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Abstract

Frequency chirping waves have been observed in various experiments with tokamak

plasmas and there is evidence which shows frequency chirping can occur over long ranges,

up to the initial frequency itself. Theoretical toy models and simulations reveal that the

nonlinear saturation of an initially unstable plasma wave driven by energetic particles may

lead to the emergence of chirping waves. This process is associated with formation and

evolution of coherent structures which carry the particles in phase space. In tokamak

plasmas, this motion can lead to ejection of the particles from the hot core of the plasma

and degrade the machine performance. Therefore, it is essential to develop theory and

simulation models to better understand and control chirping waves, as energetic particle

driven instabilities, in future fusion plasmas e.g. ITER.

Fast particles of tokamak plasmas can destabilize weakly damped Alfvén eigenmodes

during their slowing down process. This can cause the wave amplitude to grow and sat-

urate due to non-linear particle trapping, which may lead to redistribution of particles

and a diffusive transport in tokamak plasmas. Depending on physical parameters of the

plasma wave, hard non-linear evolution of energetic particle driven instabilities can ex-

hibit different phenomena. Previous numerical simulations reveal that Alfvén eigenmodes

emerge inside the gaps of the shear Alfvén continuum and evolve into chirping signals if

the mode is subject to intrinsic damping into the cold plasma. In 1997, Berk-Breizman

and co-workers [H. Berk et al, Physics Letters A 234 3 213–218] observed chirping signals

in simulation studies of an electrostatic plasma wave in inverse Landau damping prob-

lem. These signals were interpreted as Bernstein-Greene-Kruskal waves with sweeping

frequencies. These chirping waves are associated with formation and evolution of coherent

structures (islands) in phase space of energetic particles. Such structures, the so-called

”holes” and ”clumps”, have been found to move adiabatically which implies the trapped

particles inside these structure can be carried in phase space as the frequency of the wave

chirps; so called convective transport. Various models and codes have been developed

to study the chirping phenomenon but restricted to short ranges of frequency chirping

since a fixed spatial dependency of the plasma wave is assumed. During long ranges of

frequency chirping, however, the spatial profile of the wave can change considerably and

hence theoretical/simulation models, capable of updating the wave structure as a result

of frequency shifts, are required to study long range frequency chirping of Alfvénic per-

turbations in tokamaks. In 2010, Boris Breizman [B. N. Breizman, Nuclear Fusion, 50 8

084014] developed a 1D electrostatic non-perturbative model which enables an adiabatic

study of chirping waves as a 1D paradigm of electromagnetic chirping signals in resonance

with fast particle dynamics in realistic geometries.

In order to build more realistic theoretical models necessary to better understand

the chirping waves observed in plasma experiments, nonperturbative theory needs to be

extended to electromagnetic plasma waves and also fast particle orbital dynamics should

be captured. In this work, a model is developed to investigate the effect of fast particle

orbital dynamics in tokamaks in a 1D description. This new trapped/passing orbital

model demonstrates how fast particle orbits can impact the hard non-linear behaviour
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of the chirping waves. The evolution of the wave spatial profile as well as the rate of

frequency chirping as a function of the fast particles orbits are studied.

As the next step, the theory of adiabatic frequency chirping is developed for Alfvénic

-type perturbations in realistic configurations. The impact of long range frequency de-

viations on the radial mode structure of a global Alfvén eigenmode is studied and the

chirping rate analysed. In this model, the radial profile of the Alfvén wave is described

using the method of finite elements. The expression for the non-linear mode structure is

constructed by varying the total Lagrangian of the system with respect to the weight of

each finite element. To analyze the phase-space, exact constants of motion during the long

range frequency chirping are introduced.

In this work, the theory of chirping waves is extended further by investigating the

impact of particle trapping in phase-space for a growing wave potential in the orbital

model introduced above. In this respect, a phase space waterbag model is developed by

using Lagrangian contours to discretize the phase-space island in adiabatic invariants. In

addition, a study of the influence of higher particle resonances on the behaviour of chirping

waves is also performed.

The above theoretical frameworks implement an adiabatic approach for long range

frequency chirping and a convective transport mechanism is implemented to analyse the

phase space of energetic particles. To justify and evaluate this approach, self-consistent

simulations are performed using the hybrid model of the MEGA code. A novel phase-

space analysis tool is built which enables a reduction of EPs dynamics to an essentially

1D picture. This is based on a new conservation law for particle dynamics which remains

valid even when the frequency of the perturbation changes. Therefore, it is possible to

observe the hard-nonlinear evolution of holes and clumps on appropriate sub-slices of EPs

phase-space. For a toroidicity-induced Alfvén eigenmode, the mechanism of the associated

frequency chirping phenomenon has been clarified. The observations of the wave behaviour

and the corresponding phase space dynamics are consistent with the adiabatic theory.
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Chapter 1

Introduction

Fusion is the nuclear reaction in which two light atoms combine to form other atoms

and particles, called fusion products, and to release energy by mass conversion. Fusion

reactions between tritium and deuterium have high cross sections for their occurrence and

also high energy yields- 17.58 Mev for the D-T reaction given by

D + T −→ n (14.07 Mev) + 4He (3.52 Mev). (1.1)

A possible way of achieving nuclear fusion, as a clean and peaceful source of energy, is the

thermonuclear fusion using very high temperatures in a plasma, the 4th state of matter.

A precise definition of a plasma, as given in [1], reads: a plasma is a quasi-neutral gas

of charged and neutral particles which exhibits collective behaviour. For fusion reactions

to happen in a plasma, the average kinetic energy of charged particles should bring them

close enough so that the nuclear attraction force overcomes the electric repulsion. This hot

plasma needs to be confined which is a challenging step towards designing a nuclear fusion

power plant on the earth. In the Sun and the stars, which are heated by thermonuclear

fusion, the plasma is confined by gravitational fields. On our planet, there are two main

approaches for confining the plasma, namely the magnetic confinement and the inertial

confinement.

A tokamak is a device which aims to confine the plasma using helical shape magnetic

fields and to date is the most promising candidate of the main core in a fusion power plant.

The magnetised plasma inside the tokamak is firstly heated up through current induction

called ohmic heating. Subsequently, external sources of heating are implemented such as

radio frequency (RF) heating or neutral beam injection (NBI). External heating and the

fusion products (α-particles) are the two ways through which energetic particles (EPs) can

exist inside the tokamak bulk plasma. These particles gradually slow down and lose energy

through collisions with the bulk plasma particles. In some modelling works, the plasma

particles are divided into two parts: bulk plasma particles and energetic particles. This

classification is based on the theoretical frameworks implemented to model each group

of particles. Generally speaking, a plasma can be considered as an N-body dynamical

system and the trajectory of each individual charged particle in the presence of electric

and magnetic fields (single particle orbit theory) can be studied to determine the plasma

behaviour. However, depending on the specific plasma process and phenomenon of interest

and whether a microscopic or macroscopic description is required, different theories or a

combination of them can be used to model the plasma. Here, we introduce two approaches:

kinetic and fluid theories.

1



2 Introduction

1.1 Kinetic description of plasma particles

Single particle orbit theory is valid only in the limit of very low interactions between

plasma particles. This requires very low densities which is not usually the case. There-

fore, a more appropriate approach is required. Statistical mechanics provides a model to

describe the collective behaviour of plasma charged particles. With the advantage of in-

vestigating microscopic fluctuations and including the collective effects of the plasma, the

kinetic theory excels at plasma modelling but in the expense of being more complicated.

The number of particles having a specific energy and position in space in a plasma

can be given by a distribution function fα(r,v, t) of the plasma particles, where α denotes

various plasma species. The detailed evolution of such a distribution, which expresses the

microscopic information of the plasma as a whole, in a 6D phase-space (r,v) and time (t)

is known as kinetic theory. The evolution of the density of each 6-dimensional phase-space

volume is given by
dfα(r,v, t)

dt
≡ ∂fα

∂t
+
∂fα
∂r

· dr
dt

+
∂fα
∂v

· dv
dt
, (1.2)

where long range electromagnetic interactions between particles are taken into account.

By taking into account the short-range binary collisions between particles, the Boltzman

equation is found
∂fα
∂t

+
∂fα
∂r

· dr
dt

+
∂fα
∂v

· dv
dt

≡
(
∂fα
∂t

)
collisions

(1.3)

If the binary collisions between particles are not taken into account then the phase-space

density will be preserved along each particle trajectory in phase-space. This gives the

Liouville theorem, df
dt = 0, that leads to the Vlasov equation [2]

∂fα
∂t

+ v · ∂fα
∂r

+
qα
mα

(E+ v×B) · ∂fα
∂v

= 0, (1.4)

where E and B represent the total electric and magnetic field, respectively. So far, we

have introduced the PDE governing the evolution of the distribution function and this

system needs to be closed by the set of Maxwell’s equations that determine the electric E

and the magnetic field B:

∇×E = −∂B
∂t
, (1.5a)

∇×B = µ0j+
1

c2
∂E

∂t
, (1.5b)

∇ ·E =
τ

ϵ0
, (1.5c)

∇ ·B = 0, (1.5d)

where µ0 is the magnetic permeability in vacuum, ϵ0 is the vacuum permittivity, j is the

current density, τ is the charge density. The link between the kinetic equation and the

Maxwell’s equation is created through the charge and current density source terms given

by

τ =
∑
α

qαnα, (1.6a)

j =
∑
α

qαnαuα, (1.6b)



§1.2 Fluid theory of plasma 3

where nα and uα are particle density and average velocity, respectively, obtained by taking

the zeroth and first moment of the distribution function as

nα(r, t) ≡
∫
fα(r,v, t)d

3v, (1.7a)

uα(r, t) ≡
1

nα(r, t)

∫
vfα(r,v, t)d

3v. (1.7b)

1.2 Fluid theory of plasma

The idea of the fluid theory is to find macroscopic equations by taking the moments

of the Boltzman equation in a limited numbers. For taking each moment, we multiply the

Boltzman equation (1.3) by powers of v and then average/integrate over velocity space.

This expansion needs to be truncated after a few terms to be practical. One can then use

the transport theory to justify the truncation after the 2nd power of v i.e. after
∫
d3vv2 · · ·.

The scalar zeroth moment of Eq.(1.3), which is integrating over the velocity space, gives the

continuity equation. The vector first moment of Eq.(1.3), which is multiplying bymαv and

integrating over the velocity space, results in the momentum equation. Subsequently, the

scalar second moment of Eq.(1.3) yields the energy equation. In general, the kth moment

equation contains a term which is a (k + 1)th moment. To achieve a sensible result, we

have to truncate this hierarchy and stop this sequence using certain assumptions and turn

these equations into a closed set. Following Ref. [3], we describe these assumptions as a

three step procedure:

• Splitting the particle velocity into an averaged and random part denoted by uα and

ṽα, respectively:

ṽα ≡ v− uα. (1.8)

This enables the definition of thermal quantities, namely temperature, stress ten-

sor, heat flow, momentum transfer and heat transfer in the momentum equations

explained above. A Maxwellian distribution reads

f eqα (r,v, t) = nα

(
mα

2πKTα

)3/2

exp

(
−mαṽ

2
α

2KTα

)
, (1.9)

where mα is the particle mass and K is the Boltzman constant. The above function

is an example of a distribution that is consistent with these definitions and for

which the LHS of the Boltzman equation vanishes when the distribution of ions and

electrons have equal average velocities and temperatures i.e. ue = ui and Te = Ti,

so that the RHS collision term should also vanish.

• Then the set of continuity, momentum and energy equations discussed above will be

given by

∂nα
∂t

+∇ · (nαuα) = 0, (1.10a)

nαmα

(
∂uα
∂t

+ uα · ∇uα

)
+∇ ·Pα − nαqα (E+ uα ×B) = Rα, (1.10b)

3

2
nαK

(
∂Tα
∂t

+ uα · ∇Tα
)
+Pα : ∇uα +∇ · hα = Qα, (1.10c)
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where hα is the heat flow, Rα is the mean momentum transfer and Qα is the heat

transferred to the system due to collisions between unlike particles associated with

resistivity η. By splitting the divergence of the stress tensor into an isotropic part

and an anisotropic part, we have

∇ ·P = ∇pα +∇ · πα, (1.11)

where the first term on the RHS involves the scalar pressure pα while the other term

involves the off-diagonal pressure tensor (πα).

• The above set of moment equations can be closed by using the transport coefficients

found by transport theory, which studies deviations from local thermodynamic equi-

librium. Therefore we write the form of the transport coefficients as

πα ∼ µα∇uα, (1.12a)

hα ∼ −kα∇(KTα), (1.12b)

Rα ≈ −qαnαηj,
∑

Qα ≈ η|j|2, (1.12c)

where µα and kα denote viscosity and thermal conductivity coefficients, respectively. Then,

the set of momentum Equations (1.10a) to (1.10c) with the Maxwell’s equations transform

into the closed set of two-fluid and single-fluid plasma models. It is noteworthy that most of

the transport is neglected by the fact that its been assumed to operate on much longer time

scales than those for macroscopic dynamics. For such a fluid description, the electrons

and ions must also undergo frequent collisions to create the separate electron and ion

fluids. According to the transport theory, the criterion for the time scale τh on which the

hydrodynamic description is valid, reads

τh ≫ τi[≫ τe], (1.13)

where τe and τi correspond to the collisional relaxation times of electrons and ions, re-

spectively.

1.3 Magnetohydrodynamic model - Ideal MHD

The fluid equations given in the previous subsection still contain the small length and

time scales of the plasma dynamics. In the magnetohydrodynamics description of the

plasma, we consider length and time scales on which the plasma can be described as a

single conducting fluid as a whole. For this purpose, we consider length and time scales

much larger than the ion cyclotron radii and the inverse of the ion cyclotron frequency,

respectively. Under these conditions, we can neglect most of the dissipative terms (πe,i →
0,he,i → 0) while some of them are still kept. By setting qe = −e and qi = Ze for electrons

and ions, respectively, one can find a set of resistive two-fluid equations, given by

∂nα
∂t

+∇ · (nαUα) = 0, (1.14a)

nαmα

(
∂uα
∂t

+ uα · ∇uα

)
+∇pα − nαqα (E+ uα ×B) = Rα. (1.14b)

∂pα
∂t

+ uα · ∇pα + γpα∇ · uα = (γ − 1)Qα, (1.14c)
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where γ is the ratio of specific heats. These equations are completed by Maxwell’s equa-

tions. By defining macroscopic one-fluid variables, as linear combinations of the two-fluid

variables, a set of one-fluid equations is obtained. Next, one can implement the quasi

charge-neutrality approximation, |ne − Zni| ≪ ne, which is very well satisfied at the

macroscopic level. In addition, more assumptions are still required to remove the small

length and time scale dynamics of the two-fluid equation, namely

|ui − ue| ≪ v, (1.15a)

v ≪ c. (1.15b)

The former implies that the electron skin depth should be small and the latter imposes

non-relativistic speeds. Finally we can write the combination of the one-fluid equations

and the Maxwell’s equations to give the resistive MHD equations

∂ρ

∂t
+∇ · (ρv) = 0, (1.16a)

ρ(
∂v

∂t
+ v · ∇v) +∇p− j×B = 0, (1.16b)

∂p

∂t
+ v · ∇p+ γp∇ · v = (γ − 1)η|j|2, (1.16c)

∂B

∂t
+∇×E = 0, (1.16d)

j = µ−1
0 ∇×B, (1.16e)

E′ ≡ E+ v×B = ηj, (1.16f)

∇ ·B = 0. (1.16g)

The expression (1.16f) represents the generalised Ohm’s law for moving conducting media.

For a perfectly conducting plasma,

E′ ≡ E+ v×B = 0, (1.17)

almost everywhere across the plasma. This is valid for many laboratory and astrophysical

plasmas. By neglecting the resistivity, one can find the ideal MHD equations as

∂ρ

∂t
+∇ · (ρv) = 0, (1.18a)

ρ

(
∂v

∂t
+ v · ∇v

)
+∇p− µ−1

0 (∇×B)×B = 0 (1.18b)

∂p

∂t
+ v · ∇p+ γp∇ · v = 0 (1.18c)

∂B

∂t
−∇× (v×B) = 0, ∇ ·B = 0. (1.18d)

1.4 Plasma electron oscillations and kinetic damping

For an electrically neutral plasma consisting of ions and electrons in the equilibrium

state, a small perturbation or displacement applied to the electron population with respect

to ions will be followed by the action of the Coulomb force which will pull the electrons

back as a restoring force. If the charge imbalance is imposed on a macroscopic scale, it will

be neutralized extremely fast to preserve charge neutrality of the plasma. On finer time
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and scale length, the applied perturbation appear in the form of rapid oscillations of the

electron density known as plasma electron oscillations. The frequency of these oscillations

(plasma frequency) is usually very high and hence not captured in the large time scales

considered in the MHD approximation. Hence, we implement the fluid model of subsection

1.2 to study these oscillations. For a cold plasma without a background magnetic field,

all the thermal effects can be neglected. Using Eqs. (1.10a) and (1.10b), we find

∂nα
∂t

+∇ · (nαuα) = 0, (1.19a)

mα

(
∂uα
∂t

+ uα · ∇uα

)
= qαE. (1.19b)

The above system describing the electrostatic oscillations needs to be closed by the Poisson

equation,

∇ ·E =
e

ϵ0
(Zni − ne). (1.20)

For electron plasma oscillations, the ions can be considered as immobile due to their much

heavier mass and hence ui = 0. Therefore, we only study the one-fluid set of equations

for electrons. The physical quantities can be describe as a sum of their corresponding

constant background values plus the small perturbations, i.e.

ne ≈ n0 + n1(r, t), (1.21)

ue ≈ u1(r, t).

Substituting these expressions in Eqs. (1.19a), (1.19b) and (1.22), followed by a lineariza-

tion gives a 2nd order ODE for electron density perturbation as

∂2n1
∂t2

= − n0e
2

ϵ0me
n1. (1.22)

which represents oscillations with a frequency of ωpe ≡
√

n0e2

ϵ0me
.

At this stage, we aim to study an important kinetic phenomenon called Landau damp-

ing. For a 1D plasma, this occurs in the velocity space, and in a Maxwellian distribution,

leads to a decay in the amplitude for the plasma oscillations. For this purpose, we consider

the same plasma and perturbations as the previous case but implement a Vlasov-Poisson

system to describe the electron dynamics. This gives

∂f1
∂t

+ v
∂f1
∂x

=
e

me

∂f0
∂v

E1, (1.23)

∂E1

∂x
= − e

ϵ0

∫ ∞

−∞
f1dv.

Substituting the plane wave solutions and linearization gives the following dispersion re-

lation

1 =
ω2
pe

k2n0

∫ ∞

−∞

1

v − ω/k

∂f0
∂v

dv. (1.24)

A Maxwellian distribution function can be considered to describe f0 and perform the

integration over the velocity space in Eq. (1.24). However, if the frequency is real, then

particles with velocities v = ω
k will resonate with the wave and a singularity occurs. For

real ω, Vlasov [4,5] estimated the principle value of the integral for long wavelengths which
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gives

ω2 ≈ ω2
pe +

3

2
k2v2th, (1.25)

where vth is the thermal velocity of the electrons used in the Maxwellian distribution. By

neglecting the thermal effects as before, the above expression agrees with the expression

obtained for ωpe using fluid approximation. However, in the method of Vlasov, the singu-

larity of (1.24) has not been carefully analyzed and a more accurate analysis is required.

By treating the time dependence through the Laplace transform, Landau [6] shows that

there exists an imaginary part of the waves frequency, ”Landau damping”, and the correct

dispersion relation for all values of ω reads

1 =
ω2
pe

k2n0
[P
∫ ∞

∞

1

v − ω/k

∂f0
∂v

dv + iπ
∂f0
∂v

|ω/k]. (1.26)

The imaginary component of the RHS of (1.26) depends on the gradient of the equilibrium

distribution function at the phase velocity of the wave. Consequently, the perturbations

can damp or grow in time depending on the sign of the gradient. For an inverted population

of plasma particles in velocity space, the plasma wave can be excited and grow in time i.e.

inverse Landau damping. In a 1D picture, injection of fast particles into the bulk plasma

for heating purposes can be modelled by adding a bump on the tail of the Maxwellian

distribution of the bulk plasma. This model is known as the bump-on-tail model. Plasma

waves with phase velocities lying on the increasing side of the bump will gain energy from

the resonant particles and grow in time. These are known as energetic particle driven

modes. This simple example explains the mechanism of one class of instability associated

with energetic particles in tokamaks. These fast particles exist in tokamak plasmas either

through acceleration by radio-frequency heating and neutral beam injection or as fusion-

born α-particles. They gradually lose their energy by interacting with the bulk plasma

particles. During this slowing-down phase, the energetic particles can resonant with weakly

damped plasma waves, such as Alfvén waves, and transfer net energy to the waves. At large

amplitude, such waves can expel fast ions from the hot core of the plasma, leading to a loss

of confinement. Understanding and controlling these instability driven phenomena requires

detailed modelling and numerical simulations of the excited plasma wave behaviour. In

terms of temporal evolution of the wave amplitude, the physics studies can be split into

a linear and a non-linear phase. This thesis mainly focuses on the hard non-linear regime

of wave evolution. In the next subsection, Alfvén waves are introduced.

1.5 Alfven waves in tokamaks

The bulk plasma in tokamaks is a magnetised plasma which can support a zoo of

waves. In general, these waves can be classified as either electromagnetic or electrostatic.

Further classification can be applied depending on the plasma species associated with the

oscillation and also the direction of wave propagation (wave number k) with regards to the

background magnetic field (B0). For a homogeneous plasma with a constant background

magnetic field in the z-direction, one can apply a perturbative approach to the ideal MHD
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equations, and linearize to find

∂ρ1
∂t

= ρ0∇ · v1, (1.27a)

ρ0
∂v1

∂t
= −∇p1 + µ−1

0 (∇×B1)×B0, (1.27b)

∂p1
∂t

= −γp0∇ · v1, (1.27c)

∂B1

∂t
= ∇× (v1 ×B0). (1.27d)

For a very low pressure plasma p0 ≈ 0 and taking plane wave solutions, Eqs. (1.27b) and

(1.27d) give an algebraic eigenvalue equation as

− ρ0ω
2v̂ = −µ−1

0 B2
0ez × (k× (k× (ez × v̂))) . (1.28)

The cross product on the RHS implies that v∥ = 0 or v1 ·B0 = 0. By fixing the direction

of the wave vector k to be in x− z plane and focusing on the flow velocities perpendicular

to both k and B0, we find k · v1 = 0. Hence, the dispersion relation reads

(ω2 − k2∥v
2
A)v̂y = 0, (1.29)

which gives two Alfvén waves (ω = ±ωA) that run along the magnetic field to the right

(+) and left (−) with ωA ≡ k∥vA = k ·B/√µ0ρ0 being the Alfvén frequency. These types

of traveling oscillations are known as shear/torsional Alfvén Waves (SAWs) which exist

due to the tension of the field lines, which provides the restoring force, and the inertia of

the ion mass density.

In a uniform plasma, the above dispersion relation implies that the phase velocity and

group velocity are equal and hence low frequency shear Alfvén waves are dispersionless.

In toroidal configuration, the helical magnetic field rotates in both toroidal and poloidal

directions with magnetic field helicity q = 1
2π

∫
1
R
Bϕ

Bp
ds = B·∇ϕ

B·∇θ . In this case, we have

k∥ =
m−nq
Rq , where m and n are corresponding wave mode numbers in poloidal and toroidal

directions, respectively. Since the safety factor usually changes with radius, the dispersion

relation, Eq. (1.29), is also a function of the radius. This means that the waves experiences

a different velocity at different radius and hence rapidly disperses. The plasma waves that

satisfy this dispersion relation are part of the shear Alfvén continuum and are highly

damped, known as continuum damping. However, factors such as configuration of the

device, the cross sectional shape of the plasma and the axial current can result in the

existence of modes that are subject to weak continuum damping [7–10]. A generic example

of such gap modes is toroidicity-induced Alfvén eigenmodes (TAEs) which exist due to

toroidal coupling of two neighbouring poloidal harmonics in a torus. Figure 1.1b shows

the dispersion relation in a cylinder (dashed) and in a tokamak (solid) configuration.

Unlike continuum modes that are not easily excited by EPs, gap modes can gain energy

through their interaction with slowing-down EPs and grow in time [11–15]. In what

follows, various models (1D paradigms) to understand and study this phenomenon are

discussed. As mentioned, the interaction of AEs with EPs can result in an instability

inside the plasma which may lead to undesirable ejection of energetic particles from the

hot core towards the walls of a toroidal device. This loss deteriorates plasma heating and

degrades the confinement in a power plant.
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Figure 1.1: Panel (a) shows the dispersion relation of two waves with toroidal mode number
n=4 and poloidal harmonics of m=4 and m=5 in a plasma with a q profile that increases
monotonically with radius. Frequencies are plotted as positive for both signs of k∥. The
two waves are counterpropagating in the frequency gap. Panel (b) shows the dispersion
relation with (solid) and without (dashed) toroidal coupling of the waves. The m = 6 and
m = 7 waves are also shown and intersect at larger radii. Figure 3 of Ref. [11]

.

1.6 Wave-particle interaction- Berk-Breizman (BB) model

The particles in resonance with a plasma wave can transfer net energy with the wave if

the velocity of their motion has a non-zero dot product into the electric field of the wave.

For a distribution of particles, a proportion of the resonant EPs lose energy by transferring

it to the wave while other resonant EPs gain energy from the wave. For a sufficiently small

wave amplitude without nonlinear effects, if the number of particles that transfer energy

to the wave is higher, this results in a net energy transfer and hence the wave amplitude

grows, known as the linear growth phase. The rate at which the amplitude grows at

this stage is called the linear growth rate denoted by γl. The plasma wave loses energy

through dissipation into the bulk plasma. The rate of this intrinsic damping from the

background plasma is denoted by (γd) and for γ = γl − γd > 0 instability occurs. As the

wave amplitude increases, the resonant particles become trapped inside the wave potential

and bounce with a frequency proportional to the wave amplitude and the particle does

not transfer net energy to the wave on average over a bounce period. This is known as

non-linear particle trapping.

1.6.1 Berk-Breizman (BB) model - saturation levels

Particle trapping in inverse Landau damping was first studied by O’Neil [16] and

Mazitov [17]. An adiabatic study of particle trapping was also presented in [18]. In the

collisionless limit, the distribution function flattens under the impact of particle trapping

around the resonance [19,20] and for the 1D bump-on-tail instability problem with γd = 0,

the maximum value of a trapped particle frequency is ωb,max=3.2γl [21,22]. But collisions

can create a finite slope in the distribution function which will lead to wave damping [23].

The reader is referred to Ref. [24] for an interesting discussion about this value and its

connection to other phsycial phenomena.

In a series of works [25–27], Berk and Breizman (BB) developed theoretical models



10 Introduction

to calculate the saturation level of a discrete mode excited by the distribution function

generated by a beam injected at high-energy. In Ref. [25], an electrostatic plasma wave is

investigated for the bump-on-tail instability problem. High energy beam particles, injected

uniformly in space, form a weakly destabilising distribution to a discrete plasma wave by

classical transport mechanisms namely drag, pitch-angle scattering and charge exchange

losses. Two cases are considered: One has particle annihilation at a rate denoted by

να as the only transport process and the other includes both drag and annihilation. The

saturation level of the plasma mode is predicted by calculating the power transfer between

a finite amplitude wave and beam particles. The wave energy equation,

∂WE

∂t
+ Ph + Pd = 0 (1.30)

is considered to investigate the growth of the field amplitude, where WE is the wave energy,

Ph is the power transferred to the resonant particles and Pd is the power dissipated into

the background plasma. In the first case, the power transfer between particles and waves

is reduced by a factor of νeff/ωb, where νeff is the rate at which particles leave the resonance

region. The resonant particles are formed from direct injection of neutral particle source

into the resonance region. The only process that terminates the wave-particle interaction

of a resonant particle is annihilation of that particle by charge exchange. For sufficiently

large wave amplitudes, ωb > να, the ratio of nonlinear power transfer of the beam particles

to the wave (PNL) to the linear power transfer (PL) is

PNL/PL ≡ να/ωb. (1.31)

Therefore, according to the prediction of linear theory, the relative power transfer of

particles to the wave decreases with increasing field amplitudes. If the wave continues to

damp linearly into the bulk plasma, with Pd/PL < 1, then the amplitude for saturation

happens at

ωb/να ≡ PL/Pd. (1.32)

In the second case where drag is included, particles that are not trapped by the wave

can not enter the trapping region as they slow down. Therefore, unless the injected velocity

of the source is in the trapping region, which is not the case in this work, the source of

the particles can not feed the region where particles are trapped. This means that in

the nonlinear problem with annihilation, the distribution function in the trapping region

is zero and a discontinuity is formed in the distribution function between passing and

trapped particles. In this case, [25] gives a nonlinear calculation of the power transfer as

PNL/PL ≡ k2α2/ναω
3
b , (1.33)

where k is the wave number. The above equation for the case with drag is only valid for

ωb > (kα)1/2, (1.34)

with α being the drag coefficient. For large enough field amplitudes, PNL < PL, and

saturation is predicted when

PNL/PL ≡ k2α2/ναω
3
b . (1.35)

In Ref. [26], Berk and Breizman have shown how a nonlinear drift wave exhibits a

similar discontinuity in phase-space and the generalisation of the formalism of Ref [25] to
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solve the drift wave problem in a sheared magnetic field. Finally, Ref. [27] represents a

formalism to describe the saturation of Alfvén waves excited by density gradient free energy

drive from alpha particles created in an ignition system. The BB [25–27] model predicts a

steady-state nonlinear wave when classical transport of alpha particles are included. This

solution is derived using a balance between the nonlinear alpha particle instability drive

and the plasma dissipation. Ref. [28] shows that the type of solution discussed in BB model

needs the damping rate (γd) to be sufficiently weak. Otherwise, stronger damping rates

result in unstable nonlinear solutions and the system does not maintain a steady-state

solution and pulsations are observed.

To study the problem of inverse Landau damping, Berk, Breizman and Pekker devel-

oped a reduced non-linear simulation model [29]. Unlike the weakly nonlinear model, the

simulation model is not limited to small amplitudes of the electrostatic wave. The ampli-

tude and the phase of the wave can change but the angular dependency of the plane wave

is assumed to be fixed during EPs non-linear dynamics. The differential equations for the

time evolution of plasma wave are found by varying the total Lagrangian of the system

with respect to its dynamical variables. Subsequently, one needs to integrate the equation

of conservation of momentum and Amperes law over time to find the electron fluid velocity

and the electric field, respectively. The linearized single fluid model for electrons results

in the following differential equation for the evolution of the fluid velocity including the

impact of energetic energetic electrons current

mn0
∂2u(x, t)

∂t2
= −n

2
0e

2

ϵ0
u(x, t) +

en0
ϵ0
JEPu(x, t), (1.36)

If explicit integrators e.g. Runge-Kutta method are implemented, then the time step needs

to be on the order of the plasma oscillation. However, this requirement has been eliminated

in the reduced model by assuming growth rates much smaller than the wave frequency

(γl ≪ ωpe) and substituting linear solutions for the electrostatic wave i.e. electron fluid

velocity and the electric field. Consequently, the time scale on which the model requires to

be analysed is on the order of γ−1
l . The fast particle current can be derived by taking the

first moment of their distribution function. The evolution of the fast particles distribution

is described by the Vlasov equation which can be solved either in a grid based method

(an Eulerian approach) or following particle trajectories in phase-space (a Lagrangian

approach). The simulation model shows that depending on the parameter range under

study, a steady state saturation or quasi periodic nonlinear bursts of the wave energy

can be observed. The simulation model confirms that in the bump-on-tail instability

model with γd = 0 and in the absence of sources and sinks, the saturation level gives

a bounce frequency of ωb ≈ 3.2γl which is when the saturation mechanism is nonlinear

particle trapping and phase-mixing. In addition, these simulations showed that the ratio

of ωb/(γl − γd) varies from 3.2 to 2.9 as γd/γl changes from 0 to 0.6. The threshold for

the resonance overlap condition and particle global diffusion in the phase space are also

quantified. The simulation model was extended in Ref. [30] to describe the excitation of

TAEs in a toroidal plasma. A transition from a single mode saturation to mode overlap

and global quasi-linear diffusion has been observed. This results in a considerable increase

in the wave energy due to mode overlap.

Berk, Breizman (BB) and co-workers developed a weakly (γd/γl ≡ 1) nonlinear the-

ory to study the evolution of marginally unstable energetic particle driven modes [31].

The model studies 1D electrostatic perturbations but since wave-particle interaction is

essentially a one-dimensional phenomenon, it can also be applied to AEs in toroidal con-
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Figure 1.2: Time evolution of the wave amplitude in the weakly non-linear BB model for
ν̂cr ≡ 4.38, A(0) = 1 and (a) ν̂ = 5.0, (b) ν̂ = 4.3, (c) ν̂ = 3.0, (d) ν̂ = 2.5, (e) ν̂ = 2.4.
Figure 2 of Ref. [31]

figurations [32]. In this theory, a single isolated eigenmode with the wavenumber k and

the frequency ωpe is considered. The linear distribution function of EPs in velocity space

has positive gradients around v = ω/k. The sink (EPs collision) was modelled by Krook

type collisions with the frequency ν. In this work, a critical value of the collision frequency

is found, νcrt, above which the amplitude reaches steady saturation with an amplitude of

A0 = 2
√
2ν̂2, where ν̂ = ν

γl−γd . This gives

ω2
b = 2

√
2ν2(

γl − γd
γl

)1/2, (1.37)

where γd is the intrinsic damping of the plasma wave. If the Krook collision frequency

decreases below the critical value, the following behaviours can be observed in the wave

amplitude: periodic limit cycle, chaotic regime and explosive growth. These behaviours

of the wave amplitude are depicted in figure 1.2 for different values of ν̂. The last case is

beyond the applicability of the model since in this model its been assumed ωb ≪ γl, γd:
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the wave amplitude is so small that the expansion in the wave amplitude converges within

the third order. Breizman et al studied the impact of pitch-angle scattering on the weakly

non-linear model [32] and Lilley et al [33] added drag in velocity space to the weakly

non-linear model.

1.6.2 Berk-Breizman model – frequency chirping

In the explosive growth regime mentioned above in the instability threshold model, the

unstable mode grows explosively to a level that remains finite. When ωb reaches the value

of γl, the frequency of the mode shifts with the amount of shifts comparable to γl. At this

stage, the explosive growth stops and the mode amplitude saturates. The saturated wave

lasts much longer than the background dissipative damping time and the mode frequency

keeps shifting i.e. the spectrum of the output signal contains an up-chirping branch with

an increasing frequency in time as well as a down-chirping branch. These observations

were reported by Berk-Breizman and co-workers for simulations using the bump-on-tail

model with small intrinsic damping rates into the bulk plasma (Refs. [34–36]). In this 1D

electrostatic model, the linear growth rate of the plane wave is assumed to be much lower

than the wave frequency and the wave is excited near the instability threshold. The model

requires a cold bulk i.e. the plasma is not modified by the thermal effect, and a weak beam

with low beam density such that the real part of the dispersion relationship is not modified

by the fast particles. On top of that, it also assumes the damping rate to be external, and

does not depend on frequency or wave number. It requires the fast ion collision rate to

be much lower than the damping rate, such that the damping mechanism is dominated

by prescribed external damping not by fast ion collisions. The frequency spectrum of

an excited plasma wave studied in [34] is shown in figure 1.3. At the saturation level, a

frequency shift (δω ≡ ω − ω0) much larger than γl is observed. Upwards and downward

Figure 1.3: Hole-clump structures with time-dependent frequencies. (a) The spatially
averaged particle distribution as a function of time and the distance from the linear reso-
nance. (b) The frequency spectrogram of the plasma wave. Figure 3 of Ref. [34]
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branches of frequency sweeping are observed. The frequency chirping is associated with

the spontaneous formation of phase-space structures. Each chirping wave, described as a

Bernstein-Greene-Kruskal (BGK)-type wave with a chirping behaviour in its frequency, is

attributed to the formation and evolution of coherent structures namely holes and clumps,

in the phase-space of fast particles. It was found that, once formed, these structures evolve

adiabatically. Therefore, the Hamiltonian of the fast particles evolves slowly/adiabatically

which conserves adiabatic invariants. This implies that the phase-space density inside

holes/clumps is preserved.

Pinches et al [37] developed the HAGIS code which models the nonlinear self-consistent

interaction between spectrum of linear eigenfunctions and fast particle distribution func-

tion. Further simulation studies on frequency chirping during the non-linear evolution

have been done by Lesur et al [38, 39] and Vann et al [40]. Lesur et al have shown that

the formation of holes and clumps is not a near threshold phenomenon in Ref. [38] with

Krook collisions and in Ref. [39] with drag and diffusion. In both cases, significant holes

and clumps are demonstrated even for γd one order of magnitude smaller than γl. In

Ref. [41], Lesur has interpreted the physical mechanism of holes and clumps formation

as a result of sharp edges of the plateau which can excite waves called secondary eigen-

modes. This mechanism was further developed in Ref. [42]. Further simulation studies

have been performed to nonlinear evolution of bump-on-tail instability. Lilley et al [43]

developed the bump-on-tail (BOT) code , as a Vlasov solver, which enables a study of

EPs collisions namely Krook, drag and diffusion. Lilley et al [44] have also shown that

the formation of phase-space coherent structures (holes and clumps) in kinetically driven

dissipative systems is not a near threshold phenomenon. It has been shown that holes and

clumps can form in both close and far from instability threshold. The physical mechanism

is related to sideband oscillations, resulting from incomplete phase-mixing, at the sharp

edges of the plateau formed in the distribution function after phase-mixing. These waves,

from which holes and clumps develop, are interpreted as negative energy waves that grow

in the presence of damping in the bulk plasma and evolve into chirping modes. Figure

1.4 shows the evolution of the phase-space for an excited electron plasma wave far from

instability threshold (γD/γl = 0.1) using the BOT code. It can be observed in panel c

that after phase-mixing and flattening of the distribution function, hole-clump pairs have

been formed and detached from the flattened region. Another important observation is

Figure 1.4: Phase space of the energetic electrons using the BOT code: (a) the initial
nonlinear phase-mixing (b) formaiton of a plateau with sidebands close to the edge and
(c) coherent phase space structures (holes and clumps) detached from the initial resonance
region. Figure 2 of Ref. [44]
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that the phase-space density remains the same inside the phase space structures and the

energetic electrons are being carried by these structures in phase space i.e. a convective

transport, also called a bucket transport in the literature since the wave potential acts like

a bucket and moves the fast particles in phase-space. The motion of holes and clumps in

phase space is synchronized to the wave frequency change which is successfully described

by adiabatic theory [45]. Close to marginal instability, the convective transport of holes

and clumps tends to be more significant than quasilinear diffusion.

The aforementioned models to study frequency chirping, assume a fixed spatial de-

pendency for the plasma wave. However, as the frequency of a chirping wave changes,

its spatial profile will be modified and for long deviations of frequency it may experience

considerable modifications with respect to its initial profile. This implies that the validity

of the above models is restricted to short ranges of frequency sweeping where the spatial

dependency of the wave is not modified considerably from the initial linear eigenvector.

In the next part, we demonstrate experimental examples of long range frequency chirping

which indicate the need to develop models to study long range chirping events.

1.7 Motivation – experimental observations of long range

chirping

As mentioned above, frequency chirping can lead to convective transport in phase

space of energetic particles. In realistic geometries, this convective transport occurs in

generalised phase-space of energetic particles which results in a change in the particles

flux surface number [47] i.e. an inward or outward drift of the particles in the radial

direction. In long range frequency chirping, this may lead to the ejection of the particles

from the hot core of the plasma and degrade the confinement in a fusion reactor. Therefore,

it is necessary to understand and control these instabilities in future tokamaks e.g. ITER.

This forms the main motivation of this PhD research.

To justify the need of theoretical and simulation studies for long range frequency

chirping, examples of experiments exhibiting long range frequency chirping behaviour are

discussed. Ref. [46] reports on experiments with super-Alfvénic NBI on the spherical

tokamak START (Culham Science Centre, UK). In NBI heated START discharges, low

Figure 1.5: The Fourier transformed data from the Mirnov coil showing the frequency
sweeping Alfvén perturbations: NBI heated START discharge 35159. NBI starts at 23
ms. Figure 3 of Ref. [46]
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values of aspect ratio enables high values of plasma β, which is the ratio of the plasma

pressure to the magnetic pressure, with toroidal magnetic fields as low as BT ≈ 0.15 T

and plasma densities as high as ne = 6× 1019 m−3. This implies that Alfvén instabilities

can be an important issue in NBI heated plasmas in START because the Alfvén velocity,

introduced after Eq. (1.29), is small and NBI produced ions with even Ebeam ≈ 30 keV can

satisfy the resonance condition during their slowing down process. In these discharges,

”chirping” modes become the dominant type of Alfvén instability. Some specifications

of the experiments include: line averaged electron density varying in the range n̄e =

(1−6)×1019 m−3, toroidal magnetic field at the magnetic axis in the range BT = 0.2–0.4 T,

plasma current in the range Ip = 140–260 kA, major radius R0 = 0.3 − 0.37 m and

minor radius a = 0.23 − 0.3 m. Figure 1.5 demonstrates the frequency content of the

magnetic perturbation detected by the Mirnov coils for discharge No. 35159. In this

discharge, a hydrogen beam, injected tangentially to the magnetic axis, with maximum

energy Ebeam ≈ 30 keV and power PNBI ≈ 0.8 MW heats the deuterium plasma. NBI

heating starts at 23 ms and it is shown that the frequency sweeping Alfvén waves exist in

this discharge from t ≈ 29 ms. This activity was during the flat-top stage of the plasma

current evolution. The chirping modes were sweeping on a time scale much less than 1 ms.

The whole chirping mode was within 0.3 ms. This time scale is about 30 times shorter

than the current evolution time scale. The repetitive bursts started with a frequency in

the range 125− 200 kHz, close to the TAEs, and chirped down as low as 40 kHz in a very

short time, t ∼ 2× 10−4 s .

The NSTX is a low aspect ratio toroidal device. A sequence of high frequency bursts

has been observed during early period of NSTX plasma. The range of operational parame-

ters used for these experiments are 0.7 to 1.2 MA of toroidal plasma current, 3.0 to 4.5 kG

toroidal field, central electron density of 1.5− 8× 1019 m−3, central electron temperature

of up to ≈ 1 keV. The plasmas were heated with 1.5 to 6 MW of deuterium NBI power at

a full energy as high as 90 kV. The frequency content of Mirnov coil data is depicted in

figure 1.6 which shows a sequence of bursting global Alfvén eigenmodes (GAEs) in figure

1.6a. The data corresponds to the early phases of NBI heating during current ramp-up.

The chirping waves can be seen between 300 and 700 kHz. Figure 1.6b demonstrates a

single burst in which the wave chirps both upward and downward in frequency over a

range of about 150 kHz or δf/f0 ≈ 30%.

Further experimental observations of frequency chirping can be found in Refs. [49–52].

In the next subsection, we discuss a nonperturbative model which describes chirping waves

as BGK-type waves with evolving frequencies. The model shows how long range frequency

sweeping results in deviations of the angular dependency of a 1D electrostatic plasma wave

from its initial linear sinusoidal shape. Accordingly, in order to understand and study

experimental data, shown above, with long deviations of the frequency which can be as

high as the initial eigenfrequency itself, theoretical models needs to be developed in which

the structure of the wave is updated self-consistently as the frequency chirps.

1.8 An adiabatic nonperturbative model for long range chirp-

ing

Long range deviations of frequency can change the spatial dependency of the plasma

wave. Boris Breizman [53] developed an adiabatic model to describe the nonlinear evolu-

tion of a single branch (upward-downward) of electrostatic chirping waves as BGK-type
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waves with chirping frequencies. The model assumes that the phase-space structure have

already formed and evolve adiabatically. Figure 1.7 shows the evolution of a phase-space

clump during the downward chirping in the bump-on-tail model. The initial separatrix

centered at normalised momentum p/mṡ0 = 1 corresponds to the saturated wave ampli-

tude prior to chirping. A downward shift in the wave frequency results in a downward

motion of the separatrix in phase-space. In this case, as the frequency chirps downward,

the amplitude of the chirping wave decreases and hence the separatrix shrinks. The sepa-

ratrix centered around p/mṡ0 = 0.5 is an illustration of a shrunk separatrix. This model is

only applicable to cases where the potential of the chirping wave, and hence the separatrix

of the phase-space structure shrinks. This implies that particle trapping in phase-space,

which occurs for a deepening potential, is avoided in this model.

The Poisson equation is used to derive an expression for the wave potential energy (U)

as a function of the wave phase velocity (ṡ). The RHS of the Poisson equation is fed with

the perturbed density of the cold electrons and energetic electrons. The bulk plasma is

assumed to respond linearly and hence the perturbed density of cold electrons is found

by linearizing the set of fluid equations for a uniform plasma. The perturbed density of

energetic electrons, which involves the non-linear term in the equation, needs to be found

by solving the nonlinear kinetic equation. On the other hand, the adiabatic evolution

of the coherent phase-space structures permits bounce averaging the kinetic equation to

find the perturbed density as a result of their motion (frequency sweeping). Hence the

Figure 1.6: Frequency spectrogram of bursting GAE modes during early NBI heating. (a)
the sequence of GAE bursts (b) a single burst. Figure 12 of Ref. [48]
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Figure 1.7: A shrinking phase-space clump during downward chirping of the BGK wave
frequency. Figure 2 of Ref. [53]

following expression is found for the potential energy of the wave

U =
mṡ2

2

8ṡ[f0(ṡ0)− f0(ṡ)]

3n0 cosα

2 [1 + 2 cos2 α

2
− 3 sin 2α

4α
− [cosα− cos (α

2z

λ
− α)]2

]
, (1.38)

where f0 is the equilibrium distribution function of fast electrons, α = ωpeλ/4ṡ with λ

being the wavelength. Figure 1.8 demonstrates U for different ṡ. The curves (b) and (c),

which show the deviations from the linear sinusoidal profile, correspond to 20% and 50%

of frequency shift, respectively. It can be observed that the plane wave has experienced

notable change even for a 20% of frequency sweep.

As mentioned above, chirping waves emerge in the presence of small damping into the

bulk plasma. This model implements an energy balance principle approach to find the

Figure 1.8: Spatial dependency of the wave potential energy:(a) the linear wave, (b)ṡ =
0.8ṡ0 and (c)ṡ = 0.5ṡ0. Figure 3 of Ref. [53]
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rate at which the frequency sweeps i.e. the energy released by the phase-space structure

is equal to the amount of energy deposited into the bulk plasma. In other words, holes

and clumps move in a wave to extract energy from the distribution function of EPs and

deposit it into the bulk plasma. Accordingly, the following differential equation can be

derived to track the slowing-down rate of the phase space clump

dṡ

dt
= − νṡ

3|cosα|
α

sinα−α cosα

∣∣∣4ṡ[f0(ṡ0)−f0(ṡ)]23n0 cosα

∣∣∣2 (1.39)

×
[
1
2 + 11 sin 4α

24α + 8 cos2 α− (3 sin 2α
2α )2 − 2 sin 2α

3α

]
.

For early stages of wave evolution, the above differential equation reproduces the square

root scaling of frequency chirping reported in [35] which was discussed above. However,

for later evolution, it deviates from the square root dependency. In addition, Nyqvist et

al investigated the impact of fast electrons collisions of Krook and drag types [54] followed

by a study of the impact of diffusion and particle trapping in phase-space [55] on this

model.

1.9 Aims and outline of the thesis

The research undertaken in this PhD dissertation aims to extend the existing knowledge

of long range frequency chirping in tokamaks by developing theoretical models as well as

performing self-consistent simulations. The theoretical framework of Ref. [53] serves as a

1D electrostatic paradigm of BGK-type chirping waves in realistic geometries. However,

more comprehensive efforts are required to model and study Alfvénic chirping signals

observed in realistic experiments as examples shown in subsection 1.7. Therefore, it is

essential to extend the model of Ref. [53] to include electromagnetic perturbations and also

more realistic particle dynamics. This theoretical extension is covered in chapters 2,3 and

4. In addition, numerical simulations of long range frequency chirping of AEs in tokamak

plasmas using the MEGA code are given in chapter 5. This work is in collaboration with

Prof. Yasushi Todo of the National Institute for Fusion Science, Japan and Prof. Boris

Breizman of the University of Texas, Austin, USA.

Fast particle dynamics determines both the existence and the evolution of BGK-type

chirping waves. In the model of Boris [53], fast electrons move freely and their motion

is not bounded to certain orbit trajectories. In terms of guiding centre dynamics, this

only captures highly passing particles. In tokamaks, however, particles follow certain

orbits types depending on their energy and pitch angle namely, trapped and passing. In

order to develop a more realistic model with respect to particle dynamics and investigate

the impact of orbital dynamics on the long range frequency chirping signals, we have

developed a trapped-passing locus model [56] which includes energetic particle orbits in

the adiabatic model of [53]. This captures the essential features of guiding centre motion

in tokamaks and its been performed by a 1D magnetic mirror system in which energetic

particles are magnetically trapped and follow certain types of orbits. Then, a numerical

scheme is required to solve the nonlinear wave equation which allows us to investigate

the evolution of the nonlinear mode which does not remain sinusoidal. By balancing the

energy extracted from the distribution function with the energy deposited into the bulk,

we can find the rate of frequency chirping. The details of the orbital model can be found

in chapter 2.

Chapter 3 represents a theoretical framework which has been developed to extend
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the adiabatic model to long range frequency chirping of Alfvén eigenmodes in realistic

geometries [47]. A Lagrangian formalism is considered in which the radial envelope of the

Alfvén eigenmode is represented using finite elements. Varying the total Lagrangian of

the system which respect to the weight of each element gives the nonlinear equation for

the evolution of the radial profile. Two separate codes need to be developed. One solves

the generalised eigenvalue problem to find the linear MHD eigenvectors and the other is

used to solve for the chirping rate and the nonlinear radial structure of the mode. These

models will help better understand the long range frequency chirping events observed in

experiments. In addition, exact constants of motion are constructed for particle dynamics

perturbed by electromagnetic waves in tokamak geometries. This allows for a reduction

of the dynamics to 1D, as wave-particle interaction is essentially a 1D problem. These

exact constants of motion are very important when studying the evolution of holes and

clumps structures during the frequency chirping. These constants of motion are referred

to in chapter 5 where a novel phase-space analysis method is developed to study the

phase-space of energetic particles using simulation data.

In chapter 4, the model of chapter 2 is extended. The 1D orbital model represented in

chapter 2 is restricted to cases where the separatrix of the phase-space island shrinks since

particle trapping in phase-space is avoided. In order to study the impact of phase space

particle trapping on the hard non-linear evolution of chirping waves, a new model [57] is

developed which enables capturing this effect using phase space waterbags. In this case,

the phase space island is discretized by Lagrangian contours. In addition, we have studied

the impact of higher particle resonances on the evolution of chirping waves in chapter 4.

Chapter 5 involves numerical self-consistent simulations of Alfvénic long range fre-

quency chirping in realistic geometries. The theoretical frameworks introduced above are

based on the convective transport of EPs in phase space and assume an adiabatic de-

scription for the evolution of holes and clumps. Self-consistent simulations in realistic

configurations can shed light on emergence of convective transport associated with long

range frequency chirping in which the spatial profile of the wave changes. For this pur-

pose, the MEGA code [58] has been used to perform computationally expensive nonlinear

simulations on National Computational Infrastructure (NCI) at the Australian National

University (ANU). This code, as an initial value solver, uses a hybrid model to describe

the wave evolution. The cold plasma is described by MHD equations that are discretized

using the method of finite difference where the field are solved in an Eulerian approach.

The population of EPs are modelled kinetically in a Lagrangian picture and the effect of

EPs are projected on the grid points using a particle-in-cell approach. In addition, a novel

phase space analysis is required to analyze the numerical data. This task is accomplished

by utilising the exact constants of motion during frequency chirping introduced in chapter

3. The simulation work is detailed in chapter 5 with the most important result depicted

in figure 5.9 which demonstrates convective transport of the EPs during large range fre-

quency chirping of an initially unstable TAE [59]. Chapter 6 contains concluding remarks

and future works.



Chapter 2

Impact of energetic particle orbits

on long range frequency chirping

of BGK modes

Abstract

Long range frequency chirping of Bernstein-Greene-Kruskal modes, whose

existence is determined by the fast particles, is investigated in cases where these

particles do not move freely and their motion is bounded to restricted orbits.

A nonuniform equilibrium magnetic field is included into the bump-on-tail

instability problem of a plasma wave. The parallel field gradients account for

the existence of different orbit topologies of energetic particles. With respect

to fast particles dynamics, the extended model captures the range of particles

motion (trapped/passing) with energy and thus represents a more realistic

1D picture of the long range sweeping events observed for weakly damped

modes, e.g. global Alfven eigenmodes, in tokamaks. The Poisson equation

is solved numerically along with bounce averaging the Vlasov equation in the

adiabatic regime. We demonstrate that the shape and the saturation amplitude

of the nonlinear mode structure depends not only on the amount of deviation

from the initial eigenfrequency but also on the initial energy of the resonant

electrons in the equilibrium magnetic field. Similarly, the results reveal that

the resonant electrons following different equilibrium orbits in the nonuniform

field lead to different rates of frequency evolution. As compared to the previous

model [Breizman B.N. 2010 Nucl. Fusion 50 084014], it is shown that the

frequency sweeps with lower rates. The additional physics included in the

model enables a more complete 1D description of the range of phenomena

observed in experiments.

2.1 Introduction

Fast particles are abundantly present in burning plasmas. They exist either through

external heating or eventually by fusion-born alpha particles. Energetic particle driven

modes (EPMs) [60] can occur as a result of fast particles interaction with weakly damped

plasma modes, e.g. Alfven eigenmodes (AEs) [11]. The resulted excited modes can cause

the undesirable ejection of energetic particles from the hot core towards the walls of a

toroidal machine [12, 61, 62]. This loss deteriorates plasma heating and degrades the

21
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confinement in a power plant. Accordingly, understanding the behavior of these modes is

momentous in burning plasmas of future fusion reactors.

Experimental results, in the case of neutral beam injection, demonstrate that EPMs, as

a result of AEs excitation, exhibit a “hard” nonlinear regime [63–67] with rapid frequency

sweeping. Small deviations from the initial eigenfrequency for the case of a near-threshold

instability |γl − γd| ≪ γd ≤ γl, where γl is the kinetic drive and γd is the damping rate

due to dissipation in the background plasma, were first studied using a 1D bump-on-tail

(BOT) model by Berk-Breizman (BB) and co-workers [35]. This model shows the nonlinear

process of holes and clumps formation in the fast particle distribution function. A pair

of Bernstein-–Greene—Kruskal (BGK) [68] nonlinear modes chirping up and down in

frequency is supported by these nonlinear phase-space structures and the frequency shifts

are associated with the motion of these coherent structures due to energy dissipation in

the bulk plasma. The much longer evolution time scale of these nonlinear structures in

comparison with their development time scale in the explosive formation stage is one of

the key results in [35] to be taken into consideration. It should be mentioned that holes

and clumps form not only in case of a weakly unstable mode but also with any amount of

background dissipation [44]. The Berk-Breizman scenario has been proved to be successful

in explaining the frequency chirping events observed in experiments with AEs [69, 70].

Moreover, the effect of different types of relaxation processes on the nonlinear evolution

has been investigated in [33] and [43], with the BOT code introduced in the latter. All

the mentioned models are based on the assumption that the range of frequency chirping

is short and the mode structure is fixed.

However, experimental evidence exists for mode activities in which the frequency shifts

are as large as the initial eigenfrequency itself [48,71,72]. As the mode amplitude saturates

due to flattening of the distribution function of the energetic particles, the physical picture

of each evolving phase-space structure is a BGKmode whose frequency changes in time and

its structure is notably affected by the frequency shift. Recently, a nonperturbative model

based on the adiabatic description of the fast particles contribution has been developed

by Breizman [53] using a 1D BOT instability to interpret the long range chirping for an

isolated nonlinear resonance. This approach is premised on the assumption that the width

of the separatrix supported by the BGK mode is small compared with the characteristic

width of the unperturbed distribution function. The Breizman model remains valid as

long as the separatrix of the energetic particles inside the clump shrinks for a downward

shift in the frequency. As an extension, the adiabatic description of treating an expanding

separatrix which traps the ambient particles is presented in [55] by Nyqvist and Breizman.

In magnetized plasmas, e.g. magnetic confinement devices, the particles gyrate about

the magnetic field lines and follow certain trajectories depending on their energy and

the magnetic field inhomogeneity. Therefore, the impact of particle orbits on the long

range frequency sweeping events, should also be investigated in order to better understand

and control these instability-driven phenomena. A physical system where the energetic

particles are not moving freely and their equilibrium motion is bounded to certain orbits,

enables such an investigation through a 1D picture. This physical model is the subject of

this paper. We add a fixed nonuniform equilibrium magnetic field to the BOT problem

presented in [53], thus creating an energy-dependence of the particle oscillation frequency

through the mirror effect of the parallel field gradients. In this new model, the equilibrium

field is pointed mainly in the z-direction and has Bθ = 0. For a 1D representation, we

consider only the axis (r=0) of this magnetic mirror system and represent the magnetic
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field by

B = Bc −B0 cos(keqz), (2.1)

where keq is the spatial frequency of the magnetic field. We assume that the energetic

particle confinement is due to the confinement of a single magnetic moment (µ) and treat

the chirping of an unstable mode which has a low eigenfrequency compared to the ion

cyclotron frequency and its wavelength is large compared to the electron Larmor radius

of the resonant electrons. Therefore, the constants B0 and Bc are determined by

Bc −B0 ≫
[
miωpe

eZi
,
mev⊥
eλp

]
, (2.2)

where mi and me are the ion and electron mass, respectively, ωpe is the electron plasma

frequency, Zi is the number of ion charges, e is the elementary charge, v⊥ is the velocity of

fast particle perpendicular to the magnetic field and λp is the wavelength of the perturbed

mode. In this new model, the unperturbed guiding center motion of the fast particles in the

equilibrium field is governed by the following orbit-averaged Littlejohns Hamiltonian [73]:

H0 =
p2z
2me

− µB0 cos(keqz) + µBc, (2.3)

where pz is the energetic particles momentum in the z-direction and it is assumed Az = 0

with A the vector potential. The energetic particles interacting with the perturbed field

are considered as trapped or passing in this magnetic mirror system, depending on their

pitch angle. Figure 2.1, whose construction is detailed at the end of subsection 2.2.1,

demonstrates the behavior of the equilibrium oscillation frequency of the fast electrons

versus their energy. For each frequency of trapped particles motion in the equilibrium

magnetic field, there exists a group of passing particles having the same frequency of the

equilibrium motion. Hence, the mode can be simultaneously in resonance with both the

trapped and passing electrons in this equilibrium field. This trapped and passing locus

model resembles the trapped particles following the banana orbits and the passing particles

in the magnetic field lines of a tokamak (Cf. Section 3.6). In addition to enabling the

impact of particle orbits on the long range chirping of BGK modes, the contribution from

different resonances can also be investigated through the energy dependence.

The nonlinear wave equation is expanded using Fourier decomposition which allows

us to find an explicit expression for the Hamiltonian of the fast particles motion in terms

of the action-angle variables of the unperturbed motion. This expansion, together with

treating the kinetic equation adiabatically, allows us to implement a numerical treatment

to investigate the impact of particle orbits on the structure and the sweeping rate of the

nonlinear wave.

In Section 2.2, the basic system of equations adopted for the analysis and the dynamic

equations of the unperturbed motion are presented, followed by the derivation of the

linear growth rate, the equation for the BGK mode structure and the chirping rate. The

numerical scheme used for solving the equations is assigned to Section 2.3. Section 4.5

presents the results in the regions where the adiabatic invariant of the trapped particles

in the BGK mode decreases (the separatrix shrinks) during chirping and the effect of the

electrons equilibrium orbit on the nonlinear evolution of the mode. Finally, Section 3.6

contains concluding remarks.
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Figure 2.1: Normalized equilibrium frequency of the fast particles in the nonuniform
magnetic field vs. energy parameter. The dotted line shows a sample eigenfrequency
simultaneously in resonance with particles of two different orbit types

2.2 The model

In this extended 1D BOT model, we study a purely electrostatic mode in a plasma

consisting of static background ions, cold electrons responding linearly to the mode and

fast electrons which are trapped and co/counter-passing in the nonuniform magnetic field

and are in resonance with the electrostatic mode. We focus on propagation and dynamics

parallel to the equilibrium magnetic field where the cold plasma has an isotropic distribu-

tion and its density will be uniform along the magnetic field. The distribution function of

each group of the fast electrons, which is treated through the Vlasov equation, is assumed

to be a linearly increasing function of the fast electrons energy providing the instability

drive. The damping mechanism is modelled by a Krook collision model, which induces

frequency chirping behavior when affecting the resonant energetic electrons as an energy

sink. The system of equations considered to investigate both the linear evolution of the

mode and the structure of the BGK mode during frequency chirping consists of Poisson,

Vlasov, equation of motion and continuity equation, given by

ϵ0
e

∂2U

∂z2
= −e

[∑
α

∫
f̃αdv + δnc

]
, (2.4a)

∂fα
∂t

+ {fα, Hα} = 0, (2.4b)

∂Vc
∂t

= − 1

me

∂U

∂z
− νVc, (2.4c)

∂δnc
∂t

= −nc
∂Vc
∂z

, (2.4d)

with α a label that denotes the orbit type of the fast electrons motion in the magnetic

field: (α = T) and (α = P) for the trapped and passing electrons in this field, respectively.

The Poisson bracket is denoted by {} in equation (2.4b). The total distribution function

of energetic electrons is fα = Feq,α + f̃α, with Feq,α and f̃α being the initial and the

perturbed parts, respectively. The energy of the electrostatic mode is given by U , ϵ0 is the

permittivity of free space, ν = 2γd is the Krook collision frequency of the cold electrons, Vc
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is the flow velocity of the cold electrons and nc and δnc are the unperturbed and perturbed

density of the cold electrons, respectively.

2.2.1 Fast particles orbits and dynamics

For the completely integrable system consisting of trapped and co/counter-passing

particles whose motion is governed by the Hamiltonian presented in equation (2.3), it

is possible to transform canonically from the variables (z, pz) to action–angle variables

(θ, Jα), written as

Jα=T =
1

2π

∮
pzdz =

2

π

∫ zmax

0

√
2me [E − µBc + µB0 cos (keqz)]dz

=
8
√
meµB0

keqπ
[(ζ − 1)K (ζ) + E (ζ)] (2.5a)

Jα=P =
1

2π

∫ λ

0
pzdz =

4
√
µB0

keqπ
E
(
ζ−1
)
, (2.5b)

where Jα is the action for the unperturbed motion of the fast particles, zmax is determined

by pz = 0 using equation (2.3), λ is the wavelength of the equilibrium field, E is the

unperturbed energy denoting the orbits, ζ is the energy parameter given by

ζ =
E + µ (B0 −Bc)

2µB0
(2.6)

and K(ζ) and E(ζ) are the complete elliptic integral of the first and second kind, respec-

tively, given by

K (ζ) =

∫ π
2

0

dϱ√
1− ζ sin2 ϱ

, (2.7a)

E (ζ) =

∫ π
2

0

√
1− ζ sin2 ϱdϱ. (2.7b)

Using the canonical equations of motion, the frequency of the motion reads

Ωα=T =
∂H0,α=T

∂Jα=T
=

keqπµB0

2K (ζ)
√
meµB0

, (2.8a)

Ωα=P =
keqπµB0

√
ζ

K (ζ−1)
√
meµB0

. (2.8b)

The behavior of these frequencies (shown in figure 2.1) is similar to the bounce and transit

frequency of the guiding center motion in tokamaks [74].

2.2.2 The linear growth rate

In this subsection, we investigate the linear interaction between the plasma mode and

the fast particles that are trapped and co/counter-passing in the equilibrium magnetic

field. For a traveling wave solution, the general form of the physical quantities can be repre-

sented as U =
∑∞

n=1
eϕn
2 exp [in(kpz − ωt)]+c.c =

∑∞
n=1

eϕn
2

∑∞
p=−∞ Vα,n,p(Jα) exp [i(pθ−

nωt)] + c.c and f̃α =
∑∞

n=1

∑∞
p=−∞ f̂α,n,p(Jα) exp[i(pθ − nωt)] + c.c, where ω = ωr + iγl
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is the complex frequency, kp the wave-number of the plasma mode, Vα,n,p(Jα) the orbit

averaged mode amplitude which specifies the coupling strength and plays the same role

as the so-called matrix element in [30,32], given by

Vα,n,p =
1

2π

∫ π

−π
exp(inkpz) exp(−ipθ)dθ

=
1

2π

∫ π

−π
cos(nkpz − pθ)dθ, (2.9)

where z(J, θ) is presented in 2.6.1 and we have used the property that z is an odd function

of θ (see figure 2.5). In the previous BOT models for long range chirping [53–55], Vα,n,p
is unity for the dominant resonance and is zero otherwise. In contrast, the presented

approach enables investigation of different types of resonances in wave-particle interaction

through a 1D model. It is noteworthy that the value of kp/keq = m, where m is an integer,

can be associated with the mode numbers in realistic geometries.

The total Hamiltonian describing the fast particle motion can be written in the form,

Hα = H0,α+U . This Hamiltonian along with the linearization of equation (2.4b), is used

to derive the linearized Vlasov equation in the form given by

∂f̃α
∂t

+
∂f̃α
∂θ

∂H0,α

∂Jα
=
∂Feq,α (Jα)

∂Jα

∂U

∂θ
. (2.10)

Neglecting the higher harmonics (n ≥ 2) in the linear approximation,

f̂α,n=1,p =
peϕn=1Vα,n=1,p (Jα)

∂Feq(Jα)
∂Jα

2 (pΩα − ω)
. (2.11)

It can be infered from expression (4.10) that the resonance condition is

ωr = pΩα. (2.12)

The sign of Ωα is affected by the definition of the angle and considering Ωα > 0, the

resonance condition will be satisfied only for p > 0. This means the lower summation

index for p in U and f̃α should be set to one and the negative values of p correspond to

non-resonant particles.

The perturbed density of the cold electrons can be derived from the linear fluid equa-

tions, (4.8a) and (4.8b). To first order in perturbations, we have

Vc =
kpU

ωme
, (2.13a)

δnc =
k2pncU

meω2
. (2.13b)

Now we substitute the relevant terms into (2.4a) to find the dispersion relation of the

mode given by

ϵ0kpme

e2

(
1−

ω2
pe

ω2

)
=
∑
α

∫ ∑
p

p
(
∂Feq,α
∂Jα

)
pΩα − ω

V 2
α,n=1,pdJα, (2.14)
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where ωpe =
√

nce2

meϵ0
is the electron plasma frequency. Neglecting the small contribution

of the principal value which does not modify the real part of the frequency significantly,

allows us to set ωr = ωpe. Assuming γl ≪ ωpe (the wave evolves slowly compared with

ω−1
pe ), equation (2.14) can be solved for ω. Consequently, the linear growth rate is found

to be

γl =
ωpeπe

2

2ϵ0kpme

∑
α

∑
p

[
∂Feq,α

∂ζα
V 2
α,n=1,p

∣∣∣∣dΩαdζα

∣∣∣∣−1

Ωα(Jα)=
ωpe
p

]
, (2.15)

which involves summing the contribution from all the resonances denoted by p. Equation

(4.12) is a function of the energy parameter (ζ). This indicates the dependency of the linear

growth rate on particle orbits (see figure 2.3). It should be noted that the contribution from

the counter-passing electrons in the equilibrium field is much less than the co-passing ones.

This can be shown by changing z to −z in equation (2.9) and evaluating the corresponding

values of the coupling strength for counter-passing electrons numerically.

2.2.3 Nonlinear BGK modes

Nonlinear frequency chirping can occur in unstable systems both near or far from

marginal stability, in the absence of collisions. For a near-threshold instability, the presence

of dissipation leads to the formation of an unstable plateau in the distribution function

of the energetic electrons which supports sideband oscillations that finally evolve into

chirping modes [35, 44]. In this case, the chirping mode emerges nearly immediately near

the marginal stability. However, for the case of a far from threshold instability, the system

is so unstable that many modes are likely to be excited. If modes are comparable in

frequency with overlapping eigenfunctions, this may lead to mode overlap. Simple chirping

can however naturally occur in experiment when the system first goes unstable where

there is only a discrete number of unstable modes that can arise from a near continuum

of damped modes. Accordingly, we consider the case of a near-threshold instability. The

condition dω
dt < ω2

b , with ω (t) the frequency of the BGK mode and ωb the bounce frequency

of trapped electrons in this mode, ensures the existence of a trapping structure with a

hole/clump in the phase-space of energetic particles. After development, the time scale of

the motion of already established holes and clumps is much longer than the time scale of

the energetic particles motion trapped in the BGK mode, i.e. ω−1
b [34,35]. In the present

model, we focus on the adiabatic description of nonlinear BGK modes and construct our

formalism based on the limit
[
dωb
dt ,

dω
dt

]
≪ ω2

b ∼ γ2l ∼ γ2d , where the kinetic equation can

be bounce-averaged to find the perturbed distribution function of the fast electrons. The

adiabatic limit should, in general, be checked if it remains valid as the frequency deviates

from the initial eigenfrequency [34,75,76].

Adopting a Fourier expansion for the periodic structure, the electrostatic energy of the

nonlinear BGK mode can be written in the form

U [z, t] =
∑
n

An(t) cos [n (kpz − ϕ (t))] , (2.16)

where the Fourier coefficients An(t) evolve on a slow time scale but the periodic behavior

of the BGK mode represents rapid oscillations with a time scale on the order of the inverse

initial plasma frequency. The motion of the fast electrons can be investigated using the
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following Hamiltonian

Hα = H0,α (Jα) +
1
2

∑
n

∑
pAn (t)

×Vα,n,p exp [i (pθ − nϕ (t))] + c.c, (2.17)

written in terms of the action–angle variables of the unperturbed motion. A simple canon-

ical transformation can be used to cancel the fast time scale included in ϕ (t). We consider

θ̃l = lθ − ϕ (t) and J̃α = Jα
l and the type 2 generating function for this canonical trans-

formation is Φ
[
θ, J̃α, t

]
= lθJ̃α − ϕ (t) J̃α, where l =

p
n denotes the type of the resonance.

Considering the first resonance as having the dominant contribution to the interaction,

the model can be evaluated by setting l = 1. In section 4.5, it is discussed that the

contribution from the first resonance is dominant in this model. However, other types of

resonances can be treated likewise. The new Hamiltonian is

Kα(θ̃, J̃ , t) = H0,α

(
J̃α

)
− dϕ (t)

dt
J̃α +

1

2

∑
n

An (t)Vα,n,n exp
(
inθ̃
)
+ c.c. (2.18)

The small separatrix width assumption allows us to neglect the higher order terms in the

Taylor expansion of the unperturbed Hamiltonian near the resonant orbit. In addition,

we also approximate Vα,n,n

(
J̃
)
with the first term of its Taylor expansion about the value

of action variable at resonance, denoted by Jres,α. Using
∂H0,α

∂J̃α

∣∣∣
J̃α=Jres,α(t)

= Ωα = dϕ(t)
dt =

ω (t) , the new Hamiltonian becomes

Kα =
1

2

∂2H0,α

∂J̃2
α

∣∣∣∣
J̃α=Jres,α(t)

(
J̃α − Jres,α (t)

)2
+

1

2

∑
n

An (t)Vα,n,n exp
(
inθ̃
)
+ c.c. (2.19)

Substituting Kα with the extremum value of the BGK mode electrostatic energy in

equation (4.15), gives the dynamics of the fast electrons on the separatrix supported by

the nonlinear mode. This condition is used to identify the boundary of the trapped and

passing electrons in the BGK mode, i.e. the separatrix. A simple manipulation of equation

(4.15) gives

J̃α,± − Jres,α (t) = ±

[(
Uext,α − 1

2

∑
n

An (t)Vα,n,n (Jres,α) exp
(
inθ̃
)
+ c.c

)
2

∆α

] 1
2

,

(2.20)

where Uα,ext is the extremum value of the BGK mode energy.

The value of
∂2H0,α

∂J̃2
α

∣∣∣
J̃α=Jres,α(t)

= ∂Ωα

∂J̃α

∣∣∣
J̃α=Jres,α(t)

(denoted by ∆α) can be negative or

positive for the trapped or passing electrons in the equilibrium field, respectively. Math-

ematically, this affects Uext,α in order to have a positive value under the square root in

equation (2.20) and from the physical point of view, it shows that the passing electrons

in the magnetic field are trapped in the energy well of the BGK mode, while the trapped

electrons in this field are trapped in the energy hill of the BGK mode. This implies

Uext,α =

{
Umin, α = T

Umax, α = P
. (2.21)

Phase-space trajectories of constant energy for the motion of energetic particles in the



§2.2 The model 29

BGK mode are plotted in figure 2.2. It is shown that the separatrix supported by the

nonlinear mode corresponding to the electrons trapped in the equilibrium magnetic field

(figure 2.2(b)) has a phase shift of π with respect to the separatrix related to the passing

group (figure 2.2(a)).

As the separatrix moves adiabatically, the phase-space area enclosed by the trajectories

of the deeply trapped particles in the nonlinear wave, i.e. the shaded areas in figure 2.2,

is conserved. Without trapping or detrapping over this region, the aforementioned con-

servation ensures that the value of the distribution function is conserved. The separatrix

moves the trapped electrons in the BGK mode while the passing electrons are affected

through the direction of their motion [53]. The adiabatic invariant of the motion of these

electrons in the BGK mode reads (see 2.6.2 for more details)

Iα = 2

∫ 2π

0

[(
Kα − 1

2

∑
n

An(t)Vα,n,n exp
(
ipθ̃
)
+ c.c

)
2

∆α

] 1
2

dθ̃. (2.22)

Substituting expression (4.13) into equation (2.4a) gives

−
∑
n

An(t)n
2k2p cos [n (kz − ϕ (t))] = −e

2

ϵ0

[
1

me

∑
α

∫ ∞

−∞
f̃α(z, pz)dpz + δnc

]
, (2.23)

where δnc can be derived under the linear response assumption of the bulk electrons. Sim-
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Figure 2.2: The panels (a) and (b) describe energy contours in phase space of the electrons
which are passing and trapped in the equilibrium field, respectively. The black lines
specify the trajectories of the passing electrons and the shaded area is a sample of the
adiabatic invariant of the trapped electrons in the nonlinear BGK mode. The red line is
the separatrix.
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ilar to subsection 2.2.2, we multiply equation (2.23) by cos [n (kpz − ϕ(t))] and integrate

over one wavelength. We also write all the physical quantities in the fast particle term in

terms of the new action–angle variables (θ̃, J̃). After substituting the Fourier expansion

of cos
[
n
(
kz(θ̃, J̃)− ϕ(t)

)]
and neglecting the highly oscillating terms one finds

An (t) =
1

2πkpnc

[
ω2

n2ω̂2 − 1

]∑
α

∫ 2π

0
dθ̃

∫ ∞

0

[
f̃α(θ̃, J̃)Vα,n,n exp

(
inθ̃
)
+ c.c

]
|J|dJ̃,

(2.24)

where the Jacobian of the canonical transformation (z, pz) ↔ (θ̃, J̃) is unity and ω̂ = ω
ωpe

is the normalized frequency with respect to the initial electron plasma frequency. In

this model, the phase-space density of the fast electrons (the distribution function) is

assumed to be the same inside the narrow shrinking separatrix supported by the BGK

mode, the so-called top-hat model. The perturbed part of the fast electrons distribution

function dominated by the trapped electrons inside the separatrix [53] is calculated using

the bounce averaging method described in 2.6.2,

f̃α =

{
0, passing in BGK

Feq,α (Jres (t = 0))− Feq,α (Jres (t)) . trapped in BGK

Using the above expression, equation (4.26) transforms into

An (t) =
ω2

2πknc (n2ω̂2 − 1)

∑
α

[Feq,α (t = 0)

−Feq,α (t)]

∫ 2π

0
dθ̃
[
Vα,n,n exp

(
inθ̃
)
+ c.c

]
∆J̃α,max

(
θ̃
)
, (2.25)

where ∆J̃α,max

(
θ̃
)
is the width of the separatrix. Using equation (2.20), we have

An (t) =
ω2

πknc(n2ω̂2−1)

∑
α [Feq,α (t = 0)− Feq,α (t)]

×
∫ 2π
0

[
(Uα,ext − 1

2

∑
nAn (t)Vα,n,n exp

(
inθ̃
)
+ c.c

)
2

∆α

] 1
2

×
[
Vα,n,n exp

(
inθ̃
)
+ c.c

]
dθ̃. (2.26)

The above equation can be solved numerically to derive the Fourier coefficients with which

we can construct the structure of the plane wave. The numerical method used is presented

in section 2.3.

The trapped electrons in the BGK mode travel in phase-space together with the non-

linear mode. Depending on whether the clumps are trapped or passing in the equilibrium

field, their energy increases or decreases respectively with decreasing frequency of the

mode and vice versa for the holes. Hence, formation of a hole in the distribution function

of trapped particles in the equilibrium field accompanies a clump in the distribution of

passing ones and vice versa. The change in the perturbed potential energy of the trapped

electrons in the BGK mode is relatively small compared to the change in their equilibrium

energy when the change in Jres,α(t) is greater than the change in the separatrix width (see

2.6.3 for more details). More energy is released by the fast particles via the motion of

the phase-space structures than in the process of their formation and the released energy

during chirping should compensate the dissipated energy in the bulk. The total amount
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of power released corresponding to the change of the structure energy is given by

Pr = −
∑
α

Nα
dEα
dt

, (2.27)

where Nα is the total number of each group of electrons in the hole/clump, dEα
dt =

Ωα

(
dΩα
dJα

)−1
dω(t)
dt is the rate of change of the energy of each particle and the resonance

condition allows setting Ωα = ω (t). Regarding to the definition of the adiabatic invariant

of the trapped particles, Nα can be calculated as

Nα =
2

me
[Feq,α (t = 0)− Feq,α (t)]

∫ 2π

0

[(
Uα,ext −

1

2

∑
n

An (t)Vα,n,n

× exp
(
inθ̃
)
+ c.c

) 2

∆α

] 1
2

dθ̃. (2.28)

The work done by the collision force can be used to calculate the dissipated power (Pd) in

the bulk via collisions. Using the equation of motion (4.8a) and considering the collisional

term, we have

Pd =
2πνkp
ω2me

⟨U2⟩, (2.29)

where ⟨⟩ denotes averaging over one wavelength and ⟨U2⟩ = 1
2

∑
nA

2
n (t). The released

power during the motion of the holes/clumps is equal to the power dissipated in the bulk

through collisions. This power balance can be used to calculate the rate at which sweeping

occurs, which results in

dω (t)

dt
= −

[
νncπkp
ω3me

∑
n

A2
n (t)

]
1∑

αNα

(
dΩα
dJα

)−1 . (2.30)

2.3 Numerical Scheme

In this section, we first derive the equation of the mode structure at early stage of

chirping, say t0, considering only the contribution from the trapped electrons in the equi-

librium magnetic field. It is worth noting that here the contribution of passing electrons

in the magnetic field to the equations of early stage is arbitrarily neglected just for the

purpose of normalization. A simple evaluation of equation (2.26) at initial phase of sweep-

ing when Feq,α (t = 0)− Feq,α (t) = 0 and ω̂ = 1, demonstrates that only the first Fourier

coefficient is non-zero (a sinusoidal mode structure) and is presented by

A1,0 = −

8ω2
pe
∂Feq,T
∂ζT

∂ζT
∂ω̂

∣∣∣
ω̂=1

3πkpnc
√

|∆T,0|

VT,1,1,0√A1,0VT,1,1,0. (2.31)

Here, we have used the subscript 0 to denote evaluation at t = t0. The term A1,0 can be

expressed in terms of the linear growth rate to have

A1,0 =
162γ2l

9|∆T,0|VT,1,1,0π4
. (2.32)
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We also let Ân (t) = An (t) /A1,0, V̂α,n,n (t) = Vα,n,n (t) /VT,1,1,0, Γ̂α = ∆α/|∆T,0|, Ûα,ext =
Uα,ext/A1,0VT,1,1,0 and Feq,α (t) = cαζα (t).

Normalizing equation (2.26) with respect to A1,0 results in

Ân (t) =

[
−3ω̂2

8cT
∂ζT
∂ω̂

∣∣∣
ω̂=1

(n2ω̂2−1)

]∑
α cα [ζα,0 − ζα]

×
∫ 2π
0

[(
Ûα,ext − 1

2

∑
n Ân (t) V̂α,n,n exp

(
inθ̃
)

+c.c) 2
Γ̂α

] 1
2
[
V̂α,n,n (t) exp

(
inθ̃
)
+ c.c

]
dθ̃, (2.33)

which can be solved iteratively to derive the Fourier coefficients. In order to avoid the

singularity in the numerical approach, a special treatment is applied to the first coefficient

when the values of ω are close to ωpe. In this case, ζα (t) can be linear-approximated

around the initial plasma frequency to cancel the effect of the pole in the denominator of

equation (2.33).

Likewise, differential equation (4.21) can be investigated for the early phase of the

structures motion in phase-space considering only the effect of trapped particles in the

magnetic field. Substituting expression (2.28) into differential equation (4.21) and using

equations (4.12) and (2.32), one finds

d

dt

(ω − ωpe)
2

ω2
pe

=
ν

3

(
16γl

3π2ωpe

)2

. (2.34)

We define the dimensionless time τ = ν
3

(
16γl

3π2ωpe

)2
t and multiply differential equation

(4.21) by 3

ν

(
16γl

3π2ωpe

)2 to have

dω̂

dτ
= −

[
4

ω̂3

] cT∣∣∣∣(dω̂
dζ

)−1

T,0

∣∣∣∣
ζ=ζresonance

∑
n Â

2
n∑

α sgnαcα [ζα,0 − ζα]

{∫ 2π

0

[(
Ûα,ext −

∑
n

Ân
2
V̂α,n,n

× exp
(
inθ̃
)
+ c.c

) 2

Γ̂3
α

] 1
2

dθ̃


−1

, (2.35)

where sgnα is -1 and 1 for α = T and P, respectively. The above equation can be solved

by a fourth-order Runge-Kutta method along with the iterative method used for solving

the Fourier coefficients on the RHS.

If the electrons have small enough pitch angles (deeply passing electrons with ζ ≫ 1),

their motion will not be affected by the equilibrium magnetic field and they move freely.

In other words, θ = keqz (see figure 2.5(b) for ζ = 2). Subsequently, only one resonance

is non-zero and the orbit averaged mode amplitude is equal to unity (see figure 2.4(b))

under this condition. In this high energy range, one can find that kpz = pθ in the linear

theory limit. Canonical equations of motion assure θ = Ωα=Pt so using equation (5.25),

the resonance condition becomes ω = kpv, where v is the particle velocity. Consequently,

solving equation (2.33) and differential equation (2.35) in the limit that ζ ≫ 1, reproduces
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exactly the same results as in [53], which serves as the benchmark of the code and the

numerical approach.

2.4 Results

For illustration, we have arbitrarily restricted attention to cases where kp = keq. In

the linear regime, the plasma mode will grow at different rates depending on the initial

orbits of the electrons interacting with the mode. Figure 2.3 demonstrates that the linear

growth rate decreases to zero in the limit of having resonance with the particles close to

the separatrix of the equilibrium motion.
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Figure 2.3: The linear growth rate behavior, corresponding to the first resonance, for
different energy ranges of trapped and passing particles in the equilibrium magnetic field.
All the values are normalized to the value at ζ = 0.1.

As in subsection 2.2.3, the first resonance (l=1) is considered as the dominant reso-

nance contributing to the interaction. The first four elements of the orbit averaged mode

amplitude V̂α,n,p, indicating the coupling strength, corresponding to the first (V̂α,n,n) and

the second (V̂α,n,2n) resonance are plotted in figure 2.4 versus energy parameter by numer-

ical integrating of equation (2.9) over θ. Investigation of figure 2.4 shows that there are

regions (adjacent to ζ = 1) where the values of the dominant element (n=1) belonging to

the second resonance overtake the values of the dominant element of the first resonance.

In itself, this may indicate that the corresponding second resonance is dominant. How-

ever, consideration of the linear growth rate for different resonances shows that the first

resonant (p = 1) is dominant. This can be understood by inspection of equation (4.12):

the term
∣∣∣dΩα
dζα

∣∣∣ increases with increasing the resonance, so γl decreases with increasing

resonance. In addition, evaluating the factors of equation (2.33) for higher resonances

(l ≥ 2) shows that its always the first resonance (l = 1) that has dominant contribution

to the interaction in the hard nonlinear regime. Therefore, the submissive resonances are

neglected. The other important point concerning the coupling strength is that all of its

elements go asymptotically to zero as the energy parameter of the electrons approaches

unity. Here, we explain this phenomenon in more detail: the equations (2.52) and (2.58)

describe the equilibrium position (z) of the electrons in terms of the action–angle variables

in the nonuniform magnetic field. Figure 2.5 illustrates this position at different times for

different energy parameters. For the case of trapped (figure 2.5(a)) and passing (figure
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2.5(b)) electrons, it is shown that for ζ ≈ 1, the electrons spend most of their period

lingering at the two ends of the magnetic mirror system (the so-called magnetic bottle).

This means that z is almost −π/keq during a half of the period and is almost π/keq in

the other half. Therefore, exp(inkpz) in the integrand of equation (2.9) is exp(inkpπ/keq)

or exp(−inkpπ/keq) in each half period. For kp/keq = m with m an integer, we have

exp(inkpπ/keq) = exp(−inkpπ/keq) = cte and consequently the value of the integral drops

to zero as the energy parameter approaches one (ζ ≈ 1). These electrons barely move in

z-direction, similar to the case where the electrons are deeply trapped (ζ ≈ 0).

Prior to solving the equations for the mode structure and the sweeping rate in the

hard nonlinear regime, it is necessary to investigate the behavior of the adiabatic in-

variant (phase-space area) of the trapped electrons in the BGK mode that are trapped

or passing in the equilibrium magnetic field. Figure 2.6 shows the values of the adia-

batic invariant (equation (2.22)) at the separatrix determined by the BGK mode during

frequency sweeping. For the case of downward frequency sweeping, the energy of the

passing electrons in the equilibrium field decreases, so does the corresponding value of the

adiabatic invariant (figure 2.6(b)). However, for trapped electrons, energy increases for

downward frequency sweeping. Depending on the initial orbit, the adiabatic invariant can

either initially increase (ζ < 0.4 of figure 2.6(a)) or decrease (ζ ≥ 0.4 of figure 2.6(a) ).

Due to the assumption of a flat-top distribution function over the separatrix region, the

model remains valid as long as the separatrix supported by the BGK mode shrinks and

an expanding separatrix (an increasing adiabatic invariant) should be avoided. Therefore,

the electrons in the following results have initial energy parameters ζ ≥ 0.4. In this en-

ergy range and for the electrons trapped in the magnetic field, the coherent phase-space

structure is a hole whose separatrix area (and the correspoding amplitude of the mode)
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Figure 2.4: The orbit averaged mode amplitude versus energy parameter for (a) the
trapped and (b) passing electrons in the equilibrium magnetic field. The solid and dashed
lines correspond to first and second resonances, respectively.
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Figure 2.5: The position of energetic electrons (a) trapped and (b) passing in the equilib-
rium magnetic field in terms of the angle variable

is shrinking for a downsweeping frequency. For the case that new electrons are trapped

into an expanding separatrix, it is required that the value of the distribution function of

newly trapped particles is set to the value of the ambient distribution. The latter case is

not the subject of this paper and the reader is referred to [55,75,77] where the subject of

expanding separatrices is addressed.

2.4.1 The mode structure

Considering similar slopes for the initial distribution of both the trapped and passing

electrons in the equilibrium magnetic field (simultaneously in resonance with the plasma

mode), the structure of the BGK mode has been solved for different initial electron en-

ergy parameters, namely ζα=T(t = 0) = 0.4, 0.6 and 0.8. Figure 2.7 illustrates the mode

structure for these initial energies in cases where ω̂= 0.8 and 0.6, constructed by solving

equation (2.33) iteratively for the Fourier coefficients. The results reveal that for a nonzero

change in ω̂, the nonlinear behavior of the BGK mode is determined by the initial electron

orbits. For constant ω̂, e.g. figures 2.7(a), (c) and (e), the maximum amplitude of the

normalized mode structure (maximum value of
∑

n Âncos(nkpz) ) changes with changing

ζα=T,0, and the absolute values of the normalized mode amplitude decrease with increasing

ζα=T,0. In other words, for higher values of initial energy parameter, the maximum am-

plitude drops to a lower fraction of its initial value. The shape of the nonlinear structure

is not only affected by the amount of change in the frequency (ω̂) but also by the initial

energy parameter (ζα=T,0). In order to explain the observed behavior, we first calculate

the contribution of the trapped and passing particles to the mode structure seperately

while they are simultaneously in resonance with the mode. Afterwards, the behavior of

both the equilibrium frequency and the physical quantities appearing in equation (2.33)
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Figure 2.6: The values of the adiabatic invariant of (a) trapped and (b) passing particles
in the equilibrium magnetic field for kp/keq = 1 at the separatrix determined by the BGK
mode. The values are normalized with respect to the values at initial phase of chirping.

is investigated.

The Fourier coefficients are calculated by adding the two terms on the RHS of equation

(2.33), corresponding to α = T and P. The seperate contributions of these two groups of

particles to the mode structure are shown in figure 2.8 for similar values of distribution

function and in case of simultaneous resonance between the plasma mode and these two

types of energetic particles. It is clear that the contribution of the passing electrons to

the nonlinear behavior of the mode is relatively much smaller than the trapped ones. The

reason being that the resonance occurs in a region where the equilibrium frequency of

passing particles has much steeper gradient in energy (see figure 2.1). Therefore, for the

purpose of investigating the parameters of equation (2.33), we only consider the dominant

contribution from the trapped electrons in the equilibrium magnetic field.

At a constant value of the normalized frequency ω̂, a simple evaluation of equation

(2.33) gives

Ân (t) ∝
(dω̂dζ )

2
α=T,0[ζα=T (t = 0)− ζα=T (t)]2V̂ 3

α=T,n,n

Γ̂α=T

. (2.36)

Starting from different initial energies, the trapped electrons in the equilibrium magnetic

field should be moved on different energy increments by the nonlinear mode in order to have

the same amount of change in the frequency. This results from the nonlinear dependency

of the equilibrium frequency on the energy parameter (see figure 2.1). As an example

for ω̂ = 0.8, the fast electrons having the initial energy parameters of ζα=T,0=0.4,0.6

and 0.8 should be moved in phase-space to the points where ζ(t)=0.783, 0.863 and 0.94,

respectively and the energy increments become shorter for higher values of initial energy

parameter. For a linear equilibrium distribution, the difference in the energy increments

will explicitly appear in the numerator of equation (2.33) through the perturbed density

term, i.e. [ζ (t = 0)− ζ (t)] . In general, the nonlinear dependency of the equilibiurm

frequency on the energy parameter will affect the values of all the physical parameters

appearing in equation (2.33) for a fixed amount of frequency shift. Figure 2.9 shows
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Figure 2.7: The normalized BGK mode structure affected by electrons having different
initial energies. The dashed line, included here for comparison, represents the sinusoidal
structure of the mode at early stage of frequency sweeping.

the dependency of the factors
(
dω̂
dζ

)2
α=T,0

[ζ(t = 0) − ζ(t)]2, V̂ 3
α=T,n=1,n=1 and Γ̂−1

α=T in

expression (2.36) for different ζα=T,0 and as a function of ω̂. The dependency of Ân with

ζα=T,0 can be understood by inspection of these factors. At each ω̂ the factors decrease

with increasing ζα=T,0 and so Ân decreases. It is noteworthy that
(
dω̂
dζ

)
α=T,0

can be

calculated by differentiating the normalized form of equation (2.8a) with respect to ζ,

which together with the differentiation of equation (2.5a) can be used to derive Γ̂α=T.

2.4.2 The sweeping rate and adiabaticity validation

In this subsection, we first investigate the rate at which the frequency of the nonlinear

mode evolves in time. Prior to solving the differential equation (2.35), we evaluate the

dependency of the sweeping rate
(
dω̂
dτ

)
on the initial energy parameter of the electrons

(initial orbits) using the behavior of the factors illustrated in figure 2.9. Looking at the

expression (2.35) for the sweeping rate at a constant value of ω̂, it can be inferred that

dω̂

dτ
∝

Ân(t)
3
2 Γ̂

3
2
α=T∣∣∣(dω̂dτ )α=T,0

∣∣∣[ζα=T(t = 0)− ζα=T(t)]V̂
1
2
α=T,n,n

. (2.37)

Using expression (2.36) one finds

dω̂

dτ
∝
(
dω̂

dζ

)2

α=T,0

[ζα=T(t = 0)− ζα=T(t)]
2 V̂ 4

α=T,n,n. (2.38)
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Similar to subsection 2.4.1, one can consider figures 2.9(a) and (c) at a constant ω̂ to

investigate the value of the RHS of expression (2.38) for different electron orbits. It is clear

that the RHS value becomes lower when the resonance occurs with the electrons (trapped

in the fixed equilibrium magnetic field) having higher initial energy parameter (ζα=T,0).

Therefore, we expect the mode frequency to chirp more slowly when the initial energy

parameter of the electrons is higher. This can be verified by solving differential equation

(2.35) using the numerical method stated in section 2.3 for different initial orbits. Figure

2.10 illustrates the time evolution of ω̂ for different values of ζα=T,0. The results reproduce

the square root dependency for initial stages of chirping as in [35, 53]. However, it is

shown that in this model, the holes and clumps can move with much lower rates compared

with the sweeping rates observed in [53]. On the other hand, as predicted above, for higher

initial energy parameter of the trapped electrons in the equilibrium magnetic field, the

frequency tends to decrease more slowly.

As mentioned earlier in subsection 2.2.3, the adiabaticity condition invoked for the

analysis, should be checked if it remains satisfied when the frequency deviates from the

initial eigenfrequency. Using the total Hamiltonian of the resonant electrons (Equation

(4.15)), the canonical equations of the perturbed motion of these electrons, read

˙̃Jα =
∑
n

AnVα,n,nn sin
(
nθ̃
)
, (2.39a)

˙̃
θ =

∂2H0,α

∂J̃2
α

∣∣∣∣
J̃α=Jres,α

(
J̃α − Jres,α

)
. (2.39b)

In the absence of collisions, the motion of resonant electrons which are trapped in the

equilibrium field and are deeply trapped in the BGK mode satisfies the pendulum equation

¨̃
θ = ∆α=T

∑
n

AnVα=T,n,nn
2θ̃, (2.40)

with
∣∣∆α=T

∑
nAnVα=T,n,nn

2
∣∣ = ω2

b,α=T, where we have used sin
(
nθ̃
)
≈ nθ̃ at the center

of the separatrix, the so-called O-point which is at θ̃ = 0 for trapped electrons in the
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magnetic field (see figure 2.2(b)). Similarly, for passing electrons in the magnetic field

that are deeply trapped in the BGK mode, we have

d2

dt2
= ∆α=P

∑
nAnVα=P,n,nn

2 cos (nπ)

×
(
θ̃ − π

)
, (2.41)

with
∣∣∆α=P

∑
nAnVα=P,n,nn

2 cos (nπ)
∣∣ = ω2

b,α=P, where we have expanded sin
(
nθ̃
)
about

the O-point at θ̃ = π for passing electrons in the magnetic field (see figure 2.2(a)).

We introduce the dimensionless variable ω̃b,α =
ωb,α

ωb,α=T,t=0
, with

ωb,α=T,t=0 =
√

|A1,t=0Vα=T,n=1,n=1∆α=T|, (2.42)

the bounce frequency of resonant electrons (trapped in the magnetic field) in their corre-

sponding separatrix in the BGK mode at early stage of chirping denoted by t = 0. We
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can write the adiabatic limit, introduced in subsection 2.2.3, in the form

dτ
dt

ωb,α=T,t=0
≪

ω̃2
b,α∣∣∣dω̃b,α

dτ

∣∣∣ . (2.43)

Using equation (2.32) and the expression for the dimensionless time introduced in section

2.3, one finds

νγl,α=T

w2
pe

≪
9π2ω̃2

b,α

16
∣∣∣dω̃b,α

dτ

∣∣∣ . (2.44)

The time evolution of ω̃b can be investigated in the same numerical code implemented to

solve differential equation (2.35) for constructing figure 2.10. At each time step in the

fourth-order Runge-Kutta method, the corresponding parameters can be used to derive

ω̃b,α (τ). Afterwards, one can readily use numerical differentiation methods to find
dω̃b,α

dτ .

Figures 2.11(a) and (b) show the normalized bounce frequency of the trapped electrons

about the O-point of the separatrix inside the BGK mode corresponding to the trapped

and passing electrons in the magnetic field, respectively, for the initial energy parameters

considered in the previous subsections. The corresponding values of
dω̃b,α

dτ are demonstrated

in figures 2.11(c) and (d), where the values decrease to −∞ as we approach τ = 0.

Therefore, the value of the RHS of (2.44), illustrated in figures 2.11(e) and (f ), drops

to zero at the early stage of frequency chirping. This means that the adiabatic limit is

never formally satisfield at initial stage of phase-space structures evolution. Nevertheless,

we have γl, ν ≪ ωpe and as a result the period during which the adiabatic condition is

not satisfied is extremely short. The results reveal that as the system evolves while the

adiabaticity limit is initially violated, for later evolution of phase–space structures the

RHS value of (2.44) monotonically increases. Therefore, once the adiabatic limit (2.44)

is satisfied with regards to the value of LHS, it will remain valid for later evolution. It

should be noted that the adiabaticity condition is better satisfied for the passing electrons

in the magnetic field compared to the trapped ones.
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Figure 2.11: The evolution of the normalized bounce frequency (a and b), normalized time
rate of change in the bounce frequency (c and d) and the value of the RHS of inequality
(2.44) (e and f). Panels (a,c,e) and (b,d,f) correspond to trapped and passing electrons
in the magnetic field, respectively. The dashed, dotted and dash-dotted curves represent
an initial energy parameter value of 0.4, 0.6 and 0.8, respectively, for trapped electrons in
the magnetic field. At τ = 0, the values of the panels (c,d) go asymptotically to −∞ and
for the panels (e,f) the corresponding values are zero.

2.5 Concluding remarks

The more realistic 1D model shows that apart from the amount of deviation from the

initial eigenfrequency during frequency sweeping, the initial orbit (initial energy parame-

ter) of the particles in a nonuniform equilibrium magnetic field, determines both the linear

and the hard nonlinear evolution behavior of a plasma mode. The model also resolves the

simultaneous contributions from the two groups of particles having different orbit types as

well as the contribution from higher resonances. We find however that the first resonance

is dominant. We also identify different behavior of the adiabatic invariant in different

energy regions. The model shows that for a constant trend in frequency sweeping, either

upward or downward, the adiabatic invariant can have both positive and negative gradi-

ents in the energy parameter depending on the energy region considered. This behavior

depends on factors such as the resonance number, the proportion of the plasma mode

wave-number to the spatial frequency of the equilibrium field (kp/keq) and whether the

particles were initially trapped or passing in the equilibrium field. This indicates that for

realistic geometries where particles interacting with the mode can follow different equilib-

rium orbits, an extended approach is required to calculate the perturbed density inside

the holes and clumps. The required approach should take into account that the adiabatic

invariant (phase-space area) at the separatrix can initially expand followed by a shrinking

behavior and vice versa, depending on the initial orbit of the energetic particles. This

extension can highly benefit from the method presented in [55].

The presented model in this manuscript provides a more effective understanding of
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hard nonlinear wave-particle-plasma interactions in realistic geometries provided that the

mode is subject to weak continuum damping (a global mode) i.e. its structure in the

linear regime is not mainly determined by the energetic particles. Two different orbit

topologies of energetic particles created by adding a nonuniform magnetic field to the

1D bump-on-tail instability problem, bring it into anology with tokamaks where trapped

and passing topologies exist which can both resonate with modes with different coupling

strength factors. In a high aspect ratio tokamak, the total magnetic field follows

B ∝ 1

R0 + r cos θ
∝ 1

R0
(1− ϵ cos θ) , (2.45)

where B is the magnetic field, ϵ is the inverse aspect ratio, θ is the poloidal angle and R0

and r are the major and minor radius, respectively.

Using the orbit-averaged Littlejohn’s Hamiltonian, we have

H0 − µB0 =
1

2
miv

2
∥ − µB0ϵ cos (θ) , (2.46)

where H0 is the equilibrium Hamiltonian and v∥ is the velocity in the direction of the

magnetic field. Taking into account the symmetry of the magnetic field in toroidal di-

rection in realistic geometries and assuming that the deviation of the fast particles from

the flux surface is infinitesimal, the above Hamiltonian is comparable to the equilibrium

Hamiltonian presented in equation (2.3). Further restrictions on the perturbation such

as symmetry in toroidal direction, being localized on one flux surface and the assump-

tion that the perturbation on different flux surfaces are unlinked, might let the presented

model to describe some features of electrostatic axisymmetric modes (n = 0, where n is the

poloidal mode number), namely global geodesic acoustic modes (GGAMs) in more realistic

geometries [78]. Nevertheless, an exact description of excited Global-Alfven-Eigenmodes

(GAEs) with an evolving mode structure during long range frequency deviations requires

the extension of the presented model, which is a part of our ongoing research. Another

avenue for further research is to relax the assumption that the fast electron distribution

function is linear.
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2.6 Appendix

2.6.1 Calculation of z(J, θ)

Using the equilibrium Hamiltonian (2.3) and pz = me
dz
dt , we find

2

keq

dσ

dt
=

√
2

me
[E + µ (Bc +B0 cos (2σ))] (2.47)

where σ =
keqz
2 . We take σ (t = 0) = 0, to have

√
2k−1

eq√
E+µ(B0−Bc)

me

∫ σ

0

dσ√
1− 2µB0

E+µ(B0−Bc)
sin2 (σ)

=

∫ t

0
dt, (2.48)

where we have used cos(2σ) = 1− 2 sin2 σ.

I) For passing electrons in the nonuniform magnetic field, the coefficient of sin2 (σ) in

integral equation (2.48) is less than unity. After changing the coordinates to action-angle

variables in subsection 2.2.1, we can use the canonical equations of motion to find

t =
θ

Ωeq,α
, (2.49)

where Ωeq,α=P is presented by equation (2.8b). Substituing (2.49) into the RHS of (2.48),

we find ∫ σ

0

dσ√
1− 2µB0

E+µ(B0−Bc)
sin2 (σ)

=
θK
(
ζ−1
)

π
. (2.50)

According to the definition of Jacobi elliptic functions, we find

Sn

(
θK
(
ζ−1
)

π
, ζ−1

)
= sinσ, (2.51)

which gives

zα=P =
2

keq
sin−1

[
Sn

(
θK
(
ζ−1
)

π
, ζ−1

)]
. (2.52)

II) For trapped electrons in the nonuniform magnetic field, the coefficient of sin2 (σ)

in integral equation (2.48) is higher than unity. we implement a change of variables as

follows,

sin (η) =
sin (σ)

sin (σmax)
, (2.53a)

dσ =
sin (σmax) cos (η)√

1− sin2 (σmax) sin
2 (η)

dη. (2.53b)

The maximum value of z is 1
keq

cos−1
(
µBc−E
µB0

)
, derived from pz = 0. Hence, cos (2σmax) =

µBc−E
µB0

and

sin2 (σmax) =
E + µ (B0 −Bc)

2µB0
. (2.54)
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Now we substitute equations (2.53a) and (2.53b) into (2.48) and use (2.54) to have

√
2 sin (σmax)

keq

√
E+µ(B0−Bc)

me

∫ η

0

dη√
1− sin2 (σmax) sin

2 (η)
= t, (2.55)

where we have used cos η√
1− 2µB0

E+µ(B0−Bc)
sin2(σ)

= 1. Using equation (2.49) for trapped electrons

in the magnetic field and equation (2.8b), we find∫ η

0

dη√
1− sin2 (σmax) sin

2 (η)
=

2θK (ζ)

π
, (2.56)

which gives

Sn

(
2θK (ζ)

π
, ζ

)
= sin η =

sinσ

sinσmax
. (2.57)

We find

zα=T =
2

keq
sin−1

[√
ζSn

(
2θK (ζ)

π
, ζ

)]
. (2.58)

It should be mentioned that equations (2.52) and (2.58) can be inverted for the corre-

sponding angle θ(z, ζ) variables.

2.6.2 Adiabatic invariant and bounce averaging method

The adiabatic invariant for a Hamiltonian K(θ̂, Ĵ , λ ≡ βt) with slow time dependency

(β ≪ typical orbit frequencies) is

I∞ = I (q, p, λ) + βI1 (q, p, λ) + β2I2 (q, p, λ) + ..., (2.59)

which the lowest term is commonly taken to be the action, I (E, λ) =
∮
Ĵ
(
θ̂, E, λ

)
dθ̂

with K
(
θ̂, Ĵ , λ

)
= E. We transform to action-angle variables using the generating

function Φ2

(
θ̂, I, λ

)
=
∫ θ̂
θ̂0(I,λ)

dθ̂′Ĵ
(
θ̂′,K (I, λ) , λ

)
. So the Hamiltonian transforms into

Knew (Θ, I, λ) = K (I, λ) + β ∂Φ2
∂λ . Now we consider the trapped electron Vlasov equation

∂f

∂t
+
∂f

∂Θ

∂Knew

∂I
− ∂f

∂I

∂Knew

∂Θ
= 0. (2.60)

Using the equations of motion we have

Θ̇ =
∂Knew

∂I
= ωBounce +

∂

∂I

∂Φ2

∂t
, (2.61a)

İ = −∂Knew

∂Θ
= − ∂

∂Θ

∂Φ2

∂t
. (2.61b)

Substituting the above expressions in equation (2.60) gives

∂f

∂t
+
∂f

∂Θ
ωBounce +

∂f

∂Θ

∂

∂I

∂Φ2

∂t
− ∂f

∂I

∂

∂Θ

∂Φ2

∂t
= 0. (2.62)

Following the same approach in [54], f can be expanded in terms of the small parameter

β = τB
τs

to have

f = f0 + βf1 + β2f2 + ..., (2.63)
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where f0 is the bounce average of f over Θ. Using expression (2.63), we substitute for f

in equation (2.62). To lowest order (O (1)) in β, one finds

∂f0
∂Θ

= 0. (2.64)

To next order (O (β)),

∂f0
∂t

+ β
∂f1
∂t

+
∂f0
∂Θ

ωBounce + β
∂f1
∂Θ

ωBounce +
∂f0
∂Θ

∂

∂I

∂Φ2

∂t
+ β

∂f1
∂Θ

∂

∂I

∂Φ2

∂t

−∂f0
∂I

∂

∂Θ

∂Φ2

∂t
− β

∂f1
∂I

∂

∂Θ

∂Φ2

∂t
= 0. (2.65)

The second, sixth and eighth terms are on the order of β2
(
O
(
β2
))

and can be neglected

at this stage. Equation (2.64) shows that f0 is independent of Θ, which allows us to set

the fifth term to zero. Therefore, we reach

∂f0
∂t

+ β
∂f1
∂Θ

ωBounce −
∂f0
∂I

∂

∂Θ

∂Φ2

∂t
= 0. (2.66)

After averaging (2.66) over Θ, the second and third terms vanish and we find

∂f0
∂t

= 0. (2.67)

We define f0 = δf + ⟨Feq (Jres (t))⟩, where <> denotes averaging over Θ and f0 (t = 0) =

Feq (Jres (t = 0)). The uniformity assumption of the distribution function over the sep-

aratrix region assures ⟨Feq (Jres (t))⟩ = Feq (Jres (t)). Hence, f0 (t) = δf + Feq (Jres (t)).

According to (2.67), f0 should remain constant during frequency sweeping which gives

δf = Feq (Jres (t = 0))− Feq (Jres (t)) . (2.68)

2.6.3 Validation of the smallness of the perturbed potential energy change

As illustrated in figure 2.12, we consider the case of a long range frequency chirping

where the separatrix has approximately vanished. Therefore, we have Jα,+(t) ≈ 0. The

change in the equilibrium energy (Eeq,α) of the trapped electrons in the BGK mode is

∆Eeq,α =
∂H0,α

∂Jα
∆Jres,α = ωpe∆Jres,α, (2.69)

where ∆Jres,α = Jres,α(t = t0)− Jres,α(t). Using equation (2.20) , we find

∆Jα = Jα,+(t = t0)− Jα,+(t) ≈

√
A1,0Vα,1,1,0

|∆α,0|
, (2.70)

where, t = t0 is denoted by the subscript 0. The change in the perturbed energy

(Eperturbed,α) of the electrons, which is the change in the perturbed potential energy,

equals

∆Eperturbed,α = A1,0Vα,1,1,0. (2.71)
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Figure 2.12: Schematic of a separatrix shrinkage with Jα,+(t) ≈ 0 during long range
frequency chirping.

We have claimed that if the change in Jres,α is greater than the change in the separatrix

width, then ∆Eperturbed,α ≪ ∆Eeq,α. Therefore, we have

A1,0Vα,1,1,0 ≪ ωpe∆Jres,α. (2.72)

The above inequality can be written into√
A1,0Vα,1,1,0

|∆α,0|
· ωB ≪ ωpe∆Jres,α, (2.73)

where ωB =
√
A1,0Vα,1,1,0|∆α,0| is the bounce frequency of trapped particles inside the

separatrix in the BGK mode. Using equation (2.70) we find

∆Jres,α
∆Jα

≫ ωB
ωpe

≈ γl
ωpe

. (2.74)

The RHS value is much less than unity (γl ≪ ωpe). Therefore, if the change in Jres,α is

greater than the change in the width of the separatrix, the condition (2.74) is sufficiently

satisfied.



Chapter 3

Long range frequency chirping of

Alfvén eigenmodes

Abstract

A theoretical framework has been developed for an NBI scenario to model

the hard nonlinear evolution of Global Alfvén Eigenmodes (GAEs) where the

adiabatic motion of phase-space structures (holes and clumps), associated with

frequency chirping, occurs in generalized phase-space of slowing down energetic

particles. The radial profile of the GAE is expanded using finite elements which

allows update of the mode structure as the mode frequency chirps. Constants

of motion are introduced to track the dynamics of energetic particles during fre-

quency chirping by implementing proper action-angle variables and canonical

transformations which reduce the dynamics essentially to 1D. Consequently,

we specify whether the particles are drifting inward/outward as the frequency

deviates from the initial MHD eigenfrequency. Using the principle of least

action, we have derived the nonlinear equation describing the evolution of the

radial profile by varying the total Lagrangian of the system with respect to

the weights of finite elements. For the choice of parameters in this work, it is

shown that the peak of the radial profile is shifted and also broadens due to

frequency chirping. The time rate of frequency change is also calculated using

the energy balance and we show that the adiabatic condition remains valid

once it is satisfied. This model clearly illustrates the theoretical treatment to

study the long range adiabatic frequency sweeping events observed for Alfvén

gap modes in real experiments.

3.1 Introduction

Alfvén waves can be unstable as a result of their interaction with energetic particles

(EPs) which satisfy the resonance condition during the slowing down process [79]. In

magnetic fusion devices e.g. tokamaks, Alfvén eigenmodes (AEs) [9, 11], located outside

the shear Alfvén continuum, are subject to weak continuum damping and therefore can be

destabilized by supra-thermal particles and fusion products. These modes are potentially

dangerous for particle transport. The feedback between unstable waves and enhanced par-

ticle diffusion would degrade EP confinement (see the review article [80] and the references

therein and also [61,81,82]), influence the fuel burnup [83–86] and subject the material of

the containment vessel to increased erosion. On the other hand, destabilization of Alfvén

waves may have some beneficial effects e.g. diagnostic purposes of the plasma core [87,88],

47
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achieving higher confinement regime due to redistribution of injected ions in DIII-D [89]

and energy channeling of fusion born alpha particles [90]. Therefore, an ability to model

and control these kinetically driven instabilities is crucial to the design and operation of

a fusion power plant.

The wave-particle interaction, which is essentially one dimensional, may result in

frequency sweeping behaviors [63–67, 91]. Refs. [34, 92], which successfully explain the

chirping observed in experiments [69, 93], describe the possible formation of phase–space

structures, namely holes and clumps, whose motions are associated with frequency sweep-

ing events. In these models, the radial structure of the MHD mode is fixed, a logical

assumption as long as the frequency remains close to the initial eigenfrequency. Subse-

quently, a nonperturbative model [53] was presented to investigate the long range sweep-

ing events [48, 71, 72] in the hard nonlinear regime where the structure of the mode is

considerably affected by the nonthermal fast particles population. Inclusion of collision

operators into this model was accomplished in Refs. [54, 55]. More recently, a 1D theo-

retical framework was developed in Ref. [56], which investigates the impact of different

EPs orbit topologies (magnetically trapped/passing) on long range frequency chirping of

BGK modes. It should be noted that these models consider the adiabatic evolution of

phase–space structures and therefore the Vlasov equation can be bounce averaged to find

the perturbed phase–space density of resonant particles. In a very recent work [94], a new

kinetic code, CHIRP, has been developed to study the nonlinear behavior of an energetic

particle mode (EPM) which is established and evolved inside the shear Alfvén continuum.

In this paper, we develop a model to describe the hard nonlinear evolution of a Global

Alfvén Eigenmode (GAE), which is destabilized outside the Alfvén continuum, using a

Lagrangian formalism. We make two main assumptions in this work

• For a GAE, where poloidal components are weakly coupled, the toroidal effects are

neglected in the description of the bulk plasma. However, we retain toroidal effects

on EP dynamics, which determine the nonlinear behavior of an energetic particle

driven mode, in the cylinderical tokamak limit. In other words, the bulk plasma is

described in a periodic cylinder while EP dynamics are described in a high-aspect

ratio tokamak.

• In a tokamak, all the components of the mode structure namely tororidal, poloidal

and radial, needs to be updated during frequency chirping due to the non-linearity

of the EPs current. The general formalism of the problem presented in section

3.2 explains the roadmap to update all the components of the mode structure dur-

ing chirping. As mentioned in [53], when the frequency deviates from the initial

eigenfrequency significantly, the mode preserves its periodic behavior but does not

remain sinusoidal. Hence, the poloidal and toroidal components of the mode struc-

ture, which represent periodic behavior, can be treated using the Fourier expansion

method implemented in [56]. The main challenge left is to treat the radial profile,

which does not have a periodic behavior. Accordingly, we focus on the evolution

of the radial profile and the nonlinear contribution of EPs current updates only the

radial profile of the mode.

Therefore, the eigenfunction is presented by a single poloidal (m) and toroidal (n) mode

number except for section 3.2. The initial eigenfrequency lies just below the shear Alfvén

continuum and we study the dynamics associated with a downward branch of frequency

chirping. There is no continuum crossing in this case, which is a requirement for the model
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to remain valid as the frequency chirps. We consider the total Lagrangian of the system

and use finite element method to expand the radial structure of the eigenmode. Varying the

total Lagrangian with respect to finite element weights gives nonlinear equations describing

evolution of the mode radial profile, which is analyzed by invoking the adiabatic condition.

Section 3.2 describes the general picture of the problem in tokamaks. In section 3.3,

the equation of the mode driven by EPs is presented. The linear growth rate is calcu-

lated by finding an explicit expression for perturbed EPs phase–space density. Afterwards,

we introduce an adiabatic Hamiltonian describing the dynamics of EPs during frequency

chirping, which together with bounce averaging the Vlasov equation, allows us to solve

the nonlinear equation for the evolving radial profile of the mode and the rate of frequency

chirping. Section 3.4 describes a numerical procedure implemented to solve the nonlin-

ear equations. Section 3.5 presents the results for a specific polodial and toroidal mode

number. This includes equilibrium profiles, dynamics of EPs during frequency chirping,

the evolution of the radial profile, the rate of frequency chirping and validation of the

adiabatic condition. Section 3.6 is a summary.

3.2 General formalism for nonlinear GAEs

We consider a saturated MHD eigenmode with an already established structure in

the case of a near-threshold instability. In the presence of weak damping, the coherent

group of EPs locked in the mode results in signals with adiabatic frequency chirping

in the EPs phase-space associated with the slow evolution of the saturated structure.

These signals represent the nonlinear BGK modes with a chirping frequency. In tokamak

geometry the general form of a nonlinear chirping mode whose radial profile is evolving

slowly/adiabatically can be presented by

Φ (r; ts; tf ) =
∑
h

ϕh (r; ts) exp{−ihα (tf )}+ c.c (3.1)

with

ϕh =
∑
m

ϕm;n;h (r; ts) exp{ih (mθ + nφ)}

=
∑
m,l

λ (ts)Yl (r) exp{ih (mθ + nφ)}, (3.2)

where m and n are the poloidal and toroidal mode numbers, respectively, Yl (r) are base

functions and the corresponding weights λl used to describe the finite-element expansion

of the radial mode structure, tf represents fast time scale on the order of the inverse

eigenfrequency, ts represents the slow time scale on which the BGK mode evolves i.e.

much longer than the bounce period of the particles trapped in the mode and α (tf ) =∫ tf
0 ω (t′) dt′. For simplicity, the indices are dropped from t in the following.

The total Lagrangian describing the system reads

L = Lwave +
∑

fast particles

Lparticles +
∑

fast particles

Lint, (3.3)

where Lwave is the MHD wave Lagrangian, Lparticles is the EP Lagrangian describing

the equilibrium motion and the interaction Lagrangian is denoted by Lint. The total
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Lagrangian contains all the dynamical variables of the system i.e. particle variables and

field variables. In principle, one should vary the Lagrangian with respect to each dynamical

variable and follow each variable individually. But instead, we use a kinetic description.

Nevertheless, each particle trajectory is still a characteristic of the kinetic equation which

needs to be solved. However, we do not need to follow each particle trajectory because of

the rapid phase mixing in the field of the wave. Therefore, we can characterise the EPs by

adiabatic invariants assuming that the mode frequency is evolving adiabatically on much

slower time scales compared to the bounce period time of the EPs trapped in the mode.

Within the adiabatic chirping approximation, we describe such an adiabatic response of

the particles analytically by bounce-averaging the kinetic equation to find the perturbed

phase-space density [53, 54, 56]. Hence, we do not vary the total Lagrangian with respect

to fast particle variables but only with respect to the field variables. Starting from the

Littlejohns Lagrangian [73] for the guiding center motion of the fast particles, we have

LLittlejohn = e
(
A+ ρ∥B

)
· Ẋ +

mi

e
µΩ̇−H, (3.4)

where B = ∇ × A is the total magnetic field with A the vector potential, ρ∥ is the

gyroradius, mi is the ion mass, e is the electron charge, µ is the magnetic moment, Ω̇ is

the time rate of change of gyrophase and H = 1
2mv

2
∥ + µB is the particle Hamiltonian

with v∥ being the particle velocity parallel to the equilibrium magnetic field. It should be

noted that we have considered a gauge where the perturbed electrostatic potential is zero.

Using Eq. (3.4), the particle and interaction Lagrangian can be found as

Lparticles = Pθθ̇ + Pφφ̇+ PΩΩ̇−H0 (Pθ, Pφ, PΩ, θ) (3.5)

and

Lint = eÃ · Ẋ = −e
[
∂Φ

∂t
+ v∥b · ∇Φ

]
, (3.6)

respectively, where H0 is the equilibrium Hamiltonian written in terms of the canonical

variables: canonical momenta Pθ, Pφ and PΩ conjugated to θ, φ and Ω, respectively, b

is the unit vector in the direction of the equilibrium magnetic field B0 and Ã⊥ = Ã −
B0

B2
0

(
Ã ·B0

)
is the perturbed vector potential that can be represented by two independent

scalar functions Φ and Ψ as

Ã⊥ = ∇Φ−B0 (B0 · ∇Φ) /B2
0 +B0 ×∇Ψ/B0. (3.7)

As mentioned in [30], the compressional perturbation Ψ is almost decoupled from the shear

Alfvén perturbation Φ. We, therefore only consider the Φ term for a GAE.

The periodicity of the unperturbed motion allows us to implement action-angle (AA)

variables (θ̃, φ̃, Ω̃, Pθ̃, Pφ̃, PΩ̃) for EPs dynamics. The transformation to the AA variables

is governed by the following type-2 generating function

G2 = φPφ̃ +ΩPΩ̃ +

∫ θ

0
Pθdθ. (3.8)

The interaction Lagrangian can be written in a more explicit form by substituting Eqs.

(3.1) and (3.2) in Eq. (3.6). The perturbed/interaction Hamiltonian reads

Hint = −Lint. (3.9)
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By neglecting the toroidal coupling between poloidal components of the mode and ex-

panding in AA variables of the unperturbed motion, we find

Hint = −
∑
l,h,p

λl,h (t)Vp,n,l,h
(
Pθ̃, Pφ̃, PΩ̃

)
exp
{
ipθ̃ + ih [nφ̃− α (t)]

}
+ c.c, (3.10)

where θ̃ and φ̃ are poloidal and toroidal angles, respectively, corresponding to the AA

variables of the unperturbed motion, V is the coefficient of the Fourier expansion in θ̃ and

p is the indice of resonances in the linear stage, whereas in the nonlinear problem p
h lables

different resonances.

The equations governing the evolution of the mode structure and the frequency can be

derived by varying the total lagrangian of the system with respect to the two dynamical

field variables, namely λ and α. We write the system of equations for the evolution of the

mode structure by varying the total Lagrangian with respect to λ, however, in the limit

of adiabatic frequency chirping and the slow evolution of the radial profile d lnλl
dt ≪ α̇, the

energy balance principle is used to track the evolution of the frequency (α̇) during chirping.

Therefore, we find the equation corresponding to each harmonic (h) of the evolving mode

structure by varying Eq. (3.3) with respect to λ, which gives

(
h2α̇2Mh − Nh

)
· λh = −1

4

∫
d3pd3qδf (q,p, t)

×
∑
p

Vp,n,l=1,h
...

Vp,n,l=s,h

 exp
{
ipθ̃ + ih [nφ̃− α (t)]

}
+ c.c, (3.11)

where matrices Mh and Nh, corresponding to each harmonic (h), are constructed by dis-

cretising the field and integrating over the plasma volume and the integration on the RHS

is over the phase-space of the EPs. It is noteworthy that the derivation of Eq. (3.11) and

the matrices are detailed in section 3.3. During the adiabatic evolution, the BGK mode

acts like a bucket and the trapped EPs inside this mode will be moved slowly in phase-

space, associated with adiabatic frequency chirping. Hence, the perturbed phase-space

density (δf) is mainly due to the EPs trapped in the mode and can be found by solving

the kinetic equation in the adiabatic regime.

In what follows, the theoretical picture is developed for a single harmonic (h = 1). In

other words, this model focuses on the evolution of the radial component of the mode

during adiabatic frequency chirping.

3.3 The model

We consider a GAE in the following calculations and therefore retain only one poloidal

harmonic in the linear response of the cold particles. We, however, take into account

poloidal variation of the confining magnetic field in our calculations of the EP trajectories

and use a high aspect ratio approximation for that.
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3.3.1 MHD wave Lagrangian

The kinetic (K) and potential energy (W ) of MHD waves are given by

K =
1

2

∫
ρξ̇2dV (3.12a)

W = −1

2

∫
ξ · F (ξ) dV, (3.12b)

where ρ is the mass density, ξ is the displacement vector, F is the force operator, dV

denotes the differential volume element and the integration is performed over the whole

plasma volume. For a low-β system and the linearized force operator and in the afore-

mentioned gauge where the perturbed scalar electrostatic potential is zero, the wave La-

grangian reads

Lw =
1

2

∫
ρ

(
˙̃A⊥
B0

)2

−

∣∣∣∇× Ã⊥

∣∣∣2
µ0

+
J∥

B0
Ã⊥ · ∇ × Ã⊥dV (3.13)

where Ã is the perturbed vector potential, B0 is the equilibrium magnetic field, µ0 is the

magnetic permeability, J∥ is the unperturbed plasma current parallel to the equilibrium

field and we have neglected the nonlinear bulk plasma response. Considering only the Φ

term in Eq. (3.7) for a GAE, Eq. (3.13) reduces to

Lw =
1

2µ0

∫
µ0ρ

B2
0

(
∇⊥Φ̇

)2
−
(
B0∇⊥

B0 · ∇Φ

B2
0

)2

−[
(∇×B0) (B0 · ∇Φ)

B2
0

]2
− (B0 · ∇Φ) (∇Φ ·∆B0)

B2
0

dV, (3.14)

which can be varied with respect to Φ to obtain the linear dispersion relation. For a single

GAE, Φ can be written as

Φ (r; t) =

s∑
l=1

λl (t)Yl (r) exp{imθ + inφ− iα (t)}+ c.c, (3.15)

where (r, θ, φ) are cylinderical coordinates, α (t) represents rapid oscillations, s is the total

number of finite elements and λl and α are real quantities with λl being assumed to change

slowly compared to the mode frequency, d lnλl
dt ≪ α̇. This implies a proper set of the base

functions that can represent a smooth radial profile of the global eigenmode. Substituting

Eq. (3.15) into Eq. (3.14) gives

Lwave = 2α̇2 [λ⊺ ·M · λ]− 2 [λ⊺ · N · λ] , (3.16)
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where the fast time varying part is integrated out and the superscript ⊺ denotes the

transpose operation, {λ}∈ Rs×1, {M,N} ∈ Rs×s whose elements are given by

Mj,k =
1

2µ0

∫
rR0

V 2
A

[
dYj
dr

dYk
dr

+
m2

r2
YjYk

]
drdθdφ (3.17a)

Nj,k =
1

2µ0

∫ [
B2

0

(
d

dr

k∥Yj

B0

)(
d

dr

k∥Yk

B0

)
+

(
m2k2∥

r2

+
µ20J

2
∥k

2
∥

B2
0

+ µ0mk∥
d

dr

(
J∥

B0

))
YjYk

]
rR0drdθdφ, (3.17b)

where R0 is the major radius, VA is the Alfvén velocity and k∥ is the wavenumber parallel

to the equilibrium magnetic field.

3.3.2 Energetic particle and interaction Lagrangian

We write the unperturbed particle Lagrangian part of Eq. (3.4) using the high aspect

ratio tokamak limit where the flux surfaces are approximated by the contours of constant

r [95]. In these coordinates, one can write

A0 = ψ∇θ − χ∇φ+∇η, (3.18)

and

B0 = ∇ψ ×∇θ −∇χ×∇φ = Bθ∇θ +Bφ∇φ. (3.19)

where A0 is the equilibrium part of the vector potential and χ is the poloidal flux. We

have ∇φ = R−1eφ and according to Amperes law B0 ∝ R−1. Hence, Bφ ≈ B0R0 is a

constant with B0 being the equilibrium magnetic field at the center of the plasma. Using

Eqs. (3.18) and (3.19), we have

∂ψ

∂r
≈ rB0 (1− ϵ cos θ) , (3.20)

where ϵ is the inverse aspect ratio.

Using a proper gauge to cancel ∇η in A0, Lparticles can be written in the canonical

form given by Eq. (3.5) and the canonical variables are given by

Pθ =eψ(r, θ) +miv∥bθ(r, θ), (3.21)

Pφ =− eχ(r) +miv∥bφ(r, θ), (3.22)

PΩ =
mi

e
µ, (3.23)

where bθ and bφ are covariant components of b, with bθ ≈ r2/qR and bφ ≈ R, and χ (r)

can be found using Eq. (3.20) and the safety factor q (r, θ) = B0·∇φ
B0·∇θ = ∂ψ/∂r

∂χ/∂r ≈ q (r). The

conversion from r and v∥ to the canonical variables are now implicitly given by Eq. (5.18)

and Eq. (3.22).

The large aspect ratio assumption allows us to drop the θ dependency in Eq. (3.20).

Taking into account that the toroidal equilibrium field is dominant, bθ can also be ne-
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glected. Hence, we have

Pθ =
1

2
eX2

rB0, (3.24)

Pφ =− eχ (Xr (Pθ)) +miv∥R, (3.25)

and

H0 =
1

2
miv

2
∥ (Pθ, Pφ, PΩ, θ) + µB0

[
1− Xr (Pθ)

R0
cos θ

]
, (3.26)

where Xr is the radial position of the EPs. By implementing the canonical equations of

motion, we find

∂H0

∂Pθ
=miv∥

∂H0

∂Pθ
− µB0

1

R0
cos θ

dXr

dPθ
= θ̇, (3.27)

∂H0

∂Pφ
=miv∥

∂v∥

∂Pφ
= φ̇, (3.28)

∂H0

∂θ
=miv∥

∂v∥

∂θ
+ µB0

Xr

R0
sin θ = −Ṗθ. (3.29)

Using Eq. (3.25), we get

Ṗθ =−

[
miv

2
∥

R
+
µB0

R0

]
Xr sin θ, (3.30)

φ̇ =
v∥

R
, (3.31)

θ̇ =
v∥

Rq(Xr)
−

[
miv

2
∥

R
+
µB0

R0

]
cos θ

1

eB0Xr
. (3.32)

It should be mentioned that in the high aspect ratio tokamak limit, the safety factor can

be considered only as a function of the radius. The conjugate momenta corresponding to

φ and Ω are constants of motion. Therefore, in terms of the AA variables introduced by

(3.8), one can set Pφ̃ = Pφ, PΩ̃ = PΩ and considering the definition of the angle variables

from 0 to 2π, it is found that φ̃ = φ+∆φ for motion in the direction of the field line. In

this work, we consider the case of a neutral beam injection (NBI) where the majority of

the EPs are deeply passing (µ ≈ 0) inside the equilibrium field. Consequently, v∥ becomes

a constant of motion. We also assume the maximum orbit width (∆r) to be much smaller

than the width of the radial mode structure and let r0 (Pθ, Pφ, PΩ) be the average position

of a drift orbit. These conditions together with the large aspect ratio assumption make φ

and θ approximately linear in time. Therefore, we find

˙̃
θ = ωθ̃ ≈

V∥

(
P̃θ, P̃φ, P̃Ω

)
q (r0)R0

(3.33a)

˙̃φ = ωφ̃ ≈
V∥

(
P̃θ, P̃φ, P̃Ω

)
R0

, (3.33b)

where ωθ̃ and ωφ̃ represent the poloidal and toroidal guiding center frequency of deeply

passing EPs.
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Substituting Eq. (3.15) into Eq. (3.6) results in

Lint = ie

α̇− v∥

(
m

q(Xr)
+ n

)
R0

∑
l

λl (t)Yl (Xr) exp{imθ + inφ− iα (t)}+ c.c. (3.34)

Now, we express the above Lagrangian in terms of the AA variables of the unperturbed

motion to find

Lint =
∑
l

∑
p

λl (t)Vp,n,l exp
{
ipθ̃ + inφ̃− iα (t)

}
+ c.c, (3.35)

where the coupling strength, Vp,n,l, is determined by

Vp,n,l =
1

2π

∫
ie

α̇ (t)− v∥

(
m

q(Xr)
+ n

)
R0

Yl (Xr) exp{imθ + inφ} exp
{
−ipθ̃ − inφ̃

}
dθ̃,(3.36)

whose detailed calculation for deeply co-passing orbit types of the EPs is presented in

3.7.1.

3.3.3 Mode equation

The total Lagrangian for one eigenmode can be presented by

L = 2α̇2 [λ⊺Mλ]− 2 [λ⊺Nλ] +
∑

fast particles

Pθ̃
˙̃
θ + Pφ̃ ˙̃φ+ PΩ̃

˙̃Ω−H0

(
Pθ̃, Pφ̃, PΩ̃

)
+

∑
fast particles

λ⊺ (t)D + c.c, (3.37)

where the elements of {D} ∈ RS×1 are Dl,1 =
∑

p Vp,n,l exp
{
ipθ̃ + inφ̃− iα (t)

}
. Varying

the above Lagrangian with respect to λ gives the following expression for the nonlinear

mode structure (
4α̇2M− 4N

)
λ+

∑
fast particles

D + c.c = 0 (3.38)

The sum over fast particles can be replaced by integration over initial phase–space. The

canonicity of the transformation from the initial phase–space coordinates to the instant

coordinates [(q0,p0) → (q,p)] allows us to write the phase-space integration in terms of

the instant coordinates. In addition, as mentioned in section 3.2, we take h = 1 and

therefore we find the nonlinear mode equation in the form given by Eq. (3.11) with h = 1,

where δf =
∑

p δfp is the perturbed part of the total distribution function (f = δf+F0) of

the EPs with F0 being the equilibrium part. In this model, krook type collisions inside the

bulk plasma provide the damping mechanism to the wave amplitude at a rate γd, which

is implicitly included in Eq. (3.11) (see [29] and [30]).
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3.3.4 Mode evolution

The total Hamiltonian of the EPs during the hard-nonlinear evolution reads,

H = H0

(
Pθ̃, Pφ̃, PΩ̃

)
+Hint (3.39)

where Hint = −Lint =
∑

pHint,p written in terms of the AA variables of the unperturbed

motion. In order to simplify the dynamics, we consider the canonical transformation using

the type-2 generating function

F2 (q,pnew, t) = P1

[
pθ̃ + nφ̃− α (t)

]
+ P2φ̃+ P3Ω̃, (3.40)

for the p-th resonance. The new variables are defined as follows

P1 =
1

p
Pθ̃

P2 = Pφ̃ − n

p
Pθ̃

P3 = PΩ̃

Q1 = ζ = pθ̃ + nφ̃− α (t)

Q2 = φ̃

Q3 = Ω̃

(3.41)

which shows that the wave-particle interaction is effectively one-dimensional in an isolated

resonance, i.e. P2 and P3 corresponding to ignorable coordinates, are constants of the mo-

tion. The above canonical transformation is defined for a specific value of p corresponding

to the p-th resonance. This can be emphasized by considering a subscript p on the new

variables. However, such subscripts are neglected for simplicity.

In what follows, we first calculate an analytic expression for the perturbed phase–space

density of EPs in the linear limit. Afterwards, the dynamics of the resonant particles dur-

ing the adiabatic chirping of the GAE are identified, followed by the perturbed distribution

function during the evolution of holes/clumps.

3.3.4.1 Linear regime

The linearized Vlasov equation for the p-th resonance

∂δfp
∂t

+
∂δfp
∂ζ

∂H0

∂P1
=
∂F0

∂P1

∂Hint,p

∂ζ

∣∣∣∣
P2,P3

, (3.42)

where δfp = f̂p (P1) exp(iζ) + c.c and Hint,p = −
∑

l λlVp,n,l exp(iζ) + c.c, can be used

to derive an analytic expression for δfp. During the linear evolution, we set α(t) = ωt,

with ω being the complex frequency having the real part ωr and imaginary part γl. By

substituting the relevant expressions in Eq. (3.42), we find

f̂p =

∑
l λlVp,n,l(

∂F0
∂Pφ̃

n+ ∂F0
∂Pθ̃

p)

ω − pωθ̃ − nωφ̃
, (3.43)

which gives the resonance condition

ωr = pωθ̃ + nωφ̃. (3.44)

In the limit of deeply passing particles, Eqs. (3.11) (with h = 1) and (3.43) are used
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to find the linear dispersion relation of the mode given by

(
ω2M− N

)
λ = 4π3

∑
p

∫
dP1dP2

∂F0
∂P1

∣∣∣
P2,P3

G (P1)− ω
Tλ, (3.45)

where G (P1) =
∂H0
∂P1

∣∣∣
P2,P3

, {T} ∈ CS×S whose elements are given by Tj,k = Vp,n,l=jV
∗
p,n,l=k

and λ represents the initial MHD eigenvector. Neglecting the infinitesimal contribution

from the principal value allows us to set ωr = ωGAE, where ωGAE is the initial MHD

frequency of the eigenmode. Therefore, the linear growth rate of the mode is found to be

γl =

[∑
p

∫
dP2

∂F0

∂P1

∣∣∣∣
P2,P3

(
∂G

∂P1

)−1

T λ|P1=P1,res

]
2π4λ⊺

ωGAEλ⊺Mλ
, (3.46)

where P1,res is the value of P1 at resonance denoted by Π throughout this manuscript and

we have assumed γl ≪ ωGAE.

3.3.4.2 Nonlinear chirping GAE

The existence of the damping mechanism introduced in subsection 3.3.3 leads to an

unstable plateau in the phase–space density of EPs which supports sideband oscillations

that evolve into chirping modes [92, 96]. For the purpose of investigating the mode dur-

ing frequency sweeping, we consider a marginal instability case where mode overlap is

neglected and we take the limit where phase–space structures (holes and clumps) move

adiabatically. Hence, we have [
dωb
dt

,
dα̇

dt

]
≪ ω2

b ∼ γ2l ∼ γ2d , (3.47)

where ωb is the bounce frequency of EPs trapped inside the separatrix. Therefore, the

finite element amplitudes, λl(t), evolve on a slow time scale; however, α(t) includes a fast

time scale on the order of ω−1
GAE, which corresponds to the periodic behavior of the field.

The canonical transformation presented by Eq. (3.41) can be implemented to cancel this

fast time scale dependency from the Hamiltonian given by Eq. (3.39). Therefore, for the

p-th resonance, the total Hamiltonian converts to

K = H0 (P1, P2, P3)− α̇P1 −

 ∑
p′=p,l

λlVp′,n,l (P1, P2, P3) exp{iζ}+ c.c

 , (3.48)

where highly oscillating terms corresponding to other resonances (p′ ̸= p) have been ne-

glected. Assuming the separatrix width to be small compared with the characteristic

width of the distribution function, we can Taylor expand the quantities around the middle

of the separatrix (Π(t)), so we have

K ≈ H0 (Π, P2, P3) +
∂H0

∂P1
(Π, P2, P3) [P1 −Π]− α̇P1

+
1

2

∂2H0

∂P 2
1

[P1 −Π]2 −
∑
l

λlVp,n,l (Π, P2, P3) exp{iζp}+ c.c. (3.49)
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The higher order terms in the expansion of the equilibrium Hamiltonian have been ne-

glected due to the smallness of the separatrix width. Π satisfies: ∂H0
∂P1

(Π, P2, P3) = α̇ (t),

consequently Π = Π (P2, P3, t). Therefore, the new Hamiltonian is

K ≈ 1

2

∂2H0

∂P 2
1

(Π, P2, P3) [P1 −Π]2 −
∑
l

λlVp,n,l (Π, P2, P3) exp{iζp}+ c.c. (3.50)

which evolves adiabatically during frequency sweeping. It is noteworthy to mention

that for ∂2H0

∂P 2
1
(Π, P2, P3)>0, substituting K in Eq. (3.50) with the maximum value of∑

l λlVp,n,l (Π, P2, P3) exp{iζp}+ c.c gives the dynamics on the separatrix. The preserved

adiabatic invariant corresponding to the above slowly evolving Hamiltonian is

I =
1

2π

∫
P1dζ (3.51)

and we denote the corresponding angle by η. The above equation can be solved for each

P2, corresponding to a separatrix, by substituting for P1 and integrating from 0 to 2π over

the angle variable ζ.

The perturbed distribution of the passing particles traveling around the separatrix

remains approximately close to the equilibrium distribution [53,54]. Hence, the perturbed

density is assumed to be dominantly from the trapped particles inside the separatrix.

Considering the small separatrix width assumption mentioned above and bounce-averaging

the Vlasov equation (see section 3 in [54] and appendix B in [56]), we find

δf =

{
f0 − F0(t) = F0(t = 0)− F0(t), trapped

0, passing
(3.52)

where δf is the perturbed distribution function of the particles inside holes/clumps, f0 is

the lowest order term in the expansion of f around the small parameter η = τb
τs

with τb
and τs being the bounce period and the slow time scale of mode evolution, respectively. It

should be noted that t = 0 denotes the initial stage of chirping in this paper. However, for

the case of an expanding separatrix and for newly trapped particles during chirping, t = 0

in the above expression implies the time when EPs are trapped inside the separatrix.

3.3.4.3 Chirping rate

According to [31], the dissipated power (Q) via weak collisions due to the work of

friction force is 2γdEwave, with Ewave being the MHD energy of the mode, which consists

the perturbed energy of the cold plasma and the perturbed electromagnetic field. This ab-

sorbed power (Q) should be equal to the power (P ) released by the phase–space structures

energy. Therefore, we have

2γdEwave = −
∑
P2

NP2

dE

dt
, (3.53)

where NP2 is the perturbed number of EPs inside each coherent phase–space structure

(hole/clump) in the interval ∆P2, given by

NP2 =

∫∫
δfdP1dζ∆P2 (3.54)
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and E is the energy of each fast particle inside the hole/clump. This energy consists the

kinetic energy and the potential energy of the EPs. Compared to the change in their

kinetic energy, we neglect the contribution from the small change in their potential energy

which is proportional to the change in the width of the separatrix (See Appendix C in [56]).

Hence, E can be replaced by H0. So we find

dE

dt
=

dH0

dt
=
∂H0

∂P1

∣∣∣∣
P2,P3

G′(Π)−1α̈, (3.55)

where G = ∂H0
∂P1

∣∣∣
P2,P3

= pωθ̃+nωφ̃ = α̇ previously defined in subsection 3.3.4.1 and the last

factor on RHS is the rate of chirping of the mode which is the same for all the separatrices

corresponding to different P2s in this model. We also have

∂2H0

∂P 2
1

∣∣∣∣
P2,P3

=
1

mR2
0

[
p

q
+ n

]2
−

pv∥
dq
drp

R0q2
√

2eB0Pθ̃
. (3.56)

The MHD energy of the mode (Ewave) is the sum of Eqs. (3.12a) and (3.12b), which

gives

Ewave =W +K =
1

2µ0

∫ ˙̃A2
⊥

v2A
+
∣∣∣∇× Ã⊥

∣∣∣2 − (Ã⊥ · ∇ × Ã⊥

) ∇×B ·B
B2

dV, (3.57)

which gives

Ewave = 2α̇2 [λ⊺ ·M · λ] + 2 [λ⊺ · N · λ] . (3.58)

Substituting the relevant terms into Eq. (3.53) yields

∂ (α̇− α̇t=0)
2

∂t
=

−8γd
[
α̇2λ⊺ ·M · λ+ λ⊺ · N · λ

]
(α̇− α̇t=0)

∑
P2

∫∫ δfdP1dζ
α̇

∂2H0
∂P2

1

∣∣∣∣
P2,P3

∆P2


, (3.59)

where α̇t=0 = ωGAE .

3.4 Numerical approach

In this section, the numerical approach implemented to solve for the rate of chirping

along with the nonlinear mode structure is presented. We have used cubic Hermite ele-

ments as the base functions. It is noteworthy that sufficient number of elements should

be implemented in order to ensure that the weight/coefficient of each element (λl) varies

slowly (d lnλl
dt ≪ α̇) during frequency chirping and the radial structure is smooth. The

MHD eigenfrequency (ωGAE) and eigenvector (λGAE) of the mode are derived separately

by solving the MHD eigenvalue problem by setting the fast particle contribution in Eq.

(3.11) to zero. The equilibrium profiles used to solve the MHD problem and the resonance

condition are given in section 3.5 (see figure 3.3).

The general roadmap is as follows

• A 5th order Runge-Kutta method is used to solve the differential equation for the

chirping rate
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• The resonance condition is solved for each new frequency (see section 3.5)

• At each time step of the Runge-Kutta method, the nonlinear mode structure is

calculated by solving Eq. (3.11) with h=1 for λ iteratively. This stage is visualised in

figure 3.1 where we choose a fixed number of iterations. In our numerical experiment,

we found that after 14 iterations, the maximum relative error in the convergence of

the elements of λ vector is on the order of 10−4.

Figure 3.1: The iterative scheme of solving for the mode structure. The index i denotes
the number of iteration and RH represents the RHS of Eq. (3.11).

The explanation of this diagram including the integration over phase-space in RHS

of Eq. (3.11) or Eq. (3.59), how to treat a/an shrinking/expanding separatrix and the

special treatment for the initial stage are detailed below.

3.4.1 Integration over phase-space

Investigation of the hard nonlinear evolution of the mode structure requires one to con-

sider the contribution of different groups of particles that are simultaneously in resonance

with the mode and provide Eq. (3.11) with the coressponding perturbed densities during

frequency sweeping. It should be noted that in this model (P3 = 0), each P2 corresponds

to a slice of resonance line (a specific group of particles in resonance with the mode) asso-

ciated with a separatrix. For a specific value of P2, there exists a corresponding separatrix

in (P1, ζ) space whose dynamics affects the mode behavior during chirping.

3.4.1.1 Integration over P2

The integration over P2 is performed by the Trapezoidal rule. As the frequency of

the mode begins to deviate from the initial value, there may be some groups of EPs that
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Figure 3.2: Schematic of a separatrix at initial stage (solid line) and expansion of the
separatrix after two time steps (dashed and dotted lines). The phase–space area of the
initial separatrix is denoted by (a) and the two areas added are specified by (b) and (c).

lose resonance with the mode. On the other hand, there are other groups of EPs whose

dynamics satisfy the new resonance condition associated with the updated frequency and

will contribute to the interaction. Consequently, after each time step where the frequency

is updated, new values of P2 are added to the domain over which the trapezoidal rule is

performed.

3.4.1.2 Integration over (P1,ζ)

Provided that all the separatrices shrink during the evolution, one can integrate over

P1 analytically. Nevertheless, it is shown in [56] that even for a constant trend in fre-

quency sweeping i.e. upward or downward, the value of the adiabatic invariant can have

different behaviors depending on the initial equilibrium orbits. Therefore, even for deeply

passing energies and for a constant trend in frequency sweeping, the adiabatic invariant

corresponding to different groups of the resonant particles may exhibit different behaviors

in terms of the expansion/shrinkage. This needs to be considered in developing a numer-

ical treatment for the evolution of each separatrix [55,97,98]. Accordingly, the procedure

designed to calculate the integral over each separatrix includes the following main steps:

• Calculating the energy related to the EPs dynamics on the separatrix for the given

λ and the corresponding value of the adiabatic invariant (Imax).

• Calculating the ambient phase-space density using the slowing-down distribution

given by Eq. (3.62).

• Calculating δf using Eq. (3.62) and

- the special treatment presented in 3.4.2 at early stage.

- the stored phase-space data together with Eq. (3.52) during later evolution.
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• Storing/updating the phase-space data,

-At initial stage: Discretising the separatrix using different adiabatic invariants

and assigning an ambient phase-space density value to each region and storing the

corresponding data.

-At later evolution: Updating the stored information: Identifying the shrink-

age/expansion by comparing each new Imax to the saved data and updating the

data accordingly.

The first two steps can be accomplished by using Eq. (3.51) and the notes thereafter

for a constant value of P2. As mentioned above, the numerical scheme should be able to

resolve a shrinking separatrix as well as an expanding one. In the first instance, this may

imply that a fully numerical method should be implemented to perform the integration

over the phase–space (P1, ζ) since the perturbed phase–space density term can not be

taken out of the integral to allow further analytic calculations/simplifications. However,

we implement the following justification to further simplify the integral over each region

inside the separatrix with a constant value of the distribution function and speedup the

calculations: For the case of an expanding separatrix, it is necessary to chirp continuously

between the initial and final frequency in order to derive an exact nonlinear structure at

a specific frequency after chirping. This means that the corresponding frequency/time

step of the numerical approach is chosen to be sufficiently small so that each group of

newly trapped particles will carry the value of their distribution function prior to becom-

ing trapped inside the separatrix. Subsequently, sufficiently small time steps result in

a sufficiently small phase–space area added around the previous separatrix. Hence, this

enables us to consider a flat-top phase-space density over each newly added region/ring

around the previous separatrix and simplify the integral for each region having a constant

density. Figure 3.2 shows the phase–space area of an expanding separatrix after two time

steps during chirping. Regions b and c represent the small areas added to the initial

phase-space area (a) and the value of the distribution function is taken to be the same

over each region.

At the initial stage, we discretise the phase-space area surrounded by the separatrix

using different values of the adiabatic invariant inside the range I = [0, Imax]. This is

achieved by substituting different energy values for K in Eq. (3.50). Each adiabatic

invariant is assigned a corresponding value of the phase-space density, which represents

the value of the distribution function inside the separatrix between two neighbouring

discretised adiabatic invariants. Therefore, we define one adiabatic invariant and one

phase-space density vector for each separatrix to track its evolution in the numerical

scheme. At each time step, depending on whether the value of the new adiabatic invariant

at the separatrix (Imax) is greater or smaller than its value at the previous time step, both

vectors are being updated.

During the evolution of each phase-space structure, the value of the ambient phase-

space density is the same as the equilibrium distribution function. The difference between

this value and the phase-space density inside the separatrix, stored from the previous steps,

gives the perturbed distribution function across the separatrix, which can be associated

to the height of the coherent structure (hole/clump) in a 3D picture.
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3.4.2 Early stage of chirping

In order to investigate the sweeping rate and the mode structure at early stage of

chirping, we rewrite the differential Eq. (3.59) and Eq. (3.11) (with h = 1) at t = 0. If the

separatrix does not trap new particles (a shrinking separatrix) during chirping, f0 remains

the same as F0,t=0 [54,56]. For an expanding separatrix the phase–space density of newly

trapped particles should be set to the value of the ambient distribution function at the

point where the particles are trapped. However, for the very initial stage, one can still

set δf = F0 (P1,res,t=0, P2) − F0 (P1,res (t) , P2). Using the expansion of F0 (P1,res (t) , P2)

around t = 0 and Π−Π(t=0)
α̇−α̇t=0

≈
(
∂2H0

∂P 2
1

)−1
∣∣∣∣
P1=Π(t=0)

, we find

∂ (α̇− α̇t=0)
2

∂t
=

8γd
[
α̇2λ⊺ ·M · λ+ λ⊺ · N · λ

]
∑

P2

∫∫ dP1dζ
∂F0
∂P1

|P1=Π(t=0)
α̇(

∂2H0
∂P2

1

)2

|P1=Π(t=0)

∆P2

 (3.60)

at the initial stage of frequency chirping. For analysing the saturated mode structure at

the early stage of chirping, we write α̇ = α̇t=0 + ∆α̇ and substitute in Eq. (3.11) (with

h = 1) for α̇, to have

a =
λ⊺
GAE

8α̇λ⊺
GAE

·M·λGAE

∫
d3pd3q ∂F0

∂P1

(
∂2H0

∂P 2
1

)−1
|P1=Π(t=0)

∑
p

Vp,n,l=1
...

Vp,n,l=s

 exp{iζp}

+c.c. (3.61)

where we have considered the saturated mode structure to be a linear factor of the MHD

eigenvector (λGAE), λ = aλGAE. For an eigenmode growing outside the shear Alfvén

continuum, the structure of the radial profile remains almost the same as the initial eigen-

vector [30].

3.5 Results

We set the values of physical parameters as follows: the axial magnetic field at the

center Bφ(r = 0) = 2T, R0 = 3.5m, the minor radius rm = 1m, the ion mass mi ≈
3.3 × 10−27kg, the number density of bulk plasma ions nBulk = 5 × 1020m−3. The fast

particles density nf is taken to be (1− 10)% of nBulk.

3.5.1 Equilibrium profiles and resonance condition

For the purpose of this work, we consider the density and current profiles mentioned in

[7] to solve the equilibrium condition and the MHD eigenmode problem (Eq. (3.11) without

the contribution of fast particles) in the low-β limit. Figure 3.3 shows the equilibrium

parameters as a function of the radial position. We have benchmarked the eigenvectors

of the MHD eigenvalue problem code with the radial component of displacement vectors

reported in [7]. In this model, the GAE exists just below the shear Alfvén continuum since

the singularity in the eigenfunction no longer occurs at r ≈ r|ω=ωmin
due to the inclusion of

the current dependent terms. The choice of the mode numbers is based on two factors: An

MHD eigenmode should exist for the corresponding mode numbers and also there should
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Figure 3.3: MHD equilibrium profiles: (a) the poloidal component of the magnetic field
(b) the black and red lines represent the q and the density profiles, respectively (c) the
parallel current density and (d) Alfvén continuum for m = 3 and n = 9.

be sufficient drive for the corresponding mode with respect to a realistic description of

EPs distribution. Consequently, we have considered the mode numbers m = 3, n = 9 for

the case of a slowing down distribution of energetic ions presented by

F0 =
n0A

v3∥ + v3c
exp

{
Pφ
∆Pφ

}
δ
(
P3 − 0+

)
(3.62)

where n0 is the density of the fast particles at the center, A = 3
√
3v2c

4π2eBmi
is the normalization

constant with vc being the critical velocity and ∆Pφ the width of F0 on Pφ. The aforemen-

tioned mode numbers correspond to an eigenfrequency of ωGAE = 4.73×106rad s−1 where

the radial wavenumber is 1. The fast ions parameters are chosen to satisfy γl ≪ ωGAE. By

setting vc = 2.6× 106, ∆Pφ = 0.47× 10−20 and nf = 10%nBulk, we find the linear growth

rate γl = 1.13×104s−1 for p = 2. It is noteworthy that for highly co-passing energetic ions

studied in this model, the coupling strength is nonzero for p = m± 1 (see 3.7.1). Prior to

investigating the evolution of the nonlinear structure, the resonance condition Eq. (3.44)

should be solved to find the values of action variables, Eq. (3.41), at the resonance and

also to track the dynamics of the resonant particles. For a downward trend in frequency

chirping, figure 3.4a, b and c illustrate the resonance line for v∥, P1 and P2 respectively,

versus radial position for different frequencies. The conservation of conjugate momenta P2

and P3, with the latter being ≈ 0 for deeply passing EPs, allows us to track the dynamics
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Figure 3.4: Resonance line of v∥ (a), P1 (b) and P2 (c) for different wave frequencies.
Points A and A′ on (c) represent the initial position of a separatrix that moves to points
{B,C,D} and {B′, C ′, D′} , respectively, during frequency chirping while the value of P2

is preserved.

of EPs and identify whether the motion of nonlinear structures (holes/clumps) in phase–

space results in an inward or outward flux of the fast ions in resonance with the chirping

GAE. Since P2 corresponds to an ignorable coordinate, its value must be preserved during

the motion of holes/clumps. Therefore, the motion of the corresponding separatrix in the

radial direction occurs in a way that the value of P2 remains the same during chirping.

As an example, the group of particles that satisfy the resonance condition at point A on

figure 3.4c should move to point D in order to conserve the value of P2 while satisfying

the resonance condition. Therefore, this results in an inward flux of fast ions towards the

plasma core during frequency sweeping of the eigenmode.

Figure 3.5 shows the equilibrium phase–space density of EPs as well as the resonance

line for four different frequencies. Initially, the value of the total phase-space density inside

each separatrix is the same as the equilibrium distribution function. This is illustrated by

using circles on the initial resonance line (1) in figure 3.5. As the frequency chirps, the

separatrices (phase–space structures) preserve the initial value of the phase-space density

during their motion and carry the initially-in-resonance EPs with the mode to new regions

in phase-space. Therefore, depending on whether the value of F0 at these new regions is

lower or higher than the value of F0 at initial resonance i.e. δf > 0 or δf < 0 (see
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Figure 3.5: The equilibrium phase-space density and the resonance line at different fre-
quencies. The initial resonance line is denoted by unfilled circles implying that the phase–
space density of each separatrix is the same as the equilibrium distribution function shown
at the background. Points A,B,C and D correspond to the position of the same separatrix
on both figure 3.4c and figure 3.5 at each corresponding frequency, e.g. Point B denotes
the radial and the phase-space position of the same separatrix on figure 3.4c and figure
3.5, respectively at α̇ = 0.95ωGAE.

Eq. (3.52)), a clump or hole will be developed inside the separatrix. If the separatrices

trap new EPs on their way due to the expansion (see figure 3.2) and carry them, the

preservation of the phase–space density of the newly trapped EPs should also be taken

into account. The separatrix, which is initially located at point A on figure 3.5, will

move to points B, C and D at each corresponding frequency. It can be observed that

the separatrices move to regions where the value of the ambient equilibrium phase-space

density is lower. Therefore, a clump will be developed inside the phase-space structure

to preserve the distribution function value inside the separatrix. Figure 3.6 illustrates the

total distribution function inside the separatrix at point A which moves down in P1 to

point B as a result of frequency chirping in this model.

Further explanations can be given to identify the phase-space structures as clumps:

In this case, the value of ∂F0
∂P1

|P1=P1,res , namely the drive, remains positive for all the

separatrices during frequency chirping of the mode. For deeply passing particles, we have

Xr = r0 +∆r cos θ, (3.63)

and using Eqs. (3.24) and (3.41), we find

Pθ̃ =
1

2
eB0r

2
0. (3.64)

In this case, the separatrices move inward in the radial direction, hence the value of P1,res

for each separatrix decreases as the mode chirps down as does the value of the ambient

distribution function. This means that in this case, the phase-space structures are clumps.

An upward trend of frequency sweeping in this case will result in an outward flux of
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Figure 3.6: Evolution of the phase–space clump. The dashed line represents the adiabatic
invariant corresponding to the separatrix at the bottom.

the fast ions towards the first wall and the phase–space coherent structures will be holes.

However, it should be taken into consideration that the model remains valid only for

eigenmodes subject to weak continuum damping where the linear structure is not mainly

identified by the fast particles as opposed to energetic particle modes (EPMs). Therefore,

crossing the continuum edge should be avoided during chirping.

3.5.2 chirping rate, structure evolution and adiabaticity validation

For the case of a near threshold instability |γl − γd| ≪ γd ≤ γl, we choose γd =

1.1×104s−1 and solve the differential Eq. (3.59) coupled with the integral Eq. (3.11) with

the approach mentioned in section 3.4 to determine the nonlinear behavior during long

range frequency chirping.

The radial current created by the population of the energetic ions modifies the struc-

ture of the MHD eigenmode in the hard nonlinear regime. Figure 3.7 demonstrates the

evolution of the radial profile of ϕ (r, t) while the frequency of the mode deviates from the

initial eigenfrequency. The peak of the initial eigenmode structure, located at the point

where the extremum of the Alfvén continuum occurs, will be shifted inward towards the

center of the plasma and the mode becomes more localized close to the plasma center. This

inward displacement is in compliance with the inward drift of EPs explained above. In ad-

dition, it can be observed that the radial profile is broadened as the frequency moves away

from the shear Alfvén continuum. As the frequency decreases, the amplitude of the radial

profile initially grows and then starts to decrease. It is noteworthy that the amplitude

value at ω̃ = 1 represents the saturated amplitude corresponding to the aforementioned

linear growth rate. In this model, the axial current resolves a pole in the MHD equations

and allows weakly damped GAEs with smooth radial profiles as opposed to highly damped

continuum modes with spiky radial structures. However, the eigenfrequency of this GAE

lies just below the shear Alfvén continuum and the initial frequency is very close to the

value corresponding to the pole in the MHD equations. Therefore, for a fixed frequency

change, the mode structure changes more when the frequency change occurs closer to the
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Figure 3.7: Evolution of the radial profile of the GAE during frequency chirping. ω̃ = 1
represents no change in the mode frequency

initial eigenfrequency. This can be investigated using figure 3.7. It has been shown that

the radial profile changes more when the frequency changes from ω̃ = 1 to ω̃ = 0.98 as

opposed to the case where it changes from ω̃ = 0.98 to ω̃ = 0.95.

The change in the radial component of various plasma quantities during chirping can

also be analyzed using Φ (r, t). The displacement vector reads,

ξ = − 1

B2
0

(
Ã⊥ ×B0

)
. (3.65)

Using Eq. (3.7), we have

ξB0 =
∂Φ (r, t)

∂r
ê⊥ − i

m

r
(Φ (r, t) exp{i (mθ + nφ− α (t))} − c.c) êr, (3.66)

where the poloidal component of the equilibrium magnetic field has been neglected com-

pared to the toroidal component. Eq. (3.66) clearly demonstrates the relation between

radial component of the displacement vector and the radial mode structure plotted in

figure 3.7. Figure 3.8 illustrates the rate at which the frequency chirps. It is shown that

the square root dependency holds for the very early stages of frequency chirping.

The adiabatic condition represented in subsection 3.3.4.2, which is implemented for

the formalism, needs to be validated if it remains satisfied [34, 97, 99]. Eq. (3.50) can be

written as

K =
1

2

∂2H0

∂P 2
1

(Π, P2, P3) [P1 −Π]2 −
∑
l

2|λlVp,n,l| cos (ζ + σ) , (3.67)

where σ = tan−1 ℑ(λlVp,n,l)
ℜ(λlVp,n,l)

and for the case of EPs with highly passing orbit types, we

have σ = ±π
2 . It is worth noting that in this case we have ℜ(λlVp,n,l) = 0. Using canonical
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equations of motion, one finds

Ṗ1 = −
∑
l

2|λlVp,n,l| cos (ζ + σ) , (3.68a)

ζ̇ =
∂2H0

∂P 2
1

[P1 −Π]2 . (3.68b)

The motion of the deeply trapped EPs inside the separatrix satisfies the pendulum equation

d2

dt2
(ζ + σ) = −∂2H0

∂P 2
1

∑
l 2|λlVp,n,l| sin (ζ + σ) , (3.69)

where we have used sin (ζ + σ) ≈ (ζ + σ) at the center of the separatrix, the so-called

O-point. As shown in figure 3.2, we have σ = −π
2 for the results reported in this paper

and the O-point is located at ζ = π
2 . Subsequently, the bounce frequency of the deeply

trapped EPs inside the separatrix is

ωb =

√
2
∂2H0

∂P 2
1

∑
l

|λlVp,n,l|. (3.70)

The RHS of the adiabatic condition 1 ≫
∣∣∣dωb

dt

∣∣∣
ω2
b

is plotted in figure 3.9 for separatrices with

different initial radial positions. Consistent with the previousely reported results [56, 99],

we also observe that the adiabatic condition is never formally satisfied at the very early

stage of chirping. However, it is shown that once the adiabatic condition is satisfied, it

remains valid for later evolution of the mode. In addition, it was discussed in [56] that

the assumption of γl ≪ ωGAE implies that the period during which the adiabatic limit is

not satisfied is very short.
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3.6 Concluding remarks

A theoretical description has been developed to study the hard nonlinear evolution

of a Global Alfvén Eigenmode (GAE) in resonance with co-passing energetic particles

(EPs) in an NBI scenario during the adiabatic frequency chirping behavior of the mode.

Constructing appropriate constants of motion allows us to track the dynamics of EPs

as the frequency of the mode changes. In addition, a finite element method using cubic

Hermite base functions, has been implemented to represent the radial profile of the GAE.

This enables the derivation of an analytic expression for the nonlinear radial structure of

the mode by varying the total Lagrangian of the system with respect to the weight of the

finite elements. Hence, the radial structure can be updated as the frequency deviates from

the initial MHD eigenfrequency. During chirping, the possibility of both the shrinkage and

the expansion of a phase-space structure (a hole/clump) has been taken into account. The

phase-space structures, identified to be clumps, move in order to extract energy from the

EPs distribution function and deposit it into the bulk plasma. This energy balance is used

to derive an expression for the time rate of the change in the frequency. The adiabatic

condition is also evaluated which remains valid once it is satisfied.

Energetic-ion parameters, such as orbit width or pressure, can cause a shift and a

broadening in the radial profile of the mode [100]. In addition, for the case of a near

threshold instability, we have shown how the deviation of the frequency from the ini-

tial eigenfrequency can also result in shifting the peak location of the radial profile and

also radial broadening during the hard nonlinear stage. For the case presented in this

manuscript, the slowing down EPs move radially inward as clumps when the frequency

chirps downward. The orbit width of the EPs follows

∆r =
qmiv∥

eB
, (3.71)
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where q is the safety factor, mi is the ion mass, v∥ is the velocity of the EPs parallel to the

equilibrium magnetic field, e is the electron charge and B is the magnetic field. The range

of orbit widths from the plasma center to the boundary is 0.01-0.08m. This corresponds

to an energy range of 23-32 kev for the EPs initially in resonance with the mode.

With respect to applications to actual geometries, the presented formalism can be

applied to shear Alfvén eigenmodes without or with very weak effect of mode coupling

e.g. GAEs, in an NBI scenario. The calculation of the EPs dynamics is done for the

deeply passing particles where the coupling strength is nonzero for only two values of m,

i.e. m ± 1. A comprehensive description of the problem is aimed in our research plan.

This includes

• calculation of action-angle variables for more general EP orbits and

• Adding the effect of toroidal coupling for the mode which does not require any

fundamental difficulties as all the main ingredients are already introduced in this

work. It should be noted that the effect of toroidicity on the EPs dynamics is

already included in the formalism, and

• allowing the EPs nonlinearity to update all the components of the mode structure

simultaneously, namely poloidal, toroidal and radial using the general formalism

presented in section 3.2.

In this manuscript, we have taken a short-cut, associated with some assumptions, to the

above roadmap to build the presented model along the way and produce the core of the

full problem which requires more effort but is feasible. To our knowledge, this is the first

attemp to present a technique for the evolution of the radial structure in the nonlinear

regime and this technique can be generalised which requires heavier computations. A fur-

ther study is to allow the frequency to cross the continuum edge and behave as realistically

as possible inside the continuum.
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3.7 Appendix

3.7.1 Calculation of the coupling strength

Using Eq. (3.31) and the resonance condition (p
˙̃
θ = α̇ (t) + n ˙̃φ), Eq. (3.36) can be

written as

Vp,n,l =
1

2π

∫ 2π

0
ie

[
p
˙̃
θ − mφ̇

q (Xr)
+ n

˙̃
θ
∂∆φ

∂θ̃

]
Yl (Xr) exp

{
imθ − in∆φ− ipθ̃

}
dθ̃. (3.72)

The integral over the first term of the integrant can be performed using integration by

parts. Therefore,

Vp,n,l =
1
2π

∫ 2π
0 e

[
˙̃
θ ∂Xr

∂θ̃

dYl(Xr)
dr + im

(
θ̇ − φ̇

q(Xr)

)
Yl (Xr)

]
exp
{
imθ − in∆φ− ipθ̃

}
dθ̃.(3.73)

Eqs. (3.24) and (3.30) can be used to find

Ẋr =
˙̃
θ
∂Xr

∂θ̃
= −

[
miv

2
∥

R
+
µB0

R0

]
sin θ

1

eB0
. (3.74)

Simple implementation of Eqs. (3.31) and (3.32) gives

θ̇ − φ̇

q (Xr)
= −

[
miv

2
∥

R
+
µB0

R0

]
cos θ

1

eB0r0
. (3.75)

Under the small orbit width assumption, Vp,n,l reads

Vp,n,l = − 1

2π

∫ 2π

0

[
miv

2
∥

RB0
+

µ

R0

] [
dYl (r0)

dr
sin θ +

imYl (r0)

r0
cos θ

]
exp
{
imθ − in∆φ− ipθ̃

}
dθ̃.(3.76)

For deeply passing EPs inside the equilibrium field, one can neglect the infinitesimal

perpendicular velocity of the particles to the magnetic field and set µ ≈ 0. In this limit, v∥
becomes a constant of motion and we can set θ ≈ θ̃ and ∆φ = cte. Using Euler’s formula

and the orthogonality of trigonometric functions, one finds

Vp,n,l =
−imiv

2
∥

2B0R0

[
±Y ′

l +
m

r0
Yl

]
, p = (m∓ 1) , (3.77)

where we have set ∆φ = 0. Non-zero values of ∆φ results in a shift of the separatrix in

phase–space compared to the existing model.



Chapter 4

Theoretical description of chirping

waves using phase-space waterbags

Abstract

The guiding centre dynamics of fast particles can alter the behaviour of

energetic particle driven modes with chirping frequencies. In this paper, the

applicability of an earlier trapped/passing locus model [H. Hezaveh et al 2017

Nucl. Fusion 57 126010] has been extended to regimes where the wave trapping

region can expand and trap ambient particles. This extension allows the study

of waves with up-ward and down-ward frequency chirping across the full range

of energetic particle orbits. Under the adiabatic approximation, the phase-

space of energetic particles is analysed by a Lagrangian contour approach where

the islands are discretised using phase-space waterbags. In order to resolve

the dynamics during the fast formation of phase-space islands and find an

appropriate initialisation for the system, full-scale modelling is implemented

using the bump-on-tail (BOT) code. In addition to investigating the evolution

of chirping waves with deepening potentials in a single resonance, we choose

specific pitch-angle ranges in which higher resonances can have a relatively

considerable contribution to the wave-particle interaction. Hence, the model

is also solved in a double-resonance scenario where we report on the significant

modifications to the behaviour of the chirping waves due to the 2nd resonance.

The model presented in this paper gives a comprehensive 1D paradigm of long

range frequency chirping signals observed in experiments with both up-ward

and down-ward chirping and multiple resonances.

4.1 Introduction

The confinement of energetic particles (EPs), which affects the operation of a fu-

sion device, can be markedly modified by their interaction with weakly damped plasma

waves [12, 14, 101]. In case of inverse Landau damping in a bump-on-tail model (BOT),

the nonlinear saturation of the eigenmode [102–104] due to particle trapping aligns with

flattening of the distribution function of energetic particles [16]. During this process, side-

band oscillations emerge and if the system provides these oscillations with weak damping,

they may develop into signals with chirping frequencies [44]. This phenomenon is governed

by the fast formation of phase-space islands i.e. the holes and clumps, in the generalised

phase-space of energetic particles [35]. Once formed, these structures evolve slowly in

time hence the adiabatic invariant of the EPs trapped in the chirping mode is conserved.

73
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In realistic geometries and for long deviations of the frequency from the initial eigen-

frequency [46, 105, 106], the EPs can be carried by the wave potential on slices of the

phase-space which results in a change in particles toroidal angular momentum [47, 94].

This is in conjunction with a change in the number of the flux surface on which the parti-

cles lie. Consequently, an inward or outward convective transport of the EPs occur leading

to unwanted confinement losses. Therefore, it is essential to perform a detailed study of

holes and clumps shape as well as EPs dynamics to identify and control the hard nonlinear

evolution of an EP driven mode. It is worth mentioning that formation of holes/clumps

structures has also been recently demonstrated in Ref. [107] for energetic particle-induced

geodesic acoustic modes (EGAMs).

For highly passing EPs, the theoretical picture of long range adiabatic frequency chirp-

ing, using a Langmuir wave as an example, was first developed by Breizman [53]. At

each frequency, the nonlinear wave equation is represented as the long-term solution of a

Vlasov-Poisson system, hence called a BGK-type mode [68]. Subsequently, the impact of

EPs collisions, namely Krook, drag and diffusion was studied by Nyqvist et al in Refs. [54]

and [55]. The latter allows the separatrix to expand and trap new EPs. Hezaveh et al [56]

studied the impact of energetic particle orbit topologies on the long range frequency sweep-

ing of a BGK-type mode. This model shows how the inclusion of trapped particle orbits

as well as barely passing types can considerably alter the behaviour of a nonlinear chirp-

ing wave. For the range of magnetically trapped EPs and a constant trend i.e. up-ward

or down-ward in frequency chirping, it has been shown that the trapping region of the

BGK mode may initially grow and then shrink (see fig.6 in [56]). In the topic of long

range adiabatic frequency chirping, this model is comprehensive from the perspective of

capturing a range of typical guiding centre orbits. However, the assumption of a flat-top

phase-space density across the trapping region (separatrix) restricts the applicability of

this model only to the regions where the trapping region of the perturbed mode shrinks

and particle trapping due to the expansion in phase-space is avoided. In this work, we aim

to relax the flat-top assumption of Ref. [56] and extend the trapped-passing locus model to

cases where the wave potential can deepen and trap new ambient particles as well as shrink

leading to a loss of trapped particles. Consequently, this allows us to explore the adiabatic

evolution of the chirping wave over the full range of EPs orbits for both up-chirping and

down-chirping BGK modes.

In Ref. [55], the adiabatic evolution of phase-space holes has been studied in a system

where these structures are initialised somewhat off the linear resonance using a given initial

profile and a grid-based numerical method. The claim that holes and clumps form off the

initial resonance consists with theory [44] and numerical simulations [43]. Nevertheless,

the initial profile of the holes is chosen such that the amplitude of the chirping wave is a

smooth function of time. This may not necessarily correspond to a proper initial shape for

the just-formed phase-space structures. In this regard, a more comprehensive approach

is to apply full-scale modelling to the fast formation stage of these structures to find

their phase-space profile prior to the adiabatic evolution. Accordingly, we also perform

simulations using the BOT code, developed by Lilley [43], and initialise the phase-space

using the simulation data. Subsequently, we resolve the EPs response to the chirping mode

using a non-perturbative approach under the adiabatic ordering. For a growing separatrix

in phase-space, we implement a Lagrangian mesh approach i.e. a waterbag model [108]

where each contour of constant phase-space density is a waterbag associated with the EPs

adiabatic invariants. This enables capturing the particle trapping effect in phase-space

and implies that as the separatrix expands and moves due to frequency chirping, the
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phase-space density of the trapped EPs is set to the ambient distribution at the trapping

point.

In section 4.2, the model is introduced and the main equations governing the shape

of the BGK-type chirping mode and the frequency chirping rate are derived. Simulation

data of the BOT code is analysed in section 4.3 from which the initial shape of the

coherent phase-space islands is established. The numerical scheme implemented to solve

the model equations is briefly given in section 4.4. In section 4.5, a single-resonance

chirping wave with deepening potentials is studied. Therein, specific ranges of fast particles

pitch-angles are introduced in which higher particle resonances, in this case 2nd, can have a

non-negligible contribution to the linear growth rate (γl) of the wave-particle interaction.

Hence, we also report on the impact of higher resonances on the evolution of chirping

waves for both up-chirping and down-chirping cases. This is achieved by comparing the

evolution of the plane wave potential and the frequency chirping rate for a single and

double resonance interaction. We also evaluate the validity of the adiabatic limit for each

reported case. Finally, section 4.6 is a summary. It is noteworthy that the formalism and

the notation presented throughout the manuscript are based on the previously reported

model of Ref. [56] to which the reader is referred for a more detailed derivation.

4.2 Theoretical framework

We consider the bump-on-tail instability problem of a plasma wave in which the ener-

getic electrons drive the mode marginally unstable until it saturates due to the nonlinear

coarse-graining of the electron distribution function in phase-space. Then, if the mode is

subject to weak damping into the bulk plasma with a rate denoted by γd, the sideband

oscillations are excited and evolve into chirping modes. It is remarkable to mention that

fast particles collisions can change the nonlinear evolution of the mode which are neglected

here. Hence, the physical picture is a BGK mode with a chirping frequency in a time scale

(tslow) much smaller than the bouncing time scale (tfast) of electrons trapped in the mode.

Therefore, we have [∣∣∣∣dωbdt

∣∣∣∣, ∣∣∣∣dωdt
∣∣∣∣]≪ ω2

b , (4.1)

where ωb is the bounce frequency of the electrons trapped in the wave and ω is the wave

frequency. We consider γl ≪ ωpe which implies the separatrix width is much smaller

than the characteristic width of the phase-space density and the near-threshold unstable

resonance is isolated i.e. overlap of resonances leading to diffusive transport and wave-wave

coupling are ignored.

The equilibrium picture of fast electrons dynamics is built by applying a nonuniform

static magnetic field. Fast electrons bounce or transit along the field lines. This resembles

trapped and passing particles along the field lines in 3D geometries, with the effect of

drift orbit width and toroidal precession ignored. The Hamiltonian governing the equilib-

rium guiding-centre motion of electrons, denoted by Heq, can be derived by applying the

Legendre transformation to the gyro-averaged Littlejohn Lagrangian [73]. This gives

Heq,α =
p2z
2me

− µB0 cos(keqz) + µBc, (4.2)

where α is a label that denotes the orbit type of the fast electrons motion in the magnetic

field based on their pitch angle: throughout the paper, α = T and α = P represent the
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trapped and passing electrons in the equilibrium field, respectively, pz is the momentum

of energetic electrons aligned with the field, me is the electron mass, µ is the magnetic

moment and keq denotes the spatial periodicity of the field. The constants B0 and Bc are

chosen such that the wave frequency ωpe is low compared to the ion cyclotron oscillations

and its wavelength is large compared to the electron Larmor radius. Also, it is assumed

that all the particles have a single value of the magnetic moment µ. The 1D equilibrium

Hamiltonian given by (4.2) resembles that of a large aspect ratio tokamak i.e. ϵ = r
R0

≪ 1,

where ϵ = B0
Bc

is the inverse aspect ratio with r and R0 being the minor and major radius,

respectively, and higher order terms in the expansion of the magnetic field in ϵ cos (kz)

are neglected. A canonical transformation to action-angle variables (Jα, θα) enables a

description of the unperturbed motion using Heq,α(Jα) independent of the corresponding

coordinate (θ) which scales linearly with time. Using θ̇ =
∂Heq,α
∂Jα

, one can investigate the

equilibrium bounce or transit frequency of the fast electrons motion depicted in figure 4.1.

The energy parameter,

ζ =
E + µ(B0 −Bc)

2µB0
(4.3)

with E being the equilibrium energy, specifies the orbit type of each fast electron.

In this model, it is assumed that the bulk plasma responds linearly to the field (U) and

therefore the corresponding response is found by implementing a perturbative approach

to the fluid description. In the presence of the perturbations, the total Hamiltonian of the

fast electrons reads

Htotal,α = Heq,α + U. (4.4)

In principle, one should implement the Liouville’s theorem or the Vlasov equation {f,H} =

0 and either follow the fast electrons trajectories corresponding to the above Hamiltonian

i.e. a Lagrangian point approach, or apply a fixed grid discretisation to the phase-space

i.e. an Eulerian approach, in order to find the perturbed phase-space density of energetic

electrons. Nevertheless, we focus on two separate stages of the wave evolution, namely

the linear stage and the nonlinear long range chirping stage. In the former, we resolve

the perturbed phase-space density of fast electrons using a linear perturbative analysis

while the latter benefits from the Liouville theorem and the adiabatic ordering which

enables a Lagrangian contour approach in fast electrons phase-space and construct a non-
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Figure 4.1: Guiding centre frequency vs. the energy parameter for the fast electrons
equilibrium motion.
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perturbative approach to find the perturbed density of fast electrons. Here, f is the total

distribution function of fast electrons given by fα = Feq,α + f̃α, with Feq,α and f̃α being

the initial and the perturbed parts, respectively. For simplicity, we consider Feq,α to be

linear in the energy parameter i.e. Feq,α = cζα, where c is a constant.

We firstly analyse the linear evolution of the plasma wave. This is achieved by finding

analytic expressions for the linear response of the bulk plasma in a single-fluid model and

of the fast electrons using the linearised Vlasov equation in a kinetic description. Then,

the total Hamiltonian governing the fast electrons dynamics during the adiabatic chirping

is described. Hence, we implement a kinetic description for the energetic electrons in

the framework of the adiabatic theory and find the corresponding nonlinear contribution.

Subsequently, the Poisson equation is fed with the perturbed density of both the fluid and

the fast electrons to solve for the nonlinear field of a sideband of the plasma wave during

the frequency chirping. At each frequency, the wave potential is a long-term nonlinear

solution of the Vlasov-Poisson system, hence a BGK-type wave.

4.2.1 Linear evolution of the plasma wave

For a linear analysis, a perturbative approach is used to find the perturbed density of

the bulk and the energetic electrons. Therefore, we represent the wave potential energy

(U) and the perturbed distribution function (f̃α) as

U =
∞∑
n=1

eϕn
2

exp [in (kpz − ωt)] + c.c

=

∞∑
n=1

∞∑
p=−∞

eϕn
2
Vα,n,p (Jα) exp [i (pθ − nωt)] + c.c (4.5)

and

f̃α =
∞∑
n=1

∞∑
p=−∞

f̂α,n,p (Jα) exp [i (pθ − nωt)] + c.c, (4.6)

where we have expanded exp{in (kpz − ωt)} in action-angle variables of the unperturbed

motion i.e.

exp [in (kpz − ωt)] =

∞∑
p=−∞

Vn,p(J) exp [i (pθ − nωt)] , (4.7)

ω = ωr+ iγl is the complex frequency, kp the wave-number of the plasma mode, Vα,n,p (Jα)

is the orbit averaged mode amplitude which specifies the coupling strength and plays the

same role as the matrix elements introduced in Ref. [30, 32].

4.2.1.1 The bulk plasma response - MHD

For an isotropic distribution and a uniform density of the bulk plasma along the equilib-

rium field, we focus on the perturbations along the field lines in which case the equilibrium

field does not interact with the bulk plasma. The equation of motion and the linearised
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continuity equation read

∂Vc
∂t

= − 1

me

∂U

∂z
− νVc, (4.8a)

∂δnc
∂t

= −nc
∂Vc
∂z

, (4.8b)

where U is the energy of the electrostatic mode, ϵ0 is the permittivity of free space, ν = 2γd
is the Krook collision frequency of the cold electrons, Vc is the flow velocity of the cold

electrons and nc and δnc are the unperturbed and perturbed density of the cold electrons,

respectively. For a linear response, we consider n=1 and substitute Eq. (4.5) into Eq.

(4.8a) to find Vc. Next, Eq. (4.8b) can be implemented to find

Vc =
kpU

ωme
, (4.9a)

δnc =
k2pncU

meω2
. (4.9b)

4.2.1.2 Energetic electrons response - Kinetic description

To first order in perturbations (n = 1), the fast electron population responds linearly

and one can find an analytic perturbative solution,

f̂α,n=1,p =
peϕn=1Vα,n=1,p (Jα)

∂Feq(Jα)
∂Jα

2 (pΩα − ω)
, (4.10)

to the linearised Vlasov equation, from which one can find the resonance condition ωr =

pΩα, which if satisfied, fast electrons can resonate with the mode. Provided that the mode

has a non-zero component of the electric field aligned with the particles guiding centre

trajectories, electrons will exchange energy with the mode. Here, ωr ≈ ωpe and p is an

integer denoting the resonance number. More precisely, p is the number of the Fourier

coefficient as a result of expanding the wave equation (4.13) in AA variable (θα) of the

equilibrium motion.

The linear perturbative responses of both the bulk plasma and the energetic electrons,

represented in Eqs. (4.9b) and (4.10), can be substituted in the Poisson equation, given

by

ϵ0
e

∂2U

∂z2
= −e

[∑
α

∫
f̃αdv + δnc

]
, (4.11)

to find the linear dispersion relation and subsequently the linear growth rate of the initial

plasma mode as

γl =
ωpeπe

2

2ϵ0kpme

∑
α

∑
p

[
∂Feq,α

∂ζα
V 2
α,n=1,p

∣∣∣∣dΩαdζα

∣∣∣∣−1

Ωα(Jα)=
ωpe
p

]
. (4.12)

In the next part, we find the perturbed density of fast electrons during the evolution of

the chirping wave and construct the nonlinear equation of the wave potential amplitude.
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4.2.2 Chirping waves

For a dispersion relation of the form ω = ωpe and in a non-perturbative approach

subject to the adiabatic limit where the mode evolves slowly, we represent the BGK-type

mode with a chirping frequency by

U [z, t] =
∑
n

An(t) cos [n (kpz − ϕ (t))] , (4.13)

where ϕ(t) =
∫ t
0 ω(t

′)dt′. The wave oscillates on a fast time scale on the order of ω−1
pe

whereas its envelope An, as the Fourier coefficient of the n-th harmonic, evolves on a slow

time scale i.e.
d lnAn

dt
≪ ϕ̇ (t) . (4.14)

It is noteworthy that for dispersion relations of the form ω = ckp, where c is a constant,

Eq. (4.13) represents a sum over linear modes and subsequently alternative discretisation

methods should be used.

The nonlinear dynamics of the fast electrons can be described in a frame that moves

with the fast time scale of the wave but remains stationary with regards to the frequency

chirping time scale. This leaves us with a time-dependent Hamiltonian that evolves adi-

abatically in time. Using (4.4) and (4.13), this time-dependent Hamiltonian is written

as

Htotal,α =
1

2

∂2H0,α

∂J̃2
α

∣∣∣∣
J̃α=J̃res,α(t)

(
J̃α − J̃res,α (t)

)2
+
1

2

∑
n

An (t)Vα,n,n exp
(
inθ̃
)
+ c.c, (4.15)

where a canonical transformation as

θ̃l = lθ − ϕ (t) , (4.16a)

J̃α =
Jα
l
, (4.16b)

is implemented to cancel the fast time scale dependency from the Hamiltonian, the wave

potential energy (U) of Eq. (4.13) has been Fourier decomposed in AA variables of the

unperturbed motion with Vα,n,p denoting the Fourier coefficients, p is a label that denotes

the resonance number for the linear perturbations (n=1) whereas in the nonlinear case, l =
p
n identifies the resonance number. Eqs. (4.16a) and (4.16b) are evaluated at a particular

ϕ(t) in time and thus is a transformation to an inertial frame. The above Hamiltonian is

expanded around the middle of the chirping wave trapping region (separatrix) specified

by J̃res,α and assumes infinitesimal detuning for the energetic electrons bouncing in the

trapping region of the wave, V ≈ V (J̃res).

For such a system, the lowest order term corresponding to the expansion of the adi-

abatic invariant in the small parameter β, as the proportion of the bounce period of the

electrons trapped in the chirping wave to the slow time scale of the mode evolution), is

commonly taken to be the action [109,110], which reads

I =
1

2π

∫
J̃dθ̃, (4.17)
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where the integration is performed from 0 to 2π over the angle variable. The above

Hamiltonian (4.15), contains the fictitious force acting on the trapped electrons in the

wave potential during the frequency chirping. This force is proportional to the rate at

which the frequency chirps. In this model, we have invoked the adiabatic ordering (4.1) to

neglect this term when calculating I for a slowly chirping wave. The same assumption has

been implemented in the models of Refs. [53, 54, 56]. An alternative way to look at this

assumption is to use a different canonical transformation to a non-inertial frame that is

exactly moving with the chirping wave, as the one implemented in Ref. [94]. In this case,

the term corresponding to the fictitious force, proportional to dω
dt , will explicitly appear in

the Hamiltonian. One can readily observe that under the adiabatic ordering given by (4.1),

this term can be neglected since it is much smaller than the other terms (proportional to

ω2
b ) in the Hamiltonian.

Conservation of the adiabatic invariant implies that the corresponding phase-space area

occupied by each adiabatic invariant is conserved. This means that in a discretised picture,

the phase-space area between adiabatic invariants, denoted by Ai is preserved as the wave

chirps. Figure 4.2 shows the phase-space of an expanded separatrix. The unshaded area

surrounded by the dashed curve in the middle of the separatrix corresponds to the initial

separatrix i.e. the shape of phase-space structures just after formation and prior to the

adiabatic evolution. Each shaded region (Ai) is the area between two adjacent adiabatic

invariants (Ii, Ii+1). In addition, in the absence of collisions, the number of electrons

(Ni) in the area Ai remains fixed during the frequency chirping. The integral form of the

Liouville theorem reads ∫ Ii+1

Ii

fidAi = Ni =

∫ Ii+1

Ii

f ′idA
′
i (4.18)

where fi is the distribution function of electrons in Ai and the primes denote the values

after the motion of an island in phase-space during frequency chirping. Under the adiabatic

ordering and taking an infinitesimal width for Ai by choosing small time steps, the fast

bounce frequency of the trapped electrons in the BGK mode allows one to assume fi to

Figure 4.2: An expanded phase-space island. The unshaded area inside the separatrix
represents the initial island just after the explosive formation stage. The dashed area
illustrates the phase-space waterbags as contours of the distribution function.
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be the same across Ai, which gives

fi ×Ai = Ni = f ′i ×A′
i. (4.19)

The preservation of the adiabatic invariants explained above ensures Ai = A′
i which guar-

antees that the distribution function remains constant in between adjacent adiabatic in-

variants i.e a phase-space waterbag. This implies that instead of taking an Eulerian grid

approach of solving the Vlasov equation or a Lagrangian approach to solve the equations

of motion for each particle to resolve the perturbed phase-space density, we can define a

set of Lagrangian contours along which the density remains fixed.

The trapped electrons in the BGK mode move with the wave in phase-space as the

frequency chirps and hence have the dominant contribution to the perturbed density (f̃)

which equals the difference between the value of distribution function at that point and the

ambient distribution. Therefore, we can find f̃ = f0−Feq(t) = Feq(t = 0)−Feq(t) for each

point inside the separatrix and f̃ = 0 otherwise. Here, f0 is the lowest order term of the

expansion of f around β. Similarly, one can bounce-average the Vlasov equation under the

adiabatic ordering to derive the above expression (see [55,56]). Consequently, we discretise

the phase-space area inside the wave trapping region using the adiabatic invariants of the

fast electrons and hence create level sets of the distribution function in phase-space i.e.

a stepped distribution profile. Now, the problem of resolving the perturbations in fast

electrons population during frequency chirping is framed as tracking the dynamics of the

phase-space curves corresponding to the adiabatic invariants.

At this stage, the expressions (4.9b) and (4.13) can be substituted into the Poisson
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Figure 4.3: Formation of islands in the phase-space of energetic particles (a) where the
color bar represents the total distribution function f . In BOT code, for a linear distribution
function in phase velocity, the initial resonance is located at the origin and therefore the
distribution function is shifted by fc. Consequently, negative values appear on the color
bar of panel a. The short-time Fourier transform of the wave signal (b) with the color
bar in logarithmic scale. Panel a corresponds to the last time slice of panel b where the
frequency has chirped to ≈ 5.5% of its initial value.
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equation to solve for the field

An (t) = 1
2πkpnc

[
ω2

n2ω̂2−1

]∑
α

∑
l

∫ 2π
0

∫∞
0

[
f̃α,l(θ̃l, J̃l)

×Vα,n,p×l exp
(
inθ̃l

)
+ c.c

]
dJ̃ldθ̃l. (4.20)

The above expression sets the nonlinear integral equation for each Fourier coefficient,

An(t), which takes into account the contribution of fast electrons with different orbit

types as well as the higher resonances, denoted by the sum over l. It is noteworthy that

the summation over different resonances is removed in Ref. [56].

The chirping mechanism is based on extracting energy from the fast particles distribu-

tion and deposit it into the bulk plasma. Equating the energy released by the phase-space

structure(s) with the energy deposited into the bulk gives

dω (t)

dt
= −

[
νncπkp
ω3me

∑
n

A2
n (t)

]
1∑

α,lNα,l

(
dΩα,l

dJα,l

)−1 . (4.21)

The total number of the particles inside each coherent structure reads

Nα,l =
1

me

∫ 2π

0

∫ J̃α,max+

J̃α,max−

f̃α,l

(
J̃α,l, θ̃l

)
dJ̃αdθ. (4.22)

In general, f̃ depends on the phase-space coordinates (J̃ , θ̃) and a numerical treatment of

the phase-space integral is required. For a growing separatrix, the newly trapped electrons

inside the separatrix, specified by their adiabatic invariants, will carry the ambient phase-

space density at the time of trapping. Therefore, in a time-discretised scheme, such a

phase-space structure consists of an initial shape, which corresponds to the time when

holes/clumps are just formed, surrounded by Lagrangian contours (waterbags) having

different phase-space densities (see figure 4.2). As the separatrix expands, phase-space

waterbags with uniform distribution functions are added around the initial separatrix.

So far, we have set the necessary tools to investigate the evolution of the chirping wave

and a numerical approach is required to solve (4.21) along with (4.20). However, as shown

in Refs. [53,56] and discussed in Ref. [55], evaluation of (4.21) at early stages of frequency

chirping in this model reveals a square root dependency of the frequency on time. This

dependency implies that the adiabatic condition is never formally satisfied for very early

stages of chirping. In addition, for an expanding phase-space island, this may result in

numerical errors due to large particle trapping at the early stages. In order to tackle this

issue, we use the following facts:

• The holes and clumps form off the initial resonance [44],

• The violation of the adiabatic condition occurs over a very short period and this is

implied by the condition γl ≪ ωpe,

• The adiabatic condition will remain valid once its satisfied [56].

These enable solving the system somewhat off resonance by considering an initial shift to

the eigenfrequency. This frames the question of what shape the phase-space island will

take after the initial shift. In other words, subsequent to an imposed frequency shift to the

linear resonance, an appropriate description of the phase-space density is required for the
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unshaded phase-space area encircled by the dashed curve depicted in figure 4.2. At this

point, the challenge concerns the fact that holes/clumps are formed on a characteristic

time scale in the order of the bounce period. Thereby, full-scale modelling is required and

one can not invoke the adiabatic ordering and Liouville theorem to avoid following the

particle dynamics on the fast time scale i.e. ω−1
b . As a result, we perform simulations

using the BOT code to resolve the dynamics during the fast formation stage. This part is

covered in the next section where we prescribe an appropriate initialisation for the system.

4.3 Implementation of the BOT code for phase-space ini-

tialisation

In this section, the procedure taken to find a realistic shape for holes/clumps (phase-

space structures) using the simulation data is detailed. The BOT code is an open source

Vlasov solver which resolves the evolution of an unstable plasma wave in a bump-on-

tail model. It also captures EPs collisions of Krook, drag and diffusion type which has

been used to study the effect of dynamical friction force [33] and the formation process

of holes and clumps [44]. In BOT code, the angular dependency (cos(kz)) of the linear

plasma wave and its subsequent sidebands oscillations are fixed to be sinusoidal and do

not evolve. On the other hand, as a result of the excitation of the sidebands and damping

into the bulk plasma, the frequency of the BGK-type chirping modes deviates from the

initial eigenfrequency. As this occurs, the nonlinear contribution of the EPs current mod-

ifies the sinusoidal mode and adds non-linearity to the angular shape of the mode. This

phenomenon is not captured in the BOT code. A consequence of this is the phase-space

structures being perfectly eye-shaped. However, for short deviations of the frequency from

the initial eigenfrequency the change of the mode shape is negligible and the simulation

data remains valid. It was shown in Ref. [56] that frequency shifts of around 5% cause

tiny modifications to the plane wave. On the other hand, as mentioned in the previous

section, holes/clumps form on a time scale comparable to the bounce period and hence the
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Figure 4.4: (a) A Phase-space island (hole) in the BGK wave-frame formed at the top of
the flattened region in figure 4.3. (b) The contour plot of the phase-space density inside
the hole shown in panel a. The curves represents contours of constant normalised energy
given by (4.23).
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formation process occurs in a short range of frequency sweeping. Consequently, the phase-

space analysis of the BOT code at the very early stages of chirping can be used to identify

the structure of holes/clumps in phase-space just after their formation and prior to the

adiabatic evolution. This information can be implemented to initialise the phase-space of

our adiabatic model which can handle long range frequency deviations. In the following,

we base our calculations around the time where holes/clumps (phase-space structures) are

just formed and the phase-space of the adiabatic model is initialised accordingly.

The simulation results of the BOT code are illustrated in figure 4.3, where the phase-

space of energetic electrons is demonstrated (figure 4.3a) after the saturation and nonlinear

phase-mixing of the electrons when the sideband oscillations has just been excited. The

corresponding frequency evolution of the plasma wave is shown in figure 4.3b where it can

be observed that the frequency starts sweeping at tγl ≈ 120 after the mode saturation. At

the last time slice, the frequency experiences a shift of ≈ 5.5% of the initial eigenfrequency

(δω0 = ∆ω0
ωpe

≈ 5.5%). The phase-space density inside the structures can be used to find

an approximated shape for the holes/clumps just after their explosive formation process

in order to initialise the adiabatic model for the evolution of these structures. To perform

this simulation using the BOT code, the value of γd/γl is set to be 0.9 as a near-threshold

instability case and the collisional coefficients are set to zero.

In figure 4.4, the structure of an up-chirping hole is depicted together with the contour

plot of the phase-space density. As the frequency evolves, snapshots of phase-space reveal

that for a fixed wave amplitude, the phase-space density remains the same along the

contours of constant energy in the wave frame. However, it is noteworthy that as the

frequency evolves, there is a subsequent change in the amplitude of the BGK-type wave

and J̃res. Therefore, the functional dependency between the adiabatic invariant and energy

of the trapped electrons in the wave does not remain the same during frequency chirping.

However, since the structures are evolving adiabatically, conservation of the adiabatic

invariants of the system ensures that the phase-space density remains constant in between

the adiabatic invariants. Consequently, we discretise the phase-space using the adiabatic

invariants with each region having a constant distribution; a stepped distribution profile

(a waterbag model) as a function of the adiabatic invariants for the numerical analysis.

For each 2D phase-space element of figure 4.4, the Hamiltonian (4.15) can be utilised to

find the corresponding energy in the wave denoted by Etotal. Subsequently, a polynomial

fitting to the data gives the shape of the distribution function inside the phase-space

structure which is illustrated in figure 4.5. The normalised energy Ê is defined as

Ê =
Etotal − Umin

Umax − Umin
, (4.23)

where Umax and Umin denote the maximum and minimum potential energy of the chirping

wave, respectively. This prescribed shape is implemented in section 4.5 as the initial shape

of holes and clumps which start evolving from ≈ 5.5% off the initial resonance. In what

follows, the phase-space structures are initialised according to the shape of figure 4.5.

4.4 Numerical Algorithm/procedure

In this part, The numerical algorithm implemented to solve the system equations is

explained and we introduce the normalisation used on the system equations. For the

purpose of normalisation, we firstly need to evaluate (4.20) and (4.21) at the early stages
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Figure 4.5: The shape of the phase-space structure found using the BOT code simulations

of frequency chirping. In the limit (t ≈ 0), the plane wave is still almost sinusoidal/linear

(An≥2 ≈ 0). Regardless of whether the separatrix is expanding or shrinking and for the

case where only magnetically passing electrons (α = P) contribute to the EPs current

through the first resonance (l = 1), one can analyse the integral Eq. (4.20) at t ≈ 0 to

find

A1,0 =
4ω2

pe
∂Feq,P
∂ζP

∂ζP
∂ω̂

∣∣∣
ω̂=1

3πkpnc
VP,1,1,0J̃max,P,0 (4.24)

with J̃max,P,0 being the maximum half width of the saturated/initial trapping region (sep-

aratrix at θ̃ = π) of the BGK mode corresponding to the first resonance with magnetically

passing electrons, given by

J̃l,max,α=P,0

(
θ̃ = π

)
= 2

√
An=1,0VP,1,1,0
|∆α=P|t=0

. (4.25)

It is worth mentioning that the trapping region of the BGKmode carrying the magnetically

trapped electrons has a phase shift of π with respect to the one corresponding to the

magnetically passing ones (see fig.2 in Ref. [56]). Now, we use A1,0 to normalise Eq.

(4.20). This gives

Ân (t) =
3ω̂2

8(n2ω̂2−1)
∂Feq,P
∂ζP

∂ζP
∂ω̂

∣∣∣
ω̂=1

∑
α

∑
l

∫ 2π
0

∫∞
0

[
f̃α,l(θ̃l, J̃l)V̂α,n,p×l exp

(
inθ̃l

)
+c.c] d ˆ̃Jldθ̃l, (4.26)

where Ân = An
A1,0

, ω̂ = ω
ωpe

, V̂α,n,p×l =
Vα,n,p×l

VP,1,1,0
and ˆ̃Jl =

J̃l
J̃l,max,α=P,0

.

Using (4.12), (4.24) and the normalised time τ = ν
3 (

16γl
3π2ωpe

)t, one can normalise the
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Figure 4.6: Evolution of (a) the frequency, (b) the first Fourier coefficient as a measure of
the chirping wave amplitude and (c) the RHS of the adiabatic orderings given by (4.29)
and (4.30) in black and red, respectively, for a single resonance. An initial frequency shift
of δω0 = 0.055ωpe is considered which corresponds to τ0 = 0.0025 following the square
root dependency. Solid and dashed curves correspond to up-chirping and down-chirping
waves, respectively.

differential equation (4.21) and find

d (ω̂ − 1)2

dτ
=

8 (ω̂ − 1)
∂Feq,T
∂ζT

∂ζT
∂ω̂

∣∣∣
ω̂=1

ω̂3

∑
n

Â2
n (t)


× 1∑

α

∑
l

∫ 2π
0

∫ ˆ̃Jα,max+

ˆ̃Jα,max−
f̃α,ld

ˆ̃JαdθΓ̂
−1
α

. (4.27)

The frequency of the chirping waves is evolved using the above ODE by a 4th order

Runge-kutta method. At each time step, the nonlinear field is solved by performing

iterations on the Fourier coefficients using (4.26). In each iteration the phase-space integral

is resolved numerically by a 2D trapezoidal rule. Energetic electrons are labeled using

their adiabatic invariants. Hence each separatrix is identified/discretised using an array

of adiabatic invariants and a corresponding array of distribution function values which

are initialised using the BOT code data. At the end of each time step, these arrays are

updated depending on whether the separatrix is shrunk or expanded.

4.5 Results and discussions

At this stage, we solve the model equations, introduced in section 4.2, starting off

the initial resonance where the system is initialised by manipulating the simulation data

discussed in section 4.3. As the main goal of this work, we report the results for cases

which include the deepening of the wave trapping region(s) hence both particle orbit

topology and particle trapping in phase-space affect the behaviour of the chirping mode

simultaneously, i.e. not tractable using the flat-top model of Ref. [56]. This is accompanied

by our observations on the behaviour of the chirping mode under the impact of multiple

resonances. Accordingly, chirping waves with both downward or upward trend whose

initial frequency lies in the range of magnetically passing particles are studied.

The initial plasma mode is in resonance with electrons having 1.1 ≤ ζP ≤ 1.3 (see
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figure 4.1). This corresponds to pitch-angle,

Λ =
1

(2ζPϵ− ϵ+ 1)
, (4.28)

values of 0.65 ≤ Λ ≤ 0.71 for an inverse aspect ratio of ϵ = 1/3. It is noteworthy that

Λ = 0.75 corresponds to the trapped-passing boundary (ζ = 1) in the background field.

Firstly, we start the analysis by assuming that the 1st resonance is dominant and thereby

neglect higher order resonances. Subsequently, it is discussed that neglecting higher order

resonances for the range of orbits under consideration is a naive assumption and there exist

ranges in which a single resonance number (l) can not be regarded as the dominant one.

This necessitates taking into account multiple resonances in the wave-particle interaction

model. In order to demonstrate the impact of higher resonances on the nonlinear behaviour

of the mode, we analyse the evolution of BGK-type chirping waves under the simultaneous

influence of multiple resonances, in this case 1st and 2nd. For each case, the validity of the

adiabatic condition is analysed.

4.5.1 A single resonance

We set kp/keq = 1 and ζP,0 = 1.176 (see ωpe on figure 4.1), the self-consistent system

of Eqs. (4.27) and (4.26) is solved for both up-chirping and down-chirping modes under

the impact of only the 1st resonance and for the linear equilibrium distribution function

introduced in section 4.2. The corresponding evolution of the amplitude and the frequency

is depicted in figure 4.6. The up-chirping mode with a growing amplitude is controlled

by the dynamics of a phase-space hole (f̃ < 0) with an expanding trapping region and

therefore the effect of particle trapping in a deepening potential well is included in the

behaviour of the mode. On the other hand, the downward trend is supported with a

shrinking clump from which the particles are being detrapped as the mode chirps. Figure

4.6 shows the time-dependency of the wave parameters. The evolution of the frequency

demonstrates an asymmetry in upward and downward branches. It can be observed that

the upward branch is chirping faster. Both branches are initialised with the same absolute

initial shift (|δω̂0| = 0.055) in the frequency, denoted by points A and B on each curve

of figure 4.6a. The non-linear shape of the plane wave at τ = 0.0346 where the up-

chirping and down-chirping waves experience ≈ 32% and 16% frequency chirping, denoted

by A′ and B′, respectively, is shown in figure 4.7. This shows that the shape of the

down-chirping wave is more deviated from the linear wave at this point. The phase-space

density of holes and clumps is illustrated in figure 4.8. Panels A′ and B′ illustrate the

full phase-space density contours of an up-chirping hole and a down-chirping clump at

ω̂ = 1.32 and ω̂ = 0.84 with their corresponding initial separatrices shown in panels A

and B, respectively. Initial separatrices are initialised with the shape of figure 4.5 and

δω0 = 0.055ωpe. The particle trapping into the separatrix can be observed for the up-

chirping hole, the top row, where the wave sweeps the ambient particles on its motion, as

opposed to the down-chirping clump whose trapping region shrinks.

In order to check the validity of the adiabatic condition (
∣∣∣dωb
dt

∣∣∣≪ ω2
b ) [34,75,98], given

by (4.1), we write it as [56]
νγl,1st

ω2
pe

≪
9π2ω̃2

b

16
∣∣∣dω̃b
dτ

∣∣∣ , (4.29)

where ω̃b = ωb
ωb,0

, with ωb,0 being the initial bounce frequency corresponding to the 1st
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Figure 4.7: Nonlinear chirping wave potential at τ = 0.0346 for (a) the up-chirping wave
with ω̂ = 1.32 and (b) the down-chirping wave with ω̂ = 0.84. The dashed curve represents
the linear sinusoidal potential.

resonance. For a near-threshold instability with typical value of the linear growth rate

to be 1 per cent of the linear mode frequency and with γd = 0.9γl, the LHS value is

≈ 0.00018. The RHS of (4.29) is shown in figure 4.6c as a function of time for both of

the waves. This validates the adiabatic ordering as the wave evolves where the RHS value

increases in time. Similarly, one can write the ordering
∣∣dω
dt

∣∣≪ ω2
b as

ν

ωpe
≪

3ω̃2
b∣∣dω̃

dτ

∣∣ , (4.30)

where the LHS takes the value of ≈ 0.018 for the range of parameters considered above.

The RHS of the ordering (4.30) is depicted in figure 4.6c which confirms its validity as the

wave chirps.

4.5.2 Impact of higher resonances

For the range of linear plasma wave frequencies studied in Ref. [56], the first resonance

(l = 1) is the dominant contributor to the interaction. In this part, we illustrate that if the

1st resonance (l = 1) is formed with magnetically passing electrons having specific pitch

angles, then the 2nd resonance (l = 2) of the interaction can have relatively significant

contribution to the wave excitation. The wave frequency studied in the previous part

is an example of such cases for which the 2nd resonance lies in the range of magnetically

trapped electrons (see figure 4.1). The 1st resonance does not include any contribution from

the magnetically trapped electrons since the resonance condition with p = 1 can not be

satisfied for these electrons. However, technically speaking, the 2nd resonance is interacting

with a group of magnetically trapped electrons as well as a group of magnetically passing

ones; the contribution of the latter is relatively negligible though (see section 4 and figure

8 in Ref. [56]). We firstly show the contribution of higher resonances by investigating

their impact on the linear growth rate of the mode. For this purpose, we focus on the

contribution of the 2nd resonance and other resonances can be treated likewise. The

proportion of the eigenmode wave-number (kp) to the spatial periodicity of the equilibrium

field (keq) is a 1D proxy for the poloidal mode numbers in realistic geometries. We denote
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Figure 4.8: The phase-space islands for the single resonance case with the vertical and
horizontal axis being J̃ − Jres and θ̃, respectively. The color denotes the total distribution
function.

the total growth rate, associated with the 1st and 2nd resonance, by (γl,total) and normalise

it to the growth rate of the first resonance (γl,1st). Figure 4.9 demonstrates γl,total/γl,1st ,

where
γl,total
γl,1st

= 1 +
γl,2nd

γl,1st
, (4.31)

versus the energy parameter for different values of kp/keq. It can be observed that there

are regions in figure 4.9 where the contribution of the 2nd resonance can be significantly

higher than the 1st one. Although these cases elaborate the significance of the higher

order resonances, however, the strong dominancy of the 2nd resonance allows neglecting

the 1st resonance and treat the interaction as having a single resonance. Accordingly,

our attention is mainly focused on the more interesting regions in which one finds 1.2 <

γl,total/γl,1st < 3, which indicates that the contribution of the 2nd resonance is not negligible

and can even be comparable to that of the 1st resonance. Investigation of figure 4.9a at

ζP,0 = 1.176 shows that the contribution of the 2nd resonance to the interaction is more

than 47% of the 1st resonance and it is not negligible. Therefore, the impact of the

dynamics governed by the 2nd resonance should be included in the analysis of the chirping

waves under study. We will show the results for this choice hereafter.

The non-linear behaviour of the chirping waves are depicted in figure 4.10. As predicted

by the linear growth analysis, the inclusion of the 2nd resonance into the interaction

results in considerable change in the nonlinear behaviour of the up-chirping energetic

particle driven mode. In this case, the rate of frequency chirping is smaller than the

single resonance case during the evolution of the mode. The evolution of the RHS of

the adiabatic ordering, introduced in (4.29) and (4.30), is investigated at the o-point of

the phase-space structures for each resonance in figure 4.10c and figure 4.10d for the up-

chirping and down-chirping waves, respectively. It is demonstrated that as the system

evolves after initialisation using the BOT code data for both resonances, the value of the
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Figure 4.9: The linear growth rate normalised to the growth rate of the 1st resonance vs.
the energy parameter as a function of

kp
keq

.

RHS of (4.29) and (4.30) remain above the initial value throughout the simulation. With

regards to the evolution of the first Fourier harmonic, figure 4.10b, the up-chirping wave

initially grows faster than the single resonance case until τ ≈ 0.009, thereafter the rate

of the amplitude change becomes smaller. Interestingly, the amplitude of the up-chirping

wave saturates at τ ≈ 0.113 followed by a decrease. Here, we elaborate this behaviour by

investigating the evolution of the phase-space structures of the up-chirping wave.

In the single resonance case, the phase-space structure of the up-chirping wave is a

hole that constantly grows and traps ambient particles whereas for the double-resonance

case, the phase-space islands supporting the up-chirping branch are a hole and a clump

corresponding to the 1st and the 2nd resonance, respectively. The time evolution of the

adiabatic invariants at the separatrix are illustrated in figure 4.11 for the up-chirping wave

of the double-resonance case. The values are normalised to the corresponding initial value

of the 1st resonance hole. Unlike the single-resonance case, it can be observed that neither

of the structures constantly grow in phase-space. The separatrix of the 2nd resonance

clump initially grows until τ ≈ 0.051 and then starts to shrink. This has an impact on

the behaviour of the 1st hole where it deepens until τ ≈ 0.141. The asymptotic behaviour

observed in figure 4.10c corresponds to the times when each phase-space structure reaches

the maximum expansion and does not grow further as shown in figure 4.11. At this point,
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the change in the bounce frequency of the trapped electrons around the O-point drops to

zero (see Eq. (4.29)).

Furthermore, snapshots of the phase-space for the up-chirping wave, illustrated in

figure 4.12, reveal that the particle trapping will not constantly occur as these structures

evolve. As mentioned above, it can be observed that at τ = 0.044 < 0.051 the clump has

expanded and trapped the ambient particles. It is worth mentioning that the 2nd resonance

clump moves towards magnetically trapped electrons having smaller values of the energy

parameter ζT and for the choice of a linear equilibrium distribution function in ζ, the

newly trapped electrons have smaller distribution function values. Later evolution of the

clump shows a loss of the trapped particles at τ = 0.207. Similarly, an illustration of the

phase-space hole for the 1st resonance at τ = 0.1371 < 0.141 shows the particle trapping

inside the structure while it moves towards electrons having higher energy parameters

values. At τ = 0.207, the separatrix of the hole has slightly shrunk as expected from

figure 4.11.

The shape of the chirping waves corresponding to the upward and downward branch

is illustrated in figure 4.13a and figure 4.13b, respectively. The deviation of the frequency

for both branches is the same as that of figure 4.7. Compared to the shape of the down-

chirping wave, the up-chirping wave is more deviated from the linear sinusoidal wave. This

0 0.1 0.2

0.8

1

1.2

1.4

(a)

0 0.1 0.2
0

2

4

6

8

(b)

0 0.1 0.2
0

200

0

40

0 0.1 0.2

2

4

0

0.5

(c)

0.1 0.2
0

1

2

0

1

2

4

5

(d)

Figure 4.10: Nonlinear behaviour of the chirping wave under the simultaneous effect of
1st and 2nd resonances. Evolution of the frequency (a), the first Fourier harmonic (b)
and the RHS of the adiabatic ordering at the O-point for (c) the up-chirping and (d) the
down-chirping waves. In panels c and d, black and red curves correspond to the adiabatic
ordering of (4.29) and (4.30), respectively. In all the figures, the solid and dashed curves
correspond to the up-chirping and down-chirping waves, respectively.
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is contrast with the single resonance case where the down-chirping wave experiences more

change in the wave potential (see figure 4.6).

4.6 Summary

The study of adiabatically chirping waves with deepening potentials is enabled in the

trapped-passing locus model of Ref. [56]. This is associated with inclusion of the particle

trapping effect in phase-space as the trapping region of the wave expands. This work allows

the study of chirping waves with up-ward and downward frequency chirping in full range of

fast particles orbit topologies which is a 1D paradigm of guiding centre motions in realistic

geometries. The BOT code simulations are performed to find an appropriate shape for the

phase-space structures namely holes and clumps, after their fast scale formation process.

Under the adiabatic ordering, fast particles are labeled using their adiabatic invariants

in a slowly evolving system. In a discretised scheme, this ordering and the Liouville

theorem imply that the phase-space density remains constant in between waterbags/rings

of adiabatic invariants. Hence, we resolve the perturbation of the phase-space density of

fast particles using a Lagrangian mesh approach. In fact, each contour of the distribution

function is considered as a waterbag.

The evolution of the system is analysed for up-chirping and down-chirping modes in a

single resonance interaction. Subsequently, we introduce regions in the fast particles orbit

space where the 2nd resonance can have remarkable contribution to the linear growth

rate of the mode. This stimulates a nonlinear study of the chirping waves by including

the contribution of the 2nd resonance to the density of the fast particles. The analysis

reveals that the nonlinear behaviour of the mode can be considerably altered by the 2nd

resonance. Therefore, depending on the linear frequency of the wave, it is essential to

include the contribution of higher resonances when studying the evolution of chirping

waves in real experiments.
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Figure 4.11: Evolution of the adiabatic invariants at the separatrix for the up-chirping wave
in the double-resonance case. The black and red curves correspond to the 1st resonance
hole and the 2nd resonance clump, respectively. The y-axis values are normalised to the
adiabatic invariant of the separatrix corresponding to the 1st resonance hole at τ = 0.0025
denoted by I1st,τ=0.0025.
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Figure 4.12: Snapshots of the phase-space corresponding to the up-chirping wave with the
vertical and horizontal axis being J̃ − Jres and θ̃, respectively. The color denotes the total
distribution function. The first and the second row correspond to the 1st resonance hole
and the 2nd resonance clump, respectively.

So far, in this work and the previous models on the adiabatic frequency chirping,

the amplitude of the chirping wave experienced by the particles i.e. the orbit averaged

mode amplitude denoted by V in this work, is not a function of the phase-space action at

each corresponding wave frequency. Instead, it is approximated around the centre of the

separatrix by truncating the Taylor expansion of the mode amplitude around J̃res after
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Figure 4.13: Nonlinear potential of (a) the up-chirping wave at τ = 0.21 with ω̂ = 1.32
and (b) the down-chirping wave at τ = 0.053 with ω̂ = 0.84. The dashed curve represents
the linear sinusoidal potential.
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the first term and is justified under the assumption of γl ≪ ωpe, where γl is the linear

growth rate and ωpe is the linear frequency. This implies that particle detuning from the

initial linear resonance is small. However, for cases where the mode amplitude has deep

gradients in the action of the fast particles equilibrium motion [111], taking into account

the higher order terms of the aforementioned Taylor expansion is a next step extension to

this work which is included in our research plan.
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Chapter 5

Simulation of convective transport

for TAE frequency chirping using

the MEGA code

Abstract

We present a procedure to examine energetic particle phase-space dur-

ing long range frequency chirping phenomena in tokamak plasmas. To apply

the proposed method, we have performed self-consistent simulations using the

MEGA code and analyzed the simulation data. We demonstrate a travelling

wave in phase-space and that there exist specific slices of phase-space on which

the resonant particles lie throughout the wave evolution. For non-linear evo-

lution of an n = 6 toroidicity-induced Alfvén eigenmode (TAE), our results

reveal the formation of coherent phase-space structures (holes/clumps) after

coarse-graining of the distribution function. These structures cause a con-

vective transport in phase-space which implies a radial drift of the resonant

particles. We also demonstrate that the rate of frequency chirping increases

with the TAE damping rate. Our observations of the TAE behaviour and the

corresponding phase-space dynamics are consistent with the Berk-Breizman

(BB) theory.

5.1 Introduction

The physics of energetic particles (EPs) plays an essential role in fusion plasmas. It has

very attractive diagnostic applications but, on the other hand, it involves the possibility

of unacceptably fast particle losses. A famous example is the destabilization of weakly

damped plasma waves inside the gaps of the shear Alfvén continuum, which entails redis-

tribution or ejection of EPs either through diffusive transport or a convective transport

where an isolated resonance moves radially like a bucket that carries resonant particles.

The latter is associated with long range frequency chirping and has been observed for a

variety of modes in experiments [46, 52, 105, 106, 112]. Refs. [113–118] show a correlation

between wave-particle resonant interactions and fast ion loss and redistribution.

The formation of coherent structures in fast electrons phase-space was observed in

non-linear simulations of a 1D electrostatic wave in Ref. [35]. These structures (holes and

clumps) are BGK-type modes [68] with a chirping frequency. They evolve adiabatically

and carry the trapped particles. Non-perturbative adiabatic models [53–57] suggest the

slow evolution of a Langmuir wave as a 1D paradigm of the more general wave-particle

95
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interactions in realistic geometries. In Refs. [47, 94], the theory has been extended to

tokamak applications where the frequency chirping of Alfvénic perturbations are studied.

Ref. [107] demonstrates the formation of holes and clumps during frequency chirping of

the n = 0 EGAM modes, where the toroidal momentum (Pφ) of the EPs is conserved

in the presence of the electrostatic perturbations. The impact of EP beta value (βEP)

on chirping of a TAE mode was studied in Ref. [119] and it has been shown that as the

frequency of the wave changes, the dominant perturbation occurs at different slices of

phase-space (Pφ vs E with µ = const). In Ref. [120], the phase-space dynamics of EPs

are studied during the long range frequency chirping of a TAE with a fixed eigenfunction,

where phase-space slices are determined using two constants of motion, namely µ and

C = ωTAEPφ − nE (see Refs. [121, 122]) with µ, ωTAE, n and E being the magnetic

moment, linear eigenfrequency, toroidal mode number and the EP energy, respectively.

Still the question of how the chirping wave transports particles in phase-space deserves

more detailed analysis. Technically speaking, best suited constants of motion for EPs

dynamics need to be defined as the frequency evolves.

In this work, we describe an appropriate procedure to observe the EPs dynamics on

sub-slices of the phase-space during frequency chirping of a TAE mode. Subsequently,

we validate this method by applying the corresponding analysis to the results of EP

simulations with the MEGA code [58, 123]. We also show that the rate of frequency

chirping is directly related to the damping rate of the mode in the bulk plasma. We

demonstrate the latter by altering the dissipation coefficients when the mode has already

evolved into chirping regime. In order to increase the resolution in phase-space, we have

added test particles to the code. These test particles are pushed by the fields but do not

contribute to the total EP current.

The rest of the paper is structured as follows: In section 5.2, we introduce a set of

equations implemented in the hybrid MEGA code. Section 5.3 describes the appropriate

coordinates and constants of motion needed to analyse the guiding centre dynamics of EPs

in phase-space during the non-linear frequency chirping. This involves canonical action-

angle variables. Subsequently, we apply our phase-space analysis to the simulation data

of the MEGA code in section 5.4 and report on the evolution of the TAE parameters. We

identify resonant particles and exhibit their convective transport in phase-space. Section

5.5 contains concluding remarks.

5.2 The simulation model in MEGA

We simulate the evolution of the energetic particle driven mode within a hybrid model

implemented in the MEGA code, where the bulk plasma particles are described as a

fluid by the non-linear MHD equations and the fast particles are treated in a drift-kinetic

approach. The MEGA code solves the following set of equations:

The momentum balance equation given by

ρ
∂v

∂t
= −ρv ·∇v −∇p+

(
1

µ0
∇×B − jα

)
×B +

4

3
∇ (νρ∇ · v)−∇× (νρ∇× v) , (5.1)

where jα denotes the EP current, ν is the viscosity coefficient and ρ and p are the density

and scalar pressure of the bulk plasma, respectively. In hybrid models, the contribution
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of fast particles is coupled to the MHD equations either through the current term or the

pressure term. Here, a current coupling approach has been implemented. It is noteworthy

that the perpendicular component of the EP current arises from curvature drift, grad-B

drift and magnetization current. This component of the EP current can be expressed in

terms of the parallel and perpendicular EP pressure.

The continuity equation for the bulk plasma

∂ρ

∂t
= −∇ · (ρv) + νn∆(ρ− ρ0) , (5.2)

where νn is the mass diffusivity. The energy balance equation for the evolution of the bulk

plasma pressure

∂p

∂t
= −∇ · (pv)− (γ − 1) p∇ · v + (γ − 1) (5.3)

×
[
νρ (∇× v)2 + 4

3νρ (∇ · v)2 + ηj · (j − j0)
]

+λ∆(p− p0) ,

where γ is the adiabatic constant and λ represents the heat conductivity.

The set of Maxwell’s equations and the Ohm’s law given by

∂B

∂t
= −∇×E, (5.4a)

j =
1

µ0
∇×B, (5.4b)

E = −v ×B + η (j − j0) , (5.4c)

where η represents resistivity.

In the above equations, all the other quantities are conventional. The subscript 0

represents the equilibrium values of the parameters and the corresponding terms, as the

source terms, have been used to enforce MHD equilibrium and compensate the diffusion

and dissipation of the equilibrium fields. This set of equations is discretized using the

method of finite difference and the fields are solved in an Eulerian scheme where the

computational domain is gridded.

The EPs are treated kinetically in a Lagrangian picture. A particle-in-cell method

is applied to project the impact of EPs (EPs charge) on the grid points and update the

fields in a self-consistent manner at each time step. The perturbation of the EPs, due to

the wave, is calculated using the δf approach as the time evolution of the weight of each

particle. This gives the following expression for the EPs current

jα =
∑N

i=1 eZαwi

(
v∗
∥,i + vB,i

)
S(x− xi)

−∇×
[
b
∑N

i=1 µiwiS (x− xi)
]
, (5.5)

where the second term on the right-hand side is the magnetization current, the subscript

i represents the ith EP, eZα is the charge of the EPs, wi is the weight, vB,i is the drift

due to the gradient of the magnetic field, S is the shape factor and µ = Ek
(
1− λ2

)
/B

is the magnetic moment with Ek, λ and B being the kinetic energy, pitch angle and 0the

magnetic field at the guiding centre, respectively, v∗
∥ contains the parallel velocity v∥ to
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the magnetic field and magnetic curvature drift, and is given by

v∗
∥ =

v∥

B∗ [B + ρ∥B∇× b], (5.6)

where ρ∥ =
miv∥
eZαB

is the parallel gyro-radius, B∗ = B(1+ρ∥b ·∇×b) [73] and mi is the ion

mass. It is noteworthy that jα does not contain E ×B drift due to quasi-neutrality [58].

The EPs current is coupled to the MHD equations through Eq. (5.1).

5.3 Phase-space study

In (E, pφ, µ) coordinate, the conservation of the conventional constant of motion C =

ωTAEPφ− nE will break down as the frequency of the wave chirps. Therefore, in order to

study the phase-space during chirping, we need to identify generalised canonical momenta

that remain constant not only in the perturbative linear phase of the TAE evolution

but also during the long range frequency chirping. This is done in this section, where

we introduce a set of coordinates using which the dynamics of EPs interacting with a

chirping wave is reduced to essentially 1D. We start from the Littlejohn’s Lagrangian [73]

for singly-charged ions given by

Llittlejohn = e(A+ ρ∥B) · Ẋ +
mi

e
µΩ̇−H, (5.7)

where e is the electron charge, X is the guiding centre position, Ω is the gyro angle, A is

the total vector potential and B = ∇×A and H = 1
2mv

2
∥ + µB is the Hamiltonian. It

should be noted that a gauge is considered where the perturbed electrostatic potential is

zero. The expression of (5.7) contains both the particle/unperturbed and the interaction

Lagrangian.

For common choices of magnetic field line coordinates e.g. Boozer [124], PEST [125],

Hamada [126] and etc, the guiding centre Lagrangian does not immediately reveal three

canonical pairs of the Hamiltonian structure. This is due to the fact that the Lagrangian

contains the time derivative of four variables as opposed to three. There have been several

attempts to tackle this issue [124,127,128] but each has its own disadvantages. In Ref. [129],

the problem is resolved by introducing canonical angles, namely (θc, ξc), which give a new

type of global coordinates called canonical straight field line coordinates.

Using the new coordinates, a Legendre transformation can be implemented to find the

unperturbed Hamiltonian

H0(Pθc , Pξc , PΩ, θc) = Pθc θ̇c + Pξc ξ̇c + PΩΩ̇− Leq, (5.8)

where Leq is the unperturbed part of the Little John’s Lagrangian. This Hamiltonian

describes the unperturbed guiding centre dynamics of EPs with

Pθc = eψ +mv∥bθc , (5.9a)

Pξc = −eχ+mv∥bξc , (5.9b)

PΩ =
m

e
µ. (5.9c)

where χ and ψ denote the poloidal and toroidal flux, respectively. The set (Pθc , Pξc , PΩ) are

the canonical momenta conjugated to (θc, ξc,Ω). For this completely integrable system, the

θc−dependence of the Hamiltonian can be eliminated by using a canonical transformation
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to action-angle variables. In these variables, we have

H0 = H0(Pθ̃c , Pξ̃c , PΩ̃), (5.10)

where the action variables (Pθ̃c , Pξ̃c , PΩ̃) correspond to the angles (θ̃c, ξ̃c, Ω̃) that are linear

functions of time in the unperturbed motion, i.e.,

˙̃
θc =

∂H0

∂Pθ̃c
= ωθ̃c , (5.11a)

˙̃
ξc =

∂H0

∂Pξ̃c
= ωξ̃c . (5.11b)

To describe the perturbed motion of the particles, we write their total Hamiltonian Htotal

as a sum of the unperturbed Hamiltonian H0 and a perturbation U associated with the

wave. This gives

Htotal = H0 + U. (5.12)

We use the following representation for the perturbation U

U = Σh,mϕm;n;h (rc; t)
ih(mθc+nξc−α(t)) . (5.13)

where h denotes the hth harmonic of the non-linear wave and rc is the generalised radial

coordinate corresponding to θ̃c and ξ̃c. This representation corresponds to a single chirping

wave formed and evolved as a BGK-type wave through excitation of sideband/secondary

oscillations of a single eigenmode in an isolated resonance. BGK modes are long-term non-

linear solutions to the Vlasov–Poisson system which propagate steadily and in Ref. [35]

chirping waves are described as BGK nonlinear waves that last much longer than the

inverse linear damping rate while they are upshifting and downshifting in frequency. We

rewrite U in terms of the action-angle variables of the unperturbed motion to have

Htotal = H0 + U(Pθ̃c ;Pξ̃c ;PΩ̃; pθ̃c + h
[
nξ̃c − α (t)

]
). (5.14)

Here, U is associated with an individual particle resonance, denoted by l = p
h , which in-

cludes several terms from expression (5.13) i.e. U is a periodic function but not necessarily

sinusoidal. The coefficients of the aforementioned expansion are the orbit-averaged mode

amplitudes which represent the coupling strength (see Refs. [30, 47]). For the dynamics

governed by the total Hamiltonian given above, PΩ̃ is already a conserved quantity and

since the Hamiltonian depends on a combination of θ̃c and ξ̃c, we have another imme-

diate conservation law which makes the problem essentially one dimensional. This 1D

description of wave-particle interaction can be represented by transferring the coordinates

canonically to a frame co-moving with the chirping wave. A type-2 generating function

for such a transformation is

G2 (q,pnew, t) = P1

[
lθ̃c + nξ̃c − α (t)

]
+ P2ξ̃c + P3Ω̃. (5.15)

It can be used to write the explicit expressions for the new variables and constants of
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Figure 5.1: (a) The safety factor and (b) the corresponding shear Alfvén continuum in a
circular cross section configuration for n = 6. The red dashed line represents the linear
frequency of the toroidal Alfvén eigenmode.

motion as

P1 =
1

l
Pθ̃c

P2 = Pξ̃c +
n

l
Pθ̃c

P3 = PΩ̃

Q1 = ζl = lθ̃c + nξ̃c − α (t)

Q2 = ξ̃c

Q3 = Ω̃,

(5.16)

after which the new Hamiltonian takes the form

Hnew = Heq(P1, P2, P3) + U(ζ, P1, P2, P3) +
∂G2

∂t
, (5.17)

where P2 and P3 are constants of motion and a generalized momentum (P1) and its corre-

sponding coordinate (ζ), to which the momentum is conjugated, constitute the dynamical

variables. We thereby follow the EPs dynamics in P1 − ζ on sub-slices of P2 = const and

P3 = const. The distinctive feature of the chosen variables is that P2 remains conserved

as the frequency chirps. In what follows, we focus on the first harmonic of the nonlinear

wave l = 1 and we drop the subscript l = 1 from ζ for simplicity.

So far, we have introduced proper coordinates for our phase-space analysis, and

the next step is to identify how the six-dimensional coordinate transformation of

(Pθc , Pξc , PΩ, θc, ξc,Ω) → (Pθ̃c , Pξ̃c , PΩ̃, θ̃c, ξ̃c, Ω̃) is carried out. We do that by relating

the EPs frequencies to Pθ̃c and Pξ̃c using Eqs. (5.11a), (5.11b) and (5.10).

Given (5.10), H0 is known as the particle energy (E), and Pξ̃c and PΩ̃ are also known

quantities and can be evaluated using (5.9b) and (5.9c), respectively, for ξc and Ω being

ignorable coordinates in H0 of (5.8). Hence, Eq. (5.10) can be inverted to write

Pθ̃c = Pθ̃c(H0 = E,Pξ̃c , PΩ̃). (5.18)

We use the following procedure to implement this inversion. For a slice of µ = const, we

write

Pθ̃c = G(E,Pξ̃c), (5.19)
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where G is a 2D polynomial of
√
E and Pξ̃c . The reason we take G as a function of

√
E

is that in this work we focus on the highly passing particles (µ = 0), as in a neutral beam

injection (NBI) scenario, for which ωθ̃c =
v∥
qR0

∝
√
E and ωξ̃c =

v∥
R0

∝
√
E. Therefore,

we have H0(G(E,Pξ̃c), Pξ̃c). Applying the derivative operator to both sides of (5.19) with

respect to Pθ̃c and Pξ̃c gives

∂G

∂E
=

1

ω̂θ̃c
and (5.20a)

∂G

∂Pξ̃c
= −∂G

∂E
ω̂ξ̃c , (5.20b)

respectively, where Eqs. (5.11a) and (5.11b) are used andˆdenotes the frequencies calcu-

lated using the fitting function G. To fit G, we use the method of least squares with the

following minimization function

M =
1

N
[
N∑
i=1

(
1

ω̂θ̃c
− 1

ωθ̃c
)2 +

N∑
i=1

(
1

ω̂ξ̃c
− 1

ωξ̃c
)2], (5.21)

where N is the total number of EPs on a µ = const slice. In order to evaluate M , the

equilibrium frequencies (ωθ̃c , ωξ̃c) must be determined from simulation. These are com-

puted by tracing particle trajectories for different Pξ̃c and E. Once known, the polynomial

coefficients of G are varied until Eq. (5.21) is minimised. This determines G.

Considering the set (R, z, φ) as the cylinderical coordinate, we consider θ̃c = 0 and

ξ̃c = φ on the z = 0 plane with largest R where we also record the particle data. On

this plane, the canonical angles (θc, ξc) equal geometrical angles (see [129] and Eq.23 of

Ref. [130]). As a convenient choice, this plane can also be used to show Pξ̃c = Pφ, where

Pφ is the toroidal angular momenta conjugated to φ.
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Figure 5.2: Time evolution of the TAE envelope (a) and the frequency spectrogram (b)
for n = 6, m = 6 oscillations at r/a = 0.27. The y-axis of panel a shows the normalised
radial component of the plasma velocity. The color bar of panel b represents an estimate
of the short-term time-localized frequency content of cos component of vr. The dissipative
coefficients are kept the same as given in expression (5.23) throughout the mode evolution.
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Figure 5.3: (a) A scan of the net growth rate versus EP pressure on axis from simulation
data (the black circles) and a linear fit to the data (dashed line) and (b) the structure of
the radial component of the bulk plasma velocity (vr), normalised to the Alfvén velocity
on the axis (vA), versus the normalised minor radius at t/tA = 217.6. Here, tA is the
Alfvén time on the axis.

The above approach gives an essentially 1D representation of the wave-particle in-

teraction using phase-space plots in P1-ζ space. A notable advantage of this method is

that P2 is conserved even when the frequency experiences long deviation from the initial

eigenfrequency. This has important implications when resolving the question of whether

the EPs trapped inside the chirping wave are carried with the wave (consistent with the

adiabatic theory of frequency chirping) or different particles are perturbed by the wave as

the frequency chirps. The mapping technique of transferring to the canonical coordinates,

introduced above, is not restricted to TAE-type perturbations and can be implemented to

study the phase dynamics of particles interacting with other types of perturbations such

as tearing modes, energetic particle modes and fishbone-type oscillations, amongst others.

5.4 Analysis of the simulations

The MEGA code uses an equilibrium configuration constructed by a Grad-Shafranov

solver for a given q-profile. In this work, we use a linear q-profile depicted in figure 5.1a.

The novel phase-space analysis tool described in section 5.3 is not restricted to the shape of

the q-profile and the choice of the linear q-profile here is just for the purpose of illustration

and simplicity. We choose the inverse aspect ratio ϵ = 3.2. The density and pressure are

uniform throughout the plasma. The corresponding shear Alfvén continuum for n = 6 is

plotted in figure 5.1b. The accumulation points of the first gap are located at r/a = 0.26.

For a TAE, the q-profile has a rational value at the cylindrical cross-over points, where

q = (2m+ 1)/2n. As shown in figure 5.1a, the first gap corresponds to m = 6 coupled to

m = 7, and the second gap located at r/a = 0.82 corresponds to m = 7 that is coupled

to m = 8. The equilibrium phase-space density of EPs is initialized using a slowing down

distribution given by

Feq,α =
κ

E3 + E3
crt

[1 + erf(
E0 − E

∆E
)] exp

(
−⟨ψ⟩
∆ψ

)
, (5.22)
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where Ecrt and E0 represent the critical and birth energies of the alpha particles, respec-

tively, ψ is the poloidal magnetic flux, ⟨⟩ denotes averaging over the particle orbit, ∆E

and ∆ψ specify the characteristic width of the equilibrium phase-space density in energy

and ψ, respectively. For the purpose of this work, the values are set as E0 = 1.44EA,

Ecrt = 0.25EA, ∆E = 0.0144EA and ∆ψ = 0.148ψmax, where ψmax is the maximum value

of ψ and EA = 1
2mv

2
A with vA being the Alfvén velocity at the centre of the plasma. The

EPs pressure is set to give an EP beta value of β0,EP = 0.6% on the magnetic axis. The

damping coefficients are

ν = η = 0.3× 10−7vAR0, νn = λ = 0. (5.23)

5.4.1 Evolution of the driven eigenmode

By solving the initial value problem with the MEGA code we find that the dominant

perturbation is a TAE excited above the lower tip of the first gap with a linear frequency

ωTAE/ωA = 0.4553, where ωA is the Alfvén frequency on the axis. Figure 5.2 shows

the evolution of the amplitude and the frequency of the mode. The absolute value of

the plasma radial velocity vr is depicted in figure 5.2a as a function of time. Using an

exponential fit to the early/linear stage data of figure 5.2a, we find that the net growth

rate of the mode is (γl−|γd|)/ωA = 0.0067. Similarly, we perform a scan of the net growth

rate over β0,EP to find the damping rate (γd) of the mode. This is depicted in figure

5.3a where a linear polynomial, fitted to the simulation data, identifies the intercept with

the vertical axis. This gives a damping rate of γd/ωA = 0.0053 which corresponds to the

energy being dissipated due to viscosity and resistivity in the coupled set of Eqs. (5.1) to

(5.5). It does not account for any damping mechanism related with kinetic effects by the

thermal ions. Subsequently, the linear growth rate of the TAE is γl/ωA = 0.012. Hence,
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Figure 5.4: Time evolution of the TAE envelope (a) and the frequency spectrogram (b) for
n = 6, m = 6 oscillations at r/a = 0.27. The two vertical dashed lines on panel b denote
the times, namely t/tA = 1119.1 and 1243.4, at which the damping coefficients has been
increased. The color bar represents an estimate of the short-term time-localized frequency
content of cos component of vr.



104Simulation of convective transport for TAE frequency chirping using the MEGA code

in this simulation we have

γd/γl = 0.44, γl/ωTAE = 2.64%.

The two dominant radial profiles of the TAE corresponding to the poloidal mode numbers

m = 6 and 7 are shown in figure 5.3b. We observe that the peak lies around the location

of the first gap of the shear Alfvén continuum.

Figure 5.2b shows an evolving spectrum of the cosine part of vr. It reveals the primary

up-ward and down-ward branches of frequency chirping. There are also secondary branches

in the spectrogram. For a 1D electrostatic wave, Ref. [35] explains the frequency sweeping

at early stages of sweeping as
δω

γl
=

16
√
2(γdt)

1/2

3
√

(3)π2
, (5.24)

where δω represents the frequency shift. Accordingly, Refs. [47, 53–57], provide a theory

for long range frequency chirping for unstable eigenmodes in a dissipative background

plasma. In these works, the frequency chirping is explained as a self-sustained nonlinear

balance between the power extracted from the energetic particles and the power dissipated

in the background plasma. To examine that in our self-consistent simulations, we have

modified the dissipation coefficients during the frequency chirping.

We change the dissipation coefficients at t/tA = 1119.1 and 1243.4, from their initial

(a) (b)

(c) (d)

Figure 5.5: Frequency spectrum across the radial coordinate at different time slices. The
color bar represents the absolute value of power(dB) per frequency. Panels (a), (b), (c)
and (d) correspond to t/tA = 196.1, t/tA = 469.7, t/tA = 1713.1 and t/tA = 3570.4
respectively. The dotted line shows the Shear Alfvén continuum.
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values of (5.23) to ν = η = 6 × 10−7vAR0 and ν = η = 1.2 × 10−6vAR0, respectively.

We note that this change will not affect the linear evolution of the TAE. Figure 5.4 shows

the resulting amplitude and frequency of the TAE as functions of time that we analyze

subsequently. The times at which the damping rate has increased are denoted by vertical

dashes in figure 5.4b. A comparison of figs. 5.2 and 5.4 shows that besides an expected

drop in the amplitude of the signals, the rate of frequency chirping has increased in figure

5.4b after increasing the dissipation coefficients. Figure 5.4 confirms the essential role of

dissipation in the chirping mechanism. The above technique of increasing the damping

coefficients during the non-linear process of chirping provides a useful probing tool for

nonlinear simulations. It can also save computational resources in large-scale simulations.

Figure 5.5 shows the frequency content at each radial location at four different stages

of the wave evolution. The linear mode structure of figure 5.5a is comparable to the

one shown in figure 5.3b. Figure 5.5b corresponds to the early stages of frequency chirp-

ing where the sideband/secondary waves have just formed inside the toroidicity gap. In

figs. 5.5c and 5.5d, the frequencies of the chirping waves deviate further from the initial

eigenfrequency towards the tips of the gap which leads to the excitation of continuum

waves. Finally, the frequencies of the chirping waves enter the shear Alfvén continuum

and exhibit different frequencies at different radial locations as they follow the continuum.

5.4.2 Resonance condition

In tokamak plasmas, the resonance condition between the particle guiding center mo-

tion and a wave with a toroidal mode number n reads [11]

ω = nωξ̃c + pωθ̃c . (5.25)

where p is an integer. In the case of TAE, the mode has two dominant poloidal components

of the field (m and m + 1). These two components have opposite phase velocities along

the magnetic field. Consequently, the strongly co-passing particles resonate at p = −m,

whereas the strongly counter-passing particles resonate at p = −(m + 1) [58]. For our

(a) (b)

Figure 5.6: The resonance curve (a) and the resonance line (b) in E vs. Pφ and ωξ̃c vs.
ωθ̃c plane, respectively. Each panel shows a µ = 0 slice of the phase-space for co-passing
EPs. The color bar represents the particle weights (perturbed distributions). The dashed
line is a fit using the resonance condition of (5.25).
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(a) (b)

Figure 5.7: The action corresponding to the poloidal angular momenta for µ = 0 in (a) E
vs. Pφ plane and (b) ωξ̃c VS. ωθ̃c

.

modes of interest, we expect the co-passing particle resonance to be at n = 6 and p = −6

in the simulations.

Figure 5.6 shows two images of the perturbed particle distribution function: the color-

coded particle weights on the E − Pφ plane and on the ωξ̃c − ωθ̃c plane at the same time.

As expected, the perturbed distribution is strongly localized around the resonance line

with n = 6 and p = −6.

5.4.3 Numerical calculation of Pθ̃

The known frequencies of the unperturbed motion for µ = 0 enable calculation of

Pθ̃c and, thereby, the generating function of the canonical transformation to action-angle

variables. To solve this problem, we have used the CVX package [131] which supports

disciplined convex programming to convex optimization. Figure 5.7a shows Pθ̃c as a func-

tion of E and Pφ. Similarly, the dependence of Pθ̃c on the precession frequency ωξ̃c and

the bounce frequency ωθ̃c is depicted in figure 5.7b. We observe that for fixed values of

E, the absolute value of Pθ̃c is directly proportional to Pφ. However, a slice of Pφ = const

demonstrates an inverse relation between the absolute values of Pφ and E. It should be

mentioned that for each µ = cnst layer of the phase-space, Pθ̃c can be calculated similarly

using the fitting method described above.

At this point, we have introduced all the ingredients to observe/analyse the phase-

space dynamics using (P1, P2, P3). Figure 5.8 demonstrates the data of figure 5.6 in the

Pθ̃c − Pφ plane. The black lines represent P2 = const trajectories. Each P2 = const line

corresponds to a sub-layer of the phase-space on which the EPs lie during the evolution

of the instability; from the linear phase towards the long range frequency chirping stage.

In what follows, we study the detailed dynamics of the resonance in the P1 − ζ plane.

5.4.4 Convective transport of EPs in phase-space

In what follows, we analyze a set of particle data recorded at the moments when the

particle trajectory crosses the z = 0 plane with R > R0. The corresponding plots of P1−ζ
are essentially Poincaré plots generated for P2 = const lines in figure 5.8. We focus on the
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particles with P2 = 39. This value is chosen to present EPs with the most perturbed phase-

space density (see figure 5.8). To improve numerical resolution, we record the particle data

in the narrow interval |P2 − 39| ≤ 0.2. The aforementioned Poincaré plots are shown in

figure 5.9 at different stages of the TAE evolution. The colors in figs. 5.9a, 5.9c, 5.9e,

5.9g and 5.9i represent the perturbed weight/phase-space density of each particle. In the

unperturbed state, each EP is assigned a color label according to its corresponding value

of P1 (see figure 5.9b). This label/color is kept the same throughout the simulations.

Using this label, we produce a set of snapshots of the phase-space i.e. figs. 5.9b, 5.9d, 5.9f,

5.9h and 5.9j where the color bar denotes the particle label. The importance of these color

labelled plots i.e. right panels of figure 5.9, in identifying whether the convective transport

occurs can be explained as follows: In the left panels of figure 5.9, the color denotes the

weight of the EPs related to the perturbed phase-space density. After the saturation of

the wave, the plots demonstrate a group of detached perturbed particles at either side of

the flattened area. One might imagine that the chirping waves cause local perturbations

in phase-space and leave the particles behind and perturb another new set of particles.

However, to reject this idea, we use the color labelled panels to show that the particles

inside the chirping wave are the ones initially located around the linear resonance and

are being carried by the BGK-type chirping waves in a moving phase-space bucket in a

convective way.

Figures 5.9a and 5.9b correspond to the linear stages of the TAE excitation i.e.

t/tA = 205.4. Figures 5.9c and 5.9d demonstrate the coarse graining of the distribu-

tion function around P1 ≈ 19.5 in phase-space just before the non-linear saturation of the

TAE. Figures 5.9e and 5.9f demonstrate the phase-space dynamics during the frequency

chirping of the wave at t/tA = 2477.8. At this point, the up-chirping and down-chirping

waves have experienced a frequency sweep of 13.55% and 11.33%, respectively. We ob-

serve the holes (blue) and clumps (red) centered around P1 ≈ 19.91 and P1 ≈ 18.95,

corresponding to the down-chirping and up-chirping waves, respectively. They form at

either side of the flattened region and move in the phase-space of EPs as the frequencies

chirp. The rest of the panels correspond to further evolution of the frequencies. It is worth

mentioning that the dashed ovals in figure 5.9g mark the detachment of a second set of

Figure 5.8: Phase-space dynamics of co-passing EPs on the Pθ̃ vs. Pφ̃ plane with µ = 0
prior to wave saturation. The black lines denote exact constants of motion during the
wave evolution.
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Figure 5.9: A µ = 0 and P2 ≈ 39 slice of the EPs phase-space as a function of EP weights
(panels a,c and e) and EPs color label (panels b,d and f) at different stages of the wave
evolution. The purple circle denotes a particle that is convected by the phase-space clump,
continued ...
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Figure 5.9: A µ = 0 and P2 ≈ 39 slice of the EPs phase-space as a function of EP
weights (panels g and i) and EPs color label (panels h and j) at different stages of the
wave evolution. The purple circle denotes a particle that is convected by the phase-space
clump.
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Figure 5.10: Variation of C
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, P2 and Pφ at various stages of the TAE evolution.
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phase-space holes. We attribute these structures to the second branch of down-chirping

waves illustrated in figure 5.4b.

Since EPs remain on the same sub-layer of the phase-space, on which P2 is a constant

of motion, the constructed phase-space plots ascertain the mechanism under which the

phase-space density is being perturbed. As figs. 5.9f, 5.9h and 5.9j clearly demonstrate,

the phase-space islands act like buckets that carry particles in phase-space and lead to

radial convection of the EPs.

Conservation of the generalised momentum P2, given by (5.16), is the key part of this

understanding. Although the constancy of P2 is evident in phase-space plots of figure 5.9,

we investigate the value of P2 as a function of time for an EP which is transported by the

up-chirping wave. This particle is denoted in figs. 5.9a, 5.9c, 5.9e, 5.9g and 5.9i by a purple

circle. Simultaneously, we calculate the value of C, introduced in section 5.1, for the same

EP. This comparison is depicted in figure 5.10 where the value of C, unlike P2, changes

as the mode frequency begins to chirp. It is worth noting that P2 is comparable to C
ωTAE

in terms of units. Hence, slices of C = const do not represent the most appropriate sub-

layers of the phase-space to study/observe the dynamics during the long range frequency

chirping. Here, we explain why C can not be an appropriate constant during frequency

chirping. In (E, pφ, µ) coordinate, the φ and t dependency of the perturbation (δH) can

be represented by δH(nφ− ωt). Then, Hamilton’s equations give

ṗφ = −∂δH
∂φ

= −nδH ′ (5.26a)

Ė =
∂δH

∂t
= −ωδH ′, (5.26b)

A simple arrangement gives

ṗφ
n

= −δH ′ (5.27a)

− Ė

ω
= δH ′. (5.28)

This gives
ṗφ
n − Ė

ω = 0. Therefore,
d(ωpφ−nE)

dt = 0. Hence, C = ωpφ − nE is a constant of

motion. Nevertheless, all the above calculations are based on a fixed frequency (ω) and

when ω(t), dC
dt will not be zero anymore and hence the conventional constant of motion

(C) for electromagnetic perturbations will not be an appropriate choice to analyse the

phase-space of chirping waves.

5.5 Summary

We have refined the formalism for the phase-space analysis of the chirping modes

driven by resonant energetic particles in a tokamak. As an application of this refinement,

we analyze the results of self-consistent simulations performed with the MEGA code (an

initial value problem solver in a hybrid MHD-kinetic model). The initial perturbation

under study is a shear Alfvén eigenmode in the toroidicity-induced gap of the Alfvén

continuum (TAE). The initial population of the energetic particles has an isotropic slowing

down distribution. The EPs current provides a linear growth drive of γl/ωTAE = 2.64%

to the mode in the presence of background dissipation at a rate of γd/γl = 0.44.

Subsequent to the non-linear saturation of the eigenmode, the sideband (secondary)
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oscillations appear inside the toroidicity gap. These modes evolve into chirping waves. In

this case, we observe both up-ward and down-ward trends as the frequency chirps. We

demonstrate that the rate of frequency sweeping increases with the damping rate of the

eigenmode. As the chirping waves enter the shear Alfvén continuum, the radial structure

of the perturbation experiences different frequencies at different radii. This is consistent

with the theoretical model of Ref. [94].

A new conservation law is introduced which remains valid as the frequency of the

wave chirps. This allows defining sub-layers of the EPs distribution function on which the

particles are expected to remain even during the frequency chirping stage. Investigation of

the energetic particle dynamics reveals that these particles lie on the same sub-layer of the

phase-space throughout the simulations. Contingent on the formation and evolution of the

chirping waves, phase-space islands form and evolve adiabatically. This means that the

same particles are carried inside the coherent phase-space islands providing a convective

or bucket transport in phase-space. Once formed in the gap, the phase-space holes and

clumps survive even in the shear Alfvén continuum.

In fusion plasmas, Alfvénic chirping waves are commonly observed in the non-linear

phase of wave-particle interaction. This work clearly demonstrates that apart from diffu-

sive transport of particles due to overlap of multiple resonances, a single isolated resonance

of TAEs can also lead to the transport of particles in phase-space through convection. Such

convective transports demonstrated in this work will result in a change in the particles

flux surface label i.e. an inward or outward drift of the particles. This can lead to the ejec-

tion of the particles from the hot core of the plasma and negatively influence the machine

performance by degrading particle confinement.
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Chapter 6

Conclusion

In this PhD research, progress has been made in fields of Alfvénic chirping waves in

tokamak plasmas. This research extends the theory of chirping waves in tokamaks by de-

veloping more realistic theoretical models accompanied by self-consistent simulations. By

developing a novel phase space analysis tool and self-consistent hybrid simulations using

the MEGA code, the mechanism of long range frequency chirping for toroidicity-induced

Alfvén eignemodes (TAEs) has been clarified. The particle data of the simulations has

been analysed using the proposed method. A distinctive conservation law is presented for

particle dynamics which remains valid even if the frequency of the perturbation changes.

This is achieved by constructing constants of motion for energetic particle dynamics in res-

onance with Alfvénic chirping modes in tokamak plasmas. The results show that chirping

waves, which emerge after saturation of the linear TAE, are accompanied by the formation

and evolution of coherent phase space structures, holes and clumps, which carry the en-

ergetic particles in the generalised phase space and lead to a convective transport. These

observations are in agreement with the Berk-Breizman theory for chirping waves.

In terms of fast particle dynamics, the 1D adiabatic model of Boris [53] for long range

electrostatic chirping waves does not capture particle orbits i.e. the highly passing limit

where particles move freely. The guiding centre dynamics of the energetic particles, af-

fected by the parallel field gradients, can impact the evolution of chirping waves in reso-

nance with the particles. For the same amount of frequency shift, the rate of frequency

chirping and the amount of change to the spatial profile of a chirping wave is a function

of particles guiding centre orbits e.g. trapped or passing. In this thesis, a model has been

developed that investigates the impact of particle orbits on BGK-type waves with long

range frequency chirping. As an example, it has been shown that in the energy range for

which the particle is trapped, the wave chirps faster when it is in resonance with more

deeply trapped particles. An interesting behaviour is observed in the range of trapped

particles. For monotonic chirping, the amplitude of the mode grows then decays. Hence,

the above model needs to be extended to include particle trapping in phase space for cases

where the amplitude of the chirping wave grows i.e. the separatrix of the corresponding

phase space island expands.

A phase space waterbag model is developed to enable particle trapping for chirp-

ing waves with growing potentials. Since numerical simulations reveal the formation of

holes/clumps off the initial resonance, this new model uses the BOT code data to initialise

the shape of phase space islands at the point where they have just been formed. This model

allows a study over the full range of particle orbits. In addition, it has been demonstrated

that there are energy regions in which the contribution of higher particle resonances to

the linear growth rate can be higher than the 1st resonance. In these regions, investiga-

tion of the model shows a considerable change in the hard-nonlinear evolution of chirping

113
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waves under the impact of higher particle resonances. The implication to frequency chirp-

ing models for experimental observations is that depending on the wave frequency under

study, the contribution of higher resonances must be taken into account.

The nonperturbative theoretical framework for describing chirping waves has been

extended to Alfvénic waves in tokamaks [47]. The model investigates the excitation of

a Global Alfvén eigenmode that evolves into chirping modes in a neutral beam injection

scenario in the limit of a high aspect ratio configuration. The radial profile of the Alfvén

wave is described using the method of finite elements and the nonlinear wave equation

is derived by varying the total Lagrangian of the system with regards to the weights of

the elements. It is inferred that the frequency chirping changes the radial structure of

the corresponding chirping wave. The model shows how the energetic particles can be

drifted radially in a tokamak plasma due to long range Alfvénic chirping observed in

fusion experiments.

Last but not least, further avenues of research that stem from this PhD can be outlined

as follows

• All the reduced frequency chirping theoretical models discussed in this thesis assume

a uniform effective electric field Veff (the orbit averaged mode amplitude or the

coupling strength), inside the wave trapping region; a zeroth order approximation

around the middle of the separatrix in phase space. The cases where this assumption

holds include: the limit of very highly passing particles for kpert/keq = 1 or the small

separatrix width limit γl ≪ ωpe where γl is the linear growth rate of the plasma wave

with linear oscillations in a time scale on the order of ω−1
pe . In the chirping problem

of chapter 2, the orbit averaged mode amplitude depends on factors such as the

spatial periodicity of the equilibrium field (λeq = 2π/keq), the wavenumber of the

perturbation (kpert) and the action (J) corresponding to the equilibrium motion of

particles in the absence of the perturbations. In cases where Veff is a steep function

of the particle action, approximating Veff inside the island by the first term of its

Taylor expansion around J implies the island separatrix width is small. For typical

values of mode growth rates observed in experiments, this might not be always true.

Therefore, a further study can be done by firstly introduce regions of steep gradient

for Veff in the particle action. Then, for the physical parameters which result in

experimentally relevant values of the growth rate, a new model can be developed to

investigate the phase-space dynamics and identify the island shape. In this model,

Veff should be updated along the perturbed phase-space dynamics of the particles.

This implies that the self-consistent electric field of the wave is a function of the

velocity of the particles bouncing inside the wave separatrix.

• A future direction is to generalize the Lagrangian model given in chapter 3 such that

all the spatial components of the global Alfvén wave are simultaneously updated.

This can be achieved by considering a Fourier decomposition for the periodic com-

ponent of the wave structure in addition to the finite element representation of the

radial profile.

• For higher values of the linear growth rate than the one reported in chapter 5,

the frequency of the lower sideband oscillation, which emerges after saturation of

the toroidicity-induced Alfvén eigenmode, lies inside the shear Alfvén continuum.

In this case, numerical analysis reveals that the downward chirping wave almost

vanishes i.e. the corresponding signal significantly weakens and holes and clumps
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do not form in phase space. Further investigation of this phenomenon using the

MEGA code, together with a theoretical framework to study the influence of shear

continuum on the formation of sideband waves, would shed light on the impact of

continuum damping as the mode chirps into the continuum.
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White, and H. Yuh, “Modeling fast-ion transport during toroidal alfvén eigenmode

avalanches in national spherical torus experiment,” Physics of Plasmas, vol. 16,

no. 12, p. 122505, 2009.
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