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Inverse Design of Nanoparticles Using Multi-Target
Machine Learning

Sichao Li and Amanda S. Barnard*

In this study a new approach to inverse design is presented that draws on the
multi-functionality of nanomaterials and uses sets of properties to predict a
unique nanoparticle structure. This approach involves multi-target regression
and uses a precursory forward structure/property prediction to focus the
model on the most important characteristics before inverting the problem and
simultaneously predicting multiple structural features of a single
nanoparticle. The workflow is general, as demonstrated on two nanoparticle
data sets, and can rapidly predict property/structure relationships to guide
further research and development without the need for additional
optimization or high-throughput sampling.

1. Introduction

Inverse design[1–3] that prescribes a structure is a primary ob-
jective in materials informatics, and the ultimate goal of much
academic and industrial research, but the majority of materi-
als informatics uses machine learning (ML) to make forward
predictions of a property of a material (the target label) based
on the structural characteristics (the features). These are re-
ferred to as structure/property relationships, and they are used
to inform synthesis and processing strategies; both real and
hypothetical.[1,2,4–6] If a scientist or engineer makes a particular
type of material (chemical composition, lattice type, defect con-
figuration, etc) then these structure/property relationships pre-
dict what properties they can expect.[7–9] Inverse design, how-
ever, involves inverted property/structure relationships, and are
highly desirable since a researcher usually knows what proper-
ties they need for a particular application and want a “recipe” of
what they should be attempting tomake in the lab. Inverse design
is more complicated in nanomaterials design, where the finite
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sizes and multitude of shapes mean the de-
sign space is larger.[10]

This topic has been approached in the
past using interpretable structure/property
relationships generated with machine
learning methods that expose attributes
such as feature importance profiles that
rank the structural features by how in-
fluential they are in the model, together
with the assumption that the features are
equally influential in determining the struc-
ture/property relationship that the model
represents. This is not necessarily the case,
and also fails to eliminate the undesirable
need to make, or model, a large number of

materials to see which particular values of these important struc-
tural features produce the desired result. In addition to exhaus-
tive sampling and an additional step to optimize the outcomes,
this approach also suffers from too much specificity. Struc-
ture/property relationships typically involve many structural fea-
tures but only one target property label. This makes inverting the
problem difficult as there will be only one known variable (prop-
erty) and numerous unknown variables (structures) making the
solution intractable.
An alternative approach to inverse design is possible in cases

where more than one property label is known. Multi-functional
materials have been receiving considerable attention in material
science as they provide a greater opportunity for tuning the ma-
terial to a particular application, and lower the cost of devices
by reducing the need for multiple components. If enough labels
are available, we can invert the problem and use the properties
as inputs to predict a target structural characteristics. This mit-
igates the issue of having insufficient known variables to pre-
dict an unknown structure, making a mapping tractable, and the
fact that one structural characteristic may be not be sufficient to
guide experiments. In some cases a single structural character-
istic might be enough, such as the strongly size-dependent opti-
cal emission of quantum dots, but in many cases the underlying
structure/property relationships aremore complicated and so the
property/structure relationship will not be useful unless we can
extract a more holistic structural profile.
In this paper we design and demonstrate a new inverse

design workflow using multi-target random forest regressors,
and test it on two data sets originally generated using elec-
tronic structure simulations. As we will show, by informing the
inverse models with information on the important structural
characteristics in a conventional (forward) structure/property
relationship, new property/structure relationships can be pre-
dicted with comparable performance in terms of accuracy and
generalizability.
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2. Experimental Section

2.1. Data Sets

This study employed two publicly available ensemble data sets of
500 diamond nanoparticles[11,12] and 425 silver nanoparticles,[13]

respectively. Both of the data sets were originally simulated using
electronic structure methods and characterized numerically us-
ing statistical analysis to define structural features and electron
transfer properties.[14–16] The structural features are defined in
Tables S1 and S2, Supporting Information. Feature extraction
was not conducted as part of this study, and information on how
the features were generated can be obtained from references
listed on the data repository.
Feature selection and engineering play an important role in

the application of machine learning in material science,[17] and
influence model performance. Ghiringhelli et al.[18] systemati-
cally extracted the important features for the energy difference
of zinc blende or wurtzite and rocksalt semiconductors to im-
prove model performance. Constant features should be ignored,
and irrelevant (or minimally relevant) features should be avoided
by filtering based on the standard deviation of each feature, as
they contributed nothing to the accuracy of classification and re-
gression. Similarly, strongly correlated features were redundant
as they both contributed the same information during learning,
and unnecessarily complicated the model by introducing bias
that should be reduced. In the study, linearly correlated features
were identified using a correlation matrix and features with over
95% correlation were removed, and features with a standard devi-
ation of less than 0.1%were eliminated to reduce noise. Once the
feature set has been cleaned, the remaining set can be recursively
optimized until the most informative features were retained as
described below. In the study, the feature selection was achieved
based on the Gini importance of random forests.[19]

The labels included in the two data sets were slightly different,
but both contained electron charge transfer properties and amea-
sure of thermodynamic stability. This included the formation
energy (Formation_E) and thermodynamic probability of obser-
vation (Probability) originally calculated using a Boltzmann
distribution and the free energy different at 300 K at atmospheric
pressure.[20] The electron change transfer properties included
the ionization potential (IP), the electron affinity (EA), the elec-
tronic band gap (EG), the electronegativity (EN), or the energy the
Fermi level (EF), all measured in eV. Labeling was not conducted
as part of this study, and information on how the labeling was
conducted can be obtained from references listed on the data
repository.

2.2. Multi-Target Random Forest Regression

The selection of the machine learning algorithm has been in-
formed by the high-dimensional numerical target labels, which
require a multi-target regression model. Borchani et al.[3,21] cate-
gorized existing methods for multi-output regression into prob-
lem transformationmethods and algorithm adaptationmethods.
Problem transformation methods transform the multi-output
problem into independent single-output problems, while algo-
rithm adaptation methods involved the modification of specific
existing single output methodsmaking it suitable to directly han-

dlemulti-output data sets directly.[22] Algorithm adaptationmeth-
ods, such as support vector machine (SVM) and regression trees,
are more appropriate to this study due to the interpretability of
feature importance, which was important for inverse design.[23]

Tree-based methods were chosen over others as a nonparametric
explanatory approach,making no assumption on the distribution
of data and the structure of the model, provided excellent perfor-
mance over alternatives.[24] Alternative interpretable adaptation
methods would also be suitable.
A decision tree is a flowchart-like structure for a classification

or regression process branching from the root node to leaf nodes
that represent the discretized outcomes, passing through the
internal nodes that classify each attribute.[25] Decision trees can
intrinsically handle multi-task problems as the leaf nodes can
refer to any collection of relevant classes. Random forest (RF)[26]

is an ensemble technique that aggregates a large number of
decision trees through bootstrap aggregation, also known as
bagging,[27] and random feature selection methods.[28] Each de-
cision tree in the forest is trained on a different data sample with
random subsets of features, and “votes” determine the prediction
that best resembles the limited scope at the point of prediction.
RFs count each vote from individual trees and return the outputs
with the most votes as the final ensemble prediction;[29] either
the classes for classification or the mean prediction for regres-
sion. The feature selection criterion for internal nodes is the
Gini impurity or information gain for classification and variance
reduction for regression.[30] This approach increases the diver-
sity amongst the ensemble members and avoids over-fitting,
resulting in accurate decision forests. A RF ensemble predictor
can be extended to tackle multi-target learning problems by
replacing the typical univariate trees in the RF with multivariate
trees,[31–33] making it ideal for the present study.
This is distinct from other approaches that share information

such as transfer learning. Transfer learning aims to achieve high
performance by transferring knowledge from the source task,
while multi-target learning learns the target and the source task
simultaneously. Transfer learning focused on sequential sharing
knowledge/representations between targets, using domain adap-
tation, where the targets have different data sources (even if the
feature attributes are the same). Information about the structure
of a similar model trained on a different source is transferred,
but the new model is still trained on its own data. Multi-target
learning is a parallel process, where a model is jointly trained
to minimize several loss functions on different targets, using
the same source data. This builds a representation that is useful
for several problems, while exploiting commonalities and differ-
ences across tasks, but knowledge of the model structure is not
transferred.
Another advantage is the ability to calculate the relative impor-

tance of each feature in a decision tree and random forests, and
features that contribute the most to predicting the target prop-
erty can be identified by recursive feature elimination (RFE). As
will be seen, this was extremely important in the present study
as there was a limited number of property labels, and therefore a
limited number of structural characteristics that can be reliably
predicted. For each feature on a decision tree, the importance was
calculated as the decrease in the impurity of the split weighted
by the probability of arriving that node, which was the number of
samples that arrived at the node, divided by the total number of
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Figure 1. Inverse design workflow.

samples, fromwhich features were ranked based on the averaged
impurity over all trees in the forest.[34] The outcome is a ranked
feature importance profile (histogram) and a prediction of the op-
timal number of features required to archive convergence of the
cross validation score.

2.3. Workflow

To obtain a reliable inverse model, the workflow is illustrated in
Figure 1. Given the raw data set, preprocessing was undertaken
to exclude outliers, standardize and normalize the features, and
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split the data sets to training, testing, and validation sets. This
process was accompanied by the selection of a machine learning
model that was suitable for the multi-target regression; in this
case RF. To begin the forward RF model was optimized and
trained using k-fold cross validation, which enabled the regressor
to rank the features by Gini importance. Recursive feature elim-
ination was used to select the most important features sufficient
for the model to simultaneously predict the property labels
without loss of accuracy or generalizability. This was important
to reduce the number of predictable structural characteristics to
be commensurate with (or similar to) the number of available
properties, and while not essential, it was good practice to repeat
the forward model optimization and training using only the
final subset of features to quantify any loss. The data set was
then inverted; the reduced set of important features becoming
structural “meta-labels,” and the multiple property labels be-
coming the new “meta-features.” The inverted set was then split
into training, testing, and validation sets, and the optimization,
training, and validating processes of the multi-target RF model
was repeated. The forwardmodel and the inverse model used the
same inputs and targets, but in reverse. Once inverse training
was complete, the inverse model was ready to be used.

3. Results

Before conducting experiments, each data set used herein was
cleaned to remove linearly correlated features and noise, then
scaled using the MinMax scaler and normalized (both features
and labels). In the case of the pairs of features that are linearly
correlated (see correlation matrices in Supporting Information)
we routinely retain the features that provide the greatest op-
portunity for experimental control, or the greatest experimental
interpretability. The retained features are highlighted in the lists
in Supporting Information. Following cleaning the data sets
were split into 80% training set and 20% testing set prior to
optimization. The same train/test split, with the same random
seed, was used for all models (both forward and inverse). For
each regressor we defined a grid of hyper-parameter ranges and
searched 1000 random combination of values sampled from the
grid, performing five-fold cross validation at each iteration. All
optimized regressors were trained with ten-fold cross validation.
The accuracy and generalizability of all of the hyper-parameters-
tuned models was assessed using the mean square error (MSE)
and the mean absolute error (MAE) to evaluate the training,
testing and cross-validation scores.[35] These results are tabu-
lated, or included in learning curves which also quantify any
under-fitting or over-fitting.

3.1. Nanodiamond

To investigate this approach to inverse design we have begun
with the nanodiamond data set, as this is an experimentally and
industrially relevant material that has promising applications in
biotechnology and medicine.[36–41]

3.1.1. Forward Prediction

Cleaning of this data set (described above) resulted 16 structural
features, H_conc, HCP_conc, FCC_conc, F_111, F_110, F_100,

Table 1. Forward predictions using the multi-target regression model of
diamond nanoparticles, with all of the structural features retained after
data cleaning, or the top nine important features identified using recursive
feature elimination. The results are evaluated using the mean absolute
error (MAE), themean square error (MSE), and the rootmean square error
(RMSE).

Prediction Feature set (number) Target (number) MAE MSE RMSE

Forward Retained (16) All (5) 0.034 0.003 0.053

Forward Important (9) All (5) 0.035 0.003 0.057

Forward Retained (16) Probability (1) 0.021 0.001 0.034

Forward Retained (16) IP (1) 0.055 0.011 0.103

Forward Retained (16) EA (1) 0.041 0.005 0.073

Forward Retained (16) EG (1) 0.039 0.005 0.072

Forward Retained (16) EN (1) 0.045 0.006 0.077

Sphericity, CC_coord, sp1, sp2, sp2x, dCC, dCCe, aCCC, aCCCe,
and D_nm, remaining in the feature space.
The forward multi-target prediction was first trained with all

16 features to predict the Probability, EN, IP, EA, and EG prop-
erty labels simultaneously, achieving low testing errors, as shown
in Table 1. The feature importance, based on Gini impurity, is
ranked in Figure 2a. The training process, combined with cross
validation is visualized in the learning curve in Figure 2b, where
we can see convergence with respect to the number of train-
ing instances has been achieved, leaving only minor over-fitting
and no under-fitting. As shown in the recursive feature elim-
ination profile in Figure 2c the model performance is maxi-
mized when the nine important features are selected (in order
of importance: sp2x, H_conc, sp2, dCCe, aCCCe, D_nm, aCCC,
FCC_conc, CC_coord), so the forward model was reoptimized
and trained using this subset. Overall these results are consistent
with previously reported regression studies of this data set, even
though they used different regressors (gradient boosting and ex-
tra trees[14]). The results using the important subset are shown
in Figure 2d and Table 1.
As we can see by comparing these results there is almost no

loss of accuracy or generalizablity, and no introduction of under-
fitting or additional over-fitting, when using the important subset
of features; the five target properties can be reliably predicted us-
ing only the top nine structural features. This is computationally
convenient, but also scientifically important since the size (D_nm)
and hydrogen concentration (H_conc) are based on inputs that
can in principle be controlled directly, and the speciation (sp2,
sp2x) and lattice structure (FCC_conc, CC_coord) can be tuned
indirectly in the lab. These results also compare well to the indi-
vidual single-target RFmodels optimized and trained using all re-
tained features to predict each nanodiamond property, as shown
in Table 1.

3.1.2. Inverse Prediction

As indicated in the workflow diagram, multi-target regression
was then used to train the inverse property/structure model us-
ing the reduced data set which contains nine most important
structural characteristics and five nanodiamond properties. The
RF algorithm was reoptimized and retrained with the five prop-
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Figure 2. Results for the forwardmulti-target regression simultaneously predicting all five target properties of the nanodiamonds trained on 16 structural
features retained after data cleaning, including a) the feature importance profile rankings, b) the learning curve showing the accuracy and generalizablity,
c) results of recursive feature elimination showing optimal results can be achieved with nine features, and d) the learning curve for forward prediction
using only the nine optimal, high ranking important features, showing no loss of accuracy or generalizablity.

erties becoming “meta-features” and the nine structural features
becoming “meta-labels.” In the case of the inverse prediction,
training with all five meta-features was undertaken to predict
the Probability, EN, IP, EA, and EGmeta-labels simultaneously,
achieving low errors, as shown in Table 2. We can see from this
table by comparing results for the multi-target inverse prediction
and the single-target inverse prediction that the quality is simi-
lar if all or one of the structural meta-labels is predicted from the
properties, and that the ranking of the meta-label in the forward
model (where it was a feature) does not correlate to the MAE or

MSE in the inversemodel.We can also see by comparing Tables 1
with 2 that the quality of the predictions are similar, based on
theMAE andMSE, suggesting that the performance of a forward
model is a reasonable indicator of the expected performance of
the inverse model. The learning curves to accompany the single-
target inverse predictions summarized in Table 2 are provided in
Supporting Information.
All learning curves for multi-target inverse models using

different numbers of meta-features and meta-labels are shown
in Figure 3, where we can see that any reduction of the num-
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Table 2. Inverse predictions using the multi-target regression model, with
all of the propertymeta-features or the four electronicmeta-features (omit-
ting the probability of observation), predicting all of the important meta-
label, a subset of the six meta-labels or each meta-label individually. The
structural meta-labels are listed in order of importance in the forward
model. The results are evaluated using the mean absolute error (MAE),
the mean square error (MSE) and the root mean square error (RMSE).

Prediction Feature set (number) Target (number) MAE MSE RMSE

Inverse All (5) All (9) 0.047 0.010 0.091

Inverse Electronic (4) All (9) 0.053 0.012 0.105

Inverse All (5) Subset (6) 0.052 0.012 0.101

Inverse Electronic (4) Subset (6) 0.060 0.015 0.120

Inverse All (5) sp2x (1) 0.050 0.012 0.109

Inverse All (5) H_conc (1) 0.027 0.005 0.072

Inverse All (5) dCCe (1) 0.019 0.001 0.031

Inverse All (5) sp2 (1) 0.061 0.017 0.129

Inverse All (5) D_nm (1) 0.014 0.001 0.022

Inverse All (5) aCCCe (1) 0.041 0.005 0.073

Inverse All (5) FCC_conc (1) 0.067 0.010 0.100

Inverse All (5) aCCC (1) 0.049 0.0103= 0.1013=

Inverse All (5) CC_coord (1) 0.0712= 0.018 0.134

ber of meta-features or meta-labels used in the inverse model
increases the over-fitting, though only slightly. The inverse
model exhibits high accuracy and generalizability and remark-
able resilience to minor changes in the number of proper-
ties available and structural characteristics which need to be
predicted.
Two questions arise from outcome: would the method still

work if less than five properties were available, and can the results
be improved if the number of target structural characteristics was
closer to the number of available properties? To test the former
we omitted the probability of observation, as it is difficult to ob-
tain experimentally, and retrained the inverse model to predict
the structural meta-labels with only the electronic meta-features
IP, EA, EG, and EN. We can see from Table 2 that the loss of perfor-
mance is in the third decimal place, indicating that more proper-
ties are desirable but the impact of having more or less of them
is marginal. In the latter case we used all meta-features and the
subset of electronic meta-features to predict the six meta-labels
that can be potentially tuned in the lab: sp2x, H_conc, sp2 and
D_nm, FCC_conc, and CC_coord. These all relate in some way to
the size and the surface structure (surface chemistry and recon-
structions). Here we can see that the loss in performance when
using fewer structural meta-labels is also less than 1%, indicat-

Figure 3. Learning curves for different combinations of inputs in the multi-target inverse model predicting using 500 nanodiamonds including a) five
property meta-features predicting nine structural meta-labels, b) four property meta-features predicting nine structural meta-labels, removing Probability
that is difficult to obtain experimentally, leaving only electronic meta-features (IP, EA, EG, and EN), c) five property meta-features predicting 6 structural
meta-labels, representing the top ranking structural characteristics from the forward model (sp2x, H_conc, sp2 and D_nm, FCC_conc, and CC_coord),
and d) four property meta-features predicting 6 structural meta-labels. The testing results are evaluated using the mean square error (MSE).
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Table 3. Forward predictions using the multi-target regression model of
silver nanoparticles, with all of the structural features retained after data
cleaning, or the top four important features identified using recursive fea-
ture elimination. The testing results are evaluated using the mean abso-
lute error (MAE), the mean square error (MSE), and the root mean square
error (RMSE).

Prediction Feature set (number) Target (number) MAE MSE RMSE

Forward Retained (48) All (5) 0.061 0.009 0.081

Forward Important (4) All (5) 0.071 0.012 0.094

Forward Retained (48) Formation_E (1) 0.025 0.001 0.033

Forward Retained (48) IP (1) 0.095 0.015 0.123

Forward Retained (48) EA (1) 0.058 0.006 0.078

Forward Retained (48) EG (1) 0.034 0.003 0.052

Forward Retained (48) EF (1) 0.149 0.039 0.196

ing that there is little cost to focusing on structural characteristics
that represent possible inputs for experiments, provided they are
highly ranked.

3.2. Silver Nanoparticles

To ensure the feasibility of the workflow, and to test if this in-
verse design strategy is general, we have repeated this entire pro-
cess on the data set of silver nanoparticles (described above) using
identical steps. During data cleaning the silver data set required
the removal of some outliers, retaining instances where IP<5 eV,
EA>2.5 eV, EG<2.5 eV,−4.05<EF<−3.5 eV and Formation_E<0.8
eV. This resulted in a final set of 414 nanoparticles.

3.2.1. Forward Prediction

The forward multi-target prediction training was initially con-
ductedwith 48 retained features following cleaning and five prop-
erty labels: Formation_E, IP, EA, EG, and EF. The results for the
MAE and MSE are provided in Table 3, and the learning curve in
Figure 4a. The feature importance ranking is shown in Figure 4b,
and the recursive feature elimination profile in Figure 4c reveal
that an optimal model can be achieved using only four struc-
tural features: Ag_Ratio, R_avg, Anisotropy, and Facets. The
results using this reduced feature set is provided in Table 3 show-
ing minimal loss of performance, and the associated learning
curve is shown in Figure 4d. Retraining the forward multi-target
model with only important features once again reduced the per-
formance by less than 1%, and the results of both models com-
pare well with the associated single-target predictions, as shown
in Table 3. The performance of the single-target prediction for the
energy of the Fermi level (EF) is an obvious outlier, with larger
errors than the others, which is consistent with previous results
using this data set,[15] due to the bimodal distribution of this label.

3.2.2. Inverse Prediction

Once again the problem is inverted, and the five properties
become meta-features and the four structural features become

meta-labels. The multi-target RF model is reoptimized and
trained using the procedure above, and the results are provided in
Table 4 and Figure 5. In this case the number of facets (an indi-
cator of the nanoparticle morphology) is a difficult label to pre-
dict, suggesting an alternative shape-dependent feature/meta-
label may improve the outcome. All of the other single-target
meta-labels perform similarly to the multi-target prediction. As
above for nanodiamonds, we also reduced the number of meta-
features, dropping the formation energy (which is difficult to
measure experimentally) and reoptimized and trained the multi-
target model. The results in Table 4 show an even smaller loss of
performance than the nanodiamond predictions, with the MAE
and MSE increasing by only ≈ 0.5%, and the learning curves in
Figure 5b being virtually indistinguishable.

4. Discussion

The inverse models predicted here show remarkably good
performance (with low MSE and MAE), comparable to forward
models using the same reduced sets of important features, and
single-target predictions. Although different accuracymetrics are
available, since we are using a complicated and highly nonlin-
ear regressor (multi-target random forest) the coefficient of
determination (R2) is inappropriate for interpreting dependent
variability in our study.[42] Both MAE and MSE are practical
in expressing the average model error, though MSE tends to
penalizes large prediction errors. Using only one measurement
is controversial,[43,44] so comparing both can provide a more
comprehensive insight into the model performance. The lim-
itation of evaluation using MSE and MAE is the absence of a
standard and whether or not a MSE or MAE value is acceptable
depends on the actual range of the target variable,[45] and the
fault tolerance acceptable in a given application domain. In our
study all of the data as standardized and normalized, so there is a
consistent range and unit, but this is not enough for evaluation.
For this reason, and for their intrinsic utility, the performance
has been evaluated using learning curves. While a disadvantage
of this multi-target regression is that the 45 degree plots typically
used to compare the predicted and true values cannot be used
for more than one target, learning curves for models offer the
advantage of reporting both the training accuracy (including
under-fitting) and generalizability (including over-fitting) via the
cross-validation score, which is important since biased trees can
be created if some classes dominate.[46,47]

Conventional 45 degree plots are not possible for multi-target
regression, but we have provided explicit comparison of the pre-
dicted meta-labels against the ground truth of for three samples
taken from the testing sets in Supporting Information. By com-
paring the results for nanodiamond case study and the silver
nanoparticle case study we can see the silver model is superior,
which can be partly attributed to the smaller number of metal-
labels with respect to meta-features. This highlights the value of
the feature selection provided by the forward models to reduce
the dimensionality. It is entirely possible to use the L1 regulariza-
tion to achieve this goal, but this has some disadvantages. Regu-
larization consists of adding a penalty to different parameters of
the model, such as the coefficients that multiply each of the pre-
dictors. L1 has the property of being able to shrink some of the
coefficients to zero, effectively removing them from the model.
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Figure 4. Results for the forward multi-target regression simultaneously predicting all five target properties of the silver nanoparticles trained on 48
structural features retained after data cleaning, including a) the feature importance profile rankings, b) the learning curve, c) results of recursive feature
elimination showing optimal results can be achieved with four features, and d) the learning curve for forward prediction using only the four important
features, showing no loss of accuracy and almost no loss of generalizablity. The testing results are evaluated using the mean square error (MSE).

While this reduces variance (improves generalizability), it can in-
troduce bias (reducing accuracy) and there is no guarantee that
the final feature set represents a reliable structure/property (or
property/structure) relationship. A very important feature, such
as the hydrogen concentration on the surface of nanodiamond or
the average radius of silver, could contribute to the variance error
because there is noise, while still being critical to the design of
the nanoparticle. The backward elimination approach of recur-
sive feature elimination prioritizes the important features that
anchor the structure/property relationship, while still decreas-
ing the dimensionality and maximizing the accuracy at the same

time. This has some advantages in the context of nanomaterials
design, but is not strictly the only way from a machine learning
perspective. The disadvantage is that it necessitates training an
optimized forward model before an inverse model is attempted,
but this disadvantage is mitigated by the fact that a preview into
the overall performance that can be expected from the inverse
model can be obtained (though the forward model is likely to be
superior).
Although the learning curves presented here indicate we have

convergence with respect to the size of the training sets, it is likely
that the results could be improved if more nanoparticle prop-
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Table 4. Inverse predictions using themulti-target regressionmodel for the
silver nanoparticles, with all of the five property meta-features or the four
electronic meta-features (omitting the formation energy), predicting all of
the important meta-labels, and all meta-features predicting each meta-
label individually. The structural meta-labels are listed in order of impor-
tance in the forward model. The testing results are evaluated using the
mean absolute error (MAE), the mean square error (MSE), and the root
mean square error (RMSE).

Prediction Feature set (number) Target (number) MAE MSE RMSE

Inverse All (5) All (4) 0.073 0.021 0.119

Inverse Electronic (4) All (4) 0.079 0.023 0.125

Inverse All (5) Ag_Ratio (1) 0.021 0.003 0.057

Inverse All (5) R_avg (1) 0.017 0.001 0.027

Inverse All (5) Anisotropy (1) 0.091 0.021 0.146

Inverse All (5) Facets (1) 0.158 0.053 0.230

erties were available. To achieve a good result we recommend
gathering as many properties as possible, and restricting the
prediction to only the important structural characteristics, which
should be identified using an entirely data-driven approach as
we have done here (to help avoid evaluation bias). This step
achieves a better balance in the number of known and unknown
variables than an unrestricted multi-target model, reduces the
computational complexity and the computation time. This ap-
proach also automatically ensures the inverse property/structure
relationship remains close to the domain of applicability of the
forward structure/property model. This reduces the likelihood
of spurious correlations impacting the inverse model due to
an inability to perfectly map insufficient meta-feature inputs
to the meta-label outputs. However, if a very large number of
properties are available it might also be worthwhile cleaning the
labels by checking for correlations and noise as we have done
for the original feature set, since they will eventually become
meta-features. For example, in the case of the inverted predic-
tions in the silver nanoparticle data set the correlation between
Formation_E and EG is 97.4%, which would typically require one
to be eliminated if they were among the original features. When

we did remove this label/meta-feature as there was small impact
on the model performance, but removing too many properties
(or retaining too many highly correlated properties) could have
more significant consequences. In the present study we also
preserved the original dimensions of the properties labels, since
random forests are forgiving of data cleanliness and can perform
well without standardization or normalization, but this might
also be worth investigating if the number of properties is large.
Using these inverse models it is possible to input a list of

desired properties and output a profile of the nanoparticle that
would meet these requirements. An advantage of using multi-
target regression is that one profile is given for one set of condi-
tions, and there is no need to perform optimization to find a com-
bination of structural characteristics that will work, though other
authors have taken an optimization approach to inverse design.
Tominaga et al. proposed an efficient procedure based on genetic
algorithms (GAs) for optimization of a single inverse system.[48]

Yang et al. also developed a package for inverse design, named
IM2ODE (Inverse design of materials by multi-objective differ-
ential evolution), based on multi-objective differential evolution.
Although the package implements structural optimization, and
duplicate elimination to increase the efficiency, it is still an opti-
mization method striving to solve a global searching task and is
therefore time-consuming. As a result of using real-valued num-
ber instead of genes, differential evolution tends to bemore effec-
tive than GAs, but maintaining a viable population of candidate
solutions and low convergence properties are problematic.[49,50]

Alternative approaches using evolutionary algorithms have been
reported, but similarly suffer from poor scaling with respect to
complexity and often require very expensive fitness functions for
evaluation, often taking days to complete. The stopping criteria of
genetic algorithms for predicting multi-targets is also unclear.[51]

Rather than using an evolutionary algorithm, Zunger et al.
identified materials with specific functionalities using an inverse
design framework based on a global searching task. High-
throughput density functional theory calculations were used
to discover highly efficient halide perovskites solar absorbers
and high absorption thin-film photovoltaic materials.[52,53]

The inverse band structure approach describe by the authors

Figure 5. Learning curves for different the multi-target inverse model predicting using 414 silver nanoparticles including a) five property meta-features
predicting four structural meta-labels, and b) four property meta-features predicting four structural meta-labels, removing Formation_E that is difficult
to obtain experimentally, leaving only electronic meta-features (IP, EA, EG, and EF).
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successfully identified atomic alloy configurations, using a linear-
regression function to predict property/structure relationship,[54]

but this approach suffers from the requirement of a compre-
hensive data set to enable a truly global search. As demonstrated
in the study the collection of such a data set can be automated,
but the reliability of such high-throughput systems depends on
the number and types of competing candidate structures, and
can result in impossible compounds.[1,55,56] Furthermore, not all
property/structure relationships can be linearly regressed. In the
present study we were able to employ a nonlinear regressor (RF)
which does not rely on an external optimization method, or need
an exhaustive data set, to be reliable. Traditional screening-based
approaches can only choose from candidates that are in the data
set,[57–59] whereas our method can identify configurations that
are not in the data set. This could be advantageous in some
circumstances. In general, a conventional forward-model-only
screening approach has five mandatory steps: 1) train the for-
ward model, 2) use the forward model to predict unknown
instances, 3) rank the predicted outcomes, 4) apply screening
criteria, 5) extract structural characteristics of acceptable mate-
rials. This process can be partially automated. Our approach has
two mandatory steps since applying our model automatically
outputs the structural characteristics: 1) train inverse model, 2)
apply inverse model. This process can be entirely automated.
Both approaches would benefit from the additional (optional)
dimension reduction, as we have shown here, since both meth-
ods could result in a long list of characteristics that could be
too difficult for researchers to use simultaneously. Ideally this
dimension reduction should be focused, and interpretable, as
we have demonstrated. Furthermore, the forward-only approach
may also identify multiple acceptable candidates with no way of
choosing between them (which could be useful, or could be a
confusing), whereas our direct inverse approach identifies one
acceptable candidate, thereby reducing ambiguity.
At this point it is worth highlighting that, while the data sets

used here have significant diversity (distributions of sizes, mix-
tures of shapes, surface reconstructions, surface chemistry, twin-
ning, etc), particularly the nanodiamond set that has different
types of surface speciation, diversity does not necessarily intro-
duce noise and other types nanomaterials data may be of lower
quality due to factors such as measurement uncertainty and in-
formation bias. This inverse design approach can be used with
noisy data from experiments, but it is expected that the accuracy
and generalisability would be affected if care is not taken to char-
acterize the nanomaterials well (comprehensive feature extrac-
tion), and tune the RF models to accommodate the extra com-
plexity. It is likely deeper trees would be required, and a larger
number of counterfactual features would be deemed important
by the forward model, making the inverse mapping more chal-
lenging.
To give an insight into how to use a trained multi-

target inverse model in practice, we can consider two hy-
pothetical instances with reasonable properties, and pre-
dict the nanoparticle that would exhibit them using each
of our models. For a nanodiamond with [Probability
=0.4, IP = 4.0 eV, EA = 3.0 eV, EG = 2.0 eV, EN = 2.5
eV] the inverse model prescribes [sp2x=0.04±0.016 (%),
H_conc=0.21±0.031 (%), sp2=0.04±0.014 (%), D_nm=2.1±0.248
(nm), FCC_conc=0.31±0.051 (%), CC_coord=3.75±0.010],

with [dCCe=0.022±0.008 (Å), aCCC=109.3±0.5944 (degrees),
aCCCe=2.1±0.7782 (degrees)] which cannot be controlled
directly. Researchers in the nanodiamond community will
instantly see that the fraction of sp2-hybridized atoms, the
concentration of fcc atoms, and the average carbon-carbon
coordination number (for example) can be simultaneously
modified using surface passivation or functionalization. For
a silver nanoparticle with [Formation_E =0.4, IP = 4.0 eV,
EA = 3.0 eV, EG = 2.0 eV, EF = −3.8 eV] the inverse model
prescribes [Ag_Ratio=3.241±0.510, R_avg=7.273±1.420 (Å),
Anisotropy=1.624±0.137, Facets=16.998±3.221]. The un-
certainties were calculated using the MSE and are useful,
as they provide researchers with a fault tolerance; essential
for translation into industry. It is important to note here the
different sizes (via the D_nm and R_avg metal-labels) that are
required for these two nanoparticles to deliver the same IP,
EA, EG. Additional examples for both data sets can be found in
Supporting Information.

5. Conclusions

In conclusion, we have designed and demonstrated a new
approach to inverse design using multi-target regression based
on random forests. Using two publicly available data sets for
different nanoparticles, each characterized by a set of struc-
tural features accompanied by multiple property labels, we
have shown that an inverse design model that predicts a set
of structural characteristics from a set of properties can have
similar performance to a traditional forward model (predicting
properties from the structural features) and single-target models.
The inverse models are remarkably resilient against changing
the number of properties of structural characteristics under
consideration, but benefit computationally from restricting the
structural characteristics to only those deemed important in
a traditional forward structure/property model using feature
importance rankings. Undertaking a precursory forward model
also provides a useful indication of the approximate performance
that can be expected for the inverse model, though the former is
likely to be superior. This workflow is also theoretically feasible
for the classification tasks as well as regression, working in
concert with a multi-class classifier if the input data had discrete
labels. This was outside the scope of the present study and would
require further work to investigate and confirm if some kind of
inverse classification is possible.
Overall the inverse design workflow used in the study is

general and flexible enough to be applied to other nanoparticles
and identify other types of property/structure relationships.
In general, once a model that identifies a property/structure
relationship is successfully trained with experimentally relevant
structural features and sufficient labels, and the required ac-
curacy, a “recipe” for nanoparticle synthesis can be predicted,
taking into account the trade-offs between properties and rec-
ognizing that multi-functional nanomaterials must often meet
more than one property target simultaneously. Although this
model was designed for nanoparticles, there is no technical rea-
son why it could not be applied to molecules and materials, but
this would require careful consideration of how the electronic,
chemical or biological features and labels were encoded. If fea-
tures and labels are used that are not directly accessible then the
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prediction, while numerically correct, would lack utility. Itmay be
necessary to include techniques from interfacial informatics.[60]

As it stands the workflow is entirely general, and the onus is
on the user to make good decisions about how to characterize
the data, how to represent their nanoparticles, molecules or
materials, and how to respond to models that prescribe direct
control of parameters that can only be control indirectly. Given a
functional set of features and labels however, this inverse design
workflow can transform design frameworks and potentially
create nanomaterials suitable for multiple applications in the
optical, chemical and medical domains.
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