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ABSTRACT
Using a 1D Lagrangian code specifically designed to assess the impact of multiple, time-
resolved supernovae (SNe) from a single-star cluster on the surrounding medium, we test
three commonly used feedback recipes: delayed cooling (e.g. used in the GASOLINE-2
code), momentum-energy injection (a resolution-dependent transition between momentum-
dominated feedback and energy-dominated feedback used, e.g. in the FIRE-2 code), and
simultaneous energy injection (e.g. used in the EAGLE simulations). Our work provides
an intermediary test for these recipes: we analyse a setting that is more complex than the
simplified scenarios for which many were designed, but one more controlled than a full
galactic simulation. In particular, we test how well these models reproduce the enhanced
momentum efficiency seen for an 11 SN cluster simulated at high resolution (0.6 pc; a factor
of 12 enhancement relative to the isolated SN case) when these subgrid recipes are implemented
in low resolution (20 pc) runs. We find that: (1) the delayed cooling model performs well –
resulting in 9 times the momentum efficiency of the fiducial isolated SN value – when SNe
are clustered and 1051 erg are injected per SN, while clearly overpredicting the momentum
efficiency in the single SN test case; (2) the momentum-energy model always achieves good
results, with a factor of 5 boost in momentum efficiency; and (3) injecting the energy from
all SNe simultaneously does little to prevent overcooling and greatly underproduces the
momentum deposited by clustered SNe, resulting in a factor of 3 decrease in momentum
efficiency on the average.

Key words: hydrodynamics – methods: numerical – ISM: bubbles – ISM: supernova rem-
nants.

1 IN T RO D U C T I O N

Energy and momentum injection from supernovae (SNe) are
thought to be one of the key ingredients regulating galaxy formation
and the thermodynamics of the interstellar and circumgalactic
media. Without feedback processes that reheat and redistribute gas
in galaxies, simulated galaxies are found to be too cold and too
centrally compact (e.g. Katz & Gunn 1991). Despite its importance,
however, a proper treatment of feedback in 3D hydrodynamics
simulations remains elusive; at high resolutions (�7 pc for n =
1 cm−3 and 1 SN; Kim & Ostriker 2015), we can simply inject 1051

erg of energy and get reasonable results, but at lower resolutions
this direct injection approach yields incorrect asymptotic properties
for the SN remnant (SNR), and consequently erroneous galaxy
properties (Smith, Sijacki & Shen 2018).

� E-mail: egentry@ucsc.edu

The fundamental cause of this is a phenomenon known as over-
cooling (Katz 1992): the rate of radiative cooling in a hot astrophys-
ical plasma is a highly non-linear function of density and tempera-
ture, and when the energy deposited by an exploding SN is spread
over too large a volume or mass as a result of low resolution, this
non-linearity leads to a dramatic overestimate of the cooling rate.
Since the full, complex physics that describes the interaction of SN
ejecta with the interstellar medium (ISM) cannot be captured at cur-
rently realistic resolutions in large galactic and cosmological simu-
lations, simulators have adopted a variety of simpler subgrid recipes
tuned to reproduce the ‘main’ behaviour of an expanding SNR.
This approach cannot hope to account for every dependence on the
environment or context, so one typically starts with a simple model,
and then only add new scalings as they are shown to be necessary.

One potentially strong effect is due to the clustering of core-
collapse SNe. Depending on the frequency of such events, it is
possible that one or more SNe may occur within the remnant created
by a previous explosion, giving rise to a hot, low-density cavity
known as a superbubble. Some studies have shown that feedback
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from superbubbles can be much more efficient than isolated SNe at
ejecting mass and adding momentum to the ISM (Roy et al. 2013;
Keller et al. 2014; Sharma et al. 2014; Gentry et al. 2017; see Dekel
et al. 2019 for a general discussion of regimes of SN clustering).
The amount of enhancement from clustering appears to depend
sensitively on the level of mixing across the interface between
the hot SNR interior and the cool shell around it (El-Badry et al.
2019; Gentry et al. 2019) and the specific superbubble regime being
studied. The turbulent mixing rate is uncertain, and likely depends
on both the pre-existing clumpiness of the ISM and on the presence
of magnetic fields, which suppress instabilities such as Rayleigh–
Taylor that promote mixing (Gentry et al. 2019). At present we
lack detailed magnetohydrodynamic simulations of SNRs including
conduction with enough resolution to quantify the mixing rate, and
thus the feedback boost from clustering is uncertain (see the review
by Krumholz & Federrath 2019 for further discussion).

Since many traditional subgrid models for SNe do not directly
account for clustering, it is important to investigate whether this
could constitute a significant error in how we model feedback in
galactic simulations. This is a question with at least three parts:
how well does a particular subgrid recipe approximate a given
superbubble, how well does it approximate each of the various
regimes of a superbubble, and what is the relative occurrence
frequency of each superbubble regime? For simplicity, in this paper
we focus on the first question only: how well is the behaviour
of a superbubble driven by 11 SNe captured by existing subgrid
algorithms? We focus on this particular case because the high-
resolution, state-of-the-art simulations of Gentry et al. (2017) show
that it has near maximal effects in terms of boosting the terminal
momentum of the SNR, and thus can be used to set an upper limit on
the potential error that subgrid recipes make by ignoring the effects
of clustering.

In this paper, we use 1D spherically symmetric hydrodynamic
simulations to study what happens when a number of common,
traditional subgrid recipes are applied to a series of clustered SNe.
We use these models to simulate the feedback of 11 SNe at both
low resolution (�r0 = 20 pc, typical of isolated galaxy or the best-
resolved zoom-in cosmological simulations)1 and high resolution
(�r0 = 0.6 pc, sufficient to obtain a converged terminal momentum
without an explicit subgrid recipe). While it would be ideal for
each subgrid model to perfectly match the final momentum of
a converged high-resolution 3D simulation, such a simulation is
unfortunately not available for clustered SNe. In 1D, Gentry et al.
(2017) show that the converged result for the total momentum
enhancement due to clustering is a factor of ≈10 increase over
simply adding up the momentum of single SNe (though this can be
reduced if one includes an explicit model for turbulent conduction
– see El-Badry et al. 2019), but Gentry et al. (2019) show that
3D simulations remain unconverged even at ≈1 pc resolution.
However, the 3D result does provide a lower limit to the amount
by which clustering enhances the terminal momenta of SNRs: by
extrapolating from the simulation resolution to the Field length,
they show that the expanded enhancement in terminal momentum
per SN is at least a factor of 2–3. This provides our primary criterion
for the success of a subgrid model: when applied to a low resolution
11 SN cluster, does it result in a momentum efficiency at least

1We do not test at the resolution typical of very large cosmological
simulations, since they typically cannot resolve star formation at the scale
of 11 SN clusters, the only size for which we have 3D simulations.

2 times greater than the fiducial isolated SN momentum efficiency,
thus reproducing the lower limit implied by the 3D simulations?

Finally, we needed to choose specific subgrid models to test.
For this work we chose a sample of 3 commonly used approaches:
‘delayed cooling’ (specifically mimicking the ‘blastwave’ feedback
method available in the GASOLINE-2 code; Stinson et al. 2006;
Wadsley, Keller & Quinn 2017), ‘momentum-energy injection’
(specifically mimicking the implementation used by the FIRE-
2 simulations; Hopkins et al. 2018b), and finally ‘simultaneous
energy injection’ (specifically mimicking the implementation used
by the EAGLE simulations; Dalla Vecchia & Schaye 2012; Crain
et al. 2015; Schaye et al. 2015). This is not meant to be an exhaustive
list, but covers some of the most common approaches which could
be tested by our code.2

In Section 2 we introduce the ideas behind each of these subgrid
models at a high level. In Section 3 we discuss the numerical
methods used in our 1D simulations, and then the implementation
details needed for each subgrid model. In Section 4 we show the
results of each simulation and briefly comment on the differences.
We put these results in context in Section 5 and then conclude in
Section 6.

2 OV E RV I E W O F F E E D BAC K M O D E L S

Before getting into the implementation of each subgrid model, we
give a conceptual overview of the physical motivation of each. In
Section 3 we cover these models again at a lower level, specifying
the implementation details of each step.

2.1 Delayed cooling feedback

Since the underlying problem is that at low-resolutions SNRs cool
too quickly, before they are able to accelerate enough mass, one
early approach was to simply ‘turn-off’ radiative cooling, allowing
the SNR to develop until the correct radiative cooling time-scale,
and then turn cooling back on (at which point most of the energy is
likely rapidly radiated away). Since this delays the cooling, we will
refer to this as the ‘delayed cooling’ model.

To focus on a specific example, we will mimic the model proposed
by Stinson et al. (2006) (although this idea dates back at least
to Gerritsen 1997). These Gerritsen-style models (e.g. Thacker &
Couchman 2000) sought to be simpler than existing models that
assumed unresolved phases within each resolution element in order
to prevent overcooling, but they themselves introduced a number of
free parameters which were not well explored until the systematic
study by Stinson et al. (2006). Stinson et al. used observational
constraints (primarily the slope, normalization, and cutoff of the
Kennicutt–Schmidt star formation law (Kennicutt 1998), and the
rate and steadiness of star formation in the Milky Way over the past
1 Gyr) to optimize the free parameters of a delayed cooling model.

Stinson et al. found that the blast energy, ESN, is one of the
hardest parameters to constrain. Even if an SN releases 1051 erg
of energy in its ejecta, some of that energy should be radiated
away (rather than becoming hydrodynamically coupled to the ISM),

2For example, we cannot meaningfully test the subgrid model used in
the IllustrisTNG simulations in a homogeneous ISM, as that model
prescribes ‘wind’ particles that travel from regions of high density and only
inject their energy into the ISM in regions of low density (Vogelsberger et al.
2013; Pillepich et al. 2018). Our homogeneous ISM has no regions of low
density, so these wind particles would never re-couple with the ISM.
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but since radiative cooling has been turned off in this model the
blast energy likely needs to be decreased to compensate. Stinson
et al. initially suggested ESN = 1050 erg (i.e. 10 per cent of the
ejecta energy), motivated by very high resolution simulations of
isolated SNe (Thornton et al. 1998) and found that simulations
using that value produce results consistent with the Milky Way hot
gas fraction and a radial velocity dispersion comparable to observed
quiescent spiral galaxies, leading them to recommend a default value
of ESN = 1050 erg. However, given the difficulty in constraining this
parameter, we will test multiple values in this study.

2.2 Momentum-energy feedback

A second class model takes a different track: rather than focusing
on intermediary steps (like mimicking the instantaneous cooling
rate), we could instead focus on directly prescribing the key final
results such as radial momentum. The radial momentum of a single
SN expanding into a cold medium asymptotes to a value that is a
function of the SN energy and the density and metallicity of the
ambient medium (Cioffi, McKee & Bertschinger 1988), and this
momentum is expected to be a key driver of small-scale limits
on star formation (e.g. by driving turbulence that maintains the
scale height of a galactic disc; Ostriker & Shetty 2011; Faucher-
Giguère, Quataert & Hopkins 2013), as well as large-scale limits
on star formation (e.g. galactic winds removing gas from galaxies;
Murray, Quataert & Thompson 2005; Hopkins, Quataert & Murray
2012; Creasey, Theuns & Bower 2013; Dekel & Krumholz 2013;
Thompson & Krumholz 2016).

The specific model we will mimic is from the FIRE-2 methods
(described in greatest depth by Hopkins et al. 2018a and with more
context by Hopkins et al. 2018b), although numerous earlier authors
adopted very similar approaches (e.g. Kim, Kim & Ostriker 2011;
Kimm & Cen 2014; Kimm et al. 2015; Simpson et al. 2015; Gold-
baum, Krumholz & Forbes 2016). Hopkins et al. (2018a) set out to
create and test a model that would work anywhere between moder-
ately low and arbitrarily high resolutions, without requiring tunable
parameters3 (allowing them to make testable predictions of observ-
ables like galaxy mass, and star formation history whereas the de-
layed cooling model of Stinson et al. 2006 had to be forced to match
these values by design). In order to do this, they employed a hybrid
method: at high resolution it is primarily a direct energy injection
method (which requires very few assumptions), but at low resolution
it transitions to a momentum injection method when needed.

The FIRE-2 approach achieves this by first directly adding the
ejecta to a neighbourhood around the SN location, calculating if that
region has sufficient resolution to resolve the SNR evolution, and
if not, adjusting the injected quantities (i.e. increasing the injected
momentum and decreasing the injected energy), to approximate the
late-time state of the SNR. When the expected cooling radius of an
SN is unresolved, which is the case in almost all cosmological or
galaxy-scale simulations focusing on spiral galaxies,4 this recipe es-
sentially reduces to injecting a fixed amount of radial momentum per
SN. In practice, this model will always apply ‘energy-dominated’

3Although the momentum-energy method we consider has no tunable
parameters, it does require adopting a terminal momentum model. All of
these models are simplifications that try to capture the primary dependencies
of the different inputs tested (e.g. ISM density and metallicity), while as-
suming no untested factors play a significant role in determining asymptotic
momentum.
4Though not in dwarfs, where lower densities yield larger cooling radii,
and which can be simulated at much higher resolution due to their smaller
overall size – e.g. Forbes et al. (2016) and Wheeler et al. (2019).

feedback in the high-resolution simulations presented in this paper,
and will always start ‘momentum-dominated’ in our low resolution
simulations but by about the fourth SN even our low resolution 11
SN cluster will start receiving ‘energy-dominated’ feedback as the
central density decreases and the expected cooling radius increases.

2.3 Simultaneous energy injection

The final class of models we will consider are those that try to
address the mismatch between the mass that initially gains the
energy in reality (i.e. the ejecta mass) and the mass that gains
the energy in simulations (typically the kernel mass, which is much
greater than the ejecta mass). For a fixed kernel mass, the first way
to address a fixed amount of energy being spread too thinly between
too much mass is to release more energy simultaneously into the
fixed kernel, for example by injecting all SNe from a given cluster
simultaneously. An additional technique is to artificially limit the
mass that receives energy to be smaller than the typical kernel
mass. We will specifically mimic the approach proposed by Dalla
Vecchia & Schaye (2012) and used in theEAGLE simulations (Crain
et al. 2015; Schaye et al. 2015) which does both: simultaneously
injects all the SN energy from a star cluster,5 and adding a stochastic
element that only adds energy to a fraction of the kernel but in doing
so guarantees that any elements receiving energy are heated beyond
the peak of the cooling curve.

The key parameter in the EAGLE approach is �ε, the increase
in specific thermal energy by a cell receiving SN energy (mostly
equivalent to a desired change in temperature, �T). By making this
a prescribed parameter, they can ensure that any resolution element
that receives energy is sufficiently hot (�107.5 K) that the resolution
element is radiatively inefficient. This comes at a cost; in order to
inject the right amount of energy (on average), this sets a limit on
the amount of mass (on average) of the resolution elements that can
receive the energy. This is especially difficult at low resolution (for
fixed cluster mass and SN energy), where we cannot usually select
a set of resolution elements that partitions the injection kernel into
the correct amount of mass that does and does not receive energy
without splitting or merging resolution elements. To solve this, Dalla
Vecchia & Schaye (2012) suggest a stochastic approach.

Within an injection kernel, each cell has a probability of receiving
energy, p; this probability depends on the mass within the kernel
and the total blast energy, but does not vary between cells. For the
ith cell within the kernel (containing a cell mass mi after receiving
its share of the SN ejecta mass) a thermal energy mi�ε is added
with probability p. By prescribing a sufficiently high �ε, we can
ensure that on average we inject the correct energy, even if a
particular cluster injects more or less than the desired amount. They
recommend choosing a value of �ε corresponding to �T = 107.5

K, but note that for fixed total SN energy, higher resolutions will
require higher values of �ε (or else the model would calculate a
value p > 1 which leads to always injecting too little energy). In
Appendix A we discuss how resolution, total blast energy, and the
choice of �ε affect the variance of the injected energy, which can
guide the choice of �ε.

This shows that although the model is generally free of tunable
parameters, a derivation from first-principles can only recommend
a rough lower limit for �ε rather than a specific value. In practice,

5Dalla Vecchia and Schaye note that their model can be extended to stochas-
tically release energy across multiple time-steps rather than simultaneously,
but since their work focuses on the simultaneous case, we classify it as a
‘simultaneous’ model.
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they inform their choice of �ε through use of a suite of galactic
simulations, comparing observables such as morphology, phase
distribution, star formation rate, and large-scale wind properties,
meaning results from these observables in similar simulations using
this method cannot be treated as original predictions.

3 N U M E R I C A L M E T H O D S

All the simulations we present here use the clustered SNe code
described by Gentry et al. (2017), with a few modifications. We
will briefly describe the general framework of the code and then
clearly state the modifications, before moving on to the specific
implementation details of each model added for this paper.

The clustered SNe code hydrodynamically evolves blasts in
a 1D (spherically symmetric) environment, with the assumption that
all SNe occur at the same location r = 0. The ISM is assumed to
have an initial spatially constant density (we use ρ = 1.33mH cm−3

for all the simulations presented here) and metallicity (Z = 0.02
for all simulations here); we only track total metallicity, not any
specific species. The inner boundary is a zero-flux, zero-velocity
boundary; the outer boundary condition does not matter since we
choose a large enough domain so that the SNR does not reach the
outer boundary. This ISM mass and metallicity is placed within
moving mesh cells, with an initial spacing of �r0 that depends on
the specific simulation and no initial velocity. Since the spherical
shells initially have equal thickness, they do not have equal initial
volume or mass.

For a given cluster mass, the clustered SNe code uses the
SLUG code (da Silva, Fumagalli & Krumholz 2012; da Silva,
Fumagalli & Krumholz 2014; Krumholz et al. 2015) to directly
sample a Kroupa (2002) IMF of stars, and then explodes any stars
with an initial mass greater than 8 M� after a mass-dependent
lifetime predicted by the Geneva stellar evolution models (Ekström
et al. 2012). Explosion mass and metal yields follow the results of
Woosley & Heger (2007), while each explosion is assumed to yield
a constant Eblast = 1051 erg of energy (unless otherwise specified by
a feedback model).

Each SN is injected into the innermost cell (unless otherwise
specified by a feedback model), and then the cells are evolved using
an approximately Lagrangian HLLC solver (Toro, Spruce & Speares
1994, with the specific implementation by Duffell 2016) solving
for hydrodynamics but not other physics such as gravity,6 physical
conduction or magnetohydrodynamics. Since cell boundaries are
allowed to evolve, and arbitrarily thin cells would lead to arbitrarily
small time-steps and large computational costs, cells are merged
with a neighbour when they become 10 times thinner than the
average cell thickness (and cells are likewise split when 2 times
thicker than the average cell thickness). Since the solver is only
approximately Lagrangian, there is generally a small, non-zero
mass flux between cells, but changes in cell mass should be
minor outside of cell merge/split events and SN injection events.
Optically thin, metallicity-dependent radiative cooling is included
using the GRACKLE cooling library (Smith et al. 2017) assuming
equilibrium chemistry and a Haardt & Madau (2012) extragalactic
UV background but neglecting galactic heating sources.

We also made some modifications since the version described
by Gentry et al. (2017). The biggest is that we changed the initial

6By not including gravity we match our choice in our previous 3D
simulations (Gentry et al. 2019), but we note that in our previous 1D
simulations (Gentry et al. 2017) we found that adding self-gravity decreased
the terminal momentum by about a factor of 2 for this 11 SNe cluster.

ISM temperature so that it matches the equilibrium temperature of
the initial density and metallicity. For ρ = 1.33mH cm−3, Z = 0.02,
and a fixed γ = 5/3, this corresponds to a specific internal energy
of 3.50 × 1010 erg g−1 (about 340 K as calculated by GRACKLE,
where radiative cooling balances extragalactic UV heating while
ignoring galactic heating sources). Although this choice has no
significant effect on the simulation outcome, which is the same
as long as the ambient temperature is much smaller than the
temperature of the hot gas in the SNR interior, starting the gas in
thermal equilibrium simplifies the analysis. The second change
is that, unlike in Gentry et al. (2017), we do not include pre-SN
stellar winds; now the only mass that is injected is from the SN
itself. We disable winds because they are generally not included in
the feedback prescriptions we are testing.

For each feedback model we do simulations with 1 SN and 11
SNe, ensuring that the same SNe properties are drawn for all 1 and
11 SN simulations, respectively. The 1 SN simulations are run until a
cluster age of 20 Myr (roughly 10 Myr after the only SN); the 11 SN
simulations are run until a cluster age of 100 Myr (roughly 97 Myr
after the first SN). For each model and cluster size we also carry
out both a high-resolution run (�r0 = 0.3 for 1 SN; �r0 = 0.6 for
11 SNe to match the reference run in Gentry et al. 2017) and a low-
resolution run (�r0 = 20 pc). The particular resolution of our low-
resolution run is chosen so that the region in the inner ‘ghost’ cell
(the innermost 20 pc, which we do not hydrodynamically evolve)
contains ∼103 M� of material, which would be expected to produce
∼11 SNe if it were completely converted to stars. This mass and
spatial resolution is also comparable to the typical highest values
achieved in modern zoom-in cosmological simulations of spiral
galaxies. In Appendix B we also show the results for a 3 SN cluster,
but will not focus on it in the main body of this paper as we have
no 3D 3 SN simulation to test the results against.

3.1 Delayed cooling implementation

As described in Section 2.1, the key idea behind the delayed cooling
model is that there should be a spatial scale around the location of
an SN into which the SNR can expand before losing a significant
amount of energy to radiative cooling; associated with this expan-
sion should also be a characteristic time-scale. The approach of the
delayed cooling model is to temporarily disable radiative cooling
for any resolution elements initially within this spatial scale, RE for
an appropriate time-scale tE, explicitly delaying cooling.

These key scales are given as analytic expressions by Stinson
et al. (2006, their equations 9 and 10) that depend on the local ISM
density, ρ0, and pressure, P0 as well as the blast energy,7 Eblast:

RE(ρ0, P0) = 101.74

(
Eblast

1051 erg

)0.32 (
ρ0

μmH cm−3

)−0.16

×
(

P0

104kB K cm−3

)−0.20

pc (1)

tE(ρ0, P0) = 105.92

(
Eblast

1051 erg

)0.31 (
ρ0

μmH cm−3

)0.27

×
(

P0

104kB K cm−3

)−0.64

yr, (2)

where μ is the mean molecular weight, mH is the mass of the
hydrogen atom, kB is the Boltzmann constant. [Note: Stinson et al.

7When multiple SNe occur within the same time-step, the respective blast
energies are typically combined for delayed cooling models but this does
not happen for the cluster parameters and resolutions we consider here.
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(2006) end up adopting a slightly different, slightly longer time-
scale for their final model, but in their section 5.3.1 they ultimately
conclude it should not make a significant difference.]

It is easy to evaluate these expressions for the first SN when
there is a single, clear value for ρ0 and P0 due to our initially
homogeneous ISM; for subsequent SNe it becomes more ambiguous
due to the non-uniform bubble that has formed. To handle this, we
solve for RE iteratively, starting from the centre of the simulation and
stepping outwards until the volume-weighted average density and
pressure result in an RE that matched the current radius. Fortunately,
preliminary tests (using the results from an 11 SN reference run)
found that there should typically be a single, unique RE for each SN;
in practice we take the first valid RE (i.e. RE(ρ0(< r), P0(< r)) < r).
Within this radius, all cells have their cooling disabled for a time tE,
even if they later move beyond this radius. Cells that have already
had their cooling disabled from a previous SN have their cooling
turned off for the longer of: the current SN’s tE and the remaining
duration from the previous SNe’s shutoff periods (tE,i − tSN,i).

Since the cooling rate of an SNR does not truly go to 0 at high
resolution, Stinson et al. (2006) leave Eblast as a free parameter
that can be decreased to compensate, suggesting a typical value of
Eblast = 1050 based off their initial experiments. For each cluster
we simulate, we will run two variants in order to explore the effect
of this free parameter: one using Eblast = 1050 and another using
Eblast = 1051.

In addition to RE and tE, we must compute where to deposit
the SN energy and mass. Following Stinson et al. (2006), we
assume a fixed kernel mass (Mkernel = 3 × 105 M�), and solve for
the corresponding radius, Rkernel, that encloses that mass. Within
this radius, we inject mass and energy using a Gaussian kernel
with 1D dispersion σ = 0.1Rkernel, weighted by the cell masses and
truncated at Rkernel. This kernel mass was chosen so that Rkernel is
always larger than RE; this means some energy will be injected
outside the cooling-disabled region and will be lost rapidly, but
the amount so affected is minimal due to the sharp drop off in the
Gaussian profile.

Finally, we point out that it is important that when the first
SN occurs, the ISM is near its equilibrium temperature rather
than significantly above it (which was originally the default of
the clustered SNe code; Gentry et al. 2017). If the ISM is
far from equilibrium with a short cooling time, then an artificial
discontinuity would rapidly develop near RE after the first SN.
Within RE the gas would stay hot and overpressured, while just
beyond RE the gas would cool and drop in pressure, leading to an
outward-propagating shock.

3.2 Momentum-energy feedback implementation

Momentum-energy models are characterized by a common thread:
at high resolution their key active component is the injected energy,
while at low resolution the active component is injected radial
momentum, with a continuous transition between these regimes. For
this work, we base our implementation on the FIRE-2 algorithm
(Hopkins et al. 2018a), but make a few necessary alterations to
match the different geometry of our cells. Unlike Hopkins et al.
(2018a) we neglect stellar winds in this work.

First we define the total SN mass, momentum, energy, and metal
mass yields. The SN-ejected mass and metallicity will be consistent
with our reference simulations, along with the times at which these
SNe occur; this is in contrast to the SN mass yields and delay times
suggested by Hopkins et al. (2018a) although we expect this makes
relatively little difference. Next, we keep the SN blast energy at
the fiducial Eblast = 1051 erg. The biggest difference between this

model and our reference simulations is that this model also injects
momentum. At high resolution, this momentum is determined by
assuming the blast energy is fully kinetic:

pejecta = √
2mejectaEejecta (3)

but this momentum will be increased at lower resolution, depending
on the properties of the cells into which the blast is injected. As a
reminder, although we say the ejecta might be ‘fully kinetic’, we
only explicitly track metal mass, total mass, momentum, and total
energy – not kinetic and thermal energy separately. So even if the
ejecta energy is ‘fully kinetic’, the ejecta is assumed to inelastically
collide with the cell mass, causing a change in both kinetic and
thermal energy. By only tracking total energy, we do not need to
directly prescribe how this collision occurs; we can simply solve
for the resulting kinetic and thermal energy using the resulting cell
mass, momentum, and total energy.

The injection kernel is probably the most significant departure
from the algorithm described by Hopkins et al. (2018a) owing to the
different geometry of our simulation (we use rigidly structured 1D,
nested shells, whereas the FIRE-2 simulations use unstructured
3D moving particles). We identify the injection kernel to comprise
the innermost Nngb = 3 cells (≈321/3, as opposed to their 32 nearest
neighbours). Next, we weight all cells equally, wi = N−1

ngb (using
index i for the ith cell); this is in contrast to their solid angle-based
weighting (Hopkins et al. 2018a, equation 2) which would only ever
inject into 1 cell given our enforced spherical symmetry. Since we
used a fixed Nngb independent of resolution, the weights are then
equal and also independent of resolution.

We now can specify the amount of mass, metals, momentum, and
energy added to each individual cell. Mass and metals are easy; they
follow the weights:

�mi = wimejecta (4)

and

�mZ,i = wimZ,ejecta. (5)

The injected momentum is slightly more complicated. As men-
tioned above, we start with a base amount of total momentum,
pejecta, but as the resolution decreases the amount of momentum is
increased to mimic the SNR evolution below the resolved scales.
At arbitrarily low resolution, all stages of the SNR evolution will
be unresolved, so the momentum should approach the expected ter-
minal momentum. This expected terminal momentum is calculated
for each cell based on the cell’s gas density and metallicity:

pt,i

M� km s−1 = 4.8 × 105

(
Eblast

1051 erg

)13/14

×
(

ρi

μimH cm−3

)−1/7

f (Zi)
3/2, (6)

where

f (Z) =
{

2 Z/Z� < 0.01
(Z/Z�)−0.14 otherwise

(7)

and Z� = 0.02. The two extremes – arbitrarily high resolution for
which �pi = wipejecta and arbitrarily low resolution for which �p =
wipt,i – are tied together by

�pi = wipejecta min

(√
1 + mi

�mi

,
pt,i

pejecta

)
. (8)

The injected total energy similarly starts with a high-resolution
proposal: �Ei = wiEblast which is then corrected at low resolutions.
The motivation for this correction is to avoid adding energy at
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1248 E. S. Gentry, P. Madau, and M. R. Krumholz

unphysical large distances from the SN. While an SNR will not be
able to directly add energy beyond the cooling radius of the SNR,
at very low resolution, some of the Nngb neighbours in which we
deposit energy might be beyond this cooling radius. Therefore, for
each cell we first compute the expected SNR cooling radius:

Rcool,i = 28.4

(
ρi

μimH cm−3

)−3/7 (
Eblast

1051 erg

)2/7

f (Zi) pc. (9)

If the cell’s distance from the SN, ri, is larger than Rcool,i, we then
calculate how much the injection event will cause the cell’s internal
energy to change, �Ui, and reduce the total energy injected so
that the cell’s change in internal energy is reduced by a factor
(ri/Rcool,i)−6.5 while the cell’s change in kinetic energy is unaffected.

3.3 Simultaneous energy injection implementation

As introduced above in Section 2.3, the simultaneous injection
model attempts to explicitly harness the clustering of SNe by forcing
every SN from a cluster to occur simultaneously. This loss of time
resolution changes the dynamics, hopefully in a positive way. Rather
than each SN failing to heat the nearby material past the peak of the
cooling curve (and quickly overcooling as a result), injecting all SN
energy at the same time makes it more likely that the affected
material will be heated beyond the peak of the cooling curve.
Dalla Vecchia & Schaye (2012) go one step further, introducing
a stochastic component that guarantees material is heated past the
peak of the cooling curve; it is this particular algorithm that we will
try to follow as closely as possible.

The first part, defining the SN yields and delay time distribution, is
easy. The yields are the same as in our reference model, in particular
Eblast = 1051 erg. For the delay time distribution, if there are multiple
SNe we modify the explosion times to all occur at t = 30 Myr,
matching Dalla Vecchia & Schaye (2012); if there is only 1 SN, we
do not modify the explosion time (typically t ≈ 10 Myr), since that
corresponds to an arbitrary shift of when we define t = 0 and does
not affect the results in any way.

The injection kernel comprises the innermost Nngb = 3 cells,8 into
which mass and metals are injected deterministically, while energy
is injected stochastically. The mass and metals are distributed evenly
between each cell:

�mi = N−1
ngbmejecta (10)

and

�mZ,i = N−1
ngbmejecta,Z. (11)

The stochastic energy injection within this kernel is more com-
plicated. First the mass within the kernel, mkernel is computed, after
adding the SN ejecta material. Then given a value of �ε, the desired
increase in specific thermal energy, we can calculate the probability
of any cell within the kernel receiving energy

p = EblastNSNe

�ε

1

mkernel
. (12)

At high resolution the restriction p < 1 becomes problematic
given the small kernel mass (∼14 M� for 1 SN and 130 M� for
11 SNe, coming predominantly from the ejecta mass). So at high
resolution, we adopt a value �ε corresponding to a �T = 109 K.

8Conveniently in our low resolution 11 SN simulations, our ghost cell mass
matches the cluster mass, m�, and the nearest 3 cells enclose mkernel ≈
70mstar, the closest we can get at this resolution to the value mkernel = 48m�

used by Dalla Vecchia & Schaye (2012).

At low resolution, the p < 1 constraint is not a problem since the
kernel masses are large: ∼70 × 103 M� for both our 1 SN and 11
SN clusters (the kernel masses are approximately identical for both
setups because the mass is dominated by material already in the
ISM before the SN(e), and the ISM mass within the kernel is only
determined by Nngb and the initial resolution and density which
are all identical for the two clusters by construct). For 11 SNe,
we can use �T = 107.5 K as recommended by Dalla Vecchia &
Schaye (2012), since in this case our kernel mass to cluster stellar
mass ratio roughly matches the value they used. For 1 SN at low
resolution, the kernel mass is not as well matched. In order to have
a reasonable probability of injecting any energy we have to reduce
�ε to the value corresponding to �T = 3 × 106 K. (Even with a
�T as low as 3 × 106 K, there is still an ≈90 per cent chance that
no cell receives energy for our 1 SN, low-resolution simulations.)
This value of �T is sufficiently high to result in a cooling time
that is about an order of magnitude large than the sound crossing
time, satisfying the condition suggested by Dalla Vecchia & Schaye
(2012, Section 4): that the cooling time of a resolution element
must exceed its sound crossing time in order to avoid artificial
cooling.

Although in a galactic simulation we would select cells inde-
pendently and stochastically with probability p, in this controlled
test we will simply run all 8 possible realizations deterministically
for a given number of SNe and resolution (enumerating the 23

possibilities per set-up of selecting or not selecting 3 cells – so
a total of 32 simulations: 8 for each row in Table 1). Each of
these realizations will be weighted with their respective Bernoulli
probability: pN(1 − p)3 − N for a total of N cells being selected for
energy injection.

4 R ESULTS OF FEEDBACK MODELS

In this section we give the results and discuss each model in turn.
In the next section (Section 5), we compare the results between
models. A summary of the simulation results is given in Table 1.

4.1 Direct injection results

We start with the simplest simulations which directly inject thermal
energy and no momentum to the innermost cell. The evolution of
the momentum with respect to time for these 4 simulations is shown
in Fig. 1. These will provide the ‘reference’ results, against which
we will compare the 3 competing models.

Looking first at the 1 SN results, we see the standard picture:
at high resolution, we recover the standard terminal momentum
(∼3000 M� km s−1), but at low resolution, overcooling becomes a
problem, leading to far too little momentum (in this case, an order
of magnitude too little momentum).

This result is mirrored in the 11 SN simulations, but there it is
slightly mitigated. As subsequent SNe occur, the density near the
location of the blast drops, causing cooling to become less efficient
and the resolution requirements to be loosened. This is not a perfect
solution; it takes multiple SNe before a well-defined superbubble is
inflated at low resolution, and even then each SN blast eventually
propagates out to the dense shell where overcooling can occur.
Still, the low resolution 11 SN run only contains 3–4 times less
momentum than the high-resolution simulation, whereas the 1 SN
simulations exhibit a factor of 10 deficit in momentum when the
resolution is worsened.
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Clustered supernova feedback tests 1249

Table 1. Simulation results. ‘Model’ refers to the injection model; NSNe refers to the number of SNe from the cluster; Eblast denotes the energy added per
SNe; �r0 gives the initial spatial resolution; tend indicates when we extract the final momentum and energy of the simulation relative to the time of cluster
formation; pend gives the momentum at that time; Ekin is the final total kinetic energy within the computational domain while �Eint is the change in total
internal energy within the computational domain relative to the moment before the first SN. For the simultaneous energy injection model, the final momentum
and energy results are presented as the mean and standard deviation of our realizations (but it should be remembered that the distributions of these results are
very non-Gaussian; see Figs 5 and 6).

Model NSNe Eblast �r0 tend pend/NSNe Ekin �Eint

(erg) (pc) (Myr) (100 M� km s−1) (1049 erg) (1049 erg)

Reference 1 1051 0.3 20 2763 0.620 − 0.071
1 1051 20.0 20 265 0.008 − 2.856
11 1051 0.6 100 34037 61.483 23.919
11 1051 20.0 100 9153 11.677 3.354

Delayed cooling 1 1050 0.3 20 3803 0.972 − 0.002
1 1050 20.0 20 2139 0.320 − 1.252
1 1051 0.3 20 37058 18.274 − 0.406
1 1051 20.0 20 31609 12.833 0.159
11 1050 0.6 100 3939 4.065 2.335
11 1050 20.0 100 1805 1.458 0.585
11 1051 0.6 100 34185 60.960 26.573
11 1051 20.0 100 25169 35.023 315.989

Momentum–energy 1 1051 0.3 20 2666 0.597 − 0.063
1 1051 20.0 20 4047 0.873 − 0.275
11 1051 0.6 100 33770 62.205 29.932
11 1051 20.0 100 14010 18.326 5.409

Simultaneous 1 1051 0.3 20 2781 ± 1414 0.663 ± 0.371 −0.075 ± 0.059
1 1051 20.0 20 373 ± 955 0.076 ± 0.240 −1.818 ± 0.653
11 1051 0.6 100 2070 ± 870 2.427 ± 0.982 0.527 ± 0.265
11 1051 20.0 100 874 ± 2700 7.845 ± 33.433 −21.528 ± 13.502

Figure 1. Comparison of the momentum as a function of time for our
direct injection simulations, which we later use as the reference results. The
top shows a comparison between different resolution 1 SN simulations; the
bottom shows the different resolution 11 SN simulations. Note the difference
in both horizontal and vertical scale between the two panels, both here and
in subsequent similar plots.

4.2 Delayed cooling results

Similar to the reference case, we ran simulations of 1 and 11
SNe at high and low resolution. Since the blast energy is a free
parameter within the Stinson et al. (2006) algorithm, we carry out
this experiment for two different blast energies: Eblast = 1050 erg
and 1051 erg. The resulting momentum evolution of each simulation
can be seen in Fig. 2.

Starting with the 1 SN simulations, we see the expected be-
haviour. When injecting the recommended blast energy (1050 erg),
both the high-resolution and the low-resolution simulations do a
good job reproducing the terminal momentum of the high resolution
reference simulation. This is what the method was designed to
do. Conversely, when we inject a blast of 1051 erg and also shut
off cooling, we observe a terminal momentum that is too large
by a factor of ∼10. This is unsurprising for the high-resolution
case; if we add the same amount of energy, but delay the onset of
cooling, the result will be too much momentum. It is slightly more
interesting that the low-resolution simulation also results in too
much momentum. However, Stinson et al. (2006) were aware of this
potential problem, and this is what motivated them to recommend
decreasing the blast energy.

The situation for the 11 SN simulations is very different. In this
case using Eblast = 1050 erg results in far too little momentum – at
high resolution it even does worse than our low resolution reference
simulation (which used Eblast = 1051 erg). This is because for the
later SNe, the superbubble approaches near-adiabatic behaviour.
Since the cooling radius is within the bubble where cooling is
already relatively low, the cooling shut off switch in the delayed
cooling prescription has little effect. However the reduction in
injection energy that Stinson et al. (2006) recommend in order to
fix the single-SN case then results in an under-powered superbubble
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1250 E. S. Gentry, P. Madau, and M. R. Krumholz

Figure 2. Same as Fig. 1, except now also overplotting the delayed cooling
simulations, with the different resolutions and Eblast parameters denoted in
the legends.

and too little momentum even at high resolution. (Note that even in
the ‘high’ resolution simulations by Stinson et al. (2006), a typical
cluster mass is 104 M�, resulting in ∼100 SNe within 30 Myr, which
means on average greater than 1 SN per time-step (they typically
calculate star formation every 1 Myr). This means that rather than
a series of SNe with relatively smaller cooling radii, SNe will be
grouped into fewer but higher energy blasts, with larger cooling
radii and longer cooling time-scales (see their fig. 18). This might
help explain why their recommended blast energy proved sufficient
for their much lower resolution simulations, but we find that it is
not powerful enough for our simulations.)

When we use stronger blasts (Eblast = 1051 erg), we find better
results for the 11 SN case. For the first few SNe, the momentum
starts too high (as expected from our 1 SN simulation results), but
as the superbubble becomes more adiabatic, the delayed cooling
approach starts to approach our direct injection behaviour. It is
remarkable just how well the delayed cooling approach does with
Eblast = 1051 erg for 11 SNe. Despite starting with more momentum
at early times, and still shutting off cooling for each subsequent SN,
the high resolution 11 SN simulation with Eblast = 1051 differs in
terminal momentum from the high resolution reference simulation
by less than 1 per cent. The lower resolution delayed cooling
simulation (Eblast = 1051) does not do quite as well, but still is
relatively close (differing by only about 25 per cent).

Thus this method is successful at being less resolution-dependent
than the reference, direct injection method. Whether this resolution-
robust method produces accurate momenta is a more complicated
question. We have found that a fixed Eblast is unable to handle
both 1 SN and 11 SN clusters; an energy of Eblast = 1050 erg
as recommended by Stinson et al. (2006) gives a good fit to the
single SN case, but fails for 11 SNe, while injecting the full SN
energy Eblast = 1051 erg succeeds for 11 SNe but fails for 1. The
fundamental reason for this is easy to understand: the mean amount
of radiative loss per SN is not a single number, but instead depends
on the SN environment, and in particular on whether an SN is going

Figure 3. Same as Fig. 1, except now overplotting the simulations using
the momentum-energy feedback model. While it is difficult to see, the high
resolution momentum-energy run is plotted starting at the first SN with the
others; it simply matches the fiducial model so well that it is difficult to
visually distinguish until t > 10 Myr.

off inside an already low density, hot cavity carved by a previous
SN. Both the ad hoc reduction from Eblast = 1051 erg to 1050 erg
and the density- and pressure-dependence built into (1) and (2) for
RE and tE attempt to capture the complex dependence of radiative
loss on environment, but they do not do so with sufficient accuracy
to reproduce the results of the high-resolution simulation across a
factor of 10 in cluster size. That said, this analysis suggests that
it might be possible to find a prescription for Eblast(NSNe), or to
choose a value of 〈Eblast〉 averaged over the cluster mass function,
that performs better than the current approximation of picking a
single Eblast. This would require a campaign of simulations similar
to ours, to quantity the amount of radiative loss as a function of
cluster size.

This is a clear indication, and a reminder, that these subgrid
models can behave differently at different cluster sizes. This both
means that it is useful to check how well each method is able
to handle clustered SNe, but also provides a warning that our
conclusions likely depend on the cluster sizes we test here (1 SN
and 11 SNe). Dekel et al. (2019) identify as many as seven possible
SN-driven superbubble regimes, of which we have tested only two.

4.3 Momentum-energy feedback results

We tested the momentum-energy injection prescription with high-
and low-resolution simulations of 1 and 11 SN clusters. The
momentum evolution is compared to our reference simulations in
Fig. 3.

The clearest discrepancy between the results of this scheme and
our high resolution fiducial results is for the 1 SN, low-resolution
simulation, which has a terminal momentum which is too high (by
∼30 per cent). However, this is relatively easy to diagnose; Hopkins
et al. (2018b) prescribe ∼5 × 105 M� NSNe km s−1 of momentum
per SN (at ρ = 1.33mH cm−3), so it is not surprising at that low
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Clustered supernova feedback tests 1251

resolution this assumption yields more than the 3 × 105 M� NSNe

km s−1 recovered at high resolution. Hopkins et al. adopt this value
from the earlier 1D simulations of Cioffi et al. (1988), and to be
consistent with the earlier FIRE-1 simulations that used this value.
Our 1D simulations improve on those of Cioffi et al. (1988) in many
ways – for example by use of modern cooling tables and by adoption
of a pseudo-Lagrangian high-order hydrodynamics method – and
thus our somewhat lower value is likely more reliable. However,
for our purposes here the offset between our high-resolution results
and the results of the momentum-energy feedback method at low
resolution are not particularly significant, since they result from
a particular numerical parameter choice, which can easily be
changed.

At 11 SNe, we find that the adoption of the momentum-energy
injection method helps mitigate the effects of low resolution,
yielding a terminal momentum that is a factor of ≈1.5 higher than a
naı̈ve low resolution direct injection method, though still a factor of
≈2.5 too small compared to the high-resolution results. Although
the momentum-energy injection results do not match as well as
the best delayed cooling results using a value of Eblast tuned to
match the 11 SN case, the momentum-energy prescription does
significantly better than the delayed cooling model using the lower
Eblast recommend by Stinson et al. (2006). Furthermore, since these
results already have some margin above the minimally acceptable
value, it is possible that the isolated blast terminal momentum
prescription (6) could be weakened so that simulations of both
1 SN and 11 SNe clusters match our high resolution reference
results. In our testing, even simply decreasing the maximum
injected momentum by a factor of 2 led to little decrease in the
11 SN, low-resolution simulation’s final momentum; the early
momentum-driven blasts appear most important for opening the
bubble when energy-dominated blasts would not suffice, but then
most of the momentum is actually gained after the transition to
energy-dominated blasts. However, in this work since we neither
test a large diversity of cluster sizes, nor do we have a specific
target final momentum for our 11 SN cluster, we simply note that
it might be possible to weaken the isolated SN terminal momentum
prescription, but cannot offer a specific prescription that we can
show to be better.

At high resolution, the momentum-energy injection model be-
haves very similarly to the direct injection, reference model. The
first blast already starts as an energy-dominated injection event, and
after that point a low density bubble is formed at the centre of the
simulation, further driving down the mass and density within the
blast kernel, ensuring that all subsequent blasts also remain energy
dominated. With that in mind, the largest difference relative to
the direct injection simulations is that the energy-dominated blasts
in the momentum-energy model are assumed to be fully kinetic,
whereas the direct injection, reference simulations assume fully
thermal blasts, explaining the slight discrepancy in results.

4.4 Simultaneous energy injection results

Finally, we compare the simultaneous energy injection approach to
our reference simulations, with the momentum evolution shown in
Fig. 4. Since there are so many realizations (8 high resolution and
8 low resolution), we simplify these figures by only showing the
probability-weighted mean, along with mean ±1 standard deviation
at each point in time. The full distribution of final momenta can be
seen in Figs 5 and 6 for the 1 SN simulations and 11 SN simulations,
respectively. No substantial difference was observed in the shape of

Figure 4. Same as Fig. 1, except now overplotting the simultaneous
energy injection simulations. For each simulation, we ran all eight possible
realizations of the stochastic injection process. In this figure for each time-
step we show the probability-weighted mean with a central green line and
shade ±1 [probability-weighted] standard deviation around the mean – the
high-resolution run uses a solid shading, while the low-resolution run uses
a hatched shading.

the time evolution of the momentum of each realization besides the
overall normalization.

First for 1 SN at high resolution, we see in Table 1 and Fig. 4
that the mean momentum corresponds well to the results from our
reference simulations. There is some scatter (see Fig. 5), as some
realizations inject >1051 of energy and others inject <1051, but the
probability-weighted mean result is close to the standard expected
value. This is unsurprising, because for 1 SN most theoretical studies
predict a roughly linear scaling between momentum and energy
at high resolution (e.g. Cioffi et al. 1988, Draine 2011), and the
expected energy is unbiased by construction (〈�E〉 = Eblast). At low
resolution for 1 SN, we see the simultaneous energy injection model
does not do significantly better than the direct injection model,
suggesting that it is still susceptible to overcooling even though we
have ensured that at the time of energy injection tcooling ≈ 10 ×
tsoundcrossing. Ultimately this suggests that it is not enough to only
prevent overcooling at the initial time of injection (by ensuring a
fixed �T); overcooling in the subsequent shock front is also an
important consideration.

Moving to 11 SNe we find somewhat worse results. At high
resolution, we find the average momentum per SN for 11 SNe is
roughly consistent with our results for 1 SN; this is bad because
even our low resolution reference simulation showed a substantial
momentum efficiency boost. Even when we look at the high-
resolution realization which adds the most energy (≈1.6 × 1052

erg, i.e. ≈50 per cent above the mean value), it still results in less
momentum than the 11 SN low resolution reference simulation.
This is an indication that the dynamics of a single, larger blast are
different from the dynamics of a series of smaller blasts. If we
naı̈vely extrapolate the momentum-energy scaling relation which is
roughly linear for isolated SNe (e.g. Cioffi et al. 1988, Draine 2011),

MNRAS 492, 1243–1256 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/1/1243/5670636 by Library (H
ancock) user on 20 M

arch 2020



1252 E. S. Gentry, P. Madau, and M. R. Krumholz

Figure 5. The final (t = 20 Myr) momentum for all realizations of the 1 SN
simultaneous energy injection model, with the low-resolution realizations
on the top and the high-resolution realizations on the bottom. The exact
momentum of each realization is marked by a solid black tick mark;
for the histogram, each realization contributes its Bernoulli probability of
occurrence to the binned probability mass function.

we would expect the mean momentum per SN to be roughly constant
with respect to the number of SNe. That is qualitatively what we
observe for these high resolution simultaneous energy injection
simulations, whereas our reference simulations (e.g. bottom panel
of Fig. 1) clearly do not resemble a superposition of isolated blasts
and instead seem to progressively build in intensity as the ISM is
pre-processed by the preceding blasts.

At low resolution, while we do see a momentum efficiency boost
for the 11 SN simultaneous injection realizations relative to their
1 SN simultaneous injection counterparts, it still has not clearly
improved beyond the momentum efficiency of high resolution single
SN simulations. This general situation is especially concerning

since the cluster mass (≈103 M�) is actually well paired to the
kernel mass at low resolution (70 × 103 M�), as this implementation
intended.

So in conclusion, the simultaneous energy injection model does
not appear to be very effective at producing the correct final
momentum. For the 1 SN cluster its performance is comparable
to the direct injection model, but for the 11 SN cluster it does worse
than the direct injection model.

5 D ISCUSSION

5.1 Comparison of injection methods

In this section we focus on our primary question: which subgrid
models produce a momentum efficiency for 11 SNe at low resolution
that is at least a factor of 2 greater than the fiducial momentum
efficiency of an isolated SN (i.e. pend/(100 M�NSNe km s−1) >

5500)? This is a necessary but not sufficient test; we predict the
true momentum efficiency boost for this cluster is roughly a factor
of 2, but these 1D simulations might overpredict the momentum
that application of the same subgrid model in 3D would yield
due to artificially suppressing asymmetries from hydrodynamic
instabilities that drive mixing. Therefore, a subgrid model that
cannot produce a factor of 2 boost in momentum efficiency in 1D
would also necessarily underproduce momentum in 3D. However
we cannot assume the converse: if a model produces greater than
a factor of 2 enhancement in momentum efficiency in 1D, it still
might produce too little momentum in 3D.

Looking at Table 1 we can easily answer this question for the three
subgrid models. The delayed cooling model clears this threshold
for Eblast = 1051 but not Eblast = 1050, the momentum-energy model
clears this threshold, and the simultaneous injection model does not
clear this threshold on average (although an individual realization
has a ∼10 per cent probability that it will clear this threshold; see
Fig. 6).

As noted in Sections 1 and 4.2, this is not a perfect test. First we do
not precisely know the true momentum efficiency for this cluster; we
can only extrapolate existing 3D simulations. Secondly here we have
only tested two cluster sizes (NSNe = 1 and 11), whereas we have
shown that a particular choice of model parameters might perform
well at one cluster scale and poorly at another (in particular, see
Section 4.2). Therefore we cannot be sure how these models might
perform across a realistic distribution of cluster sizes without a more
methodical study, although by choosing an approximately maximal
enhancement cluster (NSNe = 11), we hope to bound the problem.
Thirdly by using 1D simulations we are artificially suppressing

Figure 6. Same as Fig. 5, except now for our 11 SN simulations using the simultaneous injection model extracted at t = 100 Myr.
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asymmetries produced by hydrodynamic instabilities that increase
mixing and can decrease the final momentum. For instance, our
reference model at low resolution clears our factor of 2 enhancement
threshold, even though it almost certainly would result in too little
momentum in 3D. This illustrates that our threshold could be too
lenient, but to raise it higher would require a prediction about how
additional mixing would affect each subgrid model. We cannot
measure that directly from these simulations for each subgrid model,
but we can make qualitative predictions.

5.2 Predicted effects of mixing

Although the low resolution (20 pc), 11 SN simulation using our
reference model shows a factor of ∼3 increase in momentum
efficiency relative to the fiducial isolated SN momentum efficiency,
some 3D simulations of the same cluster (Gentry et al. 2019) showed
an apparent decrease in momentum efficiency relative to the fiducial
isolated value, even at much higher resolutions (e.g. 2 pc) due to
the presence of increased mixing in 3D. This mixing is entirely
numerical: the same simulation run at higher resolution shows a
momentum increase, with the momentum continuing to increase
even at the finest resolution available. Thus, while we do not have
corresponding 3D simulations of this cluster for the subgrid models
tested here, it is none the less important to consider what impact
mixing might have in 3D at the resolutions likely to be typical of
the simulations in which these recipes are deployed.

5.2.1 Delayed cooling

For the 11 SN, delayed cooling simulations with Eblast = 1051

erg, no cooling can occur until the shock moves beyond RE ≈
100 pc or tE ≈ 7 Myr pass. In our low-resolution simulation,
the radius restriction passes first, after about 1 Myr has elapsed,
at which point we can observe noticeable radiative cooling. Un-
fortunately the momentum efficiency at this time only reached
about p(t)/(102NSNe M� km s−1) ∼ 1500; it has not yet achieved
the isolated SN momentum efficiency let alone the desired factor
of 2 enhancement. Most of the energy is still contained within
radiative cooling-disabled cells, so our 1D simulation is still able
to gain significant amounts of momentum beyond this time, but the
same might not hold in 3D, especially if hydrodynamic instabilities
are able to mix mass and energy across the interface of resolution
elements with enabled and disabled radiative cooling. Therefore it
is possible that although this model performs well in 1D, it could
result in too little momentum in 3D.

5.2.2 Momentum-energy feedback

The momentum-energy model has a useful safeguard: at low reso-
lution, even if all the thermal energy is radiated immediately after
each SN, the deposited momentum is prescribed to approximately
match the isolated SN terminal momentum. This means that it is
unlikely that the momentum-energy model would result in a lower
momentum efficiency than the fiducial isolated SN efficiency, even
in the presence of strong mixing in 3D. Furthermore, this model
already prescribes slightly too much momentum (see Section 4.3),
and if the deposited momentum is enough to open a low density
bubble, then the momentum deposited with subsequent SNe can
increase as the local ISM density decreases (6). Using our low
resolution single SN simulation with this model as a lower limit on
the efficiency (p/(102NSNe M� km s−1) ≈ 4400), we feel confident

that this model would exhibit some enhancement relative to the
fiducial momentum efficiency, but cannot be sure that it would
achieve the desired factor of 2 enhancement. While it might be
possible to tune this model by increasing the deposited momentum
per SN for larger clusters, it is unclear how to best do this for a
distribution of cluster sizes and across a range of resolutions for
which a bubble might or might not be opened.

5.2.3 Simultaneous energy injection

The simultaneous energy injection model provides no direct means
to prevent enhanced cooling due to mixing, but it does provide
an indirect benefit: there is no time between SNe for the shock to
weaken, which is when 3D instabilities like those seen by Gentry
et al. (2019) are especially likely to develop and strengthen. Still it
is unlikely that this model will produce more momentum in 3D,
and given that in 1D it already produces too little momentum
∼90 per cent of the time, we do not expect this model would be
able to capture the effect of clustering in 3D.

6 C O N C L U S I O N S

We set out to answer a primary question: which of the subgrid
models commonly used to model SN feedback in galactic and zoom-
in cosmological-scale simulations can reproduce the factor of >2
increase in the terminal radial momentum delivered per SN when
SNe occur in a cluster of 11 SNe rather than as single, isolated event.
This question is crucial because both observations and simulations
suggest that superbubbles driven by multiple SNe play an important
role in regulating the formation of galactic winds and ejecting mass
and metals from galaxies. Our study therefore illuminates which
subgrid models can at least potentially capture this phenomenon.

The three methods we tested meet this goal with varying degrees
of success. A delayed cooling model (similar to that used in the
GASOLINE-2 code) can mimic the increase in terminal momentum
of superbubbles, but only when we increase the deposited energy per
SN from Eblast = 1050 erg (as recommended) to 1051 erg; the price of
this choice is that it overestimates the terminal efficiency produced
by a single SN. A momentum-energy model (similar to that used in
the FIRE-2 simulations) achieves this as well, without requiring
any changes. A simultaneous energy injection model (similar to that
used in the EAGLE simulations) fails with ∼90 per cent probability
in any given stochastic realization, as well as in the mean of the
stochastic results.

This test provides a useful window into how these subgrid models
behave in realistic situations, but it should be remembered that this
test has limitations. First it was done at resolutions higher than
those used in very large-scale cosmological simulations. This was
partially because we could only fairly test resolutions at which
a 11 SN cluster could plausibly be resolved, but that in itself is
an indicator that star formation feedback models must take on a
slightly different function when a simulation cannot even resolve
the mass of a typical stellar cluster. At that point, the average
output per stellar mass formed (averaged over the distribution of
cluster masses) becomes more important. Fortunately our model
focuses on what we think is one of the key outputs – momentum.
However that brings us to the second limitation of our test: we
know simply injecting the asymptotic momentum predicted by most
current models is not enough by itself. In particular, even though
Smith et al. (2018) found a momentum-based approach to yield the
best galactic results out of a suite of simulations testing 6 feedback
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models, the momentum-based still failed on some key tests at low
resolution (such as reproducing a realistic mass loading factor for the
large-scale winds). So while a momentum-energy approach might
be necessary, it is not sufficient to produce accurate results at low
resolutions.

Furthermore while our results show the value of performing these
tests on common SNR/superbubble regimes, they also hint at the
limitations of exploring only two possible SNR regimes, as we have
here. For example, under the delayed cooling model Eblast = 1050

erg is strongly favoured over Eblast = 1051 erg for 1 SN, but for
11 SNe the opposite is true. Unfortunately, having tested only two
cluster sizes, we cannot directly prescribe a solution. It is unclear
if a simple switch between these two energy values, depending on
whether SN are overlapping, would be sufficient to capture the main
effects of clustering, or if we need a complex formula for Eblast(NSNe,
ρ, Z, ...). As another example, with the momentum-energy model,
we saw that for 1 SN at low resolution, we can directly prescribe the
terminal momentum, but at 11 SNe we ended with a different, higher
momentum efficiency. If this model needs to be tuned stronger or
weaker to properly account for clustering, it is unclear how to do
so precisely; for a single SN, we could just turn a knob, but for a
superbubble more complex behaviour dynamically emerges.

Finally in order to understand subgrid models better we would
at least need to run similar tests in 3D, which is how these
models are most commonly applied and where these simulations
would experience stronger mixing leading to stronger cooling and
lower momenta. In Section 5.2 we made qualitative predictions
on how each model might be affected by mixing in 3D, but it is
hard to know a quantitative value without running the experiment
directly. However even if we ran these models in 3D (and in
an ISM representative of those present in low resolution galactic
simulations) our test would only be as powerful as our knowledge
of the true momentum efficiency.

With regard to this last point, we remind the reader that the
true momentum efficiency of clustered SN feedback is currently
unknown, inherently limiting any test like this. While we are making
progress towards understanding the effects of clustering on SN
feedback, discrepancies as large as a factor of 5 still exist within
current literature. These discrepancies are primarily because we do
not know the true level of physical mixing present in a superbubble
expanding into a realistic ISM. Solving this problem likely requires
converged simulations that include thermal conduction and a 3D,
multiphase, turbulent, magnetized ISM. While various simulations
of clustered SNe have touched on each of these in turn, none have
done so simultaneously, let alone across a range of superbubble
regimes. Until that point, our ability to test, diagnose problems
within and improve subgrid models of SN feedback will remain
fundamentally limited.

AC K N OW L E D G E M E N T S

We thank the anonymous reviewer for their useful comments and
suggestions. This work was supported by the National Science
Foundation (NSF) through grants AST-1405962 (ESG and MRK),
AST-1229745 (PM) and DGE 1339067 (ESG), by the Australian
Research Council through grant FT180100375 (MRK) and by
National Aeronautics and Space Administration (NASA) through a
contract to the WFIRST-EXPO Science Investigation Team (15-
WFIRST15-0004), administered by the Goddard Space Flight
Center (PM). This work made use of resources and services from the
National Computational Infrastructure (NCI), which is supported by
the Australian Government. MRK thanks the Simons Foundation,

which contributed to this work through its support for the Simons
Symposium ‘Galactic Superwinds: Beyond Phenomenology’.

REFERENCES

Cioffi D. F., McKee C. F., Bertschinger E., 1988, ApJ, 334, 252
Crain R. A. et al., 2015, MNRAS, 450, 1937
Creasey P., Theuns T., Bower R. G., 2013, MNRAS, 429, 1922
da Silva R. L., Fumagalli M., Krumholz M., 2012, ApJ, 745, 145
da Silva R. L., Fumagalli M., Krumholz M. R., 2014, MNRAS, 444, 3275
Dalla Vecchia C., Schaye J., 2012, MNRAS, 426, 140
Dekel A., Krumholz M. R., 2013, MNRAS, 432, 455
Dekel A., Sarkar K. C., Jiang F., Bournaud F., Krumholz M. R., Ceverino

D., Primack J. R., 2019, MNRAS, 488, 4753
Draine B. T., 2011, Physics of the Interstellar and Intergalactic Medium.

Princeton Univ. Press, Princeton, NJ
Duffell P. C., 2016, ApJ, 821, 76
Ekström S. et al., 2012, A&A, 537, A146
El-Badry K., Ostriker E. C., Kim C.-G., Quataert E., Weisz D. R., 2019,

MNRAS, 490, 2
Faucher-Giguère C.-A., Quataert E., Hopkins P. F., 2013, MNRAS, 433,

1970
Forbes J. C., Krumholz M. R., Goldbaum N. J., Dekel A., 2016, Nature,

535, 523
Gentry E. S., Krumholz M. R., Dekel A., Madau P., 2017, MNRAS, 465,

2471
Gentry E. S., Krumholz M. R., Madau P., Lupi A., 2019, MNRAS, 483,

3647
Gerritsen J. P. E., 1997, PhD thesis, Groningen University
Goldbaum N. J., Krumholz M. R., Forbes J. C., 2016, ApJ, 827, 28
Haardt F., Madau P., 2012, ApJ, 746, 125
Hopkins P. F., Quataert E., Murray N., 2012, MNRAS, 421, 3522
Hopkins P. F. et al., 2018a, MNRAS, 477, 1578
Hopkins P. F. et al., 2018b, MNRAS, 480, 800
Katz N., 1992, ApJ, 391, 502
Katz N., Gunn J. E., 1991, ApJ, 377, 365
Keller B. W., Wadsley J., Benincasa S. M., Couchman H. M. P., 2014,

MNRAS, 442, 3013
Kennicutt R. C., Jr, 1998, ApJ, 498, 541
Kim C.-G., Ostriker E. C., 2015, ApJ, 802, 99
Kim C.-G., Kim W.-T., Ostriker E. C., 2011, ApJ, 743, 25
Kimm T., Cen R., 2014, ApJ, 788, 121
Kimm T., Cen R., Devriendt J., Dubois Y., Slyz A., 2015, MNRAS, 451,

2900
Kroupa P., 2002, Science, 295, 82
Krumholz M. R., Federrath C., 2019, Front. Astron. Space Sci., 6, 7
Krumholz M. R., Fumagalli M., da Silva R. L., Rendahl T., Parra J., 2015,

MNRAS, 452, 1447
Murray N., Quataert E., Thompson T. A., 2005, ApJ, 618, 569
Ostriker E. C., Shetty R., 2011, ApJ, 731, 41
Pillepich A. et al., 2018, MNRAS, 473, 4077
Roy A., Nath B. B., Sharma P., Shchekinov Y., 2013, MNRAS, 434, 3572
Schaye J. et al., 2015, MNRAS, 446, 521
Sharma P., Roy A., Nath B. B., Shchekinov Y., 2014, MNRAS, 443, 3463
Simpson C. M., Bryan G. L., Hummels C., Ostriker J. P., 2015, ApJ, 809,

69
Smith M. C., Sijacki D., Shen S., 2018, MNRAS, 478, 302
Smith B. D. et al., 2017, MNRAS, 466, 2217
Stinson G., Seth A., Katz N., Wadsley J., Governato F., Quinn T., 2006,

MNRAS, 373, 1074
Thacker R. J., Couchman H. M. P., 2000, ApJ, 545, 728
Thompson T. A., Krumholz M. R., 2016, MNRAS, 455, 334
Thornton K., Gaudlitz M., Janka H.-T., Steinmetz M., 1998, ApJ, 500,

95
Toro E., Spruce M., Speares W., 1994, Shock Waves, 4, 25
Vogelsberger M., Genel S., Sijacki D., Torrey P., Springel V., Hernquist L.,

2013, MNRAS, 436, 3031

MNRAS 492, 1243–1256 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/1/1243/5670636 by Library (H
ancock) user on 20 M

arch 2020

http://dx.doi.org/10.1086/166834
http://dx.doi.org/10.1093/mnras/stv725
http://dx.doi.org/10.1093/mnras/sts439
http://dx.doi.org/10.1088/0004-637X/745/2/145
http://dx.doi.org/10.1093/mnras/stu1688
http://dx.doi.org/10.1111/j.1365-2966.2012.21704.x
http://dx.doi.org/10.1093/mnras/stt480
http://dx.doi.org/ 10.1093/mnras/stz1919 
http://dx.doi.org/10.3847/0004-637X/821/2/76
http://dx.doi.org/10.1051/0004-6361/201117751
http://dx.doi.org/10.1093/mnras/stt866
http://dx.doi.org/10.1038/nature18292
http://dx.doi.org/10.1093/mnras/stw2746
http://dx.doi.org/10.1093/mnras/sty3319
http://dx.doi.org/10.3847/0004-637X/827/1/28
http://dx.doi.org/10.1088/0004-637X/746/2/125
http://dx.doi.org/10.1111/j.1365-2966.2012.20593.x
http://dx.doi.org/10.1093/mnras/sty674
http://dx.doi.org/10.1093/mnras/sty1690
http://dx.doi.org/10.1086/171366
http://dx.doi.org/10.1086/170367
http://dx.doi.org/10.1093/mnras/stu1058
http://dx.doi.org/10.1086/305588
http://dx.doi.org/10.1088/0004-637X/802/2/99
http://dx.doi.org/10.1088/0004-637X/743/1/25
http://dx.doi.org/10.1088/0004-637X/788/2/121
http://dx.doi.org/10.1093/mnras/stv1211
http://dx.doi.org/10.1126/science.1067524
http://dx.doi.org/10.3389/fspas.2019.00007
http://dx.doi.org/10.1093/mnras/stv1374
http://dx.doi.org/10.1086/426067
http://dx.doi.org/10.1088/0004-637X/731/1/41
http://dx.doi.org/10.1093/mnras/stx2656
http://dx.doi.org/10.1093/mnras/stt1279
http://dx.doi.org/10.1093/mnras/stu2058
http://dx.doi.org/10.1093/mnras/stu1307
http://dx.doi.org/10.1088/0004-637X/809/1/69
http://dx.doi.org/10.1093/mnras/sty994
http://dx.doi.org/10.1093/mnras/stw3291
http://dx.doi.org/10.1111/j.1365-2966.2006.11097.x
http://dx.doi.org/10.1086/317828
http://dx.doi.org/10.1093/mnras/stv2331
http://dx.doi.org/10.1086/305704
http://dx.doi.org/10.1007/BF01414629
http://dx.doi.org/10.1093/mnras/stt1789


Clustered supernova feedback tests 1255

Wadsley J. W., Keller B. W., Quinn T. R., 2017, MNRAS, 471, 2357
Wheeler C. et al., 2019, MNRAS, 490, 4447
Woosley S. E., Heger A., 2007, Phys. Rep., 442, 269

A P P E N D I X A : C O N V E R G E N C E I N T H E
S I M U LTA N E O U S EN E R G Y IN J E C T I O N
M E T H O D

As seen in Figs 5 and 6, even at high resolution the simultaneous
energy injection method does not necessarily converge towards a
deterministic result. In this section we will discuss the source of this
behaviour, which touches on the limiting properties of the model
with respect to several key parameters: mkernel, Nngb, and �ε. And
while there are many ways we could look at the convergence of this
method, we will focus on the distribution of the injected energy.

First let’s look at the mean of the distribution. By design, if
mkernel�ε ≥ NSNeEblast, then the method will be unbiased. (If that
condition is not true, then the method becomes deterministic and
will always inject too little energy, so we will assume an appropriate
value of �ε has been chosen for the remainder of this section.)

The more interesting quantity is the variance of the injected
energy. For this method, the fractional variance is:

var

(
�E

NSNeEblast

)
=

(
mkernel�ε

NSNeEblast
− 1

)∑
i

(
m2

i

m2
kernel

)
(A1)

var

(
�E

NSNeEblast

)
≈

(
mkernel�ε

NSNeEblast
− 1

)
N−1

ngb, (A2)

where the second form holds for resolution elements of similar
mass.

This shows that so long as mkernel�ε > NSNeEblast, the method
remains stochastic. The only way to ensure true determinism while
remaining unbiased is to choose a �ε such that mkernel�ε =
NSNeEblast. While this might work for some methods (like the
primary situation for which this model was envisioned: a fixed
kernel mass and with an identical NSNe per cluster) it does not work
for all methods (such as those with varying mkernel which is true for
grid-based codes on which this model was also designed to work,
stochastic number of SNe per clusters, or those with mkernel so large
that �ε does not correspond to heating the gas beyond the peak of
the cooling curve).

But there are still some cases in which this method converges
towards a deterministic result. In particular, for fixed mkernel, as Nngb

increases, the variance will approach 0. But in practice, it is typically
mkernel that is improved, while Nngb is held fixed. We can see that
will also lead to a decrease in variance, but will eventually hit the
limit mkernel�ε = NSNeEblast if �ε is not raised (which increases the
variance).

When designing this method to apply across a large range of
scales, the best we can do is prescribe how the variance should
depend on resolution and total blast energy. For instance, if we
set a minimum variance at high resolution (i.e. fixed the ratio of
mkernel�ε/NSNeEblast) then the injected energy would converge to
a distribution and always remain non-trivially stochastic (e.g. the
right-hand panel of Fig. 5 shows how energy is distributed as a
scaled binomial for our implementation). If instead we adopted a
different function for �ε(mkernel, NSNe), we could force the variance
to shrink to 0 as resolution increases, resulting in a delta function for
the distribution of injected energy. Dalla Vecchia & Schaye (2012)
do not specify a recommended form for �ε(mkernel, NSNe) at high
resolution, so the exact behaviour will depend on the particular
implementation.

Figure B1. Same as Fig. 2, except now for a 3 SN cluster.

Figure B2. Same as Fig. 3, except now for a 3 SN cluster and without a
high-resolution run using the momentum-energy feedback model.

Figure B3. Same as Fig. 4, except now for a 3 SN cluster and without high-
resolution realizations using the simultaneous injection feedback model.

APPENDIX B: 3 SN CLUSTER

To get a better understanding of how the behaviours of these
feedback models are affected by the number of SNe produced
by a cluster, we ran a few extra simulations of a 3 SN cluster
(corresponding to an initial stellar mass of 300 M�). The evolution
of the radial momentum of these simulations is shown in Figs B1–
B3. Since we are most interested in the performance of the feedback
model simulations run at low resolution, not every feedback model
was run at high resolution.

Without a 3D resolution study of this 3 SN cluster, we are unable
to determine which of these models performs ‘well-enough’ in the
way that we could for the body of this paper. Instead, we analyse
these results qualitatively. Starting with the delayed cooling model
(see Fig. B1), we can see that with Eblast = 1051 it does not largely
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overpredict the momentum as it did with a 1 SN cluster but not
an 11 SN cluster (see Section 4.2). This means that it is possible
the shutoff cooling model performs well always using Eblast = 1051

erg as long as NSNe > 1. However we cannot say if choosing a
constant Eblast is preferred over a more general, unknown function
Eblast(NSNe) since we do not know the ‘true’ final momentum to
target. For the momentum-energy model (see Fig. B2), we also see
behaviour that more closely matches the 11 SN cluster than the 1
SN cluster; it predicts slightly less momentum at low resolution
than the reference model predicts at high resolution. Finally, on

average the simultaneous realizations (with �T = 3 × 107 K) show
a decrease in the momentum efficiency relative to the standard
isolated SN value (see Fig. B3). Since we have no 3D, 3 SN
simulation, we cannot rule out the possibility that a 3 SN cluster
should show a decreased momentum efficiency, but circumstantially
it is a sign that the simultaneous model likely produces too little
momentum.
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