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ABSTRACT
We conduct two kinds of homogeneous isotropic turbulence simulations relevant for the
intracluster medium (ICM): (i) pure turbulence runs without radiative cooling and (ii) turbulent
heating + radiative cooling runs with global thermal balance. For pure turbulence runs in the
subsonic regime, the rms density and surface brightness (SB) fluctuations vary as the square of
the rms Mach number (Mrms). However, with thermal balance, the density and SB fluctuations
(δSB/SB) are much larger. These scalings have implications for translating SB fluctuations into
a turbulent velocity, particularly for cool cores. For thermal balance runs with large (cluster
core) scale driving, both the hot and cold phases of the gas are supersonic. For small-scale
(one order of magnitude smaller than the cluster core) driving, multiphase gas forms on a
much longer time-scale but Mrms is smaller. Both small- and large-scale driving runs have
velocities larger than the Hitomi results from the Perseus cluster. Thus, turbulent heating as
the dominant heating source in cool cluster cores is ruled out if multiphase gas is assumed
to condense out from the ICM. Next we perform thermal balance runs in which we partition
the input energy into thermal and turbulent parts and tune their relative magnitudes. The
contribution of turbulent heating has to be �10 per cent in order for turbulence velocities to
match Hitomi observations. If the dominant source of multiphase gas is not cooling from the
ICM (but say uplift from the central galaxy), the importance of turbulent heating cannot be
excluded.

Key words: hydrodynamics – turbulence – methods: numerical – galaxies: clusters: intraclus-
ter medium.

1 IN T RO D U C T I O N

The intracluster medium (ICM) refers to the hot (∼107–108 K) X-
ray emitting plasma that pervades clusters of galaxies. It contains
majority of the baryons within the cluster. It is mainly composed of
ionized hydrogen and helium, but also contains other elements such
as iron. It loses energy via bremsstrahlung and metal line emission.

The radiative cooling time is shorter for a higher density. Since
the gas density is higher towards the cluster centre, inner regions are
expected to cool much faster than the outskirts. In relaxed cool-core
clusters the core is expected to cool, lose pressure support, and flow
towards the centre of the cluster (see Fabian 1994 for a review).
The cooling gas is expected to cool all the way to form molecules
and hence lead to active star formation. The cooling-only model
predicts a star formation rate (SFR) ∼100–1000 M� yr−1 in cool-
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core clusters. However, observations show a much reduced SFR (by
orders of magnitude; e.g. O’Dea et al. 2008). This is known as the
cooling flow problem.

It is now accepted that the cool cores lose thermal energy due
to radiative cooling, but most of the losses are compensated by
heating due to other sources such as thermal conduction, cosmic
rays, and turbulence. Heating due to active galactic nuclei (AGN)
jets powered by accretion on to the central supermassive black hole
(SMBH) is particularly attractive because of sufficient energy and
negative feedback (see McNamara & Nulsen 2007 for a review). A
cool, dense core is prone to condensation of cold gas in the core
that enhances accretion on to the SMBH and the jet power. A much
larger jet power driven by multiphase condensation is able to stop
catastrophic cooling in the core and the cycle continues (see e.g. Li
et al. 2015; Prasad, Sharma & Babul 2015)

Cool cluster cores show multiphase gas [at ∼10 K traced by CO
(e.g. Edge 2001), at ∼104 K traced by nebular lines (e.g. Hu 1992;
McDonald, Veilleux & Rupke 2012), and of course the diffuse
ICM at 107−108 K]. The multiphase gas can be interpreted in
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terms of local thermal instability in an ICM with global thermal
balance (Sharma, Parrish & Quataert 2010; Sharma et al. 2012). The
feedback model proposes that heating by AGN jets acts like a time-
delayed feedback loop, which injects on-average the same amount
of energy lost via cooling back into the ICM through energetic
outbursts (Rafferty et al. 2006; Prasad et al. 2015).

Energy injection through AGN feedback and sloshing of the
ICM during mergers (mostly with small subhaloes) are expected to
drive motion in the ICM. Turbulent structures, density and pressure
fluctuations, have been observed in the ICM (Schuecker et al. 2004;
Zhuravleva et al. 2014a; Khatri & Gaspari 2016). Turbulence has
been proposed as a mechanism through which AGN jets and mergers
can heat the ICM via direct turbulent heating (Zhuravleva et al.
2014a; but see Falceta-Gonçalves et al. 2010; Bambic et al. 2018)
or via mixing of the much hotter outskirt/bubble gas with the ICM
(e.g. Banerjee & Sharma 2014; Hillel & Soker 2017). From the
Kolmogorov (hereafter, K41) picture of homogeneous, isotropic
turbulence (Kolmogorov 1941), turbulent energy from the driving
scale cascades down the length scales before being dissipated at the
viscous scale, thus heating the ICM. Other than heating, turbulence
also plays two opposing roles in multiphase condensation: it can
generate large density fluctuations, thus aiding condensation of cold
filaments; it can mix up the cooling gas with the hot phase, thereby
inhibiting multiphase condensation.

Two recent observational studies – Aharonian et al. (2016) (the
Hitomi collaboration) and Zhuravleva et al. (2014a) – obtain a simi-
lar estimate for the turbulent velocities in the core of Perseus cluster.
While Zhuravleva et al. (2014a) reconstruct the velocity amplitudes
by analysing the power spectrum of X-ray surface brightness
(SB) fluctuations, Hitomi directly measured the line-of-sight (LOS)
velocity dispersion (σ LOS) by analysing the broadening of Fe XXV

and Fe XXVI lines. Zhuravleva et al. (2014a) find the turbulent energy
injection to be large enough to completely compensate radiative
cooling losses. On the other hand, the Hitomi paper emphasizes that
the ICM is quiescent, and the turbulent pressure is only 4 per cent of
the thermal pressure. Of course, even such a small turbulent velocity
can be sufficient to check radiative cooling in the core, provided
that the driving scale of the turbulence is sufficiently small (but see
Bambic et al. 2018;1 see also the first bullet-point in Section 6).
Thus, some of the unanswered questions are: what fraction of ICM
feedback heating can be due to turbulent dissipation; the source
of cold gas – whether most of it is uplifted or cooling down from
the hot ICM; and whether the observed density perturbations are
indeed generated by stratified turbulence (an assumption underlying
the treatment of Zhuravleva et al. 2014a; density perturbations can
also arise from the local thermal instability, leading to the separation
of hot and cold phases of gas without generating much turbulence).
Although we focus on turbulence-driven density perturbations in
cool-core clusters, we also briefly discuss pressure fluctuations that
can be probed by the fluctuating Sunyaev–Zeldovich signal out
to the virial radius (Khatri & Gaspari 2016). Thus, our results on
isotropic/homogeneous turbulence are also applicable to non-cool-

1Bambic et al. (2018) argue that the time for turbulence to travel to the
entire cool core is longer than the cooling time. Another interpretation
of this argument is that the turbulent heating rate ρv3

L/L can be large if
the driving scale L is sufficiently small. But if L is too small compared
to the core size, turbulence needs to be driven independently throughout
the core because energy primary cascades to small scales in Kolmogorov
turbulence.

core clusters and the circumgalactic medium, particularly at small
scales.

In subsonic K41 turbulence, the velocity and density fluctuations
at a particular length scale l scale as l1/3 (vl, δρ l ∝ l1/3; Kolmogorov
1941; Corrsin 1951). This is because the turbulent energy cascade
rate ε is a constant in the inertial regime, given by ε = ρv3

l /l, and
the density behaves like a passive scalar mixed by turbulent eddies.
For subsonic turbulence, density variations are small. From these
simple scaling relations, we find vl ∝ l1/3. Density fluctuations
follow the same scaling as vl; therefore, δρ l ∝ l1/3. In steady state,
on average, this cascading rate ε is the rate at which turbulent energy
is injected into the system at the driving scale and the rate at which
it is dissipated at the viscous scale.

In an earlier numerical study, Banerjee & Sharma (2014), which
assumed that the majority of cold gas in cluster cores is due to
condensation from the ICM, showed that when turbulent heating
rate (ρv3

l /l) balances radiative cooling rate, the required turbulent
velocities are sonic (Mach number close to unity). But cool cores are
known to be subsonic. This study assumed the turbulence driving
scale to be ∼10 kpc, comparable to the size of the cool-core and
AGN bubbles/X-ray cavities. However, if we decrease the driving
scale while still maintaining the same energy injection rate ε, we
can decrease vl since vl ∝ l1/3 for a constant ε. This way we
can still achieve subsonic velocities driven by turbulent forcing,
while still maintaining the global thermal balance between radiative
cooling and turbulent heating. But driving turbulence at smaller
length scales would also lead to smaller density fluctuations, since
δρ l ∝ vl ∝ l1/3. Turbulence driven at smaller scales not only drives
weaker turbulence-driven density perturbations, but also suppresses
the mixing of hotter and cooler phases at large scales. In this paper,
we study the impact of the driving scale on the turbulence in cool
cluster cores.

Imposing thermal balance between turbulent heating and radia-
tive cooling, ρv3

L/L ∼ n2� (L is the driving scale, n is electron/ion
number density, and �[T] is the cooling function) and assuming the
expected scalings with the halo mass, implies that the Mach number
of the largest eddies M ∝ (nL�)1/3/cs (cs is the sound speed of
the ICM) is rather insensitive to the halo mass. Additionally, if
we assume that majority of the observed cold gas in cool cluster
cores is produced as a result of cooling from the hot phase (this is
plausible but not at all an established fact), then the cooling time
of the cooling blob must be shorter than the turbulent mixing time.
This condition constraints the Mach number in the hot phase to be
larger than a threshold value, which is larger than unity if turbulent
heating is the dominant heating source and driving occurs at the
core scale (cf. equation 20). Another possibility is that the cold gas
in cluster cores is not due to condensation from the hot phase, but
say because of uplift by AGN jets and buoyant bubbles (e.g. Revaz,
Combes & Salomé 2008). In this case, the cooling time of the hot
phase can be much longer than the turbulent mixing time and the
Mach number in the hot phase can be smaller than unity (at least
for small [large] enough L [cs]). However, this possibility does not
naturally explain the occurrence of multiphase gas only in clusters
with the ICM density larger than a certain threshold (e.g. Cavagnolo
et al. 2008).

In the first part of our study, we simulate homogeneous isotropic
turbulence to derive the relations between gas density (pressure), SB
(projected pressure) fluctuations, and the turbulent Mach number of
the flow (see Section 3). In the second set of runs, more applicable
to cool cores, we impose global thermal balance over the entire
simulation domain. In these runs, we analyse the thermodynamics
of the flow, through Mach number and temperature distribution of
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the gas. We check the dependence of these thermodynamic aspects
on the driving scale, fraction of turbulent heating relative to cooling,
and initial density perturbations. Results from these simulations are
presented in Section 4.

In Section 5, we present the caveats of our setup, and discuss
our thermal balance results in the context of X-ray SB fluctuations
in cool cores and the 1D LOS velocity dispersion as measured by
Hitomi in the core of Perseus cluster. We conclude in Section 6.

2 ME T H O D S

2.1 Model equations

We model the ICM using the hydrodynamic equations. As the
ICM plasma is hot and fully ionized, the magnetic fields can have
significant effects. From Alfvén’s flux freezing theorem, field lines
are frozen into the plasma and have to move along with it. In
addition, the microscopic transport of heat along magnetic fields
can lead to new buoyancy instabilities (Balbus 2000; Quataert
2008) and enhanced mixing in galaxy clusters (Sharma et al.
2009a; Kannan et al. 2017). Note that the kinetic whistler instability
may significantly suppress thermal conduction (Levinson & Eichler
1992; Roberg-Clark et al. 2016).

The aim of this paper is to study the interplay of turbulence,
cooling and density perturbations. Banerjee & Sharma (2014)
show that for our setup the evolution of magnetohydrodynamic
(MHD) equations with anisotropic thermal conduction gives results
qualitatively similar to the hydro simulations. The kinetic energy
density in MHD is roughly half that in hydro (see their fig. 1) and the
density fluctuations are larger by a similar factor (see their fig. 4).
Because of smaller turbulent velocities the temperature and Mach
number distributions in MHD are more bimodal (see their figs 6 and
7). As expected, thermal conduction tends to wipe out small-scale
structure (Gaspari & Churazov 2013). Since the overall impact of
magnetic fields on thermodynamics and dynamics of the high beta
ICM is easy to understand qualitatively, evolving HD equations is
reasonable for our purposes.

We model the core of the ICM using periodic boundary condi-
tions, ignoring the shallow gradients in density and temperature.
Since we model gas at high temperatures (T � 104 K), we ignore
self-gravity in our simulations. We solve the following equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1a)

∂(ρv)
∂t

+ ∇ · (ρv ⊗ v) + ∇P = F, (1b)

∂E
∂t

+ ∇ · ((E + P )v) = F · v + Q − L, (1c)

where ρ is the gas mass density, v is the velocity, P = ρkBT/(μmp)
is the pressure, F is the turbulent force per unit volume that we
apply, E = ρv2/2 + P/(γ − 1) is the total energy density, μ is the
mean molecular mass, mp is the proton mass, kB is the Boltzmann
constant, T is the temperature, Q(t) and L(ρ, T ) are the thermal
heating and cooling rate densities, respectively, and γ = 5/3 is the
adiabatic index. The cooling rate density L is given by

L = neni�(T ), (2)

where �(T) is the temperature-dependent cooling function of
Sutherland & Dopita (1993) corresponding to one-third solar
metallicity, and ne and ni are electron and ion number densities,
respectively. The turbulent forcing F is applied using a spectral

forcing method, as described in Section 2.3. In some runs, we in-
clude uniform thermal heating (Q) throughout the domain, such that
cooling is balanced by the sum total of turbulent and thermal heating.
Viscosity and thermal conduction are not included explicitly.

We carry out two sets of simulations (see Tables 1 and 2).
In turbulence-only simulations, we vary the forcing amplitude to
drive turbulence at different Mach numbers, but do not include
cooling. The aim of these runs is to relate density (pressure)
and SB (projected pressure) fluctuations to the turbulent velocity
for isotropic/homogeneous turbulence relevant below the Ozmidov
scale (the scale at which the internal gravity wave oscillation time-
scale equals the turbulent eddy time-scale; Ozmidov 1965). In the
second set of simulations, we impose thermal balance averaged
over the whole computational domain to mimic the observed global
thermal balance in cool cluster cores; i.e. the sum of the work done
per unit time by turbulent forcing and the thermal power input equals
the volume integrated cooling rate. In the thermal balance runs, the
denser/cooler regions cool and the hotter regions are heated (slowly)
by design. Thus, the temperature of the hot phase increases steadily
and the CFL time-step becomes shorter, making the second set of
runs more time consuming. With gravity the hot regions will rise
and cooler blobs will sink, but this physics is not included for the
simulations in this paper. Our simulations are thus more relevant
for scales below the Ozmidov scale, below which the Richardson
number Ri � 1 and turbulence dominates over buoyancy effects
(see equation 16 for the definition of Ri.)

2.2 The cooling cut-off

In the absence of a gravitational field (and consequent stratification),
cold gas can separate out from the hot phase due to local thermal
instability. This cold gas collapses to an extremely small scale (Field
1965; Koyama & Inutsuka 2004; Sharma et al. 2010). In order to
prevent the cold gas from collapsing to an extremely small scale we
cut-off the cooling function at a temperature Tcut-off. The scale of
collapsing clouds, assuming isobaric conditions, goes as T

1/3
cutoff . For

a very short cooling time, the isobaric condition is not valid during
collapse and the gas can fragment on the scales of cstcool (McCourt
et al. 2018), where

cs ≡
(

γP

ρ

)1/2

=
(

γ kBT

μmp

)1/2

(3)

is the sound speed and

tcool ≡ 3

2

nkBT

neni�
(4)

is the cooling time evaluated at the temperature of the cold stable
phase.

To prevent cold gas from collapsing to unresolvable small scales,
we truncate the cooling function at a small temperature floor Tcut-off.
Thus, the cooling rate now has a form

L = neni�(T )H(T − Tcut-off), (5)

where H is the Heaviside function. We choose Tcut-off = 106 K for
most runs (we also tried a few runs with Tcut-off = 104 K to check the
sensitivity to this parameter). This choice is reasonable, since most
of the gas that cools to 106 K will cool to 104 K because of a short
cooling time in this temperature range. A higher cut-off temperature
enables us to better resolve the cold phase.
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Table 1. Turbulence-only runs.

Label Resolution Forcing amplitude (Aturb) Kdriving Remarks

Fl1 2563 0.005 0 < Kdriving ≤ √
2 Subsonic

Fl2 2563 0.02 0 < Kdriving ≤ √
2 Subsonic

Fl3 2563 0.1 0 < Kdriving ≤ √
2 Transonic initially

Fl4 2563 0.9 0 < Kdriving ≤ √
2 Supersonic initially

Fl5 2563 2.5 0 < Kdriving ≤ √
2 Supersonic initially

Flr 5123 0.005 0 < Kdriving ≤ √
2 Subsonic, results converge

Fh 2563 0.1 Kdriving = 12 Subsonic

Note: In the labels, F stands for Fiducial (without explicit heating and cooling), r denotes the high-resolution run with 5123 grid points, l denotes driving at
low-ks (0 < Kdriving ≤ √

2), h denotes driving at high-ks (Kdriving = 12).

Table 2. Thermal balance runs.

Label Resolution Forcing amplitude Kdriving fturb Initial 〈δρ〉rms
〈ρ〉 tmp (Myr)

σvLOS

(km s−1) Remarks

Tl 2563 Autoscaled 0 < Kdriving ≤ √
2 1.0 Off 90 380 Supersonic gas

Th 2563 Autoscaled Kdriving = 12 1.0 Off 1700 255 Long tmp

Tlr 5123 Autoscaled 0 < Kdriving ≤ √
2 1.0 Off 90 – Results converge with Tl

Thr 5123 Autoscaled Kdriving = 12 1.0 Off 1500 – Shorter tmp as compared to Th
Bl 2563 Autoscaled 0 < Kdriving ≤ √

2 0.5 Off 160 361 Supersonic gas
Bh 2563 Autoscaled Kdriving = 12 0.5 Off 1200 228 Long tmp

QD 2563 0 n/a 0 0.2 40 32 Immobile cold gas clumps
TDh 2563 Autoscaled Kdriving = 12 1.0 0.2 1500 260 Long tmp

BDh 2563 Autoscaled Kdriving = 12 0.5 0.2 400 226 Subsonic gas, reasonable tmp

BDh2 2563 Autoscaled Kdriving = 12 0.1 0.2 240 165 Reproduces Hitomi velocity profile
BDh3 2563 Autoscaled Kdriving = 12 0.3 0.2 320 202 Subsonic gas, reasonable tmp

BDh4 2563 Autoscaled Kdriving = 12 0.7 0.2 500 254 Subsonic gas, reasonable tmp

BDh5 2563 Autoscaled Kdriving = 12 0.9 0.2 700 264 Long tmp

Note: In the labels, T stands for pure turbulent heating (fturb = 1), Q denotes pure thermal heating (fturb = 0), and B stands for both thermal and turbulent
heating, r denotes a resolution of 5123 grid points (all other runs use a grid with 2563 grid points), l denotes driving at low-ks (0 < Kdriving ≤ √

2), h denotes
driving at high-ks (Kdriving = 12), D denotes initial density perturbations with |ρk| = Ak−1/3 (

√
2 ≤ k ≤ 12, A is a constant amplitude). σvLOS represents the

velocity dispersion along the LOS.

2.3 Turbulent forcing

We follow a spectral forcing method using the stochastic Ornstein–
Uhlenbeck process to model the turbulent force F with a finite
autocorrelation time-scale τ (Eswaran & Pope 1988; Schmidt,
Hillebrandt & Niemeyer 2006). The acceleration in the Fourier
space is given by

an
k = f an−1

k +
√

1 − f 2 a′n
k, (6)

where the exponential damping factor f = exp (− δtn/τ ) (δtn is the
nth time-step size), a′n

k is the nth acceleration amplitude generated
by our random number generator, n being a time-step label. It is
generated by a Gaussian random number generator with amplitude
Aturb. We make sure that the driving acceleration is solenoidal, by
subtracting its component along k in Fourier space, and taking only
the solenoidal component,

an
k = an

k − an
k · k
|k|2 k. (7)

We limit the modes to which forcing is applied in the Fourier space
by setting two limits kmin and kmax, which control the distribution of
Fk in the Fourier space. The force Fn(x) in the real space is given

by

Fn(x) = ρ(x)Re

⎧⎨
⎩
∫ ∞

−∞

⎛
⎝ kmax∑

|k|=kmin

an
k

⎞
⎠ e−ιk·xdx

⎫⎬
⎭ . (8)

The typical values of kmin and kmax are of the order of 2π /(10 kpc).
We label the wavenumbers k = 2π K/L by K (L is the box size)
that are indicated in Tables 1 and 2 for each run.

We make sure that turbulent forcing does not add any net
momentum to the computational box. We subtract a constant from
all three components of momentum at all grid points, such that
〈ρδv(x)〉 = 0 at each time-step (〈〉 denotes volume average and δv

is the change in velocity at a grid point due to turbulent forcing).
In heating balancing cooling runs, we scale turbulent forcing

Fn so as to maintain global thermal equilibrium, i.e. we explicitly
enforce the following condition:

〈F · (v + δv)〉 + Q = 〈L〉 . (9)

We introduce a parameter fturb that denotes the fraction of cooling
that is compensated by turbulent heating. To maintain thermal
balance, the gas is thermally heated uniformly at a rate Q =
(1 − fturb) 〈L〉 at each grid point.
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2.4 Initial density perturbations

In some of our runs, we initialize isobaric density fluctuations on
top of the uniform density, which are generated such that ρk, the
Fourier transform of ρ, has a scaling similar to that expected in a
steady turbulent flow, i.e. ρk ∝ k−1/3. Our initial density fluctuations
follow this scaling for

√
2 ≤ K ≤ 12.

2.5 Numerical methods

We use a modified version of the grid based PLUTO code (version
4.1; Mignone et al. 2007) for our simulations. We evolve the
Euler equations in PLUTO, with additional forcing, cooling and
heating terms added as source terms (equations 1a–1c). The relation
between pressure, density, and temperature is set by the ideal gas
equation of state. We use the tvdlf (Total Variation Diminishing Lax-
Friedrich) solver, with periodic boundary conditions, RK-3 time-
stepping, and parabolic reconstruction. All our runs use a box size of
40 kpc in each direction, with 3D Cartesian grids having a resolution
of 2563. We have tested the code for numerical convergence by
doubling the resolution to 5123 for some of the runs. Our box size
of 40 kpc ensures that we are able to focus on the cool core and
have a good resolution, up to 100 pc.

We initialize the gas with a temperature of T0 = 1.03 keV, ne =
0.1cm−3, which give a cooling time ≈ 60 Myr. We assume the
gas composition to have μ = 0.5 and μe = 1.0 (although we
use a cooling function corresponding to Z�/3 metallicity). For
our thermal balance runs, the local thermal instability leads to the
separation of gas into hot and cold phases, and the rarer/hotter phase
(which is hotter and rarer than the initial condition) represents the
ICM.

3 R E S U LT S – TU R BU L E N C E - O N LY RU N S

Here, we describe the results of our fiducial (turbulence-only, no
cooling, or thermal heating) simulations. Table 1 lists the parameters
of these runs. The energy equation (equation 1c) is thus

∂E

∂t
+ ∇ · ((E + P )v) = F · v. (10)

The gas temperature increases with time due to work done by
turbulent forcing, the strength of which we characterize by an
amplitude Aturb.

The flow is subsonic for lower values of Aturb, and tran-
sonic/supersonic at early times for a large Aturb. Since we do not
have radiative cooling in these runs, the gas eventually heats up,
and the flow always becomes subsonic at later times as the sound
speed cs increases.

3.1 Mach number and density/pressure perturbations

Fig. 1 shows the relative root mean square (rms) fluctuations in
density 〈δρ〉rms/〈ρ〉 and pressure 〈δP〉rms/〈P〉 as a function of the
rms Mach number

Mrms ≡
〈
v2

rms

〉1/2

cs
, (11)

where vrms is the rms velocity and cs is the volume-averaged
sound speed. In the subsonic regime (Mrms < 0.8), the density
and pressure fluctuations vary as M2

rms. In the transonic/supersonic
regime, both density and pressure fluctuations flatten with Mrms

(see e.g. fig. 7 in Nolan, Federrath & Sutherland 2015). Further, the
density and pressure fluctuations scale linearly with each other in

Figure 1. The rms density and pressure fluctuations as a function of the rms
Mach number Mrms. Both these fluctuations vary ∝ M2

rms in the subsonic
regime and flatten in the supersonic regime. The data are plotted after
the first maximum in Mrms, roughly after the saturation of turbulence.
The trends of pressure and density fluctuations are strikingly similar. Also
note that the strongest driven system achieves smaller rms Mach number
and density/pressure fluctuations at a much faster rate. This is because the
turbulent heating time 3p/(2ρv3

L/L) = 0.9M−2
rms(L/vL) is much shorter

than the eddy turnover time (L/vL) for a larger Mach number, where L is the
driving scale and vL is the velocity at this scale.

the subsonic regime but in the shock-dominated supersonic regime
the density behind a shock can only be a factor of 4 higher than the
ambient value but the pressure can be much higher, indicating the
breakdown of the linear scaling.

The scaling of density and pressure fluctuations with the Mach
number can be motivated from the following arguments. In the
subsonic regime, the flow is close to incompressible and the pressure
satisfies the Poisson equation ∇2P = ρ∇v : ∇v, which implies that
δP ∼ ρδv2, or δP/P ∼ γ δv2/c2

s ∼ γM2
rms. For transonic Mach

numbers the disturbance are dominated more and more by sound-
like perturbations with δP ∼ ρcsδv and δP/P ∼ γ δv/cs ∼ γMrms

(this is just the relation between fluctuations in a sound wave).
In both subsonic and transonic regimes the pressure and density
fluctuations are related as δP/P ∼ γ δρ/ρ. These scalings explain the
observed relation in Fig. 1. The top-left panel in fig. 6 of Konstandin
et al. (2012) shows a similar scaling of density fluctuations2 and
Mach number as ours for their isothermal turbulence simulations
with solenoidal driving (like us).

3.2 Power spectra

Now that we have established that the domain averaged rms density
and pressure fluctuations vary as M2

rms for subsonic turbulence
relevant for the ICM, we move on to power spectra. We find that
the spectral amplitudes of both velocity and density perturbations

2They measure σρ the width of the PDF of ln ρ, which in the subsonic regime
should roughly equal 〈δρ〉rms/〈ρ〉. We have done some low Mach number
simulations with pure compressible driving, and find that 〈δρ〉rms/〈ρ〉 and
〈δP〉rms/〈P〉 scalings are closer to ∝ M2

rms than ∝ Mrms for Mrms � 0.2.
This does not agree with fig. 6 of Konstandin et al. (2012), but it may be
because they are using an isothermal equation of state for which pressure is
a constant times the density and our pressure fluctuations are governed by
equations (1a)–(1c).

MNRAS 484, 4881–4896 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/4/4881/5305862 by D
a-C

ollect C
hifley Library AN

U
C

 user on 02 M
ay 2019



4886 R. Mohapatra and P. Sharma

Figure 2. Upper panel: Power spectra of velocity, density, and pressure
for low Mach numbers relevant to the ICM (Mrms = 0.25, 0.45). Density,
pressure, and velocity closely follow the K41 k−5/3 scaling in the inertial

range. Lower panel: The ratio η2
k = ρ2

k

〈ρ〉2 /
V 2

k

c2
s

of density and velocity power

spectra has a significant flat region for subsonic flows. In the transonic regime
(Mrms � 1), the density spectrum is steeper than the velocity spectrum. Note
that the ratio η2

k increases with Mrms. The data for a given Mrms are from
different low-k driving runs in Table 1. Error bars in both panels (error bars
are not easily seen in the top panel) correspond to 1σ variation across the
mean in different samples with the same Mrms. The variations are larger
for Mrms � 1 in the bottom panel, reflecting higher variability with a larger
Mach number.

ρk and vk vary as k−1/3 (i.e. density follows the Obukhov–Corrsin
spectrum for passive scalars; Corrsin 1951). Although the density
and velocity power spectra have the same slope, from Fig. 1 and
Parseval’s theorem (equal power in real and Fourier space) we
expect δρk/vk to increase with an increasing Mrms (δρk/ 〈ρ〉 ∝
Mrmsδvk/cs). Fig. 2 shows the density/pressure and velocity power
spectra (top panel) and their ratio (bottom panel) for some of our
fiducial runs. Notice a large flat portion in the ratio between power
spectra of density and velocity, but an increasing value of the ratio
with an increasing Mach number.

The top panel of Fig. 2 shows that the density and pressure power
spectra are very similar for Mrms � 0.25. We expect the pressure
spectrum to be steeper by unity than the density spectrum (which
follows the passive-scalar/velocity spectrum) in the very subsonic
regime (see e.g. equation 6.94 in Lesieur 2008). However, for the
Mach numbers relevant for galaxy clusters we find an almost the
same spectral slope for the pressure and density power spectra, with
only a slight hint of steepening of the former at the smallest Mach
numbers.

The ratio of the density and velocity power spectra is proportional
to ερ /εv , where ερ is the density fluctuation flux and εv is the kinetic
energy flux (both are constant in the inertial range), which can be
defined as

ερ(l) = δρ(l)2v(l)
l

, (12)

εv(l) = v(l)3

l
, (13)

η(l)2 ≡ c2
s

v(l)2
(δρ(l))2

〈ρ〉2 = ερ (l)
εv (l)

c2
s

〈ρ〉2 , (14)

where v(l) is the characteristic velocity at length scale l (note that
the labels l and k are interchangeable). The ratio of the power
spectra is constant in the inertial range as seen in Fig. 2, and εv , ερ

are constants independent of l. Note that these arguments need to
be modified for transonic/supersonic turbulence. In the transonic
runs, the inertial range is not flat, and Fig. 2 shows that there

is a slight increase in the ratio η2
k ≡ ρ2

k

〈ρ〉2 /
V 2

k

c2
s

with an increase
in k. Perhaps most importantly for the ability to convert density
fluctuations to turbulent velocities, the ratio of powers in density
and velocity perturbations at a given scale is proportional to the
Mach number. This is found to be a constant in previous works that
include stratification (Zhuravleva et al. 2014b; Gaspari et al. 2014).

3.3 Surface brightness fluctuations

In X-ray observations, we directly observe the SB; i.e. the X-ray
emissivity integrated along the LOS that has contributions from
different spherical shells. Correlating SB fluctuations with velocity
fluctuations provides a way to constrain fluid motions in the ICM.
This is a promising approach in absence of direct turbulent velocity
measurements from high-resolution X-ray spectra.

We define the SB as

SB(x, y) =
∫ L/2

−L/2
n2(x, y, z)�[T (x, y, z)]dz. (15)

Note that before performing these calculations, we manually set the
density fluctuations from the mean values to decay slowly to zero
outside a sphere centred at the origin, with a scale radius L/5. This
is done to impose a realistic spherical symmetry, but its effects are
moderate and only at the lowest wavenumbers. The procedure is
described in detail in Appendix B.

3.3.1 Dependence on Mach number

Fig. 3 shows that the SB fluctuations δ(SB)/〈SB〉 have a similar de-
pendence on Mrms as δρ/〈ρ〉. In the subsonic regime SB fluctuation
amplitude varies as M2

rms, and in the supersonic regime it is flatter.

3.3.2 Surface brightness power spectra

Fig. 4 shows that the SB power spectra follow a k−8/3 scaling
in the inertial range, which is steeper by unity than the density
spectrum ∝ k−5/3. This is because the number of k-space points grid
points within �k is proportional to 4πk2�k for spherical shells and
to 2πk�k for circular annuli. Since the power spectra differ by a
factor of k, the spectral amplitudes of SB and density fluctuations
would differ by a factor of k1/2. This result is in line with the 3D and
2D spectral amplitude relations discussed in section 3 of Churazov
et al. (2012). In the subsonic regime the ratio of relative density

and compensated SB fluctuations
(

|ρk |2
〈ρ〉2

)
/
(
k |SBk |2

〈SB〉2

)
is almost a

constant in the inertial range.

4 R ESULTS – H EATI NG BALANCI NG
C O O L I N G

In the simulations described in this section, we are more faith-
ful to cool-core thermodynamics and explicitly balance radiative
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Turbulence in the ICM 4887

Figure 3. Surface brightness fluctuations as a function of the rms Mach
number for the same runs as Fig. 1 (these are run for longer times to densely
cover the range of δR and Mrms). The dependence of SB fluctuations on
rms Mach number is similar to that of density and pressure fluctuations in
Fig. 1; δ(SB)/SB varies as M2

rms in the subsonic regime and is flatter in the
supersonic regime. The same scaling is expected for the projected pressure
fluctuations probed by the thermal Sunyaev–Zeldovich effect due to the hot
ICM.

Figure 4. Upper panel: Power spectra of density and SB fluctuations for
different Mrms. Density spectra follow the K41 k−5/3 scaling in the inertial
range and SB power spectrum is steeper by unity. Lower panel: Ratio

between density and compensated SB spectra Rk =
( |ρk |2

〈ρ〉2

)
/
(
k

|SBk |2
〈SB〉2

)
;

Rk is constant over the inertial range, showing little variation with Mrms for
Mrms < 1. Some of the error bars here are larger than in Fig. 2 because the
number of k-space points within 2D annuli are smaller than in 3D shells for
the same bin size in k, and we may be dominated by Poisson noise for low-k
bins.

cooling rate with the sum of turbulent and thermal heating rates.
Observations show that the hot gas is in rough thermal balance.
The factor fturb gives the turbulent heating fraction out of the total
(thermal + turbulent) heating. The gas is uniformly heated by a
constant thermal heating rate density Q = (1 − fturb) 〈L〉, where
〈L〉 is the average radiative cooling rate of the box. In some of
our runs, we seed the gas with initial random density perturbations,

Figure 5. Time evolution of volume-averaged rms density fluctuations
for different thermal balance runs. The small flat region at initial times
corresponds to the turbulent steady state (seen clearly for the runs that
show multiphase gas at later times), and the sharp increase corresponds to
multiphase condensation due to thermal instability. Cold gas condenses out
at different times for different runs. The inset shows the early time evolution
in more detail.

using the method described in Section 2.4. Table 2 lists our thermal
balance simulations.

Fig. 5 shows the time evolution of the volume-averaged rms
density fluctuations (normalized to the mean density) in our thermal
balance runs. Most of these runs show two stages of evolution – the
first being a turbulent steady state and the second reflecting thermal
instability that leads to multiphase condensation. The first stage
occurs after an eddy turnover time-scale for most of our runs. It
depends on the amplitude of forcing, and thus on the parameter fturb

(the fraction of turbulent heating). The second stage of evolution has
much higher density fluctuations (〈δρ〉rms/〈ρ〉 ≥ 1). In this stage,
the gas separates into hot and cold phases due to thermal instability.
The multiphase gas formation time-scale (tmp) is very different for
different parameter choices.

4.1 Pure turbulent heating (Tl and Th)

For runs Tl (low-k driving) and Th (high-k driving; see Table 2), we
use fturb = 1 (i.e. turbulent heating fully compensates energy losses
due to radiative cooling at each time-step). We do not initialize
density perturbations in these runs (they are seeded by turbulence
itself). Both runs with driving at large and small length scales show
multiphase gas. While the run with large driving scales (Tl) has tmp

≈ 80 Myr, for small-scale driving (Th) tmp ≈ 1700 Myr (∼20 times
longer!). The time tmp can be directly measured from the plot of
rms density perturbation versus time (Fig. 5), which grows by an
order of magnitude when multiphase gas condenses. Local thermal
instability can lead to cold gas condensation and non-linear density
perturbations, but it may take several cooling times.

Fig. 6 shows the Mach number and temperature distributions for
the two runs Tl and Th before and after multiphase condensation.
Compared to Th, Tl has a fair amount of gas at intermediate temper-
atures (i.e. between Thot and Tcut-off, where Thot is the temperature
of the hot phase). Also, Thot is smaller for Tl as compared to Th.
The cold peak is more prominent for large-scale driving (Tl). For Tl
most of the gas is supersonic at time t > tmp, with peak at M ∼ 3.
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4888 R. Mohapatra and P. Sharma

Figure 6. Volume probability distribution function (PDF) of Mach number
(v/cs; upper panel) and temperature (lower panel) in the turbulent steady
state (before condensation) and after multiphase gas formation for pure
turbulent driving runs: high Kdriving (Th) and low Kdriving (Tl). Note that
the amount of gas at intermediate temperatures and the spread of the PDFs
are different for different runs/times. At late times we see a narrow peak
(corresponding to the hot phase) and a slight bump (for gas at Tcut-off) in the
Mach number distribution for Th, whereas a single broad peak at M ∼ 3 is
observed for Tl.

For small-scale driving (Th), the peak in Mach number distribution
is at M ∼ 1, with a small bump at M ∼ 3.

Turbulence mixes up gas at all length scales starting from the
driving scale. Hence, large length scale driving mixes up the gas
better on larger scales than small length scale driving. By mixing,
turbulence smoothens the temperature PDF that is driven towards
bimodality due to thermal instability. In these runs, turbulent driving
itself generates larger amplitude of density fluctuations, since in
the inertial range δρ l ∝ l1/3. Denser regions have faster runaway
cooling, which leads to quick formation of multiphase gas, at around
t = 80 Myr. Top-right panel of Fig. 7 shows that the distribution
of cold gas in run Tl is rather uniform throughout the simulation
domain.

For small-scale driving, it takes much longer than the cooling
time-scales for multiphase gas condensation (≈ 1700 Myr; Fig. 5).
In this case, cold gas condenses in more localized regions, and the
cloud grows around it. In Fig. 6, for Th the narrower transonic peak
corresponds to hot gas and a small supersonic bump (M ≈ 3) to
cold gas clouds. We can attribute the long tmp (time for multiphase
condensation) in the small-scale driving run (Th) to small density
perturbations generated by small-scale driving (δρ l ∝ l1/3) (see e.g.
the inset in Fig. 5; cf. Fig. 14). These small density perturbations are
quickly mixed up by turbulence itself before runaway cooling can
happen, thus preventing the formation of larger cool and overdense
regions. Later in Sections 4.2 and 4.3, we show that cold gas
condenses early if large density perturbations and thermal (non-
turbulent) heating are present.

In cool cluster cores the gas temperature distribution is bimodal
(in reality the cooler phase will be emitting in H α and CO and
not in X-rays), and observations show that the hot ICM is subsonic

Figure 7. Volume rendering of cold gas for Tl and Th runs. Gas having
temperature greater than 1.22 × 106 K is set to be transparent, so that
we show only the cold gas. The upper panels correspond to large-scale
driving (Tl), and the lower panels to small-scale driving (Th). The left-hand
panels show gas just after cold gas starts condensing (62.6, 1630.0 Myr)
and the right-hand panels show cold gas at a later time (391.8, 1998.3 Myr).
Turbulence plays the dual role of seeding density perturbations and mixing
density/temperature inhomogeneities.

(Aharonian et al. 2016). From our simulations, we conclude that
it is unlikely that pure turbulent driving on cluster core length
scales (10s of kpc) can balance radiative losses in the core for
∼1 keV clusters, since this scenario gives a large amount of gas
at intermediate temperatures and supersonic turbulence in the hot
phase (subject to our assumptions as listed in Section 5.1). Turbulent
driving at small length scales could be important, except that in
these runs multiphase gas takes too long to condense out and the
Mach number peak in the hot phase is still larger than observations.
In the following subsection (Section 4.2), we look at the impact
of introducing uniform thermal (non-turbulent) heating on these
simulations.

4.2 Both thermal and turbulent heating (Bl and Bh)

For the runs Bl and Bh we use fturb = 0.5; i.e. half of the cooling
losses are balanced by turbulent heating and the other half by the
heat added uniformly throughout the volume.

Fig. 5 shows that for large-scale driving cold gas condenses out
early, at around 160 Myr. Fig. 8 shows that the amount of gas
having temperature below the cut-off temperature is lower than
the corresponding pure turbulent heating runs (shown in Fig. 6),
because of a smaller turbulent forcing. However, we still have a lot
of gas at intermediate temperatures, and a broad supersonic peak in
the Mach number distribution.

For smaller scale forcing (high Kdriving), cold gas forms a bit earlier
(at around 1200 Myr, compared to 1700 Myr for pure turbulent
heating runs). This time is still an order of magnitude longer than
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Turbulence in the ICM 4889

Figure 8. Mach number (v/cs; upper panel) and temperature (lower panel)
PDFs in the turbulent steady state and after multiphase condensation for
runs with both thermal and turbulent heating (fturb = 0.5) and driving at
high (Bh) and low (Bl) ks. These runs show more bimodality in temperature
distribution compared to their pure turbulent heating counterparts in Fig. 6.

the cooling time. For Bh runs (as compared to Th) cooler regions
get more time to grow before they are mixed up with hotter regions,
which leads to large density fluctuations and smoother temporal
evolution. Fig. 8 shows that the hot gas is fairly subsonic (M ≈
0.6), and the cold gas is modestly supersonic (M ≈ 2.5) for these
simulations. The distribution of gas in different phases is more
bimodal, with less gas at intermediate temperatures, as compared
to runs with pure turbulent heating (compare Figs 6 and 8). The
volume rendering plots in Fig. 9 are similar in nature to those of
pure turbulent driving in Fig. 7.

From the results of these simulations, we conclude that other
thermal heating mechanisms that do not drive strong turbulence [e.g.
thermal conduction (e.g. Wagh, Sharma & McCourt 2014), turbulent
mixing (e.g. Hillel & Soker 2017), cosmic ray streaming (e.g.
Guo & Oh 2008), shocks/sound waves (e.g. Ruszkowski, Brüggen &
Begelman 2004)] play an important role in closing the AGN
feedback loop (at least in an average sense). Non-turbulent heating
leads to more bimodality in temperature distribution and subsonic
gas velocities in the hot phase (for small-scale driving runs). In the
next subsection, we introduce initial density perturbations (over and
above what is produced by turbulence), and assess their impact on
the multiphase gas.

4.3 Initial density perturbations (QD, TDh, and BDh)

The density perturbations in the ICM may be primarily seeded by
sources other than turbulence such as cooling/heating (as in our
simulations presented in Section 4), galaxy wakes, rising bubbles
and sloshing. Therefore, for the runs discussed in this section,
we initialize isobaric (since sound crossing time over the cluster
core scales is shorter than the cooling time) density perturbations
according to the prescription in Section 2.4. In this section, we

Figure 9. Volume rendering of cold gas (T < 1.22 × 106 K) for runs
with equal turbulent and thermal heating (Bl and Bh). The upper panels
correspond to large-scale driving (Bl), and the lower panels to small-
scale driving (Bh). The left-hand panels show gas just after cold gas starts
condensing, and the right-hand panels show cold gas at a later time. These
are qualitatively similar to the corresponding Tl and Th plots in Fig. 7.

discuss the following runs with initial density perturbations: a pure
thermal heating run QD (fturb = 0, D stands for initial density
perturbations), a pure turbulent run with small-scale driving TDh
(fturb = 1, Kdriving = 12), and a thermal + turbulent heating run
BDh (fturb = 0.5, Kdriving = 12). We focus on small-scale driving
because the Mach number in the hot phase is smaller (and closer to
observations) than large-scale driving.

The amplitude of relative initial density perturbations 〈δρ〉rms/〈ρ〉
is 0.2, roughly twice the rms density perturbations in the turbulent
steady state of run Th before cold gas condensation (compare Th
and TDh in Fig. 5). We have also tried runs with smaller initial
density perturbations, which only show a slightly longer tmp, but
the Mach number and temperature distributions are similar to the
run with smaller/without any density perturbations. Thus, small
density perturbations do not significantly affect the occurrence of
multiphase gas.

4.3.1 Thermal heating only (QD)

This run is similar to the simulations presented in Sharma et al.
(2010), in that there is no externally imposed turbulence and the fluid
motions are caused by thermal instability itself. The key differences
are that our simulations are 3D hydro, while the earlier paper was
based on 2D MHD runs. Fig. 5 shows that cold gas starts condensing
out at around t ≈ 40 Myr, comparable to the cooling time. The rms
perturbations are larger and much smoother in time compared to the
runs with turbulence because turbulence mixes the phases in latter,
preventing a large stationary density/temperature contrast.

Due to much weaker turbulence in this run, the temperature PDF
also shows a strong bimodality in Fig. 10. There is much less gas
at intermediate temperatures, almost no gas at temperatures below

MNRAS 484, 4881–4896 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/4/4881/5305862 by D
a-C

ollect C
hifley Library AN

U
C

 user on 02 M
ay 2019



4890 R. Mohapatra and P. Sharma

Figure 10. Mach number (v/cs; upper panel) and temperature (lower panel)
PDF before and after multiphase gas condensation for runs with initial
density perturbations, QD, TDh, and BDh. Turbulent forcing for these runs,
wherever included, is at small scales. The Mach number for pure thermal
heating run (QD) is low, with a single broad peak. This run shows very less
gas at intermediate temperatures, and some gas even at T > 108 K. With
driven turbulence (TDh, BDh), we have a lot more gas at intermediate
temperatures, and at temperatures below Tcut-off. The Mach number of
these runs is higher, with the cold phase being supersonic. The degree of
bimodality (among turbulent forcing runs) is higher for turbulent + thermal
heating.

Tcut-off, but a tail at large temperatures going as high as 2 × 108

K. All this is a consequence of much weaker turbulence. Fig. 10
shows that the initial Mach numbers are very low (≈ 10−2). The
Mach number PDF even at t > tmp shows a single broad peak below
M = 0.1, for both the hot and cold phases. The flow is entirely
subsonic, including the gas in the cold (∼106 K) phase.

The volume rendering of cold gas in Fig. 11 (top panels) for
the thermal heating run shows that the clouds of cold gas grow at
the same location as the initial density peaks. The clumps merely
grow with time, and have little or no motion, as expected from
their low Mach numbers. In the absence of additional driving, the
cold and hot gas phases remain well separated in space and in
density/temperature.

4.3.2 Small-scale driving (TDh)

Fig. 5 shows that multiphase gas in the high-k driving run with
initial perturbations (TDh) condenses out only slightly earlier
(≈1500 Myr) than the run without initial density perturbations (Th;
≈1700 Myr). This is much longer than multiphase condensation
without turbulence (QD), which happens on a cooling time. In
fact, Fig. 5 shows that 〈δρrms〉/〈ρ〉 is larger initially but attains the
same amplitude as Th after ≈100 Myr, suggesting that turbulence
wipes out initially imposed isobaric density fluctuations on an eddy
turnover time. The run with high-k driving shows much gas below
Tcut-off and at intermediate temperatures (Fig. 10). The temperature
of the hottest gas is not as high as QD. The multiphase PDFs are
similar to those of the Th run (Fig. 6).

Figure 11. Volume rendering of cold gas (T < 1.22 × 106 K) for pure
thermal heating run QD (upper panels) and the run with equal thermal and
turbulent heating BDh (lower panels). The left-hand panels show the gas just
after cold gas starts condensing, and the right-hand panels represent cold
gas some time later. Note that the cloud shaped structures that form at later
times for the QD run are almost at the same location as the initial clouds,
denoting little gas motion. There are cold filaments initially that eventually
collapse on to the central core. For BDh, the plots are similar to the Bh run
without initial density perturbations (see lower panels of Fig. 9).

4.3.3 Turbulent and thermal heating (BDh)

Initial density perturbations have a much bigger impact on the run
with both turbulent and thermal heating (BDh; fturb = 0.5, Kdriving =
12) than with just turbulent heating (Th). Fig. 5 shows that cold
gas condenses out for BDh at tmp ≈ 400 Myr, almost three times
shorter than the run without initial density perturbations (Bh). The
shorter time-scale of multiphase gas condensation is because of the
decreased efficiency of turbulent mixing (since fturb = 0.5). Hence,
the denser regions can cool to the stable temperature on a much
shorter time-scale. This time is still a factor of a few longer than tmp

for pure thermal heating (QD).
Fig. 10 shows that the Mach number and temperature PDFs are

qualitatively similar to the runs without density perturbations, but
with a Mach number peak at ≈0.6, somewhat lower than the pure
turbulence run (Th; see Fig. 6). Volume rendering plots of density
in Fig. 11 (lower panels) are also qualitatively similar to the run Th
(see Fig. 7) but with less mixing.

Most of the hot gas with partial thermal heating and initial density
perturbations (BDh) is subsonic, and the time-scale for multiphase
condensation is not unrealistically long. These properties match
the observations qualitatively. In Section 5.2, we further quantify
the fraction of turbulent heating (fturb) by comparing with Hitomi
observations.

5 D ISCUSSION

This work has two key aims: (i) quantify the efficacy of unstratified
turbulence in generating density, pressure and SB fluctuations and
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Turbulence in the ICM 4891

(ii) quantify the extent to which turbulent heating can heat cool
cores of clusters within the context of our idealized thermal balance
simulations.

In the first set of runs, we drive turbulence (mostly on large
scales) with different forcing amplitudes and check the scaling of
pressure, density, and SB fluctuations of the gas with the turbulent
Mach number of the flow. We also calculate the power spectra of
the same quantities and their variation with the wavenumber and
Mach number. In the second set of runs we impose thermal balance
– the sum of turbulent and thermal heating balances net cooling –
to mimic cluster cool cores. In some of these simulations we also
drive turbulence at an order of magnitude smaller scale so that we
get a smaller turbulent velocity (ρv3/l = ε, the energy input rate
from turbulence; v ∝ l1/3 for the same ε), close to observations.

5.1 Comparison with previous works

We differ in two fundamental ways compared to the previous
analyses (e.g. Gaspari & Churazov 2013; Zhuravleva et al. 2014a,b)
of this topic. First, we do not include the background gravitational
stratification and second, in our thermal balance setup cold gas
can only form by condensation from the hot ICM. Both these
assumptions have profound effects on our results and can essentially
explain the seemingly different outcomes of our work compared to
the previous studies. In the following paragraphs, we motivate our
choices and highlight their impact on the outcomes of our study.

Gaspari & Churazov (2013) simulated hydro turbulence in the
ICM of the Coma cluster and reported that δρ/ρ ∝ Mrms even
for subsonic driving. This appears contradictory to the results
from our fiducial simulations, but note that unlike us they use a
stably stratified ICM. In a stably stratified atmosphere, turbulent
driving can excite internal gravity waves for which the density
perturbations are large relative to the pressure fluctuations (δρ/ρ ∝
Mrms � δp/p), and the power spectra are different from isotropic
homogeneous turbulence (e.g. Lindborg 2006; see the recent book
Verma 2018). Even for stably stratified turbulence there seems to
be a disagreement in the scaling of density and velocity power
spectra. The high-resolution simulations of Kumar, Chatterjee &
Verma (2014) show the velocity and density power to be different
(∝ k−11/5 and ∝ k−7/5, respectively, in agreement with Bolgiano
1959 but different from K41 scaling ∝ k−5/3 for both found by
Gaspari et al. 2014). Thus, more work is needed to understand the
relation between density and velocity fluctuations at different scales
for parameters appropriate for galaxy clusters.

The ratio of the restoring buoyancy force and the non-linear
turbulent force can be defined as the scale-dependent turbulent
Richardson number,

Ri(l) =
g

γ
d

d ln r
ln (p/ργ )

v2(l)/l
, (16)

which is smaller at small scales (l) for K41 turbulence; i.e.
turbulent force dominates over the buoyancy force at small scales
(Ruszkowski & Oh 2010). Here, we assume the average vertical
displacement to be the same as the size of the (isotropic) turbulent
eddy (l). If magnetized (anisotropic) conduction is of order the
Spitzer value, the effective Richardson number is ∝ dln T/dln r and
even smaller (Sharma et al. 2009b).

Thus, for turbulent velocities expected in both cool-core and non-
cool-core clusters (� 100 km s−1) the effects of stratification may
be small, especially at smaller scales. Cosmological simulations
of relaxed clusters (without cooling) agree with δρ/ρ ∼ M/

√
3

scaling (see e.g. figs 2 and 3 in Zhuravleva et al. 2014b), but this

may break down at the smaller (10s of kpc) scales of cool cores
where observations are probing below the Ozmidov scale (scale at
which Ri ∼ 1; see e.g. the Extended Data fig. 4 in Zhuravleva et al.
2014a). Zhuravleva et al. (2014b) argue that the scaling between
the density and velocity fluctuations at small scales is inherited
from the buoyancy-dominated larger scales. This must be checked
with high-resolution simulations since kinetic energy flux crossing
different ks is not expected to be a constant (unlike in K41) as it is
converted into potential energy in a scale-dependent way. Moreover,
turbulence is expected to be K41-like at small scales, irrespective
of the behaviour at large scales.

Coming to our thermal balance simulations, note that the only
way cold gas can be produced in these is via condensation from
the hot phase through thermal instability in a medium with global
thermal balance. For this to happen, the turbulent mixing time of
gas must be longer than the cooling time. This requirement puts an
upper limit on the turbulent velocity in our setup (see Section 5.2).
However, if most cold gas in the ICM is due to other mechanisms,
such as the uplifting of cold gas from the central galaxy, then tcool

can be much longer than any other time-scale, since cold gas does
not condense out of the hot ICM. In Zhuravleva et al. (2014a),
the cooling time-scale is longer than the other relevant time-scales
because they do not assume the cold gas to condense out of the
ICM.

5.2 Adjusting fturb to match Hitomi observations

A necessary condition for the condensation of cold gas in a turbulent
medium is that the turbulent mixing time be longer than the cooling
time. However, in presence of gravity, cold gas may not condense
out even in absence of external turbulence if the ratio tcool/tff �
20 (McCourt et al. 2012; Choudhury & Sharma 2016). In this
regime, the amplitude of density perturbations is smaller for larger
tcool/tff (�20; see e.g. the right-hand panel of fig. 3 in McCourt
et al. 2012). However, our idealized set up without stratification
is applicable for cool cluster cores with tcool/tff � 10 in which
multiphase gas is able to condense due to local thermal instability.

The ratio of the cooling time (tcool ≡ 1.5nkBT/neni�, which is
independent of length scale) and the turbulent mixing time (tmix ≡
l/vl) is longer for smaller length scales (vl ∝ l1/3, tmix, l ∝ l2/3 for
K41 turbulence). With thermal balance,

Ėturb ∼ ρv2
l /tmix,l ≈ ρv3

l /l ≈ fturbĖcool = fturbU/tcool, (17)

where turbulent energy dissipation rate is scale independent, fturb is
the turbulent heating fraction, and U = P/(γ − 1) is the thermal
energy density. Thus, at the driving scale

tcool/tmix,L ≈ fturbU/2K ∼ fturbM−2
rms, (18)

where K = ρv2
L/2 is the kinetic energy density at the driving scale

(L). For smaller scales the ratio is longer (M−2
rms[l/L]−2/3) and

condensation is more difficult.
It is worth noting that the turbulent heating rate Ėturb ∼ ρv3

L/L

is very sensitive to vL, and can be matched with the average core
cooling rate by only changing vL slightly (and L to some extent).
However, if the cold gas is to condense out of the hot phase due
to thermal instability, the cooling time must be shorter than the
turbulent mixing time. This constraints the Mach number in the
hot phase to be �1 for turbulent heating to fully balance radiative
losses (fturb = 1; see equation 18). For subsonic motions consistent
with observations, turbulent heating fraction (fturb) needs to be small
and/or turbulent driving must occur at small scales. This is what we
argue next.
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4892 R. Mohapatra and P. Sharma

Figure 12. Normalized PDF of X-ray luminosity versus the LOS velocity
(vLOS) of the hot X-ray emitting gas (T > 5 × 106 K) for different thermal
balance runs. We calculate the luminosity and the LOS velocity of each
grid cell in our simulation domain. Then we calculate the X-ray luminosity
contributed within different vLOS bins. This PDF is a crude proxy for the
X-ray lines that are broadened by turbulence in the hot ICM. The PDFs
are well modelled by Gaussians, σv being the standard deviation of the
Gaussian. The solid line is the mean and the shaded region indicates 1σ

variation in time after the condensation of multiphase gas. Even the run
with small-scale driving and fturb = 0.5 (Bh) shows a much larger velocity
dispersion as compared to the Hitomi observations of Perseus core. The
run with fturb = 0.1 and small-scale driving (BDh2) produces close to the
observed LOS velocity dispersion, with σv = 165 km s−1.

On scales (l) larger than the driving scale, turbulent diffusion
happens due to eddies of size L because energy only flows to smaller
scale in K41 turbulence. The turbulent diffusion coefficient for l �
L is given by Dturb = LuL and the mixing time-scale is

tmix,l>L ∼ l2/Dturb ≈ (l/L)2tmix,L. (19)

Thus, the condition for multiphase condensation due to thermal
instability becomes

tcool/tmix ≈ fturb(L/l)2(U/2K) ∼ fturb(L/l)2M−2
rms < 1, (20)

which can be satisfied with U� 2K (or equivalentlyMrms � 1) only
for scales much larger than the driving scale (l � L) and/or for fturb

� 1. Our simulation results are consistent with this criterion. Large-
scale driving with fturb = 1 (run Tl) indeed shows the Mach number
peak in the hot phase atMrms > 1 (see Fig. 6). With driving at small
scales (run Th), but still with fturb = 1, the peak Mach number is
smaller (Mrms ≈ 1), and the run with small-scale driving and fturb =
0.5 shows an even smaller Mach number peak (run Bh; see Fig. 8).

The turbulent velocities for runs with fturb = 0.5 (Bh, BDh; see
Table 2) are larger than what is measured by Hitomi observations of
Perseus core. We therefore reduce turbulent forcing fraction (fturb)
further to produce an LOS velocity dispersion that is consistent
with the observed value (≈164 km s−1; see the last few rows in
Table 2). Fig. 12 shows the PDF of X-ray luminosity contributed
at different LOS velocities for some of our thermal balance runs.
We can produce the small LOS velocity dispersion measured by
Hitomi only with small turbulent heating (fturb ≈ 0.1; run BDh2
in Table 2). ICM simulations with feedback AGN jets are also
able to produce a velocity dispersion of similar magnitude for a
substantial time, but it is more time variable than our idealized runs
(Li, Ruszkowski & Bryan 2017; Lau et al. 2017; Prasad, Sharma &
Babul 2018). Another desirable feature of the run BDh2 is that cold
gas condenses out in a few cooling times (and not tens of cooling

Figure 13. Upper panels: Volume rendering of cold gas (T < 1.22 × 106K)
for the run BDh2 with fturb = 0.1 and initial density perturbations. The
left-hand panel is a snapshot just after cold gas starts condensing, and the
right-hand panel is much later. The outer layers of the cloud look similar
to BDh and TDh runs (runs with small-scale turbulent driving), and not
like the QD run with no turbulent forcing. Middle and lower panels: Mach
number and temperature PDFs before and after multiphase condensation for
the same run. The distribution is intermediate between that of QD and BDh
runs. BDh2 has a Mach number peak at M ≈ 0.4.

times as is the case for larger fturb and small-scale driving; e.g. runs
Th, TDh, Bh in Table 2).

The top panels of Fig. 13 show the cold gas volume rendering
plot of our weak turbulence run (fturb = 0.1; run BDh2) that matches
Hitomi LOS velocity dispersion, just after condensation starts and
later. The distribution of cold gas appears intermediate between
pure turbulent heating runs (Fig. 7) and pure thermal heating run
(top panels of Fig. 11). In particular, the cold gas cloud as a
whole appears stationary but its surface is turbulent. Of course, the
addition of thermal conduction will wipe out small-scale features
in temperature and density of the hot phase (see e.g. fig. 4 in
Gaspari et al. 2014 and fig. 1 in Wagh et al. 2014), and anisotropic
conduction makes the cold gas more filamentary (Sharma et al.
2010). The bottom two panels of Fig. 13 show the Mach number
and temperature PDF for the same run at early and late times.
The late time Mach number peak occurs at a reasonable value of
M ∼ 0.4 and the temperature of the hot phase peaks between 1 and
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Turbulence in the ICM 4893

Figure 14. The rms density and pressure fluctuations of the hot X-ray
emitting gas (T > 5 × 106 K) as a function of the rms Mach number Mrms

for some thermal balance runs. Data are plotted after 8 Myr in all cases.
The dark M2

rms and Mrms lines are the turbulence-only scalings (Fig. 1).
These graphs show both the turbulent steady state before condensation (with
smaller markers) and the state after condensation (with larger markers). The
evolution is qualitatively different from pure turbulence runs in which the
rms Mach number and density/pressure fluctuations decrease with time
because of heating. Here, the density fluctuations are much higher than
the turbulent scaling, especially at small Mrms. In fact, the rms density
perturbations after multiphase condensation are similar for different runs
(see also Fig. 5). Note, however, that the pressure fluctuations follow the
scalings from the turbulent runs even after condensation.

2 keV (a factor of 2 smaller than Perseus core so the comparison
with Hitomi observations is not quantitative). The temperature
distribution after condensation is bimodal with a lack of gas at
intermediate temperatures.

5.3 Scaling of density, pressure, and surface brightness
perturbations

Most of the work relating density and SB fluctuations (measured
from X-ray observations) in the ICM to the level of turbulence
has not included the effects of cooling and heating. While this is
justifiable for non-cool-core clusters and for cluster outskirts that
have long cooling times, the cool cores are fundamentally affected
by cooling and heating. Our idealized thermal balance runs (see
Section 4) are a step towards making the cool-core turbulence
models more realistic. In fact, the density perturbations because
of local thermal instability, which can lead to multiphase gas, are
much larger than what is expected from K41 turbulence. The caveat,
however, is that we do not include the cluster gravity that can
suppress condensation and density fluctuations to some extent.

Fig. 14 shows the rms density and pressure fluctuations as
a function of the rms Mach number for some of our thermal
balance runs. The thick solid lines show the scaling from pure
turbulence runs (Fig. 1). The density fluctuations are much larger
than pure turbulence because isobaric (because sound crossing
time is shorter than cooling time) thermal instability leads to
large density fluctuations but not large turbulent velocities. Note
that density perturbations are large even before condensation. Not
only are the density fluctuations much larger than the scaling for
isotropic/homogeneous turbulence, they are also larger than the
linear extrapolation of supersonic scaling or scaling of density
perturbations with internal gravity waves in a stratified atmosphere
(〈δρ/ρ〉rms ∼ Mrms/

√
3).

Figure 15. The rms SB fluctuations of hot gas (T > 5 × 106 K) as a
function of the rms Mach number Mrms for some thermal balance runs.
Data are plotted after 8 Myr in all cases. The M2

rms and Mrms fits are
from the turbulence-only runs (Fig. 3). Again, SB fluctuations are much
larger than the scaling with only turbulence. From Fig. 14, the projected
pressure fluctuations (not shown) are expected to follow the pure turbulence
scaling. The supersonic runs clearly show very large rms SB fluctuations
than the turbulence-only runs. The thicker (thinner) markers are for times
after (before) multiphase condensation.

Table 3. Nature of fluctuations.

Fluctuations For Mrms < 1

Isotropic/homogeneous turbulence δp/p ∼ (5/3)(δρ/ρ) ∼ M2
rms

Internal gravity waves δp/p ∼ M2
rms, δρ/ρ ∼ Mrms

Thermal instability + turbulence δp/p ∼ M2
rms, δρ/ρ > Mrms

Similarly, in Fig. 15 the SB fluctuations are also much larger. The
implication is that the turbulent velocities inferred from density
fluctuations can be much higher if thermal instability is ignored
(as in Zhuravleva et al. 2014a). The pressure fluctuations, in
contrast, are smaller and consistent with isotropic/homogeneous
turbulence (Fig. 14). Also note that the pressure fluctuations for
subsonic internal gravity waves are much smaller than density
fluctuations. Table 3 lists the nature of density, pressure, and
velocity perturbations for different regimes relevant to the ICM.
Future comparison of X-ray SB maps (from Chandra/XMM maps),
Sunyaev–Zeldovich fluctuations (which probe the LOS pressure
fluctuations), and turbulent broadening in X-ray lines (e.g. by
successors of Hitomi) can teach us much about the nature of
dominant fluctuations in the ICM.

Figs 16 and 17 show the density, pressure, and velocity power
spectra as a function of wavenumber (k). The amplitude of density
fluctuations is much higher (as expected from Fig. 14) and the
density fluctuation spectrum is much shallower than K41 spectrum
(expected in absence of cooling/heating). The velocity and pressure
power spectra in the subsonic regime are consistent with K41
turbulence (see Fig. 2). A similar nature for the power spectra is
also seen for the pure thermal heating run QD (not shown in these
figures).

6 C O N C L U S I O N S

We have carried out high-resolution simulations of turbulence
relevant to the ICM, and analysed scaling of various physical
quantities and observables. Unlike most previous works, we ex-
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Figure 16. The normalized density and velocity power spectra (top panel)
and their ratio (bottom panel) for some thermal balance runs. Compared
to pure turbulence runs (see Fig. 2), the density power spectrum is much
larger and shallower than the velocity power spectrum, with their ratio
(η2

k ) increasing with the wavenumber as k3/2 in the inertial range. In other
words, the density power spectrum scaling with thermal balance is close
to k−1/6.

Figure 17. The normalized density and pressure power spectra (top panel)
and their ratio (bottom panel) for some thermal balance runs. Compared to
pure turbulence runs (see the top panel of Fig. 2), the density power spectrum
is much larger and shallower than the pressure power spectrum. The ratio
of density and pressure power spectra (Rk in the bottom panel) is almost
constant in the supersonic regime; i.e. |Pk|/〈P〉 ≈ (5/3)|ρk|/〈ρ〉 still holds in
the supersonic regime (run Tl) with thermal balance. In the subsonic regime,
pressure power spectrum scaling even with cooling and heating is similar to
the velocity power spectrum, ∝ k−5/3.

plicitly consider the influence of cooling and heating in the cluster
core on density, pressure, and velocity fluctuations. Based on our
simulations, following are our key conclusions.

(i) The turbulent heating rate Ėturb ∼ ρv3
L/L is very sensitive

to vL, and can be matched with the average core cooling rate by

changing vL slightly (and to some extent by changing L; see e.g.
section 6.2 of Zhuravleva et al. 2018). However, if the cold gas
is to condense out of the hot phase due to thermal instability,
the cooling time must be shorter than the turbulent mixing time.
This constraints the Mach number in the hot phase to be �1 for
driving on 10s of kpc, which is ruled out by observations. Driving
at smaller scales somewhat reduces the Mach number in the hot
phase (vL ∝ L1/3; see equation 17), but it is still much larger
than observations. Moreover, small-scale driving delays cold gas
condensation because of short mixing time on the driving scale.
In the context of our thermal balance models with multiphase
condensation, the only satisfactory way of matching the turbulent
velocity measured by Hitomi in the core of Perseus cluster is by
reducing the fraction of turbulent heating to ∼0.1 of the cooling
rate (see Section 5.2). Thus, turbulent heating does not seem to be
the dominant heating source in cool cores. Other sources that do not
contribute much fluid motion in the hot phase provide ∼90 per cent
of the feedback heating. Turbulent heating fraction is even smaller
for driving at larger scales. Also with cooling present, density, and
SB fluctuations due to local thermal instability can be much larger
than what is anticipated from turbulence-driven internal gravity
waves.

(ii) The ratio η2
k between the density and velocity power spectra

is much higher and scale dependent for thermal balance runs (see
Section 5.3). For pure isotropic/homogeneous turbulence in the
subsonic regime, this ratio is independent of scale (k) but increases
linearly with the Mach number (see Fig. 2). For comparison, this
ratio ηk seems to be close to 1/

√
3 and independent of k when

the background stable stratification is important, and cooling and
heating are ignored (Gaspari & Churazov 2013; Zhuravleva et al.
2014b; see Section 5.1).

(iii) For thermal balance simulations, the density and SB fluctu-
ations are much larger than their scaling with the Mach number
for turbulence simulations, and even compared to the density
fluctuations seeded by internal gravity waves (see Table 3 and
Section 5.3). Matching the X-ray SB fluctuations with turbulence
or gravity wave scaling would lead to an overestimate of turbulent
velocities. The power spectrum of density with heating/cooling
is much larger and shallower compared to K41 scaling, but the
pressure power spectrum is similar to the velocity power spectrum,
which follows K41 k−5/3 scaling (Figs 16 and 17). Thus, comparing
X-ray SB, high-resolution spectra of X-ray lines, and the fluctua-
tions of the Sunyaev–Zeldovich signal can tell us about the nature
of perturbations in the ICM.

An important caveat of our simulations is that we do not include
gravitational stratification, so internal gravity waves that can be
excited by turbulence and lead to density fluctuations are absent.
Although stratification is weak in galaxy clusters, it is necessary
to include it in combination with cooling and heating to draw
firm conclusions about the nature of fluctuations in cluster cores.
These fluctuations are a treasure-trove of information about physical
processes in the ICM.

A D D I T I O NA L L I N K S

The movies for the evolution of cold gas in different simulations
in the paper are available at: https://www.mso.anu.edu.au/ rajsekh
a/BT movies.html.
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APPENDI X A : C OMPUTI NG POW ER SPECTRA

Since we use a discrete 3D grid, the Fourier transform Ak(k) is
obtained by taking a discrete Fourier transform of the real space
data A(r),

Ak(k) =
∑

r

A(r)e−ιk·r , (A1)

where each component of k takes a values [ − πN/L, −π (N − 1)/L,
. . . , π (N − 1)/L, πN/L] (L is the box size and N the number of grid
points in each direction) along the three directions. We can create
spherical shells in k-space and define the power spectrum Ek(k) as

Ek(k)�k = ∑
k≤|k|<k+�k |Ak(k)|2, (A2)

or Ek(k) = ∑
k≤|k|<k+�k

|Ak (k)|2
�k

, (A3)

where �k is the bin size.
Since we have a large range of ks, we use a uniformly spaced

grids in ln k, with

� ln k = 1

nbin
ln

(
kmax

kmin

)
, (A4)

where nbin is the number of bins into which we divide the k-space,
and kmax and kmin are the maximum and minimum wave numbers
given by

kmax = 2Nπ
L

, (A5)

kmin = 2π
L

. (A6)

Note that kmax >
√

3Nπ/L, the maximum value of |k|. So the ith
bin-boundary is given by

kbin,i = kmin

(
kmax

kmin

)i/nbin

, (A7)

with i = 0, . . . , nbin, and

�kbin,i ≡ kbin,i − kbin,i−1 = kbin,i

(
1 −

[
kmin

kmax

]1/nbin
)

. (A8)
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The power spectrum is then given by

Ek(ki) =
∑

k≤|k|<k+�kbin,i

|Ak(k)|2
�kbin,i

. (A9)

APP ENDIX B: C ALCULATING D ENSITY AND
SURFAC E BR IGHTNESS SPECTRA

The central region of a cluster is its brightest part and is the major
contributor to the SB profile of the cluster. In our simulations, we
model the central core of a cluster. This region is roughly spherical.
However, we model it in a 3D Cartesian setup. So, while calculating
the density and SB power spectra, we use a roughly spherical density
profile given by

δρ(r) = ρ(r) − ρ0, (B1a)

ρ ′(r) = ρ0 + δρ(r)
2

[
1 − tanh

( |r|−|r0|
σ

)]
, (B1b)

where ρ0 is the mean density, ρ(r) is the density at a given location
in our simulations, and ρ ′(r) is the modified spherical density that
we use for calculating the power spectrum of SB. The transition
scale of density perturbations, σ , has been set to 0.2L, where L is
the size of our Cartesian box.

The weighting function decreases smoothly from one at r = 0 to
zero at around |r| = |r0|. The 2D SB map is given by

SB(x, y) =
∫ L/2

−L/2
n′2(x, y, z)�(T )dz, (B2)

where n′ = ρ ′/(μmp). This analysis method only affects the low-k
(large-scale) modes of the SB power spectrum. The inertial range
remains unaffected by this method.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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