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ABSTRACT
The accuracy and perception of soundfields produced by
loudspeaker arrays are strongly influenced by the inherent
characteristics of the commercial loudspeakers. This paper
analyzes such characteristics of loudspeakers by deriving
equivalent theoretical models, and by studying their impact
on soundfield reproduction. A number of acoustic models
are investigated, including plane waves decomposition, point
source decomposition and mixed source decomposition. Each
proposed model employs three effective sparse decomposi-
tion algorithms for optimized solutions, including iteratively
reweighted least squares (IRLS), matching pursuit (MP) and
least absolute shrinkage and selection operator (LASSO). A
successful model shall enable the prediction of the soundfield
outside the original recording region. Therefore, we validate
the effectiveness of the models by comparing the simulated
soundfield with secondary measurements obtained beyond
the original area. Experimental results have confirmed that
both the plane wave and mixed source model achieve promis-
ing performance with respect to the proposed metrics.

Index Terms— Loudspeaker modeling, spatial sound re-
production, sparse equivalent source modeling.

1. INTRODUCTION

Typically, spatial soundfield reproduction uses an array of
loudspeakers to create an immersive soundfield over a prede-
fined spatial region so that listeners within the area can expe-
rience a virtual but realistic replication of the original sound-
field [1–6]. Such perception can be achieved by controlling
the locations and driving signal of the loudspeakers that en-
close the spatial region of interest.

A considerable amount of soundfield reproduction sys-
tems have been proposed and can be categorized into three
types: (i) channel based, (ii) object based, and (iii) model
based methods. However, neither channel-based nor object-
based approaches achieve promising reproductions as they fo-
cus more on creating an artistic impression of surround sound.
Nowadays, soundfield reproductions are often implemented
using model based techniques derived from basic wave equa-
tions. Among the model based approaches, higher order Am-
bisonics [7–10] and Wave Field Synthesis [11–14] have be-
come the two most popular techniques in the field of sound-
field reproduction for the recent decade. Nevertheless, even
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with the effective model based algorithms, accurate spatial
soundfield reproductions over space are still to be realized.
While a number of factors are causing this, one that needs im-
mediate attention shall be the assumption of omnidirectional
behavior of sound sources, which is not the case with com-
mercial loudspeakers. To the best of our knowledge, there
are very few techniques known to the authors to characterize
or take such consideration into soundfield reproduction sys-
tems attempting to be technically accurate and precise. Given
commercial loudspeakers are inherently directional with fre-
quency dependence, we aim to model characteristics of loud-
speakers using an equivalent source model. In [15], we have
presented initial results on this topic by proposing an equiv-
alent plane wave decomposition. However, this modelling is
confined to a limited range of frequency and suffers from a
slow convergence rate.

This paper continues to conduct further research into this
important topic over a wider frequency band. Apart from the
plane wave model, we explore an equivalent point source de-
composition model with various radii, and a mixed acoustic
model that combines both the plane wave and point source de-
compositions. Since loudspeakers are modeled individually,
the resulting incident field at the listening area is inherently
sparse, specially in terms of incident direction. Therefore, the
aforementioned equivalent source models can be further opti-
mized by exploiting the feature of spatial sparsity. Thus, each
acoustic model analyzes a range of sparsity exploitation al-
gorithms [16], including iteratively re-weighted least squares
(IRLS), matching pursuit (MP) and least absolute shrinkage
and selection operator (LASSO). Finally, extensive experi-
ments are conducted using a moving commercial microphone
array to validate the effectiveness of proposed models.

2. PROBLEM FORMULATION

In this section, we describe the soundfield produced by a loud-
speaker, observed in a listening area, and then formulate the
problem to be addressed. Typically, any arbitrary soundfield
at a point x = (r, θ, φ) within a spherical listening region of
radius R can be decomposed into modal domain [17] by,

P(x, k) =

N∑
n=0

n∑
m=−n

αnm(k) jn(kr)Ynm(θ, φ) (1)

where N = dkRe indicates the order of soundfield [7] and
αnm(k) represents the spherical harmonics coefficients. The
jn(·) stands for spherical Bessel functions and Ynm(θ, φ) is
the spherical harmonics function with order n and degree m.

Traditionally, we assume that the loudspeakers act as an
omni-directional point sources [7, 18] so that αnm(k) due to



a loudspeaker located at (rs, θs, φs) can be calculated as,
αnm(k) = 4πikhn(krs)Ynm(θs, φs). (2)

However, the resulting harmonic coefficients in (2) are not
accurate for commercial loudspeakers used in real scenario as
they are non-ideal speakers. Thus, the problem addressed is
to propose and compare various acoustic models to model the
soundfield coefficients αnm(k) in (2) due to a real commer-
cial loudspeaker by a limited number of measurements and
predict the reproduced sound field over an extended area.

3. ACOUSTIC SOURCE MODELS

This section discusses the proposed equivalent source models
of plane wave, point source and the mixed source model in
details, respectively.

3.1. Plane wave modeling
Suppose we can represent an equivalent soundfield due to a
loudspeaker by a finite number of planes waves arriving from
an equiangular grid over all 3D directions,

P (x, k) ≈
L∑

l=1

s(ŷl, k)e
ikŷl·x (3)

where s(ŷ, k) is the driving signal of the plane wave arriving
from the direction ŷ. Using Gegenbauer expansion [19], we
can write its decomposition in modal domain,

eikŷ·x =

N∑
n=0

n∑
m=−n

4πinY ∗nm(ŷ)jn(kr)Ynm(θ, φ). (4)

By substituting (4) into (3) and equaling to (1), the equivalent
harmonic coefficients αnm(k) can be expressed as,

αnm(k) =

L∑
l=1

4πinY ∗nm(ŷl)s(ŷl, k). (5)

which relates the spherical harmonic coefficients αnm(k)
that characterise the loudspeaker to an equivalent set of plane
wave weights s(ŷl, k), l = 1.., L. Finally, we can write (5) in
matrix form as,

α =Hpwspw (6)
where α = [α00, .., αNN ]T , spw = [s(ŷ1, k), .., s(ŷL, k)]

T

and

Hpw = 4πin

 Y ∗00(ŷl) · · · Y ∗00(ŷL)

· · · · · · · · ·
Y ∗NN (ŷl) · · · Y ∗NN (ŷL)

 (7)

3.2. Point source modeling
Similarly, we propose to employ M discrete point sources
that lie on the surface of a sphere with radius of rp to realize
the modeling by approximating the recorded sound pressure,

P (x, k) ≈
M∑

m=1

s(ŷm, k)e
ik||ŷm−x||2/||ŷm − x||2. (8)

Various setting of radius rp makes a difference for the per-
formance and its impact will be investigated in experiments.
With Gegenbauer expansion [19], it can be decomposed as,

eik||ŷ−x||2

||ŷ − x||2
=

N∑
n=0

n∑
m=−n

4πikhn(krp)Y
∗
nm(ŷ)jn(kr)Ynm(θ, φ).

(9)

By substituting (9) into (8) and equaling to (1), we obtain,

αnm(k) =

M∑
m=1

4πikhn(krp)Y
∗
nm(ŷm)s(ŷm, k). (10)

Represent (10) in matrix form as,
ααα =Hpssps (11)

where ααα = [α00, .., αNN ]T , sps = [s(ŷ1, k), .., s(ŷM , k)]
T

and

Hps = 4πikhn(krs)

 Y ∗00(ŷ1) · · · Y ∗00(ŷM )

· · · · · · · · ·
Y ∗NN (ŷ1) · · · Y ∗NN (ŷM )

 (12)

3.3. Mixed source modeling
This subsection proposes the mixed source model that ex-
ploits and combines both the plane wave and point source
efficiently and models the recorded harmonic coefficients
αnm(k) in a joint way.

αnm(k) =

L∑
l=1

4πinY ∗nm(ŷl)s(ŷl, k) (13)

+

M∑
m=1

4πikhn(krs)Y
∗
nm(ŷm)s(ŷm, k).

Combination of (6) and (11) leads to matrix form of (13),
ααα =Hmssms (14)

where ααα = [α00, .., αNN ]T , Hms = [Hpw Hps] and sms =
[spw sps]

T .
To combine the two parts fairly, grid of directions for the

plane wave and point source shall be set by the same manner
so that L = M . Moreover, for the sake of fair possibility to
be selected, the amplitude of the plane wave and point source
from the same direction ŷ ought to be equal. Therefore, the
radius rs of point source within the mixed model is set for
each frequency that follows |khn(krs)| = 1 meter.

4. SPARSE DECOMPOSITION

This section attempts to seek for optimized or desired solu-
tions for the acoustic models formulated in section 3. Given
(6), (11) and (14), traditional least square methods can pro-
vide accurate solutions while it has a tendency to spread the
components of ααα among a large number of source candidates
inH . Since we mainly consider the sound field generated by
a single loudspeaker, we are to exploit the spatial sparsity fea-
ture by adding a sparse constraint using `p norm to the vector
of driving signal s shown in (15) as it manages to accomplish
the modeling using only a small number of source candidates.

min
s
‖s‖pp, s.t.Hs = ααα. (15)

This paper investigates three effective sparse algorithms, e.g.
IRLS, MP and LASSO, to solve the sparse problem in (15)
and introduce each of them in brief. Note that all the sub-
scripts in this section are abandoned for the sake of generality.
IRLS; this algorithm [20, 21] replaces the `p norm objective
function in (15) by a form of weighted `2 norm.

min
sss

M∑
i=1

wwwisss
2
i , s.t.Hs = ααα (16)

where wwwi = |s(m−1)i |p−2 and the driving signal for the next
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Fig. 1: Vertical view of the system setup for experiments.

iterate s(m) can be given explicitly,
s(m) = QmH

T (HQmH
T )−1ααα (17)

whereQm is diagonal matrix with entries 1/wwwi = |sss(m−1)i |2−p.
MP; with a proper initialization, the MP conducts in itera-
tive and greedy procedures to select the m-th column that has
maximally inner product with current residual Rmααα.

hhh(m) = argmax
hhh∈H

|hhhT (Rmααα)| (18)

whose corresponding driving signal is calculated by,
s(m) = |(hhh(m))TRmααα|. (19)

Above procedures comes to stop after enough number of iter-
ations or when the residual R(m)ααα is close to zero [22].
LASSO; it reformulates (15) by combining the objective
function and sparse constraint into a united expression.

s = argmin
s
||α−Hs||22 + λ||s||1. (20)

The parameter λ controls the extent of sparsity for vector s.
An optimal variable selection of LASSO for (20) can be real-
ized by the coordinate descent algorithms [23].

5. VALIDATION OF THE PROPOSED MODELS
Intuitively, a successful theoretical model of the loudspeaker
shall enable the ability to predict its incident field outside of
the original measurements. Therefore, for validations, we use
the proposed models to simulate the soundfield over an ex-
tended area and compare that to the real recordings. To make
it, we design a practical measuring setup using direct mea-
surements recorded by Eigenmike, which is demonstrated in
Fig. 1 and note that the speaker symbolizes a real commer-
cial loudspeaker. The small red circle of radius 4.2 cm at the
center of Fig. 1, represents the Eigenmike recording used for
modeling while the remained 5 Eigenmikes placed along the
boundary of larger red circle with a radius of 0.3 m are em-
ployed for validations.

ErrorP (k)=10log10


Q∑

q=1

|P rec(θq, φq, k)−P pre(θq, φq, k)|2

Q∑
q=1

|P rec(θq, φq, k)|2


(21)

Assuming stationary conditions, we propose to emulate
only one single Eigenmike moving along a horizontal circle
to record the sound field for validations. The strategy to move
the Eigenmike separately provides at least two benefits: the
recording can be accomplished by one single Eigenmike so
that the hardware costs can be reduced dramatically, and sec-
ondly it avoids perturbations of the scattering effects when to
place several Eigenmikes around. For each model, the sound
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Fig. 2: Sound pressure errors for all acoustic models

pressure over the 5 Eigenmikes (160 channels in total) beyond
the center can be approximated or simulated by the selected
source candidates and their driving signal. To analyze the ac-
curacy, the prediction errors over the extended area in terms
of soundfield pressure are computed as (21) shows, in which
the P rec(·) and P pre(·) represents the recorded and predicted
sound pressure for each channel, respectively.

However, single metric of numerical sound pressure er-
rors cannot fully evaluate or reflect the performance of the
proposed sparsity exploited models. It is conceivable that a
successful acoustic model exploiting sparsity shall enable the
ability to select active candidates that encloses the direction of
real loudspeaker. Therefore, apart from numerical error, spa-
tial distributions of the active or selected source candidates
with respect to direction of the real loudspeaker are investi-
gated and taken into account for thorough evaluations. And
such characteristics can be exhibited easily by plotting the dis-
tributions of the selected candidates as the Fig. 3 shows.

6. EXPERIMENTS
This section presents an experimental set up where a commer-
cial loudspeaker’s broadband response is recorded and mod-
eled using the proposed equivalent source models. The per-
formance of the proposed models is also analyzed using sec-
ondary measurements. Note that the real loudspeaker is part
of an existing loudspeaker array of 30 units, which is used for
spatial soundfield reproductions.
6.1. Experimental setup
The experiment’s setup mainly consists of 4 stages. Firstly,
we use an Eigenmike to record the soundfield due to an loud-
speaker of interest. The loudspeaker is a single unit from the
aforementioned sound reproduction system, and is located at
(r, θ, φ) = (1, 0.55, 0.62) with respect to the center of the
listening area. The loudspeaker’s incident sound field (only
the direct path) is recorded at the origin using an Eigenmike
as shown in Fig. 1. Secondly, the Eigenmike recordings are
used to derive a set of theoretical source models using the
proposed sparsity exploited methods. Thirdly, for validation
of the proposed models outside of the original recording area,
secondary soundfield recordings are obtained using a moving
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Fig. 3: Sparse distributions of selected candidates along with corresponding magnitude of driving signal (DS) for all models at 600Hz.

Eigenmike (see Fig. 1). Finally, we analyze the accuracy of
the proposed methods using the metric given in (21). Further-
more, we also study the concept of sparsity exploited equiva-
lent source models by analyzing the spatial distribution of the
proposed source decompositions.

6.2. Accuracy of the proposed models outside of the orig-
inal recordings
Here, we study the accuracy of the proposed models outside
of the region where original recordings were taken. Note that
we mainly consider frequencies below 1kHz, because when
soundfield reproduction accuracy is important, low frequen-
cies are those mostly affected by loudspeaker directivity.

Sub-figures (a), (b) and (c) report the accuracy in terms
of sound pressure errors for all acoustic models using the
three sparse algorithms. Under low frequency conditions, the
soundfield over the whole area in Fig. 1 may share certain
similarities that makes it hard to distinguish the effectiveness
of proposed modelings. Therefore, we calculate the differ-
ences of the sound pressure over the extended area with re-
spect to the soundfield at the center and take it as a baseline.

Generally, each acoustic model using any sparse algo-
rithm achieves satisfying performance, especially when the
frequencies are below 500Hz. The performance decreases
when the frequency increases in that the desired field is under-
sampled at higher frequencies. Among the sparse algorithms,
the LASSO achieves with least numerical errors while it has
a slow convergence rate and suffers from an expensive cost to
determine the sparse parameter λ in (20). The IRLS shows
to be with more errors at low frequencies while outperforms
the MP at higher frequency bins. For the acoustic models,
the mixed acoustic model achieves competitive performance
with a slight improvement when compared to the plane wave
model. However, the point source model, with the same ra-
dius with that of mixed model, appears to be with more errors
than the other two source models.

Figure 2(d) presents the mean sound pressure errors us-
ing all the three sparse algorithms for the point source model
when they are placed at various radii. It demonstrates that the
larger radius that lies further away from the sensors acts to be
more like plane waves and leads to reduced modeling errors.

6.3. Analysis of the spatial distribution of sparsity ex-
ploited source models
Figure 3 presents spatial distributions of selected source can-
didates for all proposed models using all sparse algorithms
when f = 600 Hz. Note that such distributions share sim-
ilar profile over other frequency bins considered. For each
sub-figure, the small circle lined in grid stands for the loca-
tion of a candidate (625 in total) and the notation of ∗ in blue
indicates the direction of real speaker. Magnitude of driving
signal represents the degree of activity or importance for that
candidate. The four double-columns marked by brackets cor-
respond to distributions of plane wave model, point source
model, the parts of plane wave and points source within the
mixed source model, respectively. Three lines of figures from
top to down employ IRLS, MP and LASSO, respectively.

Results verify that most of the active candidates selected
by plane wave model lie around the direction of real speaker
while the point source model fails. The mixed source model
exhibits promising distributions in that the plane wave parts
plays the leading role and a small amount of components orig-
inates from point source as well, which shall be kinds of sig-
nal components sharing a similar characteristics with point
source. Considering the sparse solutions, the MP turns out to
be the most sparse one due to the exponential decay of the
residual error [22]. The IRLS, with less sound pressure er-
rors than MP, provides satisfying sparse source distributions
as well. Though the LASSO produces least numerical errors,
it does not select an optimal sparse distribution due to that
the global minimum of numerical error does not necessarily
coincide with the optimal sparse solutions.

7. CONCLUSION
This paper has proposed several acoustic models to model
inherent characteristics of commercial loudspeakers used in
soundfield reproduction systems. Experimental results with
promising performance have shown that both the plane wave
and mixed source model possess an ability to characterize
commercial speakers with acceptable accuracy. These models
can be used in real sound reproduction systems to equalize for
loudspeaker directivity, and the recording equipment could be
any other suitable microphone array.
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