stream data will pass through the VNF instances of f twice from its source
to the destination.

Proof. Property (i) holds because the data routing tree constructed by Algorithm 7
follows the function dependency of the SFC.

By Property (i) of tree T, if some VNF instances of a function f j are instantiated
at node vi, then any of its other VNF instances cannot be deployed to other nodes
in the subtree rooted at vi; otherwise, Property (ii) is violated, i.e., the data stream
from a descendent leaf node of vi will pass through the VNF instances of the service
function twice at two different cloudlets (at that node and at vi), and this is prohibited
by the SFC requirement of the IoT application.

Lemma 7. Let T(s, k) be a constructed partial data routing tree that contains the first
(k − 1) source nodes by Algorithm 6, where source s is the first one added to the
tree, for all k with 1 ≤ k ≤ K. Then, the data stream along the tree path from each
of the sources to the destination will pass through the demanded number of VNF
instances of each service function in the SFC, and the solution delivered is feasible.

Proof. The claim can be shown by induction. Following Algorithm 6, when k = 1,
the tree is a shortest path from s to d and the number of VNF instances of each service
function in the SFC are placed to the nodes in the path. Then the claim clearly holds.
We assume that the first (k − 1) sources have been added to the data routing tree
and the claim holds for the data stream from each of the sources. Now, we show the
claim still holds when adding the kth source into the tree. Following the algorithm,
the number of VNF instances of each service function in the SFC is increased or
instantiated accordingly to meet the data rate of the data stream from the kth source.
The claim still holds.

Theorem 3.3. Given an MEC network G = (V, E) and an IoT application that consists of
K sources s1, . . . , sK and a destination d ∈ V, where each source gateway si ∈ V has a data
rate ρsi with 1 ≤ i ≤ K, and there is an SFC requirement ⟨ f1, . . . , fL⟩ for the IoT application
and a defined data aggregation function g(·), the cost minimization problem for a single
multi-source IoT application in G is to find a data routing tree T in G for implementing
the IoT application such that the total operational cost is minimized. There is an efficient
algorithm, Algorithm 7, which delivers a feasible solution for the problem. The algorithm
takes O(|V|2 · K3 · L) time.
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Proof. We first show that the solution delivered is feasible by Lemma 6 and Lemma 7.
That is, the data stream from each source s ∈ S to the destination d must pass
through the demanded number of VNF instances of each function in the SFC prior
to the destination. Let a data routing tree T(s) rooted at d be chosen as the problem’s
solution, and the construction of T(s) proceeds iteratively. Within each iteration, a
source node joins in the tree. Let T(s, k) be the partial data routing tree of T(s) that
contains the first k source nodes. Clearly, for tree T(s, 1), the data stream ρs is routed
along a shortest path (i.e., T(s, 1)) in G from s to d, and the demanded number of
VNF instances of each service function in the SFC is instantiated in the nodes along
the path. Assume that all data streams from the sources in the partial data routing
tree T(s, k − 1) meet the condition: their demanded numbers of VNF instances of
each service function in the SFC are placed in nodes of T(s, k− 1) already. When we
consider the kth source s′ joining in T(s, k− 1) to form tree T(s, k), assume that node
u is the tree node at which a branch from s′ to u is attached to T(s, k− 1). It can be
seen that the data stream with data rate ρs′ along the path Pk(s′, u) ∪ PT

k (u, d) from s′

to d must pass through the demanded VNF instances of each service function in the
SFC, following the construction of T(s, k) by Algorithm 6. The solution delivered by
Algorithm 7 thus is feasible.

We then analyze the time complexity of the proposed algorithm, Algorithm 7.
There are K potential data routing trees to be constructed. To construct a data routing
tree that contains a source s initially, another source node with the minimum cost
increment will be chosen to add to the tree, and this procedure continues until all
source nodes are added to the tree. To calculate the cost increment of adding a
source s′ to the partial data routing tree, we first find the shortest paths between
source s′ and each node in the partial data routing tree and that takes O(|V|2) time,
and the VNF instance placements along the tree paths by invoking the dynamic
programming algorithm - Algorithm 5 that takes O(|V|2 · L) time. Thus, the running
time of Algorithm 7 is O(|V|2 · K3 · L).

Remarks: The proposed algorithm assumed that a single cloudlet can host all
VNF instances of any IoT application. This assumption is reasonable in practice as
the resource demands by a single IoT application should be far less than the amount
of resource a cloudlet can provide. However, it is not uncommon that the resources
in MEC are very limited, the proposed algorithm can be easily modified for this
resource restriction case. That is, if the residual resource of a cloudlet is less than
the resource demands of an IoT application, that cloudlet will not involve resource
allocation for the IoT application by hosting any of the VNF instances of the IoT
application (i.e., it cannot accommodate any VNF instance in the data routing tree
for the IoT application). The cloudlet, however, is still part of the data routing tree for
the IoT application to maintain the network connectivity, i.e., there may be routing
paths passing through the cloudlet.
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3.6 Algorithm for cost minimization problem for a set of
multi-source IoT applications

In this section, we consider the service provisioning for a set of multi-source
IoT applications in an MEC network, where each IoT application can share the VNF
instances of data streams from its different sources, but it is prohibited to share
VNF instances among different IoT applications due to their security and privacy
concerns. In other words, we aim to perform VNF-enabled network slicing in the
MEC to provide services for different IoT applications such that the total operational
cost is minimized.

We implement the multi-source IoT applications in I one by one iteratively. Each
time, one application with the minimum operational cost is chosen from the remain-
ing applications by invoking Algorithm 7. This procedure continues until all IoT
applications in I are implemented. The detailed algorithm is given as Algorithm 8.

Algorithm 8 An algorithm for the service provisioning of a set of multi-source IoT
applications.
Require: An MEC network G = (V, E) and a set I of IoT applications with an

SFC = ⟨ fi,1, fi,2, . . . , fi,Li⟩ of each application ri ∈ I and Ki sources si,1, si,2, . . . , si,Ki

and a destination di ∈ V, each source si,j has a data rate ρi,j with 1 ≤ j ≤ Ki.
Ensure: A solution of implementing all IoT applications such that the total cost is

minimized, where the solution of each IoT application ri is a data routing tree
with Ki sources.

1: total_cost← 0; /* the value of the solution */
2: T ← ∅ /* the set of data routing trees for the IoT applications in I */
3: U ← I ; /* the set of IoT applications that have not been implemented in the

MEC yet */
4: while U ̸= ∅ do
5: for each IoT application ri ∈ U do
6: Find a data routing tree Tri for it, and compute the total operational cost

c(Tri) of tree Tri , by calling Algorithm 7;
7: end for;
8: Let ri0 = argminri∈U{c(Tri)} /* Tri0

is a data routing tree with the minimum
cost among the applications in U */ ;

9: T ← T ∪ {Tri0
};

10: Update all computing resource in cloudlets for implementing ri0 , and calcu-
late the residual computing resource of cloudlets in the MEC;

11: U ← U \ {ri0};
12: total_cost← total_cost + c(Tri0

);
13: end while; return The solution T .

Theorem 3.4. Given an MEC network G = (V, E), each cloudlet v ∈ V has computing
capacity Cv, a set I of multi-source IoT applications with each application ri ∈ I having
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Ki sources and an SFCi with length of Li, and each source si,j of ri has a data rate ρi,j with
1 ≤ j ≤ Ki. There is an efficient algorithm for the cost minimization problem for a set of
multi-source IoT applications, Algorithm 8, which takes O(|V|2 · K3

max · Lmax · |I|2) time,
where Kmax = max{Ki | ri ∈ I} and Lmax = max{Li | ri ∈ I} are the maximum number
of sources and the maximum length of all SFCs among IoT applications in I , respectively.

Proof. Because Algorithm 8 invokes Algorithm 7 iteratively, the feasibility of the
solution delivered by Algorithm 8 for the cost minimization problem for a set of
multi-source IoT applications can be shown by the feasibility of the solution deliv-
ered by Algorithm 7 for the cost minimization problem, which has been proved in
Theorem 3.3, omitted.

The time complexity of Algorithm 8 is O(|V|2 · K3
max · Lmax · |I|2), as an applica-

tion with the minimum operational cost from the remaining applications is chosen at
each iteration by invoking Algorithm 7, while the time complexity of Algorithm 7 is
O(|V|2 ·K3

max · Lmax) by Theorem 3.3, and the number of the invoking of Algorithm 7
is O(I2).

3.7 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms for the
service provisioning for IoT applications in an MEC network. We also investigate
the impact of important parameters - the number L of service function in a service
chain, the number K of sources, and the workload balancing coefficient βload, on the
performance of the proposed algorithms.

3.7.1 Environment settings

We consider an MEC network that consists of 100 APs, with each having a co-
located cloudlet. We generate the topologies of MEC networks using GT-ITM [34].
The capacity of each cloudlet is set from 30, 000 to 60, 000 MHz [81]. We assume that
there are 10 types of VNFs, and the computing resource consumption of each VNF
instance ranges from 20 to 100 MHz [69]. We further assume that the processing rate
of each VNF instance varies from 30 to 80 packet per millisecond, where each data
packet is of size 64 KB [69]. The number of different types of SFCs is set as 20, and the
length of each varies from 3 to 7 [70]. For each multi-source IoT application request,
the number of sources is set from 4 to 8, and the data rate of each source ranges from
2 to 10 packet per millisecond [70]. The communication cost of each link is randomly
drawn from $0.05 to $0.4 per data packet [69]. The computing resource consumption
cost is set at $0.1 per MHz [107]. The coefficient of the workload balancing cost (i.e.,
βload) is set at 2, 000. The aggregation function of each multi-source IoT application
is randomly chosen from the set {summation, averaging, maximum, minimum}. The
value in each figure is the mean of the results out of 20 MEC network instances of
the same size. The actual running time of each algorithm is based on a desktop with
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a 3.60 GHz Intel 8-Core i7-7700 CPU and 16 GB RAM. Unless otherwise specified,
these parameters will be adopted in the default setting.

We evaluate the proposed algorithm Algorithm 7 (referred to as Alg.7) against
two baseline algorithms: Heu.1_S and Heu.2_S, for the cost minimization problem
for a single multi-source IoT application. In algorithm Heu.1_S, we first find the
shortest path between each source and the destination node, and the VNF instances
of each service function in the SFC will be instantiated along the routing path. In
this heuristic, neither computing resource (VNF instances) nor bandwidth resource
is shared among the data streams of different sources for each IoT application. On
the contrary, algorithm Heu.2_S consolidates all the VNFs in the SFC of each request
into a single cloudlet, and the VNFs are shared among the data streams from all
sources. Especially, algorithm Heu.2_S first finds a shortest path P1 from a randomly
selected source s to the destination node of the request, and the cloudlet v with the
least workload utility by Eq. (3.3) on the shortest path is chosen to accommodate the
VNFs. Based on path P1, the data routing tree T for the request then is constructed
by including the shortest path from each remaining source s′ ∈ S \ {s} to the chosen
cloudlet v, one by one, and the data streams are then aggregated at each non-leaf
node of the data routing tree T.

We then evaluate the proposed algorithm Algorithm 8 (referred to as Alg.8)
against algorithms Heu.1_M and Heu.2_M, for the cost minimization problem for a
set of multi-source IoT applications. Algorithms Heu.1_M and Heu.2_M are built upon
algorithms Heu.1_S and Heu.2_S, respectively. Especially, algorithm Heu.1_M processes
IoT applications one by one by algorithm Heu.1_S, and picks them for consideration
randomly. Algorithm Heu.2_M is similarly developed, omitted.

3.7.2 Performance evaluation of different algorithms

We first studied the performance of algorithm Alg.7 against algorithms Heu.1_S
and Heu.2_S, respectively, by varying the network size from 50 to 250. Fig. 3.3(a) and
Fig. 3.3(b) plot the total cost and running time of different algorithms. It can be seen
from Fig. 3.3(a) that when the network size is 250, the total cost achieved by Alg.7
is 41.6% of that by algorithm Heu.1_S, and 75.6% of that by algorithm Heu.2_S. This
is because Alg.7 establishes an efficient data routing tree that jointly considers VNF
instance sharing and communication path sharing among different data streams of
each IoT application, and the workload balancing among cloudlets.

We then investigated the performance of Alg.8 against algorithms Heu.1_M and
Heu.2_M, by varying the network size from 50 to 250, with 1, 000 IoT applications.
Fig. 3.4(a) and Fig. 3.4(b) depict the total cost and running time of different algo-
rithms. It can be seen from Fig. 3.4(a) that when the network size is 250, the total
cost achieved by algorithm Alg.8 is 45.3% of that by algorithm Heu.1_M, and 80.3% of
that by algorithm Heu.2_M. The rationale behind this is that with the increase on the
network size, algorithm Alg.8 outperforms algorithms Heu.1_M and Heu.2_M not only
in resource sharing but also in workload balancing among cloudlets.
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Figure 3.3: Performance of different algorithms for the cost minimization problem
for a single multi-source IoT application, by varying the network size from 50 to 250.
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Figure 3.4: Performance of different algorithms for the cost minimization problem
for a set of multi-source IoT applications, by varying the network size from 50 to 250.
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3.7.3 Impact of important parameters on the performance of the proposed
algorithms

We finally investigated the impact of important parameters on the performance
of the proposed algorithms for the defined problems, including the length L of SFCs,
the number K of sources, and the coefficient βload of the workload balancing cost.

We first studied the impact of the length L of SFCs on the proposed algorithms.
Fig. 3.5(a) and Fig. 3.5(b) demonstrates the total cost and running time of the solu-
tion delivered by algorithm Alg.7 for different network sizes when L = 3, 5, and 7,
respectively. Fig. 3.6(a) and Fig. 3.6(b) depict the total cost and running time of the
solution delivered by algorithm Alg.8 with 1, 000 IoT applications for different net-
work sizes when L = 3, 5 and 7, respectively. It can be seen from Fig.3.5(a) that with
the network size of 250, the total cost of the solution delivered by algorithm Alg.7
when L = 3 is 40.2% of itself when L = 7. This can be justified that with a small
value of L, the IoT applications consumes less computing resource, thus, both the
computing cost and the workload balancing cost decrease. The similar performance
behaviors can be observed in Fig. 3.6(a), too.
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Figure 3.5: The impact of length L of the SFC on the performance of Alg.7.

We then investigated the impact of the number K of sources on the proposed
algorithms. Fig. 3.7(a) and Fig. 3.7(b) plot the total cost and running time of the
solution delivered by algorithm Alg.7 for different network sizes when K = 4, 6, and
8 respectively. Fig. 3.8(a) and Fig. 3.8(b) show the total cost and running time of
the solution delivered by algorithm Alg.7 with 1, 000 IoT applications for different
network sizes when K = 4, 6, and 8. It can be seen from Fig.3.7(a) that with the
network size of 250, the total cost of the solution delivered by algorithm Alg.7 when
K = 4 is 48.7% of itself when K = 8. This can be justified that with a small value of K,
the IoT applications consumes not only less computing resource, but also less data
rates. Thus, the communication cost, the computing cost, and the workload balancing
cost decrease. The similar performance behaviors can be observed in Fig. 3.8(a), too.

We finally evaluated the impact of the coefficient βload of the workload balancing
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Figure 3.6: The impact of length L of the SFC on the performance of Alg.8.
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Figure 3.7: The impact of the number K of sources on the performance of Alg.7.
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Figure 3.8: The impact of the number K of sources on the performance of Alg.8.
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cost on the proposed algorithms. Fig. 3.9(a) and Fig. 3.9(b) show the total cost and
running time of algorithm Alg.7 for different network sizes when βload = 1, 000,
2,000, and 3,000, respectively. Fig. 3.10(a) and Fig. 3.10(b) depict the total cost and
running time of algorithm Alg.7 with 1, 000 IoT applications for different network
sizes when βload = 1, 000, 2,000, and 3,000, respectively. From Fig. 3.9(a), the total
cost of algorithm Alg.7 when βload = 1, 000 is 80.4% of itself when βload = 3, 000.
This is because more cost is caused to guarantee the workload balancing among the
cloudlets in the MEC network, with the increase on the value of βload. It can also be
seen from Fig. 3.9(a) that the performance gap of algorithm Alg.7 from βload = 2, 000
to βload = 3, 000 is 90.1% of itself from βload = 1, 000 to βload = 2, 000. The rationale
behind this is that a lager βload will lead to a more balanced workload among the
cloudlets, thus, the total workload utility (Wv/Cv) of each cloudlet is reduced. The
similar performance behaviors can be observed in Fig. 3.10(a), too.
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Figure 3.9: The impact of βload on the performance of Alg.7.
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Figure 3.10: The impact of βload on the performance of Alg.8.



§3.8 Summary 73

3.8 Summary

In this chapter, we studied the service provisioning in an MEC network for multi-
source IoT applications with SFC requirements. We formulated two novel cost mini-
mization problems for multi-source IoT applications: the cost minimization problem
for a single multi-source IoT application and the cost minimization problem for a set
of multi-source IoT applications, respectively, and showed that both the problems are
NP-hard. We then proposed a novel service provisioning framework for multi-source
IoT applications, which includes uploading stream data from multiple sources to the
MEC network, in-network data stream aggregation and routing, VNF instance place-
ment and sharing, and workload balancing in the MEC network. We thirdly devised
efficient algorithms for the defined problems based upon the built framework. We
finally evaluated the performance of the proposed algorithms through experimen-
tal simulations. Experimental results demonstrate that the proposed algorithms are
promising.
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Chapter 4

Throughput Maximization of
Delay-Aware DNN Inference

In this chapter, we first introduce a novel Deep Neural Network (DNN) inference
throughput maximization problem with the aim to maximize the number of delay-
aware DNN service requests admitted, by accelerating each DNN inference through
jointly exploring DNN partitioning and multi-thread execution parallelism. We then
devise an approximation algorithm and an online algorithm for the problem under
the offline and online settings, respectively.

4.1 Introduction

Prized by the practitioners in both academia and industry, deep learning has ig-
nited a booming of intelligent IoT devices, which pushes edge intelligence to the hori-
zon [122]. However, due to portable size of most mobile devices, they are resource-
constrained and have limited processing capabilities to support compute-intensive
deep learning applications. Thus, traditional solutions to such applications are to
resort to the powerful clouds for processing [72]. Since it results in a long response
delay by offloading a Deep Neural Network (DNN) inference task from an IoT de-
vice to a remote cloud, this drives new opportunities to push DNN inferences to the
edge of core networks by providing real-time DNN inference services [45]. Mobile
Edge Computing (MEC) has become a promising paradigm to provision computing
and storage resources in local cloudlets with well-trained DNN models for EDs, by
offloading the whole or part of DNNs from EDs via Access Points (APs) to the MEC
network for accelerating inference processing [111]. With the advance of intelligent
IoT devices, it is urgent to utilize both computing and storage resources of cloudlets
in an MEC network for DNN inference services in a real-time manner [116].

To alleviate the DNN inference delay, it is desirable that a DNN model can be
partitioned into two parts: one is executed in its local IoT device and another is
executed in a cloudlet of the MEC network [52; 53]. This task offloading method
is referred to as the DNN partitioning method, which has been widely adopted for
DNN model inferences as the amounts of output data in some intermediate layers
of a DNN model are significantly smaller than that of its raw input data layer [36],

75
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thereby reducing the delay of data uploading from its IoT device to the MEC network.
The potential of cloudlets on accelerating DNN inference can be further unleashed
by exploring inference parallelism, i.e., leveraging multiple threads in a cloudlet to
shorten the inference time further. A network provider can deploy multi-threading
for DNN inference under existing frameworks (e.g. TensorFlow [1] and PyTorch [77]),
or via a customized thread pool [66]. The delay-aware DNN inference service provi-
sioning thus poses the following challenges.

For a DNN inference request with a trained DNN model and a given infer-
ence delay requirement, how to determine which cloudlet in an MEC network to
accommodate the request? How to partition the DNN model between its local IoT
device and its assigned cloudlet such that the inference delay meets its inference
delay requirement? How many threads in its assigned cloudlet should be allocated
for processing the offloaded DNN part while meeting the inference delay require-
ment of the request? In this chapter, we will address these challenges, and devise
performance-guaranteed approximation and online algorithms for the DNN infer-
ence throughput maximization problem in an MEC network under both offline and
online request arrival settings, respectively.

The novelty of the work in this chapter lies in jointly exploring DNN model
partitioning and inference parallelism to accelerate the DNN inference process. The
admission of a set of delay-aware DNN inference requests, rather than a single delay-
aware DNN inference request, is considered for the first time in MEC. Also, to speed
up the inference process in MEC, the multi-thread concept is adopted in DNN in-
ferences, and performance-guaranteed approximation and online algorithms for the
defined problem under both offline and online request arrival settings are proposed
and analyzed.

The main contributions of this chapter are given as follows. We first study a
DNN inference throughput maximization problem in an edge computing environ-
ment under an offline setting of request admissions, with the aim to maximize the
number of requests admitted, subject to computing capacities on cloudlets in the
MEC network. We approach the problem by jointly partitioning the DNN model,
allocating the offloaded part of the DNN to a cloudlet, and exploring inference par-
allelism by utilizing multiple threads in the cloudlet to meet its inference delay re-
quirement. We then show the NP-hardness and devise an approximation algorithm
for this offline setting. We also deal with the problem under the online setting of
request arrivals, where a sequence of delay-aware DNN inference requests arrives
one by one without the knowledge of future arrivals, for which we develop an on-
line algorithm with a provable competitive ratio. We finally conduct experimental
simulations to evaluate the performance of the proposed algorithms. Experimental
results demonstrate that the proposed algorithms are promising.

The rest of the chapter is organized as follows. Section 4.2 introduces the system
model, notions and notations, and defines the problems formally. The NP-hardness
proof of the defined problem is given here as well. Section 4.3 devises an approx-
imation algorithm for the delay-aware DNN inference problem when all requests
are given in advance. Section 4.4 proposes an online algorithm for the dynamic
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delay-aware DNN inference problem. Section 4.5 evaluates the proposed algorithms
empirically, and a summary is given in Section 4.6.

4.2 Preliminaries

In this section we first introduce the system model, we then provide notions and
notations. We finally define the problems precisely.

4.2.1 System model

Given a geographical area (e.g., a metropolitan area), a set N of Access Points
(APs) (or base stations) is deployed in the area. Associated with each AP, there is a
co-located cloudlet (edge server) n with computing capacity Cn, which is intercon-
nected with the AP via an optical cable and the transmission delay between them
is neglected [58; 57]. For the sake of convenience, denote by N the set of cloudlets
too. Since the wireless transmission range of each IoT device is fixed, the number
of cloudlets the device can reach is limited, too [94]. Denote by N(ri) ⊂ N the set
of cloudlets located in the data transmission range of the IoT device of request ri,
i.e., request ri can be served by any cloudlet n ∈ N(ri) if the cloudlet has sufficient
computing resource for processing the offloaded part of the DNN model of request
ri. Fig. 4.1 is an illustrative example of an MEC network, in which the IoT device of
a request can only reach a subset of cloudlets in the MEC network, i.e., any cloudlet
that is within its transmission range.

In this chapter, we focus on DNN inference. Compared with DNN training, the
DNN inference requires much less CPU and GPU resources. Therefore, instead of
making use of costly hardware accelerators (e.g., GPUs) for DNN inference, CPUs are
more favored to cope with real-time DNN inference services at the network edge with
cost-efficiency [76], due to their high availability and efficient scalability [32]. For
simplicity, we will focus on CPU-based cloudlets, and each CPU core corresponds to
a thread, since applying hyper-threading technique (generating two threads per CPU
core) may decrease the performance due to additional context switching [66]. We
assume that each cloudlet n ∈ N has a computing capacity Cn, which is measured
by the number of threads (CPU cores) in it. Note that the results of this chapter can
be easily extended to deal with cloudlets equipped with GPU resource as well, by
incorporating the threads of GPU cores and leveraging the parallelism of GPUs on
inference acceleration.

4.2.2 User requests and the DNN model

There is a set R of delay-aware DNN inference requests from different user IoT
devices. Each request ri ∈ R has an inference delay requirement Di [68], and its
requested DNN can be modeled as a directed acyclic graph (DAG) Gi = (Vi, Ei),
where Vi is the set of inference layers and Ei is the set of layer dependencies. Vi
contains |Vi| inference layers: vi,0, vi,1, vi,2, . . . , vi,|Vi−1|, where vi,0 is a virtual input
layer, and each of the rest inference layers can be further partitioned into sub-layers,
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Access  
Point (AP)

cloudlet

IoT device

transmission 
 range

Figure 4.1: An example of a geographical area with 10 APs, each of APs is co-located
with a cloudlet. There is an IoT device which can offload its task to any cloudlet
within its transmission range if the cloudlet has sufficient computing resource to

process its offloaded task.

which implies that the matrix composed by its input and output can be processed
in parallel if multiple threads are allocated to the matrix multiplication computation.
Each edge (vi,j, vi,l) ∈ Ei represents the computation dependency of layer vi,l on layer
vi,j, i.e., layer vi,j needs to be computed first and its output is the input of layer
vi,l with vi,l ∈ N+(vi,j), where N+(vi,j) = {vi,l | (vi,j, vi,l) ∈ Ei} is the outgoing
set from layer vi,j in Gi, Similarly, the incoming set N−(vi,l) of vi,l with N−(vi,l) =
{vi,j | (vi,j, vi,l) ∈ Ei}, can be defined as well. We assume that the DNN model of
each request has been trained, and stored in both cloudlets and its IoT device. An
example of a DNN is given in Fig. 4.2.

Denote by f (vi,j) the required number of floating-point operations of layer vi,j,
which is the workload to execute layer vi,j. Note that f (vi,0) = 0, as vi,0 is a virtual
input layer.

To utilize the processing capabilities of the local IoT device and the assigned
cloudlet to accelerate DNN inference process, the layer set Vi of request ri can be
partitioned into two disjoint subsets V loc

i and Vmec
i , i.e., Vi = V loc

i ∪ Vmec
i and V loc

i ∩
Vmec

i = ∅, where layer nodes in V loc
i and Vmec

i will be executed at the local IoT device
and a cloudlet, respectively. Let Vtran

i ⊂ V loc
i be the layer set that the output of each

layer vi,j ∈ Vtran
i will be sent to the cloudlet for processing. Note that vi,0 is a virtual

input layer which is in the DNN part on its IoT device, i.e., vi,0 ∈ V loc
i . In case where
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Figure 4.2: An example of a DNN that consists of 4 layers.

Vmec
i = Vi \ {vi,0}, and V loc

i = Vtran
i = {vi,0}, the raw input of request ri will be

transmitted to the cloudlet for DNN processing. We assume that if layer vi,j ∈ Vmec
i is

executed in a cloudlet, then any layer vi,l ∈ N+(vi,j) must be executed in the cloudlet
with (vi,j, vi,l) ∈ Ei, as the DNN is partitioned into two parts only.

4.2.3 Inference delay model

Because the result of a DNN inference usually is small, the downloading time
of the inference result is negligible [111]. The inference delay of a DNN inference
request usually consists of (1) the processing delay on its local IoT device; (2) the
data transmission delay from the local IoT device to its assigned cloudlet; and (3) the
processing delay of the part of the DNN model in the cloudlet, which are defined as
follows.

The processing delay on the local IoT device: Denote by ηloc(ri) the process-
ing rate of the local IoT device of request ri, which is measured in the number of
floating-point operations per second. With f (vi,j) the required number of floating-
point operations of layer vi,j, the processing delay dloc

i,j of layer vi,j on the local IoT
device of request ri then is

dloc
i,j =

f (vi,j)

ηloc(ri)
. (4.1)

Since V loc
i is the set of layers processed on the local IoT device, the total process-

ing delay of the set of layers V loc
i on the local IoT device of request ri is

dloc(V loc
i ) = ∑

vi,j∈V loc
i

dloc
i,j . (4.2)

The transmission delay from the local IoT device to the assigned cloudlet:
Denote by Oi,j the output data size of layer vi,j in the DNN Gi of request ri, where
Oi,0 is the output of the virtual input layer vi,0, i.e., the data size of the raw input
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of the DNN Gi, and the volume of Oi,j can be obtained from the requested DNN
model [111]. The data transmission rate λi,n from the IoT device of user request ri to
cloudlet n ∈N(ri) is computed through the Shannon-Hartley theorem [31], i.e.,

λi,n = Bn log2(1 +
Pi

distβ
i,n · σ2

), (4.3)

where Bn is the bandwidth of the AP co-located with cloudlet n, Pi is the transmission
power of the IoT device of ri, disti,n is the distance between the IoT device of ri and
the AP co-located with cloudlet n [18], σ2 is the noise power, and β is a path loss
factor with β = 2 or 4 for short or long distance, respectively [18].

The transmission delay of transmitting the output of layer vi,j of request ri to
cloudlet n ∈N(ri) is

dtran
i,j (n) =

Oi,j

λi,n
. (4.4)

As Vtran
i is the set of layers whose outputs will be uploaded and transferred

to cloudlet n ∈ N(ri). Then the transmission delay of the output data by Vtran
i of

request ri is

dtran(Vtran
i , n) = ∑

vi,j∈Vtran
i

dtran
i,j (n). (4.5)

The processing delay on a cloudlet: The inference processing delay of the of-
floaded layers in set Vmec

i in a cloudlet is assumed to be proportional to the number
of allocated threads (e.g., 1 thread vs 2 threads) to this offloaded part. Furthermore,
we assume that at most K threads are allocated to each offloaded DNN part in a
cloudlet. And all threads in any cloudlet n have the same processing rate ηmec(n),
and is measured by the number of floating-point operations per second. Let ki,n be
the number of allocated threads in cloudlet n ∈ N(ri) to process the offloaded part
of request ri with 1 ≤ ki,n ≤ K. Then, the accumulative processing rate of cloudlet n
for request ri is ki,n · ηmec(n).

Recall that f (vi,j) is the required number of floating-point operations of layer vi,j,
the processing delay of layer vi,j assigned to cloudlet n with ki,n allocated threads is

dmec
i,j (n, ki,n) =

f (vi,j)

ki,n · ηmec(n)
. (4.6)

The processing delay of the offloaded layer set Vmec
i of request ri in cloudlet n

with ki,n allocated threads thus is

dmec(Vmec
i , n, ki,n) = ∑

vi,j∈Vmec
i

dmec
i,j (n, ki,n). (4.7)

The end-to-end delay: The end-to-end delay of offloading the layer set Vmec
i to
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cloudlet n ∈N(ri) for request ri is

dd2d(V loc
i , Vmec

i , n, ki,n) =dloc(V loc
i ) + dtran(Vtran

i , n)

+ dmec(Vmec
i , n, ki,n). (4.8)

To admit request ri by meeting its inference delay requirement Di, we must have

dd2d(V loc
i , Vmec

i , n, ki,n) ≤ Di. (4.9)

4.2.4 Problem definition

Definition 1. Given a set N of cloudlets co-located with APs in a geographical area,
and a set of delay-aware DNN requests R issued from IoT devices, each DNN infer-
ence request ri ∈ R issued from an IoT device has a DNN inference model Gi with
the inference delay requirement Di, assuming that the model has been stored in both
its local IoT device and cloudlets. To accelerate the DNN inference, each DNN model
is partitioned into two parts: one part is executed in its local IoT device, and another
part is offloaded to a cloudlet within the transmission range of the IoT device, and
is allocated with up to K (≥ 1) threads in the cloudlet for processing, the DNN in-
ference throughput maximization problem in such an MEC environment is to maximize
as many DNN inference requests admitted as possible while meeting their inference
delay requirements, subject to computing capacity on each cloudlet in N.

Definition 2. Given a set N of cloudlets co-located with APs in a geographical area,
and a sequence of delay-aware DNN inference requests arrives one by one without
the knowledge of future arrivals, each DNN inference request ri issued from an IoT
device has a DNN inference model Gi with the inference delay requirement Di, as-
suming that each DNN inference model is stored in both its local IoT device and
cloudlets. To accelerate the DNN inference, each DNN model is partitioned into two
parts: one part is executed in its local IoT device, and another part is offloaded to a
cloudlet within the transmission range of the IoT device, and is allocated with up to
K threads in the cloudlet for inference process, the dynamic DNN inference throughput
maximization problem in an MEC environment is to maximize as many DNN infer-
ence requests admitted as possible without the knowledge of future arrivals, while
meeting their inference delay requirements, subject to computing capacity on each
cloudlet in N.

Theorem 4.1. The DNN inference throughput maximization problem is NP-hard.

Proof. The NP-hardness of the problem is shown through a reduction from an NP-
hard problem - the maximum profit generalized assignment problem (GAP) [22],
which is defined as follows. Given a set of items and a set of bins, each bin b has a
capacity cap(b), and a profit p(a, b) can be collected by packing item a to bin b with
size size(a, b). The maximum profit GAP is to maximize the total profit by packing
as many items as possible to the bins, subject to the capacities of bins.
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We consider a special case of the DNN inference throughput maximization prob-
lem, where the transmission delay is neglectable, and the entire DNN model of each
request will be offloaded to a cloudlet for inference process. We also assume that
each cloudlet allocates one thread for each request, i.e., K = 1. We then can calculate
the inference delay if request ri is offloaded to cloudlet n ∈ N(ri). Each bin bn cor-
responds to a cloudlet n with the capacity of Cn and each item ri corresponds to a
request ri. If the inference delay requirement of request ri can be met by offloading its
DNN model to cloudlet n, the profit of packing item ri to bin bn is 1, and 0 otherwise.
The delay-aware DNN inference problem under this special case is to maximize the
number of admitted requests, subject to computing capacities on cloudlets. It can
be seen that this special problem is equivalent to the maximum profit GAP. Thus,
the delay-aware DNN inference problem is NP-hard, due to the NP-hardness of the
maximum profit GAP.

4.3 Approximation algorithm for DNN inference throughput
maximization problem

In this section, we deal with the DNN inference throughput maximization prob-
lem by devising an approximate solution for it. Specifically, we first consider the
offloading part of the DNN model of request ri to cloudlet n ∈ N with ki,n allocated
threads, 1 ≤ ki,n ≤ K. If such an assignment is feasible (i.e., meeting its inference
delay requirement), cloudlet n will become a candidate for the assignment of ri. We
then determine the minimum number kmin

i,n of threads needed to meet the inference
delay requirement. We finally reduce the problem to a maximum profit generalized
assignment problem (GAP). Thus, an approximate solution to the latter in turn re-
turns an approximate solution to the former. We also analyze the correctness and
time complexity of the proposed approximation algorithm.

4.3.1 Partitioning the DNN model and offloading part of it to cloudlet n
with ki,n allocated threads

We assume that part of the DNN model of request ri will be offloaded to cloudlet
n with ki,n allocated threads for processing, 1 ≤ ki,n ≤ K. To this end, we reduce
this partitioning problem into the maximum flow and minimum cut problem in an
auxiliary graph G′i,n,ki,n

. We then show that the minimum cut in G′i,n,ki,n
corresponds to

an optimal partition of the DNN, and the value of the minimum cut is the minimum
inference delay by offloading part of the DNN model to cloudlet n with ki,n allocated
threads. If this minimum inference delay meets the inference delay requirement Di,
the partition of the DNN or part of DNN offloading is feasible.

In the following, we construct the auxiliary graph G′i,n,ki,n
for the DNN model

partition of request ri to cloudlet n with ki,n allocated threads, where n ∈ N(ri) and
1 ≤ ki,n ≤ K. Recall that dtran

i,j (n) represents the transmission delay of the output of
layer vi,j to cloudlet n, and dmec

i,j (n, ki,n) represents the processing delay of layer vi,j
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on cloudlet n with ki,n threads, respectively. For the sake of convenience, in the rest
of discussions, we substitute the notations of dtran

i,j (n) and dmec
i,j (n, ki,n), with dtran

i,j and
dmec

i,j , respectively.

Given a DNN model Gi = (Vi, Ei), the construction of the auxiliary flow net-
work G′i,n,ki,n

= (V ′i , E′i) with edge capacity w(·) is given as follows, where V ′i =

{vi,j, v′i,j | vi,j ∈ Vi} ∪ {s, t} and E′i = {(s, vi), (vi,j, v′i,j) | vi,j ∈ Vi} ∪ {(vi,j, t) | vi,j ∈
Vi \ {vi,0}} ∪ {(v′i,j, vi,l), (vi,l , vi,j) | (vi,j, vi,l) ∈ Ei}. Specifically, we add two virtual
nodes s and t as the source and sink nodes, respectively. We add two nodes vi,j and
v′i,j for each node vi,j ∈ Vi. We also add edges (s, vi,j) and (vi,j, v′i,j) for each node
vi,j ∈ Vi, together with the edges (vi,j, t) for each node vi,j ∈ Vi \ {vi,0}. We also add
edges (v′i,j, vi,l) and (vi,l , vi,j) for each layer dependency (vi,j, vi,l) ∈ Ei in Gi.

The edge capacity assignment of G′i,n,ki,n
, as well as the assignment justification,

is given as follows.
The capacity w(s, vi,0) of edge (s, vi,0) ∈ E′i is infinite, which implies that the raw

input data of request ri is at its local IoT device initially, i.e., w(s, vi,0) = ∞.
For each edge (s, vi,j) ∈ E′i with vi,j ∈ Vi \ {vi,0}, its capacity is the processing

delay dmec
i,j of layer vi,j on cloudlet n with ki,n allocated threads, i.e., w(s, vi,j) = dmec

i,j .

For each edge (vi,j, t) ∈ E′i with vi,j ∈ Vi \ {vi,0}, its capacity is the processing
delay dloc

i,j of layer vi,j on the local IoT device of request ri, i.e., w(vi, t) = dloc
i,j . Note

that vi,0 is a virtual input layer on the local IoT device, therefore, edge (vi,0, t) is not
included in the auxiliary graph.

For each edge (vi,j, v′i,j) ∈ E′i with vi,j ∈ Vi, its capacity is the transmission delay
of the output of layer vi,j to cloudlet n, i.e., w(vi,j, v′i,j) = dtran

i,j .

For each edge (v′i,j, vi,l) ∈ E′i with (vi,j, vi,l) ∈ Ei, its capacity is set as infinity, i.e.,
w(v′i,j, vi,l) = ∞. This is because the transmission delay dtran

i,j of the output of vi,j has
been assigned to the edge (vi,j, v′i,j). If the output of vi,j is transmitted to the cloudlet
to process all its successor layers N+(vi,j), dtran

i,j is counted only once by including
edge (vi,j, v′i,j) in a minimum cut of the auxiliary graph,

For each edge (vi,l , vi,j) ∈ E′i with (vi,j, vi,l) ∈ Ei, its capacity is set as infinity,
i.e., w(vi,l , vi,j) = ∞. This is due to the following reason. Given a potential cut M
(set of edges) on the auxiliary graph, V ′i is partitioned into two sets Vs and Vt, i.e.,
Vs ∪ Vt = V ′i and Vs ∩ Vt = ∅, where source s ∈ Vs and sink t ∈ Vt. For each layer
dependency (vi,j, vi,l) ∈ Ei, we have that if vi,j ∈ Vt, then vi,l ∈ Vt, which implies that
if a layer vi,j is executed on a cloudlet, its successor layer vi,l has to be executed on the
cloudlet too. Similarly, we have that if vi,l ∈ Vs, then vi,j ∈ Vs, for each (vi,j, vi,l) ∈ Ei.
The claims will be shown in Lemma 9.

One example of the construction of the auxiliary flow network is illustrated in
Fig. 4.3. A potential cut in it is M = {(vi,1, t), (vi,1, v′i,1), (s, vi,2), (s, vi,3), (s, vi,4)}, and
the set Vi is partitioned into two disjoint sets Vs and Vt, where Vs = {s, vi,0, v′i,0, vi,1}
and Vt = {t, v′i,1, vi,2, v′i,2, vi,3, v′i,3, vi,4, v′i,4}. This implies that vi,1 is executed in the
local IoT device, i.e., V loc

i = Vs ∩Vi = {vi,0, vi,1}, where vi,0 is the virtual input layer.
While vi,2, vi,3, and vi,4 are executed in cloudlet n with ki,n allocated threads, i.e.,
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Vmec
i = Vt ∩Vi = {vi,2, vi,3, vi,4}.

the original DNN

Figure 4.3: An illustrative example of the auxiliary flow network G′i,n,ki,n
driven from

a DNN (consisting of 4 layers) of request ri, by assigning part of the DNN to cloudlet
n with ki,n allocated threads for the DNN inference process.

It can be seen that the minimum cut M∗ in the auxiliary graph G′i,n,ki,n
corre-

sponds to a two-partitioning {V loc
i , Vmec

i } of the DNN Gi that minimizes the infer-
ence delay of request ri when ri is assigned to cloudlet n with ki,n threads, where
V loc

i = Vs ∩ Vi and Vmec
i = Vt ∩ Vi. In other words, ∑e∈M∗ w(e) is the entire infer-

ence delay of the DNN by the partitioning of {V loc
i , Vmec

i }. This claim will be shown
rigorously later.

4.3.2 Approximation algorithm

Having partitioned the DNN model of each request into two connected compo-
nents, the DNN inference throughput maximization problem can be solved through
a reduction to a maximum profit GAP as follows.

If the DNN part of request ri can be offloaded to cloudlet n ∈ N(ri) with ki,n
allocated threads to meet its delay requirement Di, then a minimum number kmin

i,n
of allocated threads in cloudlet n for request ri with 1 ≤ kmin

i,n ≤ ki,n needs to be
identified while still meeting the delay requirement. This can be achieved by binary
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search on the value range [1, K] of kmin
i,n by constructing no more than ⌈log K⌉ auxiliary

graphs.
Denote by p(i, n) the throughput gain if request ri is assigned to cloudlet n,

where p(i, n) = 0 indicates that either (i) cloudlet n is not within the transmission
range of the IoT device of request ri, i.e., n /∈N(ri); or (ii) request ri is not admissible
by assigning it to cloudlet n with up to K allocated threads, i.e., its inference delay
requirement cannot be met with any DNN partitioning strategy, even if request ri is
assigned to cloudlet n by allocating it with the maximum number of threads K; and
p(i, n) = 1 otherwise. Note that in case p(i, n) = 0, the value of kmin

i,n is set as ∞.
The problem reduction proceeds as follows. For each cloudlet n ∈ N , there is

a corresponding bin bn with capacity of Cn. While for each request ri, there is a
corresponding item i with 1 ≤ i ≤ |R|. If item i can be assigned to bin bn with kmin

i,n
allocated threads while meeting its delay requirement, it has a profit of p(i, n) (= 1)
with a size of kmin

i,n ; otherwise, its profit is p(i, n) = 0 with a size of ∞, the problem
then is to pack as many items as possible to the |N| bins such that the accumulative
profit is maximized, subject to the capacity on each bin. This is the maximum profit
GAP, and there is an approximation algorithm for it [22].

The detailed algorithm for the delay-aware DNN inference problem is then given
in Algorithm 9.

4.3.3 Algorithm analysis

In the following, we analyze the properties of the constructed auxiliary graph
G′i,n,ki,n

, and show the correctness of the proposed approximation algorithm. We also
analyze the approximation ratio and time complexity of the approximation algo-
rithm.

Lemma 8. Given a DNN Gi = (Vi, Ei), its layer set Vi is partitioned into two disjoint
subsets V loc

i and Vmec
i , where V loc

i and Vmec
i are executed in the local IoT device of

request ri and a cloudlet in edge computing, respectively. For each layer dependency
(vi,j, vi,l) ∈ Ei in the DNN Gi, we have (i) if vi,j ∈ Vmec

i , then vi,l ∈ Vmec
i ; (ii) if

vi,l ∈ V loc
i , then vi,j ∈ V loc

i ; and (iii) vi,0 ∈ V loc
i .

This is because the DNN model Gi can only be partitioned into two parts.

Lemma 9. Given a DNN inference model Gi = (Vi, Ei) and its auxiliary flow net-
work G′i,n,ki,n

= (V ′i , E′i), let Vs and Vt be the sets of nodes in G′i,n,ki,n
partitioned by a

potential cut M, where Vs contains source node s and Vt contains destination node t,
respectively. For each layer dependency (vi,j, vi,l) ∈ Ei in Gi, we have (i) if vi,j ∈ Vt,
then vi,l ∈ Vt; (ii) if vi,l ∈ Vs, then vi,j ∈ Vs; and (iii) vi,0 ∈ Vs.

Proof. In the construction of G′i,n,ki,n
, for each layer dependency (vi,j, vi,l) ∈ Ei in Gi,

an edge (vi,l , vi,j) with capacity of infinity is added to G′i,n,ki,n
. This implies that edge

(vi,l , vi,j) in G′i cannot be included in the cut M, and vi,j is always reachable from
vi,l . We now show claim (i) by contradiction, i.e., we assume that vi,l ∈ Vs. However,
vi,j ∈ Vt and vi,l can reach vi,j through edge (vi,l , vi,j). This contradicts the definition
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Algorithm 9 An approximation algorithm for the delay-aware DNN inference prob-
lem
Require: A set N of cloudlets co-located with APs in a monitoring area and a set of

requests R.
Ensure: Maximize the network throughput by admitting as many DNN inference

requests as possible.

1: for each request ri ∈ R do
2: for each cloudlet n /∈N(ri) do
3: kmin

i,n ← ∞; p(i, n)← 0;
4: end for;
5: for each cloudlet n ∈N(ri) do
6: Construct auxiliary graph G′i,n,K;
7: Calculate the inference delay dd2d(ri, n, K) by finding a minimum cut in

G′i,n,K;
8: if dd2d(ri, n, K) > Di then
9: kmin

i,n ← ∞; p(i, n)← 0; /* the delay requirement of request ri cannot be
met when assigned to cloudlet n with K threads.*/

10: else
11: kl ← 1; kr ← K; /* Use binary search to find a minimum number kmin

i,n
of threads to meet the delay requirement Di of request ri when it is assigned to
cloudlet n/*

12: while kl ≤ kr do
13: km ← ⌊(kl + kr)/2⌋;
14: Construct auxiliary graph G′i,n,km

;
15: Calculate the inference delay dd2d(ri, n, km) by finding a minimum

cut in G′i,n,km
;

16: if dd2d(ri, n, km) ≤ Di then
17: kr ← km − 1;
18: else
19: kl ← km + 1;
20: end if;
21: end while;
22: kmin

i,n ← kl ; p(i, n)← 1;
23: end if;
24: end for;
25: end for;
26: Construct a maximum profit GAP instance, where each cloudlet n corresponds

to a bin bn with a capacity Cn, each request ri corresponds to an item i with a size
kmin

i,n and a profit p(i, n) if assigned to bin bn;
27: An approximate solution A is obtained, by invoking the approximation algo-

rithm for the maximum profit GAP in [22];
28: return the solution A to the delay-aware DNN inference problem.
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of a cut. The proof of claim (ii) is similar to that of claim (i), omitted. Claim (iii)
always holds, as the capacity of edge (s, vi,0) is infinity and node s can reach vi,0.

Lemma 10. Given a DNN model Gi = (Vi, Ei) and its auxiliary flow network G′i,n,ki,n
=

(V ′i , E′i), let Vs and Vt be the sets of nodes in G′i,n,ki,n
partitioned by a minimum cut,

where Vs contains s and Vt contains t, respectively. Let M∗ be the set of edges in
the minimum cut of G′i,n,ki,n

. In the auxiliary graph G′i,n,ki,n
, (i) if vi,j ∈ Vt ∩ Vi with

vi,j ∈ Vi \ {v0}, then edge (s, vi,j) ∈ M∗ and edge (vi,j, t) /∈ M∗; (ii) if vi,j ∈ Vs ∩ Vi
with vi,j ∈ Vi \ {v0}, then edge (vi,j, t) ∈ M∗ and edge (s, vi,j) /∈ M∗; and (iii) edge
(s, vi,0) /∈ M∗.

Proof. (i) Since edge (s, vi,j) directly connects source s to vi,j, edge (s, vi,j) must be
included in M∗ by the definition of the minimum cut. Assuming that (vi,j, t) ∈ M∗,
as vi,j ∈ Vt, it can be seen that the removal of (vi,j, t) from M∗ results in a new cut M′

with a smaller value, i.e., M∗ = M′ ∪ {(vi,j, t)} and ∑e∈M′ w(e) < ∑e∈M∗ w(e). This
contradicts the assumption that M∗ is a minimum cut. Thus, (vi,j, t) /∈ M∗. (ii) The
proof is similar to (i), omitted. (iii) This is due to the fact that the capacity of edge
(s, vi,0) is infinite.

Lemma 11. Given a DNN model Gi = (Vi, Ei) and its auxiliary flow network G′i,n,ki,n
=

(V ′i , E′i). Each potential DNN partitioning {V loc
i , Vmec

i } in Gi corresponds to a poten-
tial cut M in G′i,n,ki,n

.

Proof. Similar to Lemma 10, we construct such a cut M on G′i,n,ki,n
by any DNN par-

titioning {V loc
i , Vmec

i }, where M = {(s, vi,j) | vi,j ∈ Vmec
i } ∪ {(vi,j, t) | vi,j ∈ V loc

i \
{vi,0}} ∪ {(vi,j, v′i,j) | vi,j ∈ Vtran

i }. Then we have Vs = {s} ∪ {vi,j | vi,j ∈ Vtran
i } ∪

{vi,j, v′i,j | vi,j ∈ V loc
i \Vtran

i }, and Vt = {t}∪ {v′i,j | vi,j ∈ Vtran
i }∪ {vi,j, v′i,j | vi,j ∈ Vmec

i }.
We now show that M is a feasible cut in Gi,n,ki,n , i.e., we show that for the given

cut M, (i) any node in Vs is reachable from s; and (ii) any node in Vt is not reachable
from s.

(i) Source s can reach any node vi,j ∈ V loc
i , since edge (s, vi,j) with vi,j ∈ V loc

i
is not added to cut M. Source s can also reach any node v′i,j with vi,j ∈ V loc

i \ Vtran
i

through edges (s, vi,j) and (vi,j, v′i,j), because edge (vi,j, v′i,j) with vi,j ∈ V loc
i \ Vtran

i is
not added to cut M.

(ii) We have {v′i,j | vi,j ∈ Vtran
i } ⊂ Vt, because for each vi,j ∈ Vtran

i , node v′i,j has
only one incoming edge (vi,j, v′i,j), however, (vi,j, v′i,j) ∈ M, then v′i,j is not reachable
from s. We now show that {vi,j | vi,j ∈ Vmec

i } ⊂ Vt by a contradiction. Assume
that there exists a node vi,j ∈ Vmec

i , which is reachable from source s. Because
{(s, vi,j) | vi,j ∈ Vmec

i } ⊂ M, source s can reach vi,j only if source s first reaches a
node vi,a ∈ Vloc with edge (s, vi,a). Also, the path from any node vi,a ∈ Vloc to any
node vi,j ∈ Vmec in G′i,n,ki,n

must pass through an edge in {(vi,b, v′i,b) | vi,b ∈ Vtran
i } by

the construction of the auxiliary graph. However, with {(vi,b, v′i,b) | vi,b ∈ Vtran
i } ⊂ M,

source s cannot reach any node vi,j ∈ Vmec
i though any node vi,a ∈ Vloc, which results

in a contradiction. We have {v′i,j | vi,j ∈ Vmec
i } ⊂ Vt, because each v′i,j has only one
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incoming edge (vi,j, v′i,j) with vi,j ∈ Vmec
i , but s cannot reach any node vi,j ∈ Vmec

i
as mentioned. To reach sink t, source s must first reach any node in Vmec

i , due
to {(vi,j, t) | vi,j ∈ V loc

i \ {vi,0}} ⊂ M. However, source s cannot reach any node
vi,j ∈ Vmec

i as mentioned. Therefore, source s cannot reach sink t and t ∈ Vt.

Lemma 12. Given a DNN Gi = (Vi, Ei) and its auxiliary flow network G′i,n,ki,n
=

(V ′i , E′i), let Vs and Vt be the node sets of G′i,n,ki,n
partitioned by a minimum cut M∗,

where Vs contains s and Vt contains t. The minimum cut M∗ in G′i,n,ki,n
corresponds

to a feasible DNN partitioning {V loc
i , Vmec

i } of Gi, where V loc
i = Vs ∩ Vi and Vmec

i =
Vt ∩Vi.

Proof. Let V loc
i = Vs ∩ Vi and Vmec

i = Vt ∩ Vi, such a DNN partitioning {V loc
i , Vmec

i }
is feasible, because the minimum cut in G′i,n,ki,n

and a feasible DNN partitioning in
Gi have the same patterns by Lemma 8 and 9. Especially, we have {(s, vi,j) | vi,j ∈
Vmec

i } ∪ {(vi,j, t) | vi,j ∈ V loc
i \ {vi,0}} ⊂ M∗, by Lemma 10. We can also obtain

the set of layers Vtran
i ⊂ V loc

i , the successor layers of which are in Vmec
i . We then

show {(vi,j, v′i,j) | vi,j ∈ Vtran
i } ⊂ M∗ by a contradiction. Assume that it exists a

node vi,j ∈ Vtran with (vi,j, v′i,j) /∈ M∗, and there is a layer dependency (vi,j, vi,l) with
vi,j ∈ Vtran ⊂ V loc

i and vi,l ∈ Vmec. As V loc
i = Vs ∩ Vi and Vmec

i = Vt ∩ Vi, we have
vi,j ∈ Vs and vi,l ∈ Vt. However, the capacity of edge (v′i,j, vi,l) is infinite, and vi,j can
reach vi,l though edges (vi,j, v′i,j) and (v′i,j, vi,l), which contradicts the definition of a
cut. Thus we have the minimum cut M∗ = {(s, vi,j) | vi,j ∈ Vmec

i } ∪ {(vi,j, t) | vi,j ∈
V loc

i \ {vi,0}} ∪ {(vi,j, v′i,j) | vi,j ∈ Vtran
i }, because M∗ is already a cut of G′i,n,ki,n

, which
has been shown in Lemma 11.

Lemma 13. Given a DNN model Gi = (Vi, Ei) and its auxiliary flow network G′i,n,ki,n
=

(V ′i , E′i), the minimum cut M∗ of G′i,n,ki,n
corresponds to a feasible DNN partitioning

with the minimum inference delay.

Lemma 13 can be derived from Lemma 11 and Lemma 12.

Theorem 4.2. Given a set N of cloudlets co-located with APs in a monitoring area, and a
set R of delay-aware DNN inference requests with inference delay requirements, there is a

1
2+ϵ−approximation algorithm, Algorithm 9, for the DNN inference throughput maximiza-
tion problem, which takes O(|R| · |N| · ⌈log K⌉ · (|V|max + |E|max) · |V|2max + |N| · |R| ·
log 1

ϵ + |N|
ϵ4 ) time, where ϵ is a constant with 0 < ϵ ≤ 1, K is the maximum number of

threads allocated to a request in any cloudlet, |V|max and |E|max are the maximum numbers
of layers and edges in a DNN of any request, respectively.

Proof. Given the assigned cloudlet n and the number of allocated threads, a minimum
cut in the constructed auxiliary graph results in an optimal DNN partitioning to
minimize the inference delay of a request ri by Lemma 13, and a minimum number
of allocated threads for request ri to meet its inference delay requirement is then
found if request ri is assigned to cloudlet n. The approximation ratio of Algorithm 9
is 1

2+ϵ , derived from the approximation algorithm in [22] directly.
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The time complexity of Algorithm 9 is analyzed as follows. There are at most
|R| · |N| · ⌈log K⌉ auxiliary graphs for |R| requests to be constructed, while it takes
O((|V|max + |E|max) · |V|2max) time to find a minimum cut in each auxiliary graph
by the algorithm in [11]. Also, it takes O(|N| · |R| · log 1

ϵ + |N|
ϵ4 ) time for the max-

imum GAP, by the approximation algorithm in [22]. Thus, the time complexity
of Algorithm 9 is O(|R| · |N| · ⌈log K⌉ · (|V|max + |E|max) · |V|2max + |N| · |R| · log 1

ϵ +
|N|
ϵ4 ).

4.4 Online algorithm for dynamic DNN inference through-
put maximization problem

In this section, we deal with dynamic admissions of delay-aware DNN inference
requests, assuming that a sequence of requests arrives one by one without the knowl-
edge of future request arrivals. We propose an online algorithm with a provable com-
petitive ratio for the dynamic DNN inference throughput maximization problem.

4.4.1 Online algorithm

In the proposed online algorithm, we adopt the similar strategy as we did for
Algorithm 9. That is, for each incoming request ri, we first identify the minimum
number kmin

i,n of allocated threads on each cloudlet n ∈ N(ri) to meet its inference
delay requirement, where the value of kmin

i,n is obtained by binary search on the value
range [1, K], and we construct no more than ⌈log K⌉ auxiliary graphs to find kmin

i,n .
Let Cn(i) be the residual computing capacity (the available number of threads)

in cloudlet n ∈N(ri) when request ri arrives, and Cn(1) = Cn initially. If request ri is
admitted, kmin

i,n threads in cloudlet n are allocated to process its offloaded DNN layers
to meet its inference delay requirement Di, then Cn(i) = Cn(i)− kmin

i,n . We model the
usage cost wn(i) of cloudlet n by an exponential function when considering request ri
admission as follows.

wn(i) = Cn(α
1− Cn(i)

Cn − 1), (4.10)

where (1− Cn(i)
Cn

) is the computing resource usage ratio of cloudlet n, and α > 1 is a
tuning parameter that reflects the sensitivity of the computing resource usage ratio
of any cloudlet.

The normalized usage cost ψn(i) of cloudlet n then is defined as

ψn(i) =
wn(i)

Cn
= α1− Cn(i)

Cn − 1. (4.11)

When request ri arrives, we partition its DNN model Gi and calculate the result-
ing inference delay if ki,n threads in cloudlet n ∈ N(ri) are allocated for request ri,
with 1 ≤ ki,n ≤ K, by finding the minimum cut in the constructed auxiliary graph.
We then identify a minimum number kmin

i,n of threads on each cloudlet n ∈ N(ri)
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to meet the inference delay requirement of request ri, by binary search on the value
range [1, K] of kmin

i,n , which can be achieved by constructing no more than ⌈log K⌉ aux-
iliary graphs. Let Qi ⊂ N(ri) be the set of candidate cloudlets for request ri, where
each cloudlet n ∈ Qi has sufficient computing resource (the number of threads kmin

i,n )
to meet the inference delay requirement of request ri, i.e., Cn(i) ≥ kmin

i,n .
Request ri will be rejected if Qi is empty, i.e., the delay requirement of request ri

cannot be met by assigning ri to any cloudlet in the MEC network within its transmis-
sion range. Otherwise, a candidate cloudlet n′ ∈ Qi with the minimum normalized
usage cost is identified by Eq. (4.11). However, request ri can still be rejected if its
demanded computing resource is too costly. Therefore, an admission control policy
to determine the admission of request ri is proposed as follows: request ri will be re-
jected if the normalized usage cost of cloudlet n′ is greater than |N|, i.e., ψn′(i) > |N|,
where N is the set of cloudlets.

The details of the proposed online algorithm for the dynamic DNN inference
throughput maximization problem are given in Algorithm 10.

4.4.2 Algorithm analysis

In the following, we analyze the competitive ratio and time complexity of the
proposed online algorithm, Algorithm 10.

Lemma 14. Given an MEC network consisting of a set N of cloudlets, a sequence
of delay-aware DNN inference requests arrives one by one without the knowledge
of future arrivals. Assume that at most K threads on a cloudlet can be allocated
to accelerate the DNN inference of each request. Let A(i) be the set of requests
admitted by Algorithm 10 prior to the arrival of request ri. When request ri arrives,
the sum of the usage costs of all cloudlets in N is

∑
n∈N

wn(i) ≤ 2 · K · |N| · |A(i)| · log2 α. (4.12)

Proof. In case request ri′ is rejected, the usage cost of each cloudlet does not change.
Otherwise, assuming that request ri′ is admitted by assigning r′i to cloudlet n′ ∈
N(ri), i.e., Cn′(i′ + 1)− Cn′(i′) = kmin

i′,n′ ≤ K, since as most K threads can be allocated
to a request on any cloudlet. Then,

wn′(i′ + 1)− wn′(i′) = Cn′ · (α
1− Cn′ (i

′+1)
Cn′ − 1)− Cn′ · (α

1− Cn′ (i
′)

Cn′ − 1)

=Cn′ · α
1− Cn′ (i

′)
Cn′ · (α

Cn′ (i
′)−Cn′ (i

′+1)
Cn′ − 1)

≤Cn′ · α
1− Cn′ (i

′)
Cn′ · (α

K
Cn′ − 1) = Cn′ · α

1− Cn′ (i
′)

Cn′ · (2
K

Cn′
·log2 α − 1)

≤Cn′ · α
1− Cn′ (i

′)
Cn′ · K

Cn′
· log2 α. (4.13)

=K · α1− Cn′ (i
′)

Cn′ · log2 α, (4.14)
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Algorithm 10 Online algorithm for the dynamic DNN inference throughput maxi-
mization problem
Require: An MEC network consisting of a set N of cloudlets, and a sequence of

requests arriving one by one without the knowledge of future arrivals.
Ensure: Maximize the number of admitted requests.

1: A← ∅; /* the solution */
2: while a request ri arrives do
3: Qi ←N(ri); /* the candidate cloudlet set for ri */
4: for each cloudlet n ∈ Qi do
5: Construct auxiliary graph G′i,n,K, and calculate the inference delay

dd2d(ri, n, K) by finding a minimum cut in G′i,n,K;
6: if dd2d(ri, n, K) > Di then
7: kmin

i,n ← ∞;
8: else
9: kl ← 1; kr ← K;

10: while kl ≤ kr do
11: km ← ⌊(kl + kr)/2⌋; Construct auxiliary graph G′i,n,km

, and calculate
the inference delay dd2d(ri, n, km) by finding a minimum cut in G′i,n,km

;
12: if dd2d(ri, n, km) ≤ Di then
13: kr ← km − 1;
14: else
15: kl ← km + 1;
16: end if;
17: end while;
18: kmin

i,n ← kl ;
19: end if
20: if kmin

i,n > Cn(i) then
21: Qi ← Qi \ {n};
22: end if
23: end for
24: if Qi = ∅ then
25: Reject request ri;
26: else
27: Identify the cloudlet n′ ∈ Qi with the minimum normalized usage cost

ψn′(i), by Eq. (4.11);
28: if ψn′(i) > |N| then
29: Reject request ri;
30: else
31: Admit request ri by assigning the DNN part of ri to cloudlet n′, and

A← A∪ {ri};
32: end if;
33: end if;
34: end while;
35: return Solution A to the dynamic DNN inference throughput maximization

problem.
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where Ineq (4.13) holds since 2x − 1 ≤ x with 0 ≤ x ≤ 1.
If request ri′ is admitted by assigning it to cloudlet n′, only the usage cost of

cloudlet n′ changes while the usage cost of any other cloudlet remains the same.
Thus, after admitting request ri′ , we have

∑
n∈N

(wn(i′ + 1)− wn(i′)) = wn′(i′ + 1)− wn′(i′)

≤K · α1− Cn′ (i
′)

Cn′ · log2 α, by Eq. (4.14)

=K · log2 α · ((α1− Cn′ (i
′)

Cn′ − 1) + 1)

=K · log2 α · (ψn′(i′) + 1), by Eq. (4.11)

≤K · log2 α · (|N|+ 1) (4.15)

≤2 · K · |N| · log2 α, (4.16)

where Ineq.(4.15) holds as the admission control policy is met.
We then calculate the sum of the usage costs of all cloudlets prior to the arrival

of request ri as follows.

∑
n∈N

wn(i) =
i−1

∑
i′=1

∑
n∈N

(wn(i′ + 1)− wn(i′))

= ∑
ri′∈A(i)

∑
n∈N

(wn(i′ + 1)− wn(i′))

≤ ∑
ri′∈A(i)

(2 · K · |N| · log2 α), by Eq. (4.16)

=2 · K · |N| · |A(i)| · log2 α. (4.17)

Hence, the lemma follows.

Lemma 15. Given an MEC network consisting of a set N of cloudlets, a sequence of
delay-aware DNN inference requests arrives one by one without the knowledge of
future arrivals. Assume that at most K threads can be allocated on any cloudlet to
accelerate the DNN inference of a request. Let B(i) be the set of requests admitted
by the optimal solution but rejected by Algorithm 10 prior to the arrival of request
ri. Each request ri′ ∈ B(i) is assumed to be assigned to cloudlet n∗i′ in the optimal
solution. Then, for each request ri′ ∈ B(i), we have

ψn∗i′
(i′) > |N|, (4.18)

when 2|N| + 2 ≤ α ≤ 2
Cmin

K , and Cmin = minn∈N{Cn} is the minimum computing
capacity of a cloudlet.

Proof. Since request ri′ is admitted by the optimal solution, it can be seen that there
is at least one cloudlet in the transmission range of the local IoT device of request ri′ ,
i.e., N(ri′) ̸= ∅. We distinguish the rejection of request ri′ by Algorithm 10 into two



§4.4 Online algorithm for dynamic DNN inference throughput maximization problem93

cases: Case 1. Cloudlet n∗i′ does not have sufficient computing resource for request ri′

when ri′ arrives. Case 2. Cloudlet n∗i′ has sufficient computing resource for request
ri′ when ri′ arrives, and request ri is allocated to cloudlet ni′ (ni′ could be n∗i′), by
Algorithm 10. However, the admission control policy is violated, and request ri′ is
rejected.

Case 1. Cloudlet n∗i′ does not have sufficient computing resource for request ri′

when ri′ arrives, i.e., Cn∗i′
(i′) < kmin

i′,n∗i′
≤ K. We then have

ψn∗i′
(i′) = α

1−
Cn∗

i′
(i′)

Cn∗
i′ − 1 > α

1− K
Cn∗

i′ − 1

≥ α
1− 1

log2 α − 1, when α ≤ 2
Cmin

K ≤ 2
Cn∗

i′
K

=
α

2
− 1 ≥ |N|, when α ≥ 2|N|+ 2.

Case 2. Algorithm 10 assigns request ri′ to cloudlet ni′ ∈ N(ri′) with the mini-
mum normalized usage cost by Eq. (4.11), we have

ψn∗i′
(i′) ≥ ψni′ (i

′). (4.19)

However, the admission control policy is violated if request ri′ is assigned to
cloudlet ni′ , i.e., ψni′ (i

′) > |N|, we have

ψn∗i′
(i′) > |N|. (4.20)

Hence, the lemma follows.

Theorem 4.3. Given a set N of cloudlets co-located with |N| APs, each cloudlet n ∈ N has
computing capacity cv in terms of the number of threads, a sequence of delay-aware DNN
inference requests arrives one by one without the knowledge of future arrivals. Assuming
at most K threads in a cloudlet can be allocated to accelerate the DNN inference of each
request, there is an online algorithm for the dynamic DNN inference throughput maximiza-
tion problem, Algorithm 10, with a competitive ratio of O(log |N|). The algorithm takes
O(|N| · ⌈log K⌉ · (|Vmax|+ |Emax|) · |Vmax|2) time for the admission of each request when
α = 2|N|+ 2, where N is the set of cloudlets, |Vmax| and |Emax| are the maximum numbers
of layers and edges in a DNN among the DNN models of all requests, respectively.

Proof. Let Popt(i) be the set of admitted requests by an optimal solution prior to the
arrival of request ri. A(i) is the set of request admitted by Algorithm 10 prior to the
arrival of request ri, while B(i) is the set of requests admitted by the optimal solution
but rejected by Algorithm 10 prior to the arrival of request ri. Denote by B(i, n) the
set of requests in B(i) which are assigned to cloudlet n by an optimal solution, i.e.,
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B(i, n) = {ri′ | ri′ ∈ B(i), n∗i′ = n}. It can be seen that B(i) = ∪n∈NB(i, n). Then,

|N| · (|Popt(i)| − |A(i)|) ≤ |N| · |B(i)| = ∑
ri′∈B(i)

|N|

< ∑
ri′∈B(i)

ψn∗i′
(i′), by Lemma 15

≤ ∑
ri′∈B(i)

ψn∗i′
(i) (4.21)

= ∑
ri′∈B(i)

wn∗i′
(i)

Cn∗i′
= ∑

ri′∈B(i,n)
∑

n∈N

wn(i)
Cn

≤ ∑
n∈N

wn(i) ∑
ri′∈B(i,n)

1
Cn

(4.22)

≤ ∑
n∈N

wn(i) (4.23)

≤2 · K · |N| · |A(i)| · log2 α, by Lemma 14, (4.24)

where Ineq. (4.21) holds since the computing resource consumption of any cloudlet
does not decrease. Ineq. (4.22) holds as ∑

p
i=1 ∑

q
j=1 AiBj ≤ ∑

p
i=1 Ai ∑

q
j=1 Bj, with Ai ≥ 0

and Bj ≥ 0. Ineq. (4.23) holds because each admitted request consumes at least one
thread, and the computing capacity of each cloudlet is not violated. Then we have

|Popt(i)| − |A(i)| < 2 · K · log2 α · |A(i)|. (4.25)

Thus, we have

|Popt(i)|
|A(i)| =

|Popt(i)| − |A(i)|
|A(i)| + 1

<
2 · K · log2 α · |A(i)|

|A(i)| + 1

=2 · K · log2 α + 1 = O(log |N|), when α = 2|N|+ 2.

We then analyze the time complexity of Algorithm 10 as follows. Upon the
arrival of request ri, at most |N| · ⌈log K⌉ auxiliary graphs are constructed, and it
takes O((|V|max + |E|max) · |V|2max) time to find a minimum cut in each auxiliary
graph by the algorithm in [11]. Finding the cloudlet with the minimum normalized
usage cost takes O(|N|) time. Thus, Algorithm 10 takes O(|N| · ⌈log K⌉ · (|Vmax|+
|Emax|) · |Vmax|2) time for the admission of each request.

4.5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms through
experimental simulations. We also study the impact of important parameters on the
performance of the proposed algorithms.
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4.5.1 Experimental Settings

The geographical area is a 1 km × 1 km square area [72] and there are 100
cloudlets deployed on a regular 10 × 10 grid MEC network, each of which is co-
located with an AP. The bandwidth of each AP varies from 2 MHz to 10 MHz [36],
and each AP can provide services to a user within 100 m [94]. There are delay-aware
1, 000 DNN inference requests, each of which is issued from an IoT device, and the
IoT devices are randomly scattered over the defined geographical area. For DNN
inferences, we here consider the well-known DNNs: {AlexNet, ResNet34, ResNet50,
VGG16, VGG19}. Each request contains an image for inference, which is extracted
from the videos in the self-driving dataset BDD100K [114]. The transmission power
of each IoT device is randomly drawn between 0.1 Watt and 0.5 Watt [18; 94], noise
power σ2 is set as 1× 10−10 Watt, and the path loss factor β is set as 4 [18]. The
inference delay requirement of a request varies from 0.1 s to 0.3 s. Each cloudlet is
assumed to be equipped with 32, 48, or 64 CPU cores [7]. Recall that we assume
that each CPU core corresponds to a thread, as applying hyper-threading technique
(generate two threads per CPU core) may affect the performance due to additional
context switching [66]. We further assume that at most 10 threads (CPU cores) can
be allocated for a request in any cloudlet, i.e., K = 10. All CPU cores in a cloudlet
are assumed to share the same clock speed that varies from 2.5 GHz to 3 GHz in
different cloudlets [7]. And the clock speed of each IoT device ranges from 0.5 GHz
to 1 GHz [18]. Each cloudlet or IoT device is assumed to conduct 4 floating-point op-
erations per cycle [72]. The parameter ϵ in Algorithm 9 is set as 0.5 by Theorem 4.2.
For Algorithm 10, the parameter α in Eq. (4.11) is set as 2|N| + 2 by Theorem 4.3.
The value in each figure is the mean of the results out of 15 different runs of MEC
network instances of the same size. The running time of each algorithm is obtained,
based on a desktop with a 3.60 GHz Intel 8-Core i7-7700 CPU and 16 GB RAM.
Unless otherwise specified, the above parameters are adopted by default.

To evaluate the performance of Algorithm 9 (referred to as Alg.9) for the DNN
inference throughput maximization problem, we here introduce two heuristic algo-
rithms as benchmarks: algorithms Heu.1_off and Heu.2_off. Algorithm Heu.1_off
is based on an existing DNN partitioning strategy Neurosurgeon [45], which, however,
only works for chain-topology DNNs. Therefore, we preprocess each DAG-topology
DNN by a topological sorting approach as did in [36], and then adopt Neurosurgeon
to partition the DNN between the local IoT device and a cloudlet. For each request
ri, we can find the minimum number kmin

i,n of needed threads among all cloudlets to
meet its inference delay requirement. Algorithm Heu.1_off then admits a request ri
with the minimum number kmin

i,n of threads among all requests, iteratively, until no
more request can be admitted. Algorithm Heu.2_off offloads the entire DNN model
of a request to its nearest cloudlet with the number of needed threads to meet its in-
ference delay requirement. Similarly, algorithm Heu.2_off admits a request with the
minimum number of needed threads among all requests, iteratively, until no more
requests can be admitted.

To investigate the performance of Algorithm 10 (referred to as Alg.10) for
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the dynamic DNN inference throughput maximization problem, two heuristic al-
gorithms Heu.1_on and Heu.2_on are proposed, which are the online versions of
algorithms Heu.1_off and Heu.2_off, respectively, i.e., algorithm Heu.1_on greed-
ily admits each incoming request by offloading the request to the cloudlet with the
minimum number of threads needed among all cloudlets, by the modified strategy
- Neurosurgeon. In contrast, algorithm Heu.2_on greedily admits each incoming re-
quest by offloading its entire DNN model to the nearest cloudlet of the request that
has sufficient numbers of threads. Either algorithm Heu.1_on or algorithm Heu.2_on
rejects an incoming request if no cloudlet has the number of threads needed.

4.5.2 Performance evaluation of the proposed algorithm for the DNN in-
ference throughput maximization problem

We first evaluated the performance of algorithm Alg.9 against the algorithms
Heu.1_off and Heu.2_off with 1, 000 requests, over the considered DNNs, respec-
tively. Fig. 4.4 demonstrates the throughput and running time delivered by different
algorithms. It can be seen from Fig. 4.4(a) that algorithm Alg.9 admits more requests
than algorithms Heu.1_off and Heu.2_off in all cases. For example, for ResNet34,
algorithm Alg.9 outperforms algorithms Heu.1_off and Heu.2_off by 17.7% and
23.7%, respectively. This is because algorithm Alg.9 establishes an efficient DNN
partitioning strategy for each inference request, and makes resource-efficient deci-
sions of request admissions, compared with the benchmark algorithms. Also, the
performance of algorithm Alg.9 over VGG19 is 19.7% of itself over AlexNet. This is
because the inference over VGG19 requires the largest number of floating-point oper-
ations (about 19.6 G), while the inference over AlexNet requires the smallest number
of floating-point operations (about 0.7 G).
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Figure 4.4: Performance of different algorithms for the DNN inference throughput
maximization problem over different DNNs.

We then studied the impact of parameter K on the performance of algorithm
Alg.9, by varying the number of requests from 100 to 1, 000, where the requested
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DNN of each request is randomly drawn from the predefined DNN set. Fig. 4.5
illustrates the throughput and running time of algorithm Alg.9 when K = 1, 5,
and 10, respectively. From Fig. 4.5(a), we can see that when the number of requests
is 1, 000, the performance of algorithm Alg.9 when K = 1 is 36.4% of itself when
K = 10. This is due to the fact that a larger value of K implies that more threads can
be allocated to accelerate the DNN inference of a request to meet its inference delay
requirement.
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Figure 4.5: Impact of parameter K on the performance of algorithm Alg.9.

4.5.3 Performance evaluation of the proposed algorithms for the dynamic
DNN inference throughput maximization problem

We now investigated the performance of algorithm Alg.10 against algorithms
Heu.1_on and Heu.2_on for the dynamic DNN inference throughput maximization
problem, over the considered DNNs, respectively. Fig. 4.6 plots the throughput and
running time of different algorithms. From Fig. 4.6(a), we can see that algorithm
Alg.10 outperforms algorithms Heu.1_on and Heu.2_on respectively. For example,
for ResNet34, algorithm Alg.9 outperforms algorithms Heu.1_off and Heu.2_off
by 18.7% and 21.1%, respectively. The reason is that algorithm Alg.10 assigns an in-
coming request to a cloudlet with the minimum normalized usage cost by Eq. (4.11),
and minimizes the number of threads needed to meet its delay requirement by an
efficient DNN partitioning strategy. A well-designed admission control policy is also
adopted by algorithm Alg.10 to avoid resource overspending. In Fig. 4.6(a), algo-
rithm Alg.10 over AlexNet has the best performance, among the predefined DNN
set, because the inference over AlexNet requires the smallest number of floating-
point operations, which is consistent with the performance behaviors in Fig. 4.4(a).

We then studied the impact of parameter K on the performance of algorithm
Alg.10, by varying the number of requests from 100 to 1, 000, where the requested
DNN of each request is randomly drawn from the predefined DNN set. Fig. 4.7
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Figure 4.6: Performance of different algorithms for the dynamic DNN inference
throughput maximization problem over different DNNs.

depicts the performance curves of algorithm Alg.10 when K = 1, 5, and 10, respec-
tively. It can be seen from Fig 4.7(a) that when the number of requests is 100, the
throughput achieved by algorithm Alg.10 with K = 1 is 23.2% of itself with K = 10.
This is because more requests with stringent delay requirements can be admitted
with a large value of K in the case of abundant network resource (with a small num-
ber of incoming requests). However, with over 800 requests, algorithm Alg.10 with
K = 5 delivers the best performance, compared with itself with K = 1 or 10. The
rationale behind this is that when the resource is limited (with a large number of in-
coming requests), setting K with a reasonable value helps maximize the throughput
by reserving the resource for future request admissions.
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Figure 4.7: Impact of parameter K on the performance of algorithm Alg.10.

We finally evaluated the impact of the admission control policy and parameter
α on the performance of algorithm Alg.10, where α > 1 is a tuning parameter
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that reflects the sensitivity of the computing resource usage ratio of any cloudlet.
Fig 4.8 shows the performance behaviors of algorithm Alg.10 with and without
the admission control policy. Algorithm Alg.10 with the admission control policy
admitted 18.4% more requests than itself without the admission control policy in the
case of 1, 000 cloudlets. This can be justified by that an efficient admission control
policy intends to admit requests with a small number of threads needed, therefore,
the achieved throughput is maximized. Fig 4.8(b) plots the throughput curves of
algorithm Alg.10 with parameter α = 2|N|+ 2, 4|N|+ 2, and 8|N|+ 2, respectively,
where |N| is the number of cloudlets. It can be seen from Fig 4.8(b) that when
the number of requests reaches 1, 000, the performance of algorithm Alg.10 with
α = 8|N| + 2 policy admitted 86.5% of itself with α = 2|N| + 2. This is because
the normalized usage cost increases with the increase on the value of parameter α

by Eq. (4.11), and algorithm Alg.10 intends to reject the incoming requests by the
admission control policy.
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Figure 4.8: The impacts of the admission control policy and parameter α on the
performance of algorithm Alg.10.

4.6 Summary

In this chapter, we investigated the DNN inference service provisioning with
inference delay requirements in an MEC environment. We studied a DNN inference
throughput maximization problem with the aim to maximize the number of requests
admitted, subject to computing capacities on cloudlets in the MEC network. To meet
the inference delay requirement of each request, we jointly explored the DNN model
partitioning and multi-thread parallelism in the cloudlet for inference acceleration.
We then showed the NP-hardness of the problem and devised an approximation
algorithm with a provable approximation ratio for the problem. In addition, we also
considered the dynamic DNN inference throughput maximization problem where
a sequence of dealy-aware DNN inference requests arrives one by one without the
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knowledge of future arrivals, for which we developed an online algorithm with a
provable competitive ratio. We finally evaluated the performance of the proposed
algorithms by experimental simulations. Experimental results demonstrated that the
proposed algorithms are promising.



Chapter 5

Robust Service Provisioning with
Service Function Chain
Requirements

In this chapter, we first introduce a novel Robust Service Function Chain Place-
ment (RSFCP) problem under the uncertainty assumption of both computing re-
source and data rates demanded by request executions, through the placement of Ser-
vice Function Chains (SFCs). We first formulate the RSFCP problem as a Quadratic
Integer Programming (QIP). We then develop a near-optimal approximation algo-
rithm for it, by adopting the Markov approximation technique. We also analyze the
proposed approximation algorithm with the optimality gap, and the bounds on the
convergence time and perturbation caused by resource demand uncertainties.

5.1 Introduction

Service robustness is crucial to limit the performance degradation of network
services with unpredictable changes, due to dynamic resource demands [5]. Most
previous studies considered the service function chain placement (SFCP) problem
under the assumption of accurate amounts of resources demanded for its VNF in-
stance placements of each request [9; 40; 63; 92; 96; 123; 121; 119]. In reality, there
is an uncertainty of resource demands during various stages of a request implemen-
tation [89]. In addition, there exists potential blockage during the transmission of
5G mmWave signals [39], and the resource demands are time-varying to guarantee
high-quality task offloading [120].

The novelty of this chapter lies in the formulation of a novel Robust Service
Function Chain Placement (RSFCP) problem in MEC environments, under the as-
sumption of both demanded resource uncertainty and measurement inaccuracy, and
a near-optimal approximation algorithm with a good performance guarantee for the
problem is devised.

The main contributions of this chapter are as follows. We first formulate a novel
RSFCP problem with the aim to maximize the expected profit collected by the net-

101
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work service provider of an MEC network, under the uncertainty assumption of both
computing resource and data rate demands in the implementation of a user request.
We show that the problem is NP-hard and provide a Quadratic Integer Programming
(QIP) formulation for it. We then develop an efficient approximation algorithm for
it. Specifically, we start with a special case of the problem where the measurement
of the expected demanded resources for each request admission is accurate, under
which we propose a near-optimal approximation algorithm by adopting the Markov
approximation technique, which can achieve a provable optimality gap. We then ex-
tend the proposed approach to the problem of concern, for which we show that the
proposed algorithm is still applicable, and the solution delivered has a moderate op-
timality gap with bounded perturbation errors on the profit measurement. We finally
evaluate the performance of the proposed algorithm through experimental simula-
tions. Experimental results demonstrate that the proposed algorithm is promising,
and outperforms the baseline algorithms.

The remainder of this chapter is organized as follows. Section 5.2 introduces
the system model and the problem definition. Section 5.3 formulates a QIP solution
to the problem and shows the NP-hardness of the problem. Sections 5.4 proposes
a near-optimal approximation algorithm for the problem. Section 5.5 evaluates the
performance of the proposed algorithm by experimental simulations, and a summary
is given in Section 5.6.

5.2 Preliminaries

In this section, we first introduce the system model and notations. We then
define the RSFCP problem precisely.

5.2.1 System model

We consider an MEC network that consists of Access Points (APs), cloudlets, and
links connecting the APs. Each cloudlet in which VNFs are deployed, is co-located
with an AP, while an AP may not necessarily be co-located with any cloudlet. The
MEC network can be represented by an undirected graph G = (V, E), where V is the
set of network nodes and E is the set of optical links [49; 54]. The set V is the union
of the set VC in which each network node consists of both an AP and a cloudlet,
and the set VA in which each network node consists of an AP only. For the sake
of convenience, in the rest of the discussion, we only focus on computing resource
consumption in each cloudlet. Each cloudlet v ∈ VC has computing capacity cv. For
a node v ∈ VA without any computing resource, its capacity is cv = 0.

Denote by N+(v) the set that contains all neighbors of node v in G and itself,
i.e., N+(v) = {u |(u, v) ∈ E} ∪ {v}. Each link (v, u) ∈ E between nodes v and u has
bandwidth capacity c(v, u). Denote by l(v, u) the latency per unit data traffic along
link (v, u) ∈ E.

Denoted by F the set of VNFs in the MEC and any SFC consists of some VNFs
from F in a certain order. The VNFs are instantiated in virtual machines on cloudlets,
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and denote by c f the required amount of computing resource to deploy a specific
VNF of type f for all f ∈ F. Denote by lv

f the processing time per unit data traffic of
VNF f on node v.

5.2.2 Uncertainties of demanded computing resource and data rate

Considering a set R of user requests, we assume that the demanded data rate
Bi of a request ri ∈ R is not precisely measured, and the amount of computing
resource c f of a VNF f is various at different stages of a request implementation. In
a realistic scenario, the network service provider is informed of the exact requested
SFC instead of the exact resource requirements of a request (e.g., the demanded data
rate Bi and the amount of computing resource c f for a VNF of f are not known
until the request is processed to its completion [89]). Although the same types of
VNFs are established, they always have similar but different computing resource
requirements [80]. The network system can perform some prediction mechanisms
to obtain necessary information about resource demands of admitted requests and
to estimate the amounts of computing resource and data rate demands by analyzing
past traces [26].

We first assume that both the lower bounds and the upper bounds on the ex-
pected demanded computing resource and the data rate of each request are given in
advance, which can be obtained through analyzing the past traces [26]. Recall that Bi
is the data rate of request ri. Denote by BL

i and BU
i the lower and upper bounds on Bi

with expectation Bi, which are given in advance. Similarly, denote by cL
f and cU

f the
lower and upper bounds on the computing resource demand c f of a VNF instance
of function f with expectation c f . However, it is difficult to accurately estimate the
expected amount of demanded resources with past traces, due to the uncertainty
of actual resource demands in the execution of requests. Therefore, the expected
amounts of resources may experience perturbations and the analysis of such per-
turbations will be given later. We also introduce an adjustable control parameter of
cost variation caused by the uncertain resource demands in our model to achieve a
desired stable system performance, which will be shown later.

5.2.3 User requests with both SFC and latency requirements

Each request ri ∈ R is represented by a tuple ⟨si, di, Bi,Li, s f ci, payi⟩, where si
and di are the source and destination nodes of the data traffic of the request, respec-
tively, Bi is the demanded data rate, Li is the latency requirement, s f ci is the service
function chain, and payi is the payment of the request. For request ri, its latency
consists of the processing times of ri on cloudlets and the communication latency
along links in the routing path of ri [70].

Although the data traffic of request ri has to start from node si and end at node
di, the deployed VNF instances in its SFC may be in neither of them. Meanwhile, a
specific SFC may go through a node v ∈ V without any VNF instance deployed on it.
Also, the routing path of a request may do retracing multiple times. Therefore, it is
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complicated to characterize the traffic flow under the context of SFCs, and we herein
introduce a set of dummy VNFs, denoted by D, in a routing path construction of data
traffic to ensure that when a routing path for request ri passes through a node v ∈ V,
at least one VNF or one dummy VNF is deployed on it. Therefore, the deployment
of the dummy VNF helps the Quadratic Integer Programming (QIP) formulation
of the problem, which will be formally defined later. And the solution by the QIP
formulation serves as the exact solution to the problem. Especially, dummy VNFs g0

and g1 are always appended at the start and end of s f ci. Dummy VNF g0 is placed
on node si while dummy VNF g1 is place on node di. Therefore, it is guaranteed that
the data flow for request ri always starts from node si and ends at node di. It is worth
mentioning that dummy VNFs consume neither computing resource nor processing
time (i.e., for a dummy VNF g ∈ D, cg = 0 and lv

g = 0, where cg and lv
g are the

computing resource cost and processing time per unit data traffic of dummy VNF g
on node v). Thus, for any network node v ∈ VA that consists of only a single AP,
only dummy VNFs can be implemented on it.

Denote by Si the extended SFC of s f ci including both g0 and g1, and the length
of Si is (|s f ci|+ 2). Let Γ = D \ {g0, g1}.

5.2.4 Problem definition

Given an MEC network G = (V, E), a set F of VNFs, a set R of user requests, the
admission of each request ri ∈ R suffers uncertainties of the amounts of demanded
computing resource c f of VNF f in its SFC and demanded data rate Bi, the Robust
Service Function Chain Placement (RSFCP) problem is to maximize the expected profit
collected of the network service provider, by admitting as many requests in R as
possible while meeting the latency requirement of each admitted request, subject to
both computing and bandwidth resource capacities in G, where the expected profit
will be defined in Section 5.3.

5.3 QIP Formulation

In this section, we first formulate the RSFCP problem as a Quadratic Integer
Programming (QIP), and we then show that the problem is NP-hard.

5.3.1 Traffic flow of requests

We deal with VNF placements of SFCs of multiple requests. For a single request
ri ∈ R, we introduce a binary decision variable xi indicating whether request ri ∈ R
is admitted (xi = 1) or rejected (xi = 0) by the system.

Recall that Si is the extended SFC of s f ci including both g0 and g1. To satisfy the
network function dependence in Si of ri, we divide the SFC into a set of two-VNF
sub-chains and then consider these sub-chains separately pair by pair. The core idea
behind is to find a routing path between every two adjacent VNFs in Si first, ∀ri ∈ R.



§5.3 QIP Formulation 105
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Figure 5.1: An example of a routing path of g0 → f1 → g1.

Then, the selected routing paths between the VNF instance pairs are concatenated to
form an ordered chain. Denote by hk

i the kth VNF of Si, e.g., h1
i = g0.

We introduce a binary variable ρv,a,u,b
i,k denoting that when constructing the rout-

ing path between the kth two-VNF sub-chain hk
i → hk+1

i , whether the data traf-
fic of request ri traverses from VNF a on node v to VNF b on node u. Thus,
the routing subpaths for ri are expressed by the values of {ρv,a,u,b

i,k | ∀ri ∈ R, ∀k ∈
{1, . . . , |Si| − 1}, ∀v ∈ V, ∀u ∈ N+(v), ∀a ∈ {hk

i } ∪ Γ, ∀b ∈ {hk+1
i } ∪ Γ, a ̸= b}. For ex-

ample, as shown in Figure 5.1, for the requested SFC, g0 → f1 → g1, dummy VNFs
g0 and g1 are first deployed on source node v1 and destination node v4, respectively.
The SFC g0 → f1 → g1 is then considered as two two-VNF sub-chains: g0 → f1

and f1 → g1. Once the routing paths for two-VNF sub-chains g0 → f1 and f1 → g1

are decided, they are concatenated together to map the SFC g0 → f1 → g1 into the
network. Meanwhile, several dummy VNFs in Γ may have been inserted to construct
the routing path to ensure that when a routing path passes through a node v ∈ V, at
least one VNF f ∈ Si ∪ Γ is deployed on it. Figure 5.1 shows the three routing paths.

As multiple VNFs of an SFC could be mapped to a single node, the data traffic
of a request can traverse between the VNF instances in the same node multiple times.
As shown in Figure 5.1, in path 1, both VNF g0 and f1 are placed on node v1, which
is represented by setting ρ

v1,g0,v1, f1
i,1 = 1. Also, in Figure 5.1, inserting one dummy

VNF g2 on node v2 is enough in describing path 3, it is not allowed to place multiple
dummy VNFs on the same node for the same k, i.e., when considering a two-VNF
sub-chain, we have

∑
a,b∈D,a ̸=b

ρv,a,v,b
i,k =0, ∀ri ∈ R, ∀v ∈ V, ∀k∈{1, . . . , |Si| − 1}. (5.1)
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When we insert dummy VNFs, the routing path of the kth two-VNF sub-chain in
Si goes through at most all nodes. Thus, we let |Γ| = |V|. Dummy VNF g0 is placed
on node si when constructing the routing path for the first two-VNF sub-chain. While
dummy VNF g1 is placed on node di when constructing the routing path for the last
two-VNF sub-chain. We then have

∑
u∈N+(si),b∈{h2

i }∪Γ

ρ
si ,g0,u,b
i,1 = 1, (5.2)

∑
v∈N+(di),a∈{h

|Si |−1
i }∪Γ

ρ
v,a,di ,g1
i,|Si |−1 = 1. (5.3)

The construction of a routing path for the kth two-VNF sub-chain in Si, i.e.,
hk

i → hk+1
i , ∀ri ∈ R, ∀k ∈ {1, . . . , |Si| − 1} is as follows.

The source and destination VNFs of the kth routing path are hk
i and hk+1

i . Then,
the outgoing flow from hk

i and incoming flow to hk+1
i must be 1, which is represented

by the following equations.

∑
v∈V,u∈N+(v),

b∈{hk+1
i }∪Γ

ρ
v,hk

i ,u,b
i,k = 1, ∀ri ∈ R, ∀k ∈ {1, . . . , |Si| − 1}. (5.4)

∑
v∈V,u∈N+(v),

a∈{hk
i }∪Γ

ρ
v,a,u,hk+1

i
i,k = 1, ∀ri ∈ R, ∀k ∈ {1, . . . , |Si| − 1}, (5.5)

And for any inserted dummy VNF g ∈ Γ in the kth two-VNF sub-chain, the
incoming flow at VNF g equals the outgoing flow from it, and each dummy VNF
g ∈ Γ appears in the path at most once, i.e.,

∑
u∈N+(v),

b∈{hk+1
i }∪Γ,a ̸=b

ρv,a,u,b
i,k − ∑

u∈N(v),
b∈{hk

i }∪Γ,a ̸=b

ρu,b,v,a
i,k = 0,

∀ri ∈ R, ∀k ∈ {1, . . . , |Si| − 1}, ∀v ∈ V, ∀a ∈ Γ. (5.6)

∑
v∈V,u∈N+(v),

b∈{hk+1
i }∪Γ,a ̸=b

ρv,a,u,b
i,k ≤ 1, ∀ri ∈ R, ∀k ∈ {1, . . . , |Si|−1},

∀a ∈ Γ. (5.7)

Let yv
i,k be a binary variable indicating whether VNF hk

i ∈ Si is placed in cloudlet
node v. As the first and last VNFs in Si are dummy VNFs, we only consider the other
VNFs in Si,

yv
i,k = ∑

u∈N+(v),

b∈{hk+1
i }∪Γ

ρ
v,hk

i ,u,b
i,k , ∀ri ∈ R, ∀v ∈ V, k ∈ [2, |Si| − 1]. (5.8)
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Recall that the upper bound of computing resource consumption of VNF hk
i is

cU
hk

i
. To ensure that no resource capacity is violated, the computing capacity constraint

on each node v is expressed as follows.

∑
ri∈R,k∈{2,...,|Si |−1}

xi · yv
i,k · cU

hk
i
≤ Cv, ∀v ∈ V. (5.9)

The routing path for request ri may pass through a link multiple times. Let zv,u
i

be an integer variable indicating the number of times link (v, u) is contained in the
routing path for request ri. Then, we have

zv,u
i = ∑

k∈[1,|Si |−1]

∀a∈{hk
i }∪Γ,∀b∈{hk+1

i }∪Γ

(ρv,a,u,b
i,k + ρu,a,v,b

i,k ),

∀ri ∈ R, ∀e(v, u) ∈ E. (5.10)

Recall that the upper bound of demanded data rate of request ri is BU
i . To ensure

that no resource capacity is violated, the link capacity constraint on each link (v, u)
for ri can be expressed as follows.

∑
ri∈R

xi · zv,u
i · B

U
i ≤ c(v, u), ∀e(v, u) ∈ E. (5.11)

Note that the latency of request ri consists of the processing times on nodes and
the communication latency along links in the routing path [70]. To admit request ri,
we need to ensure that its latency requirement must be met. With the upper bound
of demanded data rate BU

i of request ri, the latency constraint of request ri can be
expressed as follows.

∑
v∈V,

k∈{1,...,|Si |−1}

xi · yv
i,k · BU

i · lv
hk

i

+ ∑
e(v,u)∈E

xi · zv,u
i · B

U
i · l(v, u) ≤ Li, ∀ri ∈ R. (5.12)

5.3.2 Admission cost of requests

Recall that the problem objective is to maximize the expected profit collected by
the network service provider, which is equivalent to minimizing the accumulative
expected admission cost of all admitted requests, where the expected admission cost
of a request is the sum of the expected resource usage cost on both computing and
bandwidth resource consumptions for implementing the request, which is defined
as follows.

Considering the computing resource consumption for placing VNF instances for
SFCs of requests in nodes, the computing resource usage cost at each node v, denoted
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by Ev, is

Ev = φv · ∑
ri∈R,k∈{2,...,|Si |−1}

xi · yv
i,k · chk

i
, (5.13)

where φv is the cost of a unit computing resource on node v with φv > 0. However,
Ev is uncertain due to the uncertainty of computing resource consumption. The
expected computing resource usage cost E(Ev) of Ev at node v then is

E(Ev) = φv · ∑
ri∈R,k∈{2,...,|Si |−1}

xi · yv
i,k · chk

i
. (5.14)

Considering the demanded data rate in links for the data traffic of request ri, the
bandwidth resource usage cost on link (v, u), denoted by Ev,u, is

Ev,u = ϕ(v,u) · ∑
ri∈R

xi · zv,u
i · Bi, (5.15)

where ϕ(v,u) > 0 is the cost of a unit bandwidth resource on link (v, u). However,
the value of Ev,u is also uncertain due to the uncertainty of demanded data rates of
requests. The expected bandwidth resource usage cost E(Ev,u) of Ev,u on link (u, v)
then is

E(Ev,u) = ϕ(v,u) · ∑
ri∈R

xi · zv,u
i · Bi, (5.16)

The total admission cost E of all admitted requests in R thus is the sum of
the resource usage costs on both computing and bandwidth resource consumptions,
which is defined as follows.

E = ∑
v∈V
Ev + ∑

e(v,u)∈E
Ev,u. (5.17)

The expectation E(E) of E is as follows.

E(E) = ∑
v∈V

E(Ev) + ∑
e(v,u)∈E

E(Ev,u). (5.18)

The total admission cost has the uncertainty due to unknown demanded com-
puting resource and data rates for the request implementation. In spite of this uncer-
tainty, statistical information provided by experimental studies can be exploited to
limit the risk of cost fluctuation. Reducing cost fluctuation is necessary to maintain
a desired system performance for different realizations of uncertainty [26].

To model the cost fluctuation, we consider the effect of ∆Bi = BU
i − BL

i and
∆c f = cU

f − cL
f on the cost variation of E , denoted by ∆E . Since E is a linear function
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of both Bi and c f , the relationship among ∆E , ∆Bi and ∆c f is given as follows.

∆E = ∑
v∈V

φv · ∑
ri∈R,k∈{2,...,|Si |−1}

xi · yv
i,k · ∆chk

i

+ ∑
e(v,u)∈E

ϕ(v,u) · ∑
ri∈R

xi · zv,u
i · ∆Bi. (5.19)

5.3.3 QIP Formulation

The RSFCP problem can be formulated as a Quadratic Integer Programming
(QIP) for a set R of requests with the optimization objective to

maximize ∑
ri∈R

xi · payi −E(E)− ζ · ∆E , (5.20)

subject to:

(5.1), (5.2), (5.3), (5.4), (5.5), (5.6), (5.7), (5.9), (5.11), (5.12),

xi, ρv,a,u,b
i,k ∈ {0, 1}, ∀ri ∈ R, ∀k ∈ {1, . . . , |Si| − 1},

∀v, u ∈ V, ∀a, b ∈ Si ∩ Γ, (5.21)

where variable xi is a binary decision variable indicating whether request ri ∈ R is
admitted (xi = 1) or rejected (xi = 0) by the system. ρv,a,u,b

i,k is a binary decision
variable denoting that when constructing the routing path between the kth two-VNF
sub-chain hk

i → hk+1
i , whether the data traffic of request ri traverses from VNF a on

node v to VNF b on node u. payi is the payment by request ri if it is admitted and
all its constraints are met, and ζ is the adjustable control parameter of cost variation
compared with the expected total admission cost to stabilize the total admission
cost [26].

5.3.4 NP-hardness of the problem

Theorem 5.1. The RSFCP problem in an MEC G(V, E) is NP-hard.

Proof. We prove the NP-hardness of the RSFCP problem through reducing from the
well-known knapsack problem.

The knapsack problem is NP-hard [79] and is defined as follows. Given a set of
items N , each item i ∈ N has a weight ωi and a profit pi > 0, ∀i ∈ N . There is a bin
with a capacity ofW . If item i can be placed in the bin without capacity violation, the
associated profit pi will be collected. The problem is to maximize the profit collected
by packing as many items in N as possible, subject to the bin capacity.

Given an instance of the knapsack problem, we generate an instance of the RS-
FCP problem as follows.

We consider a special case of the RSFCP problem and assume that there is a
single cloudlet in the MEC network with a capacity of W , we also ignore the band-



110 Robust Service Provisioning with Service Function Chain Requirements

width and latency constraints, and we assume that there exists no resource demand
uncertainty.

We then generate a set of requests R and further assume that the processing
time of a VNF is negligible. For each item i ∈ N , there is a corresponding request,
which has the amount ωi of computing resource consumed by the requested SFC.
The expected profit pi of request ri is calculated by its revenue and admission cost.
If a request ri ∈ R is admitted, the requested SFC is placed in the cloudlet and the
profit pi is collected. The RSFCP problem is to maximize the expected profit collected
by the network service provider by admitting as many requests as possible, subject
to computing resource capacity.

It can be seen that a solution to the RSFCP problem returns a solution to the
knapsack problem. And it takes polynomial time to reduce an instance of the knap-
sack problem to an instance of the RSFCP problem. Due to the NP-hardness of the
knapsack problem [79], the RSFCP problem is NP-hard, too.

5.4 A Markov Based Approximation Algorithm

As the RSFCP problem is NP-hard, in this section we devise a near-optimal
approximation algorithm for the problem, by adopting the Markov approximation
technique [17]. Specifically, we first introduce the log-sum-exp approximation con-
cept, and then construct a time-reversible Markov chain with designed transition
rates satisfying the detailed balance equation [37].

5.4.1 Log-Sum-Exp approximation

Recall that there are two binary decision variables in the RSFCP problem, xi
(i.e., acceptance decision) and ρv,a,u,b

i,k (i.e., routing path decision). We then define
a scheduling ηi for request ri that consists of determining the values of xi and
ρv,a,u,b

i,k , ∀ri ∈ R, ∀k ∈ {1, . . . , |Si| − 1}, ∀v ∈ V, ∀u ∈ N+(v), ∀a ∈ {hk
i } ∪ Γ, ∀b ∈

{hk+1
i } ∪ Γ, a ̸= b.

To this end, we combine all ηi, ∀ri ∈ R to form a state, denoted by w, follow-
ing resource capacity constraints in the MEC network and the latency constraints of
requests in R.

Denote by W the set of all states, i.e., the set of all feasible solutions to the RSFCP
problem. Let Λw be the value achieved by the optimization objective (5.20) under a
state w (i.e., the expected profit collected from all admitted requests under the state
w). Because Λw could be negative (i.e, deficit may exist), we let λw = Λw + τ,
∀w ∈ W where τ is a large positive constant to guarantee λw ≥ 0. The problem
then is reformulated as the Maximum Weighted Combinatorial Optimization (MWCO)
problem as follows.

Maximize {λw | w ∈W}. (5.22)

It can be seen that the optimization objective (5.22) has the same optimal value
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as the following problem.

Maximize ∑
w∈W

pw · λw, (5.23)

subject to

∑
w∈W

pw = 1, (5.24)

where pw is a real value within the range of [0, 1], which is the fraction of horizontal
time (assuming the entire time horizon is 1) that the system stays in state w.

Property 5.1. [17] Given a positive constant β > 0 and a set of non-negative real variables
{γ1, γ2, . . . , γn}, we have

max
i∈[1,n]

γi≤
1
β

ln( ∑
i∈[1,n]

exp(β · γi))≤max
i∈[1,n]

γi +
ln n

β
. (5.25)

Following Proposition 5.1, when β approaches infinity,
ln n

β
= 0, we then have

max
i∈[1,n]

γi = lim
β→∞

1
β

ln( ∑
i∈[1,n]

exp(β · γi)). (5.26)

As λw is non-negative for any w ∈W, we have

max
w∈W

λw≈
1
β

ln( ∑
w∈W

exp(β · λw)), for a very large β. (5.27)

Definition 3. [10] Let a be a real vector and b be the dual of a, for δ : Rn 7→ R, then
the conjugate function of δ, δ∗ : Rn 7→ R is defined in terms of the supremum as

δ∗(b) = sup(bTa− δ(a)). (5.28)

Property 5.2. [10] The conjugate function of the conjugate function of a convex function is
the function itself.

Lemma 16. When β approaches infinity, the objective function (5.22) has the same
value as the value of the following objective function.

Maximize ∑
w∈W

pw · λw −
1
β
· ∑

w∈W
pw · ln pw, (5.29)

subject to

∑
w∈W

pw = 1. (5.30)
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Proof. Denote by

δ(λ) =
1
β

ln( ∑
w∈W

exp(β · λw)), (5.31)

where λ = [λw | w ∈ W] is a vector of λw under each state, i.e., a vector of the
expected profit collected, added by τ at each state.

Following Definition 3, the conjugate function of δ(λ) is

δ∗(P)=


1
β
·∑w∈W pw · ln(pw), i f ∀w ∈W, pw ≥ 0,

and ∑w∈W pw = 1.
∞ otherwise,

(5.32)

where P = [pw|w ∈W] is a vector of the time fraction assigned to each state.
As log-sum-exp functions are both closed and convex, following Proposition 5.2,

the conjugate of δ∗(P) is δ(λ).
Following Definition 3, we have

δ(λ) = sup ∑
w∈W

pw · λw −
1
β
· ∑

w∈W
pw · ln pw. (5.33)

Combining (5.27), (5.31), and (5.33), the objective function (5.22) has the same
value as the value of the objective function (5.29) when β approaches infinity. The
lemma then follows.

Following Lemma 16, the approximate value of the objective function of (5.22)
can be obtained, by solving (5.29).

Let µ be the Lagrangian multiplier associated with Equation (5.30). Let p∗w be
the optimal solution to (5.29). It can be seen that the Karush-Kuhn-Tucker (KKT)
conditions for (5.29) are met. We then have

λw −
1
β
· ln(p∗w)−

1
β
+ µ = 0, ∀w ∈W,

∑w∈W p∗w = 1,
µ ≥ 0.

(5.34)

The value of p∗w thus is

p∗w =
exp(β · λw)

∑w′∈W exp(β · λw′)
, ∀w ∈W. (5.35)

5.4.2 Markov chain model design

Let p∗w be the stationary distribution of the designed Markov chain model that
is trained to demonstrate the convergence to the specific stationary distribution set
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in advance, i.e., p∗w. The authors in [17] showed that there exists at least one time-
reversible Markov chain model in which the stationary distribution is p∗w. Let qw,w′ be
a non-negative transition rate between two states w and w′ with w ̸= w′ ∀w, w′ ∈ W.
To construct a time-reversible Markov chain [17], the following two conditions must
be met: (1) each state could be transited to any other state; and (2) the detailed
balance equation between states w and w′ should be satisfied.

p∗w · qw,w′ = p∗w′ · qw′,w, ∀w, w′ ∈W, w ̸= w′. (5.36)

Considering (5.35) and (5.36), we then design the transition rate qw,w′ ∀w, w′ ∈
W, w ̸= w′ as follows.

qw,w′ =
exp(β · λw′)

|R| · γ ·max{exp(β · λw), exp(β · λw′)}
,

qw′,w =
exp(β · λw)

|R| · γ ·max{exp(β · λw), exp(β · λw′)}
,

(5.37)

where R is the set of user requests and γ is a positive constant which is set as the
mean time to transit from current state to another state.

5.4.3 Markov Based Approximation Algorithm

The implementation details of the Markov based approximation algorithm are
given in Algorithm 11. In particular, the system controller creates a thread for each
request in parallel, i.e., each thread deals with one request with the aim of the ex-
pected profit optimization. Initially, the dedicated thread for each request ri ran-
domly makes the acceptance decision (i.e., xi) and the routing path decision (i.e.,
ρv,a,u,b

i,k ) to choose a feasible scheduling for itself. The system controller finally com-
bines the scheduling of each request to form the current state w, and calculates the
expected profit Λw in state w. Recall that λw = Λw + τ, where τ is a large positive
constant to guarantee λw ≥ 0.

For each request ri ∈ R, the associated thread randomly looks for a new feasible
scheduling for itself based on current residual resources in the network to form the
next state w′ in a parallel manner, where w′ is the next state from the current state
w through one transition. λw and λw′ under w and w′ then are calculated. Then
a random exponentially timer ψi for request ri ∈ R is triggered with a mean γ,
where γ is a positive constant, and the timer ψi starts to count down. Let pw,w′ be
the probability that the system transits from state w to state w′. When the timer
ψi for request ri ∈ R expires, the thread of ri transits to state w′ with probability
of pw,w′ =

exp(β·λw′ )
max{exp(β·λw),exp(β·λw′ )}

, and broadcasts a Reset signal to the rest threads.
For the rest threads, upon receiving the Reset signal, their timers are terminated.
Then each thread of requests looks for a new feasible scheduling for itself in parallel
based on residual resources in the network and the above steps are repeated until it
converges.
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Algorithm 11 A Markov Based Approximation Algorithm
Require: An MEC network G = (V, E) and a set of requests R.
Ensure: A scheduling of requests in R, s.t., the collected profit is maximized.

1: procedure initialization

2: for ri ∈ R do
3: Initialize a thread for ri;
4: The thread computes a feasible scheduling for ri;
5: end for
6: The scheduling for each request ri forms the current state w, and the expected

profit Λw collected from state w is calculated.
7: Then let λw = Λw + τ, where τ is a large constant to guarantee λw ≥ 0;
8: Execute TRANSIT(ri), ∀ri ∈ R.
9: end procedure

10: procedure set timer(ri)
11: The thread of ri creates a random exponentially timer ψi with the mean value

γ;
12: The timer ψi starts to count down.
13: end procedure
14: procedure transit(ri)
15: while It has not converged do
16: The thread of ri randomly chooses a new feasible scheduling to form next

state w′;
17: Execute SET TIMER(ri).
18: if ψi expires then
19: the thread of ri transits to state w′ with probability of pw,w′ =

exp(β·λw′ )
max{exp(β·λw),exp(β·λw′ )}

;
20: Broadcast RESET signals to other threads.
21: Execute TRANSIT(ri).
22: else if ψi does not expire and the thread of ri receives a RESET signal then
23: Terminate current timer.
24: Execute TRANSIT(ri).
25: end if
26: end while
27: end procedure

5.4.4 Algorithm analysis

In the following, we analyze the performance of the proposed algorithm. We also
study the impact of perturbations on the performance of the proposed algorithm.

Lemma 17. Given an MEC network and a set of requests R, there is a Markov based
approximation algorithm, Algorithm 11, which constructs a time-reversible Markov
chain, and the stationary distribution is Equation (5.35).

Proof. As mentioned, we design a Markov chain model and guarantee that in the
constructed Markov chain model, each state can be transited to any another state.
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We then show that the stationary distribution of the designed Markov chain model
is Eq. (5.35). From Algorithm 11, it can be seen that we randomly select a state
w′ ∈ W as the next state. And we generate a random exponentially timer ψi with
mean value equal to γ for each request ri. Furthermore, when the timer expires,
the thread of ri transits from current state w to next state w′ with the probability of
pw,w′ =

exp(β·λw′ )
max{exp(β·λw),exp(β·λw′ )}

. Thus, we are able to calculate the transition rate as
follows,

qw,w′=
pw,w′

|R|·γ =
exp(β·λw′)

|R|·γ·max{exp(β·λw), exp(β·λw′)}
, (5.38)

which is mentioned in Eq. (5.37).
Combining (5.35) and (5.37), it can be seen that p∗w · qw,w′ = p∗w′ · qw′,w, ∀w, w′ ∈

W, w ̸= w′. The detailed balance equation of the designed Markov chain model is
satisfied, and the designed Markov chain model is time-reversible, and the stationary
distribution of which is Equation (5.35) [46]. Hence, the theorem follows.

Ideally, if the exact value of λw of each state w, ∀w ∈ W can be obtained (i.e.,
the expected profit collected from each state can be accurately measured), then the
designed Markov chain model will always converge to the preset stationary distri-
bution p∗w. However, the value of λw is very likely to be perturbed, and the designed
Markov chain model might not be able to achieve the global optimality, instead a
sub-optimal stationary distribution will be obtained [86].

In this chapter, we assume the measurement perturbations are caused by the un-
certainty of resource demands in the execution of requests, and the expected amounts
of resources may experience perturbations as mentioned in Section 5.2.2. In the se-
quel, it is necessary to analyze the impact of measurement perturbations on the
solution and to mitigate the impact of such perturbations on the performance of the
proposed approximation algorithm.

We quantify the perturbation error under a state w ∈ W as a value ranged from
−θw to θw, by introducing θw as a perturbation error bound, and λw is drawn from
2 · nw + 1 discrete values: λw − θw, . . . , λw − (1/nw)θw, λw, λw + (1/nw)θw, . . . , λw +
θw, where nw is a positive constant.

Denote by α(w, j) the probability of the perturbed λw taking the value λw +
(j/nw) · θw, ∀w ∈W, ∀j = {−nw, . . . , nw}, and ∑j∈{−nw,...,nw} α(w, j) = 1.

Lemma 18. Given an MEC network G(V, E), with measurement perturbations, the
stationary distribution of the Markov chain model, denoted by pw, is

pw =
κw · exp(β · λw)

∑w′∈W κw′ · exp(β · λw′)
, ∀w ∈W, (5.39)

where κw = ∑j∈{−nw,...,nw} α(w, j) · exp(β · ((j · θw)/nw)).

Proof. The core idea of the proof is to first deliver the modified transition rate with
perturbations by treating each state w as 2 · nw + 1 states. With (5.35) and the de-
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tailed balance equations, the stationary distribution of the Markov chain model with
perturbations can be obtained then.

In the case of perturbation, each state w are then treated as 2 · nw + 1 states
(i.e., wj, ∀j = {−nw, . . . , nw}) with perturbation error bound θw. Denote by λw,j, the
expected profit collected in state wj added by τ, we have

λw,j =λw+(j/nw)·θw, ∀w∈W, ∀j∈{−nw, . . . , nw}. (5.40)

The modified transition rate qwj,w′ j′
with perturbations is

qwj,w′ j′
=

α(w′, j′) · exp(β · λw′,j′)

|R|·γ·max{exp(β · λw′,j′), exp(β · λw,j)}
, (5.41)

With regard to the detailed balance equations pwj · qwj,w′ j′
= pw′ j′ · qw′ j′ ,wj

, we have

pw0

α(w, 0) · exp(β · λw0)
=

pw′j′

α(w′, j′) · exp(β · λw′j′
)

, (5.42)

where w0 is state w with no perturbation and α(w, 0) is the probability that no per-
turbation exists for state w.

From (5.35) and (5.42), we have

pwj =
α(w, j) · exp(β · λwj)

∑w′∈W ∑j′∈{−nw,...,nw} ·α(w′, j′) · exp(β · λw′ j′ )
,

∀w ∈W, ∀j ∈ {−nw, . . . , nw}. (5.43)

Denote by κw = ∑j∈{−nw,...,nw} α(w, j) · exp(β · ((j · θw)/nw)), we have

pw = ∑
j∈{−nw,...,nw}

·pwj

=
∑j∈{−nw,...,nw} α(w, j) · exp(β · λwj)

∑w′∈W ∑j′∈{−nw,...,nw} ·α(w′, j′) · exp(β · λw′ j′ )

=
κw · exp(β · λw)

∑w′∈W κw′ · exp(β · λw′)
, by (5.40). (5.44)

Thus, Lemma 18 follows.

Theorem 5.2. Given an MEC network G(V, E) and a set of requests R, without analysis per-
turbation, there is an Markov based approximation algorithm, Algorithm 11, its optimality
gap is as follows.

0 ≤ Λmax −Λavg ≤
ln |W|

β
, (5.45)

where the optimality gap of an algorithm is the absolute difference between the solution ob-
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tained by the algorithm and the optimal solution of the problem. Λmax = maxw∈W{Λw} is
the value of the optimal solution, Λavg is the expected profit with the designed Markov chain
model and W is the collection of all states.

Proof. We show the optimality gap as follows. Let wmax be the state to obtain the
maximum profit. Let the time fraction distribution p̃w, ∀w ∈ W be the optimal solu-
tion. We then have

p̃w =

{
1, i f w = wmax,
0, otherwise.

(5.46)

Following Lemma 16, as p∗w is the desired stationary distribution calculated in
(5.35)„ we have

∑
w∈W

p∗w · λw −
1
β
· ∑

w∈W
p∗w · ln p∗w

≥ ∑
w∈W

p̃w · λw −
1
β
· ∑

w∈W
p̃w · ln p̃w = λmax, (5.47)

where λmax = maxw∈W{λw}.
Apply Jensen’s inequality [10], we have

∑
w∈W

p∗w · ln p∗w = − ∑
w∈W

p∗w · ln
1

p∗w

≥− ln( ∑
w∈W

p∗w ·
1

p∗w
) = − ln |W|. (5.48)

Combining equations (5.47) and (5.48), we have

λavg = ∑
w∈W

p∗w · λw ≤ ∑
w∈W

p∗w · λmax = λmax

≤λavg −
1
β
· ∑

w∈W
p∗w · ln p∗w ≤ λavg +

1
β
· ln |W|, (5.49)

where λavg is the expected value with the designed Markov chain model.
Thus, we have

0 ≤ λmax − λavg ≤
ln |W|

β
. (5.50)

Because λw = Λw + τ, ∀w ∈W, we have,

0 ≤ Λmax −Λavg ≤
ln |W|

β
. (5.51)

The theorem then follows.



118 Robust Service Provisioning with Service Function Chain Requirements

Theorem 5.3. Given an MEC network and a set of requests R, with analysis perturbation,
there is an Markov based approximation algorithm, Algorithm 11, its optimality gap is
given as follows.

0 ≤ Λmax −Λavg ≤
ln |W|

β
+ θmax, (5.52)

where Λavg = ∑w∈W pw ·Λw is the expected profit with the perturbed Markov chain model,
and the time fraction distribution pw, ∀w ∈W, is the optimal solution under the perturbation
case, and θmax = maxw∈W{θw}.

Proof. Recall that κw=∑j∈{−nw,...,nw}α(w, j) · exp(β · ((j · θw)/nw)), ∀w ∈W, we have

exp(−β · θw) ≤ κw ≤ exp(β · θw). (5.53)

−θw ≤
ln κw

β
≤ θw. (5.54)

From Lemma 18, we have,

pw =

exp(β · (λw +
ln κw

β
)

∑w′∈W exp(β · (λw′ +
ln κw′

β
)

, ∀w ∈W. (5.55)

As a result, for λw′′ = λw + ln κw
β , the stationary distribution with perturbation

pw, ∀w ∈W, works as an optimal solution in this case.
From Theorem 5.2, we have,

max
w′′∈W

λw′′ − ∑
w′′∈W

pw′′ · λw′′ ≤
ln |W|

β
. (5.56)

Let λw′′ = λw + ln κw
β , we have,

max
w∈W

(λw+
ln κw

β
)− ∑

w∈W
(pw ·λw +

ln κw

β
) ≤ ln |W|

β
. (5.57)

Then,

λmax = max
w∈W

λw ≤ max
w∈W

(λw +
ln κw

β
)

≤ ∑
w∈W

(pw · λw +
ln κw

β
) +

ln |W|
β

, by (5.57),

≤ ∑
w∈W

pw · λw + θw +
ln |W|

β
, by (5.54). (5.58)
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Also,

λavg = ∑
w∈W

pw · λw ≤ ∑
w∈W

pw · λmax = λmax

≤ λavg + θw +
ln |W|

β
, by (5.58),

where λavg is the expected value with the perturbed Markov chain model.
We thus have

0 ≤ λmax − λavg ≤
ln |W|

β
+ θw ≤

ln |W|
β

+ θmax.

Because λw = Λw + τ, ∀w ∈W, we have,

0 ≤ Λmax −Λavg ≤
ln |W|

β
+ θmax.

Hence, the theorem follows.

In the context of Markov Chain, the convergence time is examined by the mixing
time [17].

Definition 4. [17] Let Ht(w) be the probability distribution of all states in W at time
t with the initial state w, p∗ be the stationary distribution of the Markov Chain, and
ϵ > 0 be a constant and represent the gap between the converged solution and the
optimal one, then the mixing time of the constructed Markov Chain is defined as

tmix(ϵ) := in f {t ≥ 0 : max
w∈W
||Ht(w)− p∗||TV ≤ ϵ}, (5.59)

where term ||Ht(w)− p∗||TV is the total variance distance between Ht(w) and p∗.

Denote by Λmin = minw∈W{Λw} and recall that Λmax = maxw∈W{Λw}.

Theorem 5.4. Given an MEC network G(V, E) and a set R of requests, there is an Markov
based approximation algorithm, Algorithm 11, its convergence time is bounded as follows.

tmix ≥
|R| · γ · exp(β · (Λmin −Λmax))

2 · |W| · ln 1
2 · ϵ ,

and

tmix ≤2 · |W|3 · |R| · γ · exp(5 · β · (Λmax −Λmin))

· (ln 1
2 · ϵ +

1
2
· (ln |W|+ β · (Λmax −Λmin))).

Proof. By stationary distribution (5.35), the minimum probability among the station-
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ary distribution, denoted by pmin, is:

pmin := min
w∈W

p∗w ≥
exp(β ·Λmin)

|W| · exp(β ·Λmax)
, by (5.35),

=
1
|W| · exp(β(Λmin −Λmax)). (5.60)

We then adopt the uniformization technique [17]. Denote by Q = {qw,w′} the tran-
sition matrix of the constructed Markov Chain. Then a Markov Chain Z(m) is con-
structed with a transition matrix P = I + Q

σ , where I denotes a unit matrix and σ

denotes the uniform rate parameter. We then assume that with the Markov Chain
Z(n), the system transits its state following the Poisson process N(t) with rate σ [37].
Denote by Z(N(t)) the state of the system at time t.

From the transition rate (5.37), we have, ∀w, w′ ∈W,

qw,w′ ≤
1

|R| · γ · exp(β · (Λmax −Λmin)). (5.61)

And we have

∑
w ̸=w′

qw,w′ ≤
|W|
|R| · γ exp(β · (Λmax −Λmin)). (5.62)

Then we have σ as:

σ =
|W|
|R| · γ exp(β · (Λmax −Λmin)). (5.63)

According to the uniformization theorem [47], the Markov Chain and its coun-
terpart Z(N(t)) with discrete-time manner share the same probability distribution.
Denote by ρ2 the second eigenvalue of transition matrix P for Z(n). We then adopt
the spectral gap inequality [47], we have,

exp(−σ · (1− ρ2) · t)
2

≤ max
w∈W
||Ht(w)− p∗||TV

≤ exp(−σ · (1− ρ2) · t)
2 · (pmin)

1
2

. (5.64)

Therefore,

1
σ · (1− ρ2)

· ln 1
2 · ϵ ≤ tmix(ϵ)

≤ 1
σ·(1− ρ2)

·(ln 1
2·ϵ +

1
2
·ln 1

pmin
). (5.65)
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With Cheeger’s inequality [25], we bound ρ2 as follows:

1− 2 ·Φ ≤ ρ2 ≤ 1− 1
2
·Φ2, (5.66)

where Φ is the "conductance" of P and is defined as follows,

Φ := min
N⊂W,πN∈(0,0.5]

F(N, Nc)

πN
, (5.67)

where πN = ∑w∈N p∗w and F(N, Nc) = ∑w∈N,w′∈Nc p∗w · P(w, w′). With (5.65) and
(5.66), we have,

1
2·σ·Φ ·ln

1
2·ϵ ≤ tmix(ϵ) ≤

2
σ·Φ2 ·(ln

1
2·ϵ +

1
2
·ln 1

pmin
). (5.68)

Then, ∀N′ ⊂W, πN′ ∈ (0, 0.5], we have

Φ := min
N⊂W,πN∈(0,0.5]

F(N, Nc)

πN

≤ 1
πN′
· ∑

w∈N,w′∈N′c
p∗w · P(w, w′)

=
1

πN′
· ∑

w∈N′
·p∗w · ∑

w′∈N′c
P(w, w′) ≤ 1

πN′
· ∑

w∈N′
·p∗w = 1 (5.69)

From (5.63), (5.68) and (5.69), we have the lower bound of tmix(ϵ) as follows,

tmix(ϵ) ≥
1

2 · σ · ln
1

2 · ϵ

=
|R| · γ · exp(β · (Λmin −Λmax))

2 · |W| · ln 1
2 · ϵ . (5.70)

From the transition rate (5.37), we have, ∀w, w′ ∈W,

qw,w′ ≥
1

|R| · γ · exp(β · (Λmin −Λmax)). (5.71)

From (5.67), we have,

Φ ≥ min
N⊂W,πN∈(0,0.5]

F(N, Nc) ≥ min
w ̸=w′,p(w,w′)>0

F(w, w′)

= min
w ̸=w′,p(w,w′)>0

p∗w ·P(w, w′)= min
w ̸=w′,p(w,w′)>0

p∗w ·
qw,w′

σ

≥ pmin

σ
· 1
|R|·γ ·exp(β·(Λmin −Λmax)), by (5.71). (5.72)
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From (5.68), we have the upper bound of tmix(ϵ) as follows,

tmix(ϵ) ≤
2

σ ·Φ2 · (ln
1

2 · ϵ +
1
2
· ln 1

pmin
)

≤ 2 · |R|2 · γ2 · σ · exp(2 · β · (Λmax −Λmin))

p2
min

· (ln 1
2 · ϵ +

1
2
· ln 1

pmin
), by (5.72)

=
2 · |W| · |R| · γ · exp(3 ∗ β · (Λmax −Λmin))

p2
min

· (ln 1
2 · ϵ +

1
2
· ln 1

pmin
), by (5.63)

≤ 2 · |W|3 · |R| · γ · exp(5 · β · (Λmax −Λmin))

· (ln 1
2 · ϵ +

1
2
· (ln |W|+ β · (Λmax −Λmin))), by (5.60).

Hence, the theorem follows.

5.5 Performance Evaluation

In this section, the performance of the proposed algorithm is evaluated by exper-
imental simulations. The impact of parameters on the performance of the proposed
algorithm is investigated, too.

5.5.1 Environment Settings

We generate topologies of MEC networks through a tool GT-ITM [34]. We con-
sider an MEC network with 100 APs, and 10 percent of the APs are randomly selected
to be co-located with cloudlets. The capacities of cloudlets are randomly drawn be-
tween 30,000MHz and 60,000MHz [29]. We further assume that there are 20 types
of VNFs, and the expected computing resource demanded by each type of VNFs
is ranged from 40MHz to 600MHz [9]. The length of a requested SFC is randomly
chosen from 2 to 10 [82] and each VNF instance is randomly drawn from the provi-
sioned VNFs. The bandwidth capacity of a link is randomly drawn from 2,000Mbps
to 20,000Mbps [37]. The transmission latency of a link is randomly drawn from 2ms
to 7ms [70]. The expected demanded data rate of each request varies from 1 to 10
packets per millisecond, and the size of each packet is 64KB [69]. The upper bound
of the demanded computing resource and data rate are randomly set as 105%, 110%
or 115% of the expected one, while the lower bound of those are randomly set as
95%, 90% or 85% of the expected one. Considering the perturbation, the actual con-
sumed computing resource and data rate are randomly drawn between the upper
bounds and lower bounds. The actual demanded resource is utilized to calculate the
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actual accumulated profit. The processing rate of each VNF instance varies from 5
to 20 packets per millisecond [69]. The latency requirement of each request is set
from 20ms to 100ms randomly [70]. The computing resource cost on each cloudlet is
randomly drawn from a range between $0.05 to $0.2 per MHz, while the bandwidth
cost on each link varies from $0.002 to $0.005 per Mbps [107]. Each value in figures is
the mean of the results of 20 topologies randomly generalized by GT-ITM [34] with
the same size. The payment of each request is randomly drawn from $10 to $30. The
parameter β in the designed Markov Chain is set as 1 and the control parameter ζ

associated with the cost variation is set as 0.1 [26]. The running time of each algo-
rithm is based on a desktop with a 3.60 GHz Intel 8-Core i7-7700 CPU and 16 GB
RAM. Unless specified, the above parameters are adopted by default.

To evaluate the performance of Algorithm 11 (referred to as Alg.11) for the RS-
FCP problem, We here introduce two benchmarks against the proposed algorithm.
The first is a greedy algorithm considering the least latency on links for each request,
referred to as Greedy-L. We consider the set R of requests randomly in sequence.
For request ri ∈ R, we first eliminate the nodes and links with insufficient resources
for its admission through constructing an auxiliary graph. Greedy-L finds a feasible
path with sufficient residual resource and the least latency on links from the source
node to the destination in the auxiliary graph. Then, we find a feasible placement
of the requested SFC on the chosen routing path, following the computing resource
constraint and latency constraint. A request is rejected if Greedy-L cannot find a
feasible placement for its SFC. The other benchmark is a greedy algorithm consid-
ering the least cost on the links for each request, referred to as Greedy-C. Similarly,
for each request ri, Greedy-C first finds a feasible routing path with the least cost on
links from the source node to the destination node in the auxiliary graph with suffi-
cient resource for its admission. Then, we find a feasible placement of the requested
SFC on the chosen routing path, following the computing resource constraint and
latency constraint. A request is rejected if Greedy-C cannot find a feasible placement
for its SFC. The average result delivered by each algorithm is calculated based on 20
topologies of the same size. According to [87], we assume that the Markov based
approximation algorithm converges if the collected profit does not change more than
0.1% of the value obtained at the current state.

5.5.2 Performance evaluation of different algorithms

We first studied the performance of different algorithms, by varying the number
of requests from 100 to 1,000 with the network size of 100. Figure 5.2(a) depicts the
accumulated profit with varying number of requests while keeping other settings
unchanged. In addition, the associated running time is shown in Figure 5.2(b). It
can be seen from Figure 5.2(a) that Alg.11 outperforms the benchmarks Greedy-L
and Greedy-C in all cases. When the number of requests is 100, the profits collected
by Greedy-L and Greedy-C are 57.4% and 37.6% of that by Alg.11, respectively.
This is because Alg.11 has an advantage in lowering the admission cost when the
network has enough resource to admit all requests. When the number of requests is
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1, 000, the profits collected by Greedy-L and Greedy-C are 51.2% and 39.8% of that by
Alg.11, respectively. This is because Alg.11 delivers a more reasonable scheduling
of resource to admit more requests with the limited resource in a network.
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Figure 5.2: Performance of different algorithms by varying the number of requests
from 100 to 1,000 with the network size of 100.
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Figure 5.3: Impact of network size on different algorithms by varying the number of
nodes from 50 to 250 with 1, 000 requests.

5.5.3 Impact of different parameters on the performance of the proposed
algorithm

We then investigated the impacts of important parameters on the performance of
the proposed algorithm, such as the network size, the parameter β, the uncertainty
of demanded resource and the control parameter ζ. Recall that β is an important
parameter in designing a Markov chain, and the control parameter ζ is related to the
cost variation.
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We started by investigating the impact of network size on the performance of the
proposed algorithm against the benchmarks Greedy-L and Greedy-C, by varying
the network size from 50 to 250 with 1, 000 requests. Recall that the number of
cloudlets is set as 10% of the network size. Figure 5.3(a) depicts the accumulated
profit with varying numbers of network size, while Figure 5.3(b) depicts the related
running time. It can be seen from Figure 5.3(a) that when the network size is 250, the
profit collected by Greedy-L is 52.3% of that by Alg.11, while the profit collected by
Greedy-C is 38.5% of that by Alg.11. This can be justified that when the network size
is large, compared with the greedy algorithms, Alg.11 achieves better utilization of
computing resource and bandwidth resource to avoid the overloading on links and
cloudlets.

We then studied the impact of parameter β on the performance of the proposed
algorithm, by varying the number of requests from 100 to 1,000 with the network size
of 100. Figure 5.4(a) demonstrates the impact of parameter β on the collected profit
of Alg.11 while Figure 5.4(b) demonstrates the convergence time with different β.
With 1,000 requests, when parameter β = 50, the proposed algorithm achieves the
best performance, which is 17.8% higher than that by the proposed algorithm with
parameter β = 1. However, in this case, it takes the longest convergence time. The
rationale behind this is that when the value of parameter β is small, the optimality
gap is enlarged by Theorem 5.2. However, following the convergence time analysis
by Theorem 5.4, it consumes much less time to achieve convergence. It implies that
Alg.11 demonstrates good flexibility for us to set parameter β with a reasonable
value to achieve a good trade-off between the performance and convergence time.
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Figure 5.4: Impact of parameter β on the proposed algorithm by varying the number
of requests from 100 to 1,000 with the network size of 100.

We thirdly evaluated the impact of the uncertainty of demanded resource on the
performance of the proposed algorithm, by varying the number of requests from 100
to 1,000 with the network size of 100. Figure 5.5(a) depicts the accumulated profit
obtained with different uncertainties of the demanded resource. E.g., the uncertainty
of demanded resource is ±5% when the upper bounds of the demanded computing
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Figure 5.5: Impact of uncertainty of demanded resource and control parameter ζ on
the proposed algorithm by varying numbers of requests from 100 to 1,000 with the

network size of 100.

resource and data rate are set as 105% of the expected value, while the lower bounds
of the demanded computing resource and data rate are set as 95% of the expected
value. The actual consumed computing resource and data rate are randomly drawn
between the upper bounds and lower bounds. It can be seen from Figure 5.5(a)
that the proposed algorithm performs better with lower uncertainty of demanded
resource. With 1,000 requests, when the uncertainty is ±20%, Alg.11 achieves 84.9%
of the accumulated profit by itself when the uncertainty is ±5%. The reason is that
higher uncertainty of demanded resource not only enlarges the cost variation, but
also perturbs the stationary distribution of the designed Markov chain by Lemma 18.

We finally studied the impact of the control parameter ζ on the performance
of the proposed algorithm, by varying the number of requests from 100 to 1,000
with the network size of 100. Figure 5.5(b) depicts the cost variation with varying
control parameter ζ. Recall that the control parameter ζ is used to stabilize the
total admission cost as a coefficient of cost variation. With 1,000 requests, when
control parameter ζ = 1, Alg.11 achieves 73.7% of the cost variation by itself when
control parameter ζ = 0.01. It can be seen from Figure 5.5(b) that a larger ζ leads
to a smaller cost variation, and the total admission cost becomes more stable with
a larger ζ. The reason is that we assign a higher weight to cost variation compared
with the accumulated cost.

5.6 Summary

In this chapter, we studied user service request admissions with both SFC and la-
tency requirements in an MEC network. We first formulated a novel RSFCP problem
with the aim to maximize the expected profit of the network service provider through
admitting as many user requests as possible. We then formulated a QIP exact solu-
tion to the problem when its size is small or moderate. Furthermore, we developed
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a Markov based approximation algorithm, which can deliver a near-optimal solution
with a moderate bounded gap for the problem without measurement perturbation.
We also extended the proposed approach to the measurement perturbation case, for
which we showed that the proposed approximation algorithm is still applicable, and
the solution delivered has a near-optimal gap with a guaranteed error bound. We
finally evaluated the performance of the proposed algorithm through experimental
simulations with practical settings. Experimental results demonstrated that the pro-
posed algorithm is promising, and outperforms the mentioned benchmarks. Several
potential topics based on this study can be further explored in the future. For exam-
ple, the problem can be extended to an online setting where requests arrive one by
one without the knowledge of future arrival information. Furthermore, the mobil-
ity of mobile users can also be taken into account when dealing with robust service
provisioning.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions we made in this thesis, followed by
discussing potential research topics derived from this work.

6.1 Summary of Contributions

In this thesis, we have systematically studied efficient virtual service provision-
ing for Internet of Things (IoT) applications in Mobile Edge Computing (MEC) en-
vironments. Novel concepts, system models and optimization techniques were pro-
posed to facilitate efficient resource allocation and ease the implementation of IoT
services in MEC networks, through bridging the theory-practice gap. Extensive ex-
periments have been conducted in this thesis by simulations using both real and
synthetic datasets to evaluate all proposed algorithms. Furthermore, the devised al-
gorithms, as well as the proposed algorithm design and analysis techniques, will be
of independent interests in many other domains, especially in the combinatorial op-
timization domain. We proposed a novel metric to measure user satisfaction of using
delay-aware IoT services, and devised efficient approximation and online algorithms
with performance guarantees to maximize user service satisfaction in MEC environ-
ments. To provide cost-effective services in MEC for multi-source IoT applications,
we built the very first IoT-driven service provisioning framework for multi-source
IoT applications to meet Service Function Chain (SFC) requirements, while minimiz-
ing the total operational costs of service providers. We then devised performance-
guaranteed approximation and online algorithms for admitting delay-aware Deep
Neuron Network (DNN) inference service requests in MEC environments. We also
tackled the uncertain computing resource consumption and demanded data rates
in service request implementation with the aim of maximizing the expected profit,
and proposed a Markov based approximation algorithm for robust and efficient IoT
service provisioning in MEC.

The main contributions of this thesis are summarized as follows.

• We investigated the user service satisfaction for delay-sensitive IoT applications
in an MEC environment, by offloading user service requests to either the remote
cloud or local cloudlets in an MEC network. We first formulated two novel op-
timization problems and showed their NP-hardness. Especially, we proposed
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an approximation algorithm and a heuristic algorithm for the total utility maxi-
mization problem without and with the bandwidth capacity constraint, respec-
tively. We also devised efficient online algorithms for the dynamic total utility
maximization problem for dynamic request admissions without the knowledge
of future request arrivals.

• We explored the IoT-driven service provisioning in an MEC network for multi-
source IoT applications with SFC requirements. We first formulated the cost
minimization problems for a single multi-source IoT application and a set of
multi-source IoT applications, respectively. We then showed that the problems
are NP-hard. Furthermore, we proposed a novel IoT-driven service provision-
ing framework for multi-source IoT applications, which includes uploading
stream data from multiple IoT sources, VNF instance placement and shar-
ing, in-network aggregation of data streams, and workload balancing among
cloudlets. We also devised efficient algorithms for the defined problems.

• We studied the DNN inference service provisioning with inference delay re-
quirements in an MEC environment. We first formulated a novel DNN infer-
ence throughput maximization problem with the aim to maximize the number
of delay-aware DNN service requests admitted, by accelerating each DNN in-
ference through jointly exploring DNN model partitioning and inference paral-
lelism of DNN inference. To this end, we showed that the problem is NP-hard
and then devised a constant approximation algorithm for it. We also proposed
an online algorithm with a provable competitive ratio for the dynamic DNN
inference throughput maximization problem where a sequence of delay-aware
DNN inference requests arrives one by one without the knowledge of future
arrivals.

• We dealt with admitting user requests with both SFC and latency requirements
in an MEC network. We first formulated a novel Robust Service Function Chain
Placement (RSFCP) problem with the aim to maximize the expected profit of
the network service provider, under the uncertainty assumption of both com-
puting resource and data rate demanded by request executions. We formulated
the RSFCP problem as a Quadratic Integer Programming (QIP) and showed
that the problem is NP-hard. We then developed a near-optimal algorithm for
it by adopting the Markov approximation technique. We also analyzed the
proposed approximation algorithm with the optimality gap, the bounds on the
convergence time and perturbation caused by inaccurate measurements.

• We conducted extensive experimental simulations, using both real and syn-
thetic datasets to evaluate all proposed algorithms and investigate the impact
of constraint parameters on their performance. Experimental results demon-
strated that the proposed algorithms are promising, and outperform existing
ones significantly in a series of aspects, such as maximizing user service sat-
isfaction, minimizing operational costs, maximizing network throughput, and
maximizing expected profit.
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6.2 Future Directions

So far, we have studied several fundamental issues to enable efficient virtual ser-
vice provisioning for delay-sensitive IoT applications in MEC environments. Derived
from the studies in this thesis, several potential topics can be explored in future.

Firstly, we will investigate how to handle the massive mobility of mobile users
to provide seamless IoT services in MEC networks. To this end, we will consider user
mobility modelling to capture the features of dynamic user movement. Then we will
devise an effective prediction mechanism to accurately predict user movements in the
future by adopting machine learning-based methods. For example, given the current
location of a mobile user, we are able to leverage the devised prediction mechanism
and obtain the probabilities of the user’s future movements. Then the service of the
user will be migrated to the identified location with the highest movement proba-
bility to mitigate service interruption. On the other hand, we can proactively place
service replicas on strategic locations, depending on the movement probabilities of
the user.

Secondly, we will study the DNN inference service provisioning in MEC by ex-
ploring more DNN inference acceleration techniques. Although we have investigated
the joint adoption of DNN model partitioning and inference parallelism in meeting
the inference delay requirements of users, we can also investigate other DNN in-
ference acceleration techniques, such as model compression and model early-exist
techniques. The model compression and model early-exist techniques accelerate the
DNN inference at the expense of the inference accuracy, and a deep reinforcement
learning method can be leveraged to achieve the finest trade-off between the infer-
ence delay and the accuracy, according to different scenarios. In the future work,
we will address how to adopt various DNN inference acceleration techniques to pro-
vide efficient DNN inference services while meeting the Quality of Service (QoS)
requirements in MEC environments.

Finally, we will look at the federated learning technique for DNN training ser-
vice provisioning in MEC networks. Pushed by the development of MEC, federated
learning is a recently emerging paradigm to utilize distributed computation resource
for distributed model training with privacy protection, thereby relieving the central-
ized workload [24]. In other words, multiple edge servers collaborate with each other
to establish a global learning model and aggregate model updates in federated learn-
ing. Since we have explored the DNN inference service provisioning in MEC in this
thesis, we will investigate how to design a efficient federated learning framework for
DNN training acceleration in MEC environments to achieve edge intelligence, with a
series of optimization objectives, such as minimizing the operational cost, maximize
the number of requests admitted, and maximizing the accumulated profit.
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