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Abstract

Regularization in Machine Learning (ML) is a central technique with great practical
significance, whose motivations depend on the learning setting. For example, the
popular entropic regularization scheme for Reinforcement Learning (RL) is used to
aid in disambiguating optimal policies. On the other hand, Generative Adversar-
ial Networks (GANs) employ regularization for computational purposes, avoiding
instability in training. Despite the widespread use and multi-faceted motivation
of regularization, extensive evidence has suggested that regularization is a crucial
method towards empirical success. Therefore, it is natural that a formal study of
regularization would present results that aid in closing the gap between theory and
practice.

In this thesis, we study a range of different learning problems from the unifying
perspective of regularization and uncover various results that contribute to our un-
derstanding of machine learning methods. First, we focus on generative modelling
and discover a primal-dual relationship between two pioneering methods in the liter-
ature of generative modelling, namely Generative Adversarial Networks (GANs) and
Autoencoders. The discovery not only explicates a bridge between existing results
but proves to be helpful in algorithmic guidance. The study on generative models is
then extended to build a boosting-based model that can generate samples compliant
with local differential privacy. We then focus on machine learning robustness, where
one is interested in understanding the susceptibility of a model in the face of adver-
sarial threats. We show that regularization is intimately connected to distributional
robustness, which subsumes existing results and extends them to a great deal of gen-
erality, including applications to the unsupervised learning setting. We continue this
narrative to the RL setting and similarly expose the robustifying benefits of using
regularization, which sheds light on the widely-used entropy-regularized schemes,
amongst others. In summary, this thesis’s study of regularization contributes sub-
stantially within the literature of generative modelling, machine learning robustness,
and RL while touching upon additional domains such as privacy and boosting.
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Chapter 1

Introduction

The learning process in Machine Learning (ML) typically occurs as a well-understood
optimization problem such as minimizing an error term or maximizing a reward. By
denoting O to be set of models and L, : ® — RR be a loss function, then minimizing
error amounts to finding

min (Ln(0) +A02(6)) .

The loss function L,(0) depends on the training data, and the term Q) (with weight
A > 0) is a penalty term, such as a norm, which is typically included to prevent
overfitting. The inclusion of () is referred to as regularization, whose purpose more
generally is to incorporate additional information to an ill-posed problem by adding
a form of control to the problem. This notion exists beyond the realm of machine
learning, such as Tikhonov regularization, which has been widely applied for numer-
ical methods [Calvetti and Reichel, 2003]. In the above example, one can interpret
the optimization problem as a trade-off between fitting the data (through the term L)
and model complexity (through the term (2).

Regularization plays a crucial role in the success of machine learning methods
and their empirical performances. The details of implementation and motivation,
however, vary depending on the specific learning task of interest. We now give
examples of two concrete machine learning problem domains and how regularization
can manifest as an appealing, practical consideration.

In Reinforcement Learning (RL), one is given an environment and a reward func-
tion, where the goal is to learn a policy that can navigate the environment to achieve
the maximum reward [Sutton and Barto, 2018]. In these problems, many different
policies achieve optimal reward; however, we are often interested in finding those
possessing exploratory behaviour. This is especially interesting in environments that
are understudied or unexplored, and domain investigation is of interest. For exam-
ple, in medical applications, a clinician would be interested in discovering different
treatment types (policies) to understand the patient and problem better [Masood
and Doshi-Velez, 2019]. Including entropy in the optimization task is a form of reg-
ularization, and a typical remedy for these problems, since it favours policies with
diversified behaviour and, therefore, disambiguates optimal policies from this stand-
point.

1
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2 Introduction

On the other hand, a popular method for generative modelling, Generative Ad-
versarial Networks (GANs), minimizes the Jensen-Shannon divergence approximated
by a set of discriminators D [Goodfellow et al., 2014a]. Theoretically, the strength of
this approximation improves for more extensive choices of D, often implemented by
deep neural networks. However, this set is restricted or regularised in practice to
avoid instabilities in training and has found great success [Fedus et al., 2017], despite
the approximation being further removed from the divergence. Compared to the RL
setting, the motivation for regularization here is primarily computational.

Despite the multi-faceted motivation for practicality, regularization in the above
examples of GANs and RL is heuristic and deviates from the formally motivated
original learning optimization procedure. Considering the wide-scale use and prac-
tical significance of regularization, a theoretical investigation on the ramifications
would unveil foundational results for machine learning that naturally bridge the gap
between theory and practice. We further exemplify the advantage of studying regu-
larization along two axes:

(1) There are many choices for regularization, which are often decided at the practi-
tioner’s discretion. While having more options seem bountiful, they can also be
a curse. The choice itself is overwhelming for the practitioner, given the sheer
number of different schemes available without knowing the precise formal rela-
tionships. A prime example of this is the generative modelling literature, which
has witnessed various GANs and Autoencoder methods instantiated by different
choices of regularizers. In particular, the Wasserstein Autoencoder (WAE) [Tol-
stikhin et al., 2017] uses a penalty function () whose choice is plentiful and highly
understudied. An in-depth study of regularization, which can connect different
models or provide reinterpretations, would clarify the effect of each choice and
naturally serve a great purpose to the practitioner.

(2) Among many different domains of ML, the addition of regularization has wit-
nessed empirical benefits. While this may not be surprising, it is remarkable
from a formal perspective. Recalling the above example on RL, the reward max-
imization problem is based on Markov Decision Processes (MDP), which is di-
rectly motivated through the axioms of utility theory [Russell and Norvig, 2002];
however, adding entropic regularization to this objective has no such axiomatic
provocation. Moreover, it also turns out that entropic-regularised RL consistently
outperforms its standard counterpart on the original MDP. Similarly, regulariza-
tion in GANSs has also illustrated superior performance. A theoretical study out-
lining the benefits of regularization would significantly improve the transparency
of these methods.

1.1  Thesis Contribution

The thesis studies a range of different learning problems from the unifying perspec-
tive of regularization. We first focus on generative models since various regulariza-
tion schemes are largely understudied in light of (1). We then study regularization
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Py

Figure 1.1: Implicit generative models are given a distribution Px and seek to find a
function G : Z — X so that the distribution of Pz pushed through G matches Px.

more generally in other settings such as supervised learning and reinforcement learn-
ing, discovering benefits of robustness which naturally addresses (2). We find several
other results that contribute to machine learning more generally. We summarize the
contributions into two categories: generative models and robustness.

1.1.1  Generative Models

Generative modelling aims to produce a model that mimics a given dataset Py, re-
ferred to as training data, in the sense of matching its probability distribution and can
be viewed as solving the classical density estimation problem. A subclass of these
methods referred to as implicit generative models [Diggle and Gratton, 1984; Mo-
hamed and Lakshminarayanan, 2016] approaches this problem by learning a func-
tion G : Z — X that transforms a simple distribution Pz (such as a unit Gaussian
or uniform distribution) in a latent space Z to match the given dataset Px. We il-
lustrate this pictorially in Figure 1.1, where G#Pz denotes the model distribution.
The function G is typically parameterized by a neural network, and the training
process involves ensuring that G minimizes D(G#Pz, Px) where D is a dissimilarity
(or distance) measure between distributions. The main advantage is that one can
easily sample from this distribution by first sampling from Pz followed by apply-
ing G; however, such models’ densities are not available in closed form. Therefore,
our primary understanding of the model distribution is characterized entirely by its
samples. This drawback limits the transparency of what is being learned and makes
the training process strenuous since computing D(G#Pz, Px) must be sample-based
and, therefore, incurs additional approximation error. Despite this, implicit mod-
els have achieved tremendous success, impacting and resurging several applications,
which include and are not limited to unpaired domain translation [Zhu et al., 2017],
data imputation [Yoon et al., 2018] and experimental calibration [Amodio and Krish-
naswamy, 2018].

The literature on implicit generative modelling exhibits a large body of different
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4 Introduction

models, each differing in their choice of the dissimilarity measure D. Two examples
are Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)
[Kingma and Welling, 2013]. Both methods have differing backgrounds and formu-
lations, which naturally leads to each having contrasting benefits and downfalls. In
GAN:S, the dissimilarity D is chosen based on how well a set of discriminators D can
distinguish between G#Pz and Px, which consequently becomes a game between the
model G and discriminators D. VAEs, on the other hand, represent the data in a la-
tent space with the use of an encoder, which in comparison to GANs, runs into more
minor computational stability issues when training. Additionally, the encoder has
use-cases outside of generative modelling, unlike the discriminator from GANSs; for
example, one can understand the data and domain by analyzing the latent structure
learned. Unfortunately, it has been observed that GANs have consistently produced
results with a higher degree of precision relative to those attained by VAEs. How-
ever, a model similar to the VAE, known as the Wasserstein Autoencoder (WAE),
was proposed, achieving performance similar to that of GANs, posing as a candi-
date for unifying benefits of both models. The WAE brings along with it some slight
ambiguities, such as a regularization term whose choices are plentiful and whose
ramifications are unknown. It is not clear which choice one should employ and
whether the similarity to GANs is a mere coincidence.

Chapter 3 provides a study on the regularization mechanisms behind these mod-
els and discovers an equivalence between GANs and WAE. The connection itself
explains the similarity in results between WAE and GANSs, and therefore provides
a form of clarification as mentioned in (1). However, in much more generality, the
result lays the groundwork and builds the start of a taxonomy for understanding this
vast literature on generative modelling. Using the bridge formed by this equivalence,
we derive generalization bounds for WAEs, which have been studied and exclusively
existed for GANs [Zhang et al., 2017]. Our analysis of generalization is relevant to the
finite data scheme, where most of these models are operated on, and the absence of
such results in the literature has been noted as a particular shortcoming of previous
theoretical studies [Li and Malik, 2018].

Practically speaking, the result derives a specific choice of regularization that
connects WAE to GANSs, which is then naturally encouraged. One of the equivalence
conditions is to enforce a Lipschitzness constraint, a form of regularization, over the
discriminators in GANs, which has been previously utilized in the GAN objective
and consequently demonstrated great empirical success [Zhou et al., 2019; Farnia
and Tse, 2018].

One application of generative models is Differential Privacy (DP), where one is
interested in generating data that resembles the training data without retaining sensi-
tive and confidential information. However, to tackle this, one needs a strong under-
standing of the model, and it is challenging for implicit models due to the density’s
unavailability. In Chapter 4, we contribute to filling the gap by proposing a genera-
tive model, although not implicit, that can comply with privacy constraints.

Inspired by the use of discriminators in GANs, we develop a boosting scheme that
learns a density compliant with local differential privacy for sampling. The method
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itself introduces a general framework for DP referred to as mollification, where one can
privatize any density model and is of independent interest to the literature of privacy.
The specific algorithm we present is efficient and uses boosting to achieve DP by
way of mollification. A crucial highlight of our method is due to the post-processing
property of DP, meaning that privacy and sensitive information are not retained for
any task employing samples produced by this generative model. Therefore, our
method has use-cases for various methods that we exemplify in the setting of natural
language generation.

We then present guarantees from the perspective of utility and show that the
density learned converges to the information-theoretic model in Kullback-Leibler
(KL) divergence with increasing rounds of boosting. Moreover, we show guarantees
on the learned density’s mode-coverage abilities - an area where GANs have been
notably lacking [Goodfellow, 2016, Section 5.1.1].

1.1.2 Robustness

The premise that regularization, or reducing model complexity, improves perfor-
mance on unseen data points is well-embraced in ML, as it can be traced to Oc-
cam’s razor. This fundamental principle roughly states that we should prefer the
simplest ones among all hypotheses consistent or sufficiently accurate. From a for-
mal perspective, this rationale has been conceptualized in statistical learning theory
[Vapnik, 1999], where one is interested in bounding the difference in population
(“true data”) and empirical (“observed data”) loss. These results are referred to
as generalization bounds and commonly depend on a complexity measure such as the
Vapnik-Chervonkis (VC) dimension [Vapnik and Chervonenkis, 1974] or Rademacher
complexity [Bartlett and Mendelson, 2002]. In a nutshell, the results suggest that reg-
ularized or reduced model classes will have a reduced gap on their population and
empirical losses. These bounds have been improved and significantly tightened in
the probabilistic setting by replacing the complexity with a measure of deviation
from a prior belief [McAllester, 1999; Guedj, 2019].

An alternative measure of utility beyond generalization is to analyze the robust-
ness of a model. In particular, an area of study known as adversarial robustness has
been receiving increasing popularity due to the discovery that small perturbations
can change the decision-making abilities of deep neural networks [Goodfellow et al.,
2014b; Madry et al., 2017]. This phenomenon is a critical concern since these mod-
els are often heavily relied upon in several applications, including healthcare and
autonomous vehicles. A promising strategy to tackle this rigidity of models is to
consider how robust ML models are to shifts in the distribution - a field of study rec-
ollected as Distributionally Robust Optimization (DRO) [Scarf, 1957]. In particular,
we are interested in learning a model which performs well under an adversary who
shifts the training data.

Naturally, the resulting formulation is intractable due to the added adversar-
ial complication. In the specific context of ML, DRO has considered restricted ad-
versaries who shift distributions with respect to a divergence or distance measure,
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reducing to a more computationally feasible problem. The majority of existing re-
sults consider the Wasserstein distance as the divergence and show that DRO in
this setting is reduced to Lipschitz regularization - a popular choice of regulariza-
tion with a large body of empirical validation [Blanchet and Murthy, 2019; Blanchet
et al., 2019; Cranko et al., 2018; Shafieezadeh-Abadeh et al., 2019]. There exist other
choices of divergences with similar findings such as the f-divergences [Duchi et al.,
2013, 2016] and the well-regarded Maximum Mean Discrepancy (MMD) [Staib and
Jegelka, 2019], which found connections to variance and Hilbert space regularization,
respectively.

In this thesis, Chapter 5 extends and generalizes these results by considering DRO
derived by Integral Probability Metrics (IPMs) - a family of divergences that include
both the Wasserstein distance and MMD. We discover a general connection between
DRO based on IPMs and various regularization schemes, which subsume existing re-
sults and boast new advancements. For example, we find that regularization schemes
such as those appearing in manifold regularization [Belkin et al., 2006] and gener-
alized variance are reductions of DRO formulations and thus provide a robustness
reinterpretation. These new insights parallel the premise described in (1) as we work
towards clarifying the role of regularization bridging objectives; however, they also
provide guarantees and benefits as described in (2). The existing results deriving
this connection have come in the form of inequalities; however, Chapter 5 derives a
necessary and sufficient condition for equality. This condition not only comments
on new choices of IPMs but also applies to and, therefore, improves upon existing
results in MMD and Wasserstein distances.

The results are then applied to GANs, which to the best of our knowledge, is
the first study of the distributional robustness of GANs. In particular, we study
how robust the distribution learned by a GAN is to shifts in the training data. The
main finding is similar to the previous contribution on generative modelling, where
one can gain robustification benefits by regularizing the discriminator set, heavily
touches upon understanding empirical benefits of regularization motivated in (2).
Therefore, the results in unison provide a robustness perspective for much existing
work, which have restricted and regularized their discriminators, such as Sobelov-,
MMD- and Fisher-GANs [Li et al., 2017; Arbel et al., 2018; Mroueh and Sercu, 2017;
Mroueh et al., 2017].

In Chapter 6, the compelling narrative between regularization and robustness is
then extended to the RL setting, which, as previously stated, is an area of study
where regularization is extensively applied yet poorly understood formally. While
we motivated the popular choice of entropic-regularization earlier, schemes involving
other forms of regularization such as g-Tsallis or penalties based on prior information
also exist.

At the technical level, the main result shows that general policy maximization can
be interpreted as a one-player game that involves an adversary altering the set-up so
that the best achievable reward is as small as possible. The result, therefore, applies
to a wide variety of schemes with policy maximization including and not limited to
regularized MDPs, minimization of a divergence such as in Generative Adversarial
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Imitation Learning (GAIL) [Ho and Ermon, 2016] and even reward-free paradigms
such as pure entropic maximization [Hazan et al., 2019].

The concrete takeaway for practice is that the policy learned in this fashion is
optimal for the reward learned in the dual adversarial game. When applied to the
extant entropy-based schemes, this forms a robustness guarantee that provides vali-
dation for empirical claims of success with such models. The conclusion drawn from
this result aligns naturally with both (1) and (2) since we can reinterpret the role of
entropy and describe the robustifying benefits.

To derive the main results, we encounter several supplementary results that are of
independent interest to RL. An example of this includes a study on deep Q-learning
[Watkins and Dayan, 1992] - an area of practical importance where one solves the
RL problem using a supervised learning strategy. In particular, we find a novel link
between deep Q learning and implicit regularization of the policy. Therefore, we can
further clarify the effect of policy regularization in light of a particular method, deep
Q learning, which parallels the notions and motivation set up in (1). Additionally,
one can then use the above findings of the robustification benefits of regularization
to derive guarantees for deep Q learning.

1.2 Thesis Structure and Publications

This thesis is structured as a compilation of four different papers. Since a significant
portion of the results are based on convex analysis, we dedicate Chapter 2 to guide
the reader and revise some facts on dualities and divergences between probability
distributions and to set some recurring notations. Each chapter will begin with short
text that links their respective content to the overarching narrative, followed by the
respective publication formatted as they appear in proceedings. Chapter 7 will then
draw together results with final remarks and future work. The chapter-publication
correspondence is as follows:

¢ Chapter 3: A Primal-Dual Link between GANs and Autoencoders.
H. Husain, R. Nock and R. Williamson. NeurIPS2019.

¢ Chapter 4: Local Differential Privacy for Sampling.
H. Husain, B. Balle, Z. Cranko, and R. Nock. AISTATS2020.

* Chapter 5: Distributional Robustness with IPMs and Links to Regularization
and GAN .
H. Husain. NeurIPS52020.

¢ Chapter 6: Regularized Policies are Reward Robust.
H. Husain, K. Ciosek and R. Tomioka. AISTATS2021.

For each of the above publications, I contributed to the majority of the development
of research ideas, solutions, writing and implementation of all experiments involved.
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Chapter 2

Preliminaries

The purpose of this chapter is to make the reader familiar with some elementary
results in convex analysis and some central divergences between probability distri-
butions. The discussions here will make the proofs of the main theorems throughout
the thesis easier to digest.

2.1 Convex Analysis

First, we will revise relevant results in elementary convex analysis, which are readily
found in [Penot, 2012]. We will use R and IN to denote the real and natural numbers
respectively, additionally defining R := RU {co} and N, := IN'\ {0}. Each chapter
will be defining some Polish space, which we will use Z here, with a c-algebra X.
More often than not, X will be the Borel c-algebra. An important space is then the
set of all bounded and finitely signed additive measures, given below.

Definition 1 (Bounded-Additive measures) For any o-algebra X. over Z, we define the
set of bounded-additive measures, denoted by %B(Z), as all measures y : ¥. — R such that
1(D) = 0 where @ € ¥ is the empty set and

dt

for any disjoint sequence { A;}:- ;.

G

An> = i:l,u(An)/ (2-1)

1

In particular, this set is of interest since #(Z) is a Banach space, where the norm
is the variation of the measure [Dunford and Schwartz, 1988]. Another important
Banach space we will consider is the set of bounded and measurable functions (with
respect to X), which we denote by .% (Z,R). We recall a classical result which states
that #(Z) and .# (Z, R) are continuous dual spaces of each other [Hildebrandt, 1934;
Fichtenholz and Kantorovitch, 1934], where the dual pairing operator is given by

(hp) = [ h)dn(), @2
forany h € .#(Z,R) and p € #(Z). We then denote an especially interesting subset

9
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10 Preliminaries

P(Z) C B(Z) as the set of probability measures which are all measures y such that
uz)=1

Example 1 Consider the finite choice of Z = {1,...,k} for some k € IN.. In this setting,
both #(Z,R) and B(Z) are isomorphic to R¥, noting that Euclidean spaces are self-dual.
Moreover, (-, -) corresponds to the standard inner product operation on Euclidean spaces and
P (Z) are all vectors whose entries are non-negative and sum to 1.

As one can imagine, this duality becomes vastly more interesting when Z is an
infinite set. Throughout the remainder of this section, we will denote by X to be
either of Z(Z) or #(Z,R) with X* denoting the continuous dual. We now introduce
elementary notions of convex analysis.

Definition 2 (Convex function) A function F : X — R is convex if for any x, x" € X and
€ [0,1], it holds F(tx 4+ (1 — t)x") < tF(x)+ (1 —t)F(x').

We say that a convex function is proper if there exists a x € X such that F(x) < oo
and F(x') > —oo for all x’ € X and define the domain of F as

dom(F) := {x € X : F(x) < oo}.
We now define the Legendre-Fenchel conjugate of a function F.

Definition 3 (Rockafellar [1968]) For any function F : X — (—o0,00|, we define the
conjugate F* : X* — (—o0, c0] as

F'(x") = sup ({x,x") - F(x))
xedom(F)

and the double conjugate F** : X — (—o0, 00| as

F*(x)= sup ((x,x") — F*(x"))
x*edom(F*)

The Legendre-Fenchel conjugate, or often called the convex conjugate, allows us to
represent a function in its dual space. This conjugate operation becomes interesting
in the scenario when the double conjugate recovers itself, as one can expect with a
dual. We give the conditions on a function in order to satisfy this.

Theorem 1 (Zalinescu [2002] Theorem 2.3.3) If X is a Hausdorff locally convex space,
and F : X — (—o0, 00] is a proper convex lower semi-continuous function then F** = F.

Therefore, if F : X — (—o0, co] satisfies the above conditions then we have

F(x)= sup ({(x,x") —F*(x*)). (2.3)

x*€dom(F*)

This rewriting of F is a useful strategy when deriving alternative forms of function
and will be commonly used in the proof techniques of this thesis. In the next section,
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§2.2  Divergences 11

we will illustrate how one can use this trick and derive a current result. Similar to
integral convolutions in Fourier analysis, there exists a convolution that preserves
interesting properties in convex analysis.

Definition 4 (Infimal convolution) Forany F,H : X — (—00, 00|, we define the infimal
convolution, FxH : X — (—00, c0]
(F¥H)(x) = inf (F(x')+H(x —x")).
x'eX
The infimal convolution is a central operation - the properties of which have been ex-

tensively studied in [Stromberg, 1994]. The operation can be viewed as the analogue
of addition in the dual space due to the following result.

Lemma 1 ([Penot, 2012], Proposition 3.43) For any pair of functions F, H : X — (—oc0, 0],
it holds that

(F+H)"(x) = (F**H") (x)

The above essentially asserts that the conjugate of the addition is equal to the convo-
lution of their conjugates.

2.2 Divergences

Distortion measures between probability distributions form the backbone to many
results presented in this thesis. This section will discuss three main families of dis-
tortion measures and their existing relationships. We first introduce the notion of a
divergence.

Definition 5 (Divergence) A divergence D : (2) x &(Z) — R satisfies D(u,v) > 0
with D(p,v) =0 <= pu=v.

A divergence can be thought of a a distance over probability measures however it need
not be one since a distance formally requires satisfaction of the triangle inequality,
symmetry and D(p,v) =0 <= u = v. The first family of divergence we introduce
depends on a convex function f.

Definition 6 (f-divergence) For any convex lower semicontinuous function f : R —
(—o0, 00] such that f(1) = 0, the f-divergence between any two probability distributions
isu,ve P(Z)is

D¢(p,v) = /Zf (%) dv, (24)

if 4 < v and oo otherwise.
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12 Preliminaries

Table 2.1: Example of some f-divergences and their corresponding conjugate func-

tions f*.
Name f(t) f*(t)
Kullback-Leibler  tlogt exp(t —1)
Pearson 2 (t—1)2 % +t

GAN divergence  tlogt— (t+1)log(t+1) log(1—exp(t))
Reverse KL —logt log (—1)

—t

2
Squared Hellinger (\/f — 1) .

The f-divergence [Csiszdr, 1964; Ali and Silvey, 1966; Csiszar, 1967] is a well-regarded
choice of discrepancy between distributions, and includes the popular Kullback-
Leibler (KL) divergence, instantianted with f(t) = tlog(t). Other well-regarded
choices of f and their corresponding divergences are detailed in Table 2.1. It is im-
portant to note that one requires absolute continuity of y with respect to v, which
is often recollected as a drawback of f-divergences, since in practice finitely sup-
ported distributions will be excluded. Moreover, the f-divergence is not symmetric
i.e. D(p,v) # D(v, ), nor does it necessarily satisfy the triangle inequality. Typical
methods of estimating f-divergences include first approximating the density ratio 5—’;
[Sugiyama et al., 2012].

The f-divergence admits a dual form which has been leveraged for estimation
such as in [Ruderman et al., 2012; Nowozin et al., 2016], however is also useful for
theoretical purposes as we will demonstrate in Chapter 3.

Lemma 2 ([Nguyen et al., 2010]) For any proper convex lower semicontinuous function
f:R — (—oco,00] with f(1) = 0, the f-divergence between any two probability distribu-
tions y,v € P(Z) satisfies

De(wv)=  sup  (Eu[h] —E,[f*(h)]), (2.5)
heZ(Z,dom(f*))

where f*(t) = SUPycqom(s) (t' — f(t')) is the Legendre-Fenchel conjugate.

This is typically referred to as the variational form of the f-divergence and has strong
links to class probability estimation [Reid et al., 2011].

Example 2 We will show now how convex analysis described above can be used to derive the
above variational form. Letting X = R and noting that X* = R, we apply self-conjugacy to
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§2.2 Divergences 13

f = f**, which yields

Do) = [ 5 (%) v,
= /Zf** (Zg) dv,

dp
= sup (h . —f*(h)) dv,
Z hedom(f*) dv

(*) / ( dp
= sup h-——f (h)> dv,
he 7 (Z,dom(f*)) /2 dv

= sup (B W —EJ[F (1)),
heF(Z,dom(f*))

where the step (x) requires more technalities such as decomposibility of the space # (Z,dom(f*))
[Rockafellar and Wets, 2009].

We now move to the second divergence.

Definition 7 (Integral Probability Metric) Fora set F C .7 (Z,R), the Integral Proba-
bility Metric (IPM) between y,v € P (Z) is

dr(p,v) = 2161£ (Eyu[h] —E,[h]). (2.6)

The identification of integral probability metric was used in [Miiller, 1997] however the
IPM had appeared as probability metrics with {-structure earlier in [Zolotarev, 1984].
The set F characterizes the strength of the IPM as a dissimilarity measure between
distributions. For example, if F only contains constant functions then dr(y,v) = 0
for all p,v. If —F = F then dr is symmetric and additional technical assumptions on
F are required to ensure dx(y,v) =0 <= p = v. Furthermore, d r will satisfy the
triangle-inequality for any choice of F. The Total Variation distance is an instance
of the IPM when selecting F to be all functions bounded above and below by 1,
which is also an f-divergence for the choice of f(¢t) = |t —1|. The conditions on f
and F such that D and dr relate to each other have been extensively pursued in
[Sriperumbudur et al., 2009]. A popular and practical choice in ML for F is the set
of functions in a Reproducing Kernel Hilbert Space with norm 1, which corresponds
to the Maximum Mean Discrepancy (MMD) [Gretton et al., 2012]. In particular, the
MMD is available in closed form for finitely supported distributions, making it a
suitable choice in practice. To introduce the final family of divergences, we define
the set of couplings between y,v € Z(Z) as

Muv)={ne Z(ZxZ):nt(Ax2Z)=u(A),n(Zx A)=v(A),Ac X}

We are now ready to introduce the divergence.
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14 Preliminaries

Definition 8 (Wasserstein distance) For any cost ¢ : Z x Z — R, the 1-Wasserstein
distance between two probability measures u,v € P(2) is

. / /
We(p,v) = nehnéw) /szc(z,z ydm(z,z'). (2.7)
The Wasserstein distance comes from the study of optimal transport [Villani, 2008]
and the specific instance in Definition 8 is known as the 1-Wasserstein distance. Un-
like the f-divergence, the Wasserstein distance does not require absolute continuity
and is typically considered antidotal for cases where the f-divergences are not suit-
able. Similar to the f-divergence, the Wasserstein distance admits a well-renowned
dual form, based on its linear programming interpretation, which coincides with the
IPM when c is a metric.

Lemma 3 (Rubinstein-Kantorovich Duality) Let c : Z x Z — R be a metric. It then
holds that

We(p,v) = sup (E,[h] —E,[h]), (2.8)
heH,
where H, = {h € Z(Z,R) : h(z,7') < c(z,2'),Vz,z2' € Z} is the set of 1-Lipschitz func-
tions with respect to c.

Other choices of IPMs and Wasserstein distances will be discussed when used in
Chapters 3 and 5.

2.3 Summary

This chapter revised elementary content in convex analysis, such as the Legendre-
Fenchel dual, which will be instrumental for proving the main results of this the-
sis. Well-known choices of divergences were then revised, which will serve helpful,
particularly for digesting the content of the following two chapters on generative
models.
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Chapter 3

A Primal-Dual Link between GANSs
and Autoencoders

This paper initiates the study of regularization for generative models. In this work,
the Fenchel dual form of the restricted GAN setting is utilized and then shown con-
nections to Autoencoders. The motivation is type (1) where we would like to un-
derstand how different regularizers affect models. Therefore, the main contribution
shows a primal-dual relationship between GANs and Autoencoders, whose impli-
cations are then drawn out for theoretical purposes, along with explaining certain
practicalities.

15
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Abstract

Since the introduction of Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAE), the literature on generative modelling has witnessed an
overwhelming resurgence. The impressive, yet elusive empirical performance of
GAN:S has lead to the rise of many GAN-VAE hybrids, with the hopes of GAN
level performance and additional benefits of VAE, such as an encoder for feature
reduction, which is not offered by GANs. Recently, the Wasserstein Autoencoder
(WAE) was proposed, achieving performance similar to that of GANSs, yet it is still
unclear whether the two are fundamentally different or can be further improved
into a unified model. In this work, we study the f-GAN and WAE models and
make two main discoveries. First, we find that the f-GAN and WAE objectives
partake in a primal-dual relationship and are equivalent under some assumptions,
which then allows us to explicate the success of WAE. Second, the equivalence
result allows us to, for the first time, prove generalization bounds for Autoencoder
models, which is a pertinent problem when it comes to theoretical analyses of
generative models. Furthermore, we show that the WAE objective is related
to other statistical quantities such as the f-divergence and in particular, upper
bounded by the Wasserstein distance, which then allows us to tap into existing
efficient (regularized) optimal transport solvers. Our findings thus present the first
primal-dual relationship between GANs and Autoencoder models, comment on
generalization abilities and make a step towards unifying these models.

1 Introduction

Implicit probabilistic models [1] are defined to be the pushforward of a simple distribution Py
over a latent space Z through a map G : Z — X, where X is the space of the input data. Such
models allow easy sampling, but the computation of the corresponding probability density function is
intractable. The goal of these methods is to match G# Py to a target distribution Px by minimizing
D(Px,G+#Py), for some discrepancy D(-,-) between distributions. An overwhelming number
of methods have emerged after the introduction of Generative Adversarial Networks [2, 3] and
Variational Autoencoders [4] (GANs and VAEs), which have established two distinct paradigms:
Adversarial (networks) training and Autoencoders respectively. Adversarial training involves a set of
functions D, referred to as discriminators, with an objective of the form

D(Px, G#Pz) = max {Es~py[a(d(2))] — Esnopp, [b(d())]} M

for some functions ¢ : R — R and b : R — R. Autoencoder methods are concerned with finding a
function F : X — Z, referred to as an encoder, whose goal is to reverse GG, and learn a feature space
with the objective

D(Px, G#Py) = min {R(G, E) + Q(E)}, @
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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where R(G, E) is the reconstruction loss and acts to ensure G and E reverse each other and Q(E) is
a regularization term. Much work on Autoencoder methods has focused upon the choice of .

In practice, the two methods demonstrate contrasting abilities in their strengths and limitations, which
have resulted in differing directions of progress. Indeed, there is a lack of theoretical understanding
of how these frameworks are parametrized and it is not clear whether the methods are fundamentally
different. For example, Adversarial training based methods have empirically demonstrated high
performance when it comes to producing realistic looking samples from Pyx. However, GANs often
have problems in convergence and stability of training [5]. Autoencoders, on the other hand, deal
with a more well behaved objective and learn an encoder in the process, making them useful for
feature representation. However in practice, Autoencoder based methods have reported shortfalls,
such as producing blurry samples for image based datasets [6]. This has motivated researchers
to adapt Autoencoder models by borrowing elements from Adversarial networks in the hopes of
GAN level performance whilst learning an encoder. Examples include replacing €2 with Adversarial
objectives [7, 8] or replacing the reconstruction loss with an adversarial objective [9, 10]. Recently,
the Wasserstein Autoencoder (WAE) [6] has been shown to subsume these two methods with an
Adversarial based €, and has demonstrated performance similar to that of Adversarial methods.

Understanding the connection between the two paradigms is important for not only the practical
purposes outlined above but for the inheritance of theoretical analyses from one another. For example,
when it comes to directions of progress, Adversarial training methods now have theoretical guarantees
on generalization performance [11], however no such theoretical results have been obtained to date
for autoencoders. Indeed, generalization performance is a pressing concern, since both techniques
implicitly assume the samples represent the target distribution [12] and eventually leads to memorizing
training data.

In this work, we study the two paradigms and in particular focus on the f-GANs [3] for Adversarial
training and Wasserstein Autoencoders (WAE) for Autoencoders, which generalize the original GAN
and VAE models respectively. We prove that the f-GAN objective with Lipschitz (with respect to a
metric ¢) discriminators is equivalent to the WAE objective with cost c. In particular, we show that
the WAE objective is an upper bound; schematically we get

f-GAN < WAE

and discuss the tightness of this bound. Our result is a generalization of the Kantorovich-Rubinstein
duality and thus suggests a primal-dual relationship between Adversarial and Autoencoder methods.
Consequently we show, to the best of our knowledge, the first generalization bounds for autoencoders.
Furthermore, using this equivalence, we show that the WAE objective is related to key statistical
quantities such as the f-divergence and Wasserstein distance, which allows us to tap into efficient
(regularized) OT solvers.

The main contributions can be summarized as the following:

> (Theorem 8) Establishes an equivalence between Adversarial training and Wasserstein Autoencoders,
showing conditions under which the f-GAN and WAE coincide. This further justifies the similar
performance of WAE to GAN based methods. When the conditions are not met, we have an inequality,
which allows us to comment on the behavior of the methods.

> (Theorem 9, 10 and 14) Show that the WAE objective is related to other statistical quantities such
as f-divergence and Wasserstein distance.

> (Theorem 13) Provide generalization bounds for WAE. In particular, this focuses on the empirical
variant of the WAE objective, which allows the use of Optimal Transport (OT) solvers as they are
concerned with discrete distributions. This allows one to employ efficient (regularized) OT solvers
for the estimation of WAE, f-GANs and the generalization bounds.

2 Preliminaries

2.1 Notation

We will use X to denote the input space (a Polish space), typically taken to be a Euclidean space. We
use Z to denote the latent space, also taken to be Euclidean. We use N,, to denote the natural numbers
without 0: N'\ {0}. We denote by & the set of probability measures over X, and elements of this set

2
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will be referred to as distributions. If P € 7(X) happens to be absolutely continuous with respect
to the Lebesgue measure then we will use dP/d to refer to the density function (Radon-Nikodym
derivative with respect to the Lebesgue measure). For any T' € .% (X, Z), for any measure ;1 € & (X),
the pushforward measure of  through 7" denoted T#p € Z2(2) is such that T#u(A) = p(T~1(A))
for any measurable set A C Z. The set .# (X, R) refers to all measurable functions from X into the set
R. We will use functions to represent conditional distributions over a space Z conditioned on elements
X, for example P € .# (X, Z(Z)) so that for any € X, P(z) = P(:|z) € &(Z). For any P €
P (X), the support of Pis supp(P) ={x € X: ifx € N, open = P(N,) > 0}. In any metric
space (X, c), for any set S C X, we define the diameter of S to be diam.(S) = sup,, /g c(z,2').
Given a metric ¢ over X, for any f € .#(X,R), Lip.(f) denotes the Lipschitz constant of f with
respect to cand K. = {g € Z(X,R) : Lip.(g) < 1}. For some set S C R, 1 corresponds to the
convex indicator function, ie. 1g(x) = 0if x € S and 1g(x) = oo otherwise. For any z € X,
0z : X — {0, 1} corresponds to the characteristic function, with §,,(0) = 1if x = 0 and 6,(0) =0
if z # 0.

2.2 Background
2.2.1 Probability Discrepancies

Probability discrepancies are central to the objective of finding the best fitting model. We introduce
some key discrepancies and their notation, which will appear later.

Definition 1 (f-Divergence) For a convex function f : R — (—o0, 00| with f(1) = 0, for any
P,Q € Z(X) with P absolutely continuous with respect to Q, the f-Divergence between P and Q) is

Ds(P.Q)= [ f (jg) a0,

with Dy (P, Q) = oo if P is note absolutely continuous with respect to Q).

An example of a method to compute the f-divergence is to first compute dP/d(@ and estimate the
integral empirically using samples from Q.

Definition 2 (Integral Probability Metric) For a fixed function class F C .7 (X, R), the Integral
Probability Metric (IPM) based on F between P,Q € Z(X) is defined as

IPMy (P, Q) := sup { /x f(z)dP() - /x f(x)d@(:r)}.

feF
If we have that —F = F then IPM 4 forms a metric over & (X) [13]. A particular IPM we will make
use of is Total Variation (TV): TV(P, Q) = IPMy (P, Q) where V = {h € % (X,R) : |h| < 1}. We
also note that when f(z) = |z — 1| then TV = Dy and thus TV is both an IPM and an f-divergence.
Definition 3 For any P, Q € Z(X), define the set of couplings between P and Q) to be
I(P,Q) = {’/T € P2(XxX): / m(x,y)dx = P,/ m(x,y)dy = Q} .
X X

For a cost ¢ : X x X — R, the Wasserstein distance between P and () is

W.(P,Q):= inf {/xxxc(x,y)dﬂ(x,y)}.

Tell(P,Q)

The Wasserstein distance can be regarded as an infinite linear program and thus admits a dual form,
and in the case of ¢ being a metric, belongs to the class of IPMs. We summarize this fact the following
lemma [14].

Lemma 4 (Wasserstein Duality) Ler (X, c) be a metric space, and suppose H. is the set of all
1-Lipschitz functions with respect to c. Then for any P,Q € P (X), we have

W.(P.@) = sup { [ 1P - [ nwaow)}

hex
= IPMy, (P, Q).

3
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2.3 Generative Models

In both GAN and VAE models, we have a latent space Z (typically taken to be R?, with d being
small) and a prior distribution Pz € Z2(Z) (e.g. unit variance Gaussian). We have a function referred
to as the generator G : Z — X, which induces the generated distribution, denoted by P € £(X),
as the pushforward of P, through G: P; = G#Pz. The true data distribution will be referred to
as Px € Z2(X). The common goal between the two methods is to find a generator G such that the
samples generated by pushing forward Pz through G (G# Py) are close to the true data distribution
(Px). More formally, one can cast this as an optimization problem by finding the best G such that
D(Pg, Px) is minimized, where D(-, ) is some discrepancy between distributions. Both methods
(as we outline below) utilize their own discrepancies between Py and Py, which offer their own
benefits and weaknesses.

2.3.1 Wasserstein Autoencoder

Let E : X — Z(Z) denote a probabilistic encoder !, which maps each point 2 to a conditional
distribution E(z) € £(Z), denoted as the posterior distribution. The pushforward of Py through E:
E+# Px, will be referred to as the aggregated posterior.

Definition 5 (Wasserstein Autoencoder [6]) Let ¢ : X X X — Rxg, A > 0 and Q : P(Z) x
P(Z) = R with Q(P, P) = 0 forall P € P(Z). The Wasserstein Autoencoder objective is

AF, ro(Px,G) =  inf E. o lc(z, Px(z) + A - Q(E#Px, Py) b .
WAE s a(Pr6) = | int ] [ B e, GNP () + 3 0B 4Py P |

We remark that there are various choices of ¢ and A - 2. [6] select these by tuning A and selecting
different measures of discrepancies between probability distortions for €.

2.3.2 f-Generative Adversarial Network

Let d : X — R denote a discriminator function.

Definition 6 (f-GAN [3]) Let f : R — (—00, 00| denote a convex function with property f(1) =0
and D C F(X,R) a set of discriminators. The f-GAN model minimizes the following objective for
a generator G : Z — X

GANy(Px,G; D) = sup {Eonpy [d(@)] = Eonp, [f*(d(G(2))]}, 3)
where f*(x) = sup, {z -y — f(y)} is the convex conjugate of f.

There are two knobs in this method, namely D, the set of discriminators, and the convex func-
tion f. The objective in (3) is a variational approximation to Dy [3]; if D = Z#(X,R), then
GAN¢(Px,G;D) = Dy(Px, Pg) [15]. Inthe case of f(z) = xlog(x)—(z+1) log(z+1)+21log 2,
we recover the original GAN [2].

3 Related Work

Current attempts at building a taxonomy for generative models have largely been within each paradigm
or the proposal of hybrid methods that borrow elements from the two. We first review major and
relevant advances in each paradigm, and then move on to discuss results that are close to the technical
contributions of our work.

The line of Autoencoders begin with 2 = 0, which is the original autoencoder concerned only with
reconstruction loss. VAE then introduced a non-zero €2, along with implementing Gaussian encoders
[4]. This was then replaced by an adversarial objective [7], which is sample based and consequently
allows arbitrary encoders. In the spirit of unification, Adversarial Autoencoders (AAE) [8] proposed
) to be a discrepancy between the pushforward of the target distribution through the encoder (E# Px)

"We remark that this is not standard notation in the VAE and Variational Inference literature.

4
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and the prior distribution (P) in the latent space, which was then showed to be equivalent to the VAE
) minus a mutual information term [16]. Independently, InfoVAE [17] proposed a similar objective,
which was subsequently shown to be equivalent to adding mutual information. [6] reparametrized the
Wasserstein distance into an Autoencoder objective (WAE) where the €) term generalizes AAE, and
has reported performance comparable to that of Adversarial methods. Other attempts also include
adjusting the reconstruction loss to be adversarial as well [9, 10]. Another work that focuses on WAE
is the Sinkhorn Autoencoders (SAE) [18], which select € to be the Wasserstein distance and show
that the overall objective is an upper bound to the Wasserstein distance between Px and FPg.

[19] discussed the two paradigms and their unification by interpretting GANs from the perspective
of variational inference, which allowed a connection to VAE, resulting in a GAN implemented
with importance weighting techniques. While this approach is the closest to our work in forming a
link, their results apply to standard VAE (and not other AE methods such as WAE) and cannot be
extended to all f-GANS. [20] introduced the notion of an Adversarial divergence, which subsumed
mainstream adversarial based methods. This also led to the formal understanding of how the
selected discriminator set D affects the final generator G learned. However, this approach is silent
with regard to Autoencoder based methods. [11] established the tradeoff between the Rademacher
complexity of the discriminator class D and generalization performance of G, with no results present
for Autoencoders. These theoretical advances in Adversarial training methods are inherited by
Autoencoders as a consequence of the equivalence presented in our work.

One key point in the proof of our equivalence is the use of a result that decomposes the GAN
objective into an f-divergence and an IPM for a restricted class of discriminators (which we used for
Lipschitz functions). This decomposition is used in [21] and applied to linear f-GANs, showing that
the adversarial training objective decomposes into a mixture of maximum likelihood and moment
matching. [22] used this decomposition with Lipschitz discriminators like our work, however does
not make any extension or further progress to establish the link to WAE. Indeed, GANs with Lipschitz
discriminators have been independently studied in [23], which suggest that one should enforce
Lipschitz constraints to provide useful gradients.

4 f-Wasserstein Autoencoders

We define a new objective, that will help us in the proof of the main theorems of this paper.

Definition 7 (f-Wasserstein Autoencoder) Letc: X X X - R, A >0, f : R — (—00,00] be a
convex function (with f(1) = 0), the f-Wasserstein Autoencoder ( f-WAE) objective is

Weas(Px,G) = Eey(iarcl,fg»(z» {We(Px,(Go E)#Px) + ADy(E#Px, Pz)} “4)

In the proof of the main result, we will show that the f-WAE objective is indeed the same as the
WAE objective when using the same cost c and selecting the regularizer tobe A - Q = Dy; = ADy.
The only difference between this and the standard WAE is the use of W,(Px, (G o E)#Px) as
the reconstruction loss instead of the standard cost which is an upper bound (Lemma 18), and the
regularizer is chosen to be A - QQ = Dy = AD;. We now present the main theorem that captures the
relationship between f-GAN and WAE.

Theorem 8 (f-GAN and WAE equivalence) Suppose (X, c) is a metric space and let H,. denote
the set of all functions from X — R that are 1-Lipschitz (with respect to ¢). Let f : R — (—o0, 0]
be a convex function with f(1) = 0. Then for all A > 0,

GAN, ¢ (Px,G;H.) < WAE. \.p,(Px,G), &)
with equality if G is invertible.

Proof (This is a sketch, see Section A.1 for full proof). The proof begins by proving certain
properties of . (Lemma 16), allowing us to use the dual form of restricted GANs (Theorem 15),

GANf(Px,G; gfc) = inf {Df(P/,Pg) + sup {EPX [h] — Ep/[h}}}

P e?(X) heH,.
= inf D¢(P' P, W.(P',P . 6
P,Elgz(x){ (P, Pg) + We(P', Px)} (6)

5
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The key is to reparametrize (6) by optimizing over couplings. By rewriting P’ = (G o E)#Px for
some E € .7 (X, #(Z)) and rewriting (6) as an optimization over E (Lemma 20), we obtain
inf D; (P, P, W.(P', P
P,elgz(x){ (P, Pg) + We(P', Px)}
= inf D¢ ((Go E)#Px, P, W.(Go E)#Px,P 7
Eegz(larcl,ng)){ r((Go E)#Px,Pg) + W.((Go E)#Px, Px)} (M

We then have

(*)
D¢((Go E)#Px,Pc) = Dy(G#(E#Px),G#Py) < Ds(E#Px, Pz),

with equality in (x) if G is invertible (Lemma 17). A weaker condition is required if f is differentiable,
namely if G is invertible with respect to [’ o d(E#Px)/dPy in the sense that

G(2) =G(2) = [ o(d(E#Px)/dPz)(z) = [ o (d(E#Px)/dPz)('), ®)

noting that an invertible G trivially satisfies this requirement. Letting f <— Af, we have D¢ (-, )
AD¢(-,-), and so from Equation 7, we have

()
GANyf(Px, G H,) <

Eey(larcl,fy(zn {AD;(E#Px,Pz) + W.((Go E)#Px, Px)}

= WQ)\.f(Px,G)

< inf D;(E#Px, P E P
_Ee?(IDICl,Q’(Z)){)\ 7 (B4 Px, Z)+/x a~B(@) (2, G(2))ld X(x)}

= WAE.\p,(Px,G),

where the final inequality follows from the fact that W.(P,Q) < [, E. p()lc(z, G(2))]|dPx ()
(Lemma 18). Using the fact that W > WAE (Lemma 19) completes the proof. |

When G is invertible, we remark that Pg can still be expressive and capable of modelling complex
distributions in WAE and GAN models. For example, if G is implemented with feedforward
neural networks, and G is invertible then Pg can model deformed exponential families [24], which
encompasses a large class appearing in statistical physics and information geometry [25, 26]. There
exists many invertible activation functions under which G will be invertible. Furthermore, in the proof
of the Theorem it is clear that W/ and WAE are the same objective (from Lemma 18 and Lemma 19).
When using f = 1713 (f(z) = 0if z = 1 and f(x) = oo otherwise), and noting that f*(x) = z,
meaning that Theorem 8 (with A = 1) reduces to

s {Expy [1(2)] ~ By [b(@)]} = GANS (Px, G236,

< W, t(Px, Pg)

{We(Px, (Go E)#Px)}

{We(Px,G#Pz}

inf
E€ZF (X, (2)):E#Px=Py
= inf
EeF(X,2(2)): E#Px =Py
= W.(Px, Pg),

which is the standard primal-dual relation between Wasserstein distances as in Lemma 4. Hence,
Theorem 8 can be viewed as a generalization of this primal-dual relationship, where Autoencoder
and Adversarial objectives represent primal and dual forms respectively.

We note that the left hand of Equation (5) does not explicitly engage the prior space Z as much as
the right hand side in the sense that one can set Z = X, G = Id (which is invertible) and P; = Pg
and indeed results in the exact same f-GAN objective since G#P; = ld#Ps = Pg, yet the
equivalent f-WAE objective (from Theorem 8) will be different. This makes the Theorem versatile
in reparametrizations, which we exploit in the proof of Theorem 10. We now consider weighting
the reconstruction along with the regularization term in W (which is equivalent to weighting WAE),
which simply amounts to re-weighting the cost since for any v > 0,

W’y-c,)vf(PXvG) = Ee?(lf)lgfﬂ’(z)) {’YWC<(GOE>#P)(,PX) +)‘DJC(E‘#EF))OPZ)}
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The idea of weighting the regularization term by A was introduced by [27] and furthermore studied
empirically, showing that the choice of A influences learning disentanglement in the latent space.
[28]. We show that if A = 1 and « is larger than some ~* then W will become an f-divergence
(Theorem 9). On the other hand if we fix v = 1 and take ) is larger than some \*, then W becomes
the Wasserstein distance and in particular, equality holds in (5) (Theorem 10). We show explicitly
how high v and A need to be for such equalities to occur. This is surprising since f-divergence and
Wasserstein distance are quite different distortions.

We begin with the f-divergence case. Consider f : R — (—o0, 00| convex, differentiable and
f(1) = 0 and assume that Px is absolutely continuous with respect to Pg, so that D¢(Px, Pg) < co.

Theorem 9 Set c¢(z,y) = 6y, and let f : R — (—o00, 0] be a convex function (with f(1) = 0)

I (%) - f’(%)(m’) and suppose Pg is absolutely

continuous with respect to Px and that G is invertible, then we have for all v > ~*

W.e.(Px,G) = Dy(Px, Pg).

and differentiable. Let v* = sup, ,cx

(Proof in Appendix, Section A.3). It is important to note that W.(Px, Pc) = TV(Px, Pg) when
¢(x,y) = 64—, and so Theorem 9 tells us that the objective with a weighted total variation reconstruc-
tion loss with a f-divergence prior regularization amounts to the f-divergence. It was shown that in
[24] that when G is an invertible feedforward neural network then D¢ (Px, Pg) is a Bregman diver-
gence (a well regarded quantity in information geometry) between the parametrizations of the network
for a fixed choice of activation function of GG, which depends on f. Hence, a practioner should design
G with such activation function when using f-WAE under the above setting (¢(x,y) = d5—y and
v = 7*) with G being invertible, so that the information theoretic divergence (D) between the
distributions becomes an information geometric divergence involving the network parameters.

We now show that if \ is selected higher than \* := sup p/c g () (We(P', Pg)/ Dy (P', Pg)), then
W becomes W, and furthermore we have equality between f-GAN, f-WAE and WAE.

Theorem 10 Ler ¢ : X x X — R be a metric. Forany f : R — (—o0, 00] convex function (with
f(1) = 0), we have for all A > \*

GANyy(Px,G;H.) = Weap(Px,G) = WAE. \.p,(Px,G) = W.(Px, Pg).

(Proof in Appendix, Section A.4). Note that Theorem 10 holds for any f (satisfying properties of
the Theorem) and so one can estimate the Wasserstein distance using any f as long as \ is scaled
to A*. In order to understand how high A\* can be,there are two extremes in which the supremum
may be unbounded. The first case is when P’ is taken far from Pg so that W.(P’, Pg) increases,
however one should note that in the case when A = max, ;7 ex ¢(x, 2’) < oo then W, € [0, A] and
so W, will be finite whereas D;(P’, Pg) can possibly diverge to co, making A* — 0. The other

case is when P’ is made close to Pg, in which case m — oo however W (P, P;) — 0
so the quantity A* can still be small in this case, depending on the rate of decrease between W,
and Dy. Now suppose that f(z) = |z — 1| and ¢(z, y) = 05—y, in which case Dy = W, and thus
A* = 1. In this case, Theorem 10 reduces to the standard result [29] regarding the equivalence
between Wasserstein distance and f-divergence intersecting at the variational divergence under these

conditions.

5 Generalization bounds

We present generalization bounds using machinery developed in [30] with the following definitions.

Definition 11 (Covering Numbers) Foraset S C X, we denote N, (S) to be the n-covering number
of S, which is the smallest m € N, such that there exists closed balls By, ..., By, of radius n

with S C \J"| B;. Forany P € 2 (X), the (1, 7)-dimension is d,(P,7) := %, where
N,(P,7) :=1inf {N,(S): P(S) > 1—7}.
7
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Definition 12 (1-Upper Wasserstein Dimension) The 1-Upper Wasserstein dimension of any P €
P(X) is d*(P) :=inf {s € (2,00) : limsup, ,, dp(P,n+2) < s}.

We make an assumption of Px and Pg having bounded support to achieve the following bounds. For
any P € Z(X) in a metric space (X, ¢), we use define Ap, = diam,(supp(P)).

Theorem 13 Let (X, ¢) be a metric space and suppose A := max {A. py, A p, } < 0o. For any
n € Ny, let Px and Pg denote the empirical distribution with n samples drawn i.i.d from Px and
Pg respectively. Let sx > d*(Px) and sg > d*(Pg). Forall f : R — (—00, 00| convex functions,
f(1) =0, A>0andé € (0,1), then with probability at least 1 — 6, we have

_ N [1
GAN)\f(Px,G;g‘fc) S Wc’)\Af(Px,Pg) +O (n_l/‘”‘ + A Eln (;)) ) (9)

and if f(x) = | — 1| is chosen then

GANy;(Px,G;H.) < Weas(Px,Pg)+0 (n_l/sx +nlse LA % In (i)) .0

(Proof in Appendix, Section A.2). First note that there is no requirement on G to be invertible and no
restriction on A. Second, there are the quantities sx,s¢ and A that are influenced by the distributions
Px and Pg. It is interesting to note that d* is related to fractal dimensions [31] and thus relates the
convergence of GANS to statistical geometry. If GG is invertible in the above then the left hand side
of both bounds becomes W ».;(Px, G) by Theorem 8. In general, Py and P will not share the
same support, in which case D f(PX, Pg) = 00 — This would lead one to suspect the same from
WQ A f(PX, PG), however this is not the case since

WPy, Po) < inf . E)#Px, P D¢(E#Px, P
Weas(Px, G)—Eemlarcl,gb(x)){w((Go J#Px, Px) + AD s (E#Px, Z)}’

and so F € #(X, &(Z)) would be selected such that £ #i%( shares the support of P, resulting in
a bounded value. We now show the relationship between W and W..

Theorem 14 Foranyc: XxX — R, A > 0and f : R — (—00, 00] convex function (with f(1) = 0)
we have WC’)\.f(PX7 G) S WC(P)(, PG)

(Proof in Appendix, Section A.5). This suggests that in order to minimize W, one can minimize W,.
Indeed, majority of the solvers are concerned with discrete distributions, which is exactly what is

present on the right hand side of the generalization bounds: W . (st, Pg)

6 Discussion and Conclusion

This work is the first to prove a generalized primal-dual betweenship between GANs and Autoen-
coders. Our result elucidated the close performance between WAE and f-GANSs. Furthermore, we
explored the effect of weighting the reconstruction and regularization on the WAE objective, showing
relationships to both f-divergences and Wasserstein metrics along with the impact on the duality
relationship. This equivalence allowed us to prove generalization results, which to the best of our
knowledge, are the first bounds given for Autoencoder models. The results imply that we can employ
efficient (regularized) OT solvers to approximate upper bounds on the generalization bounds, which
involve discrete distributions and thus are natural for such solvers.

The consequences of unifying two paradigms are plentiful, generalization bounds being an example.
One line of extending and continuing the presented work is to explore the use of a general cost
c (as opposed to a metric), invoking the generalized Wasserstein dual in the goal of forming a
generalized GAN. Our paper provides a basis to unify Adversarial Networks and Autoencoders
through a primal-dual relationship, and opens doors for the further unification of related models.
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A Appendix

A.1 Proof of Theorem 8

In order to prove the theorem, we make use of the dual form of the restricted variational form of an
f-divergence:

Theorem 15 ([21], Theorem 3) Ler f : R — (—00, 0] denote a convex function with property
f(1) = 0 and suppose H is a convex subset of % (X, R) with the property that for any h € H and
b e R, wehave h+b € H. Then for any P,Q € &(X) we have

Sup {Explh0)] ~ Eumol* (W)} = inf {DAP', @)+ swp (B lh(o)] - B [h(zn}}

The goal is now to set H = J{. however there are some conditions of the above that we require

Lemma 16 If c is a metric then H, is convex and closed under addition.

Proof Let f € H. and consider define h = f + b for some b € R, we then have

[h(x) = h(y)| = [f(x) +b— f(y) — 0]
=1f(z) = f(y)l
< ¢z, y)
Consider some A € [0,1] and set A(x) = A- f(z) + (1 — A) - g(x) for some f, g € H.. We then have
Ih(z) =h(y)| =X f(@)+ QA =A)-g(z) = A- fly) = (1= A) - g(y)]|
=[x (f(@) = fy) + A =A) - (9(x) — g(v))]
<A [f(@) = F)l+ A =A) - g(z) = g(y)]
<Aoce(zyy)+ (1= A) - e(z,y)
= c(z,y)
forall z,y € X. |

We require a lemma regarding the decomposibility of G for f-divergences.

Lemma 17 Let G : Z — X and let P, Q be two distributions over Z. We have that
Dy(G#P,G#Q) < Ds(P,Q),

with equality if G is invertible. Furthermore, if f is differentiable then we have equality for a weaker
condition: forany z,z' € 2,G(z) = G(7') = f’(g—g(z)) = f’(%(z;’)).

Proof By writing the variational form from [15] (Lemma 1), we have

Dy (G#P,G#Q) = he;%)c . {Ec~cuplh(z)] — Esnanolf ™ (h(x))]}

= sup {E..p[h(G(2))] — E.ng[f" (R(G(2)))]}
heF (X,R)

= sup {Ezwp[h(z)] - E2~Q[f*(h(z))]}
he Z (X, R)oG

< sup {E.p[h(2)] — E.nqlf*(R(2))]}
heF(Z,R)

= Ds(P,Q),

where we used the fact that # (X,R) o G C .#(Z,R). If G is invertible then we applying the above
with G < G, P « G#P and Q < G#Q, we have

Dy (G #(G#P), G #(G#Q)) < Dy (G#P,G#Q),

1
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which is just the reverse direction Dy (P, Q) < D;(G#P, G#Q), and so equality holds. Suppose
now that f is differentiable then note that inequality holds when f'(dP/dQ) € % (X,R) o G (See
proof of Lemma 1 in [15]), which is equivalent to asking if there exists a function ¢ € .#(X,R)

such that
o (dP
proG=f (dQ :

For any z € Z, we can construct ¢ to map G(z) to f’ (%) (z) and due to the condition in the
lemma, we can guarantee ¢ will indeed be a function and thus exists. |

We need a Lemma that will allow us to upper bound the Wasserstein distance.
Lemma 18 Forany E € F(X, 2#(2)), G € F(Z,X) and ¢ : X x X — R, we have

We((G o E)#Px, Px) < /x E. g lc(z, G(2))]dPx ().

Proof We quote a reparametrization result from [6] Theorem 1 that if G is deterministic then the
Wasserstein distance can be reparametrized as

WC(G#(E#P)(>,PX) = Ez~Q(m) [C<$7G(z))]dpx($) (11)

inf /

QEF (X,2(2)):Q#Px=E#Px Jx

S/EZNE(w)[C(.T,G(Z))]dpx(l‘).
x

We also need a Lemma regarding the relationship between W and WAE.

Lemma 19 Let f : R — (—00, 00| be a convex function with f(1) = 0, then we have

Weng(Px,G) < WAEc \.p,(Px,G).

Proof Consider the optimal encoder £* from the f-WAE objective. Let Q* = E*# Px. We then
have that

Weng(Px,G) = Wo(Px,G#Q*) + X - Ds(Q*, Pz).

Let 7 € II(Px, E#Q*) be the optimal coupling under the metric ¢. By the Gluing lemma [14], one
can construct a triple (X, Y, Z) where (X,Y) ~ 7, Z ~ Q* and Y = G(Z) almost surely. Let 7/
be the distribution over (Y, Z) and consider the conditional distribution over Z given Y, associated
with B, € #(X, 2(Z)). We have E..#Px = QQ* and so we have

WAECA.Df(Px,G)§/EZNEW,(y)[C(CL’,G(Z))}dPX+Df(Eﬂ—/#Px,Pz)
X
_ /x E..ple(z, G(2))ldPx + Dy (Q*, Py)

- / [C(I,y)}dﬂ%zyy)—|—Df(Q*7PZ)
AxX

=Weas(Px,G).

Finally, we need a lemma to justify reparametrizations.

Lemma 20 If G : Z — X is invertible then for any P' € 2(X) such that P! < Pg, then there
existsan E € . (X, P(2)) such that P' = G#E+#Px.

2
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Proof From the assumption, we have Supp(P’) C Supp(Pg) € Im(G) and so by invertibility of G,
we can set Q = G~ '# P’ and construct a conditional distribution E (between marginals @ and Px)
to get Q = E#Px, hence P’ = G#E#Px. [ ]

We are now ready to prove the theorem. Set H = . (the set of 1-Lipschitz functions) and
note that Af is a convex function satisfying Af(1) = 0 and so substituting f < \f, we get that
Dys(-,+) = ADy(-, ). Hence, we have

GAN\f(Px, G;He) = sup {Esnpy [0(2)] — Eanpg [(Af)" (h(2))]}

heH,.
= inf AD (P’ P, W.(P',P
P,Elgb(x){ 7 (P, Pa) + We(P', Px)}
- inf {\D;(P', Pg) + W.(P', Px)}

PleP(X):P'<<P,

wer, o), AD1(G o E)#Px, G4 Pz) + We((G o E)#Px, Px)}
(12)

()
= EE?(IJICl,fBZ(Z))
=Wert(Px,G)
< Eey(igclf@(z)) {/x E.B@lc(z,G(2))]dPx(x) + ADy(E#Px, PZ)}
= WAE, ».p, (Px,G), (13)
where (12) is an equality when G is invertible from Lemma 20 and (x) is = if G satisfies the

requirement of Lemma 17. To prove the final inequality, note that if E* satisfies the condition of the
Theorem then

{A\D¢(E#Px,Pz) +W.((G o E)#Px, Px)}

Wc’)\.f(Px, G) = Wc((G o E*)#Px, Px) + )\Df(E*#Px,Pz)
= Wo(G#(E"#Px), Px)
= W.(Pg, Px). (14)
Next, notice that
WAE. \-D; (Px, Q)

- Eefﬁ“(iarcl,fy(z)) {/x E.<p@lc(r, G(2))]dPx(z) + ADy(E#Px, PZ)}

< inf E. i lc(z, G(2))]dP AD;(E#Px, P
_Eef(x,.@(lzg):E#Px:Pz {/x () (e, G(2)|APx (@) + AD s (B4 P Z)}

< inf E. o lcla, G(2))]dP
_Eey(x,gw(lz%):E#Px=Pz {/x el Gl2))] X(x)}

= W.(Px, Pg) (15)
= WC,A~f(PX7 G)> (16)

where (15) follows from the reparametrized Wasserstein distance from [6] (Theorem 1), which we
used in (11) and the final step follows from (14). Combining WAE. x.p, (Px,G) < W f(Px,G)
with WAE, x.p, (Px,G) > W £(Px,G) (from 13) yields equality and concludes the proof.

A.2 Proof of Theorem 13

We first prove a lemma that will apply to both cases. Recalling that for any metric space (X, ¢) and
P e Z(X) we define Ap . = diam.(supp(P)).

Lemma 21 Let (X, c) be a metric space. For any P € 2(X), suppose Ap,. < oo and let P denote
the empirical distribution after drawing n i.i.d samples for some n. € N,. If s > d*(P), then we have

R Ape (2. (1
IPMs¢, (P, P) < O(n~%/%) + TP ~n (5)

3
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Proof We appeal to McDiarmind’s Inequality and use a standard method, as shown in [32], to bound
the quantity.

Theorem 22 (McDiarmind’s Inequality) Ler X, ..., X,, be n independent random variables and
consider a function ® : X™ — R such that there exists constants c; > 0 (fori =1,...,n) with
sup | P(x1,... 1) — P21, .., T 1, T Tig 1y - T0)| S e

Then for any t > 0, we have
—2t2
Pri®(Xy,....X,) —E[®(X1,...,Xp)] > t] <exp <”>

i=1 6

Let F = H, then let

®(S) = IPMy, (P, P).
Noting that

1
|¢(-rla"'7xn) - (I)(xla"'v'ri—17$//iaxi+17- .. wxn)‘ S E ‘f(mz) - f(l‘;)|
1 /
< el )
< AP,c

— )

n
where the first inequality follows as each f is 1-Lipschitz and the second follows from the fact
that each x, 2’ € supp(P). This allows us to set ¢; = A/n for all i = 1,...,n. Now applying

McDiarmind’s inequality with ¢ = Ap /2, / % In (%) yields (for a sample S ~ P"™)

Pr

B(S) —ED(S) > A;,c %m (;)} <6

Pr

Ape [2. (1

and thus

Ap. [2 1
d(S) <E®(S =i/ —In( = ).
() <B0(s) + 255 2 ()

Noting that E®(S) = E[W..(P, P)] (from Lemma 4), we appeal to a case of Theorem 1 in [30] where
p = 1, which tells us that if s > d*(P) then E[W,(P, P)] = O(n~'/*). Since this is the requirement
in the lemma, the proof concludes. |
We will make use of this lemma for both Px and P and use A for both cases since A > Ap, . and
A > Ap, .. For the general case of any f, let (abusing notation) G = GAN¢(Px,G; H.) and G
denote the empirical counterpart with n samples, and let ht, h? € H, denote their witness functions.
We then have

G-G
= D {Ear [1(2)] ~ Eanr (M) (@)} — sp {E,_p, [1(a)] ~ Eary [A)" (h(a))]}

= Eonpy [0 (2)] = Eonro (M) (1 ()] = E, _p, [1*(@)] + Eanpe [(A)* (h*(2))]
< Eonpy [0 (2)] = By py [0 ()] + B p (M) (B (2))] = Eanpg [(A)* (B ()]
= Eonpy [0 (2)] —E, p, [1' (2)]

< sup {Epwry [b(2)] ~ E,_p, [h(2)] }

hedH,
= IPMy¢_(Px, Px)

A |2 1
< —1/sx =2./z il
<O(n )—|—2 nln<6>’

4
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where the last step is an application of Lemma 21. Applying Theorem 8, we get G < W y.¢
and rearrangement of the above shows the first bound. For the case of f(z) = |z — 1|, note that
if F C Z(X,R) is such that —F = F, then IPMy is a pseudo-metric and satisfies the triangle
inequality, which allows us to have

IPMs(Px, Pg) < IPM4(Px, Px) + IPMg(Px, Pg)
< IPMy(Px, Px) + IPMy(Pg, Pg) + IPMg(Px, Po). (17)

Next, we set I = JF 5, and noting that I  C H,., we have

IPM:‘;C,A (Px, PG) < IPMg:C,)\ (PX7 px) + IPMg‘C)A (Pg, PG) + IPM:}"C,A (px, p@)
< IPMjy¢, (Px, Px) + IPMy¢, (Pg, Po) + IPMy¢, (Px, Pg)

. [2 (2
< IPMy, (Px, Pg) + O(n=Y*x 4 n=1/56) L A ~n <5> (18)

where the final inequality is an application of Lemma 21 like before. However since we use
McDiarmind’s inequality twice, we set § < ¢/2 and use union bound to have the above inequality
with probability 1 — §. The final step is to note that when f(z) = |z — 1| then for any A > 0,
z <A
M) (z) = -
o ={2 T3]

and so we have

GANxf(Px, G;He) = sup {Eqnpy [1(2)] = Exnpg [(Af)" (h(2))]}

heXH,.

=  sup A{E.opy[h(z)] — Exupg[h(x)]}
hedHc:[h|<A

= Ssup {E$~PX [h(l)] - EwNPG [h(%’)”’
heJF e

=IPMy_, (Px, Pg).

By Theorem 8, we have IPM;C’A(PX,Pg) = GAN,\f(PX,G; H.) < ch,\.f(PX,G) where
GAN,\f(PX, G; H.) is the objective with Py and Pg. Putting this together with (18), we get

GANAf(P)(, G; g‘fc) = IPM({CA (Px, Pg)

< IPMyc (Py, o) + O(n V) + A 2 n (;)
n

. 2
:GAN)\f(PX,G;fHC)—O—O(nfl/S)—i—A nln(

S
N——

<Werp(Px,G)+0(n~1sx £ p=tse)y L Ay [ Z1n <)

A.3 Proof of Theorem 9

First, using Theorem 8 and the fact that the f-GAN objective is a lower bound to D, we have that

W..e.;(Px,G) = GANy(Px, G, H..)
< Dy.

It is known that f'(dPx /dPg) is the maximizer of L(h) = E,py [h(z)] — Expg [f*(R(2))] [15],
and so the proof concludes by showing that f'(dPx /dPg) € Hy-.c. Note that h € H.,... if and only
ifforall z,z" € X,z # x’

=7

5
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and so the 1-Lipschitz functions are those that are bounded by their maximum and minimum value
by . For any z,2’ € X,z # 2’ we have

()@ -1 () @)=

<7,

*

(G @-ro

and thus f'(dPx /dPq) € H,.c.

A.4 Proof of Theorem 10
First note that

WAE, ).t (Px, Pg) = Eey(igrclfg(z)) {/x}EZNE(w) [c(z, G(2))]dPx (z) + X - Dy(E#Px, PZ)}

T EeF(X,2(2)):E#Px=Pz
= WC(PX7 PG)a

where the last equality holds from [6] Theorem 1. Thus we have the chain of inequalities for all A
and f : R — (—o00, 00| (convex with f(1) = 0)

GAN,f(Px,G;H,) < We . (Px, Pg) < WAE. .t (Px, Pg) < W.(Px, Pg).

We now show the opposite direction, which will conclude the proof.

g inf { [ Bavroete Glaapx (o)}

Lemma 23 For any metric c and f : R — (—o00, 00| convex function with f(1) = 0, if

)\2)\* = sup (WC(P/,PG)/Df(P/,Pg)),
P e?(X)

then we have
GAN)\f(Px, G; j‘fc) Z WC(P)(, Pg)

Proof First noting that A > sup p/¢ go(x) (We(P', Pg)/ Dy (P, Pg)), for all P' € &2(X), we have
AD¢(P', Pg) — W.(P',Pg) > 0.
LetZ = X,G =1d, P5; = Pg and noting that G is invertible, we can apply Theorem 8 to get

GAN,f(Px,G;H,) = W s (Px, G#Ps)
{We(E#Px, Px) + ADy(E#Px, Pc)}

= inf

EeF (X,P(X))
inf  {W.(Px, Pa) — W.(E4Px, Pg) + AD;(E#Px, P

Ee?%%?(ﬁc)){ (Px, Pc) (E#Px,Pc) + ADy(E#Px, Pc)}
inf W, (Px, P

Ee?%&,?(m){ (Px. Pe)}

= Wc(-PXaPG)'

%

>

A.5 Proof of Theorem 14

We have

Wenr(Px,G) = Ee.?(iDICl,f,@(Z)) {We(Px,(Go E)#Px) + ADy(E#Px, Pz)}
{We(Px,(G o E)#Px) + ADy(E#Px, Pz)}
{We(Px,(Go E)#Px)}

{WC(PX: PG)}

< inf
E€F (X, (Z)):E4Px=Py

inf
EEZ (X, 2(2)):E#Px=Py

inf
EeF(X,2(2)):E#Px=Py
= W.(Px, Pa).

6
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Chapter 4

Local Differential Privacy for
Sampling

One of the significant drawbacks of Generative Adversarial Networks (GANSs) is the
inability to derive a closed-form density of the final generative distribution learned.
Not only does it withhold our ability to understand the capacity of GANs, but it re-
stricts us from having guarantees from the perspective of privacy, which is a topical
application of data generation that requires control on the density. Inspired by the
discriminator in GANSs, this chapter will build a boosting-based approach for learn-
ing densities whose samples comply with local differential privacy. Such a method
will serve helpful to privatize any mechanism that employs the sampler by way
of post-processing. Theoretical guarantees such as convergence and mode-coverage
will also be proven along with experimental results against state-of-the-art privacy
generation methods.

4.0.1 Errata

We remark a minor mistake in the presentation of Theorem 6 which should be stated
as

Theorem 2 We have A(Q) < &/2,VQ € My, and if 1IPB-DE is in the high boosting regime,
then

AQD) = 5 {’ﬂ”m) a —eT<e>>}, @1)

where T(z) =T(z)/ log?2.

This does not change any other aspect of the publication since indeed as yp, 7o — 1,
we still have A(Qr) > (¢/2) - (1 —0r(¢)).

35
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Local Differential Privacy for Sampling

Hisham Husain®* Borja Balle'

Abstract

Differential privacy (DP) is a leading privacy
protection focused by design on individual pri-
vacy. In the local model of DP, strong privacy
is achieved by privatizing each user’s individual
data before sending it to an untrusted aggrega-
tor for analysis. While in recent years local DP
has been adopted for practical deployments, most
research in this area focuses on problems where
each individual holds a single data record. In
many problems of practical interest this assump-
tion is unrealistic since nowadays most user-
owned devices collect large quantities of data
(e.g. pictures, text messages, time series). We
propose to model this scenario by assuming each
individual holds a distribution over the space of
data records, and develop novel local DP meth-
ods to sample privately from these distributions.
Our main contribution is a boosting-based den-
sity estimation algorithm for learning samplers
that generate synthetic data while protecting the
underlying distribution of each user with local
DP. We give approximation guarantees quanti-
fying how well these samplers approximate the
true distribution. Experimental results against
DP kernel density estimation and DP GANs dis-
plays the quality of our results.

1 Introduction

Over the past decade, differential privacy (DP) has evolved
as the leading statistical protection model for individuals’
data (Dwork and Roth, 2014). The basis of DP is that a
mechanism is private whenever its output provides insuffi-
cient information to distinguish between two potential in-
put datasets that differ on a single individual. In doing so,
it guarantees plausible deniability regarding the presence

° The Australian National University. ¥ Data61. T Currently at
DeepMind.

Proceedings of the 23™International Conference on Artificial In-
telligence and Statistics (AISTATS) 2020, Palermo, Italy. PMLR:
Volume 108. Copyright 2020 by the author(s).

Zac Cranko®* Richard Nock#°

of an individual in the input of the mechanism. Despite the
popularity of DP, one shortcoming of the standard defini-
tion is the assumption of a trusted curator who has access
to the full dataset of individuals. One way to get around this
is to have individuals run their data through a DP mecha-
nism at the local level before sending it for processing, en-
suring that the curator only gets access to privatized data.
This approach is called the local model of differential pri-
vacy (Raskhodnikova et al., 2008). It requires consider-
ably weaker trust assumptions than the curator model, and
was in fact the basis of the first large-scale deployments of
DP by Apple (Differential privacy team, Apple, 2017) and
Google (Erlingsson et al., 2014).

The interest in the local model has spurred research into lo-
cal DP protocols for a number of practical tasks (see (Cor-
mode et al., 2018) and references therein), as well as the
search for intermediate privacy models achieving a com-
promise between the local and curator DP Bittau et al.
(2017). However, while most of this research focuses, often
implicitly, on the setting where each individual owns a sin-
gle data record, a growing number of applications involve
one individual contributing multiple data records. Exam-
ples include problems where the data evolves over time, as
well as settings where locally each individual owns a whole
dataset containing, e.g., pictures, text messages or histori-
cal device usage information.

In this paper we investigate a method to leverage sensitive
user-level datasets in local DP protocols by constructing
locally private samplers which can release synthetic data
points from the distribution of the underlying dataset. Our
framework accommodates local datasets of arbitrary sizes
by modelling an individual’s private data as a probability
distribution — this is also applicable in situations where the
dataset does not exist per se but an algorithm can sample
from it by, e.g., interacting with the user. We formalize
the problem by (1) introducing the notion of mollifier — a
collection of valid distributions from which one can obtain
samples with a desired privacy level; and, (2) cast the goal
of learning a private sampler as the problem of computing
the information-geometric projection of a private distribu-
tion onto a given mollifier — a process we call mollification.
Our main contribution is an efficient approximate mollifi-
cation algorithm based on recent advances in boosted den-
sity estimation (Cranko and Nock, 2019). In contrast with

Draft Copy - 14 May 2021



Local Differential Privacy for Sampling

target P

eofe""c barrier

i privacy
irequirem

MBDE: Q7 — PasT,e *

target
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Private KDE
e =100

DPGAN
€ = 5000

MBDE
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Figure 1: Left: Our method is guaranteed to get a (Q that converges to P as the privacy constraint is relaxed and the
number of boosting iterations increases (under a weak learning assumption). Right: Our method vs private KDE (Alda and
Rubinstein, 2017) and DPGAN (Xie et al., 2018) on a ring Gaussian mixture (see Section 5, m = k = 10000). Remark

that the GAN is subject to mode collapse.

naive solutions we discuss below, our algorithm works on
arbitrary data, including continuous unbounded domains.
This algorithm comes with convergence rate guarantees in
the classical boosting model, that is, under lightweight as-
sumptions on the distribution iterates used in the mollifica-
tion process. Under slightly stronger assumptions, we are
able to show guaranteed approximation with respect to the
optimal distribution in the mollifier. As the privacy con-
straint is relaxed, we get better approximation guarantees
with respect to the target distribution itself. This is illus-
trated in Figure 1 (left). Last but not least, we provide
guarantees in terms of capturing the modes of the target
distribution, which is a prominent problem in generative
approaches (Figure 1, right).

The rest of this paper is organized as follows. Section 2
introduces locally private sampling, mollifiers and their re-
lationships. Section 3 introduces our algorithm that learns
a density in a mollifier and shows several approximation
properties in the boosting model. Section 4 summarizes re-
lated work, Section 5 presents and discusses experiments.

2 Private sampling and mollifiers

We now proceed to formalize the task of sampling from a
private distribution in the local DP model. Then introduce
the concept of mollification which solves this problem by
first projecting the distribution into a carefully constructed
set and releases a sample from the resulting projection.

Locally private sampling Suppose a user holds a private
probability distribution P € D(X) over some domain X
and wants to release a sample from P while preserving the
their privacy. We introduce a user-defined parameter, ¢ >
0, which represents a privacy budget — smaller € correspond
to a stronger privacy demand. An e-private sampler is a
randomized mapping A : D(X) — X such that for any

x € X and any two distributions P, P’ € D(X) we have

Pr[A(P) = z]
W < exp(e) . (1)

This is the same as saying that A is an e-locally differen-
tially private (LDP) mechanism' with inputs in D(X) and
outputs in X, which allows a user to release a privatized
sample from their distribution P. Note that when the user
has a dataset with records from X we can take P to be the
empirical distribution over the sample.

A simple way to construct e-private samplers given an e-
LDP mechanism R : X — X is a follows: take a sample
xog ~ P and then release the output of R(xy). This con-
struction, which we denote by Ag, is appealing because
it enables us to leverage any of the many local randomiz-
ers R that have been proposed in the literature, including,
e.g., randomized response for discrete input spaces, and the
Laplace mechanism with inputs on a bounded real interval.
On the other hand, this generic construction is limited by
the fact that Ar only accesses the private distribution P
through a single sampling operation and has no informa-
tion about the global shape of P.

Mollifiers To address this issue we propose to build pri-
vate samplers by first projecting the distribution P onto a
given mollifier and then releasing one sample from the pro-
jected distribution.

Definition 1 Let M C D(X) be a set of distributions* and
e > 0. We say M is an s-mollifier iff

Q(z) < exp(e) Q'(2),VQ,Q € M,Vz € X. (2)

'A randomized mechanism R Y — Zis e-LDP if
Pr[R(y) = z] < e* Pr[R(y’) = 2] forall y, ¢/, 2.
2For the sake of simplicity (and at the expense of slight abuses

of language) we use the same notation for distributions and their
densities with respect to some base measure throughout the paper.
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Figure 2: Left: example of mollifiers for two values of
€, € = 1 (red curves) or ¢ = 0.2 (blue curves), with
X = [0,1]. For that latter case, we also indicate in light
blue the necessary range of values to satisfy (2), and in
dark blue a sufficient range that allows to satisfy (2). Right:
schematic depiction of how one can transform any set of
finite densities in an e-mollifier without losing the modes
and keeping derivatives up to a positive constant scaling.

For example, a singleton M = {@Q} is a O-mollifier. In-
tuitively, these mollifiers consist of distributions which are
all close to each other with respect to the divergence used
to define local DP. Figure 2 (left) features examples of mol-
lifiers with densities supported in XX = [0, 1]. Two ranges
indicated in blue depict necessary or sufficient conditions
on the overall range of a set of densities to be a mollifier.
For the necessary part, we note that any continuous density
must have 1 in its range of values (otherwise its total mass
cannot be unit), so if it belongs to an e-mollifier, its maxi-
mal value cannot be > ¢® and its minimal value cannot be
< e ¢. We end up with the range in light blue, in which any
e-mollifier has to fit. For the sufficiency part, we indicate
in dark blue a possible range of values, [e~*/2, ¢=/2], which
gives a sufficient condition for the range of all elements in
a set M for this set to be an e-mollifier.

Mollifiers play a central role in the theory developed in this
paper, and they might also be of independent interest in
the field of differential privacy. Before we show how they
relate to private samplers, we first discuss some properties.

Constructing mollifiers Taking the convex hull of a
mollifier produces a new mollifier. That is, given an e-
mollifier* M = {Q1, ..., @}, the convex hull

cvx(M) = {Z o;Q; 1 oy >0, Zai = 1} 3)

is again an e-mollifier. We call cvx(M) the mollifier gen-
erated by M. A mollifier is convex if cvx(M) = M. Of
particular interest are the convex e-mollifiers generated by
a e-LDP mechanism R on some finite set X, obtained as
Mg = cwx({R(z) : « € X}). This mollifier is in fact
equivalent to the range of distributions of the naive sampler
AR, in the sense that

Mg = {Law(ARr(P)) : P D(X)} , “

3 Assumed finite for simplicity of exposition.

where Law(Ag(P)) denotes the distribution of the out-
put of Ar(P) which can be written as the mixture
Law(ARr(P)) = > ,cx P(z) - Law(R(z)). This construc-
tion can be directly extended to bounded X C R?, but for
unbounded domains it is unclear how to proceed as most
known LDP mechanisms R require bounded sensitivity.

Another way to obtain mollifiers starting from a reference
distribution @)y is to consider the set of all distributions
which are close to QQg. In particular, we define the e-
mollifier relative to @)y, denoted M. g, to be the set of
all distributions () such that

{ Qo(z) Q(z)
Q(z) " Qo(x)

To verify that this is indeed an e-mollifier just note that for
any Q, Q" € M. g, we have

Q) _ Q) Quole)
Q@) " Qo) Q)

Whenever () is clear from the context we shall omit if
from our notation.

Sup max
x

} <expl/2) . )

< exp(e) . 6)

Unlike with finitely generated mollifiers, relative molli-
fiers are not easy to parametrize in closed form. This
is due to the “non-parametric” nature of the definition
of M. ,, as opposed to the parametric definition of
cvx({Q1,...,Qm}). However, from the point of view of
the problem we consider in the sequel — namely, finding the
closest projection of a distribution onto a given mollifier —
we shall see that relative mollifiers are also computationally
tractable. In particular, we show that finding such projec-
tions when X is finite can be done in closed-form, and that
when X is infinite one can use boosting-based techniques
to efficiently approximate the corresponding projection.

Private sampling via mollification We call mollification
the process of taking a distribution P and finding a distri-
bution P inside a given mollifier M that minimizes the KL
divergence:

P € argmin KL(P, Q) . @)
QeM

We pick the KL divergence for its popularity and the fact
that it is the canonical divergence for broad sets of distribu-
tions (Amari and Nagaoka, 2000). The appeal of this con-
struction stems from the following result, which says that a
mechanism that releases samples from some distribution in
a mollifier provides privacy.

Lemma?2 Let A : D(X) — X by a randomized mecha-
nism such that, for any P, A(P) releases a sample from
some @ € M. If M is an e-mollifier;, then A is an e-private
sampler.
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Thus, the mollification mechanism Ay that on input P re-
leases a sample from the mollification P is a private sam-
pler which tries to maximize utility by finding the closest
distribution to P in a given mollifier. In order to implement
the mechanism Ay it is necessary to solve the optimization
problem (7). Furthermore, one also requires that the re-
sulting distribution admits an efficient sampling procedure.
With respect to the first requirement, we note that the prob-
lem in (7) is convex whenever the mollifier M is convex.
Thus, the mollification problem could be solved efficiently
using (stochastic*) convex optimization methods as long as
M has a tractable representation. However, here we take a
different approach.

For the case where the domain X is finite, the optimum of
(7) admits a simple closed-form whenever M is a relative
mollifier. In particular, for M o, it is easy to solve the
Karush-Kuhn-Tucker (KKT) optimality conditions for (7)
to show that the optimum is given by

P(z) = min {max { QGOS“;”) , P(Cx) } ,eE/QQO(I)} )

where C is a constant such that P sums to one. If P is
only accessible through sampling, one can plug estimators
for the probability of each element in X into the closed-
form solution to obtain approximations to P. An important
observation is that no matter how bad this approximation
is, the overall mechanism Ay remains private because the
form of these closed-form solutions ensures the approxima-
tion is always inside the mollifier M. ¢, ; this is a property
that any private sampler using approximate mollification
should satisfy.

When X is infinite this strategy is not immediately
tractable, although one could try to obtain a non-parametric
approximation to P and use it as a plug-in estimator in (8).
Known properties of such estimators could be used to an-
alyze the convergence of these non-parametric approxima-
tions, but the alternative approach we consider in this paper
is more in line with modern methods in generative mod-
elling. In particular, in Section 3 we provide a method for
approximate mollification with relative mollifiers based on
boosted density estimation. The boosting-based approach
allows us to encode prior knowledge about the distributions
P that we expect to encounter in practice in the choice
of Qg and the architecture of the weak classifier trained
at each iteration. This opens the door to using mollifiers
learned from (non-private) data to improve the sample effi-
ciency of private samplers; we leave this question for future
research.

“Depending on whether we have access to P through a proba-
bility oracle for evaluating P(z) or just through sampling.

Algorithm 1 MBDE(WL, T, ¢, Q)

1: input: Weak learner WL, # iterations 7', privacy pa-
rameter ¢, initial distribution @), private target P;
fort=1,...,Tdo

t
0() < (m)
Ct < VVL(P7 Qt)
Qr < Qi1 - exp(bi(e) - 1)
end for
return: Q

AN Ul -

3 Mollification with approximation
guarantees

The cornerstone of our approach to locally private sam-
pling is an algorithm that (i) learns an explicit density in
an e-mollifier and (ii) with approximation guarantees with
respect to the target P. We refer to the algorithm as MBDE,
for Mollified Boosted Density Estimation; its pseudo-code
is given in Algorithm 1.

To show convergence result on MBDE, we borrow the
standard machinery from boosting, which includes clas-
sifiers ¢ : X — R where sign(c(z)) € {—1,1} denotes
classes. For technical convenience we assume c(z) €
[—log 2,1og 2] and so the output of ¢ is bounded. This is
a common assumption in the boosting literature (Schapire
and Singer, 1999). We also require a pivotal condition from
boosting: the weak learning assumption.

Definition 3 (WLA) Fix ~vp,79 € (0,1] two con-
stants.  We say that WeakLearner(.,.) satisfies the
weak learning assumption (WLA) for vp,~q iff for any
P, Q, WeakLearner(P, Q) returns a classifier c satisfying
Eple] > ¢* - vp and Egl—c] > c¢* - vo, where ¢* =
S0Py |o(2)]

Briefly stated, a weak learner can be thought of as an or-
acle taking as inputs two distributions P and () and is re-
quired to always return a classifier ¢ that weakly guesses
the sampling from P vs (). Remark that as the two in-
puts P and @ become “closer” in some sense to one an-
other, it is harder to satisfy the WLA. However, this is not a
problem as whenever this happens, we shall have success-
fully learned P through (). The classical theory of boost-
ing would just assume one constraint over a distribution M
whose marginals over classes would be P and @) (Kearns,
1988), but our definition can in fact easily be shown to co-
incide with that of boosting (Cranko and Nock, 2019).

MBDE is a private refinement of the DISCRIM algorithm
of (Cranko and Nock, 2019, Section 3). It uses a weak
learner whose objective is to distinguish between the target
P and the current guessed density ), — the index indicates
the iterative nature of the algorithm. (); is progressively
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refined using the weak learner’s output classifier ¢;, for a
total number of user-fixed iterations 7". We start boosting
by setting Qg as the starting distribution, typically a simple
non-informed (to be private) distribution such as a standard
Gaussian (see also Figure 1, center). The classifier is then
aggregated into QQ;_1 as:

exp(f:(e)er) Qi1
J exp(0i(e)er)Qr—1dx
= exp ((0(c), ) — ¢(0())) Qo, ©
where 0(e) = (01(g),...,0:(€)), ¢ = (c1,...,¢) (from

now on, ¢ denotes the vector of all classifiers) and ¢ (6(¢))
is the log-normalizer given by

o

(0(c)) = log /x exp ((0(),¢)) dQo.  (10)

This process repeats until ¢t = 7" and the proposed distribu-
tion is Q. (x; P) = Q7. We now show three formal results
on MBDE.

MBDE is a private sampler Recall M, := M, o, is the
set of densities whose range is in exp[—¢/2, /2] with re-
spect to (Qg. Due to Lemma 2, it suffices to show that the
output density Q7 of MBDE is in M..

Theorem 4 Q)1 € M..

We observe that privacy comes with a price, as for example
lim._,06:(¢) = 0, so as we become more private, the
updates on (), become less and less significant and we
somehow flatten the learned density — such a phenomenon
is not a particularity of our method as it would also be
observed for standard DP mechanisms (Dwork and Roth,
2014).

Convergence guarantees for MBDE As explained in
Section 2, it is not hard to fit a density in M. to make its
sampling private. An important question is however what
guarantees of approximation can we still have with respect
to P, given that P may not be in M.. We now give such
guarantees to MBDE in the boosting framework, and we
also show that the approximation is within close order to
the best possible given the constraint to fit Qe in M.. We
start with the former result, and for this objective include
the iteration index ¢ in the notations from Definition 3 since
the actual weak learning guarantees may differ across itera-
tions, even when they are still within the prescribed bounds.

Theorem S For any t > 1, suppose WL satisfies at itera-
tion t the WLA for ~%, ’yé). Then we have:

KL(P,Q¢) < KL(P,Qi—1)—06(e) Ay, (11)

where (letting T'(z) = log(4/(5 — 32))):

civp+T(1g) if 7o €[1/3,1] (“HBS”)
Ai=1 ¢ to_cr0i(e) ot « . - (12)
Yp+70 — 5 if 15 €(0,1/3) (“LBS”)
Here, HBS means high boosting regime and LBS means low
boosting regime.

Remark that in the high boosting regime, we are guaranteed
that A; > 0 so the bound on the KL divergence is guaran-
teed to decrease. This is a regime we are more likely to
encounter during the first boosting iterations since (Q;_1
and P are then easier to tell apart — we can thus expect a
larger 76. In the low boosting regime, the picture can be
different since we need vp + ¢ > ¢f - 0:(¢)/2 to make
the bound not vacuous. Since 6;(¢) —; 0 exponentially
fast and ¢; < log2, a constant, the constraint for (12) to
be non-vacuous vanishes and we can also expect the bound
on the KL divergence to also decrease in the low boosting
regime. We now check that the guarantees we get are close
to the best possible in an information-theoretic sense. Let
us define A(Q) = KL(P,Qo) — KL(P, Q). Intuitively,
the farther P is from (Qg, the farther we should be able to
get from )y to approximate P, and so the larger should
be A(Q). Notice that this would typically imply to be in
the high boosting regime for MBDE. For the sake of sim-
plicity, we consider vp,yq to be the same throughout all
iterations.

Theorem 6 We have A(Q) < ¢/2, VQ € M., and if
MBDE is in the high boosting regime, then

€ +
AQr) > 2-{””2%2-(1—%@))}. (13)
Hence, as vp — 1 and 79 — 1, we have

AQr) > (¢/2) - (1 — Or(e)) and since Op(s) — 0
as T" — oo, MBDE indeed reaches (in the high boosting
regime) the information-theoretic limit, which is the
mollification of P. As ¢ increases (the privacy constraint
is reduced), Theorem 6 shows that we are guaranteed
to progressively come closer to P, and if we make the
additional assumption that there exists ep < oo such that
P € M., — which appears to be quite reasonable given
the definition in (5) —, then Theorem 6 delivers a direct
approximability result for MBDE with respect to P for all
privacy levels € > ep. This is a new result compared to
the privacy-free approximation bounds of P in (Cranko
and Nock, 2019), but it requires to be in the high boosting
regime.

MBDE captures the modes of P Mode capture is a
prominent problem in the area of generative models (Tol-
stikhin et al., 2017). We have already seen that enforc-
ing mollification can be done while keeping modes, but we
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would like to show that MBDE is indeed efficient at build-
ing some () with guarantees on mode capture. For this
objective, we define for any set B C X and distribution @,

Mp(Q) = /B 1Q , KLy(P,Q) = /B log (g) aP,

respectively the total mass of B on @ and the KL diver-
gence between P and @) restricted to B.

Theorem 7 Suppose MBDE stays in the high boosting.
Then¥o € [0,1], VB C X, if

_ (E=1p—19)-T)
- h(a) - h(T) ’

then Mp(Qr) > (1 — a)Mp(P) — KLg(P,Qy), where
h(z) = e+ 2.

Mp(P) (14)

There is not much we can do to control KLz (P, Qo) as this
term quantifies our luck in picking Q¢ to approximate P in
B but if this restricted KL divergence is small compared to
the mass of B, then we are guaranteed to capture a substan-
tial part of it through Q7. As a mode, in particular “fat”,
would tend to have large mass over its region B, Theorem
7 says that we can indeed hope to capture a significant part
of it as long as we stay in the high boosting regime. As
vp — 1 and 7o — 1, the condition on Mp(P) in (14)
vanishes with 7" and we end up capturing any fat region
B (and therefore, modes, assuming they represent “fatter”
regions) whose mass is sufficiently large with respect to
KLg(P, Qo).

With regards to a practical application, consider the prob-
lem of generating synthetic text data from conversational
English. Each individual user holds their own distribution
(own speech patterns and vocabulary) and the goal is to be
able to model these distributions with privacy and approxi-
mation guarantees. We point out two implicit advantages of
our method over standard local DP and federated learning
methods: (i) Our method relies on the reference distribution
(o, which in this application, one may use public conversa-
tional data to learn ¢ using a strong non-private algorithm.
In this case, the e-mollifier centered at )y will contain ad-
missible conversations with relatively high utility, meaning
that mollifications will still be reasonable. (ii) Our method
is non-interactive: each user generates a privatized sample
which is submitted to the server for post-processing.

To finish up this Section, recall that M, is also defined
(in disguise) and analyzed in (Wang et al., 2015, Theo-
rem 1) for posterior sampling. However, the convergence
in (Wang et al., 2015, Section 3) does not dig into spe-
cific forms for the likelihood of densities chosen — as a
result, it remains essentially in weak asymptotic form, and
furthermore it is only applied to DP in the curator model.
We exhibit particular choices for these mollifier densities,
along with a specific training algorithm to learn them, that

allow for significantly better approximation, quantitatively
and qualitatively (mode capture) in the local DP setting.

4 Related work

A broad literature has been developed early for discrete dis-
tributions (Machanavajjhala et al., 2008) (and references
therein). For a general () not necessarily discrete, more
sophisticated approaches have been tried, most of which
exploit randomisation and the basic toolbox of differential
privacy (Dwork and Roth, 2014, Section 3): given non-
private Q, one compute the sensitivity s of the approach,
then use a standard mechanism M (Q, s) to compute a pri-
vate (). Such general approaches have been used for @)
being the popular kernel density estimation (KDE, (Givens
and Hoeting, 2013)) with variants (Alda and Rubinstein,
2017, Hall et al., 2013; Rubinstein and Alda, 2017).

On the algorithmic side, our work shares some ideas with
DP methods based on the multiplicate weights technique
(Hardt and Rothblum, 2010; Hardt et al., 2012; Ullman,
2015). These papers leverage ideas similar to boosting to
solve problems like answering linear queries, solving con-
vex minimization problems, or releasing synthetic data to
accurately answer a pre-determined set of queries. None
of these works, however, apply directly to the local DP
model.

5 Experiments

Architectures We carried out experiments on a simu-
lated setting inspired by (Alda and Rubinstein, 2017), to
compare MBDE (implemented following its description in
Section 3) against differentially private KDE (Alda and Ru-
binstein, 2017). As a weak learner for MBDE, we fit for
each ¢; a neural network (NN) classifier:

tanh tanh tanh sigmoid
X R25 R25 R25 g (0’ 1)’ (15)
dense dense dense dense

where X € {R,R?} depending on the experiment. At each
iteration ¢ of boosting, c; is trained using 10000 samples
from P and ;1 using Nesterov’s accelerated gradient
descent with n = 0.01 based on cross-entropy loss with
750 epochs. Random walk Metropolis-Hastings is used
to sample from ;1 at each iteration. For the number of
boosting iterations in MBDE, we pick 1" = 3. This is quite
a small value but given the rate of decay of 6;(¢) and the
small dimensionality of the domain, we found it a good
compromise for complexity vs accuracy. Finally, Q) is a
standard Gaussian N(0, 1;).

Contenders We know of no local differentially private
sampling approach operating under conditions equivalent
to ours, so our main contender is going to be a particular
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Figure 3: Gaussian ring: densities obtained for DPB (upper row) against MBDE (lower row)

Gaussian ring

Gaussian ring Negative log likelihood Gaussian ring Mode Coverage

1D non random Gaussian

Gaussian random 1D log likelihood DPB Gaussian ran dom 1D Mode Coverage

0.950

0.900

— OURS
oPB

[ 2 4 6 8 10

NLL = f(e)

nnnnnnn

Mode coverage = f(¢)

0 2 4 6 8 10
Epsilor Epsilon

NLL = f(e) Mode coverage = f(e)

Figure 4: Metrics for MBDE (blue): NLL (lower is better) and mode coverage (higher is better). Orange: DPB (see text).

state of the art e-differentially private approach which pro-
vides a private density, DPB (Alda and Rubinstein, 2017).
We choose this approach because digging in its technical-
ities reveal that its local differential privacy budget would
be roughly equivalent to ours, mutatis mutandis. Here is
why: this approach allows to sample a dataset of arbitrary
size (say, k) while keeping the same privacy budget, but
needs to be scaled to accomodate local differential privacy,
while in our case, MBDE allows to obtain local differential
privacy for one observation (k = 1), but its privacy bud-
get needs to be scaled to accomodate for larger k. It turns
out that in both approaches, the scaling of the privacy pa-
rameter to accomodate for arbitrary k£ and local differential
privacy is roughly the same. In our case, the change is ob-
vious: the privacy parameter ¢ is naturally scaled by &k by
the composition property of e-LDP. In the case of (Alda
and Rubinstein, 2017), the requirement of local differential
privacy multiplies the sensitivity® by k by the group privacy
property.

We have also compared with a private GAN approach,
which has the benefit to yield a simple sampler but involves
a weaker privacy model (Xie et al., 2018) (DPGAN). For

SCf (Alda and Rubinstein, 2017, Definition 4) for the sensitiv-
ity, (Alda and Rubinstein, 2017, Section 6) for the key function
Fr(.,.) involved.

DPB, we use a bandwidth kernel and learn the bandwidth
parameter via 10-fold cross-validation. For DPGAN, we
train the WGAN base model using batch sizes of 128 and
10000 epochs, with § = 10~!. We found that DPGAN is
significantly outperformed by both DPB and MBDE, so to
save space we have only included the experiment in Figure
1 (right). We observed that DPB does not always yield a
positive measure. To ensure positivity, we shift and scale
the output.

Metrics We consider two metrics, inspired by those we
consider for our theoretical analysis and one investigated
in (Tolstikhin et al., 2017) for mode capture. We first
investigate the ability of our method to learn highly dense
regions by computing mode coverage, which is defined to
be P(dQ < t) for ¢ such that Q(dQ < t) = 0.95. Mode
coverage essentially attempts to find high density regions
of the model () (based on t) and computes the mass of the
target P under this region. Second, we compare the neg-
ative log likelihood, — Ep[log Q] as a general loss measure.

Domains We essentially consider three different prob-
lems. The first is the ring Gaussians problem now common
to generative approaches (Goodfellow, 2016), in which
8 Gaussians have their modes regularly spaced on a
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circle. The target P is shown in Figure 1. Second,
we consider a mixture of three 1D gaussians with pdf
P(z) = £(N(0.3,0.01) +N(0.5,0.1) + N(0.7,0.1)).
For the final experiment, we consider a 1D domain and
randomly place m gaussians with means centered in the
interval [0, 1] and variances 0.01. We vary m = 1, ..., 10,
e € (0,2] and repeat the experiment four times to get
means and standard deviations. More experiments can be
found in the Appendix.

Results Figure 3 displays contour plots of the learned )
against DPB (Alda and Rubinstein, 2017). Figure 4 pro-
vides metrics. We indicate the metric performance for DPB
on one plot only since density estimates obtained for some
of the other metrics could not allow for an accurate com-
putation of metrics. The experiments bring the following
observations: MBDE is significantly better at local differen-
tially private density estimation than DPB if we look at the
ring Gaussian problem. MBDE essentially obtains the same
results as DPB for values of ¢ that are 400 times smaller as
seen from Figure 1. We also remark that the density mod-
elled are more smooth and regular for MBDE in this case.
One might attribute the fact that our performance is much
better on the ring Gaussians to the fact that our Q) is a stan-
dard Gaussian, located at the middle of the ring in this case,
but experiments on random 2D Gaussians (see Appendix)
display that our performances also remain better in other
settings where Q¢ should represent a handicap. All do-
mains, including the 1D random Gaussians experiments in
Figure 1 (Appendix), display a consistent decreasing NLL
for MBDE as ¢ increases, with sometimes very sharp de-
creases for ¢ < 2 (See also Appendix, Section 2). We at-
tribute it to the fact that it is in this regime of the privacy
parameter that MBDE captures all modes of the mixture.
For larger values of ¢, it justs fits better the modes already
discovered. We also remark on the 1D Gaussians that DPB
rapidly reaches a plateau of NLL which somehow show that
there is little improvement as ¢ increases, for ¢ > 1. This
is not the case for MBDE, which still manages some addi-
tional improvements for € > 5 and significantly beats DPB.
We attribute it to the flexibility of the sufficient statistics
as (deep) classifiers in MBDE. The 1D random Gaussian
problem (Figure 1 in Appendix) displays the same pattern
for MBDE. We also observe that the standard deviation of
MBDE is often 100 times smaller than for DPB, indicating
not just better but also much more stable results. In the
case of mode coverage, we observe for several experiments
(e.g. ring Gaussians) that the mode coverage decreases un-
til ¢ & 1, and then increases, on all domains, for MBDE.
This, we believe is due to our choice of g, which as a
Gaussian, already captures with its mode a part of the ex-
isting modes. As € increases however, MBDE performs bet-
ter and obtains in general a significant improvement over
Q0. We also observe this phenomenon for the random 1D
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Figure 5: Mode coverage for MBDE on 1D random Gaus-
sian.

Gaussians (Figure 5) where the very small standard devia-
tions (at least for ¢ > .25 or m > 1) display a significant
stability for the solutions of MBDE.

6 Discussion and Conclusion

In this paper, we proposed a new method to learn densi-
ties that can be sampled from privately at the local level,
paving the way for synthetic data generation. In order to
prove privacy guarantees, we introduced the notion of mol-
lifiers, which are of independent interest. Furthermore, we
proved convergence guarantees of our method in the con-
text of boosting along with additional formal results re-
garding capturing of modes and approximation of the tar-
get density. The use of the boosting framework allows to
dampen the effects of a curse of complexity” — e.g. when
the dimension of the support of P increases —, as conver-
gence primarily relies on weak guessing in sampling P vs
sampling vs (.. Additional assumptions, like sparsity in
the expected parameters of the target or publicly available
information allowing to tune (), could boost further con-
vergence. Finally, we conducted experiments, which advo-
cate for our method, especially on the utility side of things
when it comes to capturing statistical features of the true
distribution.
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1 Proofs and formal results

1.1 Proof of Lemma 2

For any x € X and P, P’ € D(X), we have Pr[A(P) = z] € M and Pr[A(P’) = z] € M by the
fact that A(P) samples from densities that lie in the mollifier M. By definition of e-mollifiers, the
density ratio between any two densities in the e-mollifiers is bounded by exp(e), meaning we have

Pr{A(P) = 2]

m < exp(e), (D

and thus A is an e-private sampler.

1.2 Proof of Theorem 4

The proof follows from two Lemma which we state and prove.

Lemma 1 Forany T € N,, we have that

T

ZIQt(e) - Z <€ + 4log(2)) < 4log(2)’ @

t= t=1

Proof Since (¢/(¢ + 4log(2)) < 1 for any ¢ and noting that 0,(c) = (¢/(e + 41og(2))0;_1(g), we
can conclude that 6;(¢) is a geometric sequence. For any geometric series with ratio r, we have

that
T
1—7T
r ( T ) 3)
t=1

7

r rT+
= — 4
1—17r 1—r “)
r
< 5
1—7r )
Indeed, %T is the limit of the geometric series above when 7" — oo. In our case, we let r =
(e/(e 4+ 4log(2))) to show that
T s+4ﬁag(2) o 6+41i)g(2) B € 6)
. 1 5 T 4lg(®) ’
L=r 1 e+4log(2) €+41gog(2) 41og(2)
which concludes the proof. |
Lemma 2 Foranye > 0and T € N,, let 0(¢) = (01(¢),...,0r(¢)) denote the parameters and
¢ = (ci,...,c) denote the sufficient statistics returned by Algorithm 1, then we have
€ €
S < (0(e), ) — p(0e)) < 5. 9

2
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Proof Since the algorithm returns classifiers such that ¢;(z) € [—log2,log2]| forall 1 <t < T,
we have from Lemma 1,

T T
;Gt(a)ct < log(2 z_: ) < log(2 4102(2) = Z, (8)
and similarly,
a d 5 €
;et(@ct > —log(2 ; —log 2>4log( =1 9)
Thus we have
S EL O (10)

By taking exponential, integrand (w.r.t ()y) and logarithm of 10, we get

log /x exp (=) dQy < log /x exp ({6(2), ¢)) dQo < log / exp () an

—1 S el < 3

Since (0(¢),c) € [—¢/4,¢/4] and p(0(c)) € [—¢/4, /4], the proof concludes by considering high-
est and lowest values. |

(12)

W

The proof of Theorem 4 now follows from taking the exp of all quantities in (7), which makes
appear ()7 in the middle and conditions for membership to M. in the bounds.

1.3 Proof of Theorem 5

We begin by first deriving the KL. drop expression. At each iteration, we learn a classifier ¢;, fix
some step size 6 > 0 and multiply Q);_1 by exp(f - ¢;) and renormalize to get a new distribution
which we will denote by Q);(6) to make the dependence of # explicit.

Lemma 3 Forany 0 > 0, let p(0) = log [, exp(0 - ¢;)dQ—1. The drop in KL is
DROP(9) i= KL(P. Qi) ~ KL(P.Qu(8)) = 0 [ cdP ~ (0 (13)
X

Proof Note that );(6) is indeed a one dimensional exponential family with natural parameter 0,
sufficient statistic ¢;, log-partition function ¢(#) and base measure ();_;. We can write out the KL

3

Draft Copy - 14 May 2021



divergence as

KL(P, Qu 1) — KL(P, Qi(0 /x log (

P

Qt—l

- sow))Qt_l) "

14
15)
(16)
A7

It is not hard to see that the drop is indeed a concave function of #, suggesting that there exists an
optimal step size at each iteration. We split our analysis by considering two cases and begin when
fyé? < 1/3. Since 6 > 0, we can lowerbound the first term of the KL drop using WLA. The trickier

part however, is bounding ¢ (6) which we make use of Hoeffding’s lemma.

Lemma 4 (Hoeffding’s Lemma) Let X be a random variable with distribution @), witha < X <

b such that Eg[X] = 0, then for all X > 0, we have

A2(b— a)?
Eqlexp(A - X)] < exp (%)
Lemma S For any classifier c; satisfying Assumption 3 (WLA), we have

()’

Eq.[exp(Bi(e) - o1)] < exp (93<e> -

(18)

—0i(e) g - ci‘) (19)

Proof Let X = c¢; — Eq, ,[ct], b= ¢}, a = —cf and \ = 60;(¢) and noticing that

EQtfl [)‘ ’ X] = EQtfl [Ct - EQtﬂ [Ct]] = Eszl [Ct] -

allows us to apply Lemma 4. By first realizing that

exp(A - X) = exp(by(e) - &) - exp(i(e) - Eq, [

We get that

Eq, ,[exp(6:(e) - ¢;)] - exp (Gt(a) ‘Eg, |- ]) < exp <92( ) -

Re-arranging and using the WLA inequality yields

(c})”

Bo. \[exp(tie) )] < oxp (62

e)?
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=0, (20)

2D

(cf)? ) _ 22)

. [—Ct]) (23)

24)



Applying Lemma 5 and Lemma 3 (writing Q); = Q,(¢) ) together gives us
KL(P, Q;) = KL(P, @;-1) — DROP(6;(¢)) (25)
=KL(P,Qi—1) — 0,(¢) - | ctdP +1ogEg, ,[exp(,(e) - c1)] (26)

* 2
< KL(P, Q1) — ¢ - O4(e < / cth> (92( ) <Ct2) —04(e) -7 - c;;) (27)

)
< KL(P, Q1) — ci0y(e (7 §t< >) (28)

T

Now we move to the case of fyé) > 1/3.

Lemma 6 For any classifier c; returned by Algorithm 1, we have that

Eq,s[exp(er)] < exp (-T'(75)) (29)
where I'(z) = log(4/(5 — 32)).

Proof Consider the straight line between (— log2,1/2) and (log 2,2) givenby y = 5/4 + (3/(4 -
log 2))x, which by convexity is greater then y = exp(z) on the interval [— log 2, log2]. To this
end, we define the function

f<x):{§+ﬁ-x, if 2 € [—1log2,log2] 30)

0, otherwise

Since ¢(z) € [—log2,log?2] for all z € X, we have that f(c:(z)) > exp(ci(z)) for all z € X.
Taking E(), ,[-] over both sides and using linearity of expectation gives

Eq, . [exp(ei(@))] < Eq,, [f(c(2))] €2)
=Z M;2U%Hhum (32)

11 (gBe-a)) 33

< Z - =% (34)

4
3
4
5—375\ "
= exp —log( 1 ) 35)
4
()

— exp (~I(14)) (37)

as claimed. |
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Now we use Lemma 3 and Jensen’s inequality since 0;(¢) < 1 so that

t
v +T(1g)) -

1.4 Proof of Theorem 6
We first note that for any ) € M.,

KL(P,Q) — /x log (g) P

6
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cdP +1ogEg, [exp(0; - ¢t)]

]EP[Ct] +9t logEQt 1[eXp(Ct)}
[er] —log Eq, , [exp(ct)])

i (Brled) -~ 0sEq, fexp(co)])

(
(civp — log (exp (-T'(7g))))
(

(38)
(39)

(40)
(41)

(42)

(43)
44)

45)

(46)

47

(48)

(49)



which completes the proof of the upperbound To show (13), we have that

KL(P,Q:) < KL(P,Qr_1) — @( )- Ay (50)
< KL(P, Q) — Zet (51)
KL(P,Qo) — Zet (eivp +T(9)) (52)
< KL(P, Qo) — Zet - (log2 - vp + T'(7q)) (53)
T-1
< KL(P, Qo) — (log2 - 7p +10g2 - 7q) - > _ bi(¢) (54)
"
< KL(P, Qo) — (log2 - 7p +10g2 - 7q) - > _i(z) (55)
t=1
1-0
~KL(P.Qo) o2 (17 70) - 0:0) - (1= ) (56)
_ KL(P,Qp) — ¢ - (W) (1= 0,(e), (57)

where we used the fact that I'(x) > log 2 - = and explicit geometric summation expression.

1.5 Proof of Theorems 7

We start by a general Lemma.

Lemma 7 For any region of the support B, we have that

/Bd@ > /BdP—/Blog (g) P (58)

Proof By first noting that for any region B,

dQ,
dP — dQ,) = — =) ap

we then use the inequality 1 — = < log(1/z) to get

/B(dP—th):/B<1—5—g)dPg/log(dé;t>dP:/log(gt) P (60)

Re-arranging the above inequality gives us the bound. |

Lemma 7 allows us to understand the relationship between two distributions P and (); in terms
regions they capture. The general goal is to show that for a given region B (which includes the

7
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highly dense mode regions), the amount of mass captured by the model f 5 dQ, is lower bounded
by the target mass | 5 dP, and some small quantity. The inequality in Lemma 7 comments on this
precisely with the small difference being a term that looks familiar to the KL-divergence - rather
one that is bound to the specific region 5. Though, this term can be understood to be small since
by Theorem 5, we know that the global KL decreases, we give further refinements to show the
importance of privacy parameters . We show that the term | 5 10g(P/Q;)dP can be decomposed
in different ways, leading to our two Theorems to prove.

/log<£t>dP§/Blog(é)dP—A+g(1—/BdP). 61)

where A = KL(P,Qo) — KL(P, Q)

Lemma 8

Proof We decompose the space X into B and the complement B¢ to get

P P P
/Blog (@) dP = /xlog (@) dP —/ log (Qt) dP (62)

P
=KL(P,Q,) — / log <—> dP (63)
c Qs
P
< KL(P,Qp) — A —/ log <Q ) dP, (64)
t
where we used Theorem 5, and letting § = 6(¢) for brevity, we also have
P P
lo dP = / lo ) dP (65)
/ & (Qt) -2\ Qoexp ({0, ¢) — 9(0))

dP — /B exp ((0,c) — p(0))dP (66)

)
P €

dP — —dP 67
Qo) /B 2 ©7
)

dp - < (1 = / dP) (68)
2 B
Combining these inequalities together gives us:

/Blog (5) dP < KL(P,Qo) — A — (/Clog (%) dP—% (1—/de>) 69)
/log<5o>dP—/clog(é) +§<1—/de> (70)
/1og(50)dp A+§<—/de) (71)

8
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We are now in a position to prove Theorem 7. Using Lemma 8 into the inequality in Lemma 7

yields
Lﬂ@g;édp—(/kg<@)dP—A+g<1—ﬂ;w)> (72)
—(1+§>/BdP—§—/log<§o)+A. (73)

Reorganising and using the Theorem’s notations, we get
M(B.Q) = M(B,P)~ KL(P,Qu:B) + 5 - J(P.Q: B.2). (74)

where we recall that J(P,Q; B,s) = M(B, P) + QA(Q) — 1. Theorem 6 says that we have in the

high boosting regime 2A(Qr)/c > (vp +79)/2 — HT( )+ (vp +7g)/2. Letting 7 = (vp + ) /2
and K = 4log 2, we have from MBDE in the high boosting regime:

2A(Q)

T
1 1
€ 1+§

v
2|

_ 1
Z 7‘<1—1+—T_K>
TK
=7- . 75
TTK 1 e (75)
To have J(P,Q; B,e) > —(2/¢) - aM(B, P), it is thus sufficient that
1 TK
B,P) > 1=7-
M(B,P) = 1+ 2 ( 7 TK+5)
+(1-9TK
=c. ) 76
© e+ 2a)(c + TK) (76)
In this case, we check that we have from (74)
M(BaQ) Z (1_a)M(B7P)_KL(P7Q07B)a (77)

as claimed.

1.6 Additional formal results

One might ask what such a strong model of privacy allows to keep from the accuracy standpoint in
general. Perhaps paradoxically at first sight, it is not hard to show that privacy can bring approx-
imation guarantees on learning: if we learn (). within an e-mollifier M (hence, we get s-privacy
for sampling from ().), then each time some (). in M accurately fits P, we are guaranteed that the
one we learn also accurately fits P — albeit eventually more moderately —. We let Q).(;.) denote
the density learned, where . is the dataset argument.

9
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Lemma 9 Suppose 3 e-mollifier M s.t. Q. € M, then (3P,D’,6 : KL(P,Q.(; P")) < ¢§) =
(VD,KL(P,Q:(; P)) < ¢ +¢).

Proof The proof is straightforward; we give it for completeness: for any dataset D, we have

o)
<

KL(P, Q:(; P))

P Qs(;P))
=1 dpP 1 dpP 9
foos (i) o+ foos (G579 7
P
=KL(P,Q.(: P') +< 81)
<d+e, (82)

from which we derive the statement of Lemma 9 assuming A is -IP (the inequalities follow from
the Lemma’s assumption). |

In the jargon of (computational) information geometry [1], we can summarize Lemma 9 as saying
that if there exists an eligible! density in a small KL-ball relatively to P, we are guaranteed to find
a density also in a small KL-ball relatively to P. This result is obviously good when the premises
hold true, but it does not tell the full story when they do not. In fact, when there exists an eligible
density outside a big KL-ball relatively to P, it is not hard to show using the same arguments as
for the Lemma that we cannot find a good one, and this is not a feature of MBDE: this would
hold regardless of the algorithm. This limitation is intrinsic to the likelihood ratio constraint of
differential privacy, as the following Lemma shows. In the context of e-DP, we assume that all
input datasets have the same size, say m.

Lemma 10 Let A denote an algorithim learning an e-differentially private density. Denote D ~ P
an input of the algorithm and Q.(D) the set of all densities that can be the output of A on input
D, taking in considerations all internal randomisations of A. Suppose there exists an input D’
for which one of these densities is far from the target: 3D',3Q € Q.(D') : KL(P,Q(; D')) > A
for some "big” A > 0. Then the output () of A obtained from any input D ~ P satisfies:
KL(P,Q(; D)) > A — me.

Proof Denote D the actual input of A. There exists a sequence D of datasets of the same size,
whose length is at most m, which transforms D into D’ by repeatedly changing one observation
in the current dataset: call it D = {D, Dy, D, ..., Dy, D'}, with k < m — 1. Denote Q(; D”) any

"Within the chosen e-mollifier.

10
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element of Q.(D") for D” € D. Since A is e-differentially private, we have:

A <KL(P,Q(; D)) (83)
P
= fos () o &
B P Q:D ) ( ) (@«Dk))
/xlog(Q(;D)>dP+/log<Q( D, d“Z/ o) ae s (G )
(85)
_ . QG D ) ( ) (Q(;Dk))
KL(P,Q(,D))+/xlog(Q( ) dP+Z/ B dP+/xlg oC D) dp
(86)
< KL(P,Q(; D)) + me, (87)
from which we derive the statement of Lemma 10. |
11
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DPB MBDE

0 l—

Mean = f(¢) StDev = f(¢) Mean = f(¢) StDev = f(¢)

Figure 1: NLL metrics (mean and standard deviation) on the 1D random Gaussian problem for
DPB (left pane) and MBDE (right pane), for a varying number of m = 1, ..., 10 random Gaussians.
The lower the better on each metric. Remark the different scales for StDev (see text).

=

e=0.1

Figure 2: Randomly placed Gaussian convergence comparison for DPB (upper) against
MBDE (lower).

2 Additional experiments

We provide here additional results to the main file. Figure 1 provides NLL values for the random
1D Gaussian problem. Figure 2 displays that picking ()y a standard Gaussian does not prevent to
obtain good results — and beat DPB — when sampling random Gaussians.
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Chapter 5

Distributional Robustness with
IPMs and Links to GANs and
Autoencoders

This chapter will begin the study on the robustification aspects of regularization.
There are links between Lipschitz and variance regularization to Distributional Ro-
bust Optimization (DRO) in the form of upper bounds. These results are extremely
compelling as they explain much empirical work and naturally begin a bridge be-
tween regularization and robustness. Two questions remain largely unanswered,
however:

* Does a similar result hold for other regularization schemes beyond Lipschitz
and variance?

* How tight are the upper bounds for previous results?

In this work, our aim is to answer the above two questions and discovered a general
result between regularization penalties and DRO, linked with Integral Probability
Metrics (IPMs). For example, this includes generalized variance penalties and man-
ifold regularization. For the latter question, equality conditions are characterized,
which happens to be intimately related to regularized binary classification. In partic-
ular, we draw out this link into an application to GANs, making another contribution
to generative models. It is discovered that regularizing discriminators, similar to the
previous papers, benefits the performance of GANs and therefore provides founda-
tions for several existing works such as MMD-, Sobelov- and Fisher-GAN.
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Abstract

Robustness to adversarial attacks is an important concern due to the fragility of
deep neural networks to small perturbations and has received an abundance of
attention in recent years. Distributional Robust Optimization (DRO), a particularly
promising way of addressing this challenge, studies robustness via divergence-
based uncertainty sets and has provided valuable insights into robustification
strategies such as regularisation. In the context of machine learning, majority
of existing results have chosen f-divergences, Wasserstein distances and more
recently, the Maximum Mean Discrepancy (MMD) to construct uncertainty sets.
We extend this line of work for the purposes of understanding robustness via
regularization by studying uncertainty sets constructed with Integral Probability
Metrics (IPMs) - a large family of divergences including the MMD, Total Variation
and Wasserstein distances. Our main result shows that DRO under any choice of
IPM corresponds to a family of regularization penalties, which recover and improve
upon existing results in the setting of MMD and Wasserstein distances. Due to
the generality of our result, we show that other choices of IPMs correspond to
other commonly used penalties in machine learning. Furthermore, we extend our
results to shed light on adversarial generative modelling via f-GANs, constituting
the first study of distributional robustness for the f-GAN objective. Our results
unveil the inductive properties of the discriminator set with regards to robustness,
allowing us to give positive comments for a number of existing penalty-based
GAN methods such as Wasserstein-, MMD- and Sobolev-GANs. In summary, our
results intimately link GANSs to distributional robustness, extend previous results
on DRO and contribute to our understanding of the link between regularization and
robustness at large.

1 Introduction

Robustness to adversarial attacks is an important concern due to the fragility of deep neural net-
works to small perturbations and has received an abundance of attention in recent years [21, 50, 31].
Distributionally Robust Optimization (DRO), a particularly promising way of addressing this chal-
lenge, studies robustness via divergence-based uncertainty sets and considers robustness against
shifts in distributions. To see this more clearly, for some space €2, model & : 2 — R and training

data P with empirical loss E,_ 5[l¢], DRO when applied to machine learning studies the objec-
tive supg ey Ezng(ly] where U = {Q :d(Q, P) < s} for a given divergence d and ¢ > 0 that

characterize the adversary. Work along this line has shown that this objective is upper bounded by
the empirical loss E,_ 5 [lf] plus a penalty term that plays the role of a regularizer, consequently
providing formal connections and valuable insights into regularization as a robustification strategy

[22, 27, 36, 5, 14, 11].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
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The choice of d is crucial as it highlights the strength and nature of robustness we desire, and different
choices yield differing penalties. It has been shown that minimizing the distributionally robust
objective when d is chosen to be an f-divergence is roughly equivalent to variance regularization
[22, 27, 36]. However, there is a problem with this choice of d, as highlighted in [48]: every
distribution in the uncertainty set is required to be absolutely continuous with respect to P. This is
particularly problematic in the case when P is empirical since every distribution in ¢/ will be finitely
supported, meaning that the population distribution will not be contained as it is typically continuous.

Choosing the Wasserstein distance as d is a typical antidote for this problem, and much work has
been invested in this direction, explicating connections to Lipschitz regularization [20, 10, 44, 42, 11].
More recently, uncertainty sets based on the kernel Maximum Mean Discrepancy (MMD) were
investigated to address concerns with the f-divergence and discovered links to regularization with
Hilbert space norms. Both the Wasserstein distance and MMD are part of a larger family of
divergences referred to as Integral Probability Metrics (IPM) [35], which are characterized by a set of
functions F, and include other metrics such as the Total Variation distance and the Dudley Metric
[47].

In this work, we generalize these results and study DRO for uncertainty sets induced by the Integral
Probability Metric (IPM) for any set of functions F. We present an identity which links distributional
robustness under these uncertainty sets U, to regularization under a new penalty A z. Our identity
takes the form

sup /ﬂth:/thPJrA]:(h) (1)

QeUr

The appeal of this result is that it reduces the infinite-dimensional optimization on the left-hand side
into a penalty-based regularization problem on the right-hand side. We study properties of this penalty
and show that it can be upper bounded by another term, © x, which recovers and improves upon
existing penalties when F is chosen to coincide with the MMD and Wasserstein distances. Our result,
however, holds in much more generality, allowing us to derive new penalties by considering other
IPMs such as the Total Variation, Fisher IPM [33], and Sobelov IPM [32]. We find that these new
penalties are related to existing penalties in regularized critic losses [51] and manifold regularization
[4], permitting us to provide untried robustness perspectives for existing regularization schemes.
Furthermore, most work in this direction takes the form of upper bounds, and although working
with © » reduces (1) into an inequality, we present a necessary and sufficient condition such that
A r coincides with © , yielding equality. This condition reveals an intimate connection between
distributional robustness and regularized binary classification.

We then apply our result to understanding the distributional robustness of Generative Adversarial
Networks (GANS), a popular method for modelling distributions that learn a model @ by utilizing
a set of discriminators D that try to distinguish ) from P (the training data). This is particularly
relevant for the robustness community since lines of work [53, 9, 58, 57, 28, 26, 39, 45, 46, 24, 55, 40]
implement GANs as a robustifying mechanism by training a binary classifier on the learned GAN
distribution. Our analysis applies to the f-GAN objective [37] - a loss that subsumes many existing
GAN losses. This is, to the best of our knowledge, the first analysis of robustness for f-GANs with
respect to divergence-based uncertainty sets. The main insight of our result is the advocation of
regularized discriminators when training GANSs. In particular, we show that the generative distribution
learned using regularized discriminators gives guarantees on the worst-case perturbed distribution
(robustness). Our findings complement existing empirical benefits of regularized discriminators such
as the MMD-GAN [29, 2, 6], Wasserstein-GAN [3, 23], Sobelov-GAN [32], Fisher-GAN [33] and
other penalty-based GANs [51].

Our contributions come in three Theorems, where the first two concern DRO with IPMs (Section 3)
and the third is an extension to understanding GANSs (Section 4):

> (Theorem 1) An identity for distributional robustness using uncertainty sets induced by any IPM.
Our result tells us that this is exactly equal to regularization with a penalty A . We show that this
penalty can be upper bounded by another penalty © » which recovers existing work when the IPM is
set to the MMD and Wasserstein distance, tightening these results. Since our result holds in much
more generality, we derive penalties for other IPMs such as the Total Variation, Fisher IPM, and
Sobelov IPM, and draw connections to existing methods.

> (Theorem 2) A necessary and sufficient condition under which the penalties A  and © # coincide.
It turns out this condition is linked to regularized binary classification and is related to critic losses

2
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appearing in penalty-based GANs. This allows us to give positive results for work in this direction,
along with drawing a link between regularized binary classification and distributional robustness.

> (Theorem 3) A result that characterizes the distributional robustness of the f-GAN objective
showing that the discriminator set plays an important part for the robustness of a GAN. This is, to the
best of our knowledge, the first result on divergence-based distributional robustness of f-GANs. Our
result allows us to provide a novel perspective for several existing penalty-based GAN methods such
as Wasserstein-, MMD-, and Sobelov-GANSs.

2 Preliminaries

2.1 Notation

We will use €2 to denote a compact Polish space and denote ¥ as the standard Borel o-algebra
on 2 and R will denote the real numbers. We use .7 (€2, R) to denote the set of all bounded and
measurable functions mapping from £ into R with respect to 2, Z(£2) to be the set of finite signed
measures and the set () C %(£2) will denote the set of probability measures. For any additive
monoid X, a function f : X — R is subadditive if f(x + 2’) < f(x) + f(2') and the infimal
convolution between two functions f : X — Rand g : X — R is another function given by
(f*g)(x) = infyex (f(a') + g(x — 2')). For any proposition .#, the inversion bracket is [.#] = 1
if Z is true and 0 otherwise. We say a set of functions F is even if h € F implies —h € F.
For a function h € .Z#(Q,R) and metric ¢ : Q x Q@ — R, the Lipschitz constant of & (w.r.t ¢
is Lip.(h) = sup,, ,eq [h(w) — h(w")] /e(w,w’) and [|h]|,, = sup,cq |h(w)|. For any set of
functions F C #(Q,R), we use ¢ (F) to denote the closed convex hull of F. For a function
h € Z(Q,R) and measure y € (), we use Var,,(h) = E,[h?] — E,[h]? to denote the variance
of h under pu.

2.2 Background and Related Work

We will focus our discussion around Distributionally Robust Optimization (DRO) [41] and its use
for understanding machine learning. For a given reference distribution P, which is typically the
training data in machine learning, the neighbourhood takes the form {Q : d(Q, P) < ¢} for some
divergence d and £ > 0 that characterize the nature and budget of robustness. In the context of
machine learning, the most popular choices of d studied thus far are the f-divergences [5, 13, 27],
Wasserstein distance [16, 1, 7] and the kernel Maximum Mean Discrepancy (MMD) [48]. For two
distributions P, ), the f-divergence is d f (P,Q) = fQ (dP/dQ)dQ and the main advancement

regarding f-divergences, centered around y2-divergence, is the connection to variance regularization
[22, 27, 36]. This is appealing since it reflects the classical bias-variance trade-off. In contrast,
variance regularization also appears in our results, under the choice of p-Fisher IPM. One of the
drawbacks of using f-divergences as pointed out in [48], is that the uncertainty set induced by f-
divergences contains only those distributions that share support (since we require absolute continuity)
and thus will typically not include the population distribution. The Wasserstein distance is commonly
antidotal for these problems since it is defined between distributions that do not share support and
DRO results have been developed for this direction, with the main results showing links to Lipschitz
regularization [20, 10, 44, 42, 11]. Another distance used to remedy this problem is the Maximum
Mean Discrepancy, which has been studied in [48] and shown connections to Hilbert space norm
regularization and kernel ridge regression. Since both of these are Integral Probability Metrics (IPMs)
[35], it is natural to study uncertainty sets generated by general IPMs:

Definition 1 (Integral Probability Metric) For any F C .F(Q,R), the (F-)Integral Probability
Metric between P, Q) € () is

dr(P,Q) = ]511612 (/Q hdP —/thQ) )

The IPM is characterized by a set F and if F is even, then dr is symmetric. One should note that we
have an intersection between IPMs and f-divergence when F = {h : |||, < 1} and f(¢) = |t — 1],
which corresponds to the Total Variation. Other cases when they intersect have been thoroughly
pursued in [47]. Another interesting case is the 1-Wasserstein distance, which is realized when

3
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Table 1

IPM F ©x(h)

Wasserstein Distance {h: Lip.(h) <1} Lip.(h)

Maximum Mean Discrepancy  {h : ||h||, < 1} 1R ],

Total Variation {h:]|h|l <1} 17l

Dudley Metric {h |||, + Lip.(h) <1} IR, + Lip.(h)
u-Sobelov IPM {h (Eux) [HVh(x)HZ} < 1} \/IEM(X) {HVh(X)HQ}
pi-Fisher IPM {h:E,x) [R(X)] <1} E,.(x) [P2(X)]

F ={h: Lip.(h) < 1} for some ground metric ¢ : 2 x £2 — R [52]. Table 1 contains other known
choices of IPMs. As the IPM can be viewed as matching moments specified by F, there is similar
work which considers uncertainty sets that match the first and second moment such as [12]. In the
context of machine learning our work is, to the best of our knowledge, the first study of the general
IPM to understand regularization. Outside this realm, there exist pursuits to study structural properties
of IPM-based uncertainty sets such as invariance [43]. While these are important to understand, they,
however, do not give immediate consequences for machine learning.

3 Distributional Robustness

In this section, we first introduce the uncertainty set and
two complexity measures that form building blocks of the
main penalty term A = (as appearing in Equation 1), then
proceed to the main distributional robustness Theorem.

Definition 2 For any F C Z({,R), P € Z(Q), the
F-ball centered at P with radius € is defined to be
B.r(P)={Q € Z(Q) : dr(Q,P) <¢€}.

We now introduce a complexity measure that will be of
central importance when defining the penalty: For a func-
tion set F C .#(Q,R) and function h € #(Q,R), we
set Or(h) := inf{A\>0:h € X-c(F)}. This quan- —
tity represents the smallest lambda that multiplicatively / (R) )

stretches the set co (F) until it contains h. We illustrate Figure 1: ©(h) is the smallest multi-
this geometrically in Figure 1 for a non-convex case of F Pplicative factor A required to stretch the
and present examples of ©  in Table 1. convex hull of F until & is contained.

The second complexity measure depends on a distribution P € (€, R) and is defined as
Jp(h) = sup,em(q) Jo hdv — |, hdP. Note that if h reaches its maximum at some w* €

then Jp(h) will be smaller if P is concentrated around w*. We now present the main penalty, which
is infimal convolution of these two complexity measures.

Definition 3 (F-Penalty) For any F C % (,R), h € ZF(Q,R) and € > 0, the F-penalty Ar . :
F(Q,R) — [0, 00] is

Are(h) = (Jp*eOF) (h),
where Jp(h) = sup,e (o) Jo hdv — [, hdP and % is the infimal convolution operator.

The infimal convolution is central in convex analysis since it is the analogue of addition in the

convex dual space [49]. We now present the main theorem, which links this penalty to distributional
robustness via F-uncertainty sets and discuss further the role of this penalty.
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Theorem 1 Let F C .7 (Q,R) and P € P (). For any h € .Z(Q,R) and for all e > 0

sup / hdQ = / hdP + A (h).
Q Q

QEBE,}_(P)

Proof (Sketch, full proof in Supplementary material) We can rewrite the constraint over B, »(P)
with the use of a dual variable which leads to a min-max equation. Using generalized minimax
theorems [17] and compactness of the set of probability measures, we are able to swap the min-max
and solve the inner min using classical results in convex analysis [38], yielding the statement of the
theorem. |

The result allows us to turn the infinite-dimensional optimization on the left-hand side into a familiar
penalty-based regularization objective, and we remark that there is no restriction on the choice of F.
To see the effect of A r ., notice that by definition of * we have

A]:’E(h) = hinig (Jp(hl) + E@]:(hg)) s
hy+ho—h

which means this penalty finds a decomposition of A into k1, hs so that the two penalties Jp(hy) and
€0 5 (hg) are controlled. Notice that any decomposition gives an upper bound, and this is precisely
how we will show links and tighten existing results. We will then present a necessary and sufficient
condition under which Ar .(h) = €¢©#(h). This condition plays a fundamental role in linking
robustness to regularization and unlike majority of existing results, yields an equality.

To see the applicability of the result, consider the supervised learning setup: We have an input space
X, output space ), and a loss function / : ) X ) — R which measures performance of a hypothesis
g : X — Y onasample (z,y) with [(g(z),y). In this case, we set @ = X x ), P to be the available
data, and h = l(g(z),y):

sw [ g(e).0)dQ(w. 1) = [ Ho(a), )P0+ Ar (o)1),
Q JQ N——

QEB.,7(P)

robustness penalty

data fitting term
The first term is interpreted as a data fitting term, while the second term is a penalty term that ensures
robustness of g. We remark that upper bounds are still favourable in the application of supervised
learning, which we will now discuss.

To generate our first upper bound, consider the following decomposition: hy = b and hy = h — b for
some b € R, yielding the following Corollary.

Corollary 1 Let F C Z(Q,R) and P € (). Forany h € F(Q,R) and foralle > 0

sup / hd@ < / hdP + ¢ inf © z(h —b).
QEB. 7(P)JQ Q beR

We will show that Corollary 1 recovers or tightens main results, and holds in much more generality
since we may choose any set F. The choice of F is important to our notion of uncertainty as it
captures the moments we are interested in, and there is a natural trade-off between picking F to
be too large or too small, which we illustrate with extreme cases. Consider the largest possible set
F = Z (£, R), under which the uncertainty set of distributions, B, 7(P) = { P} is a singleton for
all € > 0. This is indeed reflected on the right hand side of Corollary 1, noting that such a strong set
F yields © z(h) = 0 for any h € F (€2, R). On the other hand, if we pick F = {f(z) = k : k € R}
to be the set of constants, which is a rather restrictive set, then the uncertainty ball of distributions
is the largest it can be B, r = £(Q) since dr(Q, P) = 0 for all @ € £(£2). We now focus on
non-trivial settings of F, showing that © » recovers and improves upon familiar existing penalties.

(a) (Wasserstein Distance) 7 = {h:Lip.(h) < 1}. The penalty is © #(h) = Lip.(h), and
Corollary 1 recovers the intuition of Lipschitz regularized networks as presented in [20, 10, 44,
42,8, 11]. However, the penalty in the original theorem A r . is tighter. To see this by example,
consider 2 = R, P a normal distribution centered at 0 with variance o > 0, h(t) = sin 2t + ¢
and e = 1. Note that € Lip,(h) = 3 however & can be decomposed into by = sin2t and ho = ¢
with Jp(h1) = 1 and e Lip_(h2) = 1. Hence we have Ax .(h) < 2 < 3 = e Lip,(h).
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(b) (Maximum Mean Discrepancy) F = {h: ||h||, < 1} where k : @ x Q@ — R is a positive
definite characteristic kernel and ||-||, is the Reproducing Kernel Hilbert Space (RKHS) norm in-
duced by k [34]. For h in the RKHS, the penalty can be bounded by Ar . (h) < infyer || — b||4-
This tightens the existing work on MMD DRO [48, Corollary 3.2] when b = 0.

(c) (Total Variation) 7 = {h : ||h||,, < 1}. Our result tells us that the penalty upper bounded
with Ax . (h) < infyer [|h — b|| ., Which is tighter than taking ||A|| .

(d) (u-Fisher IPM) F = {h:E,x) [h*(X)] <1} for some 1 € () [33]. The penalty
is ©r(h) = /E,(x) [h?(X)], however we can solve the infimum in Corollary 1 to get
infper © r(h — b) = /Var,(h) (Lemma 9 in Supplementary). This is interesting since the
variance of h as a penalty has appeared in work studying f-divergence uncertainty sets. Note that
when p = (P+Q)/2 for some P,Q € () then dz (P, Q) is related to the x2-divergence, the
central f-divergence in these lines of work. In this setting, Corollary 1 extends the interpretation
of variance regularization as a robustification strategy for any p € Z2(Q2).

Another interesting choice of F is the u-Sobelov IPM which we show in Table 1, whereby the
resulting penalty is similar to those existing in manifold regularization [4]. All IPMs considered so
far are of the form {h : ((h) < 1} for some ¢ : .Z (2, R) — [0, 00], and the resulting © =(h) closely
resembles ((h). We derive © r for this general form with some assumptions on (.

Lemma 1 Let ¢ : .Z(Q,R) — [0, 00] be such that for some k > 0, ((a - h) = a* - ((h) for any
he Z(Q,R),a>0.If F={h:((h) <1}, then ©x(h) < {/((h) with equality if { is convex.

Our examples presented in Table 1 have convex choices of ( with either k¥ = 1 or k = 2. Using
this Lemma, we may also interpret the case of two penalties added together, such as the Dudley
metric in Table 1. Furthermore, Lemma 1 can be used for future applications of our work to elucidate

robustness perspectives of methods using penalties of the form {/{(h).

We now return to the discussion on how closely related Az . is to €© z. Consider now two decompsi-
tions of & for the infimal convolution: by = 0,he = hand hy = h, he = 0, so we have Ar . (h) <
€O©x(h) and Ar (h) < Jp(h) respectively. This yields Ar .(h) < min (Jp(h),eOx(h)), and we
illustrate the tightness of this inequality through the following lemma.

Lemma 2 The mapping h — Ar . (h) is subadditive and A r . (h) is the largest subadditive function
that minorizes min (Jp(h),e©x(h)).

The consequence of Lemma 2 is that if min (Jp(h),eOx(h)) is subadditive then Ar (k) =
min (Jp(h),e©£(h)) since a function always minorizes itself. In the proof of Lemma 2, we
show that both Jp and €O  are subadditive and so if min (Jp, O x) is consistently equal to either
Jp or €O for some ¢ then we have equality.

We now present a necessary and sufficient condition for a function h : @ — R so that A .(h) =
€Oz (h) for all £ > 0. In doing so, not only do we lead to a better understanding of distributional
robustness, we also contribute to understanding tightness of previous results and inequalities subsumed
by Corollary 1. It turns out rather surprisingly that the characterization is directly related to penalty-
regularized critic losses.

Theorem 2 A function h € F(Q, R) satisfies Ar .(h) = © z(h) if and only if

h € arginf (Ep[ﬁ] —E,[h] + 69;(/;)) , 2)
he Z(Q,R)

Sfor some p € P (Q).
First, note that this characterization holds for any h as long as one can find a y that satisfies

Equation (2). In particular, when p = P, then the minimizers of Equation (2) are constant functions.
Furthermore, Equation (2) can be viewed as a regularized binary classification objective in the

following way: € is the input space, Y = {—1, 41} is the label space, h : Q — R is the classifier,
O r is a penalty with weight €, and P (resp. 1) corresponds to the —1 (resp. +1) class conditional
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distribution. In particular, this is precisely the objective for the discriminator in penalty-based GANs
[23, 51], referred to as the critic loss where P is the fake data generated by a model and y is the
real data. Intuitively, the discriminator function will assign negative values to regions of ; and
positive values to regions of P. The discriminator function is then used to guide learning of the model
generator by focusing on moving y to where h assigns higher values. In conjunction with Theorem
1, this discriminator is robust to shifts to the distribution P and we outline the consequence more
clearly in the following Corollary.

Corollary 2 Let Py, P_ € 22(Q) and suppose F C % (2, R) is even. If

h* € argin (Epf [(h] — Ep, [h] + 20 f(iz)) , 3)
he.Z (Q,R)

then we have

inf /h*dQ = / h*dPy — eOx(h™)
Q Q

QEBE,]:(P+)

sup /h*sz/lz*dP,—i-E@}-(h*).
QEB. 7 (P-)/Q Q

The implication of this corollary is that the classifier learned by solving Equation (3) is still positive
(resp. negative) around B, r neighborhoods of P, (resp. P_). In the context of GANs, P,
and P_ will be the real and fake distributions. This is a rather intuitive result since the classifier
h* is penalized against © r however the above Corollary gives formal perspectives along with
interpretations to the weighting € and the choice of penalty (induced by F). We write this Corollary
in a more general form since we believe it can be useful for other studies of robustness. An example
of this is robustness certification: Given a binary classifier and reference distribution p, one can
compute E,(x)[h(X)] — e©x(—h) and check if this value is > 0. Using Definition 2.2 of [14]
and Corollary 1 of our work, if this value is > 0 then this certifies that the classifier is robust to
F-IPM perturbations around p. This follows from the fact that Corollary 1 (using —h) implies
Eox) [M(X)] = €0x(=h) < infgep, () Eqx) [R(X)] and positivity of the term on the right is
precisely the condition laid out in Definition 2.2 of [15]. Corollary 2 uses the fact that the condition
outlined in Theorem 2 is sufficient; however, we emphasize that it is also necessary, suggesting an
intimate link between regularized binary-classification and distributional robustness.

4 Distributional Robustness of f-GANs

In this section, we show how our main theorem can naturally be applied into the robustness for f-
GANSs more generally. This is particularly relevant for the robustness community since as mentioned
in the introduction, GANs are implemented as a robustifying mechanism for training binary classifiers.
In this setting, {2 will typically be a high dimensional Euclidean space to represent the set of images
and P € () will be an empirical distribution that we are interested in modelling. The model
distribution, also referred to as the generative distribution denoted as u € Z(f), is learned by
minimizing a divergence between P and ;. We now introduce the f-GAN objective, which is a
central divergence in the GAN paradigm.

Definition 4 (f-GAN, [37]) Let f : R — (—o00, 00| be a lower semicontinuous convex function

with f(1) = 0 and H C F(Q,dom f*) be a set of discriminators. The GAN objective for data
P e 2(Q) and model p € P(Q) is

GAN, 34 P) = sup ( [ rar- [ f*(h)du> ,
her \Ja Q
where f*(y) = supyer (2 -y — f(x)) is the convex conjugate.
We are interested in minimizing the above objective with respect to ., which results in a min-max
objective due to the supremum taken over H. One should note that there are two components of this

objective that characterize it, the function f and discriminator set 7. In practice, the discriminator
set is often restricted, and so the resulting objective is not a divergence; however, empirical studies
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have observed convergence [19], which warrants an investigation into the effects of a restricted
discriminator on model performance. Existing theoretical work has hinted the benefits of a restricted
discriminator, for example, [56] show that generalization is related to the Rademacher complexity
of the discriminator set and suggest a discrimination-generalization trade-off. Other work has
suggested that the particular setting of Lipschitz discriminators leads to improvements for both
practical [56, 19, 59, 54, 18] and theoretical purposes [25, 18, 30]. It is clear that the discriminator
set is a key character in the tale of success of GANs; however, the existing literature is silent on
what it means for robustness, a particular application that GANs have posed successful in, and this is
precisely the link we establish with the following Theorem.

Theorem 3 Ler f : R — R be a convex lower semi-continuous function with f(1) = 0,
F C Z(OR) and H C F(Q,dom(f*)). For any model and data distributions j1, P € 2(§)
respectively, we have for all € > 0

sup  GANjy(1;Q) < GANf 4 (p; P) + e sup O x(h).
QEB: 7(P) heH

This Theorem tells us that the robust version of the GAN objective can be upper bounded by the
standard GAN objective plus a term that quantifies the complexity of the discriminator set. Note that
the robustness parameters (¢ and ) interact only with the discriminator set and not the generative
model u, revealing the importance of choosing a regularized discriminator set 7. To see this more
clearly, consider the setting 7 = H, and since O (h) < 1, we have

sup  GANjy (15 Q) < GANjf 9 (5 P) + ¢, )
QEB: 1 (P)

for all e > 0. The key insight is that training GANs using discriminators # yields guarantees
on the robust GAN objective for adversaries who pick ) from B, 3;(P). Note that if one picks
discriminators # that are too strong then the ball B, 3, (P) will shrink and become singleton { P}
when H = Z (€2, R). On the other hand, if H is chosen to be smaller then the uncertainty set is larger;
however, the first term GAN s 4, will be a weaker divergence, since the discriminator set determines
the strength of the objective [30]. Hence, there is a trade-off between discrimination and robustness,
that complements and parallels the discrimination-generalization story described in [56].

We now discuss the particular settings of F and how our theorem gives a perspective of distributional
robustness on existing GAN methods. First, consider choices of F so that d  corresponds to MMD,
Fisher IPM and Sobelov IPM which translates to the MMD-GAN, Fisher-GAN and Sobelov GAN
respectively, allowing us to view these methods from a robustness perspective in light of Theorem
3 and Equation (4). Furthermore, our result also contributes to the positive commentary under the
popular choice of Lipschitz regularized discriminators, guarantees against adversaries selecting from
Wasserstein uncertainty sets. It should be noted that recently, a method that regularizes discriminators
by minimizing a penalty referred to as 0-GP [51] has proven convergence and generalization guaran-
tees. It can be easily shown that this penalty satisfies the conditions of Lemma 1 for £ = 2 due to its
resemblance to the Sobelov IPM, allowing us to present a robustness interpretation for this penalty.
Our main insight from this perspective reveals the theoretical benefits of regularized discriminators. In
light of our results, learning a binary classifier using a GAN (trained with regularized discriminators)
as a downstream task implies this classifier will consequently be robust.

5 Conclusion

Our results extend the Distributionally Robust Optimization (DRO) framework to IPMs, which reveal
further importance of the role regularization plays for robustness and machine learning at large.
Unlike most DRO applications to machine learning, we present equality and show that achieving this
is fundamentally rooted in regularized binary classification. We then show that DRO can be extended
to understand GANS and unveil the role of discrimination regularization in these frameworks. The
results will also help DRO explain regularization penalties through the lens of robustness in the future.
Our contributions are modular and pave the way to build on related areas, one such example being
robustness certification, which we leave for the subject of future work.
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Broader Impact

From the perspective of impact, the main contribution of our work is understanding how regularization,
a commonly used technique in machine training, gives benefits for robustness. We show this for
different areas of machine learning, such as supervised learning and generative adversarial networks.
The ultimate goal of such work is to develop further our understanding of these methods and how their
performances can be improved. Our work does not have a focused application use-case under which
we can discuss specific ethical considerations since it contributes more generally to the advancements
of performance. In this sense, ethical considerations are subject to the application of these methods.
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1 Proofs of Main Results

Before we begin, we introduce some notation that will be used to prove the main results that is
exclusive to the Appendix. We will be invoking general convex analysis on the space .7 ({2, R),
in the same fashion as [2], noting that .% (2, R) is a Hausdorff locally convex space (through the
uniform norm). We use %((2) to denote the denote the set of all bounded and finitely additive signed
measures over ) (with a given o-algebra). For any set D C #(Q2) and h € Z(Q,R), we use
op(h) =sup,ep (h,v) and 6p(v) = oo - [v ¢ D] to denote the support and indicator functions
such as in [5]. We introduce the conjugate specific to these spaces

Definition 1 ([6]) For any proper convex function F : % (2,R) — (—o00,00), we have for any
w € B(Q) we define

F*(u) = sup (/ hdp — F(h))
heZF(QR) \JO
and for any h € F(Q,R) we define

e = swp ([ - F).

HEB(Q)

Theorem 1 ([8] Theorem 2.3.3) If X is a Hausdorff locally convex space, and F : X — (—00, 0]
is a proper convex lower semi-continuous function then F** = F.

There is an additional robustness result which we will deploying for several proofs which holds for
any space A that admits Polish topology.

Lemma 1 For any F C % (Q,R), we have that
d]:(P7 /L) = dﬁ(}_)(Pa M)

Proof Let A, := {a € [0,1]": }_" , @ = 1} Note that we have
Zaifi Zaifi] }
i=1 i=1

sup Z a; {EP [fi] - Eu [fz]}

neN,aeA,,f;€FVi=1,...,n ",

dco(]—') (Pa /J/) = sup {EP - Eu

neN,a€A,,, fiEFVi=1,....,n

n

= sup Y o sup {Ep[fi] — B, [fi]}
neN,a€A, ;7 fi€F

n

— s Y ade(Pp)

neN,aeA,, i—1

It is also closed under taking the closure since dr is the supremum of continuous (linear) functions
and the supremum over a set with a linear objective is equal to taking the supremum over the closure
of that set. |

Definition 2 For any F C .7 (), R), we define the functional Rx : % (2, R) — [0, 00] as
Rx(h) := / hdP + 6s5(F)(h).
Q
Lemma 2 For any F C % (Q,R), Rz is proper convex and lower semi-continuous.

2
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Proof The mapping h +— fQ hdP is clearly convex and lower semi-continuous. Since ¢o (F) is a
closed and convex set, the indicator function dg5(x) (h) is proper convex and lower semi-continuous
and thus the result follows. |

Lemma 3 The mappings v — dz(v, P) and h — Rx(h) are convex conjugates

Proof Note first that for any v € Z(Q2)
Re(w) =  sup { / hdv — / hdP — Seo(r (h)}
reZ(QR) /o Q

= sup {/ th—/th}
heeo(F) LJa Q

= d@(]—')(yv P)
Y dr(v, P),

where (1) is due to Lemma 1. We also have that

@r.p) = s { [ hav - driv. )

veRB(N)

= sup {/ hdu—R}_—(u)}
veB(N) Q

@) pax
= R¥(v)

© Rr(v),

where (1) holds due to the above, (2) holds by definition of conjugate and (3) holds by a combination
of Lemma 1 and Lemma 2. |

—~
N2

We also present a lemma which will prove to be useful in proving the main results.

Lemma 4 For any F C % (), R), the mapping h — © z(h) is convex.

Proof First notice that for any ¢ > 0 and h € #(Q,R) we have that Ox(t - h) = t - ©Ox(h).
For any t € [0,1] and h,h' € Z(Q,R), consider the element h := ¢t - h + (1 — ¢) - h'. Since
t-hetOr(h)-co(F)and (1 —t)h € (1—1t)Ox(h)- co(F), we have that

hetOr(h) - (F)+ (1 —t)Ox(h)-co (F)
— hetOr(h)+(1-t)0xh)) @ (F),
which in turn implies that © z(h) < t©£(h) 4 (1 — t)©£(h’), proving convexity of O . [ |

1.1 Proof of Theorem 1

Theorem 2 Let F C F(Q,R) and P € (). Forany h € % (2, R) and for alle > 0

sup /th:/th+Af,€(h)‘
Q Q

Q€EBe,7(P)
Proof We first require two lemmata.

Lemma 5 Forany F C % (), R), P € 2(Q), A\ > 0and h € 7 (Q,R), we have

sup (/Q hd@ — )\dI(Q,P)> = Raxr* o) (h)

ReZ(Q)

3
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Proof We use a standard result from convex analysis which states that the convex conjugate of the
sum of two functions is the infimal convolution of their conjugates. Hence we have

sup ( /ﬂ th—Adf(Q,P)) — sup ( /Q th—Adf(Q,P)—aym)(QQ

QEP(Q) QeA(Q)
= (Mr(Q,P) +62)(Q))
= (MF(Q, P))" * (02 (@)
= Rrxr* o) (h),

which follows from Lemma 3 and the fact that support functions are conjugates of indicator functions
[4, Section 3.4.1, Example (a)]. |

Lemma 6 Forany F C % (Q,R), P € 2(Q), and h € % (Q,R), we have

)I\I;fo (R/\]:;ng(g)(h) + )\E) = / hdP + Jp*e©x(h)
2 Q

Proof Using the definition of infimal convolution, we have
inf _
)l\go (R/\]: * Cfgz(g) (h) + )\E)

inf inf h— h')dP + 6es s (h — B n)) + A
20 (h/eg(Q,R) (/Q( )AP + G537 ( )+ oz )> * €>

inf  inf hdP — | WdP + 6 h—h )+ A
A0 e F(QR) </Q /Q + derm) ( )+ o) (h) + 5>

: . ’ . - g ’
/thP + h’e,lﬁ’n(f&;l,R) ( /Qh dP + )1\%% (5CO()\_7.-)(h ') + )\E) + ng(g)(h ))

— ; A / : - !

= \/thp + h/e(g’n(fﬂ,]R) <O’gz(g)(h ) /Qh dP + )I\IZI% (5CO(/\]:)(h Ry + )\E))

_ . / o / . . o / T

— /Q hdP + h/eng/I“l(fﬂ,R) (wm)(h ) /Qh dP + i%fo (co-[h—h ¢ X-T(F)]+ )\5))

= hdP inf h h—h
/Q b (Tn() + 0 (h— )

= / hdP + Jp*cO£(h).
Q
]

We are now ready to prove the Theorem. By introducing a dual variable A > 0 that penalizes the ball
constraint, we have

sup /th: sup /th
QEB. 7(P)JQ QEP(Q):dFr(Q,P)<e /O

= sw it ([ i@ re-dr@.p)

Qe () 220

W ing sup </ hdQ + X (e — d]-_(QaP))>
A20 gez () \Ja

= inf sup </ hd@ — )\d}‘(va)> + Ae
A20 \ gez () \Ja

(2) . _

= /{gfo (R)\_F*O"@(Q)(h) + )\6)

© z

= th+Jp*€®]:(h),

Q

4
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where (2) and (3) hold due to Lemma 5 and 6 respectively. To see why (1) holds, first note that the
mapping Q — [, hdQ + X (¢ — d#(Q, P)) is concave and lower semicontinuous since dr is the
supremum of linear functions. Next we have by an application of the Banach-Alaogu Theorem that
Z(Q) is compact [2, Lemma 27 (b)]. Hence by [1, Theorem 2], (1) follows. [ |

1.2 Proof of Corollary 1
Corollary 1 Let F C #(,R) and P € Z(Q). Forany h € F(Q,R) and foralle > 0

sup /th < / hdP + ¢ inf © z(h — b).
Q€B.,7(P) JQ Q beR

Proof By definition of the infimal convolution we can consider a decomposition of the form h; = b
and ho = h — b for some b € R. notice that Jp(b) = 0 and by taking the smallest possible b € R
yields

O (h) < = inf Ox(h —b),

which completes the proof. |

1.3 Proof of Lemma 1

Lemma 7 Let( : .7 (9, R) — [0, 00| be a penalty such that {(a-h) = a*-((h) forany h € .F (9, R),
kya > 0. Let F = {h : {(h) < 1} then we have © z(h) < ¥/((h) with equality if € is convex.

Proof Let us consider the non-convex case so that J is not necessarily convex. We then have for any
FCZ(Q,R)

h €T (A\F) <= h € \co (F)

h
= Xe@(}')

For a fixed h € .Z(Q,R), set A = {/((h) and notice that

() -<(vtm)

1 k
= (——) ¢
("‘C(M) <«

and so we have © £(h) < {/((h). In the case when the penalty is convex, we have that 7 will be
convex and so

h
h € Xeo (F) <~ " €¢co(F)

h
XEJ:

e
1
Ff(h)ﬁl

C(h) < N

VE(h) <A

A= 3 . |

ISR

Hence we have © z(h) = inf <A

5
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1.4 Proof of Lemma 2

Lemma 8 The mapping h — Ar . (h) is subadditive and A r . (h) is the largest subadditive function
that minorizes min (Jp(h),e©x(h)).

Proof Since © z(h) is convex (Lemma4) and © z(¢t-h) = t-Ox(h) fort > 0, it follows that © z(h)
is subadditive. Next notice that .Jp is subadditive since for any h, h’ € .7 (Q, R)

Jp(h+h')zsuph(w)+h’(w)—/th—/h'dP
weN Q Q

< sup h(w) —/ hdP + sup b’ (w) — / ndpP
weN Q weN Q

= Jp(h) + Jp(h,)

Next notice that Jp(0) = 0 and e©x(0) = 0. By [7, Theorem 2.5(c)] we have that Ar . is
sub-additive and that it is the largest subadditive function that minorizes min (Jp(h),c©(h)). A

1.5 Proof of Theorem 2

Theorem 3 A function h € % (2, R) satisfies Ax .(h) = O (h) if and only if

he arginf (EP[M_EN[EHEQF@)),
he Z(Q,R)

Sor some p € Z(Q).

Proof To prove this Theorem, we use the conditions for an optimal decomposition of an infimal
convolution as shown in [3, Lemma 1]. First note that Jp and ©  are convex (Lemma 4). Note that
the property is equivalent to showing that the decomposition h; = 0 and hy = h is optimal. By [3,
Lemma 1], this decomposition is optimal if and only if there exists a measure v* € %(€2) such that

Jp(0) = (v*,0) — Jp(v") 1
€O (h) = (v*,h) — (e©£)* (V") 2
First note that Jp(h) = 05 (q)(h) 4+ o(—p}(h) and using properties of infimal convolutions, we
have for any v € Z(Q)
JpW) = (0@ +o-p)) @)
= (Ub(SZ);Uj{(fP}) (v)
(Oz(0) *0—py) (v)

inf (§ "+ 8 -/
V,EI%(Q)( o) (V) +6_py(v =)

— inf S_py(v—1/
vem@) | Py =7

=o00-[P+v¢ 2(Q)]

=o0-[v¢ Z(Q)— PJ.
Since Jp(0) = (v,0) = 0 for any v € HB(N), this tells us that a v* satisfies the condition of Equation
1 if and only if v* is of the form p — P where y is any element of &?(£2). We can re-arrange Equation

2 into

(V*,h) —eOx(h) = (60 £)* ("),

6
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and by definition since (¢©5)* (V") = supjc z(q ) (<V*7 fz> — s@;(ﬁ)), Equation 2 setting
v* =y — P becomes

(v*,hy —eOx(h) = sup v, hYy —e@x(h) 3)
)=, sup (k) —e0s®)
= (u—Ph) —eOr(h) = sup (<ufp,ﬁ>fe@f(/a))
heZ(QR)
< E,u[h] —Eplh] - cOx(h) = sup (E,,,[ﬁ]-]EP[iL]—g@;(iz))
heZ(Q,R)

= he argsup (E“[ﬁ] —Ep[h] feef(iz))

heZ(Q,R)
<= h € arginf (Ep[fl] —E,[h] +€®f(/:b)) . 4)

heZ (Q,R)

Hence the decomposition h; = 0 and hy = h is optimal if and only if A satisfies Equation 4 for some
w € P(Q), which is precisely the statement of the Theorem. ]

1.6 Proof of Corollary 2
Corollary 2 Let Py, P_ € 22(Q) and suppose F C % (2, R) is even. If

h* € arginf (Epf[ﬁ]—EinL]—b—E@;(lAz)),
he Z(Q,R)

then we have

inf h*d =/h*dP —eOx(h”
QEBs,f(P+)/(z @ Q * #(R)

sup /h*dQ:/h*dP,—ﬁ—s@f(h*)
QEB. 7(P-)/Q Q

Proof Applying Theorem 2 with P = P_ and ¢ = P, and using Theorem 1 yields the result on
B, x(P_). Notice that F is even, which means that © (h) = © z(—h) and so we have

h* € arginf (]Ep7 [h] — Ep, [h] + 5@;:(?1))
heZ(Q,R)

< —h* € arginf (f]ER [h] +Ep, [A] +5@]:(fﬁ))
—heZ(,R)

< —h* e arginf (IEP+ [h] — Ep_[h] +5®;(1:L)) .
—heF(Q,R)

We can then apply Theorem 2 to —h* which means A, 7(—h*) = €Oz (—h*) = ¢© #(h*). Putting
this together and applying Theorem 1 to —h* gives

sup _hdQ = / _h*dPy + £05(h"),
QEB. £(P+)JQ Q

and multiplying both sides by —1 concludes the proof. |

1.7 Proof of Theorem 3

Theorem4 Let f : R — R be a convex lower semi-continuous function with f(1) = 0,
F C Z(QR)and H C F(Q,dom(f*)). For any model and data distributions p, P € 2()
respectively, we have for all ¢ > (

sup  GANf (1 Q) < GANg 4 (p; P) + e sup O (h)
QEB: 7(P) heH

7
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Proof We have

sup  GANpy(;Q)= sup  sup (/Q hd@ — /Q f*(h)d,u)

QEBc,7(P) QEB: 7(P) heH

Lsp  sup ( / hdQ — / f*(h)du)
heM QeB. »(P) \JQ Q

= sup( sup /th—/f*(h)du)
her \ QeB. »(P)Ja Q

2 oup ( [ e+ ar0- [ f*(h)du>
D sup ( /Q hdP + O 5 (h) — /ﬂ f*(h)du)

heH
4
< sup < hdP — / f*(h)d,u) +esup ©x(h)
her \Jo Q heH
= GAN;3(p; P) + € sup ©z(h),
heH

where (1) holds since we can exchange supremums, (2) is due to Theorem 1, (3) holds since
Ar . <eOr(h) and finally (4) holds since we can upper bound by taking out supremums. ]

8
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Lemma 9 Forany 1 € Z(Q2), h € #(Q,R) we have

inf \/By ) [(h(X) = b)) = /Varu(h)

Proof Let o(b) = E,x)[(h(X) — b)*] and S(b) = +/¢(b) and using simple calculus we have

)= 20
2y/¢(b)

and noting that p(b) > 0, we can find the minima by solving ¢’ (b) = 0 by first noting that

p(b) = Epux)[12(X)] = 26, x) [R(X)] + b,
and so we have

@' (b)=0 <= —2-E,x)[M(X)]+2b=0

— b=E,x)[h(X)]

Putting this together yields

inf /B, ) [(H(X) — b)’] = inf S(b)
=S5 (Eux)[h(X)])
= Eux) [(h(X) = By (X))’

=4/ Var,(h)

9
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Chapter 6

Regularized Policies are Reward
Robust

In this chapter, the narrative that regularization is a robustification strategy is ex-
tended to the particular setting of Reinforcement Learning (RL). Such an applica-
tion is relevant since regularisation is commonly applied with much heuristic mo-
tivation and has also demonstrated empirical success. The most popular choice is
causal-entropy, which is incorporated in popular frameworks such as Soft-Actor-
Critic [Haarnoja et al., 2018]. We show that various forms of regularization corre-
spond to being robust from the perspective of reward perturbations. Due to our
result’s generality, we apply our framework to various other forms of RL settings
that include imitation learning from experts (and their regularized counterparts) and
reward-free entropic maximization.

We encounter many new dualities that generalize existing results and serve in-
dependent technical interest to arrive at the result. We also find fascinating rela-
tionships between deep Q-learning, a technique that poses successful and is of great
practical significance, to both regularization and robustness.
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Regularized Policies are Reward Robust
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Abstract

Entropic regularization of policies in Rein-
forcement Learning (RL) is a commonly used
heuristic to ensure that the learned policy ex-
plores the state-space sufficiently before over-
fitting to a local optimal policy. The pri-
mary motivation for using entropy is for ex-
ploration and disambiguating optimal poli-
cies; however, the theoretical effects are not
entirely understood. In this work, we study
the more general regularized RL objective
and using Fenchel duality; we derive the dual
problem which takes the form of an adver-
sarial reward problem. In particular, we find
that the optimal policy found by a regular-
ized objective is precisely an optimal policy
of a reinforcement learning problem under a
worst-case adversarial reward. Our result al-
lows us to reinterpret the popular entropic
regularization scheme as a form of robustifi-
cation. Furthermore, due to the generality of
our results, we apply to other existing reg-
ularization schemes. Our results thus give
insights into the effects of regularization of
policies and deepen our understanding of ex-
ploration through robust rewards at large.

1 Introduction

Reinforcement Learning (RL) is a paradigm of al-
gorithms which learn policies that maximize the ex-
pected discounted reward specified by a Markov De-
cision Process (MDP) (Sutton and Barto, 2018). The
formulation of an MDP is well-posed with links in util-
ity theory (Russell and Norvig, 2002) and specifies a
reward function where the solution can be found pre-
cisely in a deterministic form. However, in practice,

Proceedings of the 24'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

Kamil Ciosek™
Spotify Research

Ryota Tomioka
Microsoft Research Cambridge

the reward function is typically an idealization, and it
turns out that an optimal policy in this model will cope
terribly when presented to unseen or uncertain situa-
tions. Intuitively, it is anticipated that there exist mul-
tiple policies that are near-optimal to this reward yet
exhibit more robust and diversified behaviour. In par-
ticular, having multiple solutions of this form would
be preferred since they can help the practitioner in
understanding the environment and problem better.

Finding near-optimal policies in this sense requires
balancing between ensuring that the policy is optimal
for the given reward and demonstrates some form of
robustness or diversity. This is commonly recollected
as the exploration vs exploitation trade-off'. One of
the most effective ways in ensuring this balance is by
altering the objective of the MDP to include a form of
penalty so that the resulting policy reflects characteris-
tics of diversified behaviour. Causal entropy (Ziebart,
2010) is a popular example of this, where the policy
is penalized for being deterministic in favour of ex-
ploration and disambiguating optimal policies. This
has lead to the MaxEnt framework (Haarnoja et al.,
2018c¢) and shown compelling relations to probabilistic
inference (Dayan and Hinton, 1997; Neumann et al.,
2011; Todorov, 2007; Kappen, 2005; Toussaint, 2009;
Rawlik et al., 2013; Theodorou et al., 2010; Ziebart,
2010) whilst maintaining empirically superior perfor-
mance on several tasks (Haarnoja et al., 2018¢,b), in-
cluding robustness in the face of uncertainty (Haarnoja
et al., 2018a). In the case where the reward function is
not specified, the entropy alone as an objective is also
prevalent to ensure exploration (Hazan et al., 2019).
Similar forms of regularization have appeared in Wu
et al. (2019), which ensure that the policy is stabi-
lized in accordance with a pre-determined behaviour
and other forms of diversifying schemes using policy
regularization have been developed in (Hong et al.,
2018). Furthermore, the benefits of regularizers have
also been observed in adversarial imitation learning

(*) Work done while at Microsoft Research Cambridge.

!Traditionally, this refers to the sequential behavior
where one is interested in finding better policies at each
timestep.
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Regularized Policies are Reward Robust

' €Fy(X)

inf  (RLp,(r')+ (=R)*(-r))

Reward Robustness

|| Theorem 1
RLp, () - sup R(p) - > Lot D(p )
HEK P~ 4 Y
R(p) = [y rdp R(p) = =D(u, i)
Standard RL Regularized RL Imitation
Learning

)= e rdu— Q)

l R(p

Theorem 4

sup (/ 7’dufﬂ(u)> <
HEKP X

X acA

Soft-Actor-Critic

Q-learning

Figure 1: Our main is to provide a unified view of existing objectives in Reinforcement Learning and relate them
to a reward robustness problem as highlighted above through Theorem 1. Additionally, we show another link
between regularized policies and Q-learning in Theorem 4.

methods (Ho and Ermon, 2016; Li et al., 2017).

While the empirical success should rejoice, it is some-
what unsettling that changing the objective deviates
from the MDP set-up, which was initially motivated
through the axioms of utility theory (Russell and
Norvig, 2002). In particular, it is not clear what
kind of policy these regularized objectives are learn-
ing from the perspective of the original reward maxi-
mization problems, especially since it is apparent that
regularized policies pose successfully in these schemes.
On this front, there exists work that shows entropic
regularization smoothens the optimization landspace
(Ahmed et al., 2019) and induces sparse policies when
considering a larger class of policy regularizers (Yang
et al., 2019). While these works advocate the effects
of policy regularization, the benefits of regularization
from an accuracy or robustness perspective and not
very well understood. This is especially relevant since
in machine learning more generally, regularization has
shown strong links to generalization and robustness
(Duchi et al., 2016; Sinha et al., 2017; Husain, 2020).
The first attempt is (Eysenbach and Levine, 2019),
which shows that MaxEnt performs explicitly well on
a robust reward problem. This approach however, is
limited to only the MaxEnt and cannot apply to other
schemes such as regularized imitation learning.

In this work, we tackle this precisely and focus on
the problem specified by finding a policy that maxi-
mizes an objective R that is concave in the space of
state-action visitation distributions. This objective in-
cludes the standard reward objective and subsumes
other popular objectives such as the MaxEnt frame-
work and imitation learning. Our main insight is that
the policy learned using a concave objective R is robust
against rewards chosen by an adversary, where R de-
termines the nature of the adversary. We find that the
policy is precisely a maximizer against the worst-case
reward r’. Moreover, we characterize the analytic form
of r' (using a technical assumption on R), which de-
livers more insight onto the nature of robustness. Our
results thus allow us to reinterpret entropic regulariza-
tion and exploration more generally as a robustifying
mechanism and add to the advocation for using such
methods in practice. In summary, our contributions
are

1. A duality result linking generalized RL objec-
tives as adversarial reward problems?, which al-
lows us to reinterpret the extant MaxEnt frame-
work, among others, as a robustifying mechanism.

2We remark that this is not the same as conventional

adversarial training, as found in supervised learning.
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2. Characterization of the adversarial reward solved
by these regularized policy objectives. In doing
so, we derive a generalized value function inter-
pretation of entropic regularization.

3. A primal-dual link between the regularized policy
objective and Q-learning loss. This allows us to
reinterpret the mean-squared error Q-learning as
a form regularization of policies and robustifica-
tion against rewards in light of our main result.

4. Deriving the robust-reward problem for other
popular frameworks such as imitation learning
and model-free entropic optimization. This allows
us to compare and unify these separate problems
under reward-robustness. We illustrate this dia-
grammatically in Figure 1.

2 Preliminaries

Reinforcement Learning We use a compact set
S to denote the state space, A the action space and
set X = § x A. We assume these spaces are Pol-
ish and furthermore use Z(S), 2(A) and Z(X) to
denote the set of Borel probability measures. Sim-
ilarly, we use Fp(S), Fp(A) and Fp(X) to denote
the set of bounded and measurable functions on the
sets S, A and X respectively. A reward function is
a mapping r : X — R, a transition kernel is spec-
ifiled as P : X — Z(S) and a policy is a mapping
m:8 = P(A). Let v > 0 be an implicit fixed dis-
count parameter. It can be shown that each S, A,
P, initial distribution pg and policy 7 uniquely define
a Markov chain {(S;, 4;)},2; € X. We denote the
underlying probability space as (X,., Py, ») where
Pz € P(X) is referred to as the state-action visi-
tation distribution. We refer the reader to (Meyn and
Tweedie, 2012, Chapter 3) and (Revuz, 2008, Chap-
ter 2) for more detailed constructions. The goal in RL
is to find a policy that maximizes expected return over
the state-action pairs visited, which can be concretely
summarized in the optimization problem:

sup EPM),,r(s,a) [T(S: a)] . (1)
m:S—P(A)

This objective is linear in the space of state-action visi-
tation distributions and thus is equivalent to the linear
program max, ek, , [ 7(s,a)du(s, a) where

Kpy= {u € Z(X) :/Au(s,a)da = (1 = )po(s)

+’y/XP(s | 5/,a/)d,u(s/,a’)}.

In particular, for any policy m, we have that P,  » €
Kp~ and that for any element u € Kp,, we

can construct the corresponding policy m,(s) =
(s, a)/ [ 4 n(s,a)da. We will now introduce notation
to formally write the reinforcement learning problem
described in 1 since it will serve useful for the remain-
der of the paper.

Definition 1 For a reward function r :

define

X = R, we

RLp(r) := sup /Xr(s,a)du(s,a)

neKp, 5

Mp(r) == argsup/ r(s,a)du(s,a)
X

HEK P ~

In the above, RLp(r) is the same as (1) and repre-
sents the maximum expected reward possible under an
environment P, discount factor v and reward function
r. The set Mp,(r) C P(X) represent the solutions
that achieve maximal expected reward.

Convex Analysis and Legendre-Fenchel Duality
We use #A(X) to denote the set of finitely-additive
measures and denote its topological dual to be F,(X),
the set of measurable and bounded functions mapping
from X to R. For any functional F : Z(X) — R, we
define the Legendre-Fenchel dual, for any h € Fp(X)
as

= s ( [ eyt - F(u)) .

For a set of functions F C F(X), we use tr(h) to
denote the convex indicator function defined which is
0 if h € F and 400 otherwise. For any two measures
u,v € B(X), we define the f-divergence between pu
and v to be Dy(p,v) = [, fdp/dv)dv — [, dv +1
where f : R — (—o00,00] is a lower semicontinuous
convex function with f(1) = 0. In particular, the set-
ting of f(t) = tlogt is the popular Kullback-Leiber
divergence, which we denote by KL(u,v) = Dy (i, v).

3 Related Work

Our main contribution is a reinterpretation of regular-
ized policy maximization as robustifying mechanisms
and so we discuss developments at understanding these
methods along with similar results existing in machine
learning at large. The idea of using causal entropy
(Ziebart, 2010) is guided by the intuition of encour-
aging curious and diversified behavior. Further devel-
oped in (Haarnoja et al., 2018c), empirical success of
using this penalty has been apparent. In particular,
regularized policies unlike standard policies have illus-
trated robust behavior in the face of uncertainty and
diversified behavior in finite sample schemes. Despite
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the empirical success, there is not much work studying
these benefits from a formal perspective. The main ex-
isting results show that regularized objectives include
smoothen the optimization landscape (Ahmed et al.,
2019) and yield sparse policies (Yang et al., 2019).
(Eysenbach and Levine, 2019) focuses on the MaxEnt
framework and relates the optimal policy to solving a
variable reward problem, which is line with our find-
ings. Their results in contrast to ours, cannot be ap-
plied to other policy regularizers or other schemes that
use causal entropy in the absence of reward functions
such as adversarial imitation learning (Li et al., 2017).

In the realm of machine learning more generally, regu-
larization has been principally established as a robusti-
fying strategy. In supervised learning, various forms of
robustness have shown connections to a number of reg-
ularization penalties such as Lipschitzness (Blanchet
and Murthy, 2019; Sinha et al., 2017; Cranko et al.,
2020; Husain, 2020), variance (Duchi et al., 2016) and
Hilbert space norms (Staib and Jegelka, 2019). In Op-
timal Transport (OT), it has also been shown that
entropic regularization is linked to ground cost robust-
ness (Paty and Cuturi, 2020). Our result thus extends
and develops these narratives for RL. (Zhang et al.,
2020) also uses technical tools similar to our work such
as Fenchel duality however for their purposes and find-
ings are for quite different purposes.

4 Reward Robust Reinforcement
Learning

We will be focusing on the problem specified by

sup  R(u),
HEK P 4

where R : #(X) — R is a concave upper semicon-
tinuous function. Note that when a reward function
r: X — Ris given, setting R(p) = [, r(x)du(z) re-
covers the standard maximum expected reward prob-
lem. Furthermore, the above subsumes other devel-
opments of RL in the case where the reward is un-
known and R is chosen to be the entropy (Hazan et al.,
2019) or imitation learning when R(u) = —D(u, pig)
where pug is some expert demonstration and D is a di-
vergence between probability measures (Ghasemipour
et al., 2019). We present the main result which shows
the above as a reward robust RL problem.

Theorem 1 For any concave upper semicontinuous
function R : B(X) — R, we have

sup R(u)= inf (RL )+ (=R)* (—r
S (1) T,efb(x)( Py (1) + (=R)" (=)

Proof (Sketch) The key part of the proof is to rewrite
R in terms of the convex conjugate of —R, which is

well-defined since — R is lower semicontinuous and con-
vex, by assumptions on R. The proof then concludes
by moving the supremum over p inside by an applica-
tion of a generalized minimax theorem. ]

The key point from the above is that the value of the
maximal policy over R is exactly equal to the problem
of finding an adversarial reward. In particular, the
adversarial reward problem seeks to find a reward r’
that makes the maximally achievable reward RLp  as
small as possible while paying the penalty (—R)*(—r'),
where (—R)* is a convex function. We remark that
this is a one-party problem involving only an adver-
sary. The conventional notion of robustness would re-
late this to the optimal model . We do this precisely
by presenting a result that links the optimal p and
adversarial reward 7':

Theorem 2 Let p* and r* be the optimal solution to
the problems specified in Theorem 1, then we have that
p e Mpo (r*).

This result tell us that an optimal policy found by solv-
ing the regularized objective is precisely an optimal
policy of the Reinforcement Learning problem speci-
fied by the adversarial reward r*. This is particularly
striking since it tells us that though we are maximiz-
ing some concave R, which may be motivated for sepa-
rate purposes, we can always guarantee that the policy
learned is optimal for some reward r’ in the axiomatic
utility theory sense. In particular, this reward r* is
chosen to be the worst-case for this environment. The
strength of robustness and nature of the adversarial
reward clearly depends on the choice of R, as this is
what budgets the adversarial reward r’. We will show
that under a technical assumption on R, we can char-
acterize the form r* takes, which happens to depend
on a single state-dependent mapping V' € Fy,(S). The
particular technical assumption on (—R)* is that it is
increasing by which we mean r(z) > r'(z) for every
xz € X implies (—R)*(r) > (—=R)*(r"). We first intro-
duce a result.

Theorem 3 Suppose R is concave upper semicontinu-
ous and let Z be the value of the optimization problem

1 —
Vefb(S)mer(X) <( 7)/

s.t.V(s) > r(s,a) —0—7/SV(5’)dP(s' | s, a).

$)dpo(s) + <—R>*<—r>) 7
2]

It then holds that % = sup,cic,. . R(p).

It should be first noted that the above is a strong du-
ality Theorem and indeed is a generalized version of
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the standard linear programming duality between pol-
icy maximization and value function minimization as
described in (Agarwal et al., 2019), which is recovered
when R(p) = [, r(x)du(x) for some reward r. We
will now show that the optimal value function of this
objective gives the optimal reward. In particular, note
that by solving the above constraint for the reward
yields

v (s.@)i= V) =y [ VEOIPE s ()
s
We then have the following result

Lemma 1 Suppose (—R)* is increasing and V* is the
optimal solution of (2) then ry« is the optimal adver-
sarial reward.

The main consequence of the above Lemma is that it
characterizes the shape of the adversarial reward cho-
sen. In particular, it tells us that as long as as R
satisfies the technical assumption ((—R)* is increas-
ing), the adversarial reward will be of the form ry
for some V. This is insightful since it tells us that
the adversarial reward relates rewards between states
through the dynamics of P. For example, note that
if a particular state-action pair (s,a) yields the same
state s then ry(s,a) = (1 — v)V(s). This technical
condition on R can be satisfied for any R with a sim-
ple reparametrization, which we lay out in Lemma 1 in
the supplementary material, and exploit when deriving
(—R)* for Soft-Actor-Critic. Moreover, we will show
that the common choices of R which are motivated for
smoothing or other empirical benefits naturally satisfy
this technical assumption.

Generalized Soft-Actor-Critic Regularization
Consider the case of having an available reward and
using a convex penalty Q : B(X) x B(X) — R for the
policy so we select R = Rq of the form

Rou) = /X r(s, a)du(s, a) — - Qu),

for some € > 0. It can easily be shown (see Appendix)
that (—R)*(—r") = eQ* (T_T/), so that we have the

€
following.

Corollary 1 Let Q : Z(X) — R be a conver penalty
then for any € > 0 we have

sup Rq(p) = inf
HEK P,

The above tells us that the adversarial reward prob-
lem pays a price for deviating from the given re-

ward r due to the second term &Q* (T’Tﬂ) In

RLp., () + e (F="
' EFp(X) P € ’

the Soft-Actor-Critic (SAC) method, this corre-
sponds to selecting (upto some constant) Qsac(p) =
Eu(s,0) [KL(mu(- | 5),U)], where 7, is the policy in-
duced by p and U is the uniform distribution over
A. We presented Corollary 1 with a general Q, which
we believe will be useful for future developments. In
this work, we consider the causal policy entropy along
with 2-Tsallis entropy in the next next section. For
the SAC case, we have the following result

Lemma 2 (Soft-Actor-Critic) For any € > 0 and
r, v € F(X), we have

eQ3ac (T_ET/>
e (2572) -

If one reasons about how the adversary behaves, the
first incentive is to make RLp - (r’) small by selecting
very small rewards across the environment. However,
we can see that for the case of entropic regularization,
the adversary pays a big price for selecting 7’ to be far
from the original reward r for any given state. Note
that in this case, we have (—R)* is increasing and so
in light of the concrete insight found in Lemma 1, we
are able to reason about the SAC policy maximizing a
reward of the worst-case reward of the form (3). This
is striking since it tells us that the adversarial reward
r’ will respect the environment dynamics across the
action space even if the ground reward r does not.

Derivation of Q-learning through robust learn-
ing In this subsection, we derive Q-learning through
the reward-robust RL framework. In this context,
learning a policy that is robust to a small variation in
the reward corresponds to allowing a small violation
of the Bellman equation with respect to the original
reward function. For any Q-function Q € F,(X), we
define the bellman operator 7, : F,(X) — Fp(X) as

TQ(s,a) = r(s,a) + 7 / sup Q(s', a)dP(s' | ,a)

X a' €A

The maximum reward problem can be restated as

RL — inf La)duo(s), (4
po(r) = inf [ s Qs addi(s). (4

where the optimal Q* € F,(X) from the above is a
contraction of 7, meaning that 7,Q* = Q*. As it is
difficult to find this contraction, one method known as
deep Q-learning tackles this by parametrizing @@ with
a deep neural network and uses regression in the su-
pervised learning sense to match 7,Q to @ (Sutton
and Barto, 2018). This will deviate from the original
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objective since it relaxes this constraint @ = 7,.-Q into
the term appearing in the objective, which will natu-
rally introduce bias. We now show quite a remarkable
connection that doing so is related to policy regular-
ization and by virtue of Corollary 1, linked to reward
robustness.

Theorem 4 For any € > 0 and convex 2 such that
Q* is increasing, we have

(69* (7:@ - Q>
QEFL(X) €

sup Rq(p) = inf
HEK P ~

acA

+ /S sup Q(s, a)dﬂo(5)> :

We remark that the above is an inequality if Q* is
not increasing which results in weak duality. First
note that the Theorem is precisely a relaxed uncon-
strained version of constraint objective appearing in
(4). The most notable aspect of this result is that it
links the regularized objective to finding a Q-function
that minimizes the difference in the Bellman update

eQ* @), depending on the choice of 2. There

exists work that show a relationship between gradi-
ents in entropy regularization and Q-learning (Schul-
man et al., 2017), however we state a more generalized
result and bridge it to reward robustness. To see how
this relates to the existing losses used in Q-learning,
let us consider both the finite and continuous case. In
the finite case, we can pick Q(p) = > .y (2)?, which
is the 2-Tsallis entropy. One can easily derive the dual
Q*(r) = 3 .y r(z)? and thus the right side of The-
orem 4 becomes (setting ¢ = 1)

. 1 2
f - r 9 - )
Lt <4 3 Q0 -Qea)

T /S gggcz(aa)duo(s)).

The variational problem above is a regression problem
between () and 7@ using the squared loss, which is the
typical objective in deep Q-learning. The consequence
of our result is that using this particular choice of loss
to learn the @ function is related to learning a pol-
icy with the 2-Tsallis entropy, which is rather striking.
Furthermore, the 2-Tsallis entropy behaves similar to
the Shannon entropy in the sense that it is maximized
when g is uniform and minimized when p is degen-
erate. In the continuous case, a buffer distribution
v e P(X) is used for the loss by defining the mean-
squared error as L2 norm with respect to v between
T7.Q and Q: given by ||7.Q — QHQLz(V). In this case,

2
it can be shown that if Q(u) = % [, (‘;—5) dv when

< v and oo otherwise then Q*(h) = ||h\|i2(u).

Imitation Learning One method of learning a pol-
icy is to imitate expert data which comes in the
form of a given distribution pup € £(X). Unlike
the regularized schemes above, there is no specified
reward function. Using the unified perspective pro-
vided in (Ghasemipour et al., 2019), where imitation
learning is cast as divergence minimization, we can
write these methods into our framework by select-
ing R(p) = —D(u, ug) (for each corresponding diver-
gence). In particular, our goal is to not only derive the
corresponding robust-reward problem but also show
that (—R)* will be increasing for these cases. We del-
egate the technical derivations to the Supplementary
Section 1.8 and only present the results here. First, we
focus on Adversarial Inverse Reinforcement Learning
(AIRL) (Fu et al., 2017) selecting R(u) = — KL(u, pg)
in which case we have

sup  R(u)

HEK P ~

= inf
M EF(X)

<RLP’,Y(T/) +/ exp (—r'(x)) dugp(z) — 1>
X
noting that (—R)* is increasing. We show the more
general result that when R(p) = —Dj(u, pg) where
Dy is an f-divergence then (—R)* will be increas-
ing. Using this choice of R corresponds to f-MAX
(Ghasemipour et al., 2019). Another method for imita-
tion learning is to use a discriminator based divergence
as employed in InfoGAIL (Li et al., 2017). In this set-
ting we assume we have a distance d : X x X — R
and denoting the Lipschitz constant of a function h €
Fo(X) as Lipg(h) i= sup, yrc.x [h(z) — hia')| /d(z, ")

we set

R(u)=—  sup

where L > 0 is chosen as a hyperparameter. In this
case, we have

inf

RL " - 'd .
r:Lipy (r')<L ( P”Y(T ) /X " ME)

It is clear from the above that the adversarial reward
seeks to ensure RLp,, is as low as possible while main-
taining that r’ is large around the expert trajectory
due to the second term. It should also be noted that
the choice of L reflects as the budget of the adversary.
We do not have (—R)* increasing for this choice of R.
On the other hand, it is typical in practice that an

swp R(u) =
HEK P ~
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Figure 2: Expected reward over 1000 episodes of policies returned by SAC trained on an adversarial reward 7,4
and tested on the true reward using different weighting e for entropy.

entropy term is included in this term:
sup

L ([ mauto) -~ [ wyineo))
By (KL (| ), V)]

R(p)

for some € > 0 where Uy is the uniform distribution
over A. Under this setting, it turns out that (—R)* is
now increasing, in which case Lemma 1 applies. It is
rather intriguing that the role of entropy here ensures
that the reward that the InfoGAIL policy maximizes
is worst-case, of high value around trajectories from
the expert, and attains the familiar shape in Equa-
tion (3). This further advocates for the use of entropy
regularization.

Entropic Exploration We now consider the case
where there is no reward function or expert distribu-
tion specified and the only objective to maximize is
entropy. For such a scheme, there exists efficient al-
gorithms (Hazan et al., 2019). More specifically, we
have R(u) = —KL(p,Ux) where Uy is the uniform
distribution over X. We then have that

sup  R(p)
HEK P,

= inf
7 EFp(X)

= <RLP’7(T’) + / exp (—'(z)) dUx(x) — 1)
X

and similar to the other choices of R, we have that

(—R)* is increasing. We would like to remark that if

one defines KL to be +0o when pu is not a probabil-

ity measure then (—R)*(r) = log [, exp(r(x))dUx ()

(Ruderman et al., 2012).

5 Experiments

The main practical ramification of our work is to advo-
cate the use of regularized policies by highlighting the

robustification aspect, for which we derived a strong
theoretical link. There exists extensive empirical ev-
idence for which our work provides foundation for.
However, we will show some brief yet illustrative ex-
amples which focus on the reward adversarial aspect of
regularized policies, as illustrated by our main result
Theorem 1. Our goal is thus to see the performance
of regularized policies on rewards they are not trained
on and analyze their behavior based on the robust-
ness parameter £. First we consider the Pendulum-
v0 environment and train the Soft-Actor-Critic (SAC)
method on a reward that has been altered with. We
do so by constructing an adversarial reward r,q4, using

S {r(s, a)+96

r(s,a)

if r(s,a) < -5

otherwise

where 0 is drawn from a normal distribution centered
at 5 with variance 0.1. In doing so, initial states of
the pendulum will be favored and easier to reach how-
ever the maximal reward will still be attained at the
inverted position. We train SAC for various values of
e and test their performance on the true reward in
Figure 2 (left). We find that the effect of increasing
¢ yields better performance than no entropy however
adding too much entropy (in the case of ¢ = 1) dam-
ages performance. We repeat a similar experiment for
HalfCheetah-v2 however using an adversarial reward
specified by

1)
- {r(s,a) +

if r(s,a) <0

r(s,a) otherwise

where ¢ is drawn from a normal distribution centered
at 3 with variance 0.1. We plot the performance under
the expected reward in Figure 2 (right). It can also be
seen that adding entropy surpasses the non-regularized
policy € = 0 and that increasing ¢ higher will worsen
performance (as seen by € = 2.5).
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6 Conclusion

Our results allow us to reason about regularization of
policies and the regression Q-learning objective from
the perspective of robustness. This is not surprising
given the advancements in machine learning more gen-
erally pointing at the link between regularization and
robustness along with the impressive empirical evi-
dence of these schemes. Regularized objectives, how-
ever, offer other benefits that are inherently sample
based phenomenon such as smoothened objectives or
stable training. While our results do not directly tar-
get this, we have built a connection between two ob-
jectives which will pose modular for future develop-
ments.
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Supplementary Material for
“Regularized Policies are Reward Robust”

1 Proofs of Main Results

We first introduce some notation that will be used exclusively for the Appendix. For any function R : Z(X) — R,
we define Ry (1) = R(i) + to () and R_(u) = R(p) — t (). Indeed, it should noted that if R is upper semi-
continuous concave then R_ is upper semi-continuous concave and —R_ is proper convex. The central benefit
of rewriting R in this is way is due to

sup R(p) = sup R_(u).
HEK P, HEK P,y

First we will show a technical result.

Lemma 1 If R: Z(X) — R is upper semicontinuous and concave then (—R_)* is increasing.

Proof Let r,r’ € Fp(X) such that r <7’ and let

v e angsup ([ riw)dute) + R,

HEP(X)

noting that v exists since the mapping p — [, r(z)du(z) + R(p) is concave, upper semicontinuous and 2 (X) is
compact. Next we have

(~R)*(r) — (~R)*()
— e ( / r(x)du<x>+R(u>)— sup ( / r’(m)du(xHR(m)

PEP(X) HEP(X)

S/Xr(ac)dv(ac)—i—R(u)—/Xr’(x)dzz(x)—R(zx)
- /X (r(z) — ' (2)) dv(z)

<0

We also recall some classical results regarding Fenchel duality between the spaces Fp,(X) and Z#(X).

Definition 1 (Rockafellar (1968)) For any proper convex function F : Fp(X) — (—00,00] and p € B(X) we
define

P = sup ([ va-r)
heFy, X
and for any h € Fp(Q) we define

e = s ([ - r).

HERB(X)

Theorem 1 (Zalinescu (2002) Theorem 2.3.3) If X is a Hausdorff locally convex space, and F : X —
(—00, 0] is a proper convex lower semi-continuous function then F** = F.
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Regularized Policies are Reward Robust

1.1 Proof of Theorem 1

We have
sup R(p) = sup —(—R(n))
HEK P ~ HEK P ~
Y osup —(~R(u)"™
HEK P,

@ qp - sup ( /X r’(gc)d,u(x)—(—R)*(T/)>

reEKp,y 1 EF(X)

= sup inf (/X(r’(z))du(x)Jr(R)*(T/))

HEK P, r'€Fp(X)

9 sup ( / <—r'(x)>du<x>+<—R>*<r'>)

T €Fp(X) pekp

@ nf ( sup Ar'(x)du(x)—i—(—RY (—r’))

7'/6-7'—1)(X) ;LGKPK\,

6 . / * /
5 inf (RL _R)* (-
e Ty () (RLp (") + (=R)" (1))

where (1) holds since —R is proper convex, (2) is the definition of the conjugate, (3) is an application of Ky
Fan’s minimax theorem (Fan, 1953, Theorem 2) noting that the set Kp. is compact, and that the mapping
r = [y (= (z))du(z) + (—R)" (') is concave and the mapping p — [, (—r'(x)) du(x) is linear. (4) holds by
negating ' since —F,(X) = F(X) and (5) holds by definition.
1.2 Proof of Theorem 2
By definition, we have RLp (r*) — (r*, u*) > 0. To show the other direction, it follows that

RLpy(r*) = (r*, p") = RLpy (r") + (=R)"(=r")) = (7", 1) + (= R)*(=r"))

2 dnt (RLeg () 4+ (<R) (=) = () + (R)* (=)

—~
—

E Sup R(p) = ({r%, 1) + (=R)" (=)

D Rty — ((r, 17) + (—R)* (=)
= (=r*,1*) = (—R) (1) — (~R)" (=1")
(%) 0

)

where (1) follows via optimality of r*, (2) is due to the duality result, (3) follows via optimality of u* and (4) is an
application of the Fenchel-Young inequality on the convex function —R. Finally, we have RLp~ (r*) = (r*, u*),
which implies optimality of p* and concludes the proof.

1.3 Proof of Theorem 3

Using the classic linear programming duality result, we have

VEVp r

RLpo(r) = (1=2) gt [ Voduo(s), 1)
where

Vp oy = {V € Fp(S) : V(s) > r(s,a) —l—v/s V(s")dP(s' | s,a),V(s,a) € X} ,
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and define

rv(s,a) = V(s) — v / V(s)dP(s' | s,q). (2)
S
It then holds that

1) . / * ’

Rp) = f (RL + (—R)*(—

S (n) = n (X)( Py (') + (=R)*(=r"))
() . . * /
St f 1-— f V(s)d + (—R)"(—
vant (( ) et W/S (8)dpo(s) + (—R)*( T))

o E]:bf(X) Vefb(s) <(1 - 7)/ $)dpo(s) + (=R)* (=) + LVP"'/”(V))
= Ve sy mem ) <(1 - 7)/ io(s) + (=R)"(=r') + LVP’“”(V)>
e (-2 [ Vina(o) + R (=),

inf
VeFy(S)r'<rv

where (1) is due to Theorem 1, (2) is due to (1) and noting that r < ry implies V(s) > r(s,a)+~ [s V(s')dP(s" |
s,a) concludes the proof.

1.4 Proof of Lemma 1

First note that for any p € Kp,, we have

/ rv(s,a)du(s,a)

</V Ydu(s,a) — //V dP’|sa)d,u(sa)>
~ ([ veuuts.o - [ v+ - [ Vi)

—(1-7) /S V(s)dpols)

and so we can conclude for any V' € F(S), we have

RLp(rv) = (1=7) [ V(s)duo(s).

Next, we have

sup R(p) = inf (1 /V )duo(s) + (—R)” (TV))

peEK P ~ VeF,(S

= vl (RLPalrv) + (R (Zrv)

Ldnf (RLp () + (<B)" (=)

s R(s),
HEK P, y

v

and since the lower bound can achieve equality, it implies that the optimal r* is of the form 7y .
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1.5 Proof of Corollary 1

We have

(“R)(~r) = sw
HERB(X)

(
. ([ @)+ [ rwinte) - cu0)
= (/[ o)~ (o) - 200
e s ([ M) - )

HEB(X) €

:EQ* <T_T/>,
9

[ @t + R )

which concludes the proof.

1.6 Proof of Theorem 4

First define the set
Orr = {@€ A1) Qo) 2 r5.0) +9 [ sup Q)P 5,00
X a' €A
and define

ro(s,a) = Q(s,a) — 7/ sup Q(s',a')dP(s' | s,a)

X a' €A

Next we can write

RLp (1) = o inf [ sup Qls.a)dia(s)

€Qp,r~ a€

next we have

sup R(p) Y inf (RLp (1) 4+ (=R)* (')

HEK P, ~ r'€Fp(X

2t (qelt, [ sm @ artuats + (R (-r)

QEQp 7 4 a€A

=t (ot (st +io,,., @) + R (-r)

T €Fp(X) b(X) ac€A

= inf inf (/s sup Q(s, a)dug(s) + (—R)*(—r') + LQP,T/,W(Q))

T €Fp(X) QEFH(X) acA

= inf inf </$ sup Q(s, a)duo(s) + (—R)*(—=r') + LQP,,,/W(Q)>

QEFu(X) r'€Fp(X) acA

= QeiJI:‘lbf(X) (/s sup Q(s,a)duo(s) +  inf ((—R)*(_T/) + LQ;:,#,JQ)))

ac€A €T (X)

- ( | s @ aduos) + TéﬁfQ(—R”"“’))

QEFy(X) acA

@ . *

= inf su s,a)dpo(s) + (—R)*(—r ,
ot ([ s Qs dals) + (- (-re)
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where (1) is due to Theorem 1, (2) is due to (A), and (3) follows since (—R)* is increasing by assumption. Next,
noting that (—R)*(—rg) = e* (PTQ ), and that

€

r-rg=r(sa) = L2 s [ o @ a)ip(s )

= (@ [ 5w Q)P 1 50)) - Qlsia)
X a' €A
=7TQ-Q,
which is the difference between the Bellman operator. Putting this together yields

sup  R(u)

HEK P ~

= adt (7 (579) + [zt )
= inf <€Q* (7@6_Q> —I—/Ssup Q(s,a)d,uo(s)>

QEFL(X) ac€A
1.7 Proof of Lemma 2

We first set n = |A|. Let F»(S,R™) denote the set of measurable and bounded functions mapping from S into
R"™. For any m € Fp(S,R™), we use 7(a | s) to denote the index corresponding to a € A for the function =
evaluated at s € S. Next, we define the following set:

By = {u(s,a) = n(a| s) - pus(s) | ps € P(S).m € Fo(S, R},

noting that By C ZA(X). We also have that #(X) C By since this corresponds to having each 7(a | s) satisfy
m(a|s) € 0,1 and ), . 47(a|s) =1. We then redefine

() = {fg«s,a) Um0 nEB.

We will first show that this choice of Q is convex. First we need a Lemma that will make it easier.

Lemma 2 The functional F : R™ — R defined as

F(x) = Zzz -log (Zfﬂ%)

is convex over its domain RZ.
Proof We derive the Hessian of F' which can be verified to be:

1 1 1 1
HF(X):diag(7 ...,>—n~1T1.
2

z1’ zo’ Tp

Next, we have for any vector z € R" and = € dom F":
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where the last inequality follows by an application of Cauchy-Schwarz inequality noting that x € Dom F' = RZ,,.
Since the Hessian is positive semi-definite, it follows that F' is convex. |

First denote by ps(s) = >, 4 1(s,a) and note that 7,(a | s) = u(s,a)/ps(s). For any p € domQ, we have
Q(u) = Eu(s,a) [KL(TF/IJ U)]

=E, (5,0 Z mu(a|s)-log(mu(a]s)) +logn
acA

=E,q(0) [Z mu(a | s) -log(mu(a|s))| +logn
acA

— [ X ns(o)mua] 5)-og(m(a] ) ds +logn

Saca
1(s, a) )
= u(s,a) - log </ ds +logn,
/SZA ) o8\ 5l

and convexity follows by the above Lemma. Before we proceed, we need to also show that By is convex so
that our redefining of ) does not break convexity established above. Consider u,v € By and so there exists
ps,vs € P(S) and m,,m, € Fp(S,R™) with pu(s,a) = mu(a | s) - ps(s) and v(s,a) = m,(a | s) - vs(s). For any
A € [0, 1], we have (setting P, . (s) = M)

Aop(s,a) + (L= ANv(s,a) = Amp(a | s) - ps(s) + (L= X)-m(a|s)-vs(s)

ps(s) vs(s)
—P7(5)~<)\7r (als)- + (1= m(als)- .
. g Puv(s) Puv(s)
By construction, both s and vg are absolutely continuous with respect to P, , and thus the terms inside the
bracket are bounded and well-defined. Moreover P, ,, € &(S) and thus this element is in By, which concludes
the convexity proof. We now proceed to derive the conjugate. For any r’ € F,(X') we have

o) = s ([ s -a0)

HEB(X)

© g (/X r’(s,a)du(s,a)—Q(M))

pEBK

= sup (/X 7' (s,a)du(s, a) — By (s,a) [KL(mu(- | S)aU)]>

HEBX

sup ( /X < /A v (s,a)dm,(a | s) — KL(m,(- | s),U)) du(s7a)>

e ([ ([ rsamstal 9~ Kim,19.0)) dusts)
@ sup /X sup (/Ar'(s,a)dﬂ“(a)—KL(W,L,U)> dus(s)

ns€P(S) 7, ER™

) sup /X sup (/A r'(s,a)dm,(a) — KL(m,, U)> dps(s)

ns€P(S) TLEP(A)

=  sup / exp (r'(s,a)) dU(a) — 1
pHsEPA(S)J X

© sup/ exp (r'(s,a)) dU(a) — 1,
seSJx

where (1) holds since dom  C By. (2) holds from (Rockafellar and Wets, 2009, Theorem 14.60, p. 677) using the

fact that F5(S,R"™) is trivially a decomposable space in definition (Rockafellar and Wets, 2009, Definition 14.59,

p. 676). (3) holds since dom (KL(-,U)) C Z(A) C R™. (4) is due to (Feydy et al., 2019, Proposition 5) and (5)

follows by noting that the optimal ug is concentrated around the supremum.
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1.8 Imitation Learning
1.8.1 f-divergence

Note that for any r € F,(X') we have

Rrw) = s ([ i)+ r0))

vERB(X)

= sup ( /X r(:c)dzx(;c)—KL(z/,ME>

vERB(X)
1
@ / r(@)dus(z) 1,
X

where (1) holds due to (Feydy et al., 2019, Proposition 5). We will now show that (—R)* is increasing for any
R(pn) = —Dy(p, pp) where Dy is an f-divergence. First let

v e angsnp ([ rwdute) + R(1)).

reEZ(X)

noting that v exists since the mapping p — [, r(z)du(x) + R(p) is concave, upper semicontinuous and 2 (X) is
compact. For any r' > r

(—R)*(r) - (—R_)" ()
:u:g?(j;() ( /X r(fc)du(xHR(u))M:ggl(oX) < /X T’(w)du(xHR(u))
2 sw ([ r@aut) +r60) < sw ([ @t + 7

HEP(X) HEP(X)

—
—

< /X r(z)dv(z) + R(v) — /X r’(z)dv(z) — R(v)
- [ @)= vt
< 07

where (1) holds due to the fact that dom (D¢ (-, pg)) € Z(X).

1.8.2 InfoGAIL

In this case, we exploit the fact that —R(u) takes the form of an Integral Probability Metric between p and pg.
Let M, the set of functions that are L-Lipschitz with respect to d. For any r € F,(X) we have

(Rr()= s ( / i) - p ( | v - | h(w)duE(w)>>
[ )@+ o, 0),

where (1) is due to (Husain, 2020, Lemma 5). Thus, it holds that

sup R(p) = inf (Rpr.y(r/) +/ —r'(z)dug(z) —|—LHL(—’I“/))
HGKP,'Y T‘/E}-b(X) X

2 .
2wt (Ren )= [ @)+ o, 0)

= inf (RLP77(7“')— /X T’(.I‘)d,uE(x)>a

r/:Lipy <L
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where (2) holds since Lip,(—r) = Lip,(r). We now show that adding an entropy term to
R(p) = - sup (/X h(x)dp(x) — /Xh(x)dﬂE(f)> — By (s.0) [KL(mu(- [ 8), Ua)] (3)

h:Lip, (k)<L

will ensure that (—R)* is increasing. Using standard results from (Penot, 2012) that the conjugate of the sum
of two functions is the infimal convolution between their conjugates mean we will convolve both (3) and entropy
conjugate from Lemma 2 of the main file.:

r€Fp(X) \se8

(=R)*(r") = inf <sup/Xexp (r'(s,a) —r(s,a)) dU(a) +/eruE +L7-LL(7")> (4)
= inf (sup/XeXp (r'(s,a) — r(s,a)) dU(a)—l—/){rduE). (5)

r€HL \scS

Let r” < 7’ pointwise and define
r* € arginf (sup/ exp (r'(s,a) — r(s,a)) dU(a) +/ rd,uE> , (6)
reHr seSJx X

noting that since exists due to Weierstrass Theorem since Hj, is compact and the mapping inside is convex and
lower semicontinuous. Next, we have

(=R)*(r") = (=R)*(r") (7)

= rier%-lt: (igg/x exp (1" (s,a) — r(s,a))dU(a) + /X rduE> — rieIgL <§lelg/xexp (r'(s,a) —r(s,a))dU(a) + /X rduE>
(8)

< ilelg/x exp (1" (s,a) — r*(s,a)) dU(a) + /X rdpg — ilelg/x exp (r'(s,a) — r*(s,a)) dU(a) — /X rrdup 9)

= ilég /X exp (r"(s,a) — r*(s,a)) dU(a) — flelg/x exp (r'(s,a) — r*(s,a)) dU(a) (10)

<0, (11)

where the last inequality follows from the fact that " < ¢’ and thus this proves that (—R)* is increasing.

1.9 Entropic Exploration

For any r € F(X)

Rr )= s ([ rdute) - KLUy

HERB(X)
W / exp (r(z)) dUx(z) — 1,
X
where (1) follows from (Feydy et al., 2019, Proposition 5).
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Chapter 7

Conclusion

The study of regularization at an abstract level has proven to be useful in delivering
results that bridge practice and theory and offer new pursuits for future directions.
We summarize the main insights into two sections: generative models and model
robustness.

Regarding the former, Chapter 3 reconciled two primary methods to address (1),
which allowed us to explain phenomena such as the behaviour of WAE and provided
foundations for Lipschitz regularized discriminators, which have demonstrated suc-
cess in existing empirical work. More generally, Chapter 5 showed that regularized
discriminators in other forms also yield benefits from the perspective of distributional
robustness and compliments existing narratives in this direction. We illustrated a the-
oretical benefit of the equivalence between GANs and Autoencoders in the form of a
generalization bound, which deepens our understanding of implicit generative mod-
els. Chapter 4 made an orthogonal contribution to generative models by presenting
a privacy-compliant model based on discriminators in GANs. This model is proven
to avoid major pitfalls of GANs such as mode-collapse and is guaranteed to converge
while consistently outperforming state-of-the-art methods.

From the robustness perspective, our work built a reinterpretation of regulariza-
tion as robustification for several learning settings. A connection of this type nat-
urally addresses both (1) and (2) since it is both a reinterpretation and a beneficial
guarantee on empirical performance. In particular, we first studied how regulariza-
tion in the form of penalized objectives manifest as distributionally robust objectives
as upper bounds to a great deal of generality in Chapter 5. The results provided
insights on other forms of existing penalties beyond Lipschitz, variance and kernel
norms, such as the manifold regularization penalty and generalized variance penal-
ties such as those appearing in the fairness-based approaches. It is then shown how
the result is tightened to equality, which has links to regularized binary classification
objectives commonly appearing in GANs. The two learning settings these results are
actively applied to include supervised learning (such as classification and regression)
and GANs. Chapter 6 extended the bridge between regularization and robustness
into the Reinforcement Learning (RL) setting. The main result addressed the robus-
tification properties of entropic-regularized policies. In particular, the contribution
comments on other RL policy maximization schemes such as a wide range of regu-
larizers and imitation learning, amongst new RL duality results that generalize their

101
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102 Conclusion

standard counterparts. Moreover, we discovered an interesting connection between
the deep Q-learning objective and regularization in policies, hinting at the benefits of
such particularly successful schemes in practice.

Throughout each chapter, we derived and employed technical results that serve
as additional contributions. In particular, the proof techniques are versatile and can
be applied to different learning settings involving regularization, as appropriately
discussed, beyond generative models and robustness to target the motivation of (1)
and (2).

7.1 Future Work

We discuss some future work along three different directions based on the contribu-
tions mentioned above.

7.1.1 Taxonomy of Generative Models

The results of Chapter 3 established a relationship based on Fenchel-duality results,
which we emphasize can be applied to different choices of regularizers and GAN
objectives at large. An example of this includes translation based GANs such as Cy-
cleGAN [Zhu et al.,, 2017] and MAGAN [Amodio and Krishnaswamy, 2018]. These
objectives operate with multiple different regularizers and often involve training dou-
ble the number of discriminators and generators. By showing duality results, one
can reduce and better understand the purpose of each appearing term. Other lines
of future work in this direction include considering costs c that are not metrics and
using the Wasserstein distance’s general dual formulation to derive the GAN model.
A similar result exists in [Farnia and Tse, 2018] where the c-transform will manifest;
however, the results established in Chapter 3 can be used to relate this to autoencoder
models.

7.1.2 Robust Adversarial Training

The results in Chapter 5 established a link between distributional level robustness
and regularization. However, in the context of ML, robustness is commonly ad-
dressed from the lens of adversarial training - a study into the tolerance of classifiers
against adversarial noise perturbations. While there are links between Wasserstein
distributional robustness and adversarial training, our results’ relevance with IPMs
beyond the Wasserstein distance is unclear. There are two concrete directions where
these results can be of use for the adversarial training community:

* Recently, the final distribution learned by a GAN has been utilized as training
data for binary classifiers [Wang and Yu, 2019; Charlier et al., 2019; Zhao et al.,
2017, 2019; Lee et al., 2017; Jalal et al., 2017; Poursaeed et al., 2018; Song et al.,
2017, 2018; Hayes and Danezis, 2018; Xiao et al., 2018; Samangouei et al., 2018],
which have observed to be empirically robust in the adversarial sense. There
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§7.1  Future Work 103

is little theory supporting these claims, and therefore, given the robustifying
benefits established in Chapter 5 of regularized GANs, the work establishes the
foundations to understand the robustness of these learned classifiers.

* Animportant topic used to measure classifiers” adversarial robustness is through
a quantity referred to as a robustness certificate. This certificate outputs a num-
ber under which a practitioner can assert the degree of robustness for a given
classifier. Recently, it has been shown that one can form a certificate with a dis-
tributionally robust framework for f-divergences [Dvijotham et al., 2020]. The
results from Chapter 5 outline similar schemes for IPMs and, therefore, can be
used to develop new certificates similar in contribution to that of [Dvijotham
et al., 2020].

7.1.3 Duality for Practice

The main contributions of Chapters 3 and 5 can be viewed as duality theorems which
allow us to reinterpret objectives as other existing objectives (such as GANs to Au-
toencoders) or completely new ones (such as reward-adversarial games). This the-
sis’s main benefits have been conceptual, providing explicit theoretical gains and
providing insights for existing practice. However, new algorithms can also be in-
spired through dualities. For example, the RL setting shows that policy learning is
equivalent to a reward-adversarial problem, and therefore one can learn the optimal
reward in this dual space and consequently recover the optimal policy by solving an
MDP on this reward. The practitioner can also use the optimal adversarial reward
in understanding the environment and problem set-up at large. Another example
involves using the dual form proven between GANs and Autoencoders, where one
can use the optimal discriminator to construct an optimal encoder. Such a result
will practically realize the link between GANs and Autoencoders beyond the theory
established in this thesis.
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