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Abstract

Recent advancements in Deep Learning (DL) have helped researchers achieve fascinating re-
sults in various areas of Machine Learning (ML) and Computer Vision (CV). Starting with
the innovative approach of [Krizhevsky et al., 2012] where they have utilized processing pow-
ers of graphical processing units (GPU) to make training large networks a viable choice in
terms of training time, DL has had its place in different ML and CV problems over the years
since. Object detection and semantic segmentation [Girshick et al., 2014; Girshick, 2015; Ren
et al., 2015], image super-resolution [Dong et al., 2015], action recognition [Simonyan and
Zisserman, 2014a] etc. are a few examples of that. Over years, many more new and powerful
DL architectures have been proposed: VGG [Simonyan and Zisserman, 2014b], GoogleNet
[Szegedy et al., 2015], ResNet [He et al., 2016] are examples to most commonly used network
architectures in the literature. Our main focus is on the specific task of Supervised Domain
Adaptation (SDA) using Deep Learning. SDA is a type of domain adaptation where target and
source domains contain annotated, labeled data.

Firstly we look at SDA as a domain alignment problem. We propose a mixture of align-
ment approach based on second- or higher-order scatter statistics between source and target
domains. Although they are different, each class has two distinct representations in source
and target domains. The proposed mixture alignment approach reduces within-class scatters to
align the same classes from source and target while maintaining between-class separation. We
design and construct a two-stream Convolutional Neural Network (CNN). One stream receives
source data, and the second gets the target with matching classes to implement the within-class
alignment. We achieve end-to-end training of our two-stream network together with alignment
losses.

Next, we propose a new dataset called Open Museum Identification Challenge (Open MIC)
for SDA research. Office dataset [Saenko et al., 2010] is a very common dataset in SDA
literature. But one main drawback of this dataset is that results have started to saturate, reaching
90+% accuracy. The limited number of images is one of the leading causes of high accuracy
results. Open MIC aims to provide a large dataset for SDA while providing challenging tasks
to be addressed by researchers. We extend our mixture of alignment loss from Frobenius norm
distance to Bregman divergences and the Riemannian metric to learn the alignment in different
feature spaces.

In the subsequent study, we propose a new representation to encode 3D body skeleton
data into texture images using kernel methods for the Action Recognition problem. We utilize

ix



x

these representations in our SDA two-stream CNN pipeline. We improve our mixture of align-
ment losses to work with partially overlapping datasets to let us use other Action Recognition
datasets as additional source domains even if they only partially overlap with the target set.

Finally, we move to a more challenging domain adaptation problem: Multimodal Conver-
sation Systems. Multimodal Dialogue dataset (MMD) [Saha et al., 2018] provides dialogues
between a shopper and retail agent. In these dialogues, the retail agent may also answer with
specific retail items such as clothes, shoes etc. Hence, the conversation flow is a multimodal
setting where utterances can contain both text and image modalities. Two-level RNN encoders
are used to encode a given context of utterances. We propose a new approach to this problem
by adapting additional data from external domains. For improving the text generating capa-
bilities of the model, we utilize French translation of the target sentences as an extra output
target. To improve the model’s image ranking capabilities, we use an external dataset and find
the nearest neighbors of target positive and negative images. We set up new encoding methods
for these nearest neighbors for assigning them to the correct target class, positive or negative.

In summary, we focus on Deep Learning based Supervised Domain Adaptation problems.
We have proposed a new approach to domain alignment using class scatter tensors from sec-
ond or higher-order statistics. We have created a new large dataset for SDA research and
demonstrated learning new metrics with our mixture of alignment loss. We have extended our
research to Action Recognition and modified mixture of alignment losses to work with any
given two domains even if their classes do not fully overlap. Finally, we move to the multi-
modal conversation. We propose new methods to get and encode additional data from external
domains to improve multimodal dialogue agents.
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Chapter 1

Introduction

1.1 Deep Learning

Machine Learning (ML) is the problem of teaching computers to classify, detect, separate,
segment, translate, speak, and many other human-like tasks. ML accommodates various meth-
ods and algorithms applicable to many different learning problems: Support Vector Machines
(SVM), Artificial Neural Networks (ANN), regression, Bayesian Networks. ANN is con-
structed from neuron-like units where one neuron connects to neurons of the previous layer
and the next layer. Layer by layer structure of the ANN imitates the brain’s neural process of
feed-forward style where inputs are processed in one group of neurons and forwarded to other
neurons connected to it. Learning in ANN is done through gradient backpropagation, where
the error is calculated with respect to the target and network output. This error is backprop-
agated by following the chain rule of derivatives from the output layer back to the first layer.
[Rumelhart et al., 1985] introduced this error-propagation idea and proved that Artificial Neu-
ral Networks, in other words, Multi-Layer Perceptrons can learn the input representations by
updating its internal states with the backpropagated error. [LeCun et al., 1998] showed many
years later than its introduction that backpropagation trained networks can be used in a real-life
task, document recognition.

ANNs suffered an inconvenient problem at that time, vanishing gradient at early levels of
the model. When the error is propagated towards the earlier layers, the gradient will become
smaller and smaller due to multiplicative nature of backpropagation. Gradients are used to
update the network’s weights; ending with near-zero gradients would cause the network to stall
and not learn anything. Another major problem of ANNs was that it was not easy to train and
required a lot of processing power, preventing researchers from trying out different structures,
larger models. It took several years to address these issues and overcome the limitations of
ANNs.

Then [Krizhevsky et al., 2012] has started the new era, Deep Learning. They showed
that utilizing Graphical Processing Units (GPU) would provide the required processing power
to train large networks efficiently. They have demonstrated that Rectified Linear Unit (ReLU)
[Nair and Hinton, 2010] with its non-saturating property would make the training several times
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faster compared to saturating sigmoid activation functions used in traditional neurons. Layers
in ANNs are called fully connected layers since each neuron is connected to every other neuron
in the previous and the next layer. Considering each connection as a weight to learn, this fully
connection nature of ANNs would cause the network to contain many weights it needs to learn.
But Convolutional Neural Network (CNN) used in [Krizhevsky et al., 2012] would make use
of convolution operation and hence reduce the number of weights in one layer to the size
of the convolution filter. With all these improvements, they were able to train a large CNN
with five layers on ImageNet classification challenge [Russakovsky et al., 2015] of 1.2 million
images within six days. They were able to increase the state of the art results of the time by
a large margin, about 11%. This outstanding improvement and the ideas proposed got many
researchers’ attention, igniting the Deep Learning era in ML literature.

Deep Learning can be essentially defined as the ability to efficiently train large networks on
large datasets in reasonable time frames. Over time, deep networks became larger and deeper.
[Simonyan and Zisserman, 2014b] from 5 layered structure of [Krizhevsky et al., 2012] and
proposed new models with 16 and 19 layers. Then [Szegedy et al., 2015] was able to train
networks with 22 layers. [He et al., 2016] took the word "deep" to another level and trained
networks with even more than 100 layers deep. Over time, as predicted by [Krizhevsky et al.,
2012], achieving better results for image classification was inevitable with better and powerful
GPU and deeper models.

Although it was introduced in CNN for the image classification task, many more deep ar-
chitectures were designed and applied to various problems in ML research. R-CNN and its
subsequent iterations achieved impressive results on object detection and semantic segmenta-
tion tasks [Girshick et al., 2014; Girshick, 2015; Ren et al., 2015]. [Dong et al., 2015] utilized
a CNN-based model in image super-resolution task to generate a higher resolution image from
the given lower resolution one and achieved much better results than the traditional bicubic in-
terpolation based image upscaling. [Simonyan and Zisserman, 2014a] proposed a two-stream
network-based model for the action classification task.

Achievements of Deep Learning were limited to image-related problems. It was not un-
usual to see Deep Learning types of approaches used in any area of Machine Learning. Long
Short-Term Memory (LSTM) type of recurrent networks was used by [Sutskever et al., 2014]
to model and learn sequence to sequence nature of automated language translation task. Em-
beddings from Language Models (ELMo) [Peters et al., 2018] and Bidirectional Encoder Rep-
resentations from Transformers (BERT) [Devlin et al., 2018] revolutionized natural language
processing literature by providing powerful models that can extract text-based features and
achieve state of the art results in various text-related tasks. Deep Recurrent Neural Networks
(RNN) was utilized in [Graves et al., 2013] for speech recognition from audio signals.

Deep Learning’s successful applications in various ML fields are also related to easy access
to readily available GPU-based implementations. Since its introduction, various frameworks
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have provided efficient GPU-based implementation of core elements such as convolution lay-
ers, pooling, activation functions, and the ability to construct and train models easily. This ease
of prototyping and rapid development helped researchers model and develop new architectures
for various problems smoothly. To name a few of these: Theano [Al-Rfou et al., 2016], Ten-
sorflow [Abadi et al., 2015], Pytorch [Paszke et al., 2019], Matconvnet [Vedaldi and Lenc,
2015], Caffe [Jia et al., 2014] etc. provided easy to use frameworks in various programming
languages. One advantage found in Theano, Tensorflow, Torch, and Pytorch was implementing
an auto differentiation tool in the framework. Every operation in a network requires gradient
calculations for its input and weights to apply backpropagation. Auto differentiation helped
researchers skip this load and automatically calculate any new operation’s gradients as long as
it is within the boundaries of the framework.

A simple illustration of a CNN can be found in Figure 1.1. The figure demonstrates a
couple of the most used layer types found in CNN: convolution, pooling, and fully connected
layers. These layers can be found in many different state of the art models. These layers can
be explained briefly as follows:

1. Convolution layer: A predetermined number of randomly and differently initialized
2d kernels convolved over each channel of the image to calculate the output response of
these filters, kernels. Randomly initialized starting points of these filters let them explore
different feature spaces and learn interesting various shape structures. Generally, early
convolutional layers’ kernels tend to learn edge and corner like basic shape defining
features, but in later and deeper levels, they learn more sophisticated shapes.

2. Pooling Layer: Pooling is the operation of downsampling of the input feature map. This
operation reduces the spatial size of the feature maps, which consecutively reduces the
total number of operations required in the following layers to counter overfitting. In lit-
erature, various types of downsampling operations are used in pooling layers, maximum,
average, global average etc., while the max-pooling is the most common one.

3. Fully Connected Layers: Fully connected layers are the same layers used in classic
ANNs. Every output neuron is connected to each of every input neuron. It has been
proven that at least one fully connected layer is a universal function approximator [Cy-
benko, 1989]. This feature allows the final fully-connected layers to learn task-specific
procedures from the received feature maps, for example, a classifier for the image recog-
nition task or a regression function for the image detection.

Deep Learning literature contains many more layer types for different problems and tasks.
For example, loss layers are the part where the error is calculated for backpropagation. They
are task-specific functions for different kinds of problems. Similarly, many different layers are
specific to their field of application. They are out of the scope of this brief introduction chapter.
In the following chapters, any particular layer type will be analyzed and discussed as required.
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Figure 1.1: Simple illustration of a CNN, demonstrating general layers types used in the construction
of the models.

Data used in deep learning comes in many shapes and forms. For example, simple RGB
images, illustrations, depth images, thermal images, sentences, movie scripts, conversations,
videos, body skeleton scans, voice, and many other types exist in the literature. Even for RGB
images, there are many different ways to collect them, from professional cameras to drawings.
Between two collections of images, there can be many different conditions such as lightning,
blur, background, noise levels, environmental conditions etc. Classical ML and deep learning
methods might suffer from these differences, which might be summarized as follows:

• Same collection method but different conditions such as lightning, day or night etc.

• Same conditions but collected through different tools, for example, webcams, profes-
sional cameras, web images.

• Same object or class is represented through uncorrelated methods, for example, paintings
and real images or text descriptions of an image and the image itself.

Domain adaptation addresses these challenges where classical methods fail. It aims to
bring two different data collections together and learn a shared space where ML can achieve
better results. The following section will give an overview of Domain Adaptation, current
methodology, and our proposed solutions to several problems in its current state.

1.2 Domain Adaptation

In this current age, millions of images are collected, produced, created, and stored every day
through different methods and tools all around the world. For any chosen image category, either
specific or broad such as animals or American Wirehair cats, its image representation can be
found in many different types, including, but not limited to digital, painting, thermal imaging,
x-ray imaging etc. There are even more sub-categories within any of these representations;
for example, painting of cats can have different styles such as modern, surrealistic, abstract,
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Figure 1.2: Top, middle and bottom rows show examples from the Amazon, DSLR, and Webcam
domains from the Office dataset [Saenko et al., 2010]

or other source materials such as oil, acrylic, watercolor, or pencil. These mediums where the
images of one category are represented through different means is what we call "Domain". A
domain defines a generic approach, tool, or methodology of creating or defining an image. For
example, Digital Single Lens Reflex (DSLR) photography represents the domain where the
imaging device is DSLR cameras. Similarly, webcam photography would be the domain of
images where the imagery tool is a webcam.

Different domains create different representations of the same category images where each
domain would contain different statistical information. For example, even if the result would
look similar to the human eye for DSLR and webcam images, they would still have a differ-
ent range of pixel values, noise levels, mean etc. Dissimilarity would increase further if we
compare disconnected mediums such as DSLR photography against painting.

Figure 1.2 shows 5 different objects from 3 different domains. Images are from the Office
dataset [Saenko et al., 2010] which provides images for daily office objects from 3 different
domain sources: Amazon product images, DSLR images, and webcam images. In the figure,
the first row images are from the Amazon domain, the middle ones are from the webcam
domain, and the last row images are from the DSLR domain from the dataset. It is evident
in the figure that one object category can be represented differently in different domains. For
example, while Amazon products are depicted on a white background, the other two domains’
images include real-world background representations in the image. Even when comparing
webcam and DSLR images, the difference between these domains is apparent in images: light
reflection in webcam images, quality difference etc.

In ML methods where the computer needs to learn from the given data, these different
representations provide a diversified knowledge spectrum. Domain adaptation aims to improve
the learning in a given target domain using the knowledge from source and target domains
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Figure 1.3: Simple illustration of Domain adaptation method categories.

together. It is a sub-task of ML where both supervised and unsupervised methods can be
used. Learning here refers to the specific problem of ML, for example, the image recognition
problem. For the image recognition problem, one domain could contain DSLR images of
animals, and another domain could be their paintings. Although statistically and distribution-
wise different, these two other domains provide information about the object of interest from
different views. Domain Adaptation (DA) is the ability to utilize images from various domains
to learn the task of interest jointly.

DA defines two terms to refer to different domains: source and target. The target domain
is the target data where the trained models need to achieve better accuracy, ranking, or any
other metric. The model aims to learn the target distribution. On the other hand, the source
is the domain that provides a different distribution for training to help learning in the target
domain. Source provides a different perspective on the given target data. DA aims to utilize
source domain along with target to understand target distribution better, even though they are
separate domains with different distributions.

Depending on the problem and the data available for that specific problem, DA can be
done through different ML methodologies supervised, unsupervised, or semi-supervised learn-
ing. In Supervised Domain Adaptation (SDA), both source and target domains have labeled
data, meaning that the samples’ classes and categories are known during training time. In
contrast, for Unsupervised Domain Adaptation (UDA), target samples’ labels are unknown
during training while the source domain still contains labeled data. Compared to SDA, UDA
constitutes a more complex problem, as the target model’s labels will not be known, and the
knowledge to understand and align clusters of target data will be learned from source data only.
Semi-supervised DA (SSDA), on the other hand, will include a small set of target samples with
labels available and the rest of the target samples without labels. Our primary focus will be on
SDA and, in particular Deep Learning based SDA.

Domain adaptation is available in many different types. Depending on the number of
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sources used, there are single or multiple-source DA methods available. While single-source
DA uses one source domain with the target, multiple source DA will utilize several source
domains together, for example, images in different lighting conditions, different backgrounds
etc. Depending on the nature of the data and discrepancy between source and target domains, it
can be named homogeneous or heterogeneous DA [Zhang et al., 2019]. In homogeneous DA,
source and target share similar feature space and thus same feature dimensions; for example,
source and target domain in the Office dataset [Saenko et al., 2010] form a homogeneous DA
problem where both domains are images. For heterogeneous DA, target and source do not
share a common feature space, such as the source contains images while the target domain is
text. Summary of DA types can be seen in Figure 1.3.

1.2.1 Deep Domain Adaptation

In the literature, various solutions and approaches exist for DA problems. Depending on the
proposed solution, we can categorize DA into shallow and deep categories. Shallow DA can
be further divided into two sub-classes: instance-based and feature-based [Wang and Deng,
2018]. Instance-based DA trains models on weighted source domain samples to learn and
adjust the domain shift between source and target domains [Xu et al., 2018], [Chu et al., 2013].
On the other hand, feature-based DA aims to learn a common feature space where the source
and target domains are mapped into to address domain shift problem [Pan et al., 2010], [Gong
et al., 2013], [Gheisari and Baghshah, 2015].

In recent years, deep DA solutions have been proposed to tackle domain adaptation prob-
lems, where deep learning-based networks are used. [Tzeng et al., 2015] presents a new CNN
architecture to utilize well-labeled source data to transfer knowledge to sparsely labeled train-
ing data by forcing the target network to output activations similar to those in the source net-
work. [Sun and Saenko, 2016] proposes a correlation alignment loss for unsupervised DA
where the target is unlabelled. This loss aims to learn target distribution from the second-order
statistics of the source domain. [Rozantsev et al., 2018] utilizes a two-stream network with
weights not being shared between the layers while also adding regularization loss between
each related layer to control their difference spread.

We regard the SDA problem as a type of alignment problem with multiple domains with
multiple categories. SDA requires both learning class-wise alignment to understand the sep-
aration of each class and the alignment of domains to better adapt the data from the source
domain into the target domain. Figure 1.4 shows a simple illustration of the domain alignment
problem. Three classes are shown from two different domains, desired outcome shown on the
right image. Domains should be aligned such that the same classes have similar distributions
in both domains, but they should still be separable with the shown separation boundaries.

For tackling this domain alignment problem, we propose a novel mixture of alignment loss
based on second and higher-order scatter tensors. Pairwise class statistics are used to bring the
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Figure 1.4: Simplified representation of domain alignment problem. Blue-colored shapes represent
one domain, and orange is another domain. Circle, triangle, and rectangles represent different classes
available in the shown domains. The image on the left shows unaligned domains, and the image on the
right shows the desired alignment outcome. Dashed lines indicate the separation boundaries between
the classes.

same classes together. Given that each class might benefit from different levels of alignment,
we further control class-wise alignment with a trainable weight for each class. Further details
of our proposed mixture of alignment loss and results can be found in Chapter 2.

There are several benchmarking datasets available in the literature. A commonly used ex-
ample, Office dataset [Saenko et al., 2010], provides images of 31 different daily office objects
in three other domains: Amazon, DSLR, and webcam. DSLR and webcam domains include
photos taken with DSLR and webcam cameras, respectively, while images in the Amazon
domain are on white backgrounds, object-only images. Office dataset contains around 4100
images in total for three given domains. Sample images from this dataset where the same class
images are shown for all three domains can be seen in Figure 1.2. Although it is widely used as
a benchmark dataset, it contains several downsides. In terms of complexity, it lacks challenging
tasks, and the domain shift is visually tiny, for example, DSLR to webcam. Lack of complex-
ity results in saturated accuracy results passing 90% line. Also, for deep DA, the total number
of images per domain is low compared to general deep learning datasets. NYU Depth Dataset
[Nathan Silberman and Fergus, 2012] provides video sequences of indoor scenes recorded with
both RGB and depth cameras. Although it offers many unlabelled video frames, there are 1449
annotated RGB and depth image pairs.

To fill in these missing points for general SDA tasks, we propose Open Museum Iden-
tification Challenge (Open MIC). Dataset is created from 10 distinct exhibitions of paintings,
timepieces, sculptures, glassware, relics, science exhibits, natural history pieces, ceramics, pot-
tery, tools, and indigenous crafts. Open MIC contains images of 866 unique exhibit instances
with annotated 8560 source domain images and 7596 target domain images along with 380k
unlabelled video frames. While a large number of annotated target and source samples let the
dataset be used in SDA, unlabelled video frames can still be used in UDA or SSDA methods.

Each art piece in the dataset is both captured with a mobile phone and a wearable cam-
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Figure 1.5: Examples of the source and target subsets of Open MIC. Top row includes Paintings (Shn),
Clocks (Shg), Sculptures (Scl) and Science Exhibits (Sci). As the images per exhibit demonstrate,
different viewpoints and scales are covered during capturing. Bottom row shows samples images from
target subsets of Paintings (Shn), Clocks (Shg), Sculptures (Scl), Science Exhibits (Sci) and Glasswork
(Gls), Cultural Relics (Rel), Natural History Exhibits (Nat), (Shx), Porcelain (Clv) exhibits. Due to
capturing through wearable cameras, variety of photometric and geometric distortions can be seen in
the images.

era. The difference in capturing method creates challenging problems for domain adaptation
research such as quality of lightning, motion blur, occlusions and clutter, rotations, glare, trans-
parency, non-planarity, clipping etc. Example images from source and target sets can be seen
in Figure 1.5 demonstrating various challenges and distortions available in the dataset.

1.2.2 Action Recognition

Action recognition is the task of differentiating different action categories, for example, run-
ning, jumping, handshaking, pulling etc. For action recognition, due to its nature of sequential
movements, generally, videos are used as the primary source. However, in recent years, RGB-
D-based sources have become popular with the easy recording capabilities of Kinect sensors
on 3D human skeleton body joints [Wang et al., 2018]. Since these joints’ movement and their
relation to each other in 3D space define an action, they are essential in understanding the
activity.

Action recognition literature contains various datasets such as NTU RGB+D [Shahroudy
et al., 2016], SBU-Kinect-Interaction [Yun et al., 2012], KTH [Schuldt et al., 2004], UTKinect-
Action3D [Xia et al., 2012] and many more others where they offer recordings of actions in
similar mediums, for example, videos or sequences of human body joints. A quick look at these
datasets reveals that the range of action classes are rather small, starting from 10 and reaching
120 in NTU RGB+D [Shahroudy et al., 2016] which is one of the largest datasets for human
action recognition. Given that the number of actions is rather small in those datasets, it is in-
evitable that these action classes would overlap between different datasets. Also, recordings of
actions are generally very similar, either using an RGBD camera to record videos and depth or
using Kinect-like hardware to record body skeletons with joint locations. This similarity be-
tween the datasets inspired us to utilize domain adaptation. We can combine multiple datasets
to jointly train a supervised model and use overlapping classes between different datasets.
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Figure 1.6: Four texture maps of 4 different actions. Note the subtle differences

Combining multiple datasets allows us to exploit the large-scale action recognition datasets to
improve classifiers trained on small-scale datasets. The large-scale counterpart offers much
more data for the overlapping classes than the small-scale dataset.

Early approaches to action recognition were more focused on handcrafted temporal fea-
tures on time sequences such as temporal-templates tracking the motion of spatial locations
[Bobick and Davis, 2001], histograms of oriented 3D spatio-temporal gradients [Klaser et al.,
2008], spatial interest points in the spatio-temporal domain [Laptev, 2005]. However, with the
advancements in DL, it was inevitable that deep learning based action recognition achieved
much better results. [Simonyan and Zisserman, 2014a] uses RGB images together with the
optical flow to feed a two-stream-based CNN. 3D convolutional networks are used to address
the time domain in videos [Ji et al., 2012]. [Karpathy et al., 2014] utilizes CNN for large-scale
video classification.

We propose a novel method for encoding sequences of these joints to make them usable in
traditional CNN. Traditionally inputs to CNN consists of images in the spatial domain where
there is no relation to time. 3D body joints sequence represents the body joints in 3D co-
ordinates in the spatial domain, and its frame by frame sequence is the temporal domain. We
combine spatial and temporal domains into one 2D CNN texture-map like inputs derived based
on kernel methods [Scholkopf and Smola, 2001]. We describe our methodology and how we
utilize kernel-based derivation in more detail in Chapter 4. Examples of the generated texture
maps which will be fed to CNN can be seen in Figure 1.6

We further propose a domain adaptation based strategy to the action recognition problem.
We leverage Kinect-based data available in other datasets as a source domain to improve per-
formance on the target domain. Our texture maps allow us to easily integrate our mixture of
alignments loss to action recognition problems. We extend our alignment loss to work with
datasets that partially overlap in the available classes of source and target domains.

1.2.3 Multimodal Conversation

With the advancements and improvements in deep learning achieving outstanding results in
various problems and tasks, attention has been shifting towards multimodal problems in deep
learning literature in recent years. Multimodal problems are the tasks that require learning from
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multiple separate domains, such as image captioning [Xu et al., 2015], question answering
from videos [Zeng et al., 2017]. This task involves domain adaptation types of approaches to
learning a shared space between these separate domains.

The multimodal conversation system is another example of multimodality-based input. It
consists of utterances where they contain multimodal data. For example, a dialogue between
an online retail assistant and a shopper will include images, sentences, and maybe even a voice
if the retail assistant can talk. This heterogeneous nature of multimodal conversations makes it
a challenging task to learn for ML methods.

Multimodal Dialogue dataset (MMD) [Saha et al., 2018] provides a large set of multimodal
conversations. It imitates the dialogue between a shopper and a retail agent with a semi-
automated process. Utterances in dialogues can contain a sentence, clothing images, or both. In
the dialogues, it can be observed that images are referred to in text through different indicators
such as index numbers first, second etc. or conjunctions after, before, next etc. Capturing these
fine details and understanding the relationship between the images and text is the challenge to
address. The authors propose two benchmark tasks on the dataset, image ranking, and next
sentence predictions. These tasks are named image task and text task in short. Each task
requires a different approach and methodology as the target modality is different for each task.

In Chapter 5, we propose utilizing external data and adapting knowledge through assisted
supervision to improve results on image and text tasks. We translate target sentences to French
in the text task to capture another language’s intrinsic structure to learn English targets better.
We propose an embedding method to search and find nearest neighbor images of target images
to better understand ranking through external knowledge for the image task.

1.3 Contributions

Our contributions to Deep Learning based Domain Adaptation are listed as follows:

• We formulate a novel mixture alignment loss based on second and higher-order class
scatter tensors for SDA. We provide a fast kernelized version of this loss and its deriva-
tives, making its use tractable in deep learning. SDA end-to-end training of non-euclidean
Jensen-Bregman LogDet Divergence (JBLD) and Affine-Invariant Riemannian Metric
(AIRM) distances used at this mixture of alignment loss. We demonstrate how we make
this non-euclidean distance-based training tractable using Nystrom projections.

• We propose a novel method for encoding 3D body skeleton joint sequences into a
texture-like feature map representations based on kernel methods. To the best of our
knowledge, we are the first to adapt SDA to action recognition from sequences of 3D
skeleton joints. We extend our mixture of alignment loss by making it work with par-
tially overlapping target and source domains. This overlapping helps us utilize various
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action recognition datasets as source domains where they would only partially overlap
with the target domain.

• For the Multimodal Dialogue (MMD) problem, we propose a novel method to incor-
porate external images through soft and hard assigned nearest neighbor embeddings
(MMD-Neha and MMD-Nesa). This method helps the network in image ranking tasks
by assisting with external knowledge. For the MMD problem, we propose utilizing
French translation of sentences in assisted supervision to improve the network’s un-
derstanding of sentences through the structure of another language to generate better
sentence predictions.

• We collect and annotate a new challenging dataset, Open MIC, for domain adaptation
research, consisting of museum exhibit images. By using Android phones and wearable
cameras to capture the photos of exhibits, we create two domains for DA problems. The
latter will create distortion-like challenges due to the nature of the capturing method.
We provide extensive baseline results, evaluation protocols, statistics for the Open MIC
dataset.

1.4 Thesis Outline

The rest of the thesis is structured into chapters with respect to listed contributions as follows.

In Chapter 2, we start our work on supervised domain adaptation. We look into previous
SDA methods and discuss that if the domain alignment is executed class-wise, it can improve
the performance. We propose a novel alignment loss based on the mixture of alignments of
second- or higher-order scatter statistics between the source and target domains, which aims
to bring the same classes’ distributions in source and target domains close to each other while
also maintaining separability of different classes. This loss is used as a connection bridge
between source and target at the end of a two-stream CNN, trained in an end-to-end fashion.
We demonstrate achieving higher than the state of the art results in several DA datasets.

In Chapter 3, we address the limitations of datasets in SDA literature where results have
reached saturation, and the number of images is limited for deep learning based networks.
We demonstrate a new dataset named Open Museum Identification Challenge to address these
problems. We discuss the details of our new dataset, how it is collected, available domains,
how domain adaptation can be applied to it, and which challenges it poses. We propose an
extension to our alignment loss by using end-to-end Bregman divergences and the Riemannian
metric and how we make this training with non-euclidean distances tractable in deep networks.
We present extensive ablation studies to provide baseline results in our dataset for each DA
split and a demonstration of how it can also be used for unsupervised domain adaptation.

In Chapter 4, we move to action recognition problem. We propose a new representation by



§1.4 Thesis Outline 13

encoding sequences of 3D body skeleton joints in texture-like representations based on kernel
methods. We demonstrate how we utilize these representations in traditional CNN, enabling
us to apply our SDA methods to the action recognition problem. To the best of our knowledge,
we are the first to adapt SDA to the action recognition on time sequences of 3D body skeleton
joints. We extend our mixture of alignments loss to work with datasets which class concepts
match partially.

In Chapter 5, we change our focus to a more challenging problem, multimodal conversa-
tion systems. We work on the Multimodal Dialogue (MMD) dataset [Saha et al., 2018] which
provides multimodal dialogues between a shopper and the retail agent. We propose a novel
assisted supervision method by leveraging external datasets through nearest-neighbor embed-
dings for image tasks. We formulate our nearest neighbor embedding method and demonstrate
higher results than state-of-the-art. For the text task, we propose a novel assisted supervision
by utilizing French translations as additional target output of the network. This approach helps
the network exploit a different language’s structure in training. We demonstrate our results on
the MMD dataset.

And finally, in Chapter 6, we finalize the thesis by discussing what we’ve achieved and
what future work could be taken based on our findings in this thesis.



14 Introduction



Chapter 2

Domain Adaptation by Mixture of
Alignments of Second- or
Higher-Order Scatter Tensors

2.1 Summary

In this chapter, we propose an approach to the domain adaptation, dubbed Second- or Higher-
order Transfer of Knowledge (So-HoT), based on the mixture of alignments of second- or
higher-order scatter statistics between the source and target domains. The human ability to
learn from few labeled samples is a recurring motivation in the literature for domain adap-
tation. Towards this end, we investigate the supervised target scenario for which few labeled
target training samples per category exist. Specifically, we utilize two CNN streams: the source
and target networks fused at the classifier level. Features from the fully connected layers fc7
of each network are used to compute second- or even higher-order scatter tensors; one per net-
work stream per class. As the source and target distributions are somewhat different despite
being related, we align the scatters of the two network streams of the same class (within-class
scatters) to a desired degree with our bespoke loss while maintaining good separation of the
between-class scatters. We train the entire network in end-to-end fashion. We provide evalua-
tions on the standard Office benchmark (visual domains), RGB-D combined with Caltech256
(depth-to-rgb transfer) and Pascal VOC2007 combined with the TU Berlin dataset (image-to-
sketch transfer). We attain state-of-the-art results.

We start our research by tackling domain adaptation as an alignment problem. As discussed
in the previous chapter, state of the art methods did not utilize supervised class-wise alignment
in domain adaptation tasks. We address this by formulating an approach to align matching
classes between two domains based on second- or higher-order class scatter tensors. This
chapter has been published as a conference paper: "Piotr Koniusz*, Yusuf Tas*, Fatih Porikli:
Domain Adaptation by Mixture of Alignments of Second- or Higher-Order Scatter Tensors.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

15
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2017.". * indicates shared credit, equal contributions.

2.2 Introduction

Domain adaptation and transfer learning are the problems widely studied in computer vi-
sion and machine learning communities [Baxter et al., 1995; Li et al., 2016]. They are di-
rectly inspired by the human cognitive abilities of generalizing to new concepts from very
few data samples (cf. training from scratch on over a million of labeled images of the Im-
ageNet dataset [Russakovsky et al., 2015]). From psychological point of view, transfer of
learning is “the dependency of human conduct, learning or performance on prior experience”.
This problem was introduced in 1901 under a notion of “transfer of particle” [Woodworth
and Thorndike, 1901]. In machine learning, transfer learning (or inductive learning) concerns
“storing knowledge gained while solving one problem and applying it to a different but related
problem” [West et al., 2007]. In practical computer vision and machine learning systems,
transfer learning refers to “an ability of a system to recognize and apply knowledge and skills
learned in previous tasks to novel tasks or new domains, which share some commonality”. In
general, given a new (target) task, the arising question is how to identify the commonality be-
tween this task and previous (source) tasks, and transfer knowledge from the previous tasks to
the target one. Therefore, one has to address three questions: what to transfer, how to transfer,
and when to transfer [Tommasi et al., 2010].

In what follows, we propose an approach to the domain adaptation, dubbed Second- or
Higher-order Transfer of Knowledge (So-HoT), based on the mixture of alignments of second-
and/or higher-order scatter statistics between the source and target domains. Specifically, we
utilize second- and/or higher-order scatter tensors, one per each network stream per class, such
that the first stream corresponds to the source domain while the second to the target. The
scatters are built from the feature vectors produced by the fc7 layer of AlexNet [Krizhevsky
et al., 2012]. We propose that, as the source and target distributions are only partially related
by their commonality, the scatters of the same class from both streams (within-class scatters)
should be aligned to a desired degree to capture this commonality as an overlap between parts
of the two distributions. At the same time, to achieve high classification accuracy, we maintain
good separation between the scatters representing different classes (between-class scatters).
We devise a simple loss that brings each pair of within-class scatters closer in terms of their
covariances as well as their corresponding means. Therefore, the CNN parameters stored by
convolutional filters and weights of the target network regularized by the source data in this
end-to-end fashion must produce statistics consistent with the source network. We view such
a regularization paradigm as being motivated by the theory of privileged learning [Vapnik and
Vashist, 2009]. In our case, the statistics of the source network regularize the target (and vice-
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(a) (b) (c) (d) (e)

Figure 2.1: Our alignment problem. In Figure 2.1a, a two-class toy problem with positive and negative
samples (+) and (−) is given. The solid and dashed ellipses indicate the source and target domain
distributions. The two hyperplane lines that separate (+) from (−) on the target data indicate large
uncertainty (denoted as β) in the optimal orientation for the target problem. Figure 2.1b shows that the
source and target distributions can be aligned enough to separate well two classes for both the source
and target problems. Figure 2.1c shows that partially aligned distributions have the commonality (CO)
as well as the source and target specific parts (SO) and (TO) that represent dissimilarity between the
source and target. Figure 2.1d depicts a multi-class problem. Beside of partially aligned means, the
orientations of the source and target distributions are allowed to partially differ – as a result, they i.e. fit
better into the piece-wise linear decision boundary. Figure 2.1e shows that differences in means ∆µ,
scale/shear ∆S and orientation ∆] of within-class scatters are all part of the alignment process.

versa) whilst in the privileged learning, the side information regularizes the solution dictated by
the empirical loss evaluated on the main data samples. See Figures 2.1 and 2.2 for illustrative
examples.

Furthermore, as distributions of the source and target domains may require different level
of alignment per class (the commonality depends on the class label), we investigate not only
an unweighted alignment loss (class-independent level of alignment) but also its weighted
counterpart which learns one weight per class (class-specific levels of alignment).

Additionally, as we work with second- and/or higher-order tensors, we propose a kernel-
ized variant of our alignment loss which provides computational speed-ups for typical domain
adaptation datasets.

To summarize, our main contributions are: i) a novel loss that we call So-HoT, which de-
fines the commonality between the source and target domains as the mixture of alignments
of second- and/or higher-order scatter tensors, ii) unweighted and weighted variants of align-
ments, and iii) a fast kernelized alternative of our alignment loss.

Next, we detail the notion of domain adaptation and transfer learning, review the related
literature and explain how our work differs from the state-of-the-art approaches.

2.3 Related Work

Domain adaptation assumes that the transfer of knowledge takes place among two or more
distinct domains e.g., e-commerce reviews and biomedical data. In contrast, transfer learning
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utilizes the same domain e.g., images of natural scenes with related but different distributions
where the goal may be to learn objects of a new class while leveraging other already learned
classes [Thrun, 1996; Tommasi et al., 2010]. Not surprisingly, these both notions are often in-
terchangeable e.g., natural images and sketches have related distributions but they come from
distinct domains at the same time. Another example is a so-called domain shift e.g., bicycle
in natural images vs. on-line retailer galleries. Transfer of knowledge may vary from simply
carrying over discriminative information from a source to target domain under the same set of
classes to inferring a solution to a new distinct task from a set of former ones [Thrun, 1996;
Intrator and Edelman, 1996]. Domain adaptation comes in many flavors. Single- or multiple-
source [Crammer et al., 2008] setups are possible e.g., single stream of natural images vs.
multiple streams supplied with photos of objects: on cluttered backgrounds, on a clear back-
ground, in a daytime or night setting, or even in multi-spectral setting. Moreover, the problem
in hand may be homogeneous or heterogeneous [Tommasi et al., 2010; Yeh et al., 2014] in na-
ture e.g., identical source and target representations using RGB images vs. a source represented
by a CNN trained on images [Fukushima, 1980; Krizhevsky et al., 2012] and a target using an
LSTM [Hopfield, 1982; Hochreiter and Schmidhuber, 1997] which is trained on text corpora
or video data [Herath et al., 2017b]. The architecture in use may be shallow [Daumé III et al.,
2010; Sun et al., 2016] or deep [Ganin et al., 2016] so that the commonality is established only
at the classifier level or across entire source and target networks, respectively. Noteworthy is
also recent trend in the CNN fine-tuning which by itself is a powerful domain adaptation and
transfer learning tool [Girshick et al., 2014; Sermanet et al., 2013] which requires large training
datasets. Moreover, domain adaptation and transfer learning address problems such as: learn-
ing new categories from few annotated samples (supervised domain adaptation [Chopra et al.,
2013; Tzeng et al., 2015]), utilizing available unlabeled data (unsupervised [Sun et al., 2016;
Ganin et al., 2016; Herath et al., 2017b] or semi-supervised domain adaptation [Daumé III
et al., 2010; Tzeng et al., 2015]), recognizing new categories in embedded spaces e.g., attribute-
based, without any training samples (zero-shot learning [Fei-Fei et al., 2006]).

In this chapter, we investigate the case of a deep supervised single-source domain adapta-
tion which can be easily extended to the multi-source and heterogeneous cases.

The Commonality. Deep learning [Krizhevsky et al., 2012; Simonyan and Zisserman, 2014b;
Harandi and Fernando, 2016] has been used in the context of domain adaptation in recent
works e.g., [Tzeng et al., 2015; Ganin et al., 2016; Chopra et al., 2013; Wang and Hebert,
2016; Kuzborskij et al., 2016; Tommasi et al., 2016; Long et al., 2015]. These works differ in
how they establish the so-called commonality between domains. In [Tzeng et al., 2015], the
authors propose to align both domains via the cross entropy which “maximally confuses” both
domains for supervised and semi-supervised settings. In [Ganin et al., 2016], an unsupervised
approach utilizes the assumption that predictions must be made based on features which cannot
discriminate between the source and target domains. Specifically, they minimize a trade-off
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between the so-called source risk and the empirical divergence to find examples in the source
domain indistinguishable from the target samples.

Our work differs from these methods in that we define the commonality as the desired
degree of overlap between the second- and/or higher-order scatters of the source and target.
After such an alignment, we let the non-overlapping tails of distributions also guide learning
which results in a more general classifier (i.e. avoid the domain-specific bias).

Moreover, in [Chopra et al., 2013], the authors capture the “interpolating path” between
the source and target domains using linear projections into a low-dimensional subspace which
lies on the Grassman manifold. In [Wang and Hebert, 2016], the authors propose to learn the
transformation between the source and target by the deep model regression network. These
two approaches assume that the source representation can be interpolated or regressed into the
target as, given the nature of CNNs, they can approximate highly non-linear functions.

Our model differs in that our source and target network streams co-regularize each other
to produce the commonality between the source and target distributions and accommodate the
domain-specific parts that should not be aligned.

For visual domains, the commonality can be captured in the spatially-local sense. In [Tom-
masi et al., 2016], the authors utilize so-called “domainness maps” which capture locally the
degree of domain specificity. Similarly, in [Kuzborskij et al., 2016], the authors extract local
patches of varying sizes at process each of these patches via CNNs. Our work is orthogonal
to these techniques. We represent the commonality globally, however, our ideas could also be
applied in a spatially-local setting.

Correlation Methods. Some recent works use correlation between the source and target dis-
tributions. Inspired by the Canonical Correlation Analysis (CCA), the authors of [Yeh et al.,
2014] utilize a correlation subspace as a joint representation for associating the data across
different domains. They also use kernelized CCA. In [Sun et al., 2016], the authors propose an
unsupervised domain adaptation by the correlation alignment.

Our work is somewhat related in that we utilize second-order statistics. However, we align
partially the class-specific source and target distributions to define the commonality (partial in-
tersection of scatters) in the supervised setting. We also align partially the distribution means
while the above unsupervised approaches use zero-centered feature vectors and the full align-
ment of the generic (c.f. class-specific) source and target distributions. We detail how to learn
the degree of alignment in an end-to-end fashion and introduce the kernelized loss between the
second- and/or higher-order scatter tensors; all being novel propositions.

Tensor Methods. Correlation approaches outlined above use second-order scatter matrices
which are tensors of order r = 2. In this work, we also investigate the applicability of higher-
order scatters r ≥ 3 for alignment. Third-order tensors have been found useful for various
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(a)

(b)

Figure 2.2: The pipeline. Figure 2.2a shows the source and target network streams which merge at
the classifier level. The classification and alignment loss ` and g take the data Λ and Λ∗ from both
streams and participate in end-to-end learning. At the test time, we use the target stream and the trained
classifier as in Figure 2.2b.

vision tasks. For example, spatio-temporal third-order tensor on video data is proposed for ac-
tion analysis in [Kim et al., 2007], non-negative tensor factorization is used for image denoising
in [Shashua and Hazan, 2005], tensor textures are proposed for texture rendering in [Vasilescu
and Terzopoulos, 2004], and higher order tensors are used for face recognition in [Vasilescu
and Terzopoulos, 2002]. A survey of multi-linear algebraic methods for tensor subspace learn-
ing is available in [Lu et al., 2011]. The above applications use a single tensor, while our goal
is to use tensors as the domain- and class-specific representations, similar to the sum-kernel
approaches [Koniusz et al., 2016b; Koniusz and Cherian, 2016; Koniusz et al., 2016a], and
apply them to alignment tasks.

2.4 Background

In this section, we review notations and the necessary background on scatter tensors, polyno-
mial kernels and their linearizations, which are useful in deriving our mixture of alignments of
second- and/or higher-order scatter tensors.

2.4.1 Notations

Let x ∈ Rd be a d-dimensional feature vector. Then, we use X =↑⊗r x to denote the r-mode
super-symmetric rank-one tensor X generated by the r-th order outer-product of x, where the
element of X ∈Sd

×r at the (i1, i2, ..., ir)-th index is given by Πr
j=1xij . IN stands for the index

set {1, 2, ..., N}. We denote the space of super-symmetric tensors of dimension d×...×d with
r modes as Sd

×r ⊂R×rd, where R×rd is the space of tensors Rd×...×d with r modes. The
Frobenius norm of tensor is given by ‖X ‖F=

√
∑

i1,i2,...,ir
X 2

i1,i2,...,ir , where Xi1,i2,...,ir represents the
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(i1, i2, ..., ir)-th element of X . Similarly, the inner-product between two tensors X and Y is
given by 〈X ,Y〉= ∑

i1,i2,...,ir
Xi1,i2,...,ir ·Yi1,i2,...,ir . Using Matlab style notation, the (i3, ..., ir)-th slice of

X is given by X :,:,i3,...,ir . The space of positive semi-definite matrices is Sd
+. Lastly, 1 denotes

a vector with all coefficients equal one.

2.4.2 Second- or Higher-order Scatter Tensors

We define a scatter tensor of order r as a mean-centered TOSST representation [Koniusz and
Cherian, 2016]:

Definition 1. Suppose φn ∈ Rd, ∀n ∈ IN represent some data vectors, then a scatter tensor
X ∈ Sd

×r of order r on these data vectors is given by:

X =
1
N

N

∑
n=1
↑⊗r (φn − µ) and µ =

1
N

N

∑
n=1

φn. (2.1)

In our supervised domain adaptation setting, the scatter tensors are obtained via apply-
ing (2.1) on the class-specific data vectors such as outputs of the fc7 layer of AlexNet. When
we need to highlight order r of X , we write X (r).

The following properties of the scatter tensors are worth noting (see [Koniusz and Cherian,
2016] for proofs):

Proposition 1. For a scatter tensor X ∈Sd
×r , we have:

1. Super-Symmetry: X i1,i2,...,ir =XΠ(i1,i2,...,ir) for indexes (i1, i2, ..., ir) and their any per-
mutation Π. The number of unique coefficients of X is (d+r−1

r ).

2. Every slice is at least positive semi-definite for any even order r ≥ 2 and X :,:,i3,...,ir∈
Sd
+, ∀(i3, ..., ir)∈Id.For r=2, tensor X also is a covariance matrix.

3. Indefiniteness for any odd order r≥ 1, i.e., under a CP decomposition [De Lathauwer
et al., 2000], it can have positive, negative, or zero entries in its core-tensor.

Due to the indefiniteness of tensors of odd orders and potential rank deficiency, we restrict
ourselves to work with the Euclidean distance between such scatter representations. Also, as
the number of unique coefficients of X is of order ∼ dr, which is prohibitive for r ≥ 3, we
propose a light-weight kernelized variant of the Euclidean distance which avoids explicit use
of tensors. The following easily verifiable two results will come handy in the sequel:
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Proposition 2. Suppose we want to evaluate the Frobenius norm between tensors X ,X ∗∈
Sd
×r , then it holds that:

||X−X ∗||2F = 〈X ,X 〉 − 2 〈X ,X ∗〉+ 〈X ∗,X ∗〉 . (2.2)

Proof. X and X ∗ can be vectorized and the Frobenius norm replaced by the `2-norm for
which the above expansion is known to hold.

Proposition 3. Suppose x, y ∈ Rd are two arbitrary vectors, then for an ordinal r > 0, we
have:

〈x, y〉r = 〈↑⊗r x, ↑⊗r y〉 . (2.3)

Moreover, for sets of vectors xn, yn′ ∈ Rd, we have:

∑
n

∑
n′
〈xn, yn′〉r =

〈
∑
n
↑⊗r xn, ∑

n′
↑⊗r yn′

〉
. (2.4)

Proof. The expansion in (2.3) is derived in [Koniusz et al., 2016b] while (2.4) can be verified
due to bilinear properties of the dot-product.

2.5 Proposed Approach

In this section, we first formulate the problem of mixture of alignments of second- and/or
higher-order scatter tensors, which precedes an exposition to our next two contributions: a
weighted mixture of alignments and a kernelized approach which avoids explicit evaluations
of scatters.

2.5.1 Problem Formulation

Suppose IN and IN∗ are the indexes of N source and N∗ target training data points. INc and
IN∗c are the class-specific indexes for c ∈ IC, where C is the number of classes. Suppose we
have feature vectors from fc7 in the source network stream, one per image, and associated with
them labels. Such pairs are given by Λ ≡ {(φn, yn)}n∈IN , where φn ∈ Rd and yn ∈ IC,
∀n ∈ IN , as shown in Figure 2.2a. For the target data, by analogy, we define pairs Λ∗ ≡
{(φ∗n, y∗n)}n∈I∗N , where φ∗∈Rd and y∗n∈ IC, ∀n∈ I∗N . Class-specific sets of feature vectors
are given as Φc ≡ {φc

n}n∈INc
and Φ∗c ≡ {φc∗

n }n∈IN∗c
, ∀c ∈ IC. Then, Φ ≡ (Φ1, ..., ΦC)

and Φ∗≡ (Φ∗1 , ..., Φ∗C). Note that we use the asterisk symbol written in superscript (e.g. φ∗)
to denote variables associated with the target network whilst the source-related and generic
variables have no such indicator. Below, we formulate our problem as a trade-off between the
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classifier loss ` and the alignment loss g which acts on the scatter tensors and is related to their
means:

arg min
W,b,Θ,Θ∗

s. t. ||φn||22≤τ,
||φ∗n′ ||

2
2≤τ,

∀n∈IN,n′∈I∗N

`(W, b, Λ∪Λ∗) + λ||W||2F (2.5)

+
σ1

C ∑
c∈IC

||X c−X ∗c ||2F +
σ2

C ∑
c∈IC

||µc−µ∗c ||22︸ ︷︷ ︸
g(Φ,Φ∗)

.

For `, we use a generic loss used by CNNs, say Softmax. The matrix W ∈ Rd×C contains
unnormalized probabilities (c.f. hyperplane of SVM), b ∈ RC is the bias term, and λ is the
regularization constant. Moreover, the union Λ ∪ Λ∗ of the source and target training data
reveals that we train one universal classifier for both domains1. In Equation (2.5), separat-
ing the class-specific distributions is addressed by ` while bringing closer the within-class
scatters of both network streams is handled by g (as Figure 2.2 shows). Specifically, our
loss g depends on two sets of variables (X 1(Φ1), ...,X C(Φc)), (µ1(Φ1), ..., µC(ΦC)) and
(X ∗1(Φ∗1 ), ...,X ∗C(Φ∗C)), (µ∗1(Φ∗1 ), ..., µ∗C(Φ

∗
C)) – one set per network stream. Feature vectors

Φ(Θ) and Φ∗(Θ∗) depend on the parameters of the source and target network streams Θ and
Θ∗ that we optimize over e.g., they represent coefficients of convolutional filters and weights
of fc layers. X c, X ∗c , µc and µ∗c denote the scatter tensors and means, respectively, one ten-
sor/mean pair per network stream per class, evaluated as in (2.1). Lastly, σ1 and σ2 control the
overall degree of the scatter and mean alignment, τ constraints the `2-norm of feature vectors
(needed if λ is low). Derivatives of loss g are given in Appendix A.

In this work, we assume that highly non-linear CNN streams are able to rotate the within-
class scatters sufficiently as dictated by our loss to yield a desired overlap of two scatters. Such
an assumption is common in i.e. [Chopra et al., 2013; Wang and Hebert, 2016].

2.5.2 Weighted Alignment Loss

Below we propose a weighted variant of alignment loss g that incorporates class-specific
weights ζ, ζ̄ ∈ RC that adjust the degree of alignment per class between the within-class
scatters as well as related to them means. As the statistical literature states that combina-
tion of moments m = 1, ..., ∞ can capture any distribution, we combine r′= 2, ..., r orders

1 For VGG streams, we use a couple of domain-specific classifiers e.g.,`(W, b, Λ)+`(W∗, b∗, Λ∗)+λ||W||2F+
λ∗||W∗||2F+β′||W−W∗||2F.
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(X (1)
c =X ∗(1)c =0 due to data centering):

g(r)(Φ, Φ∗, {ζr′}r′∈Ir, ζ̄)=
σ1

rC ∑
r′∈Ir\{1}

∑
c∈IC

ζcr′ ||X
(r′)
c −X ∗(r

′)
c ||2F

+
σ2

C ∑
c∈IC

ζc||µc−µ∗c ||22+
α1

r ∑
r′∈Ir\{1}
||ζr′−1||22+α2||ζ−1||22, (2.6)

where α1 and α2 control the degree of weight deviation. To use the weighted alignment, we
replace the corresponding loss in Eq. (2.5) by the alignment loss g defined in (2.6). Then,
we additionally minimize (2.5) over ζ̄ and a set {ζr′}r′∈Ir\{1} that determines contributions of
tensors of order r′=2, ..., r.

2.5.3 Kernelized Alignment Loss

Evaluating scatter tensors during the gradient descent is costly, even if using covariances (r=
2), as the typical size feature vectors from fc7 is d = 4096. Below we propose an efficient
kernelization of the Frobenius norm on tensors of arbitrary order r.

Proposition 4. The inner-product of scatter tensors X (r), Y (r) ∈ Sd
×r of order r from Eq.

(2.1), can be written implicitly as a sum of entries of a polynomial kernel Kr ∈RN×N∗, where
Kr

nn′ = 〈xn−µ, yn′−µ∗〉r, and xn ∈Rd, ∀n ∈ IN and yn′ ∈Rd, ∀n′ ∈ IN∗ are some N and N∗

feature vectors (that form X (r)and Y (r)), µ and µ∗are their means. Then:

〈
X (r),Y (r)〉= 1

NN∗∑n
∑
n′
〈xn−µ, yn′−µ∗〉r= 1

NN∗
1TKr1.

(2.7)

Proof. Substituting xn−µ and yn′−µ∗ into Proposition 3, the proof follows.

Proposition 5. Suppose we have polynomial kernels Kr ∈ RN×N, Kr ∈ RN∗×N∗ and Kr ∈
RN×N∗defined as Kr

nn′= 〈xn−µ, xn′−µ〉r, Kr
nn′= 〈yn−µ∗, yn′−µ∗〉r and Kr

nn′= 〈xn−µ, yn′−µ∗〉r,
where xn, yn′ , µ, µ∗, N, N∗ are defined as in Proposition 4. The Frobenius norm between two
scatter tensors X (r),Y (r)∈Sd

×r of order r, which are defined in Eq. (2.1), can be expressed
implicitly as:

||X (r)−X ∗(r)||2F =
1

N2 1TKr1+
1

N∗2 1TKr1− 2
NN∗

1TKr1. (2.8)

Proof. Combining Proposition 2 with 4, the proof follows.

Derivatives of (2.8) are in Appendix B. Equation (2.8) can be evaluated on class-specific
feature vectors and substituted directly into the loss functions in (2.5) and (2.6). This way,
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Figure 2.3: The Office dataset. Top, middle and bottom rows show examples from the Amazon, DSLR,
and Webcam domains.

we obtain two different regimes for evaluating the Frobenius norm on the scatter tensors: one
explicit and one kernelized; both exhibiting different strengths as detailed below.

Complexity. The Frobenius norm on the scatter tensors has complexity O((N+N∗+1)D),
where D = (d+r−1

r ) as detailed in Proposition 1. The kernelized variant proposed above has
complexity O((N2 + NN∗+ N∗N∗)(d+ρ), where ρ ≤ log r estimates the complexity of
“rising x to the power of r”. As ρ�d, its cost is negligible and can be safely left out from the
above analysis.

It is easy to verify that, for the standard domain adaptation problems with N = 20 source
and N∗= 3 target training points per class, d = 4096 and r = 2, explicit evaluations of the
Frobenius norm are ∼52× slower than the proposed by us kernelized substitute. For the same
scenario but with the scatter tensor of order r = 3, explicit evaluations of the Frobenius norm
are not tractable, as they take ∼ 143000× more time than the kernelized substitute, which
demonstrates the clear benefit of our approach. The kernelization makes Eq. (2.6) tractable for
r>2.

2.6 Experiments

In this section, we present experiments demonstrating the usefulness of our framework. We
start by describing datasets we use in evaluations.

2.6.1 Datasets

Office dataset. A popular dataset for evaluating algorithms against the effect of domain shift
is the Office dataset [Saenko et al., 2010] which contains 31 object categories in three domains:
Amazon, DSLR and Webcam. The 31 categories in the dataset consist of objects commonly
encountered in office settings, such as keyboards, file cabinets, and laptops. The Amazon
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domain contains on average 90 images per class and 2817 images in total. As these images
were captured from a website of online merchants, they are captured against clean background
and at a unified scale. The DSLR domain contains 498 low-noise high resolution images
(4288×2848). There are 5 objects per category. Each object was captured from different
viewpoints on average 3 times. For Webcam, the 795 images of low resolution (640×480)
exhibit significant noise and color as well as white balance artifacts. Otherwise, 5 objects per
category were also used in the capturing process. Figure 2.3 illustrates the three domains.
We distinguish the following six domain shifts: Amazon-Webcam (A�W), Amazon-DSLR
(A�D), Webcam-Amazon (W�A), Webcam-DSLR (W�D), DSLR-Amazon (D�A) and
DSLR-Webcam (D�W).

We evaluate across 10 randomly chosen data splits per domain shift. We follow the stan-
dard protocol for this dataset and, for each training source split, we sample 20 images per
category for the Amazon domain and 8 examples per category for the DSLR and Webcam do-
mains. From the training target splits, we sample 3 images per class per split per domain. We
present results for the supervised setting and report accuracies on the remaining target images,
as the the standard protocol for this dataset suggests.

RGB-D-Caltech256 dataset. The RGB-D [Lai et al., 2011] and Caltech256 [Griffin et al.,
2007] datasets have been used as the source and target for evaluations of unsupervised domain
adaptation problems [Chen et al., 2014; Motiian and Doretto, 2016]. We use the 10 classes that
are common between the two datasets e.g., calculator, cereal box, coffee mug, ball, tomato. We
use 50 and 5/10 images per class in the source and target domains for the supervised setting.
We test on the remaining target samples. We report the mean average accuracy over 5 data
splits, that is, we select randomly the source and target data samples for each split.

Pascal VOC2007-TU Berlin dataset. Transfer from Pascal VOC2007 [Everingham et al.,

A�W A�D W�A W�D D�A D�W acc.
DLID 51.9 - - 89.9 - 78.2 73.33

DeCAF6 S+T 80.7±2.3 - - - - 94.8±1.2 87.75
DaNN 53.6±0.2 - - 83.5±0.0 - 71.2±0.0 69.43

Source CNN 56.5±0.3 64.6±0.4 42.7±0.1 93.6±0.2 47.6±0.1 92.4±0.3 66.23
Target CNN 80.5±0.5 81.8±1.0 59.9±0.3 81.8±1.0 59.9±0.3 80.5±0.5 74.06

Source+Target CNN 82.5±0.9 85.2±1.1 65.2±0.7 96.3±0.5 65.8±0.5 93.9±0.5 81.48
Dom. Conf.+Soft Labs. 82.7±0.8 86.1±1.2 65.0±0.5 97.6±0.2 66.2±0.3 95.7±0.5 82.22

Source+Target CNN 82.4±2.0 85.5±0.9 65.1±1.4 95.8±0.8 66.0±1.2 94.3±0.6 81.53
Second-order (So) 84.5±1.7 86.3±0.8 65.7±1.7 97.5±0.7 66.5±1.0 95.5±0.6 82.68

Table 2.1: Comparison of our second-order alignment loss (So) to the state of the art on the Office
dataset. Results of DLID [Chopra et al., 2013], DeCAF6 S+T [Donahue et al., 2014], DaNN [Ghifary
et al., 2014], Source CNN [Tzeng et al., 2015], Target CNN [Tzeng et al., 2015], Source+Target CNN
[Tzeng et al., 2015], Dom. Conf.+Soft Labs.[Tzeng et al., 2015] on each split is shown.
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sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 aver. acc.

A
�
W

S+T 91.5 87.9 91.5 89.6 89.0 87.2 86.2 87.2 91.2 86.5 88.76±1.9
So 91.9 89.3 91.7 90.6 89.0 88.2 87.6 87.6 91.9 87.2 89.50±1.8
So+ζ 92.4 89.9 90.5 92.2 88.9 88.2 90.0 89.5 91.3 89.6 90.24±1.3
To+ζ 92.5 90.3 91.8 91.9 89.0 89.9 89.3 89.6 91.6 89.6 90.55±1.1

So+To+ζ 92.6 90.5 92.0 92.0 89.2 90.0 89.6 89.9 91.8 89.9 90.75±1.2
So+To+Fo+ζ 93.0 90.7 92.1 92.9 89.2 89.9 89.6 89.9 92.0 89.7 90.92±1.3

A
�
D S+T 90.6 88.9 89.4 92.4 90.1 87.2 91.1 88.2 90.9 89.4 89.83±1.4

So 92.4 92.4 91.1 92.4 92.9 89.6 93.4 91.9 94.1 92.6 92.26±1.1
So+To+ζ 92.7 92.9 91.6 92.5 93.3 89.7 93.7 91.9 94.0 93.0 92.52±1.2

So+To+Fo+ζ 93.1 93.1 92.0 92.7 93.3 89.9 94.1 91.9 94.0 93.4 92.73±1.1

Table 2.2: The Office dataset on VGG streams. (Top) A� W and (Bottom) A�D domain shifts
are evaluated on second-order (So), second- (So+ζ) and third-order+weights (To+ζ), second- and third-
(So+To+ζ) and fourth-order (So+To+Fo+ζ) alignment with weight learning. Our baseline fine-tuning
on the combined source and target domains (S+T) is also evaluated for comparison.

2007] to TU Berlin [Eitz et al., 2012] (images-to-sketches transfer) has never been attempted
yet in domain adaptation to our best knowledge. We utilize 50 and 3 source and target training
samples per class, respectively, and the 14 classes that are common between the source and
target datasets. We perform testing on the remaining target data. We report the mean average
accuracy over 5 data splits.

2.6.2 Experimental Setup

In each stream, we employ the AlexNet architecture [Krizhevsky et al., 2012] which was pre-
trained on the ImageNet dataset [Russakovsky et al., 2015] for the best results. At the training
and testing time, we use the pipelines shown in Figures 2.2a and 2.2b, respectively. Where
stated, we use the 16-layer VGG model [Simonyan and Zisserman, 2014b] per stream to quan-
tify the impact of different CNN models on our algorithm. We set non-zero learning rates on
the fully-connected and the last two convolutional layers of the two streams.

On the RGB-D-Caltech256 dataset, we use the RGB images from Caltech256 as the target
domain. In contrast to [Chen et al., 2014; Motiian and Doretto, 2016] which use both the RGB
data and depth maps as a source, we adapt our source stream based on AlexNet to use only
the depth data from the RGB-D dataset – this helps us isolate performance of our algorithm in
case of distinct heterogeneous domains. As these both domains are very different from each
other, we apply two classifiers – one per network stream (see the footnote1 in Section 2.5).

We evaluate Second- and/or Higher-order Transfer of Knowledge (So-HoT) approaches
such as: unweighted and weighted second-order alignment losses (So) and (So+ζ), the third-
order loss (To) and its weighted variant (To+ζ), and combined second- and third- (So+To+ζ)
as well as fourth-order (So+To+Fo+ζ) weighted alignment losses. The model parameters were
selected by cross-validation.
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2.6.3 Comparison to the State of the Art

We apply our algorithm on the Office dataset. Table 2.1 presents results for the six domain
shifts. Our second-order alignment loss (So) is compared against the baseline (S+T) for which
the source and target training samples were used together to fine-tune a standard CNN network.
As can be seen, our method outperforms such a baseline as well as recent approaches such as
Domain Confusion with Soft Labels and fine-tuning on the source or target data, respectively.

Performance on the VGG architecture. To evaluate effectiveness of our algorithm on other
powerful networks, we follow the same pipeline as in Figure 2.2, except that we employ the
pre-trained VGG [Simonyan and Zisserman, 2014b] in place of AlexNet [Krizhevsky et al.,
2012]. As VGG utilizes more parameters than AlexNet, we demonstrate in Table 2.2 that ap-
plying our second-order alignment loss (So) on A� W and A�D improves performance
compared to the baselines (S+T) by 0.74% and 2.43%. Without resorting to data augmenta-
tions, we outperform e.g. a multi-scale multi-patch CNN approach [Kuzborskij et al., 2016] by
0.6% on A�W .

Weighted vs. Unweighted Alignment. In this experiment, we demonstrate the benefit of using
the weighted alignment of the scatter matrices and their means on theA�W andA�D domain
shits. Table 2.2 shows that our weighted second- (So+ζ) and third-order (To+ζ) alignment
losses, introduced in Eq. (2.6), improve over our unweighted second-order alignment loss
(So) from Eq. (2.5) by 0.74% and 1.05% on A�W , respectively. Learning ζ and ζ can be
implemented at no visible increase in computations.

In Figure 2.4, we show histograms of the ζ and ζ weights from (So+ζ) over the 31 classes
and the 10 splits. The histograms reveal that the levels of alignment of the scatter matrices
and their means vary according to the Beta distributions. The means of these distributions are
slightly below the desired mean value of one which indicates that, in this experiment, σ1 and
σ2 from Eq. (2.6) were initialized with values larger than needed. Also, their optimal values

ζ

co
un

t

0.8 0.82 0.84 0.86 0.88
0

10

20

30

40

50

(a)

ζ̄

co
un

t

0.82 0.84 0.86 0.88 0.9
0

10

20

30

40

50

(b)

Figure 2.4: Histograms of the ζ and ζ weights in plots
2.4a and 2.4b, learned onA�W , show the level of align-
ment of the scatter matrices and their means according to
the loss function in (2.6).
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Figure 2.5: Our second-order algorithm
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might vary over time – learning weights compensates for this.

Figure 2.6 shows that, as σ1 � 0 and σ2 � 0, our algorithm converges to the baseline fine-
tuning on the combined source and target domains (S+T) which yielded 85.9% accuracy for
split sp1. Moreover, the overall performance is stable i.e., within ±0.2% accuracy, for a large
range of values e.g., 5e−9≤σ1≤5e−8 and 1e−6≤σ2≤5e−5.

Alignment of combined Second-, Third- and Fourth-order Scatter Tensors. Our kernel-
ized loss in Eq. (2.8) admits alignment between second- and/or higher-order scatter tensors
which, beyond the scale/shear and orientation, capture higher-order statistical moments. In Ta-
ble 2.2, we evaluate third-order weighted alignment loss (To+ζ), as well as combined second-,
third- (So+To+ζ) and fourth-order (So+To+Fo+ζ) weighted alignments. As the order increases,
the performance improves. For (So+To+Fo+ζ), we outperform (So) by 1.42% and 2.9% on
A�W and A�D.

Heterogeneous setting on RGB-D-Caltech256. In this experiment, we verify the behavior
of our second-order alignment loss (So) w.r.t. the varying number of target training samples
N∗. Figure 2.5 shows that the largest improvement of 1.24% and 1.04% over the baseline
(S+T) is obtained for a small number N∗= 3 and N∗= 5, respectively. As N∗ increases,
the improvement over baselines becomes smaller. Such a trend is consistent with other works
on domain adaptation [Tommasi et al., 2010]. In some cases, the baseline (S+T) performs
worse than the fine-tuning on target only (T) which is known as so-called negative transfer
[Tommasi et al., 2010]. For all 3 ≤ N∗≤ 20, our (So) outperforms baselines (S+T) and (T)
which demonstrates robustness of our approach.

Heterogeneous setting on Pascal VOC2007-TU Berlin. Table 2.3 shows results on transfer
from Pascal VOC2007 [Everingham et al., 2007] to TU Berlin [Eitz et al., 2012] (images-to-
sketches transfer). These dataset have never been used together in domain adaptation. We
utilize 50 and 3 source and target training samples per class, respectively, and the 14 classes
that are common between the source and target datasets. We use AlexNet streams in this
experiment. As demonstrated in the table, our second-order approach (So) and the baselines
(S+T) and (T) yield 63.4, 62.66 and 62.46%, respectively.

Comparisons to CORAL on the Office dataset. To compare (So) to CORAL [Sun et al.,
2016], we modified our code to align second-order marginal statistics (M) in the supervised
setting. For AlexNet and A�W , (M) scores 82.6% vs. baseline (S+T) of 82.4% but is below
84.5% from our (So). On D�W , (M) gave 94.6% vs. 95.5% from our (So). OnW�D , (M)
gave 95.9% vs. 97.5% from our (So).



30 Domain Adaptation by Mixture of Alignments

sp1 sp2 sp3 sp4 sp5 average acc.
S+T 58.86 63.43 63.14 59.14 68.71 62.66

T 59.86 63.43 64.14 57.86 67.0 62.46
So 60.57 63.28 64.28 59.14 69.71 63.40

Table 2.3: Pascal VOC2007-TU Berlin dataset. We use 5 splits and report accuracies on our method
(So) vs. baselines (S+T) and (T).
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Figure 2.6: Performance of our second-order alignment loss (So) w.r.t. parameters σ1 (2.6a) and σ2
(2.6b) on the A�W domain shift (split sp1 is used). Note the logarithmic scale.

2.7 Conclusions

We have presented an approach to domain adaptation by partial alignment of the within-class
scatters to discover the commonality. The state-of-the-art results we obtain suggest that our
simple strategy is effective despite challenges of domain adaptation. Moreover, the presented
weighted approach and kernelized alignment loss improve the results and computational effi-
ciency. Our method can be easily extended to multiple domains and other network architec-
tures. In the next chapter, we will address the issues we have faced in the Office dataset and
propose a new more challenging dataset for domain adaptation. Moreover, we will update our
alignment loss to work with non-Euclidean metrics.



Chapter 3

Museum Exhibit Identification
Challenge for Domain Adaptation and
Beyond

3.1 Summary

This chapter approaches an open problem of artwork identification and proposes a new dataset
dubbed Open Museum Identification Challenge (Open MIC). It contains photos of exhibits
captured in 10 distinct exhibition spaces of several museums, which showcase paintings, time-
pieces, sculptures, glassware, relics, science exhibits, natural history pieces, ceramics, pot-
tery, tools, and indigenous crafts. The goal of Open MIC is to stimulate research in domain
adaptation, egocentric recognition, and few-shot learning by providing a testbed complemen-
tary to the famous Office dataset, which reaches ∼90% accuracy [Koniusz et al., 2017]. To
form our dataset, we captured several images per art piece with a mobile phone and wearable
cameras to create the source and target data splits, respectively. To achieve robust baselines,
we build on a recent approach that aligns per-class scatter matrices of the source and target
CNN streams [Koniusz et al., 2017]. Moreover, we exploit the positive definite nature of
such representations by using end-to-end Bregman divergences and the Riemannian metric.
We present baselines such as training/evaluation per exhibition and training/evaluation on the
combined set covering 866 exhibit identities. Each exhibition poses distinct challenges e.g.,
quality of lighting, motion blur, occlusions, clutter, viewpoint and scale variations, rotations,
glares, transparency, non-planarity, clipping, we break down results w.r.t. these factors.

As stated in the previous chapter, we will address the issues we have faced in the Office
dataset [Saenko et al., 2010]. Office dataset is commonly used in supervised domain adapta-
tion literature. But domain shift in the dataset is rather trivial, which we can see in the results
reaching 90+% accuracy. Also, the total number of images is lower than datasets that are used
in deep models. We create the large and more challenging Open Museum Identification Chal-
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lenge dataset to address these problems, which provides annotated source and target samples
with more complex domain shifts in between them. We further improve our alignment loss
to make it tractable to train deep models with non-Euclidean metrics. This chapter has been
published as a conference paper: "Piotr Koniusz*, Yusuf Tas*, Hongguang Zhang, Mehrtash
Harandi, Fatih Porikli, and Rui Zhang. Museum exhibit identification challenge for the super-
vised domain adaptation and beyond. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 788-804. 2018" (Oral presentation, ∼2% acceptance rate). * indicates
shared credit, equal contributions.

3.2 Introduction

Domain adaptation and transfer learning are the problems widely studied in computer vision
and machine learning communities [Baxter et al., 1995; Li et al., 2016]. They are inspired by
the human cognitive capacity to learn new concepts from very few data samples (cf. training
classifier on millions of labeled images from the ImageNet dataset [Russakovsky et al., 2015]).
Generally, given a new (target) task to learn, the arising question is how to identify the so-
called commonality [Tommasi et al., 2010; Koniusz et al., 2017] between this task and previous
(source) tasks, and transfer knowledge from the source tasks to the target one. Therefore, one
has to address three questions: what to transfer, how, and when [Tommasi et al., 2010].

Domain adaptation and transfer learning utilize annotated and/or unlabeled data and per-
form tasks-in-hand on the target data e.g., learning new categories from few annotated samples
(supervised domain adaptation [Chopra et al., 2013; Tzeng et al., 2015]), utilizing available
unlabeled data (unsupervised [Sun et al., 2016; Ganin et al., 2016] or semi-supervised domain
adaptation [Daumé III et al., 2010; Tzeng et al., 2015]), recognizing new categories in embed-
ded spaces (e.g.attribute-based) without any training samples (zero-shot learning [Fei-Fei et al.,
2006]). Problems such as one- and few-shoot learning attempt to train robust class predictors
from at most few data points [Fei-Fei et al., 2006].

Recently, algorithms for supervised domain adaptation such as Simultaneous Deep Trans-
fer Across Domains and Tasks [Tzeng et al., 2015] and Second- or Higher-order Transfer
(So-HoT) of knowledge [Koniusz et al., 2017] combined with Convolutional Neural Net-
works (CNN) [Krizhevsky et al., 2012; Simonyan and Zisserman, 2014b] in end-to-end fashion
have reached state-of-the-art results ∼90% accuracy on classic benchmarks such as the Office
dataset [Saenko et al., 2010]. By and large, such an increase in performance is due to fine-
tuning of CNNs on the large-scale datasets such as ImageNet [Russakovsky et al., 2015] and
Places Database [Zhou et al., 2014]. Indeed, fine-tuning of CNN is a powerful domain adap-
tation and transfer learning tool by itself [Girshick et al., 2014; Sermanet et al., 2013]. Fur-
thermore, recent semi-supervised and unsupervised approach to Learning an Invariant Hilbert
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Space [Herath et al., 2017c] has also reached ∼90% accuracy by using generic CNN descrip-
tors vs. ∼56% for SURF. The gap between CNN-based and simpler representations is also
visible in the CORAL method [Sun et al., 2016], for which performance varies between 46%
and 70% accuracy. Thereby, these works exhibit saturation for CNN features when evaluated
on the Office [Saenko et al., 2010] dataset or its newer Office+Caltech 10 variant [Gong et al.,
2012].

Therefore, we propose a new dataset for the task of exhibit identification in museum spaces
that challenges domain adaptation and fine-tuning due to its significant domain shifts between
the source and target subsets.

For the source domain, we captured the photos in a controlled fashion by Android phones
e.g., we ensured that each exhibit is centered and non-occluded in photos. We prevented ad-
verse capturing conditions and did not mix multiple objects per photo unless they were all
part of one exhibit. We captured 2–30 photos of each art piece from different viewpoints and
distances in their natural settings.

For the target domain, we employed an egocentric setup to ensure in-the-wild capturing
process. We equipped 2 volunteers per exhibition with cheap wearable cameras and let them
stroll and interact with artworks at their discretion. Such a capturing setup is applicable to
preference and recommendation systems e.g., a curator takes training photos of exhibits with an
Android phone while visitors stroll with wearable cameras to capture data from the egocentric
perspective for a system to reason about the most popular exhibits. Open MIC contains 10
distinct source-target subsets of images from 10 different kinds of museum exhibition spaces,
each exhibiting various photometric and geometric challenges, as detailed in Section 3.6.

To demonstrate the intrinsic difficulty of Open MIC, we chose useful baselines in super-
vised domain adaptation detailed in Section 3.6. They include fine-tuning CNNs on the source
and/or target data and training a state-of-the-art So-HoT model [Koniusz et al., 2017] which
we equip with non-Euclidean distances [Cherian et al., 2012; Pennec et al., 2006] for robust
end-to-end learning.

We provide various evaluation protocols which include: (i) training/evaluation per exhi-
bition subset, (ii) training/testing on the combined set that covers all 866 identity labels, (iii)
testing w.r.t. various scene factors annotated by us such as quality of lighting, motion blur, oc-
clusions, clutter, viewpoint and scale variations, rotations, glares, transparency, non-planarity,
clipping, etc.

Moreover, we introduce a new evaluation metric inspired by a saliency problem detailed
next. As numerous exhibits can be captured in a target image, we asked our volunteers to enu-
merate in descending order the labels of most salient/central exhibits they had interest in at a
given time followed by less salient/distant exhibits. As we ideally want to understand the vol-
unteers’ preferences, the classifier has to decide which detected exhibit is the most salient. We
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note that the annotation- and classification-related processes are not free of noise. Therefore,
we propose to not only look at the top-k accuracy known from ImageNet [Russakovsky et al.,
2015] but to also check if any of top-k predictions are contained within the top-n fraction of
all ground-truth labels enumerated for a target image. We refer to this as a top-k-n measure.

To obtain convincing baselines, we balance the use of an existing approach [Koniusz et al.,
2017] with our mathematical contributions and evaluations. The So-HoT model [Koniusz et al.,
2017] uses the Frobenius metric for partial alignment of within-class statistics obtained from
CNNs. The hypothesis behind such modeling is that the partially aligned statistics capture so-
called commonality [Tommasi et al., 2010; Koniusz et al., 2017] between the source and target
domains; thus facilitating knowledge transfer. For the pipeline in Figure 3.1, we use two CNN
streams of the VGG16 network [Simonyan and Zisserman, 2014b] which correspond to the
source and target domains. We build scatter matrices, one per stream per class, from feature
vectors of the fc layers. To exploit benefits of geometry of positive definite matrices, we reg-
ularize and align scatters by the Jensen-Bregman LogDet Divergence (JBLD) [Cherian et al.,
2012] in end-to-end manner and compare to the Affine-Invariant Riemannian Metric (AIRM)
[Pennec et al., 2006; Bhatia, 2009]. However, evaluations of gradients of non-Euclidean dis-
tances are slow for typical 4096×4096 dimensional matrices. We show by the use of Nyström
projections that, with typical numbers of data samples per source/target per class being∼50 in
domain adaptation, evaluating such distances can be fast and exact.

To summarize, our contributions are as follows: (i) we collect and annotate a new chal-
lenging Open MIC dataset with domains consisting of the pictures taken by Android phones
and wearable cameras; the latter exhibiting a series of realistic distortions due to the egocen-
tric capturing process, (ii) we compute useful baselines, provide various evaluation protocols,
statistics and top-k-n results, as well as include breakdown of results w.r.t. annotated by us
scene factors, (iii) we use non-Euclidean JBLD and AIRM distances for end-to-end training of
the supervised domain adaptation approach and we exploit the Nyström projections to make
this training tractable. To our best knowledge, these distances have not been used before in the
supervised domain adaptation due to their high computational complexity.

3.3 Related Work

We start by describing the most popular datasets for the problem at hand and explain how the
Open MIC dataset differs from them. Subsequently, we describe various domain adaptation
approaches which are related to our work.

Datasets. A popular dataset for evaluating against the effect of domain shift is the Office
dataset [Saenko et al., 2010] which contains 31 object categories and three domains: Amazon,
DSLR and Webcam. The 31 categories in the dataset consist of objects commonly encountered
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(a)

(b)

Figure 3.1: The pipeline. Figure 3.1a shows the source and target network streams which merge at the
classifier level. The classification and alignment losses ` and h̄ take the data Λ and Λ∗ from both streams
and participate in end-to-end learning. Loss h̄ aligns covariances on the manifold of S++ matrices. At
the test time, we use the target stream and the trained classifier as in Figure 3.1b.

in the office setting, such as keyboards, file cabinets, and laptops. The Amazon domain con-
tains images which were collected from a website of on-line merchants. Its objects appear on
clean backgrounds and at a fixed scale. The DSLR domain contains low-noise high resolution
images of object captured from different viewpoints while Webcam contains low resolution
images. The Office dataset has been used in numerous publications [Sun et al., 2016; Tzeng
et al., 2015; Ganin et al., 2016; Chopra et al., 2013; Wang and Hebert, 2016; Kuzborskij et al.,
2016; Tommasi et al., 2016; Herath et al., 2017c] that address domain adaptation, to name but a
few of approaches. Its recent extension includes a new Caltech 10 domain [Gong et al., 2012].

The Office dataset is primarily used for the transfer of knowledge about object categories
between domains. In contrast, our dataset addresses the transfer of instances between domains.
Each domain of the Open MIC dataset contains 37–166 specific instances to distinguish from
(866 in total) compared to relatively low number of 31 classes in the Office dataset. Moreover,
our target subsets are captured in an egocentric manner e.g., we did not align objects to the
center of images or control the shutter etc.

A recent large collection of datasets for domain adaptation was proposed in technical re-
port [Tommasi and Tuytelaars, 2014] to study cross-dataset domain shifts in object recognition
with use of the ImageNet, Caltech-256, SUN, and Bing datasets. Even larger is the latest Visual
Domain Decathlon challenge [Rebuffi et al., 2017] which combines datasets such as ImageNet,
CIFAR–100, Aircraft, Daimler pedestrian classification, Describable textures, German traffic
signs, Omniglot, SVHN, UCF101 Dynamic Images, VGG–Flowers. In contrast, our dataset
contains highly varied target appearances which are challenging in few-shot learning scenar-
ios. We target the identity recognition across exhibits captured in egocentric setting which
vary from paintings to sculptures to glass to pottery to figurines. Moreover, some artworks in
our dataset exhibit fine-grained traits as they are hard to distinguish from without the expert
knowledge.

The PIE Multiview dataset [Gross et al., 2010] includes face images of 67 subjects and
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Dist./Ref. d2(Σ, Σ∗) Invar.
Tr.

Geo.
d if OΣ ∂d2(Σ,Σ∗)

∂ΣIneq. S+ if S+
Frobenius ||Σ−Σ∗||2F rot. yes no fin. fin. 2(Σ−Σ∗)

AIRM ||Σ− 1
2 Σ∗Σ−

1
2 ||2F aff./inv. yes yes ∞ ∞ −2Σ−

1
2 log(Σ−

1
2 Σ∗Σ−

1
2 )Σ−

1
2

JBLD log
∣∣∣Σ+Σ∗

2

∣∣∣− 1
2 log|ΣΣ∗| aff./inv. no no ∞ ∞ (Σ+Σ∗)−1− 1

2Σ
−1

Table 3.1: Frobenius, JBLD [Cherian et al., 2012] and AIRM [Pennec et al., 2006] distances and their
properties from the literature. These distances operate between a pair of arbitrary matrices Σ and Σ∗

which are points in S++ (and/or S+ for Frobenius).

exhibits different viewpoints, varies in illumination and expressions. It has been used in the
instance-based domain adaptation [Herath et al., 2017c]. Our Open MIC however is not limited
to instances of faces or controlled capture setting. Open MIC contains diverse 10 subsets with
paintings, timepieces, sculptures, science exhibits, glasswork, relics, ancient animals, plants,
figurines, ceramics, native arts etc.

Domain adaptation algorithms. Deep learning has been used in the context of domain adap-
tation in numerous recent works e.g., [Tzeng et al., 2015; Ganin et al., 2016; Chopra et al.,
2013; Wang and Hebert, 2016; Kuzborskij et al., 2016; Tommasi et al., 2016; Koniusz et al.,
2017]. These works establish the so-called commonality between domains. In [Tzeng et al.,
2015], the authors propose to align both domains via the cross entropy which ‘maximally con-
fuses’ both domains for supervised and semi-supervised settings. In [Chopra et al., 2013], the
authors capture the ‘interpolating path’ between the source and target domains using linear
projections into a low-dimensional subspace on the Grassman manifold. In [Wang and Hebert,
2016], the authors propose to learn the transformation between the source and target by the
deep regression network. Our model differs in that our source and target network streams co-
regularize each other via the JBLD or AIRM distance that respects the non-Euclidean geometry
of the source and target matrices. We perform an alignment of scatter matrices advocated in
[Koniusz et al., 2017].

For visual domains, the domain adaptation can be applied in the spatially-local sense to
target so-called roots of domain shift. In [Tommasi et al., 2016], the authors utilize so-called
‘domainness maps’ which capture locally the degree of domain specificity. Our work is or-
thogonal to this method. We perform domain adaptation globally in the spatial sense, however,
our ideas can be extended to a spatially-local setting.

Some recent works enforce correlation between the source and target distributions e.g.,
the authors of [Yeh et al., 2014] utilize a correlation subspace as a joint representation for
associating the data across different domains. They also use kernelized CCA. In [Sun et al.,
2016], the authors propose an unsupervised domain adaptation by the correlation alignment.
In [Koniusz et al., 2017], the authors perform class-specific alignment of source and target
distributions with use of tensors and the Frobenius norm. Our work is similar in spirit as it
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utilizes a similar general setup. However, we first project class-specific vector representations
from the fc layers of the source and target CNN streams to the common space via Nyström
projections for tractability and then we combine them with the JBLD or AIRM distance to
exploit the (semi)definite positive nature of scatter matrices. We perform end-to-end learning
which requires non-trivial derivatives of JBLD/AIRM distance and Nyström projections for
computational efficiency.

3.4 Background

In this section, we review our notations and the necessary background on scatter matrices,
Nyström projections, the Jensen-Bregman LogDet (JBLD) divergence [Cherian et al., 2012]
and the Affine-Invariant Riemannian Metric (AIRM) [Pennec et al., 2006; Bhatia, 2009].

3.4.1 Notations

Let x ∈ Rd be a d-dimensional feature vector. IN stands for the index set {1, 2, ..., N}. The
Frobenius norm of a matrix is given by ‖X‖F=

√
∑

m,n
X2

mn, where Xmn represents the (m, n)-th

element of X. The spaces of symmetric positive semidefinite and definite matrices are Sd
+ and

Sd
++. A vector with all coefficients equal one is denoted by 1 and Jmn is a matrix of all zeros

with one at position (m, n).

3.4.2 Nyström Approximation

In our domain adaptation model, we rely on Nyström projections, thus, we review their general
mechanism first.

Proposition 6. Suppose X ∈ Rd×N and Z ∈ Rd×N′ store N feature vectors and N′ pivots
(vectors used in approximation) of dimension d in their columns, respectively. Let k : Rd ×
Rd → R be a positive definite kernel. We form two kernel matrices KZZ ∈ SN′

++ and KZX ∈
RN′×N with their (i, j)-th elements being k(zi, zj) and k(zi, xj), respectively. Then, the Nyström
feature map Φ̃∈RN′×N, whose columns correspond to the input vectors in X, and the Nyström
approximation of kernel KXX for which k(xi, xj) is its (i, j)-th entry, are given by:

Φ̃ = K−0.5
ZZ KZX and KXX ≈ Φ̃TΦ̃. (3.1)

Proof. See [Bo and Sminchisescu, 2009] for details.

Remark 1. The quality of approximation of (3.1) depends on the kernel k, data points X, pivots
Z and their number N′. In the sequel, we exploit a specific setting under which KXX = Φ̃TΦ̃
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which indicates no approximation loss.

3.4.3 Scatter Matrices

We make a frequent use of distances d2(Σ, Σ∗) that operate between covariances Σ ≡ Σ(Φ)

and Σ∗≡ Σ(Φ∗) on feature vectors. Therefore, we provide a useful derivative of d2(Σ, Σ∗)

w.r.t. feature vectors Φ.

Proposition 7. Suppose Φ = [φ1, ..., φN ] and Φ∗= [φ∗1, ..., φ∗N∗] are some feature vectors of
quantity N and N∗, e.g., formed by Eq. (3.1) and used to evaluate Σ and Σ∗ with µ and µ∗

being the mean of Φ and Φ∗, respectively. Then, derivatives of d2≡d2(Σ, Σ∗) w.r.t. Φ and Φ∗

are:

∂d2(Σ,Σ∗)
∂Φ = 2

N
∂d2

∂Σ(Φ−µ1T),
∂d2(Σ,Σ∗)

∂Φ∗ = 2
N∗

∂d2

∂Σ∗(Φ∗−µ∗1T). (3.2)

Moreover, assume some projection matrix Z. Then for Φ′=Z[φ1, ..., φN ] and Φ′∗=Z[φ∗1, ..., φ∗N∗]

with covariances Σ′, Σ′∗, means µ′, µ′∗and d′2≡d2(Σ′, Σ′∗), we obtain:

∂d2(Σ,Σ∗)
∂Φ = 2ZT

N
∂d′2
∂Σ′(Φ′−µ′1T),

∂d2(Σ,Σ∗)
∂Φ∗ =− 2ZT

N∗
∂d′2
∂Σ′∗(Φ′∗−µ′∗1T). (3.3)

Proof. See Appendix C.

3.4.4 Non-Euclidean Distances

In Table 3.1, we list the distances d with derivatives w.r.t. Σ used in the sequel. We indicate
properties such as invariance to rotation (rot.), affine mainpulations (aff.) and inversion (inv.).
Moreover, we indicate which distances meet the triangle inequality (Tr. Ineq.) and which
are geodesic distances (Geo.). Lastly, we indicate if the distance d and its gradient OΣ are
finite (fin.) or infinite (∞) for S+ matrices. This last property indicates that JBLD and AIRM
distances require some regularization as our covariances are S+.

3.5 Problem Formulation

In this section, we equip the supervised domain adaptation approach So-HoT [Koniusz et al.,
2017] with the JBLD and AIRM distances. Moreover, we show how to use the Nyström
projections to make our computations fast.
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3.5.1 Supervised Domain Adaptation

Suppose IN and IN∗are the indexes of N source and N∗target training data points. INc and IN∗c

are the class-specific indexes for c∈IC, where C is the number of classes (exhibit identities).
Furthermore, suppose we have feature vectors from an fc layer of the source network stream,
one per image, and their associated labels. Such pairs are given by Λ ≡ {(φn, yn)}n∈IN ,
where φn ∈ Rd and yn ∈ IC, ∀n ∈ IN . For the target data, by analogy, we define pairs
Λ∗≡ {(φ∗n, y∗n)}n∈I∗N , where φ∗∈ Rd and y∗n∈ IC, ∀n ∈ I∗N . Class-specific sets of feature
vectors are given as Φc≡{φc

n}n∈INc
and Φ∗c≡{φ∗cn }n∈IN∗c

, ∀c∈IC. Then, Φ≡ (Φ1, ..., ΦC)

and Φ∗≡ (Φ∗1 , ..., Φ∗C). Note that we write the asterisk symbol in superscript (e.g. φ∗) to
denote variables related to the target network while the source-related and generic variables
have no such indicator. Figure 3.1 shows our setup. We formulate our problem as a trade-off
between the classifier and alignment losses ` and h̄:

arg min
W,W∗,Θ,Θ∗

s. t. ||φn||22≤τ,
||φ∗n′ ||

2
2≤τ,

∀n∈IN,n′∈I∗N

`(W, Λ)+`(W∗, Λ∗)+η||W−W∗||2F + (3.4)

σ1

C ∑
c∈IC

d2
g (Σc, Σ∗c )+

σ2

C ∑
c∈IC

||µc−µ∗c ||22.︸ ︷︷ ︸
h̄(Φ,Φ∗)

Note that Figure 3.1a indicates by the elliptical/curved shape that h̄ performs the alignment on
the S+ manifold along exact (or approximate) geodesics. For `, we employ a generic loss used
by CNNs e.g., Softmax. For the source and target streams, the matrices W, W∗∈Rd×C contain
unnormalized probabilities (c.f. hyperplanes of two SVMs). In Equation (3.4), separating the
class-specific distributions is addressed by ` while attracting the within-class scatters of both
network streams is handled by h̄. Variable η controls the proximity between W and W∗which
encourages the similarity between decision boundaries of classifiers.

Our loss h̄ depends on two sets of variables (Φ1, ..., ΦC) and (Φ∗1 , ..., Φ∗C) – one set per net-
work stream. Feature vectors Φ(Θ) and Φ∗(Θ∗) depend on the parameters of the source and
target network streams Θ and Θ∗ that we optimize over. Σc ≡ Σ(Π(Φc)), Σ∗c ≡ Σ(Π(Φ∗c )),
µc(Φ) and µ∗c (Φ

∗) denote the covariances and means, respectively, one covariance/mean pair
per network stream per class. Coeffs. σ1, σ2 control the degree of the scatter and mean align-
ment, τ controls the `2-norm of feature vectors.

The Nyström projections are denoted by Π. Table 3.1 indicates that back-propagation on
the JBLD and AIRM distances involves inversions of Σc and Σ∗ to be performed for each
c ∈ IC according to (3.4). As these covariances are formed from 4096 dimensional feature
vectors of the fc layer, such inversions are too costly to run fine-tuning e.g., 4s per iteration is
prohibitive. Thus, we demonstrate next how the Nyström projections can be combined with
dg.
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Figure 3.2: Examples of the source subsets of Open MIC. Top row includes Paintings (Shn), Clocks
(Shg), Sculptures (Scl), Science Exhibits (Sci) and Glasswork (Gls). As 3 images per exhibit demon-
strate, we covered different viewpoints and scales during capturing. Bottom row includes 3 different
art pieces per exhibition such as Cultural Relics (Rel), Natural History Exhibits (Nat), Historical/Cul-
tural Exhibits (Shx), Porcelain (Clv) and Indigenous Arts (Hon). Note the composite scenes of Relics,
fine-grained nature of Natural History and Cultural Exhibits and non-planarity of exhibits.

Proposition 8. Let us choose Z = X = [Φ, Φ∗] for pivots and source/target feature vectors,
and kernel k to be linear. Substitute these assumptions into Eq. (3.1). As a result, we obtain
Π(X)=(ZTZ)−0.5ZTX= ZX=(ZTZ)0.5=(XTX)0.5 where Π(X) is a projection of X on itself
that is isometric e.g., distances between column vectors of (XTX)0.5 correspond to distances of
column vectors in X. Thus, Π(X) is an isometric transformation w.r.t. distances in Table 3.1,
that is d2

g(Σ(Φ), Σ(Φ∗))=d2
g(Σ(Π(Φ)), Σ(Π(Φ∗))).

Proof. Firstly, we note that the following holds:

KXX=Π(X)TΠ(X)=(XTX)0.5(XTX)0.5=XTX. (3.5)

Note that Π(X) =ZX projects X into a more compact subspace of size d′= N+N∗ if d′� d
which includes the spanning space for X by construction as Z = X. Eq. (3.5) implies that
Π(X) performs at most rotation on X as the dot-product (used to obtain entries of KXX) just
like the Euclidean distance is rotation-invariant only e.g., has no affine invariance. As spectra
of (XTX)0.5 and X are equal, this implies Π(X) performs no scaling, shear or inverse. Distances
in Table 3.1 are all rotation-invariant, thus d2

g(Σ(Φ), Σ(Φ∗))=d2
g(Σ(Π(Φ)), Σ(Π(Φ∗))).

A stricter proof is to show that Z performs a composite rotation VUT. Let us use SVD of
Z equal UλV T. Then:

Z=(ZTZ)−0.5ZT =(VλUTUλV T)−0.5 VλUT (3.6)

= Vλ−1V TVλUT=VUT

In practice, for each class c ∈ IC, we choose X = Z = [Φc, Φ∗c ]. Then, as Z[Φ, Φ∗] =

(XTX)0.5, we have Π(Φ)= [y1, ..., yN ] and Π(Φ∗)= [yN+1, ..., yN+N∗] where Y=[y1, ..., yN+N∗]=

(XTX)0.5. With typical N ≈ 30 and N∗ ≈ 3, we obtain covariances of side size d′ ≈ 33 rather
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than d=4096.

Proposition 9. Typically, the inverse square root (XTX)−0.5 of Z(X) can be only differentiated
via the costly eigenvalue decomposition. However, if X = [Φ, Φ∗], Z(X) = (XTX)−0.5XT and
Π(X)=Z(X)X as in Prop. 8, and if we consider the chain rule we require:

∂d2
g(Σ(Π(Φ)),Σ(Π(Φ∗)))

∂Σ(Π(Φ))
� ∂Σ(Π(Φ))

∂Π(Φ)
� ∂Π(Φ)

∂Φ , 1 (3.7)

then Z(X) can be treated as a constant in differentiation:

∂Π(X)
∂Xmn

= ∂Z(X)X
∂Xmn

=Z(X) ∂X
∂Xmn

=Z(X)Jmn. (3.8)

Proof. It follows from the rotation-invariance of the Euclidean, JBLD and AIRM distances.
Let us write Z(X)=R(X)=R, where R is a rotation matrix. Thus, we have: d2

g(Σ(Π(Φ)), Σ(Π(Φ∗)))=

d2
g(Σ(RΦ), Σ(RΦ∗)) = d2

g(RΣ(Φ)RT, RΣ(Φ∗)RT). Therefore, even if R depends on X,
the distance d2

g is unchanged by any choice of valid R i.e., for the Frobenius norm we have:
||RΣRT−RΣ∗RT||2F = Tr

(
RATRTRART) = Tr

(
RTRATA

)
= Tr

(
ATA

)
= ||Σ−Σ∗||2F,

where A = Σ−Σ∗. Therefore, we obtain: ∂||RΣ(Φ)RT−RΣ(Φ∗)RT||2F
∂RΣ(Φ)RT � ∂RΣ(Φ)RT

∂Σ(Φ)
� ∂Σ(Φ)

∂Φ =

∂||Σ(Φ)−Σ(Φ∗)||2F
∂Σ(Φ)

� ∂Σ(Φ)
∂Φ

1which completes the proof.

Complexity. The Frobenius norm between covariances plus their computation have combined
complexity O((d′+1)d2), where d′ = N+N∗. For non-Euclidean distances, we take into
account the dominant cost of evaluating the square root of matrix and/or inversions by the
eigenvalue decomposition, as well as the cost of building scatter matrices. Thus, we have
O((d′+1)d2 + dω), where constant 2<ω<2.376 concerns complexity of eigenvalue decom-
position. Lastly, evaluating the Nyström projections combined with building covariances and
running a non-Euclidean distance enjoys O(d′2d + (d′+1)d′2 + d′ω) =O(d′2d) complexity
for d�d′.

For typical d′= 33 and d = 4096, the non-Euclidean distances are 1.7× slower2 than the
Frobenius norm. However, non-Eucldiean distances combined with our projections are 210×
and 124× faster than naively evaluated non-Eucldiean distances and the Frobenius norm, resp.
This cuts the time of each training from few days to 6–8 hours and makes the cost of our loss
negligible compared to CNN fine-tuning.

1For simplicity of notation, operator � denotes the typical summation over multiplications in chain rules.
2We assume that the eigenvalue decomposition of large matrices (d = 4096) in CUDA BLAS is fast and

efficient–which is not the case.
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Figure 3.3: Examples of the target subsets of Open MIC. From left to right, each column illustrates
Paintings (Shn), Clocks (Shg), Sculptures (Scl), Science Exhibits (Sci) and Glasswork (Gls), Cultural
Relics (Rel), Natural History Exhibits (Nat), Historical/Cultural Exhibits (Shx) and Porcelain (Clv).
Note the variety of photometric and geometric distortions due to the use of wearable cameras.

3.6 Experiments

In this section, we explain our CNN setup and give more details about our Open MIC and
present our evaluations.

Setting. At the training and testing time, we use the setting shown in Figures 3.1a and 3.1b,
respectively. The images in our dataset are portrait or landscape oriented. Therefore, we extract
3 square patches per image that cover its entire region. For training, these patches serve as
training data points. For testing, we average over 3 predictions from a group of patches to label
image. We briefly compare the VGG16 [Simonyan and Zisserman, 2014b] and GoogLeNet
networks [Szegedy et al., 2015] as well as the Eucldiean, JBLD and AIRM distances on subsets
of the Office and Open MIC dataset. As demonstrated in Table 3.3, VGG16 and GoogLeNet
yield similar scores while JBLD and AIRM beat the Euclidean distance. Thus, we employ the
VGG16 model and the JBLD distance in what follows.

Parameters. The networks are pre-trained on the ImageNet dataset [Russakovsky et al., 2015]
for the best results. We set non-zero learning rates on the fully-connected and the last two
convolutional layers of the two streams. Subsequently, fine-tuning on the source and target
data takes between 30–100K iterations. We set τ to the average value of the `2 norm of fc
feature vectors sampled on ImageNet and the hyperplane proximity η = 1. Inverse in Z(X)=
(XTX)−0.5XT and matrices Σ and Σ∗ are regularized with a small constant 1e-6 on diagonals.
Lastly, we set σ1 and σ2 between 0.005–1 to perform cross-validation.

Office. This dataset contains three domains: Amazon, DSLR and Webcam. The Amazon and
Webcam domains contain 2817 and 795 images. For brevity, we first test our pipeline on the
Amazon-Webcam domain shift (A�W) to ensure that we match results in the literature.

Open MIC. The proposed dataset contains 10 distinct source-target subsets of images from
10 different kinds of museum exhibition spaces which are illustrated in Figures 3.2 and 3.3,
respectively. They include Paintings from Shenzhen Museum (Shn), the Clock and Watch
Gallery (Clk) and the Indian and Chinese Sculptures (Scl) from the Palace Museum, the Xi-
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Shn Clk Scl Sci Gls Rel Nat Shx Clv Hon Total
Inst. 79 113 41 37 98 100 111 166 81 40 866
Src+ 566 413 225 637 601 775 763 2928 531 1121 8560
Src. 417 650 160 391 575 587 695 2697 503 970 7645
Tgt+ 515 323 130 1692 964 1229 868 776 682 417 7596
Tgt. 404 305 112 1342 863 863 668 546 625 364 6092

Table 3.2: Unique exhibit instances (Inst.) and numbers of images of Open MIC in the source (Src.)
and target (Tgt.) subsets including their backgrounds (Src+) and (Tgt+).

angyang Science Museum (Sci), the European Glass Art (Gls) and the Collection of Cultural
Relics (Rel) from the Hubei Provincial Museum, the Nature, Animals and Plants in Ancient
Times (Nat) from Shanghai Natural History Museum, the Comprehensive Historical and Cul-
tural Exhibits from Shaanxi History Museum (Shx), the Sculptures, Pottery and Bronze Fig-
urines from the Cleveland Museum of Arts (Clv), and Indigenous Arts from Honolulu Museum
Of Arts (Hon).

For the target data, we annotated each image with labels of art pieces visible in it. The
wearable cameras were set to capture an image every 10s and they operated in-the-wild, e.g.,
volunteers had no control over shutter, focus, centering, etc. Therefore, the collected target sub-
sets exhibit many realistic challenges, e.g., sensor noises, motion blur, occlusions, background
clutter, varying viewpoints, scale changes, rotations, glares, transparency, non-planar surfaces,
clipping, multiple exhibits, active light, color inconstancy, very large or small exhibits, to name
but a few phenomena visible in Figure 3.3. The numbers and statistics regarding the Open MIC
dataset are given in Table 3.2. Every subset contains 37–166 exhibits to identify and 5 train,
val., and test splits. In total, our dataset contains 866 unique exhibit labels, 8560 source (7645
exhibits and 915 backgrounds) and 7596 target (6092 exhibits and 1504 backgrounds including
a few of unidentified exhibits) images.

Baselines. To demonstrate the intrinsic difficulty of the Open MIC dataset, we provide the
community with baseline accuracies obtained from (i) fine-tuning CNNs on the source sub-
sets (S) and testing on the randomly chosen target splits, (ii) fine tuning on target only (T)
and evaluating on remaining disjoint target splits, (iii) fine-tuning on the source+target (S+T)
and evaluating on remaining disjoint target splits, (iv) training state-of-the-art domain adap-
tation So-HoT algorithm [Koniusz et al., 2017] equipped by us with non-Euclidean distances
[Cherian et al., 2012; Pennec et al., 2006; Bhatia, 2009] to enable robust end-to-end learning.

We include evaluation protocols: (i) training/eval. per exhibition subset, (ii) training/testing
on the combined set with all 866 identity labels, (iii) testing w.r.t. scene factors annotated by
us and detailed in Section 3.6.2 (Challenge III).
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VGG16 GoogLe
Net

S+T 88.66 88.92
So 89.45 89.70

JBLD 90.80 91.33
AIRM 90.72 91.20

DLID [Chopra et al., 2013] 51.9
DeCAF6 S+T [Donahue et al., 2014] 80.7

DaNN [Ghifary et al., 2014] 53.6
Source CNN [Tzeng et al., 2015] 56.5
Target CNN [Tzeng et al., 2015] 80.5

Source+Target CNN [Tzeng et al., 2015] 82.5
Dom. Conf.+Soft Labs. [Tzeng et al., 2015] 82.7

Table 3.3: The Office dataset (A�D domain shift). (Left) Results on the VGG16 and GoogLeNet
streams for the baseline fine-tuning on the combined source+target domains (S+T) and second-order
(So) Euclidean-based method [Koniusz et al., 2017] are compared to our JBLD/AIRM dist. (Right)
Comparisons to the state of the art.

sp1 sp2 sp3 sp4 sp5 top-1 top-1-5 top-5 top-5-5
Avgk
top-k-k

S 33.9 34.2 34.8 34.2 33.8 34.2 36.0 49.2 53.7 46.0
T 56.9 55.9 58.7 56.0 55.2 56.5 64.1 76.5 80.6 72.5

S+T 56.4 55.2 57.1 56.3 54.4 55.9 62.5 75.8 79.2 71.6
So 64.2 62.4 65.0 62.7 60.0 62.8 70.4 84.0 88.5 79.5

JBLD 65.7 63.8 65.7 63.7 62.0 64.2 72.0 85.7 88.6 80.8

Table 3.4: Challenge II. Open MIC performance on the combined set for data 5 splits. Baselines (S), (T)
and (S+T) are given as well as second-order (So) method [Koniusz et al., 2017] and our JBLD approach.

3.6.1 Comparison to the State of the Art

Firstly, we validate that our reference method performs on the par or better than the state-of-the-
art approaches. Table 3.3 shows that the JBLD and AIRM distances outperform the Euclidean-
based So-HoT method (So) [Koniusz et al., 2017] by ∼1.6% and other recent approaches e.g.,
[Tzeng et al., 2015] by ∼ 8.6% accuracy. We also observe that GoogLeNet outperforms the
VGG16-based model by∼0.5%. Having validated our model, we opt to evaluate our proposed
Open MIC dataset on VGG16 streams for consistency with the So-HoT model [Koniusz et al.,
2017].

3.6.2 Open MIC Challenge

In what follows, we detail our challenges on the Open MIC dataset and present our experimen-
tal results.

Challenge I. For this challenge, we run our supervised domain adaptation algorithm combined
with the JBLD distance per subset. We prepare 5 training, validation and testing splits. For the
source data, we use all available samples per class. For the target data, we use 3 samples per
class for training and validation, respectively, and the rest for testing.

We report top-1 and top-5 accuracies. Moreover, as our target images often contain mul-
tiple exhibits, we ask a question whether any of top-k predictions match any of top-n image
labels ordered by our expert volunteers according to the perceived saliency. If so, we count it
as a correctly recognized image. We count these valid predictions and normalize by the total
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number of testing images. We denote this measure as top-k-n where k, n∈I5. Lastly, we indi-
cate an area-under-curve type of measure Avgk top-k-k which rewards correct recognition of
the most dominant object in the scene and offers some leniency if the order of top predictions
is confused and/or if they match less dominant objects–a simple alternative to precision/recall
plots.

We divided Open MIC into Shn, Clk, Scl, Sci, Gls, Rel, Nat, Shx, Clv and Hon subsets
to allow short 6–8 hours long runs per experiment. We ran 150 jobs on (S), (T) and (S+T)
baselines and 300 jobs on JBLD: 5 splits ×10 subsets ×6 hyperp. choices. Table 3.5 shows
that the exhibits in the Comprehensive Historical and Cultural Exhibits (Shx) and the Sculp-
tures (Scl) were the hardest to identify given scores of 48.5 and 54.4% top-1 accuracy. This is
consistent with volunteers’ reports that both exhibitions were crowded, the lighting was dim,
exhibits were occluded, fine-grained and non-planar. The easiest to identify were the Sculp-
tures, Pottery and Bronze Figurines (Clv) and the Indigenous Arts (Hon) as both exhibitions
were spacious with good lighting. The average top-1 accuracy across all subsets on JBLD is
63.9%. Averages over baselines (S), (T) and (S+T) are 52.5, 57.4, and 58.5% top-1 acc. To
account for uncertainty of saliency-based labeling and classifier confusing which exhibit to
label, we report our proposed average top-1-5 acc. to be 70.6%. Our average combined score
Avgk top-k-k is 79.3%. These results show that Open MIC challenges CNNs due to in-the-wild
capture with wearable cameras.

Challenge II. Having provided the above results per subset, we evaluate the combined set
covering 866 exhibit identities. In this setting, a single experiment runs 80–120 hours. We ran
15 jobs on (S), (T) and (S+T) baselines and 60 jobs on (So) and JBLD: 2 distances×5 splits×6

S T S+T JBLD S T S+T So JBLD AIRM S T S+T JBLD S T S+T JBLD S T S+T JBLD
sp1

Sh
n

45.3 45.3 59.0 60.0

C
lk

55.8 51.9 55.8 55.8 57.7 57.2

Sc
l

56.5 60.9 65.2 65.2

Sc
i

59.3 58.9 65.6 65.8

G
ls

64.1 67.1 62.8 70.3
sp2 48.4 52.6 53.7 62.1 55.4 44.6 50.0 58.9 58.9 58.9 44.4 50.0 44.4 50.0 56.9 57.2 67.1 69.1 59.9 61.9 59.2 63.9
sp3 46.1 52.7 60.4 64.8 58.9 58.9 67.9 69.6 71.4 71.4 55.6 38.9 44.4 44.4 69.9 62.0 65.7 68.2 65.9 69.3 64.9 69.6
sp4 49.5 50.5 54.8 64.5 51.9 48.1 46.1 53.8 57.7 57.7 55.0 55.0 55.0 50.0 58.1 59.2 64.2 66.3 62.3 67.0 61.6 68.7
sp5 49.5 57.0 63.4 69.9 62.5 41.7 60.4 58.3 60.4 60.4 56.2 56.2 62.5 62.5 57.3 53.3 61.5 64.5 60.1 64.5 59.0 65.2

top-1 47.7 51.6 58.3 64.3 56.9 49.1 56.0 59.3 61.2 61.1 53.5 52.2 54.3 54.4 58.5 58.1 64.9 66.8 62.5 65.9 61.6 67.5
top-1-5 48.2 54.2 60.2 66.4 58.9 56.3 60.3 66.2 68.9 68.9 54.7 55.4 57.3 58.4 60.2 61.7 67.8 70.2 77.3 84.4 76.7 84.9

top-5 64.5 68.8 76.9 81.6 76.7 63.8 78.2 87.5 86.9 87.2 67.4 66.6 70.0 70.0 83.3 82.7 86.0 88.6 85.2 89.4 83.1 89.3
top-5-5 66.0 73.3 79.5 84.2 77.8 75.0 82.7 91.6 91.0 91.4 69.4 69.8 71.1 72.0 85.6 86.3 89.4 91.3 87.3 95.0 89.7 93.4
Avgk
top-k-k 59.0 63.4 71.0 76.6 69.4 65.6 73.6 81.5 81.2 81.4 63.7 62.5 65.1 65.1 75.3 76.0 80.7 82.5 78.4 86.2 80.7 86.2

S T S+T JBLD S T S+T So JBLD AIRM S T S+T JBLD S T S+T JBLD S T S+T JBLD
sp1

R
el

62.0 65.0 63.3 66.3

N
at

38.0 56.2 52.6 58.8 58.8 58.5

Sh
x

33.3 43.2 31.5 58.6

C
lv

47.4 65.8 66.2 71.4

H
on

65.6 71.1 70.3 75.8
sp2 60.9 65.7 63.0 68.0 39.9 52.5 52.5 59.6 59.6 59.6 31.8 39.8 27.4 47.8 47.0 70.2 65.1 72.2 63.9 67.2 70.5 74.6
sp3 64.1 70.4 67.4 70.7 43.7 56.2 59.4 59.9 59.9 59.9 25.7 47.7 31.2 47.7 49.7 64.1 61.5 67.7 68.5 70.2 71.8 79.0
sp4 61.0 68.5 62.8 67.1 41.8 59.8 62.0 66.3 67.9 67.4 33.0 38.8 26.2 44.7 48.3 63.0 64.0 68.5 67.8 63.6 79.3 76.9
sp5 55.4 61.0 59.3 62.6 44.6 62.0 63.0 66.8 67.4 66.8 25.7 35.8 28.4 44.0 42.3 62.8 54.1 65.8 67.5 65.8 75.0 80.0

top-1 60.7 66.1 63.2 67.0 41.6 57.3 57.9 62.2 62.7 62.5 29.9 41.1 29.0 48.5 47.0 65.2 62.2 69.1 66.7 67.6 73.4 77.3
top-1-5 70.1 76.8 73.2 79.5 43.5 62.8 61.9 67.3 67.7 67.5 31.5 47.7 31.9 56.3 50.8 69.5 66.6 73.9 70.2 70.3 76.3 79.7

top-5 82.0 87.1 85.8 90.3 60.6 79.3 75.5 84.6 84.3 84.3 51.6 62.5 51.2 75.0 65.3 84.3 79.9 87.7 82.1 85.2 88.3 90.0
top-5-5 86.3 90.0 89.4 93.7 65.3 82.8 80.1 87.5 87.0 86.9 54.9 67.3 54.8 77.6 70.5 89.2 84.4 91.0 88.1 88.8 91.7 92.7
Avgk
top-k-k 77.4 82.8 80.5 85.2 55.7 74.0 72.4 79.5 79.6 79.4 45.1 57.1 44.5 66.8 61.5 80.6 76.5 83.5 79.7 81.0 84.5 86.7

Table 3.5: Challenge I. Open MIC performance on the 10 subsets for data 5 splits. Baselines (S), (T)
and (S+T) are given as well as our JBLD approach. We report top-1, top-1-5, top-5-1, top-5-5 accuracies
and the combined scores Avgk top-k-k. See Section3.6.2 for details.
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clp lgt blr glr bgr ocl rot zom vpc sml shd rfl ok
S 41.4 17.0 23.8 27.3 40.3 34.5 29.7 52.7 33.4 14.2 10.4 32.3 65.5
T 56.2 38.2 42.6 56.1 57.9 49.6 58.3 60.4 50.3 29.6 59.2 60.7 64.3

S+T 56.6 34.6 39.8 54.9 56.2 48.3 56.7 65.9 48.7 27.3 56.5 59.0 72.6
JBLD 65.3 48.6 51.6 64.0 65.9 56.4 65.0 70.0 58.6 34.1 70.4 67.5 81.0

Table 3.6: Challenge III. Open MIC performance on the combined set w.r.t. 12 factors detailed in
Section 3.6.2. Top-1 accuracies for baselines (S), (T), (S+T), and for our JBLD approach are listed.

hyperp. choices. Table 3.4 shows that our JBLD approach scores 64.2% top-1 accuracy and
outperforms baselines (S), (T) and (S+T) by 30, 7.7 and 8.3%. Fine-tuning CNNs on the source
and testing on target (S) is especially a very poor performer due to the significant domain shift
in Open MIC.

Challenge III. For this challenge, we break down performance on the combined set covering
866 exhibit identities w.r.t. the following 12 factors: object clipping (clp), low lighting (lgt),
blur (blr), light glares (glr), background clutter (bgr), occlusions (ocl), in-plane rotations (rot),
zoom (zom), tilted viewpoint (vpc), small size/far away (sml), object shadows (shd), reflections
(rfl) and the clean view (ok). Table 3.6 shows results averaged over 5 data splits. We note that
JBLD outperforms baselines. The factors most affecting the supervised domain adaptation are
the small size (sml) of exhibits/distant view, low light (lgt) and blur (blr). The corresponding
top-1 accuracies of 34.1, 48.6 and 51.6% are below our average top-1 accuracy of 64.2% listed
in Table 3.4. In contrast, images with shadows (shd), zoom (zom) and reflections (rfl) score
70.4, 70.0 and 67.5% top-1 accuracy (above avg. 64.2%). Our wearable cameras captured
also a few of clean shots scoring 81.0% top-1 accuracy. This lets us form a claim that domain
adaptation methods should evolve to deal with each of these adverse factors.
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Figure 3.4: Challenge II. Open MIC performance on the combined set. In the plot, we list the mean top-
k-n accuracy (averaged over 5 data splits) w.r.t. k and n for our JBLD approach. We vary k∈{1, 3, 5}
and n∈I5.

3.6.3 Additional Results on the OpenMIC dataset

Below, we give more details about our Open MIC dataset and present more evaluations. Table
3.7 contains a more detailed description of the 12 factors which we use to analyze performance
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abbr. details

clp
object clipping e.g., side, base or top including small or
large fragments of an exhibit

lgt
poor lighting e.g., dark exhibition space, dark exhibit
casing, strong light sources to which camera adapted
leaving exhibit underexposed

blr
blur due to motion and/or poor lighting/long shutter ex-
posure; full blur or part of the exhibit affected

glr point-wise glares of light reflected from objects

bgr
background clutter: a non-uniform background behind
an exhibit that changes with the camera viewpoint e.g.,
people, other exhibits, furniture etc

ocl
side, frontal, large or partial exhibit occlusions due to hu-
mans, other objects or non-transparent protective casing

rot
in-plane rotations by more than 5 degrees due to a tilted
camera or volunteers leaning towards exhibits

zom large close-ups of an exhibit or a zoom of a part of exhibit

vpc

camera viewpoint that mismatches the normal to the sur-
face of face of an exhibit–some exhibits have no frontal
face, some have several faces due to their distinct axes of
symmetry

sml
small object: an exhibit captured at a large distance e.g.,
across a hall; also small scale exhibits which cannot be
closely approached

shd a shadow cast over part of an exhibit

rfl
reflections affecting surfaces such as a protective glass
casing of exhibits which acts like a mirror

ok no visible distortions listed above

Table 3.7: Challenge III. The 12 factors w.r.t.
which we evaluate our dataset.

abbr. details

lcl
light object clipping e.g., side, base or top including
small fragments below 20% of the exhibit area

hcl heavy object clipping of large fragments e.g., more than
20% of the exhibit area

bcl clipping of the base of sculptures/exhibits etc

scl side occlusions of exhibits by humans or other objects

fcl
frontal/central occlusions of exhibit by humans or other
objects

ooc unclassified kind of occlusion
lzo close-ups of an exhibit

hzo large close-ups or a heavy zoom on a part of exhibit

lro small in-plane rotations by no more than 15 degrees due
to a tilted camera etc.

hro large in-plane rotations by more than 15 degrees due to a
tilted camera etc.

lvp
mismatches by less than 15 degrees between the camera
viewpoint and the normal to the surface of face of an
exhibit

hvp
mismatches by more than 15 degrees between the camera
viewpoint and the normal to the surface of face of an
exhibit

spc light specularities and other reflections from surface

Table 3.8: Challenge III. Additional factors w.r.t.
which we evaluate our dataset.

on our Open MIC dataset. Additionally to the Table 6 in the main submission, which breaks
down the performance w.r.t. these 12 factors, we performed an analysis w.r.t. pairs of factors.

Tables 3.9 and 3.10 present the image counts and results w.r.t. pairs of factors co-occurring
together. The combination of (sml) with (glr), (blr), (bgr), (lgt), (rot) and (vpc) results in 13.5,
21.0, 29.9, 31.2, 32.6 and 33.2% mean top-1 accuracy, respectively. Therefore, these pairs of
factors affect the quality of recognition the most.

Tables 3.11 and 3.12 present the image counts and results w.r.t. triplets of factors co-
occurring together. To obtain these results, we first selected 12 pairs of most challenging
co-occurring factors in Table 3.10 and then we further combined them with the 12 main factors
from Table 3.7 to obtain triplets. As can be seen, (sml+glr+lgt) and (sml+glr+blr) combina-
tions of factors were the most difficult to recognize and resulted in 0% accuracy. Moreover,
(sml+bgr+glr), (sml+ocl+lgt), (sml+rot+glr) and (sml+blr+ocl) resulted in 7.7, 10.0, 10.5,
and 11.1% accuracy which also highlights the difficult nature of these combinations of factors
in domain adaptation and recognition.

Tables 3.8 presents additional factors that we use in our analysis. We split (clp), (rot),
(vpc) and (zoo) into their light and heavy variants. We also split (occ) into the side and frontal
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∩ clp lgt blr glr bgr ocl rot zom vpc sml shd rfl ok
all 5136 335 1728 1346 2290 1529 7344 2278 4571 557 125 2000 84
clp 5136 216 770 572 1415 873 3401 1803 2549 167 66 1009 0
lgt 216 335 105 55 92 69 232 9 234 16 38 21 0
blr 770 105 1728 240 323 235 1348 240 820 152 23 330 0
glr 572 55 240 1346 183 143 1054 204 640 52 12 155 0
bgr 1415 92 323 183 2290 565 1604 464 1409 227 49 395 0
ocl 873 69 235 143 565 1529 1090 183 978 253 33 219 0
rot 3401 232 1348 1054 1604 1090 7344 1380 3292 405 113 1522 0
zom 1803 9 240 204 464 183 1380 2278 611 0 18 535 0
vpc 2549 234 820 640 1409 978 3292 611 4571 370 39 856 0
sml 167 16 152 52 227 253 405 0 370 557 0 69 0
shd 66 38 23 12 49 33 113 18 39 0 125 15 0
rfl 1009 21 330 155 395 219 1522 535 856 69 15 2000 0

Table 3.9: Challenge III. Target image counts for pairs of factors. The top row shows the counts for
the 12 factors detailed in Table 3.7. The colors of each column are normalized w.r.t. the top cell in that
column.

∩ clp lgt blr glr bgr ocl rot zom vpc sml shd rfl ok
all 65.3 48.6 51.6 64.0 65.9 56.4 65.0 70.0 58.6 34.1 70.4 67.5 81.0
clp 65.3 55.1 51.8 67.5 66.8 61.5 67.2 68.1 62.3 45.5 72.7 67.0 n/a
lgt 55.1 48.6 41.0 43.6 59.8 43.5 48.3 44.4 46.1 31.2 57.9 80.9 n/a
blr 51.8 41.0 51.6 48.7 48.6 37.0 52.3 64.2 43.3 21.0 39.1 59.4 n/a
glr 67.5 43.6 48.7 64.0 62.3 47.9 65.1 67.1 60.4 13.5 50.0 64.5 n/a
bgr 66.8 59.8 48.6 62.3 65.9 59.6 66.6 76.1 61.2 29.9 79.6 73.2 n/a
ocl 61.5 43.5 37.0 47.9 59.6 56.4 55.6 75.4 55.9 40.7 78.8 64.8 n/a
rot 67.2 48.3 52.3 65.1 66.6 55.6 65.0 75.5 57.6 32.6 73.4 70.4 n/a
zom 68.1 44.4 64.2 67.1 76.1 75.4 75.5 70.0 66.3 n/a 83.3 69.7 n/a
vpc 62.3 46.1 43.3 60.4 61.2 55.9 57.6 66.3 58.6 33.2 64.1 61.6 n/a
sml 45.5 31.2 21.0 13.5 29.9 40.7 32.6 n/a 33.2 34.1 n/a 46.4 n/a
shd 72.7 57.9 39.1 50.0 79.6 78.8 73.4 83.3 64.1 n/a 70.4 80.0 n/a
rfl 67.0 80.9 59.4 64.5 73.2 64.8 70.4 69.7 61.6 46.4 80.0 67.5 n/a

Table 3.10: Challenge III. Open MIC performance on the combined set w.r.t. the pairs of 12 factors
detailed in Table 3.7. Top-1 accuracies for our JBLD approach are listed. The top row shows results
w.r.t. the original 12 factors. Color-coded cells are normalized w.r.t. entries of this row. For each
column, intense/pale red indicates better/worse results compared to the top cell, respectively.

occlusions. We further combine (glr) and (rfl) into specularities (spc). Table 3.13 shows that
the large/heavy variants of truncation, rotation, viewpoint, zoom and occlusions affect per-
formance more than the small/light variants. This highlights the need to further investigate
the aspects of invariance to photometric and geometric transformations in domain adaptation
algorithms and CNN representations.

Additionally, we revisit Challenge II and present the curves for our proposed top-k-n mea-
sure on the combined set. Figure 3.4 shows how the performance of our JBLD approach varies
w.r.t. k and n variables detailed in Section 5.2 of our main submission. By increasing n, we can
see the gradual increase in accuracy which means that the classifier sometimes confuses the
most salient exhibits in images with less salient objects. Nonetheless, even if n=5, the results
on our new dataset are far from saturation leaving the scope for the future works to improve
upon our baselines.
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∩ sml sml sml sml sml sml blr blr sml lgt lgt lgt
glr blr bgr lgt rot vpc ocl shd ocl blr ocl glr

all 52 152 227 16 405 370 235 23 253 105 69 55
clp 7 36 75 3 98 124 133 13 90 57 51 35
lgt 2 10 5 16 8 6 23 13 7 105 69 55
blr 19 152 44 10 122 101 235 23 45 105 23 19
glr 52 19 13 2 38 20 36 6 36 19 16 55
bgr 13 44 227 5 166 175 78 10 100 26 35 19
ocl 20 45 100 7 166 161 235 6 253 23 69 16
rot 38 122 166 8 405 258 171 18 166 72 40 31
zom 0 0 0 0 0 0 20 1 0 2 0 0
vpc 20 101 175 6 258 370 150 12 161 68 52 50
sml 52 152 227 16 405 370 45 0 253 10 7 2
shd 0 0 0 0 0 0 6 23 0 13 12 4
rfl 4 14 28 0 54 42 23 2 22 5 6 4

Table 3.11: Challenge III. Target image counts for the selected triplets of 12 factors detailed in Table
3.7. The top row shows the counts for the pairs of factors we chose to form triplets. The colors of each
column are normalized w.r.t. the top cell in that column.

∩ sml sml sml sml sml sml blr blr sml lgt lgt lgt
glr blr bgr lgt rot vpc ocl shd ocl blr ocl glr

all 13.5 21.0 29.9 31.2 32.6 33.2 37.0 39.1 40.7 40.9 43.5 43.6
clp 42.8 27.8 38.7 66.7 42.8 46.0 44.4 53.8 45.5 49.1 45.1 45.7
lgt 0.0 30.0 40.0 31.2 37.5 50.0 52.3 38.5 10.0 40.9 43.5 43.6
blr 0.0 21.0 18.2 30.0 24.6 17.8 37.0 39.1 11.1 40.9 52.2 21.0
glr 13.5 0.0 7.7 0.0 10.5 15.0 27.8 33.3 27.8 21.0 31.2 43.6
bgr 7.7 18.2 29.9 40.0 27.7 31.4 37.2 60.0 33.0 46.1 51.4 42.1
ocl 15.0 11.1 33.0 14.3 39.7 41.0 37.0 83.3 40.7 52.2 43.5 31.2
rot 10.2 24.6 27.7 37.5 32.6 31.8 38.0 50.0 39.7 43.0 60.0 32.2
zom n/a n/a n/a n/a n/a n/a 75.0 100 n/a 100 n/a n/a
vpc 15.0 17.8 31.4 50.0 31.8 33.2 35.3 58.3 41.0 35.3 40.4 46.0
sml 13.5 21.0 29.9 31.2 32.6 33.2 11.1 n/a 40.7 30.0 14.3 0.0
shd n/a n/a n/a n/a n/a n/a 83.3 39.1 n/a 38.5 75.0 50.0
rfl 75.0 50.0 39.3 n/a 46.3 45.2 69.6 100 68.2 100 50.0 100

Table 3.12: Challenge III. Open MIC performance on the combined set w.r.t. the selected triplets of 12
factors detailed in Table 3.7. Top-1 accuracies for baselines for our JBLD approach are listed. The top
row shows results w.r.t. the most difficult pairs of factors we chose to form triplets. The colors of each
column are normalized w.r.t. the top cell in that column.

Lastly, we investigate the use of Mean Average Precision (MAP) in place of the accuracy
as MAP can quantify the quality of recognition for datasets with multiple labels per image.
For (Shn), (Clk) and (Shx) subsets, we obtain 71.5, 68.1 and 64.8% MAP in contrast to 64.3,
61.2 and 48.5% mean top-1 accuracy, respectively. Such results support our claim that the
Open MIC dataset is challenging and the results are far from being saturated; making it a good
choice for studying domain adaptation and few-shot learning.

While the protocol for supervised domain utilizes the labeled source and the labeled tar-
get training data (a few of datapoints per class), the unsupervised domain adaptation assumes
larger unannotated target dataset. Below, we evaluate methods such as the Unsupervised Do-
main Adaptation with Residual Transfer Networks (RTN) [Long et al., 2016], Deep Transfer
Learning with Joint Adaptation Networks (JAN) [Long et al., 2017] and Deep Hashing Network
for Unsupervised Domain Adaptation (DHN) [Venkateswara et al., 2017] on the (Shn), (Clk),
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Figure 3.5: Some of the most difficult to identify exhibits from the target domain in the Open MIC
dataset.

acc. files acc. files zoo= acc. files
clp=lcl+ 65.3 5316 occ=scl+ 56.4 1529 zoo= 70.0 2278hcl+bcl fcl+ooc lzo+hzo
lcl 70.6 2827 scl 56.0 1086 lzo 74.7 1173
hcl 59.0 2344 fcl 44.8 268 hzo 65.0 1106
bcl 65.4 739 ooc 56.9 851
rot= 65.0 7344 vpc= 58.6 4571 spc= 66.2 3191lro+hro lvp+hvp glr+rfl
lro 65.4 6724 lvp 60.8 3241 glr 64.0 1346
hro 60.3 622 hvp 53.0 1345 rfl 67.5 2000

Table 3.13: Challenge III. Open MIC performance on the combined set w.r.t. additional factors detailed
in Table 3.8. Top-1 accuracies for our JBLD approach are listed.

and (Hon) subsets of Open MIC. Table 3.14 shows that the unsupervised approaches score
lower than JBLD despite we used ResNet-50 for all methods, increased numbers of target dat-
apoints and tweaked all hyper-parameters. However, lower results compared to the supervised
domain adaptation are expected as the supervised and unsupervised approaches follow very
different training protocols.

A complementary to ours is a dataset for fine-grained domain adaptation [Gebru et al.,
2017] which contains ‘easily acquired’ ∼1M cars of 2657 classes from websites for ‘fine-
grained’ domain adaptation on 170 classes and ∼100 samples per class. In contrast, it took us
6 months and 10 visits to several museums with volunteers to collect a specialist data which
cannot be simply found on flicker. We used wearable cameras to capture the target images e.g.,
skeletons, pottery, tools, jewelery, which all are made of varied materials. Some pieces of art
are non-rigid, some emit light, some contain moving parts, some looks extremely similar etc.
The target data exhibits big scale and viewpoint changes as well as occlusions, motion blur and
light glares etc.

RTN+Shn 51.0 JAN+Shn 49.5 DHN+Shn 49.0 JBLD+Shn 64.3
RTN+Clk 54.7 JAN+Clk 51.0 DHN+Clk 52.2 JBLD+Clk 61.2
RTN+Hon 66.0 JAN+Rel 65.2 DHN+Rel 64.6 JBLD+Rel 77.3

Table 3.14: Evaluation of the unsupervised domain adaptation on the Open MIC dataset.

For evaluation on the Office-Home dataset [Venkateswara et al., 2017], we chose Cl �
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Ar/Pr�Ar domain pairs, 38 source and 12 target train images per class. The baseline (So)
approach scored 59.5/60.0% accuracy. For JBLD, we obtained 61.6/62.2%. For 20 source
and 3 target training images per class, we obtained 48.1/49.3 (So) and 49.2/50.5% (JBLD)
accuracy. Unsupervised approach (DHN) scored only 34.69/29.91% in this setting.

3.7 Conclusions

We have collected, annotated and evaluated a new challenging Open MIC dataset with the
source and target domains formed by images from Android and wearable cameras, respec-
tively. We covered 10 distinct exhibition spaces in 10 different museums to collect a realistic
in-the-wild target data in contrast to typical photos for which the users control the shutter. We
have provided a number of useful baselines e.g., breakdowns of results per exhibition, com-
bined scores and analysis of factors detrimental to domain adaptation and recognition. Unsu-
pervised domain adaptation and few-shot learning methods can also be compared to our base-
lines. Moreover, we proposed orthogonal improvements to the supervised domain adaptation
e.g., we integrated non-trivial non-Euclidean distances and Nyström projections for better re-
sults and tractability. We will make our data and evaluation scripts available to the researchers.
One drawback of our approach is that it requires source and target domains to have same cate-
gories, classes. This limitation will be addressed in the next chapter, while also focusing on a
new recognition task.
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Chapter 4

CNN-based Action Recognition and
Supervised Domain Adaptation on 3D
Body Skeletons via Kernel Feature
Maps

4.1 Summary

Deep learning is ubiquitous across many areas of computer vision. It often requires large scale
datasets for training before being fine-tuned on small-to-medium scale problems. Activity, or,
in other words, action recognition, is one of many application areas of deep learning. While
there exist many Convolutional Neural Network architectures that work with the RGB and
optical flow frames, training on the time sequences of 3D body skeleton joints is often per-
formed via recurrent networks such as LSTM. In this chapter, we propose a new representation
which encodes sequences of 3D body skeleton joints in texture-like representations derived
from mathematically rigorous kernel methods. Such a representation becomes the first layer in
a standard CNN network e.g., ResNet-50, which is then used in the supervised domain adapta-
tion pipeline to transfer information from the source to target dataset. This lets us leverage the
available Kinect-based data beyond training on a single dataset and outperform simple fine-
tuning on any two datasets combined in a naive manner. More specifically, in this chapter we
utilize the overlapping classes between datasets. We associate datapoints of the same class
via so-called commonality, known from the supervised domain adaptation. We demonstrate
state-of-the-art results on three publicly available benchmarks.

Following from the previous chapter, we move to more complicated action recognition
task. Compared to image recognition and domain adaption from images, action recognition
requires understanding of videos which are essentially sequences of images. Also, action
recognition task involves learning from 3D body skeleton joints which is inherently a very
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different representation compared to RGB images, thus making it harder to use them with
traditional CNNs. To address these challenges, we propose a novel encoding method to embed
these sequences of 3D body skeleton joints into 2D texture like representations. We further
improve our alignment loss to work with domains where they contain different number of
matching classes. This chapter has been published as a conference paper: "Yusuf Tas, Piotr
Koniusz. CNN-based Action Recognition and Supervised Domain Adaptation on 3D Body
Skeletons via Kernel Feature Maps. In British Machine Vision Conference (BMVC) 2018".

4.2 Introduction

In recent years, we have witnessed a great increase in the usage and development of deep learn-
ing frameworks such as Convolutional Neural Networks (CNN). Starting from an outstanding
paper on the AlexNet architecture [Krizhevsky et al., 2012], application areas such as text
processing, speech recognition, feature learning and extraction, semantic segmentation, object
detection and recognition have adopted deep learning since [Girshick et al., 2014; Collobert
and Weston, 2008; Hinton et al., 2012; Ren et al., 2015; Donahue et al., 2014].

Action recognition aims to distinguish between different action classes such as walking,
pushing, hand shaking, kicking, punching, to name but a few of action concepts. The ability
to recognize human actions enables progress in many application areas verging from the video
surveillance to human-computer interaction [Herath et al., 2017a]. Videos have been the main
source of the data for action recognition, however, data sources such as RGB-D have become
popular since the introduction of the Kinect sensor as they facilitate tracking 3D coordinates of
human skeleton body joints which form time sequences. Similar to the object classification, the
past action recognition systems relied on handcrafted spatio-temporal feature descriptors such
as [Bobick and Davis, 2001; Laptev, 2005; Klaser et al., 2008], with a notable shift to deep
learning frameworks [Ji et al., 2012; Karpathy et al., 2014; Simonyan and Zisserman, 2014a;
Feichtenhofer et al., 2016] which combine RGB and optical flow CNN streams. However, little
has been done to investigate the use of sequences of 3D body skeleton joints in CNNs, with an
exception of [Ke et al., 2017].

In this chapter, we focus on the action recognition of sequences of 3D body skeleton joints
and propose an input layer which we combine with off-the-shelf CNNs. This enables us to
further pursue our goal of the supervised domain adaptation to leverage Kinect-based datasets
as the known supervised domain adaptation approaches [Tzeng et al., 2015; Koniusz et al.,
2017] are based on CNNs rather than the recurrent networks such as RNN and LSTM [Du
et al., 2015; Zhu et al., 2016; Liu et al., 2016a]. Even though recurrent networks are generally
the first choice for time series based data, they are still limited by the number of steps they can
process [Gu et al., 2017]. On the other hand, action recognition data consists of images frames,
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videos where they have many steps across time.

It has been shown that in deep networks, early layers recognize edges, corners, basic shapes
and structures; prompting similarity to handcrafted features. However, in the consecutive lay-
ers, learned filters respond to more complex stimuli [Zeiler and Fergus, 2014]. This attractive
property of deep learning together with the shift-invariance of pooling result in a superior
performance compared to handcrafted features. Even more powerful are the residual CNN
representations [He et al., 2016; Feichtenhofer et al., 2016] which have the ability to bypass
the local minima resulting from the non-convex nature of CNN networks. Therefore, our work
is based on the ResNet-50 model.

Papers on human action recognition use several datasets such as KTH [Schuldt et al.,
2004], HMDB-51 [Kuehne et al., 2011], SBU-Kinect-Interaction [Yun et al., 2012], UTKinect-
Action3D [Xia et al., 2012], NTU RGB+D [Shahroudy et al., 2016], most of which have a
significant overlap of the class concepts describing actions. Thus, we adopt a domain adapta-
tion approach based on the class-wise mixture of alignments of second-order scatter matrices
[Koniusz et al., 2017]. We apply it to time sequences of 3D body skeleton joints to transfer the
knowledge between the overlapping classes of two datasets. Our contributions are:

(i) We propose a novel method that encodes sequences of 3D body skeleton joints into a kernel
feature map representation suitable for the use with off-the-shelf CNNs. Our representation
enjoys a sound mathematical derivation based on kernel methods [Scholkopf and Smola,
2001].

(ii) We are the first to adapt the supervised domain adaptation [Koniusz et al., 2017] for the
action recognition on time sequences of 3D body skeleton joints. We extend the so-called
mixture alignment of classes [Koniusz et al., 2017] to work with datasets which class con-
cepts match partially.

4.3 Related Work

First, we describe the most popular CNN action recognition models followed by the 3D body
joint representations. Subsequently, we focus on the most related to our approach techniques.

CNNs for Action Recornition. Ji et al. [Ji et al., 2012] propose a CNN model to utilize
3D structure in videos by multiple convolution operations. Karpathy et al. [Karpathy et al.,
2014] propose a method called ‘slow fusion’ which learns temporal information by feeding
sequentially parts from the video to the algorithm. Simonyan and Zisserman [Simonyan and
Zisserman, 2014a] propose a two-stream network which benefits from both spatial domain
with RGB images and temporal domain with optical flow.

3D Body Joint Sequences. Systems such as Microsoft Kinect can locate body parts and
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produce a set of articulated connected body joints that evolve in time and form time sequences
of 3D coordinates [Zatsiorsky and Zaciorskij, 2002]. Action recognition via sequences of 3D
body skeleton joints has received a wider attention in the community, as witnessed by a survey
paper [Presti and La Cascia, 2016].

While the RGB-based video sequences contain background, clutter and other sources of
noise, the advantage of skeleton-based representations is that they can accurately describe hu-
man motion. This was first demonstrated by Johansson [Johansson, 1973] in his seminal ex-
periment involving the moving lights display. By observing moving body joints that represent
e.g., elbow, wrist, knee, ankle, one can tell the action taking place. Moreover, sensors such
as Kinect fuse depth and RGB frames, and combine the body joint detector, tracker [Shotton
et al., 2011], and segmentation to robustly separate the background clutter from the subject’s
motion. For any given subject/action, the 3D positions of body joints evolve spatio-temporally.

Various descriptors of body joints have been proposed e.g., the motion of 3D points is used
in [Hussein et al., 2013; Lv and Nevatia, 2006], orientations w.r.t. a reference axis are used
by [Parameswaran and Chellappa, 2006] and relative body-joint positions are used in [Wang
et al., 2012; Yang and Tian, 2014]. Connections between body segments are used in [Yacoob
and Black, 1999; Ohn-Bar and Trivedi, 2013; Ofli et al., 2014; Vemulapalli et al., 2014]. In
contrast, we represent sequences of 3D body-joints by a kernel whose linearization yields
texture-like feature maps which capture complex statistics of joints for CNN.

Map generation from 3D Body Joint Sequences. A recent paper [Ke et al., 2017] forms
texture arrays from 3D coordinates of body joints. Firstly, 4 key body joints are chosen as
reference to form a center of coordinate system by which the 3D positions of remaining body
joints are shifted before conversion into cylindircal coordinates. Coordinate of each body joint
is stacked along rows while temporal changes happen along columns. This results in 12 maps
resized to 224×224 and passed to 12 CNN streams combined at the FC layer.

Our method is somewhat related in that our feature maps resemble textures. However, our
maps are obtained by a linearization of the proposed kernel function which measures similarity
between any pair of two sequences. The parameters of these kernels introduce a desired de-
gree of shift-invariance in both spatial and temporal domains. Our approach is also somewhat
related to kernel descriptors for image recognition [Bo et al., 2011], Convolutional Kernel
Networks [Mairal et al., 2014] and kernelized covariances [Cavazza et al., 2016] for action
recognition, a time series kernel on scatter matrices [Gaidon et al., 2011] and a spatial com-
patibility kernel [Koniusz et al., 2016a] that yields a tensor descriptors. In contrast, our layer
captures third-order co-occurrences between 3D skeleton body joints and temporal domain to
produce texture-like feature maps that are passed to CNN.

Supervised Domain Adaptation. In this chapter, we employ the supervised domain adapta-
tion whose role is to transfer knowledge from the labeled source to labeled target dataset and
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(a) (b)

Figure 4.1: Supervised Domain Adaptation [Koniusz et al., 2017]. Figure 4.1a: The source and target
network streams are combined by the classification and alignment losses ` and h̄ (end-to-end learning)
which operate on the feature vectors from the final FC layers of ResNet-50 streams Λ and Λ∗. Loss h̄
aligns covariances for C classes to facilitate transfer learning. Figure 4.1b: At the test time, the target
stream only and the classifier are used.

outperform naive fine-tuning on combined datasets. We adapt an approach [Koniusz et al.,
2017] based on the mixture of alignments of second-order statistics. One alignment per class
per source and target streams is performed to discover the so-called commonality [Koniusz
et al., 2017] between the data streams. Thus, both CNN streams learn a transformation of the
data into this shared commonality. Figures 4.1a and 4.1b show the training and testing proce-
dures. Training requires a trade-off between alignment and training losses h̄ and ` operating on
source and target streams Λ and Λ∗. Testing uses only the target stream Λ∗ and the pre-trained
classifier.

The approach in [Koniusz et al., 2017] assumes that the source and target data have to share
the same set of labels. We relax this assumption to perform transfer between the classes shared
between both datasets. Thus, we employ separate source and target classifiers and perform the
alignment.

4.4 Preliminaries

In what follows, we explain our notations and the necessary background on shift-invariant
RBF kernels and their linearization, which are needed for deriving a kernel on sequences on
3D body skeleton joints together with its linerization into feature maps.

Notations. The Kronecker product is denoted by ⊗. IN denotes the index set {1, 2, ..., N}.
We use the MATLAB notation v = [begin : step : end] to generate a vector v with elements
starting as begin, ending as end, with stepping equal step. Operator ‘;’ in [x; y] concatenates
vectors x and y (or scalars) while [Φi]i∈IJ concatenates Φ1, ..., ΦJ along rows.

Kernel Linearization. In the sequel, we use Gaussian kernel feature maps detailed below to
embed 3D coordinates and their corresponding temporal time stamp into a non-linear Hilbert
space and perform linearization which will result in our texture-like feature maps.

Proposition 10. Let Gσ(x−y) = exp(−‖x−y‖2
2 /2σ2) denote a Gaussian RBF kernel cen-

tered at y and having a bandwidth σ. Kernel linearization refers to rewriting this Gσ as an
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Figure 4.2: Visualization of the feature maps of sequences of 3D body skeleton joints. Note that
irrespectively of the sequence length, we always obtain Φ∈R225×225 feature maps.

inner-product of two infinite-dimensional feature maps. To obtain these maps, we use a fast
approximation method based on probability product kernels [Jebara et al., 2004]. Specifically,
we employ the inner product of d′-dimensional isotropic Gaussians given x, y∈Rd′. Consider
equation:

Gσ(x−y)=
(

2
πσ2

)d′
2∫

ζ∈Rd′

Gσ/
√

2(x−ζ) Gσ/
√

2(y−ζ)dζ. (4.1)

Eq. (4.1) can be approximated by replacing the integral with the sum over Z pivots ζ1, ..., ζZ:

Gσ(x−y) ≈
〈√

cϕ(x),
√

cϕ(y)
〉

, where ϕ(x) =
[

Gσ/
√

2(x− ζ1), ..., Gσ/
√

2(x− ζZ)
]T

,

(4.2)

and c represents a constant (it impacts the overall magnitude only so we set c=1). We refer to
(4.2) (left) as the linearization of the RBF kernel and (4.2) (right) as an RBF feature map1.

Proof. Rewrite the Gaussian kernel as the probability product kernel [Jebara et al., 2004] (Sec.
3.1).

4.5 Proposed Method

Below, we formulate the problem of action recognition from sequences of 3D body skeleton
joints, followed by our kernel formulation capturing actions, and its linearization into feature
maps which we further feed to off-the-shelf CNN for classification.

1Note that (kernel) feature maps are not conv. CNN maps. They are two separate notions that share the name.
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4.5.1 Generation of Feature Maps via Kernel Linearization

Let dataset consist of sequences of J 3D body skeleton joints describing human pose skeleton
evolving in time. For brevity, we assume each sequence consists of M frames. However, our
formulation is applicable to sequences of variable lengths e.g., M and N. Our pose sequence
Π is defined as:

Π =
{

xis ∈ R3, i ∈ IJ , s ∈ IM
}

. (4.3)

Each sequence Π is described by one of C action labels. We use the sequence Π to generate
a feature map which can be considered a descriptor of action associated with Π. Then, such
feature maps are generated from given datasets and then fed to the source and target CNN
streams with the goal of performing the supervised domain adaptation. Figure 4.2 illustrates
the sequences and feature maps obtained as a result of the process detailed next.

In what follows, we want to measure the similarity between any two action sequences in
terms of their 3D body skeleton joints as well as their evolution in time. We normalize each
skeleton w.r.t. the chest joint (chosen to be the center). Moreover, we normalize such relative
coordinates by their total variance computed over the training data. Let ΠA and ΠB be two
sequences, each with J joints, and M and N frames, respectively. Further, let xis ∈ R3 and
yjt ∈ R3 correspond to coordinates of joints of body skeletons of ΠA and ΠB, respectively.
We define our sequence kernel (SCK) between ΠA and ΠB as:

K(ΠA, ΠB) =
1

MN∑
i∈IJ

∑
s∈IM

∑
t∈IN

Kσ1(xis − yit)
2 Gσ2(

s
M
− t

N
), (4.4)

where 1/(MN) is a normalization constant, and Gσ1 and Gσ2 are subkernels that capture the
similarity between the 3D body skeleton joints and temporal alignment, respectively. There-
fore, we have two parameters σ1 and σ2 which control the level of tolerated invariance w.r.t.
misalignment of 3D body joints and their temporal positions in two sequences, respectively.
Moreover, the square of Kσ1 in Eq. (4.4) captures co-occurrences of x, y, and z Cartesian coor-
dinates of each 3D body joint–it is shown below that the square operation corresponds to the
Kronecker product which is known to capture co-occurrences.

First, we define Kσ1(x − y) = ∑i∈I3
Gσ1(xi − yi) where superscript i chooses x-, y-

, or z-axis of a 3D coordinate vector. Next, we linearize the above kernel using the the-
ory from Section 4.4 so that Kσ1(x− y) ≈ ∑i∈I3

φ(xi)Tφ(yi), which gives the dot-product
of concatenations Kσ1(x − y) ≈ [φ(x1); φ(x2); φ(x3)]T[φ(y1); φ(y2); φ(y3)]. In what fol-
lows, we write for simplicity that Kσ1(x − y) ≈ φ(x)Tφ(y). Moreover, temporal kernel
Gσ2(

s
M −

t
N ) ≈ z(s/M)Tz(t/N). The above linearizations combined with Eq. (4.4) lead
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(a) (b) (c)

Figure 4.3: Illustration of the impact of σ1=0.4, 0.6, 0.8, 1.5 and σ2=0.02, 0.1, 1.0, 5.0 (in the scanline
order) on feature maps are given in Figures 4.3a and 4.3b, respectively. Figure 4.3c shows four different
maps for four different sequences. Note the subtle differences.

to:

K(ΠA, ΠB)≈
1

MN ∑
i∈IJ

∑
s∈IM

∑
t∈IN

(
φ(xis)

Tφ(yit)
)2z(s/M)Tz(t/N), (4.5)

which can be further rewritten into Eq. (4.6) and simplified by Eq. (4.7):

K(ΠA, ΠB)≈
1

MN ∑
i∈IJ

∑
s∈IM

∑
t∈IN

〈
(φ(xis)⊗φ(xis))z(s/M)T, (φ(yit)⊗φ(yit))z(t/N)T

〉
(4.6)

= ∑
i∈IJ

〈 1
M ∑

s∈IM

(φ(xis)⊗φ(xis))z(s/M)T,
1
N ∑

t∈IN

(φ(yit)⊗φ(yit))z(t/N)T
〉
⇒

K(ΠA, ΠB)≈〈Φ(ΠA), Φ(ΠB)〉 , where (4.7)

Φ(ΠA)=
[ 1

M ∑
s∈IM

(φ(xis)⊗φ(xis))z(s/M)T
]

i∈IJ
, Φ(ΠB)=

[ 1
N ∑

t∈IN

(φ(yit)⊗φ(yit))z(t/N)T
]

i∈IJ
,

and Φ(Π) is our texture-like feat. map for a chosen sequence Π.

We choose Z1 = 5 pivots ζ = [ζ1, ..., ζZ1 ]
T for Gσ1 which are sampled on interval [−1; 1]

with equal steps e.g., ζ = [−1 : 2/(Z1−1) : 1]. This results in a 3Z1 dimensional map that
approximates Kσ1 . For Gσ2 , we choose such an integer number of pivots Z2 that Z2 J = 225.
We sample these pivots on interval [0; 1]. This way, we obtain Φ ∈ RZ2

1×Z2 J which can be
readily fed to an off-the-shelf CNN stream. Figure 4.3 demonstrates the impact of σ1 and σ2

radii on the feature maps Φ. Our feature map is similar in spirit to Convolutional Kernel
Networks [Mairal et al., 2014] for image classification which demonstrated that the lineariza-
tion of a carefully designed kernel adheres to standard CNN operations such as convolution,
non-linearity and pooling. This motivates our belief that our feature maps are more suited/com-
patible for interfacing with CNNs than ad-hoc texture-like representations [Ke et al., 2017].
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4.5.2 Alignment of Second-order Statistics

For the full details of the So-HoT algorithm, please refer to Chapter 2. Below, we review the
core part of our algorithm for the reader’s convenience. Suppose IN and IN∗ are the indexes
of N source and N∗ target training data points. INc and IN∗c are the class-specific indexes
for c ∈ IC, where C is the number of classes. Furthermore, suppose we have feature vectors
from an FC layer of the source network stream, one per an action sequence or image, and their
associated labels. Such pairs are given by Λ≡{(φn, yn)}n∈IN , where φn ∈Rd and yn ∈IC,
∀n∈IN . For the target data, by analogy, we define pairs Λ∗≡{(φ∗n, y∗n)}n∈I∗N , where φ∗∈Rd

and y∗n∈IC, ∀n∈I∗N . Class-specific sets of feature vectors are given as Φc≡{φc
n}n∈INc

and
Φ∗c≡ {φ∗cn }n∈IN∗c

, ∀c ∈ IC. Then Φ≡ (Φ1, ..., ΦC) and Φ∗≡ (Φ∗1 , ..., Φ∗C). The asterisk in
superscript (e.g. φ∗) denotes variables related to the target network while the source-related
variables have no asterisk. Figure 4.4 shows the setup we use. The So-HoT problem is posed
as a trade-off between the classifier and alignment losses ` and h̄:

arg min
W,W∗,Θ,Θ∗

s. t. ||φn||22≤τ,
||φ∗n′ ||

2
2≤τ,

∀n∈IN,n′∈I∗N

`(W, Λ)+`(W∗, Λ∗)+η||W−W∗||2F + (4.8)

α1

C ∑
c∈IC

||Σc−Σ∗c ||2F+
α2

C ∑
c∈IC

||µc−µ∗c ||22.︸ ︷︷ ︸
h̄(Φ,Φ∗)

For `, a generic Softmax loss is employed. For the source and target streams, the matrices
W, W∗∈ Rd×C contain unnormalized probabilities. In Equation (4.8), separating the class-
specific distributions is addressed by ` while attracting the within-class scatters of both net-
work streams is handled by h̄. Variable η controls the proximity between W and W∗which
encourages the similarity between decision boundaries of classifiers.

The loss h̄ depends on two sets of variables (Φ1, ..., ΦC) and (Φ∗1 , ..., Φ∗C) – one set per
network stream. Feature vectors Φ(Θ) and Φ∗(Θ∗) depend on the parameters of the source
and target network streams Θ and Θ∗ that we optimize over. Σc ≡ Σ(Φc), Σ∗c ≡ Σ(Φ∗c ),
µc(Φ) and µ∗c (Φ

∗) denote the covariances and means, respectively, one covariance/mean pair
per network stream per class. Coefficients α1, α2 control the degree of the scatter and mean

Figure 4.4: Our pipeline: combining the 3D body skeleton encoding and the supervised domain adap-
tation. Unlike [Koniusz et al., 2017], we utilize two classifiers (one per network stream) and perform
alignment between the classes that are shared between the source and target datasets.
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alignment, τ controls the `2-norm of feature vectors.

Algorithm 1 details how we perform domain adaptation. We enable the alignment loss h̄
only if the source and target batches correspond to the same class. Otherwise, the alignment
loss is disabled and the total loss uses only the classification log-losses `src and `trg. To gen-
erate the source and target batches that match w.r.t. the class label, we re-order source and
target datasets class-by-class and thus each source/target batch contains only one class label
at a time. Once all source and target datapoints with matching class labels are processed,
remaining datapoints are processed next.

Our final pipeline is illustrated in Figure 4.4. As our ultimate goal is to transfer knowl-
edge between Kinect-based datasets, we combine the described in Section 4.5.1 encoder of
sequences of 3D body skeleton joints together with the supervised domain adaptation algo-
rithm So-HoT [Koniusz et al., 2017] with details and modifications as discussed above. So-HoT
yields state-of-the-art results on the Office dataset [Saenko et al., 2010], however, it works with
datasets which are described by the same class concepts. Thus, we adapt their algorithm to our
particular needs e.g., we only perform the alignment of second-order statistics between the
classes that are shared between the source and target datasets. Moreover, we employ separate
classifier losses `src and `trg for the source and target stream, respectively. The separate target
classifier allows the target network to work with class labels absent from the source dataset. At
the test time, we cut off the source stream (and the source classifier), as illustrated in Figure
4.1b.

4.6 Experiments

Below, we detail our network setting, datasets and we show experiments on our feature maps
for sequences of 3D body skeleton joints in the context of the supervised domain adaptation.

Network Model. We use the two streams network architecture from [Koniusz et al., 2017].
For each CNN stream, we chose the Residual CNN model ResNet-50 [He et al., 2016] pre-
trained on ImageNet dataset [Krizhevsky et al., 2012] for both source and target streams. The
Pool-5 layers of the source and target streams are forwarded to a fully connected layer FC with
512 hidden units and this is forwarded to both the classification weight layer and the so-called
alignment loss [Koniusz et al., 2017]. Two classifiers are used for the source and target streams.
Moreover, the alignment loss is activated when the generated source and target mini-batches
contain datapoints with the same class labels. See Algorithm 1 for more details and Figure 4.4
for the network setting.

The training is performed by the Stochastic Gradient Descent (SGD) with the momentum
set to 0.9. Mini-batch sizes differ depending on both the source and target dataset.
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Algorithm 1 Batch generation + a single epoch of the training procedure on the source and
target datasets.

1: src_data := sort_by_class_label(src_data)
2: target_data := sort_by_class_label(target_data)
3: Cs . Number of the source classes
4: Ct . Number of the target classes
5: Cs∩t . Number of classes in common
6: procedure EPOCH(src_data, target_data, batch_size) . Training (one epoch)
7: for i← 1 : max(Cs, Ct) do
8: if i ≤ Cs then
9: batchs ← Choose(src_data, i, batch_size) . ‘Choose’ pre-fetches data of

class i
10: else
11: batchs ← Choose(src_data, rnd(), batch_size) . ‘Choose’ pre-fetches data

of random class
12: if i ≤ Ct then
13: batcht ← Choose(target_data, i, batch_size)
14: else
15: batcht ← Choose(target_data, rnd(), batch_size)
16: if i ≤ Cs∩t then
17: Loss← `src + `trg + h̄
18: else
19: Loss← `src + `trg

20: Forward(net_data, batch_s, batch_t)
21: Backward(net_data, batch_s, batch_t)
22: Update(net_data, batch_s, batch_t)

Datasets.

We use the NTU RGB-D, SBUKinect Interaction and UTKinect-Action3D datasets.

NTU RGB-D [Shahroudy et al., 2016], the largest action recognition dataset to date, con-
tains ∼56000 sequences of 60 distinct action classes and sequences of actions/interactions
performed by 40 different subjects. 3D coordinates of 25 body joints are provided. We use
the cross-subject evaluation protocol [Shahroudy et al., 2016] and used only the train split as
our source data. For pre-processing, we translated 3D body joints by the joint-2 (middle of the
spine) and we chose the body with the largest 3D motion as the main actor for the multi-actor
sequences.

SBUKinect [Yun et al., 2012] contains videos of 8 interaction categories between two people,
and 282 skeleton sequences with 15 3D body joints. Although the locations of body joints are
noisy [Yun et al., 2012] and pre-processing is common [Zhu et al., 2016], we do not perform
any pre-processing or data augmentation in contrast to [Ke et al., 2017]. In domain adaptation
setting, we use the NTU training set as the source and SBU as the target data. For evaluation,
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Methods SBU UTK
Cylindrical textures, 1×CNN [Ke et al., 2017] 89.37% 95.0%
Cylindrical textures, 3×CNN [Ke et al., 2017] 90.24% 95.9%

Kernel feature maps, 1×CNN (ours) 91.13% 96.5%

Table 4.1: Comparisons of texture representations.

Z1

a
c
c
u
ra

c
y
 (

%
)

3 4 5 6 7
89

89.4
89.8
90.2
90.6

91
91.4

(a)

Z2

a
c
c
u
ra

c
y
 (

%
)

7 9 11 13 15 17
89

89.4
89.8
90.2
90.6

91
91.4

(b)

Figure 4.5: Accuracy w.r.t. Z1 (Z2 = 15) and
Z2 (Z1=5) on SBU in Figures 4.2a and 4.2b.

we follow [Yun et al., 2012] and use 5-fold cross-validation on the given splits. As each se-
quence contains 2 persons, we used each skeleton as a separate training datapoint. For testing,
we averaged predictions over such pairs.

UTKinect-Action3D [Xia et al., 2012] contains 10 action captured by Kinect, 199 sequences,
and 20 3D body skeleton joints. We avoid data augmentation or pre-processing. Protocol [Zhu
et al., 2013] has 2 splits: half of the subjects for training and half for testing. NTU training set
is our source.

Experiments. Below, we focus on the following types of experiments, each utilizing our
encoder which transforms sequences of 3D body skeleton joints into feature maps:

(i) Target-only: only target dataset is used for training and testing (no domain adaptation).

(ii) Source+target: the source and target datasets (both training and validation splits) are
combined into one larger dataset. Testing is performed on the target testing set only. No
domain adaptation is used but the network is trained on both domains.

(iii) Second-order alignment: our extended So-HoT model applies the domain adaptation
between the source and target training datapoints. We perform the alignment of second-
order statistics whenever the source and target class names match.

No Domain Adaptation. Firstly, we compare our encoding to texture-based representation
[Ke et al., 2017]. Approach [Ke et al., 2017] forms 4 arrays of cylindrical coordinates of 3D
skeleton body joints, each translated w.r.t. each 4 pre-defined key-joints. Such arrays are later
resized, cropped etc. and fed to network via multiple CNN inputs. They require a dedicated

Methods Accuracy
Raw Skeleton [Yun et al., 2012] 49.7%

Hierarchical RNN [Du et al., 2015] 80.35%
Deep LSTM [Zhu et al., 2016] 86.03%

Deep LSTM + Co-occurrence [Zhu et al., 2016] 90.41%
ST-LSTM [Liu et al., 2016a] 88.6%

ST-LSTM + Trust Gate [Liu et al., 2016a] 93.3%
Frames + CNN [Ke et al., 2017] 90.8%

Clips + CNN + MTLN [Ke et al., 2017] 93.57%
SBU only (target) 91.13%

NTU+SBU combined (source+target) 91.52%
Second-order alignment 94.36%

Table 4.3: Results on the SBUKinect dataset.

Methods Accuracy
3D Histogram (leave one out) [Xia et al., 2012] 90.92%

Lie Group [Vemulapalli et al., 2014] 97.08%
SCK + DCK [Koniusz et al., 2016a] 98.39%

Skeleton Joint Features [Zhu et al., 2013] 90.9%
ST-LSTM + Trust Gate [Liu et al., 2016a] 95.0%

Elastic Functional Coding [Anirudh et al., 2015] 94.9%
UTK only (target) 96.5%

NTU+UTK combined (source+target) 97.5%
Second-order alignment 98.9%

Table 4.4: Results on the UTKinect dataset.
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Methods Cross subject
Hierarchical RNN [Du et al., 2015] 59.1%
Deep RNN [Shahroudy et al., 2016] 59.3%

Deep LSTM [Shahroudy et al., 2016] 60.7%
ST-LSTM + Trust Gate [Liu et al., 2016a] 69.2%

Frames + CNN [Ke et al., 2017] 75.73%
NTU only (target) 74.52%

NTU+UTK+SBU combined (source+target) 74.65%
Second-order alignment (UTK→NTU) 74.91%
Second-order alignment (SBU→NTU) 74.83%

Second-order alignment (UTK+SBU→NTU) 75.35%

Table 4.5: Results on the NTU dataset.
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Figure 4.6: Sensitivity w.r.t. param.
σ1 and σ2 on SBU. Figures 4.6a and
4.6b show the accuracy w.r.t. σ1 (σ2 =
0.3) and σ2 (σ1=0.6), resp.

CNN pipeline which combines all these arrays. To make a fairer comparison to our encoding
and use an off-the-shelf CNN setting, we simplified representation [Ke et al., 2017] to use
only a single body key-joint center for translation. We use the same setting for our encoding
and [Ke et al., 2017] based on ResNet-50. We do not use a domain adaptation for results in
Table 4.1. We include however a variant of method [Ke et al., 2017] which generates 3 texture
images (one per each cylindrical coordinate). Thus, these 3 texture images are passed via 3
CNN streams and their FC vectors are concatenated.

Table 4.1 shows the comparison of our texture-like feature map encoding against method
[Ke et al., 2017]. With 3× more texture images taking 3× more time to process via 3 CNN
streams, method (Cylindrical textures, 3×CNN) [Ke et al., 2017] performs ∼0.7–0.9% worse
than ours. Moreover, for fairness, we next combine their 3 texture images (one per each cylin-
drical coordinate) into an RGB-like texture and passed via 1 CNN stream (Cylindrical textures,
1×CNN). Table 4.1 shows that given the same ResNet-50 pipeline, our method outperforms
theirs by ∼1.8% and 1.4% on SBU and UTK. Figures 4.5 and 4.6 show that our encoder is not
too sensitive w.r.t. the choice of Z1, Z2, σ1 and σ2 on the SBU dataset (no domain adaptation).
Figure 4.7 shows a similar analysis on the UTK dataset.

Although idea [Ke et al., 2017] appears somewhat related to ours, the inner workings
of both methods differ e.g., our method is mathematically inspired to attain desired shift-
invariance w.r.t. 3D positions of coordinates and the temporal domain. In contrast, approach
[Ke et al., 2017] is hand-crafted.

Domain Adaptation Setting. Having shown that our encoder outperforms [Ke et al., 2017]
given the same pipeline, we discuss below results on the supervised domain adaptation pipeline.

In Table 4.3, we compare our method against state-of-the-art results on the SBU dataset.
After enabling the domain adaptation algorithm (second-order alignment), the accuracy in-
creases by 3.23% over training on the target data only (target). Our method also outperforms
naive training on the combined source and target data (source+target) by 1.84%. We note
that without any data augmentation, our method outperforms more complicated approaches
which utilize numerous texture-like representations per sequence combined with several CNN
streams and a fusion network (Clips+CNN+MTLN) [Ke et al., 2017]. This shows the effec-
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tiveness of our supervised domain adaptation on sequences of 3D body skeleton joints.

Table 4.4 shows on the UTK dataset that domain adaptation (second-order alignment) out-
performs the baseline (target) and the naive fusion (source+target) by 2.4% and 1.4%.

Table 4.5 presents the transfer results from UTK and/or SBU to NTU. Transferring the
knowledge from small- to large-scale datasets is a difficult task. However, by combining UTK
and SBU to form a source dataset, we were able to still gain 0.8% improvement over the
baseline (target). We obtain results similar to [Ke et al., 2017] with a much simpler pipeline.
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Figure 4.7: Sensitivity w.r.t. parameters σ1 and σ2 on UTK. Figures 4.7a, 4.7b, 4.7c and 4.7d show the
accuracy w.r.t. σ1 (σ2=0.6), σ2 (σ1=0.6), Z1 (Z2=15) and Z2 (Z1=5), respectively.

4.7 Conclusions

In this chapter, we have demonstrated that sequences of 3D body skeleton joints can be eas-
ily encoded with the use of appropriately designed kernel function. A linearization of such a
kernel function produces texture-like feature maps which constitute a first feed-forward layer
further interconnected with off-the-shelf CNNs. Moreover, we have also demonstrated that
the supervised domain adaptation can be performed on such representations and that small-
scale Kinect-based datasets can benefit from the knowledge transfer from the large-scale NTU
dataset. We believe our contributions lead to state-of-the-art results. They also open up in-
teresting avenues on how to use the time sequences with traditional off-the-shelf CNNs and
how to leverage the abundance of the skeleton-based action recognition datasets. In the next
chapter, we work on an even more difficult adaptation task named multimodal conversations
which requires understanding and adapting information from two very separate domains: text
and images.



Chapter 5

Simple Dialogue System with
AUDITED

5.1 Summary

We devise a multimodal conversation system for dialogue utterances composed of text, im-
age, or both modalities. We leverage Auxiliary UnsuperviseD vIsual and TExtual Data (AU-
DITED). To improve the performance of the text-based task, we utilize translations of target
sentences from English to French to form the assisted supervision. For the image-based task,
we employ the DeepFashion dataset in which we seek nearest neighbor images of positive and
negative target images of the multimodal dialogue dataset. These nearest neighbors form the
nearest neighbor embedding providing an external context for target images. We develop two
methods to create neighbor embedding vectors: Neighbor Embedding by Hard Assignment
(NEHA) and Neighbor Embedding by Soft Assignment (NESA), which generate context sub-
spaces per target image. Subsequently, these subspaces are learned by our pipeline as a context
for the target data. We also propose a discriminator which switches between the image- and
text-based tasks. We show improvements over baselines on the large-scale Multimodal Dia-
logue Dataset (MMD) and SIMMC.

In this chapter, we work on the multimodal conversation problem. Multimodal conversa-
tions include dialogues that are constructed from both sentences and images. The Multimodal
Dialogue dataset [Saha et al., 2018] provides an extensive collection of multimodal conversa-
tions between a shopper and retail agent. It proposes two benchmarking tasks, image and text.
We propose novel methods for each task by adapting external knowledge through our assisted

67



68 Simple Dialogue System with AUDITED

supervision methods. This chapter has been accepted as a conference paper: "Yusuf Tas, Piotr
Koniusz. Simple Dialogue System with AUDITED. In British Machine Vision Conference
(BMVC) 2021".

5.2 Introduction

Deep learning is popular in many areas e.g., object detection [Girshick et al., 2014], speech
recognition [Graves et al., 2013], image super-resolution [Dong et al., 2015], text and natural
language processing [Devlin et al., 2018], domain adaptation [Koniusz et al., 2017, 2018; Tas
and Koniusz, 2018], few-shot learning [Zhang and Koniusz, 2019; Zhang et al., 2020b, 2021;
Koniusz and Zhang, 2020], and even arts recognition [Zhang et al., 2017; Koniusz et al., 2018].
Realistic problems such as Visual Question Answering (VQA) are often multimodal. Image
Captioning (IC) [Xu et al., 2015] learns from text and images to generate image captions.
VQA [Zeng et al., 2017] answers questions about a video by leveraging the spatio-temporal
visual data and the accompanying text. Multimodal conversation systems use text and images
used together as chat bots [Ram et al., 2018], autonomous retail agents [Saha et al., 2018] and
task-specific dialogue systems [Wen et al., 2016]. Saha et al.[Saha et al., 2018] introduced one
of the largest multimodal conversation datasets called Multimodal Dialogue (MMD) dataset,
containing over 150K shopper-retail agent dialogues. Figure 5.1a shows dialogues of shoppers
asking about/referring to items or asking for items from a given image. MMD contains the
image- and text-based tasks. In the image-based task, the model has to retrieve/rank the correct
image from given positive and negative images in response to the multimodal context. The
text-based task predicts the agent’s response within the context.

In this chapter, we go beyond separate protocols of Saha et al.[Saha et al., 2018] by intro-
ducing a discriminator whose role is to learn/predict an appropriate task.As limited number of
utterances contain images, we leverage external visual and textual knowledge via the so-called
assisted supervision. Figure 5.1a shows our pipeline. Our contributions are listed below:

(i) We propose a novel assisted supervision to create a context for target images and thus
implicitly incorporate more images in unsupervised manner into the learning process of
image-based task. The DeepFashion dataset [Liu et al., 2016b] is used to search for closest
matching images to given positive and negative target images. Through the perspective of
sampling the natural manifold of images, we capture context images for target images.

(ii) We design two embeddings for neighbor images: Neighbor Embedding by Hard Assign-
ment (NEHA) and Neighbor Embedding by Soft Assignment (NESA). NEHA retrieves η

nearest neighbors for positive/negative target images to encode them into subspace descrip-
tors by SVD. NESA also reweights the contribution of each context image by the mem-
bership probability in a GMM-like model [Koniusz et al., 2013, 2016b] spanned on target
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(a) (b)

Figure 5.1: Our pipeline includes the Multimodal Encoder, Text Decoder, Image Decoder (Feature
Matching Head) and the Task Discriminator (Fig. 5.1a). The MMD dataset contains dialogues between
shoppers (S) and retail agents (A) which progress in time. Dialogues are split by the sliding window
(default protocol) to form the input (CONTEXT) fed to the Multimodal Encoder. The output (TARGET)
may contain text, images, or both modalities, which are imposed via dedicated losses on the Text and/or
Image Decoders. The switches indicate that one half of the Context Descriptor ψ may be passed to
the Text Decoder and the other half to the Image Decoder depending on the Task Discriminator. The
details of Multimodal Encoder, Text Decoder and Image Decoder are shown in Figures 5.2a, 5.2b and
5.3, respectively. Figure 5.1b shows 3 nearest neighbors (columns 2–4) retrieved (decreasing similarity
order) from DeepFashion [Liu et al., 2016b] for query samples (column 1) from the MMD dataset [Saha
et al., 2018]. Feature descriptors were encoded by ResNet-50, the approximate nearest neighbor search
was performed by the FAISS library [Johnson et al., 2019]. Such images form an external context for
target images.

images.
(iii) For the text-based task, we propose an assisted supervision that uses translation decoders

to generate predictions of text in multiple languages to learn a universal representation
of conversations by limiting ambiguities of a single language model [Marian and Shook,
2012].

(iv) Finally, we introduce a discriminator whose role is to combine image- and text-based tasks
by learning to predict an appropriate task in response to the given multimodal context.

The above strategy of leveraging unsupervised data can be seen as capturing the variance
of linguistic and visual data to help the network capture how each utterance may vary.

5.3 Related Work

Below we describe popular dialogue systems and detail the Multimodal Hierarchical Encoder
Decoder (M-HRED) [Saha et al., 2018] on which we build.

Conversation Systems. Early conversation systems [Banchs, 2012; Ameixa et al., 2014] use
scripts and subtitles for retrieval of responses in a dialogue. Ritter et al.[Ritter et al., 2010]
uses generative probabilistic models for conversations on blogging websites. VQA approaches
[Antol et al., 2015; Wu et al., 2018] answer questions about images. Approaches [Das et al.,
2017; Kottur et al., 2019] tackle visual dialogs about individual images. Approach [Thomason
et al., 2020] focuses on the visual dialog navigation. Bhattacharya et al.[Bhattacharya et al.,
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(a) (b)

Figure 5.2: In Multimodal Encoder, shown in Fig. 5.2a, the text is processed by a first-level GRU
while images are encoded by ResNet-50 to obtain compact embeddings. We concatenate text and
avg-pooled image representations (if image is not present, we use a null vector) by � into utterance
descriptors φ1, ..., φ3 and process them with a second-level GRU to produce the Context Descriptor ψ,
which we pass it to the Text Decoder with the assisted supervision in Figure 5.2b. The text is translated
from English (ground truth) into French (and other languages). The losses (per language) encourage the
network to absorb syntactic differences which implicitly helps capture the true dynamics of the dialogue
better. Standard Text Encoder [Saha et al., 2018] consists of the gray blocks while pink blocks form our
assisted supervision.

2019] retrieves images via textual queries. FashionIQ [Guo et al., 2019] is concerned with the
NLP-based image retrieval.

Recent dialogue systems use an RNN encoder-decoder [Sordoni et al., 2015; Shang et al.,
2015]. Hierarchical Recurrent Encoder-Decoder [Serban et al., 2015] uses a two-level RNN to
create a context-aware conversation system. Approach [Saha et al., 2018] predicts answers of
a shopping assistant from natural conversations of the large scale MMD dataset, which we use.
Below, we describe and build on models [Serban et al., 2016, 2017].

Multimodal-Hierarchical Encoder Decoder. M-HRED [Saha et al., 2018] is an extension of
Hierarchical Recurrent Encoder Decoder (HRED) models [Serban et al., 2016, 2017]. HRED
consists of two different levels of Recurrent Neural Network (RNN) [Mikolov et al., 2010]
combined together, which represent an encoder which captures the so-called word and sentence
context, respectively. The first RNN in HRED model learns to generate the next word in a given
sentence by using the word context. The second RNN takes the final representation of a given
sentence to generate the representation of next sentence by using the sentence context. An
RNN decoder receives a sentence-level representation to decode it and generate a full sentence.
Moreover, M-HRED and HRED use the interconnected encoder and decoder but M-HRED also
uses images.

Multimodal Encoder (ME). ME receives a sequence of N utterances (so-called context) to
produce the Context Descriptor via GRU [Chung et al., 2014]. An utterance contains a sen-
tence, image or both modalities. Images are encoded by VGG-16 [Simonyan and Zisserman,
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Figure 5.3: Our Image Decoder a.k.a. Feature Matching Head consists of the main stream
(FC→ReLU→FC) whose role is to take Context Descriptors ψ and produce visual features ψ∗ that
are combined with loss L† in Eq. (5.1). The traditional head (older method) contains one FC layer
(gray block). For each ground truth target positive and negative image descriptors ψ+ and ψ−1 , ..., ψ−K
from the MMD dataset (encoded by ResNet-50), we find η and ηK approximate nearest neighbor image
descriptor from DeepFashion [Liu et al., 2016b] with the FAISS library [Johnson et al., 2019]. Then we
create positive and negative mean descriptors µ+ and µ− as well as subspaces Θ+ and Θ− with NEHA
or NESA step. They capture the mean and variability of positive and negative images. The role of an-
other FC layer is to learn positive visual context representations (µ, Θ) via the assisted supervision loss
L‡ in Eq. (5.2) which attracts (µ, Θ) towards (µ+, Θ+) and repels it from (µ−, Θ−). Finally, (µ, Θ)
are combined with the main stream via a residual link (operator ⊕). Blocks with dashed borders/losses
are not used during testing. During testing, ψ∗ is matched against test images of an utterance. In the
above example, the correct ground truth is ranked as second (R@1 fails but R@2 succeeds).

2014b] (4096 ch. of the last FC layer [Saha et al., 2018]).

Multimodal Utterance Encoder (MUE) in Fig. 5.2a consists of two levels of GRU [Chung
et al., 2014]. The first-level GRU (bottom) contains hidden states hn

1 , ..., hn
M, where M is the

maximum number of input words per utterance, each word is one-hot encoded with a discrete
vocabulary of size V = 7457, n = 1, ..., N and N is the context size e.g., N = 3 utterances.
The first-level GRU and ResNet-50 encode words and images, respectively. The last state and
the output of ResNet-50 are concatenated by � into φ and padded with zeros if image or text
is missing. Encoded utterances are passed to the Context Encoder (CE), a second-level GRU,
with hidden states h′1, ..., h′N′ shown in Fig. 5.2a (top) to obtain a Context Descriptor ψ per
context. Fig. 5.1a shows examples of context and target utterances. We use encoder networks
from the M-HRED model [Saha et al., 2018] (results in the same testbed, based on ResNet-50).

Multimodal Decoder (MD). MD receives the Context Descriptor ψ from CE. For the text-
based task, the target is a sentence. A GRU decoder [Serban et al., 2016] with hidden states
he

1, ..., he
M′ generates the target sentence word-by-word, starting with the start-of-sentence and

ending with end-of-sentence token. Given the target ground truth sentence with one-hot repre-
sentation of words ye and the final output predictions pe from the model (e indicates English),
the combined Multimodal Encoder Decoder is trained via the cross-entropy loss. At the test
time, the quality of generated utterance is evaluated against target ground truth sentences via
so-called BLEU and NIST metrics [Saha et al., 2018]. Figure 5.2b shows our extended Text
Decoder (pink plus gray blocks) and the baseline Text Decoder (gray block) [Saha et al., 2018].
The image-based task is the ranking-based task. Given a positive target image, and K negative
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images, Context Descriptor ψ is ranked against these positive and negative images at the test
time. During training, M-HRED uses the cosine similarity and the hinge loss:

L† (ψ∗; ψ+, ψ−1 , ..., ψ−K
)
=max

(
0, 1−ψ∗T

(
ψ+− 1

K

K

∑
k=1

ψ−k

))
, (5.1)

where ψ∗∈ R4096 is a feature vector obtained by passing the Context Descriptor ψ ∈ R1024

from CE via an FC layer, and ψ+∈ R4096 and ψ−∈ R4096 correspond to image descriptors
(VGG-16) for the positive and negative ground truth images, resp. The Hinge loss encourages
ψ∗ to be close to ψ+ and away from ψ−. L is minimized w.r.t. network parameters.

Self-supervised Learning. Pretext tasks such as sampling and predicting patch locations (left,
right, top left, top right), rotations (0◦, 90◦, 180◦, 270◦) or other transformations are popular
in self-supervision [Doersch et al., 2015; Dosovitskiy et al., 2015; Gidaris et al., 2018; Zhang
et al., 2020a, 2021]. Note self-supervision by mutual information estimation [Hjelm et al.,
2018], egomotion prediction [Agrawal et al., 2015], and multi-task self-supervised learning
[Doersch and Zisserman, 2017].

Input: η′≤η, K, L
ψ+

1 , Ψ−≡{ψ−1 , ..., ψ−K } ← ground truth positive and negative target
descriptors from MMD,
{ψ′1, ..., ψ′L} ← unsupervised feature descriptors from DeepFashion
[Liu et al., 2016b].
1: (ψ′+1 , ..., ψ′+η )=FAISS_NN (ψ+ , η; {ψ′1, ..., ψ′L})
2: for n=1, ..., η:
3: ψ′+n ← s+(ψ′+n , ψ+, Ψ−) ·ψ′+n
4: µ+= 1

η

η

∑
n=1

ψ′+n

5: (Θ+ , λ+)=SVD(ψ′+1 −µ+ , ..., ψ′+η −µ+ ; η′)

6: for k=1, ..., K:
7: (ψ′−1k , ..., ψ′−ηk)=

8: FAISS_NN
(
ψ−k , η; {ψ′1, ..., ψ′L}

)
9: for k=1, ..., K:
10: for n=1, ..., η:
11: ψ′−nk ← s+(ψ′−nk , ψ+, Ψ−)·ψ′−nk

12: µ−= 1
ηK

η

∑
n=1

K
∑

k=1
ψ′−nk

13: (Θ− , λ−)=SVD(ψ′−1 −µ− , ..., ψ′−ηK−µ− ; η′)

Output: (µ+ , Θ+) and (µ− , Θ−)

Algorithm 2: Neighbor Embedding by Hard As-
signment (black color). Neighbor Embedding by
Soft Assignment (black/blue colors).
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Fig. 5.4a & 5.4b are cross-validation results
w.r.t. λ f and λ for the text- and image-based
tasks. Fig. 5.4c & 5.4d are cross-val. results
(R@1 & R@3 metric) w.r.t. η′ and η for the
image-based task. If η′=0, we use µ− and µ+

only.

One may use Bag-of-Words on hand-crafted descriptors for an alignment task [Wang et al.,
2019; Wang and Koniusz, 2021], or form positive and negative sampling for a contrastive learn-
ing strategy [Zhu and Koniusz, 2021b,a; Zhu et al., 2021]. GAN-based pipelines [Goodfellow
et al., 2014; Shiri et al., 2019b,a] also perform self-supervision by generator-discriminator
competition.

Motivation from Cognitive Psychology. For the text-based task, we use a translating network
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[Ott et al., 2018] and decoders to predict target responses in several languages. This limits the
quantization noise resulting from the single language syntactic thus helping capture universal
concepts better. Cognitive psychology notes that multilingual babies exhibit better attention
and conflict management, and adjust to new rules quicker than monolingual babies [Marian
and Shook, 2012].

For the image-related task, we retrieve the η and ηK nearest neighbors from the DeepFash-
ion [Liu et al., 2016b] dataset for positive and negative target images to form subspace descrip-
tors which represent the learning context of target images, and form the manifold of fashion
images. From the psychological point of view, our approach is motivated by knowledge trans-
fer, which is ‘the dependency of human conduct, learning or performance on prior experience’
a.k.a. ‘transfer of particle’ [Woodworth and Thorndike, 1901]. Notice that pre-training our vi-
sual task on the DeepFashion is impossible as DeepFashion dataset is not organised in the form
of dialogue.

In conclusion, providing multiple translations and multiple positive images (subspaces are
second-order statistics) helps our pipeline capture better the innate variance of data.

5.4 Our Approach

Notations. Bold lowercase symbols are vectors e.g., µ, φ, ψ. Regular lowercase/uppercase
symbols are scalars e.g., η, K, N. Bold uppercase symbols are matrices or sets of parameters
e.g., Θ. Symbols � and ⊕ are the vector concatenation & summation (residual link).

Pipeline. Our pipeline in Figure 5.1a follows the baseline model [Saha et al., 2018] in that
we use the Multimodal Encoder, Text Decoder and Image Decoder (Feature Matching Head
only). The Multimodal Encoder receives the context, a collection of N = 3 utterances which
are snippets of dialogues between a shopper and a retail agent obtained by a sliding window,
a standard protocol on the MMD dataset of retail dialogues. The context window may contain
text, image, or both modalities. The Multimodal Encoder takes N utterances, based on a dis-
crete vocabulary of size V, and ResNet-50 encoded images to produce the Context Descriptor
which is fed to the Text Decoder and Image Decoder, whose roles are to predict a target ground
truth text responses (within discrete vocabulary space) and/or generate ResNet-50 image fea-
tures to retrieve a visual recommendation from the MMD (or SIMMC) dataset (also encoded
with ResNet-50). As the baseline model [Saha et al., 2018] is formulated as two separate
tasks, it requires ground truth test labels about the type of output task to perform. In contrast,
we introduce the Task Discriminator (the pink box in Figure 5.1a which resolves this issue. To
improve predictions, our Text and Image Decoders use the assisted supervision by leveraging
the knowledge from the DeepFashion [Liu et al., 2016b] dataset and the translation model [Ott
et al., 2018] in an unsupervised way. Section 5.3 details the Multimodal Encoder. Below we
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detail our decoders.

Image-based Task. Figure 5.3 shows our Feature Matching Head (Image Decoder). The
image-based task finds the closest match between a predicted image descriptor and one positive
and K negative ground truth descriptor candidates per target utterance. The image-based task
uses two losses, the standard loss L† given by Eq. (5.1) and our assisted supervision loss:

L‡ (µ, Θ; µ+, Θ+, µ−, Θ−
)
=max

(
0, 1−µT(µ+−µ−)−

η′

∑
n=1

uT
n (u

+
n −u−n )

)
, (5.2)

where ψ∗∈RD is a feature vector of size D=2048 obtained by passing the Context Descriptor
ψ∈R1024 from CE via an FC layer. Moreover, µ∈RD and Θ≡ [u1, ..., uη′ ]∈RD×η′ are the
context feature vectors generated by an FC layer, indicated in Figure 5.3, which are encouraged
by a Hinge loss to approach the mean µ+∈RD and eigenvectors Θ+≡ [u+

1 , ..., u+
η′ ]∈RD×η′

and stay repelled from the mean µ− ∈ RD and eigenvectors Θ− ≡ [u−1 , ..., u−η′ ] ∈ RD×η′ .
Visual Feature Descriptors (VFD) (µ+, Θ+) and (µ−, Θ−) represent the positive and negative
context for the ground truth positive and negative target descriptors ψ+∈RD and ψ−1 , ..., ψ−K∈
RD obtained from ResNet-50. Below we explain Neighbor Embedding by Hard Assignment
(NEHA) and Neighbor Embedding by Soft Assignment (NESA) which produce VFDs.

NEHA is obtained by applying SVD to η and ηK nearest neighbors ψ′+1 , ..., ψ′+η ∈ RD and
ψ′−11, ..., ψ′−ηK∈RD found among images of DeepFashion [Liu et al., 2016b] dataset encoded by
ResNet-50, represented by L feature descriptors ψ′1, ..., ψ′L. The search is performed by FAISS
[Johnson et al., 2019], an extremely efficient approximate nearest neighbor search library, by
searching feature descriptors of DeepFashion against the ground truth positive/negative target
descriptors ψ+ and ψ−1 , ..., ψ−K from the MMD dataset, respectively. Figure 5.1b shows the
quality of matching images from DeepFashion against ground truth images from MMD.

Algorithm 2 shows steps of NEHA. FAISS_NN(ψ, η; {ψ′1, ..., ψ′L}) denotes the FAISS
search which retrieves η approximate nearest neighbors of ψ from {ψ′1, ..., ψ′L}. Moreover,
SVD(ψ1, ..., ψη ; η′) returns η′ ≤ η leading eigenvectors and eigenvalues (Θ, λ). We note
that NEHA does not take into account the effect of decreasing similarity between the ground
truth positive/negative target descriptors and searched feature descriptors of DeepFashion as
one progresses over consecutive 1, ..., η nearest neighbors. Thus, Visual Feature Descriptors
(µ+, Θ+) and (µ−, Θ−) may provide gradually worsening visual context for target descriptors
of MMD. To his end, we introduce an improved strategy below.

NESA follows NEHA but it uses reweighting by so-called Soft Assignment applied prior to
SVD steps. We use the two weighting functions for positive ψ′+ and negative ψ′−:

s+(ψ′, ψ+, Ψ−)= 1
τ(ψ′,ψ+,Ψ−) e−

||ψ′−ψ+ ||22
2σ2 and s−(ψ′, ψ+, Ψ−)= 1

τ(ψ′,ψ+,Ψ−) max
k=1,...,K

e−
||ψ′−ψ−k ||

2
2

2σ2 ,

(5.3)
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where Ψ−≡ {ψ−k }K
k=1. Expression τ(ψ′, ψ+, Ψ−) given below normalizes probability parti-

tions in Eq. (5.3):

τ(ψ′, ψ+, Ψ−)=e−
||ψ′−ψ+ ||22

2σ2 +∑K
k=1 e−

||ψ′−ψ−k ||
2
2

2σ2 , (5.4)

while σ determines the steepness of likelihood partitions. The Soft Assignment step is per-
formed by reweighting ψ′+1 , ..., ψ′+η by s+(ψ′+1 , ·, ·), ..., s+(ψ′+η , ·, ·) and ψ′−11, ..., ψ′−ηK by
s−(ψ′−11, ·, ·), ..., s−(ψ′−ηK, ·, ·). Algorithm 2 (with steps highlighted in blue) realizes NESA.
NEHA and NESA use combination losses: L† (ψ∗; ψ+, Ψ−)+λL‡ (µ, Θ; µ+, Θ+, µ−, Θ−).

NNO. Nearest Neighbor Only (NNO) strategy is given for completeness. NNO simply encour-
ages the standard head with one FC layer (gray block in Figure 5.3) to get closer not only to
target samples of MMD but also to the positive approximate nearest neighbor(s) retrieved from
DeepFashion. NNO uses combined losses: L† (ψ∗; ψ+, Ψ−)+λ||ψ∗− 1

η ∑
η
n=1 ψ′+n ||22.

Text-based Task. Figure 5.2b shows that apart from the standard GRU decoder (gray blocks),
we use translating network [Ott et al., 2018] to translate [Ott et al., 2018] ground truth sentences
from English into French, German and Russian, with one GRU per language. For English, we
have a GRU with hidden states he

1, ..., he
M′ , output predictions pe

1, ..., pe
M′ and ground truth one-

hot vectors ye
1, ..., ye

M′ . By analogy, we use analogous streams for other languages. Moreover,
every pe

m ∈ R7457 is an output of an FC layer connected to the corresponding hidden state
he

m ∈R1024. The FC layer translates hidden states into word activation vectors corresponding
to a 7457 dimensional dictionary. Note that for every language, the dictionary size differs.
For French, we have 9519 words after considering words with the occurrence of at least 5×
given the training data. Each sentence starts with the start-of-sentence token, ends with the
end-of-sentence token and is padded to the maximum sentence length of M′ = 20 with the
pad-sentence token. Pink blocks realize the assisted supervision for the text-based task. At the
test time, they are removed. The final loss for the Text Decoder becomes:

L
({

(pe
m, ye

m), (p
f
m, y f

m), ...
}M′

m=1
; λ f , ...

)
=

M′

∑
m=1

ye
m

Tlog (pe
m) + λ f y f

m
T

log
(

p f
m

)
+ ... , (5.5)

where λ f is the relevance constant of the French translation task, and λg and λr are relevance
constants for German/Russian but we omit them from notations for brevity.

Task Discriminator (TD). The Context Descriptor1 ψ ∈ R2048 is passed to an FC layer
(2048×3 size) following the cross-entropy loss with task labels: text-based, image-based and
text+image-based. During training, we can access such labels. Thus, during testing, we can
go beyond separate protocols of the baseline model [Saha et al., 2018]. Figure 5.1a shows TD
and the switches that pass relevant halves of ψ to subsequent modules.

1For evaluations where we use TD, the Context Descriptor ψ is in fact 2048 dimensional as its both halves are
dedicated to text- and image-based tasks, respectively. For individual tasks, ψ are 1024 dimensional.
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BLEU NIST

M
M

D
v1 T-HRED [Saha et al., 2018] 14.58 2.61

M-HRED [Saha et al., 2018] 20.42 3.09
M-HRED+attention [Saha et al., 2018] 19.58 2.46

M-HRED+attention+KB [Agarwal et al., 2018] - -
(Ours) Pre-training (French) 24.35 4.12

(Ours) Assisted sup. (French) 26.21 4.45

M
M

D
v2

T-HRED [Saha et al., 2018] 35.9 5.14
M-HRED [Saha et al., 2018] 56.67 7.51

M-HRED+attention [Saha et al., 2018] 50.20 6.64
M-HRED+attention+KB [Agarwal et al., 2018] 46.36 -

(Ours) Augmentation (random deletion) 56.83 7.55
(Ours) Augmentation (sentence compr. [Hou et al., 2020]) 57.65 7.62
(Ours) Augmentation (back translation [Ott et al., 2018]) 59.06 7.96

(Ours) Pre-training (on SIMMC dataset [Moon et al., 2020]) 58.91 7.95
(Ours) Training on MMD+SIMMC) 59.03 7.98

(Ours) Pre-training (French) 58.78 7.91
(Ours) Assisted sup. (French) 60.12 8.11

(Ours) Assisted sup. (French+German) 60.51 8.17
(Ours) Assisted sup. (French+German+Russian) 60.75 8.22

Tr
an

. (Ours) Pre-training (French) 60.88 9.28
(Ours) Assisted sup. (French) 64.47 11.18

(Ours) Assisted sup. (French+German) 65.54 12.41
(Ours) Assisted sup. (French+German+Russian) 66.19 12.89

Table 5.1: Text-based task (MMD v1 & v2). T-HRED / M-HRED are text-only HRED / Multimodal
HRED. Tran.: transformer backb. [Vaswani et al., 2017].

5.5 Experiments

Datasets. Our experiments are conducted on the MMD datasets [Saha et al., 2018] v1 and
v2 containing ∼150000 dialogues and the SIMMC dataset [Moon et al., 2020], with ∼13K
human-human dialogues and ∼169K utterances. The assisted supervision for the text-based
task is achieved via model [Ott et al., 2018] trained on the WMT [Bojar et al., 2014] and
Paracrawl [Bañón et al., 2020] datasets containing ∼150M sentence pairs. The assisted super-
vision for the image-based task is achieved by retrieving relevant feature descriptors from the
DeepFashion dataset [Liu et al., 2016b] (∼0.8M images).

R@1 R@2 R@3

M
M

D
v1 T-HRED [Saha et al., 2018] 46.0 64.0 75.0

M-HRED [Saha et al., 2018] 72.0 86.0 92.0
M-HRED+attention [Saha et al., 2018] 79.0 88.0 93.0
(Ours) NNO η=1 82.6 88.8 93.2

(Ours) NNO η=2* 83.0 88.9 93.2
(Ours) NEHA η=4* 84.5 89.7 93.6
(Ours) NESA η=4* 85.3 90.3 94.0

M
M

D
v2 T-HRED [Saha et al., 2018] 44.0 60 .0 72.0

M-HRED [Saha et al., 2018] 69.0 85.0 90.0
M-HRED+attention [Saha et al., 2018] 78.0 87.0 92.3
(Ours) NNO η=1 82.5 88.6 92.8

(Ours) NNO η=2* 83.1 88.8 92.9
(Ours) NEHA η=4* 84.5 89.5 93.2
(Ours) NESA η=4* 85.2 90.1 93.7

Table 5.2: Image-based task (MMD v1 & v2) for one positive and K = 5 negative target images. T-
HRED is HRED with context images ignored in training. M-HRED is the Multimodal HRED. See
Recall at top-1, 2 and 3, ‘*’ is the optimal η.
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MMD dataset [Saha et al., 2018] contains 105439 train, 22595 validation and 22595 test
dialogues, each with ∼40 shopper-retailer utterances containing a sentence, images or both
modalities. We used train, validation and test splits to train, select hyperparameters and report
final results, respectively. MMD v2 does not contain additional image descriptions from the
agent.

SIMMC dataset [Moon et al., 2020] has ∼13K human-human dialogs and ∼169K utter-
ances, it uses a multimodal Wizard-of-Oz (WoZ) setup, on two shopping domains, furniture
(grounded in a shared virtual environment) and fashion (grounded in an evolving set of im-
ages).

Settings. Following Saha et al.[Saha et al., 2018], we perform the text- and image-based
tasks for which we use the same hidden unit size, text encoding size and the learning rate
as M-HRED [Saha et al., 2018]. For our combined task (TD module), the hidden unit size is
doubled (Section 5.4). For the text- and image-based tasks, we report BLEU/NIST [Saha et al.,
2018] and Recall at top-l cut-off (R@l).

Results. Below we start with cross-validation of key hyperparameters followed by presenting
our main results for text-, image- and mixed (text+images) tasks.

Cross-validation of λ f and λ. For joint training of French auxiliary decoder with the base
English decoder, we cross-validated λ f ∈ {0.1, 0.3, 0.5, 0.7, 1.0} on the validation set (see
Figure 5.4a). We fixed λ f=0.3 throughout experiments as this value yielded the highest score
of 60.25% (BLEU) on the MMD v2 validation split. If we use two auxiliary decoders e.g.,
French and German, we set λ f = λg = 0.15. For three auxiliary decoders, we set λ f = λg =

λr =0.1. For joint training of the main stream (FC→ReLU→FC) and the assisted supervision
stream in Feature Matching Head from Figure 5.3, we set λ = 0.5 following cross-validation
on the validation set given NEHA, shown Figure 5.4b.

Cross-validation of NESA. Figures 5.5, 5.6 5.7 evaluate the performance of NESA model with
respect to its parameters given the validation split. In Figure 5.5, the bandwidth of the RBF
kernel σ value is fixed to 0.5. We vary the number of nearest neighbors η ∈ {2, 3, 4, 5, 6, 7}
and the number of leading eigenvectors η′ ∈ {0, 1, 2, 3, 4, 5, 6, 7}. In Figure 5.6, number of
eigenvectors is fixed to 2, that is η′ = 2. We cross-validate the number of nearest neighbors
η ∈ {2, 3, 4, 5, 6, 7} and the RBF bandwidth set to σ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. In Figure
5.7, number of nearest neighbors η is fixed to 4. We cross-validate the number of leading
eigenvectors η′ ∈ {0, 1, 2, 3, 4} and the RBF bandwidth σ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

As previously indicated, the best η′ ≈ η. The best σ = 0.5 which we use across all our
experiments. Moreover, as η′ ≈ η = 4, this indicates that our NESA can create a rich visual
context for target images (much better context than directly forcing target images to be close
to their nearest neighbors in DeepFashion). Moreover, NESA outperforms NEHA.
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BLEU R@1
M-HRED 52.17 M-HRED+att. 75.05

Assisted sup. (French) 55.29 NEHA 81.50
(French+German+Russian) 56.11 NESA 82.43

Table 5.3: Mixed task (MMD v2) with the Task
Discr., assisted supervision (text and images).

User 1 User 2 User 3 mean

clarity 61.6 58.4 64.2 61.4
compactness 52.0 52.8 54.6 53.1
helpfulness 62.0 60.2 63.0 61.7

Table 5.4: User study on the mixed task (MMD
dataset v2). Our approach vs. M-HRED.

Component (or method) runtime (h)

T-HRED / M-HRED 15 / 15
Pre-training (Fr) (+fine-tuning En) 16 + 6

Augmentation (back translation) + transl. 15 + 40
Assisted sup. (Fr / Fr+Ge / Fr+Ge+Ru) 20 / 29 / 38

Translator [Ott et al., 2018] (En→ Fr / Ge / Ru) 20 / 20 / 20
Evaluating BLEU & NIST 0.5

Table 5.5: Runtimes: text task (MMD v2).

BLEU R@1 R@5 R@10

HRE (SIMMC) 0.079 16.3 33.1 41.7

Ours F+R+G 0.102 n/a n/a n/a
Ours+Trans. F+R+G 0.187 n/a n/a n/a

Ours NEHA n/a 17.3 33.7 42.2
Ours NESA n/a 20.1 35.5 43.1

Table 5.6: SIMMC-Fashion (Task 2). Response
Generation. F+R+G are French, Russian and
German auxiliary tasks. Tran. is the transformer
backbone [Vaswani et al., 2017].

Component (or method) runtime (h)

T-HRED / M-HRED 15 / 15
NNO 16

NEHA / NESA 18 / 19

ResNet-50 features (MMD+DeepFashion) 6
FAISS search [Johnson et al., 2019] (+SVD) 1.5 (+2)

Evaluating R@1 0.1

T-HRED / M-HRED (text+image) 30 / 30
Mixed task (text+image+task discr.) 40

Table 5.7: Runtimes: image-based task (various
comp.) and the mixed task (MMD v2).
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Figure 5.5: Performance (R@1) w.r.t. the number of nearest neighbors η and the number of leading
eigenvectors η′ on NESA (σ=0.5).

Image-based Task. Firstly, we evaluate the baseline M-HRED+attention with ResNet-50 in
place of VGG-16, and we note that the results are within ±0.3% of results given the orig-
inal M-HRED+attention with VGG-16. Table 5.2 shows that using the assisted supervision
via the NNO strategy with one nearest neighbor (η = 1) improves results over the baseline
M-HRED+attention by ∼3.6% and ∼4.5% (R@1) given versions v1 and v2 of the MMD
dataset. Choosing the optimal number of nearest neighbors for NNO (η = 2) improves re-
sults by further 0.4% (R@1) over NNO (η=1) on both versions of MMD. Moreover, utilizing
our subspace-based NEHA, we obtain 5.5% and 5.5% (R@1) improvement over the baseline
M-HRED+attention given both versions of MMD. Our best performer, subspace-based NESA
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Figure 5.6: Performance (R@1) w.r.t. the number of nearest neighbors η and the RBF bandwidth σ on
NESA (η′=2).
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Figure 5.7: Performance (R@1) w.r.t. the number of leading eigenvectors η′ and the RBF bandwidth
σ on NESA (η=4).

yields 6.3% and 7.2% (R@1) improvement over the baseline M-HRED+attention model.

Text-based Task. Table 5.1 shows results (BLEU and NIST metrics) by comparing target
sentences against predicted sentences. Pre-training Text Decoder with French language prior
to fine-tuning on English improves results by ∼4% and ∼2.1% (BLEU) over the M-HRED
baseline on both MMD v1 and v2. Using random word deletions for augmentation yielded
gain of 0.16% (BLEU) over the M-HRED baseline (MMD v2). Augmentations via so-called
sentence compression [Hou et al., 2020] scored ∼1% over M-HRED, whereas augmentations
via the so-called back-translation (using translating model [Ott et al., 2018]) scored ∼2.4%
over M-HRED. Pre-training on SIMMC [Moon et al., 2020] was marginally worse (and very
similar to combined training on MMD+SIMMC). However, using the assisted supervision, that
is, an auxiliary decoder for French, improves results by further ∼3.5% (BLEU) over the M-
HRED baseline (MMD v2). Augmentations by back translation require translating sentences
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twice English→French→English (additional 20 hours), whereas our assisted supervision re-
quires only English→French translation. Adding auxiliary German and Russian decoders (to
French) and the main decoder for English yields over 4% (BLEU) over the M-HRED base-
line (MMD v2). Finally, using the transformer backbone [Vaswani et al., 2017] results in a
∼5% boost. The benefit of adding multiple auxiliary language decoders is clear. In what fol-
lows, we use the GRU backbone not transformers (the backbone choice is a secondary matter).
Pre-training the text backbone on the SIMMC dataset [Moon et al., 2020] before applying our
assisted step may also boost results. Applying the sentence compression model [Hou et al.,
2020] via an auxiliary decoder (in addition to French, German and Russian) in our assisted
supervision is also possible.

Below, we present three randomly selected dialogues. Responses generated by our system,
denoted by (our_pred), appear to make fewer mistakes and be more concise.

Example I:

User: Show me something like the one in 4th image.

Agent: The similar looking ones are img_201, img_320, img_513.

User: show me something that will pair well with the 2nd image?

Target_A: It can go well with black colors sports shoes.

MMD_pred: It can go well with regular style, regular fit, solid and regular style, solid and regular.

Our_pred: It can go well with casual fitted footwear.

Example II:

User: and what about for the 1st image?

Agent: Image from the front, back and left directions respectively

User: Which of the celebrities usually wear watch similar looking to the one in the 2nd image?

Target_A: Celebrities cel_278,cel_255 and cel_444 endorse this kind of watch.

MMD_pred: Celebrities cel_30 and cel_252 endorse this type of handbag.

Our_pred: Celebrities cel_60 and cel_255 endorse this kind of watch.

Example III:

Agent: May I please ask your gender.

User: Female, I am a 15 yr old female.

Agent: Ok, this is helpful.

Target_A: I’ll just take a few seconds to go through my catalog of items.

MMD_pred: Absolutely. Please wait a bit while I search through my catalog quickly.

Our_pred: Good! Just wait a few seconds while I go through my item catalog.

Mixed Task. Firstly, we evaluate our Task Discriminator on the MMD dataset (v2) and note
that it achieves 97.0% accuracy. This means that results in Tables 5.1 and 5.2 represent upper
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bound scores for this paragraph as both tables report on two separate tasks (oracle knowledge
regarding which task is which) according to protocol in Saha et al.[Saha et al., 2018]. Table
5.3 shows that results for the mixed task dropped marginally compared to results in Tables
5.1 and 5.2. Our best assisted supervision methods outperformed best baselines M-HRED and
M-HRED+attention equipped with Task Discriminator by ∼4% (BLEU) and ∼7.4% (R@1).

Ablations on NEHA w.r.t. η′≤ η. Below we investigate the impact of subspace size w.r.t.
η′ and the impact of η nearest neighbors retrieved from DeepFashion on the performance of
image-based task. Figure 5.4c shows that the best performance is attained for η′= η = 4 and
the trend suggests that η′ ≈ η is a good choice. Figure 5.4d shows that η′ = η = 5 is a better
choice for R@3, which allows two incorrect matches precede the correct one. Thus, including
more nearest neighbors of positive/negative target images of MMD boosts the score.

Nearest Neighbors+the Hinge Loss. Positive/negative nearest neighbors retrieved from Deep-
Fashion for positive/negative target images can be fed directly into our assisted supervision loss
in Eq. (5.2). Figures 5.4c and 5.4d evaluate such a setting (η′=0) as it is a special case of our
subspace-based approach if η′=0 (only µ− and µ+ are used if η′=0). On average, such a set-
ting is ∼2% worse than the subspace-based context. Subspaces capture robustly second-order
statistics by discarding eigenvalue scaling and the smallest factors.

User study. We asked 3 users to score our best performer vs. M-HRED on MMD (v2) (ran-
domized test) in terms of clarity, compactness and helpfulness on 500 system responses. Table
5.4 shows that ∼61.0% responses of the assisted supervision were clearer and more helpful
(vs. 39% of M-HRED). Both methods were generating similarly compact responses.

SIMMC. Table 5.6 shows that using the multilingual decoding head yields 2.3% and ∼10%
gain (BLEU) on RNN and transformers backbone over the HRE baseline (see the SIMMC
paper for details of HRE). Moreover, our visual NESA yielded ∼4% gain (R@1 score).

Runtimes. Our code is implemented in PyTorch and evaluated on an NVIDIA Tesla P100
(unless stated otherwise). Table 5.5 (runtimes for the text-based tasks) shows that the T-HRED
and M-HRED baselines take ∼15 hours to train. Our assisted supervision (French) uses ex-
tra 5 hours. Translations are obtained off-line with translator [Ott et al., 2018]. However,
the best augmentation strategy that we tried (back translation) takes 55 hours, whereas our
assisted superv. takes 40 hours (including translation time). Table 5.7 (runtimes for the image-
based tasks) shows that the T-HRED and M-HRED baselines take ∼15 hours to train. Nearest
Neighbor Only, NEHA and NESA require 1, 3, and 4 extra hours. The off-line pre-processing
includes the ResNet-50 feature extraction from MMD and DeepFashion (6 hours), nearest
neighbor search with FAISS [Johnson et al., 2019] (1.5 hours, 4 GPUs) and running SVD (2
hours, 4 GPUs).
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5.6 Conclusions

We have introduced the assisted supervision which boosts the performance by leveraging AU-
DITED. Sampling auxiliary nearest neighbors from the natural manifold of fashion images
helps create a meaningful visual context for the image task. With appropriate Soft Assign-
ment reweighting and subspace modeling, benefits become clear while (by design) not posing
any extra burden at the testing time. Learning to decode target dialogue sentences in several
languages helps reduce the noise of single language syntactic.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have worked on Deep Learning based Domain Adaptation problems. Through-
out research conducted in this thesis, we have demonstrated the alignment problem in Domain
Adaptation is complex and requires a better understanding. We have proposed several im-
proved solutions, a new dataset, demonstrations of Deep Learning methods on different Do-
main Adaptation problems, and extensive experiments to address this problem.

(i) We proposed and formulated an improved alignment loss based on a mixture of align-
ments of second- or higher-order scatter tensors. Our method exploits the labeled sam-
ples in the target domain to transfer knowledge class-by-class from the source domain.
Domain shift between the source and the target domains creates challenging problems in
tasks like image recognition and others. By utilizing class-wise statistics between these
domains, we learned a better alignment between source and target. One challenge in this
task is to manage the alignment of each class separately, as not all classes need the same
amount of alignment. To address this problem, we added a trainable weight for each
class to control their alignment. This trainable weight has shown improved results but
not as much as we expected. We believe it is still open to improvements with further re-
search on the topic. Another problem we have faced with our proposed alignment is that
it was not easy to tune the parameters. Introducing many control parameters required ex-
tensive experimentation on a validation set to find out good combinations of parameters.
We have presented the state of the results on several datasets, reaching 90+% accuracy
results on the commonly used Office dataset [Saenko et al., 2010]. This could indicate
saturated results on the Office dataset, which we addressed in the next chapter.

(ii) Saturated results on Office dataset [Saenko et al., 2010] and the simple domain shift
between source and target splits inspired us to create Open MIC dataset. We collected,
processed, annotated, and presented a new larger, challenging Open MIC dataset from
10 different exhibitions. The annotation process required manual labeling and required
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a lot of time to process the whole set. We have utilized supporting software to make
our job easier and shorter, but due to extensive manual work required, we might have
unintentionally introduced a small number of noisy labels. We have provided several
benchmark results on our dataset for both SDA and UDA on each split. Also, we have
further improved our alignment loss for SDA by utilizing non-Euclidean distances as the
alignment metric. Training on non-Euclidean distances was a challenging task. Com-
putational expensiveness and memory footprints of such methods inspired us to resort
to Nyström projections to make the training of deep networks tractable non-Euclidean
metrics. Although JBLD and AIRM metrics have shown improvements over the baseline
Euclidean metric, on some splits, improvements were negligible or non-existent.

(iii) We have extended our research space from RGB image-to-image DA to Action Recog-
nition using 3D body skeleton joints. We have demonstrated that sequences of these
joints can be encoded into texture-like feature maps with the linearization of carefully
designed kernel functions. Deciding on the number of pivots and other parameters to
linearize the kernel was one of the main challenges we have faced in creating such fea-
ture maps. Also, the number of pivots affects the dimensionality of the output, which
is used as input to CNNs. This relation limited the range of parameters we could test,
thus making it harder to tune and find optimal parameters. We have presented an SDA
approach by using these feature maps as inputs to generic pre-trained CNNs. We have
improved our mixture of alignment loss to work with domains where they only have par-
tially overlapping classes. This change worked well in the action recognition problem,
allowing us to use multiple source domains together for partial SDA.

(iv) We moved to a more challenging multi-domain problem, multimodal conversation sys-
tems. MMD data [Saha et al., 2018] provides multimodal dialogues, which are se-
quences of utterances where the modality is text, image, or both. To learn a common
feature space for multimodal utterances, initially, we have tried a similar method we
used in 4 to create feature maps from sequences of utterances together with a generative
model to hallucinate these feature maps at the output. This approach did not work well
for this type of task with sequences of different modalities. We have changed our focus
to adapting external data through assisted supervision to improve image and text tasks.
We have demonstrated that simple French translations based on external knowledge for
text tasks improved the model’s sentence predictions in English. For the image task,
to enhance image ranking results, we have utilized external data through searching and
embedding nearest neighbor images of targets with our proposed methods. Benchmarks
and tasks presented by Saha et al. limited our scope of experimentation by dividing tasks
into two separate categories.
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6.2 Future Work

We have designed a mixture of alignment loss to improve Supervised Domain Adaptation to
align each class using second- or higher-order scatter tensors. We have demonstrated various
proposed loss applications that learn a better domain alignment while maintaining inter-class
variance. But there is still work to be done on this topic. Here, we list some future work ideas:

(i) In Chapter 2 and 3, we demonstrate our mixture of alignment loss which aligns the
matching classes from source and target domains based on second- or higher-order scat-
ter tensors. This loss is integrated into the final layer of a two-stream network to calculate
alignment loss from outputs of source and target networks. This is a relatively trivial ap-
proach in terms of where and how it is placed into the network. It is possible to calculate
alignment loss from outputs of several different layers of the network. Although the final
layer of the network provides distinctive feature vectors, it is still possible to learn differ-
ent feature space alignments from earlier network layers. Future work could design our
loss in a multi-layer fashion where the alignment loss is calculated from multiple layer
levels, not only from the final layer.

(ii) Following the previous point, our loss is designed to align two domains class-by-class
by using a mixture of alignments. Although it works well and achieves state-of-the-art
results, it depends on many parameters to accomplish this class-by-class alignment. Fu-
ture work can address this problem by aiming to reduce the number of hyper-parameters
required, or at least simplifying the tuning process would be a good start point for future
work.

(iii) In Chapter 4, we have demonstrated a method to encode sequences of 3D body skele-
ton joints into texture-like feature maps. This is a preprocessing step that processes
sequences of skeleton joints into one image-like result. Future work can address this
issue and propose a model that can be trained end-to-end manner. This would further
simplify the process. Also, it creates an opportunity for the network to learn weights that
would achieve the best results. Deep learning has shown us that learned features through
CNNs work much better than handcrafted features [Krizhevsky et al., 2012].

(iv) In Chapter 5, we have moved to a new but more challenging multimodal learning prob-
lem. This problem requires the model to use multimodal dialogue data to learn some
specific task, for example, generating the following sentence from the given dialogue
context. Tasks defined by [Saha et al., 2018] are image and text tasks that require two
separate models and two separate training. We followed their methodology to compare
our proposed methods against their results, but having two individual tasks for multi-
modal data breaks its purpose where the output could be an image or text depending on
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the given text. Future work could address this issue by developing a new methodology
of a combined task. The model must learn the type of utterance from the given context,
and output should depend on the predicted type. This improvement would create a more
realistic conversation system benchmark for future work and allow researchers to simu-
late and create full dialogue outputs from the trained model either from a given context
or from a starting utterance.

(v) In M-HRED [Saha et al., 2018] model, given utterance’s image and text embeddings
are concatenated to generate utterance’s representation vector. This is a rather trivial
approach to utilizing multimodality in the given utterance. Future work could address
this by looking into ways to utilize multimodality in utterances better.
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Appendix A

Derivatives of the alignment loss g
w.r.t. the feature vectors

Suppose Φ = [φ1, ..., φN ] and Φ∗= [φ∗! , ..., φ∗N] are some feature vectors of quantity N and
N∗, respectively, which are used to evaluate Σ and Σ∗. For r = 2, we have to first compute
the derivative of the covariance matrix Σ w.r.t. φm′n′ . To do so, we proceed by computing
derivatives of: i) the autocorrelation matrix in (A.1) and ii) the outer product of means µ in
(A.2) and (A.3):

∂ ∑nφnφT
n

∂φm′n′
= jm′φ

T
n′+φn′ jT

m′ , (A.1)

∂µµT

∂µm′
= jm′µ

T+µjT
m′ , (A.2)

∂µµT

∂φm′n′
=∑

m

∂µµT

∂µm

∂µm

∂φm′n′
=

1
N

(
jm′µ

T+µjT
m′

)
, (A.3)

where jm′ is a vector of zero entries except for position m′ which is equal one. Putting together
(A.1), (A.2) and (A.3) yields the derivative of Σ w.r.t. φm′n′ :

∂
( 1

N ∑nφnφT
n
)
−µµT

∂φm′n′
=

1
N

(
jm′ (φn′−µ)T+(φn′−µ) jT

m′

)
. (A.4)

The derivatives of ||Σ−Σ∗||2F w.r.t. covariance Σ as well as φm′n′ and φ∗m′n′ are provided
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below:

∂||Σ−Σ∗||2F
∂Σ

=2 (Σ−Σ∗) (A.5)
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The derivatives of ||Σ−Σ∗||2F w.r.t. Φ and Φ∗ are:

∂||Σ−Σ∗||2F
∂Φ
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4
N
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(
Φ−µ1T

)
, (A.7)

∂||Σ−Σ∗||2F
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=− 4
N∗
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(
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)

. (A.8)

The derivatives of ||µ−µ∗||22 w.r.t. µ, φn and φ∗n′ are:

∂||µ−µ∗||22
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Appendix B

Kernelized derivative of the Frobenius
norm between tensors w.r.t. the
feature vectors

Suppose that some feature vectors Φ=[φ1, ..., φN ] and Φ∗=[φ∗! , ..., φ∗N ] are given in quanti-
ties N and N∗ and that the Frobenius norm between tensors X (r) and Y (r) of order r≥1 build
from Φ and Φ∗ is being evaluated. Then, the derivative of Equation (2.8) w.r.t. feature vector
φn‡ becomes:

∂||X (r)−X ∗(r)||2F
∂φn‡

=
1

N2 r
N
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∂Knn′
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Putting together Equations (B.1), (B.2) and (B.3) and setting q = r−1 yields the derivatives
w.r.t. matrices Φ and Φ∗:
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and
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Appendix C

Derivatives of d2 and d′2 w.r.t. feat.
vectors

Suppose Φ=[φ1, ..., φN ] and Φ∗=[φ∗1, ..., φ∗N] are some feature vectors of quantity N and N∗,
respectively, which are used to evaluate Σ and Σ∗. We have to first compute the derivative of
the covariance matrix Σ w.r.t. φm′n′ . We proceed by computing der. of: i) the autocorrelation
matrix in (A.1) and ii) the outer product of means µ in (A.2) and (A.3):
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where jm′ is a vector of zero entries except for position m′ which is equal one. Putting together
(A.1), (A.2) and (A.3) yields the derivative of Σ w.r.t. φm′n′ :
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The derivatives of d2
g w.r.t. covariance Σ as well as φm′n′ and φ∗m′n′ are provided below:
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The derivatives of d2(Σ,Σ∗) (after simplifying summations) w.r.t. Φ and Φ∗ are:
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The derivatives of d′2 w.r.t. Φ and Φ∗ are derived from:
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where Φ′=ZΦ, Φ′∗=ZΦ∗, µ′=Zµ and µ′∗=Zµ∗ and Z is some projection matrix. We get
the following derivatives:
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Lastly, based on our Proposition 4 in the main submission, we know that our particular choice
Z deems d2=d′2, therefore ∂d2

∂Φ = ∂d′2
∂Φ and ∂d2
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∂Φ∗.

The derivatives of ||µ−µ∗||22 w.r.t. µ, φn and φ∗n′ are:
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