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Abstract—Intensity based soundfield reproduction methods are
shown to provide impressive human perception of sound localiza-
tion. However, most of the previous works in this domain either
focus on a single sweet spot for the listener, or are constrained to
a regular loudspeaker geometry, which is difficult to implement
in real-world applications. This paper addresses both of the
above challenges. We propose an intensity matching technique
to optimally reproduce sound intensity at multiple sweet spots
using an irregular loudspeaker array. The performance of the
proposed method is evaluated by comparing it with the pressure
and velocity matching method through numerical simulations
and perceptual experiments. The results show that the proposed
method has an improved performance.

Index Terms—Sound intensity, soundfield reproduction, mul-
tiple sweet spots, irregular loudspeaker array

I. INTRODUCTION

Spatial soundfield reproduction aims to create an immersive
soundfield over a predefined spatial region so that the listener
inside the region can experience a realistic but virtual replica-
tion of the original soundfield. To achieve this goal, classical
techniques such as Ambisonics [1], Higher Order Ambisonics
(HOA) [2]–[5] and Wave Field Synthesis (WFS) [6], [7] have
been proposed. A multi-zone soundfield reproduction system
was given in [8]. Recently, Shin et. al. proposed a velocity
controlled soundfield reproduction technique to achieve an
improvement of human sound localization performance by
matching the particle velocity [9], [10]. All aforementioned
works focus on matching either sound pressure or particle
velocity, both of which are important quantities to describe
a soundfield. In [11], authors introduced a soundfield repro-
duction method based on pressure and velocity matching to
improve the listening experience at a non-central listening
point. Another similar idea was pursued in [12], where the
sound intensity, i.e., the product of the sound pressure and
particle velocity, was reproduced to obtain the impression
of the original sound at the origin. By extending [12], the
localization performance was improved by means of HOA
[13]. However, the works of [11], [12] and [13] are all
restricted to a single reproduction position.

Array geometry is an important factor when we consider
soundfield reproduction. Spherical arrays were extensively
studied in literature [2], [14]. Gupta et. al. used a set of
multiple circular arrays to reproduce 3D soundfield [15]. To
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facilitate the implementation, a compact circular planar array
of loudspeakers was proposed [16]. These spherical and circu-
lar geometries are all used for reproduction based on pressure
matching. However, the performance of pressure matching
degrades when the geometry of loudspeaker arrays becomes
neither spherical nor circular. Particle velocity and intensity
based reproduction methods can overcome this limitation,
because the information of particle velocity can be controlled
to improve soundfield reproduction [10]. A typical example
with such a loudspeaker arrangement was reported [17],
[18], where a rectangular loudspeaker array with same inter-
element spacing was used for the optimization of both sound
pressure and particle velocity. An intensity based soundfield
reproduction with a circular array of loudspeakers has shown
good performance [19]. However, both the rectangular and the
circular loudspeaker arrays are examples of evenly distributed
array geometries.

In this work, we consider a practical reproduction system
that is modeled to reproduce the desired soundfield at multiple
sweet spots by driving an irregular loudspeaker array (e.g., in
cinemas, we only need to create a good sound perception at
seat positions rather than the whole region, and it is easier
to implement if the loudspeaker array can be irregular). It
is important to note that these sweet spots can be arbitrarily
located in a predefined spatial region. An intensity matching
technique is proposed to optimize the sound intensity at
the sweet spots and the pressure and velocity matching is
compared with the proposed technique in this paper.

II. PROBLEM FORMULATION

Consider a set of distinct sweet spots, located at xb =
(rb, θb, φb) for the bth sweet spot, within a spherical region
χ of radius R as seen in Fig. 1. Note that the sweet spots
can be arbitrarily chosen within χ. Let there be an irregular
array of loudspeakers with the `th loudspeaker located at
x` = (r`, θ`, φ`) outside of χ. The free field assumption is
made and scattering is assumed to be negligible.

The complex acoustic intensity at any point x = (r, θ, φ)
in χ can be represented by [20]

I(x, k) = P ∗(x, k)V (x, k), (1)

where I(x, k) = [Ir(x, k), Iθ(x, k), Iφ(x, k)] and V (x, k) =
[Vr(x, k), Vθ(x, k), Vφ(x, k)] are sound intensity and parti-
cle velocity vector, respectively, P (x, k) is sound pressure,



k = 2πf/c is the wave number, f is the frequency, c is the
speed of propagation, and ∗ stands for complex conjugate. The
real part of I(x, k) is often referred to as the active sound
intensity, which represents the propagating sound energy and
shows the direction of propagation at the point in space. The
imaginary part of it, on the other hand, is referred to as the
reactive sound intensity, which represents the non-propagating
sound energy [21]. However, a soundfield in a spherical region
is usually characterized by spherical harmonic coefficients of
sound pressure (which can be extracted by using higher order
microphones such as an EigenMike) instead of the spatial
distribution of sound intensity.1

Given spherical harmonic coefficients of sound pressure
for the desired soundfield {αnm(k)} in the spherical region
χ, the number of arbitrary sweet spots NP from χ, and an
appropriate irregular loudspeaker array geometry, our objective
is to calculate the spatial sound intensity (1) in χ and find the
loudspeaker driving signals that reproduce the desired sound
intensity at the sweet spots in the region.

III. SPATIAL SOUND INTENSITY REPRESENTATION IN THE
SPHERICAL HARMONIC DOMAIN

We have recently formulated spatial sound intensity in the
spherical harmonic domain [22], which decomposes (1) in
terms of spherical harmonic functions. We have shown that the
spatial distribution of sound intensity can be expressed directly
from the spherical harmonic coefficients of sound pressure.

A. Desired Sound Intensity

Considering the spherical harmonic coefficients of sound
pressure for the desired soundfield {αnm(k)} are given, we
can use the results of [22] to calculate the desired sound
intensity at any point in χ. According to the results in [22],
[23], the components of desired sound intensity Id(x, k) =
[Idr (x, k), I

d
θ (x, k), I

d
φ(x, k)] at any arbitrary x within χ can

be decomposed, respectively, as

Idr (x, k) =

Q∑
p=0

p∑
q=−p

S(r,d)
pq (k, r)Ypq(θ, φ), (2)

Idθ (x, k) =

Q∑
p=0

p∑
q=−p

S(θ,d)
pq (k, r)Ypq(θ, φ), (3)

Idφ(x, k) =

Q∑
p=0

p∑
q=−p

S(φ,d)
pq (k, r)Ypq(θ, φ), (4)

with

S(r,d)
pq (k, r) =

i

kρ0c

N∑
n=0

n∑
m=−n

N∑
n′=0

n′∑
m′=−n′

(−1)m+qCnn′p

× α∗nm(k)αn′m′(k)jn(kr)j
′
n′(kr)W1W2,

(5)
denoting spherical harmonic coefficients of desired
sound intensity in r direction, where Cnn′p =√
(2n+ 1)(2n′ + 1)(2p+ 1)/4π, jn(·) is the nth order

1The sound intensity can be estimated by measuring the particle velocity
over the volume of interest point by point, which is time-consuming.
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Fig. 1. Geometry of soundfield reproduction system in this paper. The sweet
spots are arbitrarily chosen within the spherical region of radius R. An
irregular array of loudspeakers is located outside the spherical region.

spherical Bessel function of the first kind, j′n(·) is the
derivative of jn(·) in terms of r, ρ0 is medium density,
N = dkeR/2e is the truncation limit of the soundfield orders
[24],

W1 =

(
n n′ p
0 0 0

)
, and W2 =

(
n n′ p
−m m′ −q

)
are Wigner 3-j symbols [25], Q = 2N is truncation order for
intensity expressions [22], and Ypq(θ, φ) = ApqPpq(cos θ)e

iqφ

is the spherical harmonic of order p and degree q with
Apq = [(2p+1)(p−q)!/(4π(p+q)!)]1/2, where Ppq(cos θ) are
the associated Legendre functions. In this work, we select the
same truncation order for all components of sound intensity
for simplicity, at the cost of relatively more error on the
component in θ and φ direction compared to r direction. Both
S
(θ,d)
pq (k, r) and S

(φ,d)
pq (k, r) have similar expressions to (5)

and are given in [22], [23].

B. Reproduced Sound Intensity

Assume that the loudspeakers in the reproduction system are
point sources. The spherical harmonic coefficients of sound
pressure due to the `th loudspeaker in free field can be written
as [26]

β(`)
nm(k) = ikhn(kr`)Y

∗
nm(θ`, φ`), (6)

where hn(·) is the nth order spherical Hankel function of the
first kind. By replacing αnm(k) with β(`)

nm(k) in (2) and (5), we
obtain sound intensity in r direction due to the `th loudspeaker
at x as

I(`)r (x, k) =

Q∑
p=0

p∑
q=−p

S(r,`)
pq (k, r)Ypq(θ, φ), (7)

where S(r,`)
pq (k, r) are spherical harmonic coefficients of sound

intensity in r direction due to the `th loudspeaker.
In order to drive loudspeakers, we apply a weight to each

loudspeaker. Therefore, the reproduced sound intensity in r
direction at x can be written as

Iar (x, k) =

NL∑
`=0

|w`(k)|2I(`)r (x, k), (8)

where w`(k) is the weight applying to the `th loudspeaker
and NL is the number of loudspeakers. Here we assume
incoherent superposition of loudspeaker signals, similar to
max-rE decoding method in [12] and [13], which is used
to reproduce the energy and acoustic intensity of the desired



soundfield, and psychoacoustically to create the impression of
the desired sound, especially for high frequencies (above 500
Hz).

Similar to (8), the reproduced sound intensity in θ and φ
directions at x can be expressed, respectively, as

Iaθ (x, k) =

NL∑
`=0

|w`(k)|2I(`)θ (x, k), (9)

Iaφ(x, k) =

NL∑
`=0

|w`(k)|2I(`)φ (x, k). (10)

Therefore, the reproduced intensity vector is Ia(x, k) =
[Iar (x, k), I

a
θ (x, k), I

a
φ(x, k)].

IV. INTENSITY BASED SOUNDFIELD REPRODUCTION OVER
MULTIPLE SWEET SPOTS

Given the desired soundfield, the reproduction problem
is now reduced to calculate the loudspeaker driving sig-
nals/weights that can reconstruct the original sound inten-
sity at all sweet spots. Pressure based least squares method
[27] is a common approach to calculate loudspeaker weights
in a soundfield reproduction system. However, for irregular
loudspeaker arrays, this method may lead to errors, which is
detrimental to the perception of the location of the source. In
order to overcome this limitation, an alternative version of the
least squares, the intensity matching technique, is given, which
is based on the quantity of sound intensity closely linked with
human perception of sound localization [28].

We equate the desired sound intensity to the reproduced
sound intensity at the sweet spots to design the loudspeaker
weights, i.e.,

Id(xb, k) = Ia(xb, k), b = 1, 2, ..., NP , (11)

where Id(xb, k)=[Idr (xb, k), I
d
θ (xb, k), I

d
φ(xb, k)] and

Ia(xb, k) = [Iar (xb, k), I
a
θ (xb, k), I

a
φ(xb, k)]. This can be

expressed in matrix form as

ID = IAW , (12)

where ID = [Idr (k)
T , Idθ (k)

T , Idφ(k)
T ]T is a 6NP long vector

with

IdO(k) =[R{IdO(x1, k)}, I{IdO(x1, k)}, ...,R{IdO(xNP
, k)},

I{IdO(xNP
, k)}]T ; O ∈ {r, θ, φ},

(13)
where R{·} denotes the real part, I{·} denotes the imaginary
part, W = [|w1(k)|2, |w2(k)|2, ..., |wNL

(k)|2]T is a NL long
vector and IA = [Iar , (k)

T , Iaθ (k)
T , Iaφ(k)

T ]T is a 6NP by
NL matrix with

IaO(k) =


R{I(1)O (x1, k)} · · · R{I(NL)

O (x1, k)}
I{I(1)O (x1, k)} · · · I{I(NL)

O (x1, k)}
...

. . .
...

R{I(1)O (xNP
, k)} · · · R{I(NL)

O (xNP
, k)}

I{I(1)O (xNP
, k)} · · · I{I(NL)

O (xNP
, k)}

 ,
(14)

TABLE I
LOUDSPEAKER LOCATIONS OF THE 8-CHANNEL ARRAY.

Number r [m] θ [deg] φ [deg]
1 1 58.3 288
2 1 58.3 216
3 1 58.3 72
4 1 90 18
5 1 90 126
6 1 121.7 324
7 1 121.7 180
8 1 148.3 72
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Fig. 2. Polar plots of DO and CR at sweet spots using the intensity matching
(IM) and the pressure and velocity matching (PVM) for the virtual source
moving on the horizontal plane ((a) sweet spot #1, (c) #2 and (e) #3) and the
vertical plane ((b) sweet spot #1, (d) #2 and (f) #3).

where O ∈ {r, θ, φ}. Note that we deal with the real part and
imaginary part of sound intensity separately as W is a real
vector.

To minimize the difference between the desired sound
intensity and the reproduced sound intensity, the problem is
formulated as

min
W
||IAW − ID||22, s.t.W ≥ 0, (15)

where || · ||2 denotes the Euclidean norm, and W ≥ 0 means
that each component of the vector W should be non-negative.
A technique for solving this problem is known as non-negative
least squares (NNLS) [29].

V. EXPERIMENTAL EVALUATION

A. Experimental Setup and Criteria

We consider a spherical region χ with radius R = 0.4 m.
The sweet spots can be selected at random within the region.
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Fig. 3. The intensity direction error on plane z = 0 controlled by (a) the
intensity matching and (b) the pressure and velocity matching. Black circles
denote human head zones around the sweet spots.
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Fig. 4. The intensity direction error with respect to frequency.

In this case, we select sweet spot #1, #2 and #3 located at
(0.2 m, π/2, 0), (0.25 m, π/2, π/2) and (0.2 m, π/2, π),
respectively. Eight channels are selected to build the irregular
loudspeaker array for reproduction in this work. The locations
of the loudspeakers are given in Table I. The desired soundfield
is produced by a virtual point source which is 2 m away from
the origin. Sound speed c is 343 m/s and air density is 1.29
kg/m3. To reproduce a soundfield with a realistic perception
of the sound, it requires to ensure the reproduction of the
direction of the sound. Therefore, we define two direction
related quantities as follows

DO =
R{Ia(x, k)}

‖ R{Ia(x, k)} ‖2
· R{Id(x, k)}
‖ R{Id(x, k)} ‖2

, (16)

CR =
R{Ia(x, k)}

‖ R{Ia(x, k)} ‖2
× R{Id(x, k)}
‖ R{Id(x, k)} ‖2

, (17)

where · is dot product of two vectors and × is cross product of
two vectors. DO and CR describe the difference between the
reproduced direction and the desired direction. Ideally, if the
direction of the sound at x is reconstructed perfectly, we have
DO = 1 and CR = 0. Note that only the real part of complex
acoustic intensity, which represents the propagation direction
of sound energy, is considered here for evaluation. We also
define the intensity direction error ε to show the difference
in angles between two vectors, which can be obtained from
either of DO and CR. We represent it in terms of DO as

ε = cos−1(DO)/π × 100(%). (18)
The pressure and velocity matching is implemented by the

least squares method.

B. Experimental Results

We first evaluate the reproduction methods for different
positions of the virtual source. The source frequency is 600
Hz. Polar plots showing the results are given in Fig. 2. Among

TABLE II
AVERAGE ABSOLUTE PERCEIVED DIRECTION ERROR.

Method Sweet spot #1 Sweet spot #2 Sweet spot #3
IM 41.3◦ 31.7◦ 39.0◦

PVM 68.0◦ 69.7◦ 82.7◦

TABLE III
CMOS SCALE.

The direction of A compared to that of B is Score
much (more than 50◦) closer to the reference 3

(more than 30◦) closer to the reference 2
slightly (more than 10◦) closer to the reference 1

(less than or equal to 10◦) about the same 0
slightly (more than 10◦) further to the reference -1

(more than 30◦) further to the reference -2
much (more than 50◦) further to the reference -3

them, Fig. 2(a), Fig. 2(c) and Fig. 2(e) are the results for
virtual source moving on the horizontal plane (the elevation is
π/2, and the azimuth changes from 0 to 2π). Figure 2(b), Fig.
2(d) and Fig. 2(f) are the results moving on the vertical plane
(the azimuth is 0 and the elevation changes from 0 to π for
the upper half circle, and the azimuth is π and the elevation
changes from π to 0 for the lower half circle). We observe
that for all the evaluated positions of the virtual source, the
intensity matching performs much better than the pressure and
velocity matching at all sweet spots. We note that an irregular
loudspeaker array cannot well cover all the incident directions,
which leads to relatively poorer performance for the directions
at which there are fewer loudspeakers.

The radius of human head is about 0.1 m, therefore, we
define a sphere with radius of 0.1 m, centred by the sweet
spot, as a human head zone. To evaluate the reproduction
performance in human head zones, we calculate the intensity
error on plane z = 0 for both the intensity matching and
the pressure and velocity matching, which is given in Fig.3.
The black circles denote the human head zones on plane
z = 0. The virtual source is located at (2 m, π/2, 2π/3).
It shows that the intensity direction error controlled by the
intensity matching is less than that controlled by the pressure
and velocity matching in human head zones around the sweet
spots. To examine the reproduction performance with respect
to the change of frequencies, we also calculate the intensity
direction error at the sweet spots for the frequency range
from 50 to 3000 Hz, which mostly covers the frequency
range of human voice. The comparison between the intensity
matching and the pressure and velocity matching is shown in
Fig.4. The intensity direction error of intensity matching is no
more than 3% within the frequency range at all the sweet
spots. Compared with the intensity matching, the pressure
and velocity matching has relatively larger error and the error
noticeably fluctuates with frequency.

A perceptual listening test is carried out to validate the
theory. The loudspeaker layout in Table I is built. The test
samples consist of A, B and a reference, where the reference
is the original sound signal produced by a loudspeaker located
at (2 m, π/2, 2π/3), and A and B are reproduced by the eights
channels using the intensity matching and the pressure and
velocity matching, respectively. The hearing subjects do not
have the knowledge of which method produces A, B or the
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Fig. 5. CMOS scores for the three sweet spots with 95% confidence intervals.

reference. The hearing subjects are required to listen to A, B
and the reference at each sweet spot and record their perceived
directions from 72 angles ((θ,φ)=(90◦, 5◦ × (n − 1)), where
n = 1, ..., 72) on a provided answer sheet. During the test,
the hearing subjects face positive y direction and keep their
heads at the center of each sweet spot. A clean speech of
5 s duration is used as a source signal and the sample rate
adopted is 48 kHz for signal inputs to all of the loudspeakers.
The reference is used not only to compare with A and B,
but also to identify an outlier within a data set (i.e., if the
reference direction that a hearing subject perceives greatly
deviates from its actual direction, the result from this subject
is removed from the data set). A valid data set containing 15
hearing subjects is obtained after two outliers are removed. We
calculate the average absolute perceived direction difference in
angles between A/B and the reference, which is given in Table
II. It shows that the absolute error of the proposed method is
less than that of the pressure and velocity matching for all the
sweet spots. We also analyze the relative perceived direction
error of A and B using Comparison Mean Opinion Score
(CMOS), which has 7 levels shown in Table III. The higher
the CMOS score is, the better the intensity matching is versus
the pressure and velocity matching. The test results with 95%
confidence intervals are given in Fig. 5. The average scores
at the three sweet spots are 1.53, 1.60 and 1.53, respectively,
which means for this experimental setup the intensity matching
can reproduce a better original sound image at all the sweet
spots compared to the pressure and velocity matching.

VI. CONCLUSION

In this paper, we have studied the intensity matching
technique used for sound intensity reproduction at multiple
sweet spots for irregular loudspeaker arrays to achieve a
distributed listening area. We represent sound intensity in
spherical harmonic coefficients of sound pressure and match
it at all sweet spots using NNLS. The pressure and velocity
matching has also been implemented for comparison. We
demonstrate in the numerical simulations that the intensity
matching is better than the pressure and velocity matching for
overall reproduction performance. The perceptual experiment
results also show that intensity matching can reproduce the
direction of the sound at all sweet spots with less error than
the pressure and velocity matching.
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