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Featured Application: Room Mode Analysis.

Abstract: Modal decays and modal power distribution in acoustic environments are key factors
in deciding the perceptual quality and performance accuracy of audio applications. This paper
presents the application of the eigenbeam spatial correlation method in estimating the time-frequency-
dependent directional reflection powers and modal decay times. The experimental results evaluate
the application of the proposed technique for two rooms with distinct environments using their
room impulse response (RIR) measurements recorded by a spherical microphone array. The paper
discusses the classical concepts behind room mode distribution and the reasons behind their complex
behavior in real environments. The time-frequency spectrum of room reflections, the dominant
reflection locations, and the directional decay rates emulate a realistic response with respect to the
theoretical expectations. The experimental observations prove that our model is a promising tool in
characterizing early and late reflections, which will be beneficial in controlling the perceptual factors
of room acoustics.

Keywords: reflection power; room response; directional decay rates; room modes; eigenbeam
processing; spatial correlation

1. Introduction

In any enclosed acoustic space, the sound received by a listener is the superposition of
the direct sound from the source and the reflected sounds from the surrounding surfaces.
The numerous reflections termed reverberation cause persistence of sound even after the
source ceases, until these reflected waves decay due to absorption by the surrounding
surfaces. The intricate sound field generated by these reflected waves provides the sense of
acoustic space to the perceived sound. However, severe reverberation can cause spectral
distortions and reduce speech intelligibility. The study of reverberation is complicated
since it is a product of many factors like sound frequency, room shape, room size, room ge-
ometry, source and receiver locations, source and receiver directivity, etc. A comprehensive
understanding of the reflection sound field distribution, resonant frequencies, and modal
decay rates is necessary to control audible artifacts and achieve desired sound perception
quality in room acoustic applications.

Initially, the objective parameters like reverberation time, percentage articulation
(PA) [1], decay rates [2], and statistical measures of room impulse responses (RIR) [3] were
the only measures of reverberation. However, later studies [4,5] found that these measures
vary with the sound frequency and wall surface properties. This necessitated the frequency-
dependent spatio-temporal analysis of sound fields for accurate characterization of room
acoustics. The existing 3D room acoustic parameter estimation methods either depend on
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predictions based on computational acoustics or derive the parameters directly from real
sound field measurements. The room acoustic analysis using prominent computational
models like ray/geometrical [6,7], wave/element [8], statistical energy [9], or synthetic
RIR [10,11] methods are computationally complex and applicable to limited frequency
ranges. The lack of proper consideration of the source and environment factors, frequency-
dependent wave behavior, and precise reflection methods reduce the estimation accuracy
of these computational approaches, especially in highly reverberant environments [12].
Furthermore, the analysis of intermediate frequencies using these computational models
is complicated because of the dominant diffraction effects and the influence of both wave
and ray acoustic behaviors.

The characterization of real acoustic environments requires 3D acoustic scene analysis
using spatial sound field measurements. This led to the development of several micro-
phone arrays designs [13–15] and processing methods like sound intensity mapping [16],
plane-wave decomposition (PWD) and steered beamforming [17–19], sound intensity
vector analysis [20], and multi-channel correlation model [21]. Gover et al. used PWD
beamforming in [18] to estimate the angular distribution and anisotropy index of the spatial
sound field from the RIRs recorded by a spherical microphone array. The recent works
in [22–24] allow similar analysis in terms of isotropy measures and directional energy
decays using Schroeder integration [25] and PWD of directional RIRs. However, these
methods require a large number of RIR measurements for an accurate analysis of the
room acoustic field. This problem was overcome with the introduction of higher-order
spherical harmonic (eigenbeam)-based processing of spherical microphone array mea-
surements [12,26–28], which provided higher spatial resolution for analysis compared to
the previous methods. Subsequently, more robust techniques [29–31] were developed to
achieve efficient parameterization of the spatial sound field using modal decomposition.
In [32], the eigenbeam rotational invariance technique (EB-SPRIT) was used to identify
room modes and damping parameters from RIRs. In [33,34], Samarasinghe et al. used the
spatial correlation of higher-order eigenbeams to estimate the directional characteristics
of the reverberant field, and this approach was able to achieve an accurate estimation of
direct-to-reverberant energy ratio and dominant reflection directions.

The majority of the existing methods of directional characterization of room reflections
derive the parameters from the aggregate sound field formed by the direct and reflected
waves. Even though the direct path can be removed from the RIRs, the spatial resolu-
tion for directional analysis will be limited by the number of microphones. Moreover,
a fine-scale separation of the spatial components of the direct path and reflected path is
difficult without the knowledge of the source directivity. Additionally, the lack of incor-
poration of frequency-dependent surface reflectivities with distinct decay times can cause
severe errors in the reflected sound field power distribution estimated by the existing
methods [18,24,32]. Hence, a competent room characterization tool should integrate the
frequency, time, and spatial dependencies in the formulation of the reflected sound field.

In this paper, we utilize the spatial correlation of higher-order eigenbeams to estimate
the directional power response of room reflections by processing the RIR measurements.
The proposed technique further facilitates room mode analysis and directional decay rate
estimation. In comparison to the previous version of this method in [33,34], we model
the reflection power as a function of time, frequency, and direction for comprehending
the influence of frequency-dependent wall absorption properties of the room surfaces.
This method allows the estimation of the directional features of reflections with higher
spatial resolution independent of the direct sound component. The room mode features,
directional decay rates and dominant reflection locations generated from the proposed
tool can serve many applications like room response equalization, acoustic treatment
design, architectural design simulations, room geometry inference, auralization of historic
buildings, archaeoacoustics, and other machine hearing technologies.

The remainder of this paper is organized as follows: Section 2 discusses the for-
mulation and implementation procedure of the eigenbeam spatial correlation model for
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estimating the reflection power response. Section 3 presents the experimental results includ-
ing the time-frequency spectrum of reflection power, directional decay rates, and dominant
reflection directions. Section 4 concludes the paper with a summary of the key findings
and mentions the future research plans.

2. Reflection Power Estimation Using Eigenbeam Spatial Correlation Model

In this section, we present the formulation and synthesis of reflection power as a
function of time, frequency, and space in the spherical harmonics domain.

2.1. Problem Formulation

Consider a convex room with a single sound source and a spherical microphone array
of radius R with Q omnidirectional microphones centered at a location O, as shown in
Figure 1. Let the spherical coordinate yo = (ro, θo, φo) denote the sound source location
with respect to O. Similarly, the qth microphone element is located at xq = (R, θq, φq) for
q ∈ {1, 2, · · · , Q}. In this paper, all the elevation angles are ∈ [0, π] downwards from the
Z-axis and the azimuth angles are ∈ [0, 2π) counterclockwise from the X-axis.

z

Microphone 
Array

ϕo

θo

x

y
Loudspeaker

ro

O

Figure 1. Geometric illustration of the spherical microphone array centered at the coordinate origin
and the single sound source located at yo = (ro, θo, φo).

We treat the room as a linear time-invariant (LTI) acoustic transmission system whose
dynamic behavior is represented by the RIRs derived from the spherical microphone array
measurements. Let H(xq, yo, t, k) be the room transfer function (RTF), between the source at
yo and the microphone element at xq, obtained from the short-time Fourier transform (STFT)
of the RIR. Here, t is the STFT temporal frame index and k = 2π f /c is the wavenumber
with f and c representing the frequency and speed of sound, respectively. Since the incident
sound field at the receiver contains the direct sound and the reflections, we can decompose
the RTF H(xq, yo, t, k) as

H(xq, yo, t, k) = Hd(xq, yo, t, k) + Hr(xq, yo, t, k) (1)

where Hd(xq, yo, t, k) and Hr(xq, yo, t, k) are the direct path and reflected path components,
respectively.

Assuming that the distance between yo and xq is significantly larger than the aperture
size of the microphone array, we can represent Hd(xq, yo, t, k) and Hr(xq, yo, t, k) as a
composition of plane waves in the spatial domain as

Hd(xq, yo, t, k) = GD(t, k|yo)eikŷo .xq (2)

Hr(xq, yo, t, k) =
∫

ŷ
GR(t, k, ŷ|yo)eikŷ.xq dŷ (3)

where GD(t, k|yo) is the direct path gain with respect to O, ŷo is the unit vector along the
source direction, i =

√
−1, GR(t, k, ŷ|yo) is the gain of the reflected plane wave arriving

from the direction ŷ = (1, θ, φ), and
∫

ŷ dŷ =
∫ 2π

0

∫ π
0 sin θdθdφ. Here, we have modeled
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the reflection gain GR as a non-isotropic directional distribution function that varies with
frequency and time to comprehend a real room with inhomogeneous surfaces that have
frequency-dependent wall impedance and damping coefficients.

By examining E
{

HdH∗d
}

based on (2), where E{·} represents the statistical expecta-
tion operator, we can express the direct path power as

PD(t, k|yo) = E
{
|GD(t, k|yo)|2

}
(4)

where |·| denotes the absolute value. Similarly, by examining E
{

HrH∗r
}

based on (3), we
can write the power of the reflected sound field component incoming from the direction ŷ as

PR(t, k, ŷ|yo) = E
{
|GR(t, k, ŷ|yo)|2

}
. (5)

We aim to estimate the reflection power PR(t, k, ŷ|yo) from the RTFs H(xq, yo, t, k) ∀ q
obtained using a spherical microphone array. Since PR(t, k, ŷ|yo) is a spherical function, we
can simplify its estimation using the spherical harmonic decomposition [35] given by

PR(t, k, ŷ|yo) =
∞

∑
v=0

v

∑
u=−v

γvu(t, k|yo)Yvu(ŷ) (6)

where γvu(t, k|yo) are the reflection power coefficients and Yvu(·) is the spherical harmonic
function of vth order and uth mode. Thus, we can calculate the reflection power for any
incoming direction and time-frequency bin once we estimate γvu(t, k|yo) coefficients.

2.2. Methodology

For determining the γvu(t, k|yo) coefficients, we utilize the spatial correlation of higher-
order spherical harmonic (eigenbeam) coefficients of the incident sound field. The estima-
tion of the reflection power response involves two main steps:

Step 1: Estimating spherical harmonic coefficients of the incident sound field

In this work, since we are interested in characterizing the room response independent
of the source power spectrum, we assume a sound source emitting an impulse signal
and treat H(xq, yo, t, k) as the incident sound field on the spherical microphone array.
For deducing the higher-order spherical harmonic coefficients of the incident sound field,
we represent H(xq, yo, t, k) as the spherical harmonic decomposition of Helmholtz wave
equation solution to the interior sound field problem [12] as

H(xq, yo, t, k) =
∞

∑
n=0

n

∑
m=−n

αnm(t, k|yo)bn(kR)Ynm(x̂q) (7)

where αnm(t, k|yo) are the modal coefficients of the spatial sound field, x̂q is the unit vector
in the direction of the qth microphone, and

bn(kR) =

jn(kR) for an open array

jn(kR)− j
′
n(kR)

h′n(kR)
hn(kR) for a rigid array

(8)

with jn(·) and hn(·) denoting the spherical Bessel and Hankel functions of order n, re-
spectively, and (·)′ represents the first derivative operation. From (7), we can estimate
αnm(t, k|yo) coefficients using the orthogonal property of spherical harmonics [36] as

αnm(t, k|yo) =
∑Q

q=1 H(xq, yo, t, k)Y∗nm(x̂q)

bn(kR)
(9)
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where (·)∗ denotes the complex conjugation operation. Practically, we truncate αnm(t, k|yo)
to an order N, such that N = dkRe and Q ≥ (N + 1)2, where d·e denotes the ceiling
operation, to avoid errors due to spatial aliasing and high-pass nature of higher-order
Bessel functions [36].

Step 2: Estimating reflection gains using the spatial correlation model

We can now estimate γvu(t, k|yo) from the αnm(t, k|yo) coefficients using the spatial
correlation matrix expression [33] given by

Λ0000
Λ001−1

...
Λ00NN
Λ1−100

...
ΛNNNN


︸ ︷︷ ︸

Λ(t,k|yo)

=



δ0000 d000000 · · · d0000VV
δ001−1 d001−100 · · · d001−1VV

...
...

...
...

δ00NN d00NN00 · · · d00NNVV
δ1−100 d1−10000 · · · d1−100VV

...
...

...
...

δNNNN dNNNN00 · · · dNNNNVV


︸ ︷︷ ︸

B(k,yo)

×



PD
γ00

γ1−1
...

γV−V
...

γVV


︸ ︷︷ ︸
Ω(t,k|yo)

(10)

where
Λnmn′m′ = E

{
αnm(t, k|yo)α

∗
n′m′(t, k|yo)

}
(11)

δnmn′m′ = 16π2i(n−n′)Y∗nm(ŷo)Yn′m′(ŷo) (12)

dnmn′m′vu = 16π2i(n−n′)(−1)m

√
(2v + 1)(2n + 1)(2n′ + 1)

4π
W1W2 (13)

with W1 =

(
v n n′

0 0 0

)
and W2 =

(
v n n′

u −m m′

)
representing the Wigner 3j sym-

bols [37].
The elements in Λ(t, k|yo) and B(k, yo) can be generated from the αnm(t, k|yo) coeffi-

cients and source direction information, respectively. Now, we can solve (10) to estimate
Ω(t, k|yo) by

Ω̂(t, k|yo) = B†(k, yo)Λ(t, k|yo) (14)

where ˆ[·] and [·]† indicate estimated values and pseudo-inversion operator, respectively. While

solving (14), the order of γvu(t, k|yo) in Ω̂(t, k|yo) is truncated to V ≤
⌊√

(N + 1)4 − 1
⌋

,

where b·c indicate flooring operation, to avoid an underdetermined system [34]. Once
the γvu(t, k|yo) coefficients are extracted from Ω̂(t, k|yo), we can generate the reflection
power using Equation (6) for different incoming directions ŷ and time-frequency bins.
From PR(t, k, ŷ|yo), we can estimate the total reflected power in any time-frequency bin as

PT(t, k|yo) =
∫

ŷ
PR(t, k, ŷ|yo)dŷ. (15)

Substituting (6) in (15) and using the symmetrical property of spherical harmonics [35]
PT(t, k|yo) = γ00(t, k|yo). We can now use PR(t, k, ŷ|yo) and PT(t, k|yo) to analyze the
reflection power variations with time, frequency, and direction.

3. Experimental Analysis

In this section, we present the analysis of the reflection power response of two rooms
from their RIR datasets recorded using an em32 Eigenmike [38], which is a Q = 32
element rigid spherical microphone array of radius R = 0.042 m. Both the RIR datasets
were measured using a source signal generated from a directional loudspeaker. The first
RIR dataset available from the work in [39] is for a small audio laboratory room of size
3.54× 4.06× 2.70 m, hereafter referred to as Room-1. The second RIR dataset from [40]
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pertains to a larger classroom of size 6.5× 8.3× 2.9 m, hereafter referred to as Room-2.
According to these datasets, the reverberation time (T60) of Room-1 and Room-2 are 0.329 s
and 1.12 s, respectively. From the datasets, we have selected the RIRs for different source
positions in the XY plane, i.e., θo = 90◦ at different φo angles, and at 1 m distance from the
microphone array center. The direct path component from the source arrives at the receiver
around 0.0026 s and 0.0028 s for Room-1 and Room-2, respectively.

From the selected 32-channel RIRs, we obtain H(xq, yo, t, k) using the STFT operation
with a 1024-sample Hanning window with 50% overlap, 2048-point fast Fourier transform
(FFT), and 48 KHz sampling frequency. We then follow the process described in Section 2.2
to generate PR(t, k, ŷ|yo) for 500 uniformly distributed ŷ directions derived from spiral-
based sampling [41] ∀ t, k bins in the frequency band of 20 to 1500 Hz. These 500 spiral
sampled directions provide sufficient spatial resolution to assimilate the sound reflectivity
variations across the room surfaces at a reasonable computation cost. Finally, we estimate
PT(t, k|yo) for analyzing the time-frequency spectrum of the reflection power of the two
rooms. While dealing with the temporal response in the following sections, the 0 s in the
time-index indicates the moment of sound event occurrence. However, the reflection power
response is calculated only from 0.01 s which is the center of the first STFT frame. This
frame size was selected after considering a reasonable time-frequency resolution for proper
spectral and temporal analysis of reflections in both rooms.

3.1. Theoretical Background

Here we discuss important theoretical concepts of room acoustics and room response
characteristics according to prevalent literature [5,42–44] to validate the experimental analysis.

3.1.1. Modal Decay

The reverberation field inside a room leads to the persistence of sound even after the
source ceases. The duration of this sound persistence, called the reverberation time RT [5],
is the most commonly used measure of room acoustic quality. In practical applications,
acousticians calculate RT as the 60 dB decay time since source cessation and is referred to as
T60 [43]. Typically, such estimations assume diffuse sound field conditions and average wall
absorption and calculate RT as a single value to characterize the room acoustics. However,
in reality, the wall absorption factors change with frequency [5,44], and hence accurate RT
estimates should be frequency-dependent. Furthermore, the room architecture, variations
in surface materials, and source-receiver properties affect the reflection path length [44]
and magnitude, which, in turn, influence the decay of different frequency components.
Therefore, decay times should be a function of frequency and direction. Since an analytical
solution to decay rate estimation is complex, we can derive them numerically through
reflection sound field analysis.

3.1.2. Room Modes

The sound propagation in any acoustic enclosure follows different wave character-
istic phenomena like reflection, scattering, diffraction, and interference. Such a complex
interaction of innumerous waves is characterized through the acoustical wave equation [5].
The frequencies corresponding to the eigenvalues of the acoustic wave equation can form
standing waves inside the room to create a resonant behavior leading to non-uniform
distribution of reflection power and extended reverberation [5,43,44]. These frequencies
are often referred to as room modes or eigenfrequencies.

According to [5,43], at low frequency ranges, the number of resonant frequencies
will be small, and they can be excited individually. Hence, the room response will be
quite irregular and anisotropic for these frequencies. When we move towards the higher
frequencies, the eigenvalues are densely spaced, so they cannot be independently excited.
Even though the higher frequencies contribute to the reflected sound pressure, the lack of
independent resonance combined with increased scattering makes them relatively uniform
and less prominent compared to the lower frequencies. Hence, in a typical room response,
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we expect high reflection powers with some resonant peaks for low (<300 Hz) to mid
(300 to 600 Hz) audible frequencies and decaying magnitude towards the high (>600 Hz)
frequencies. The cross-over frequency [5,43] that separates the resonant low-frequency
response and the high-frequency diffused reflections is termed as Schroeder frequency (νS).
It can be calculated using the empirical formula

νS ≈ 2000

√
T60

∆
(16)

where ∆ is the room volume. From the dimensions and T60 of the test rooms, (16) gives
νS ≈ 184 Hz and ≈169 Hz for Room-1 and Room-2, respectively.

For a rectangular enclosure, we can calculate the eigenvalues of the wave
equation [5,42–44] as

νnxnynz =
c
2

√(nx

lx

)2
+
(ny

ly

)2
+
(nz

lz

)2
(17)

where {nx, ny, nz} are non-negative integers and lx × ly × lz are the room dimensions.
When two of {nx, ny, nz} equals zero, the solution of (17) gives the axial modes which
are considered to be stronger with low decay rates compared to other modes [42]. We
can calculate the tangential modes with two non-zero integers in {nx, ny, nz} and oblique
modes by substituting all non-zero integers in {nx, ny, nz}.

Figure 2 shows the room mode distribution in Room-1 and Room-2. The axial and
tangential modes are calculated from (17), and the line heights in Figure 2 represent the
number of resonances occurring at a frequency since different {nx, ny, nz} combinations
can result in the same νnxnynz frequency. The axial modes were given a higher nominal
weight [44] while calculating this distribution due to their inherent prominence. Theo-
retically, an empty rectangular room of the same dimensions should replicate this trend
in their frequency response. However, in a real room environment, the interference of
normal modes of different decay rates [44] and the influence of inhomogeneous surfaces
and source directivity alter the assumptions behind (17). Therefore, the real room response
may vary from the predicted distribution.

(a) (b)

Figure 2. Room mode distribution in (a) Room-1 (b) Room-2.

For practical validation of the real acoustic phenomenon, we will use the power
response generated using the proposed technique to identify the variations in the room
mode distribution and modal decays compared to the above theoretical expectations.
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3.2. Reflection Power Spectrum

Figures 3 and 4 show the spectrogram of PT(t, k|yo) for different source positions
in Room-1 and Room-2, respectively. For both rooms, the lower frequencies show some
irregular peaks, and the reflection power of late reverberation clearly decays towards the
higher frequencies as we predicted in Section 3.1.2. Additionally, the reflection power
is maximum in the initial time instants, and then the power decays with time for all
frequencies due to surface absorption. It should be noted that the power decay trend is
varying with the frequencies due to the frequency-dependent wall impedance property [5].
Apart from some magnitude variations, the time-frequency spectrum trend is maintained
for all source positions in both rooms. In the following sections, we will analyze the
reflections power variations with frequency and time in more detail.

Figure 3. Reflection power response of Room-1 for different source positions.

Figure 4. Reflection power response of Room-2 for different source positions.

3.2.1. Frequency Response of Reflection Power

Figures 5 and 6 show the frequency response of time-averaged PT(t, k|yo) for different
source positions in Room-1 and Room-2, respectively. These figures provide a clear view of
the low-frequency peaks and the decay of power towards the higher frequencies. In Room-
1, we can observe high powers around 164 Hz, 211 Hz, and 281 Hz before the onset of the
power decay. Compared to Figure 2a, 164 Hz and 211 Hz are closer to the theoretical room
modes, whereas many other predicted modes do not appear in the observed response in
Figure 5. Similarly, some of the observed peaks in Room-2 around 164 Hz, 304 Hz, 328 Hz,
and 492 Hz vary from the theoretical room mode estimates shown in Figure 2b. Addition-
ally, the identification of νS is difficult from these responses, but is clearly greater than the
predicted νS values mentioned in Section 3.1.2. This error is caused by the approximation
in (16) by use of frequency-averaged T60 and from the influence of source directivity.
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Figure 5. Reflection power with frequency for different source positions in Room-1.

Figure 6. Reflection power with frequency for different source positions in Room-2.

It should also be noted that there are no substantial variations in the frequency
response of Room-2 for different source positions. Additionally, in Room-1, the differences
are not drastic as should be expected in a smaller room with significant reverberation.
This is the result of the formulation of reflection gains with respect to a common listening
position (O) and the separation of the direct path component from the reflections. A direct
analysis of the frequency response of RIR will show significant differences with the change
in source positions. Therefore, the proposed technique can be used to predict the room
response behavior independent of the source positions.

3.2.2. Temporal Response of Reflection Power

Figures 7 and 8 show the temporal response of PT(t, k|yo) at different frequencies for
different source positions in Room-1 and Room-2, respectively. As evident from these fig-
ures, the reflection power decays due to surface absorption, and the decay trend is similar
for all source positions. Since the damping constants of room surfaces are frequency-
dependent, each frequency in Figures 7 and 8 decays at different rates. The lower fre-
quencies like 70 Hz, 141 Hz, and 211 Hz have slower decay rates compared to the other
frequencies. As we move from 281 Hz to 633 Hz in Figures 7 and 8, the decay rate stabilizes
towards the higher frequencies. Furthermore, the decay of higher frequencies is nearly lin-
ear, whereas the lower frequencies (70 Hz to 211 Hz) exhibit a non-linear decay, especially in
Room-2. This can be attributed to the highly non-uniform power distribution of the lower
frequency resonant modes, which leads to the concentration of sound absorption to certain
surfaces [42,43]. In comparison, the high frequencies have more diffused distribution of
reflection power, and hence the decay behavior is averaged over broader surface areas.
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Figure 7. Reflection power with time for different frequencies and source positions in Room-1.

Figure 8. Reflection power with time for different frequencies and source positions in Room-2.

3.3. Decay Time

From the time-frequency spectrum of reflection power, we can estimate the decay
time of each frequency to predict the strong room modes in a real room environment.
Figures 9 and 10 show the 60 dB decay time of each frequency estimated from the PT(t, k|yo)
values for different source positions in Room-1 and Room-2, respectively. Even though
the temporal response at each frequency in Figures 7 and 8 seems relatively independent
of the source positions, the decay times of the frequencies is slightly different for each
source position according to Figures 9 and 10. The average decay time, maximum de-
cay time, and the corresponding frequency for each source position in both rooms are
summarized under Table 1. We can say that the strongest modes in Room-1 are ≈140 Hz,
≈164 Hz, and ≈258 Hz, which are closer to the peak power frequencies observed in
Figure 5. However, in Room-2, the frequencies with maximum decay time are different
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from the frequencies with maximum reflection power. Hence, we need a deeper insight
into the directional variations of power and decay time which we will analyze in the
next section.

Figure 9. Decay time with frequency for different source positions in Room-1.

Figure 10. Decay time with frequency for different source positions in Room-2.

Table 1. Maximum and average decay times in Room-1 and Room-2.

In Room Source Position Maximum Decay
Time (s)

Frequency (Hz) with
Maximum Decay Time

Average
Decay Time (s)

Room-1

yo = (1, 90◦, 40◦) 0.4114 140 0.2822

yo = (1, 90◦, 120◦) 0.4540 164 0.2899

yo = (1, 90◦, 200◦) 0.4823 140 0.2995

yo = (1, 90◦, 280◦) 0.4398 258 0.2936

Room-2

yo = (1, 90◦, 0◦) 1.1349 492 0.8133

yo = (1, 90◦, 90◦) 1.1066 328 0.8288

yo = (1, 90◦, 180◦) 1.0498 328 0.8341

yo = (1, 90◦, 270◦) 1.0640 586 0.8182

3.4. Directional Decays and Dominant Reflection Directions

As we discussed in Section 3.1.1, decay times are a function of frequency and direction.
Additionally, from Section 3.3, we found that the modes with higher decay times can be
different from the modes with high reflection powers. Therefore, a more comprehensive
analysis of the spatial spectrum of these reflections is necessary to identify room surfaces
causing the observed behaviors for the frequencies of interest. Figure 11a,b shows the
directional decay times of Room-1 for yo = (1, 90◦, 40◦) and yo = (1, 90◦, 120◦), respec-
tively, obtained from the 60 dB decay time of PR(t, k, ŷ|yo) in each ŷ direction. Figure 12a,b
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shows the directions with high reflection powers in Room-1 for yo = (1, 90◦, 40◦) and
yo = (1, 90◦, 120◦), respectively. The letters indicated near the locations of highest re-
flection powers in Figure 12 are coarsely mapped onto the real Room-1 environment in
Figure 13. As evident from this figure, the locations around ‘A’, ‘C’, ‘D’, and ‘E’ have glass
surfaces with high reflectivity, and hence the observed dominant power directions are valid.
Furthermore, there is no evident pattern between the distributions in Figures 11 and 12
for the given modal frequencies, and hence the feature predictions based on computa-
tional room acoustic models can be imprecise. In such cases, we can employ the proposed
technique to reproduce authentic spatio-temporal room responses.

According to Figures 11 and 12, the directions of high decay times and dominant
reflections are different from each other for every frequency and source position. Even
though the dominant reflection locations and directional decay distribution have many
common factors of influence, the reflection power in a direction strongly depends on the
source directivity and source-to-wall distance, whereas the directional decay is mainly a
function of the wall impedance coefficients and reflection paths. Hence, as seen in Figure 11,
the directional decay will be different between the frequencies due to wall impedance vari-
ations, as well as for different source positions due to change in reflection path. In contrast,
if we observe Figures 12 and 13, the dominant reflection locations ’A’, ’B’, and ’C’ have
similar azimuth values and source-to-wall distance when the source is at yo = (1, 90◦, 40◦).
Likewise, the elevation values of the dominant reflection locations ’D’ and ’E’ in Figure 12b
are nearly the same when the source is at yo = (1.90◦, 120◦). Additionally, the location of
’F’ is in the close vicinity of the source position. Thus, the dominant reflection locations are
principally determined by the source position and source directivity. For locations with
same source-to-wall distance, the dominant reflections will depend on the reflectivity of
the surface materials.

(a)

(b)

Figure 11. Directional decay times inside Room-1 for the peak frequencies when source is located at
(a) yo = (1, 90◦, 40◦) (b) yo = (1, 90◦, 120◦).
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(a)

(b)

Figure 12. Dominant reflection directions inside Room-1 for the peak frequencies when source is
located at (a) yo = (1, 90◦, 40◦) (b) yo = (1, 90◦, 120◦).

Figure 13. Mapping of dominant reflection directions in Room-1. The letters A to C and D to F
represent the directions of highest reflection powers with respect to Figure 12a,b, respectively.

Based on the above observations, the analysis of both directional decay and directional
power is essential in characterizing the room reflections. This is particularly important
while managing the features of early reflections and late reverberations to achieve desired
perception quality. Since the early reflections undergo very few boundary reflections [45],
they are mainly defined by the source directivity and source-to-wall distance. Hence, we
can use the dominant reflection directions to characterize the behavior of early reflections.
The late reverberation undergoes multiple boundary reflections, and they are integrated
both spatially and temporally before reaching the receiver [45]. Since the late reverberation
characteristics are primarily characterized by the surface absorption and room shape [45,46],
we can analyze the directional decay rates to study their behavior. We can further visualize
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the power spectrum of PR(t, k, ŷ|yo) across time for an extensive analysis of the variations
in the anisotropic spatial properties between the early reflections and late reverberations.

The precise knowledge of frequencies and surfaces contributing to the salient features
of these reflections will be useful for defining the perceptual targets for modal control
methods [47], optimizing room mode redistribution to improve acoustic quality [48], and
devising active [49] and passive [50,51] room acoustic treatment methods.

4. Conclusions

In this paper, we presented a reflection power response estimation technique utilizing
the spatial correlation of higher-order eigenbeams derived from spherical microphone
array measurements. The formulation of the reflection gain as a function of time, frequency,
and direction helps in comprehending a faithful room response for a realistic non-diffuse
sound field. The experimental results validate the frequency response and temporal
response of the reflection power against the theoretical expectations.

The proposed technique can estimate the resonant frequencies and modal decays
caused by directional speakers and complex room environments. Furthermore, the di-
rectional decay times and dominant reflection directions facilitate the distinction of early
and late reflection features. The insights from this room acoustic evaluation technique
will be beneficial in controlling the acoustic quality while designing performance spaces.
Particularly, the findings from this method will be more reliable than computational room
models while deciding acoustic treatment schemes compatible with the source directivity.
Additionally, the room mode features identified from this method can be incorporated
in spectral equalization algorithms to improve speech intelligibility and remove audible
artifacts. The dominant reflection locations and directional decay spectrum can aid in the
inference of room geometry and calibration of the room acoustics in virtual reality-based
rendering of heritage sites.

The method can also be adapted for blind estimation of the discussed characteristics
from the direct processing of microphone recordings for any arbitrary source signal, since
we can separate the reflected power from the direct path power. Moreover, apart from
spherical microphone arrays, any arbitrary array designs that can generate accurate spatial
sound field coefficients can be integrated with the proposed algorithm. The future work
shall expand the method to include multiple sources in noisy environments to conceive
more real-world applications.
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