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ABSTRACT
We present a new analysis of high-redshift UV observations using a semi-analytic galaxy
formation model, and provide self-consistent predictions of the infrared excess (IRX)–β

relations and cosmic star formation rate density. We combine the Charlot & Fall dust attenuation
model with the MERAXES semi-analytic model, and explore three different parametrizations for
the dust optical depths, linked to star formation rate, dust-to-gas ratio, and gas column density,
respectively. A Bayesian approach is employed to statistically calibrate model-free parameters
including star formation efficiency, mass loading factor, dust optical depths, and reddening
slope directly against UV luminosity functions and colour–magnitude relations at z ∼ 4–7.
The best-fitting models show excellent agreement with the observations. We calculate IRX
using energy balance arguments and find that the large intrinsic scatter in the IRX–β plane
correlates with specific star formation rate. Additionally, the difference among the three dust
models suggests at least a factor of 2 systematic uncertainty in the dust-corrected star formation
rate when using the Meurer IRX–β relation at z � 4.

Key words: methods: statistical – dust, extinction – galaxies: evolution – galaxies: high-
redshift.

1 IN T RO D U C T I O N

One fundamental question in astronomy is to understand the build-
up of stars and galaxies from baryonic matter in the early Universe.
During this epoch, observations focus mainly on rest-frame UV
properties due to cosmic redshift. These include measurements of
UV luminosity functions (LFs; van der Burg, Hildebrandt & Erben
2010; Bouwens et al. 2015; Livermore, Finkelstein & Lotz 2017;
Ono et al. 2018; Bhatawdekar et al. 2019), and UV continuum
slope to UV magnitude relations (Finkelstein et al. 2012; Bouwens
et al. 2014; Rogers et al. 2014), which are also known as the
colour–magnitude relations (CMRs). The UV luminosity is a tracer
of star formation, since most UV photons are emitted by young
stars. However, star formation can be heavily obscured by the
interstellar dust. One commonly adopted approach to perform
dust corrections at high redshifts is to infer the infrared excess

� E-mail: yishengq@student.unimelb.edu.au (YQ); swyithe@unimelb.
edu.au (JSBW)

(IRX) from the observed UV slopes using a relation calibrated by
Meurer, Heckman & Calzetti (1999) (e.g. Bouwens et al. 2015;
Mason, Trenti & Treu 2015; Liu et al. 2016). However, the Meurer
et al. (1999) relation is calibrated against local starburst galaxies,
and observations of far-infrared data is rather challenging at high
redshifts. Recent observations at z � 3 show large scatter in the
IRX–β relation (Capak et al. 2015; Álvarez-Márquez et al. 2016;
Bouwens et al. 2016; Barisic et al. 2017; Fudamoto et al. 2017;
Koprowski et al. 2018). For instance, the observed IRX by Bouwens
et al. (2016) is much lower than the Meurer et al. (1999) relation,
whilst Koprowski et al. (2018) suggest that the IRX–β relation does
not evolve with redshift. These observations motivate investigation
of the IRX–β at high redshifts from theoretical models.

Theoretical studies of dust extinction require intrinsic galaxy
properties as input, and one approach is to post-process the output
of a hydrodynamical simulation. This method has been implemented
in Safarzadeh, Hayward & Ferguson (2017) and Narayanan et al.
(2018) to investigate the origin of the IRX–β relation. At z � 5, the
IRX–β relation has been studied by Mancini et al. (2016), Cullen
et al. (2017), and Ma et al. (2019). However, their results suggest
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different extinction curves. Cullen et al. (2017) pointed out that the
reason for the disagreement could be due to systematics associated
with different simulations.

Semi-analytic models are another popular approach for studying
galaxy formation (e.g. Guo et al. 2011; Somerville, Popping &
Trager 2015; Croton et al. 2016; Lacey et al. 2016; Cora et al.
2018; Lagos et al. 2018; Cousin, Guillard & Lehnert 2019b), and
their results can also be used as input to dust models. Semi-analytic
models solve a system of differential equations that govern the
mass accretion and transition of several key baryonic components
of galaxies such as gas and stellar mass. The construction of these
models is relatively simple, and hence, they are computationally
efficient. These models also introduce several free parameters to
describe the unknown efficiency or strength of certain physics pro-
cesses. These parameters bring flexibility and allow the exploration
of different galaxy formation scenarios, which is very useful for
identifying which galaxy processes regulate certain observations.

The Dark-ages Reionization And Galaxy Observables from Nu-
merical Simulation (DRAGONS) project1 introduces the MERAXES

semi-analytic model (Mutch et al. 2016), which is coupled with the
high cadence Tiamat N-body simulation (Poole et al. 2016). The
model concentrates on studying galaxy formation at high redshifts.
This work utilizes MERAXES to predict intrinsic galaxy properties
and combines it with a simple and flexible dust attenuation model.
The dust optical depths are calculated empirically using relevant
galaxy properties. By taking full advantage of the fast computational
speed of both the galaxy formation and dust models, we carry out
a Bayesian analysis on all the model-free parameters, and use UV
LFs and CMRs as constraints, which are the most fundamental
observables at high redshift. This approach allows these observa-
tions to put direct constraints on both galaxy formation and dust
parameters, and provides self-consistent predictions of the IRX and
star formation rate (SFR).

We organize the paper as follows. Section 2 provides an
overview of our MERAXES galaxy formation model, and intro-
duces several updates on the model for this work. Section 3
describes the dust models that are integrated into MERAXES and
the computation of galaxy spectral energy distributions (SEDs).
The description of our calibration method can found in Sec-
tion 4, and the results are discussed in Section 5. We demonstrate
the predicted IRX–β relations and cosmic star formation rate
density (SFRD) in Sections 6 and 7, respectively. Finally, this
work is summarized in Section 8. Throughout the paper, we
adopt a flat �CDM cosmology, with (h, �m, �b,��, σ8, ns) =
(0.678, 0.308, 0.0484, 0.692, 0.815, 0.968) (Planck Collaboration
XIII 2016). Magnitudes are in the AB system (Oke & Gunn 1983).

2 G A L A X Y F O R M AT I O N MO D E L

2.1 Overview

The MERAXES semi-analytic model1 is the backbone of this work. It
extends the models of Croton et al. (2006) and Guo et al. (2011) to
high redshifts, and is modified to run on high cadence halo merge
trees with a delayed supernova feedback scheme. It also implements
gas infall, radiative cooling, star formation, supernova feedback,
metal enrichment, and reionization feedback. A detailed description
of the model can be found in Mutch et al. (2016, hereafter M16).
The active galactic nucleus feedback of the model is later introduced

1http://dragons.ph.unimelb.edu.au/

by Qin et al. (2017). This work also applies several updates to the
model, aiming to improve the predicted gas phase metallicity, which
is an input of galaxy SEDs. These will be introduced in Section 2.2.

We utilize the halo merger trees of the Tiamat N-body simulation
(Poole et al. 2016, 2017) as input to our semi-analytic model. The
simulation contains 21603 particles in a (67.8 h−1)3 Mpc3 box, with
mass resolution mp = 2.64 × 106 h−1 M�. Haloes and friends-of-
friends groups are identified using SUBFIND (Springel et al. 2001).
The time-step of the simulation is 11.1 Myr between z = 35 and z =
5 and is evenly distributed in dynamical time between z = 5 and z =
1.8. The high cadence of the simulation is critical to this study, since
UV magnitudes are sensitive to starbursts in the recent 100 Myr.

Since this work requires evaluating the model many times, and
does not focus on ionizing structures, we adopt homogeneous
reionization feedback (Gnedin 2000) instead of using 21CMFAST

(Mesinger & Furlanetto 2007). Both approaches are described in
M16 and found to have almost the same predictions on global
galaxy properties such as the stellar mass function up to z � 5.
However, the homogeneous prescription is more computationally
efficient.

2.1.1 Star formation

The star formation model in M16 should be mentioned here, since
the free parameters in the model will be calibrated statistically in
this work. Our model assumes that gas undergoes shock heating
and forms a quasi-static hot halo when it is accreted by the host
dark-matter halo. The gas can cool and form a cold disc in the
central region, which then becomes fuel for star formation. The gas
in the hot halo and the cold disc is labelled as hot and cold gas,
respectively. Following the disc stability argument of Kauffmann
(1996), our model assumes that gas can only form stars when its
mass is greater than the critical mass

mcrit = �SF

(
Vmax

100 km s−1

)(
rdisk

10 kpc

)
× 1010 M�, (1)

where Vmax is the maximum circular velocity of the host halo. The
disc scale radius rdisc is defined by

rdisc = 3Rvir
λ√
2
, (2)

where Rvir is the virial radius of the host halo, and λ is the spin
parameter defined by Bullock et al. (2001). Then, the mass of new
formed stars can be calculated from

	mstar = αSF
mgas − mcrit

tdyn,disc
	t, (3)

where tdyn,disc = rdisc/Vmax is the dynamical time of the disc, mgas

is the mass of cold gas, and 	t is the time-step. In the model,
the normalization of the critical mass �SF and the star formation
efficiency αSF are the two free parameters. Their preferred values
will be discussed in Section 5.

2.2 Updates to Meraxes

2.2.1 Supernova feedback

We update the supernova feedback model with a different treatment
of supernova energy, and a different parametrization of mass loading
factor and energy coupling efficiency. Our original supernova model
in M16 is a modified version of Guo et al. (2011), taking into
account the high cadence of our halo merger trees. As mentioned in
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Section 2.1.1, our model galaxies have hot and cold gas components,
and the effect of supernova feedback is to transfer the gas in the
cold disc to the hot halo. The amount of mass that is reheated by
supernova can be calculated by

	mreheat =
{

η	mnew, 	ESN ≥ 	Ehot

	ESN
1/2V 2

vir
, 	ESN < 	Ehot

, (4)

with

	Ehot = 1

2
η	mnewV 2

vir, (5)

where η is the mass loading factor, 	mnew is the mass of new
formed stars, 	ESN is the supernova energy that is injected into
the interstellar medium (ISM), and Vvir is the virial velocity of the
friends-of-friends group. If the amount of reheated mass is 	m, the
energy increase of the hot halo is 	E = 1

2 	mV 2
vir after virialization.

This model first estimates the reheated mass by the mass loading
factor argument, and reduces the mass if the energy injected by
supernova is smaller than the underlying energy increase of the hot
halo. Moreover, if 	ESN ≥ 	Ehot, materials can be further ejected
from the hot halo. The amount of ejected mass is given by

	meject = 	ESN − 	Ehot

1/2V 2
vir

. (6)

The ejected mass is subtracted from the hot gas and put into a
separated component.

The injected supernova energy 	ESN plays an important role in
the model described above. This quantity is given by

	ESN = ε ×
∫ t+	t

t

dt ′
∫ ∞

0
dτ

dε

dτ
ψ(t ′ − τ ), (7)

where ε is the energy coupling efficiency, t is the simulation time,
	t is the time-step, (dε/dτ )dτ is the energy released by type-II
supernova from stars with age between τ to τ + dτ per unit mass of
stellar population, and ψ(t) is the SFR as a function of the simulation
time. The second term on the right-hand side of equation (7) is the
total energy released by type-II supernova during a snapshot. M16
uses an analytic fit of star lifetime and an initial mass function (IMF)
to estimate dε/dτ , whilst in this work, we generate dε/dτ using
STARBURST99 (Leitherer et al. 1999; Vázquez & Leitherer 2005;
Leitherer et al. 2010, 2014) with metallicity dependence, assuming
a Kroupa (2002) IMF. This treatment provides more reasonable
and self-consistent estimates of the supernova energy, and can be
generalized to other stellar evolutionary libraries (e.g. Saitoh 2017;
Ritter et al. 2018). A similar approach has already been applied in
the FIRE hydrodynamic simulations (Hopkins et al. 2014).

To evaluate the integral in equation (7), we adopt the same method
as M16. MERAXES tracks the mass of new formed stars and their
metals in four previous snapshots and assumes that they are formed
by a single burst in the middle of each corresponding snapshot.
Stars formed in earlier snapshots have ages greater than 55 Myr,
and typically do not end with a type-II supernova. To tackle the
metallicity dependence, we interpolate the table of dε/dτ from
STARBURST99 to a grid in a range of Z = 0.001–0.040 with resolution
	Z = 0.001, and apply nearest interpolation based on the grid for
each starburst.

Since supernova energy is released by stars formed in current
and several previous snapshots, 	mnew in equation (4) should have
contributions from these stars. This quantity is computed by

	mnew =
∫ t+	t

t
dt ′ ∫ ∞

0 dτ dε
dτ

ψ(t ′ − τ )∫ ∞
0 dτ dε

dτ

. (8)

In other words, we use the average star formation history weighted
by the supernova energy to calculate 	mnew. If we assume constant
canonical energy for every type-II supernova explosion, the above
equation is equivalent to the number-weighted expression given by
equation 16 in M16.

The remaining parameters in the supernova feedback model are
the mass loading factor η and energy coupling efficiency ε. In this
work, we adopt different parametrizations from M16. They are
given by

η =

⎧⎪⎨
⎪⎩

η0

(
1+z

4

)αreheat
(

Vmax
60 km s−1

)−1
, Vmax ≥ 60 km s−1

η0

(
1+z

4

)αreheat
(

Vmax
60 km s−1

)−3.2
, Vmax < 60 km s−1

, (9)

ε =

⎧⎪⎨
⎪⎩

ε0

(
1+z

4

)αeject
(

Vmax
60 km s−1

)−1
, Vmax ≥ 60 km s−1

ε0

(
1+z

4

)αeject
(

Vmax
60 km s−1

)−3.2
, Vmax < 60 km s−1

, (10)

where Vmax is the maximum circular velocity. We force the max-
imum of ε to be unity due to energy conservation. Muratov et al.
(2015) originally obtained a broken power law for the mass loading
factor. Their study is based on model galaxies in the FIRE simulations
(Hopkins et al. 2014). This form is subsequently implemented in
several semi-analytic models (Hirschmann, De Lucia & Fontanot
2016; Cora et al. 2018; Lagos et al. 2018). The implementation
of this form in this work is primarily motivated by its impact on
the metallicity, which is an input of galaxy SEDs. Hirschmann
et al. (2016) tested eight different supernova feedback schemes in
their semi-analytic model, and found that only explicit redshift-
dependent models can lead to evolution of the mass–metallicity
relation. Collacchioni et al. (2018) demonstrated that a steeper
slope of the redshift dependence can result in stronger evolution
of the mass–metallicity relation using the semi-analytic model of
Cora et al. (2018). In this work, we set αreheat = 2 according to
the optimization result in Cora et al. (2018), assume no redshift
dependence on the energy coupling efficiency (i.e. αeject = 0) and
leave η0 and ε0 as free parameters.

2.2.2 Mass recycling and metal enrichment

We also apply STARBURST99 to the mass recycling and metal
enrichment. The mass of materials that are produced by type-II
supernova and released into the ISM can be obtained by

	mrecycle =
∫ t+	t

t

dt ′
∫ ∞

0
dτ

dy

dτ
ψ(t ′ − τ ), (11)

where (dy/dτ )dτ is the mass produced by type-II supernova from
stars with age τ to τ + dτ per unit mass of stellar population, i.e. the
yield. This quantity depends on the IMF and varies with different
elements. We generate the table of dy/dτ using STARBURST99,
including metallicity dependence and assuming a Kroupa (2002)
IMF. In this work, we only consider two cases, i.e. the yield of
all elements and the yield of all metal elements. The former gives
the amount of recycled mass, whilst the latter introduces metal
enrichment. The evaluation of the integral in equation (11) and the
treatment of metallicity dependence follow the same approach as
the calculation of the total supernova energy. All recycled materials
are added into the cold gas component. This age-dependent mass
recycling scheme is introduced due to the short time-step of the
halo merger tree, and is more realistic than the commonly adopted
constant recycling fraction and yield, particularly at high redshift.
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2.2.3 Reincorporation

The ejected gas component mentioned in the previous section can be
transferred back to the hot gas halo. We employ the reincorporation
model proposed by Henriques et al. (2013):

	mreinc = meject

treinc
	t, (12)

treinc = γ
1010 M�

Mvir
, (13)

where meject is the mass of ejected gas, and Mvir is the virial mass
of the friends-of-friends group. We also force the reincorporation
time-scale to be smaller than the halo dynamic time. The statistical
analysis of Henriques et al. (2013) indicates that this model provides
better fit of the stellar mass functions against observations at z ≤ 3.
We set γ = 18 Gyr as suggested by Henriques et al. (2013). This
model is also implemented in Hirschmann et al. (2016), Cora et al.
(2018), and Lagos et al. (2018). We note that with this choice of
γ , the reincorporation time-scale equals the forced upper limit, i.e.
the halo dynamical time, for Mvir � 1012 M� at the redshift range
of interest in this study. At z ∼ 4–7, the halo dynamical time is
∼100 Myr. Therefore, reincorporation is more efficient in our model
relative to Henriques et al. (2013) at these redshifts, in particular for
low-mass haloes. This behaviour is very different from the original
model proposed by Henriques et al. (2013), and may impact on
the predicted stellar mass functions at lower redshifts. We defer the
exploration of this effect to later works.

3 DUST M ODEL AND SYNTHETIC SEDS

3.1 Dust model

We implement the dust model proposed by Charlot & Fall (2000).
The transmission function due to the ISM is expressed by

Tλ(t) =
{

exp(−τ ISM
λ ) t ≥ tBC

exp(−τ ISM
λ − τBC

λ ) t < tBC

. (14)

This model takes into account the relative stars-dust geometry
of different stellar populations. Photons emitted by young stars
are absorbed by an additional component due to the surrounding
molecular cloud where the stars form. The birthcloud is assumed
to have lifetime tBC, and for stars whose age is older than tBC, their
starlight is only absorbed by the diffuse ISM dust. We fix tBC =
10 Myr according to previous studies (Charlot & Fall 2000; da
Cunha, Charlot & Elbaz 2008). The attenuation due to the birth
cloud and diffuse ISM dust is described by their optical depths τBC

λ

and τ ISM
λ , respectively, which should vary with different galaxies.

In this study, we explore three different parametrizations, linked
to SFR, dust-to-gas (DTG) ratio, and gas column density (GCD).
We name them as M-SFR, M-DTG, and M-GCD, respectively. In
general, these properties are indirectly related to the dust. One dust
production channel is from the ejecta of supernova (e.g. Dayal &
Ferrara 2018), which is proportional to the SFR. Dust is also mixed
with gas. Accordingly, they are expected to have similar properties.
We will see that M-DTG and M-GCD have similar results, since
they primarily depend on the gas density.

3.1.1 SFR model

The dependence of the dust optical depths on SFR is motivated
by observations of the CMRs at high redshifts, i.e. the relation

between UV continuum slope and UV magnitude. These obser-
vations suggest that more UV luminous galaxies have redder UV
continuum slopes (Finkelstein et al. 2012; Bouwens et al. 2014;
Rogers et al. 2014). Since brighter galaxies correspond to higher
SFR, one could expect that SFR and dust content are positively
correlated. Similar trends have been found in low-redshift studies
(e.g. da Cunha et al. 2010; Qin et al. 2019). Hence, we assume the
following parametrization:

�λ = e−az

(
SFR

100 M� yr−1

)γSFR
(

λ

1600 Å

)n

, (15)

τ ISM
λ = τ ISM

SFR �λ, (16)

τBC
λ = τBC

SFR�λ, (17)

where τ ISM
SFR , τ ISM

SFR , γ SFR, a, and n are free parameters. Yung et al.
(2019) also use a parametric model to calculate dust attenuation
in their semi-analytic model. They adjusted the normalization of
the optical depth to fit the observed UV LFs at individual redshifts.
Their results indicate that the normalization depends on redshift and
the trend can be fit by an exponential function. Therefore, for all
the three parametrizations proposed in this work, we also include
an exponential redshift dependence factor to fit the model against
multiple redshifts.

3.1.2 DTG ratio model

In the literature, dust optical depths are often linked to the GCD,
which is then converted to the dust column density using the DTG
ratio (De Lucia & Blaizot 2007; Guo et al. 2011; Somerville et al.
2012; Yung et al. 2019). In this model, optical depths are expressed
by

�λ = e−az

(
Zcold

Z�

)γDTG
(

mcold

1010h−1 M�

)(
rdisc

h−1 kpc

)−2

×
(

λ

1600 Å

)n

, (18)

τ ISM
λ = τ ISM

DTG�λ, (19)

τBC
λ = τBC

DTG�λ, (20)

where Zcold is the metallicity of cold gas, mcold is the mass of cold
gas, and rdisc is the disc scale radius defined in equation (2). We
adopt the solar metallicity as Z� = 0.02. Free parameters are τ ISM

DTG,
τBC

DTG, γ DTG, a, and n.

3.1.3 GCD model

We propose an additional gas mass related dust model, which is
independent of the metallicity. In M16 and this work, when metals
are produced by supernova explosions, we assume that they are
first fully mixed with cold gas, and then ejected into the hot gas
reservoir. In reality, since the materials produced by supernova have
quite different initial velocities from the surrounding gas, the mixing
may take some time. Thus, we provide a metallicity-independent
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Table 1. The five windows selected from Calzetti et al.
(1994) to fit UV slopes for the on-the-fly calibrations.

Wavelength range [Å]

1 1342–1371
2 1562–1583
3 1866–1890
4 1930–1950
5 2400–2580

parametrization of the dust optical depths

�λ = e−az

(
mcold

1010h−1 M�

)γGCD
(

rdisc

h−1 kpc

)−2 (
λ

1600 Å

)n

, (21)

τ ISM
λ = τ ISM

GCD�λ, (22)

τBC
λ = τBC

GCD�λ. (23)

There are also five free parameters in this model, i.e. τ ISM
GCD, τBC

GCD,
γ GCD, a, and n. This model includes a power-law scaling on the
cold gas mass, unlike the M-DTG model, where the scaling is on
metallicity.

3.2 Synthetic SEDs

The computation of galaxy SEDs follows standard stellar population
synthesis. The luminosity of a galaxy at time t can be obtained by

Lλ(t) =
∫ t

0
dτ

∫ Zmax

Zmin

dZ ψ(t − τ, Z)Sλ(τ, Z)Tλ(τ ), (24)

where τ is the stellar age, ψ(t − τ, Z) dτdZ is the mass of stars
formed at t − τ with an age between τ and τ + dτ , and
metallicity between Z and Z + dZ, Sλ(τ , Z) is the luminosity
of a simple stellar population (SSP) per unit mass, and Tλ(τ ) is
the transmission function of the ISM described in the previous
subsection. We generate Sλ(τ , Z) using STARBURST99 (Leitherer
et al. 1999; Vázquez & Leitherer 2005; Leitherer et al. 2010,
2014), assuming a metallicity range from Z = 0.001 to 0.040
and a Kroupa (2002) IMF. Nebular continuum emissions are also
added using STARBURST99. To compute UV magnitudes, we apply
a tophat filter centred at λ = 1600 Å with width 100 Å. UV slopes
are obtained by a linear fit in the logarithmic flux space using the
ten windows proposed by Calzetti, Kinney & Storchi-Bergmann
(1994). However, for computational speed, we only choose five
of them (including the longest wavelength window) for on-the-fly
calibrations. The selected windows are given in Table 1. The median
errors from this treatment are negligible in the range of the observed
CMRs.

We also make a numeric approximation in order to accelerate
the speed of evaluating equation (24). We first compute the intrinsic
luminosity in necessary filters. The dust transmission is then applied
to the luminosity of the filters using the central wavelength instead
of the full SEDs. This approximation is found to have a negligible
effect on the results, since all filters used in this work have a simple
shape and are relatively narrow.

4 C A L I B R AT I O N

An essential part of this work is to determine the free parameters in
both the galaxy formation and dust attenuation models introduced

in the previous sections. We carry out a Bayesian analysis on these
parameters, and use observed UV LFs and CMRs at z ∼ 4–7 as
constraints.

A key goal of a Bayesian analysis is to estimate the posterior
distribution of model parameters, which is non-trivial for high
dimensional spaces. Kampakoglou, Trotta & Silk (2008) and
Henriques et al. (2009) first applied the Markov chain Monte
Carlo (MCMC) method to sample the parameter space of semi-
analytic models. This approach has been implemented by several
subsequent studies (Henriques et al. 2013; Mutch, Poole & Croton
2013; Henriques et al. 2015). However, the MCMC method has
several drawbacks. First, it requires additional evaluations of the
model to ensure the final sample reaches a stationary distribution,
and it is generally difficult to determine whether a Monte Carlo
chain has fully converged (see Cowles & Carlin 1996, for a
review). Moreover, without special treatments, MCMC samplers
can encounter difficulties in approaching a stationary distribution
when the parameter space contains isolated modes (which is the
case in this study), since random walkers can be trapped by a
local minimum and fail to jump to other modes (e.g Neal 1996).
A possible improvement to handle multimodal distributions for
MCMC methods can be found in Earl & Deem (2005).

In this work, in order to achieve higher sampling efficiency
and obtain more stable results on multimodal parameter spaces,
we utilize the multimodal nested sampling introduced by Feroz,
Hobson & Bridges (2009) to estimate the posterior distributions.
This algorithm is found to be a competitive alternative to MCMC
methods, and addresses the issues mentioned above to some
extent. The nested sampling was designed to evaluate the Bayesian
evidence (Skilling 2004). However, the output samples produced by
the algorithm can also be used to estimate posterior distributions,
which is equivalent to the MCMC method. In difference from
MCMC methods, no burn-in phase is required in this algorithm. The
stopping criterion of the nested sampling is based on an estimated
error of the resulting value of the Bayesian evidence, which is
also proposed by Skilling (2004). The sampling efficiency of the
original algorithm is improved by Feroz et al. (2009), who use
the information of existing sample points to approximate the iso-
likelihood surfaces in the parameter space as hyper ellipsoids (see
also Mukherjee, Parkinson & Liddle 2006). Secondly, the algorithm
includes a special treatment for multimodal problems. Again using
the information of existing sample points, it applies a clustering
algorithm to detect multiple modes and splits the parameter space
(see also Shaw, Bridges & Hobson 2007). This approach has been
tested against toy models that contain several equally high peaks,
and is found to have good performance. The reader is referred to
Feroz & Hobson (2008), Feroz et al. (2009), and references therein
for a detailed description of the algorithm. A comparison between
the nested sampling and the MCMC method can found be in Speagle
(2019).

The Bayesian posterior distribution is comprised of the likelihood
and prior distributions of each free model parameter. We construct
the log-likelihood as

lnL = −1

2

∑
i

[
(nobs

i − nmodel
i )2

σ 2
LF,i

+ ln(2πσ 2
LF,i)

]

−1

2

∑
i

[
(βobs

i − βmodel
i )2

σ 2
CMR,i

+ ln(2πσ 2
CMR,i)

]
. (25)

Observational data of LFs (nobs
i , σ 2

LF,i) and CMRs (βobs
i , σ 2

CMR,i)
are taken from Bouwens et al. (2015) and the biweight mean
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Table 2. Summary of free galaxy and dust parameters.

Parameter Section Equation Description

αSF Section 2.1.1 Equation (3) Star formation efficiency
�SF Section 2.1.1 Equation (1) Critical mass normalization
η0 Section 2.2.1 Equation (9) Mass loading normalization
ε0 Section 2.2.1 Equation (10) supernova energy coupling normalization
τ ISM

SFR /τ ISM
DTG/τ ISM

GCD Section 3.1.1/Section 3.1.2/Section 3.1.3 Equation (16)/Equation (19)/Equation (22) Dust optical depth normalization of ISM

τBC
SFR/τBC

DTG/τBC
GCD Section 3.1.1/Section 3.1.2/Section 3.1.3 Equation (17)/Equation (20)/Equation (23) Dust optical depth normalization of BC

γ SFR/γ DTG/γ GCD Section 3.1.1/Section 3.1.2/Section 3.1.3 Equation (15)/Equation (18)/Equation (21) Dust optical depth slope of galaxy property
n Section 3.1.1/Section 3.1.2/Section 3.1.3 Equation (15)/Equation (18)/Equation (21) Reddening slope
a Section 3.1.1/Section 3.1.2/Section 3.1.3 Equation (15)/Equation (18)/Equation (21) Dust optical depth redshift dependence

Parameter Prior scale Prior range Best fita 16/84-thpercentilesb

M-SFR M-DTG M-GCD M-SFR M-DTG M-GCD M-SFR M-DTG M-GCD

αSF log [0.005, 0.2] [0.05, 0.18] [0.04, 0.08] 0.10 0.10 0.05 [0.08, 0.13] [0.10, 0.11] [0.05, 0.07]
�SF log [0.1, 0.8] [0.001, 0.25] [0.05, 0.25] 0.19 0.01 0.16 [0.21, 0.42] [0.007, 0.06] [0.14, 0.19]
η0 log [2.0, 12.0] [2.0, 15.0] [3.5, 7.5] 4.6 7.0 6.4 [4.0, 7.8] [6.6, 7.9] [4.9, 6.1]
ε0 log [0.35, 0.65] [0.8, 2.2] [1.0, 1.7] 0.5 1.5 1.3 [0.4, 0.6] [1.5, 1.7] [1.3, 1.5]
τ ISM

SFR /τ ISM
DTG/τ ISM

GCD linear [0.5, 2.4] [0.0, 50.0] [2.0, 8.0] 1.7 13.5 3.7 [1.4, 1.7] [9.9, 17.0] [3.5, 5.3]

τBC
SFR/τBC

DTG/τBC
GCD linear [2.0, 10.0] [0.0, 1000.0] [25.0, 140.0] 2.5 381.3 69.7 [3.9, 6.6] [225.1, 476.1] [60.4, 91.0]

γ SFR/γ DTG/γ GCD linear [0.0, 0.6] [0.4, 2.2] [1.3, 1.7] 0.19 1.20 1.48 [0.23, 0.32] [1.05, 1.38] [1.44, 1.52]
n linear [−1.00, −0.25] [−2.5, −0.8] [−1.6, −1.0] −0.3 −1.6 −1.3 [−0.5, −0.3] [−1.7, −1.5] [−1.4, −1.2]
a linear [0.00, 0.15] [0.10, 0.65] [0.20, 0.55] 0.04 0.34 0.39 [0.02, 0.07] [0.25, 0.37] [0.36, 0.42]

Notes. aSample point that has the highest posterior distribution value are chosen to be the best-fitting values.
bThese are the 16th and 84th percentiles of the marginalized distributions.

measurements of Bouwens et al. (2014), respectively. The LFs
are defined by the co-moving number density. We convert the
dimensionless Hubble constant from h = 0.7 to 0.678 for these
observations in order to be consistent with our model. Due to the
limited size of the simulation box, the model is unable to probe
the full range of the LFs and CMRs. Therefore, for each LF and
CMR bin, we use the observed LF to estimate an expected number
of galaxies in the simulation box, and drop the bin if the number is
less than 5 and 20 for the LF and CMR, respectively.

The model parameters are from both the semi-analytic model
and the dust relations introduced in Section 3.1. We focus on four
galaxy formation parameters: the star formation efficiency αSF,
normalization of the critical mass �SF, mass loading factor η0, and
supernova energy coupling efficiency ε0. Their prior distributions
are chosen to be uniform in logarithmic space. Three different dust
models were introduced in Section 3.1. Each of them has five free
parameters. We adopt uniform priors in linear space for them.

The prior ranges of these model parameters are used in the ini-
tialization of nested sampling, and they are chosen based on several
experiments. We first run the sampler in a very large parameter
space and find the high-probability regions. We then shrink the prior
ranges accordingly, keeping the posterior distribution at the bounds
negligible compared with the high-probability regions. There is an
exception for the mass loading factor η0 in the M-SFR model, which
is found to have no upper limit. However, this will not affect our
main results, since the energy coupling efficiency ε0 puts physical
upper limit on the strength of the supernova feedback, and this
parameter is constrained. This approach of choosing the prior ranges
allows the sampler to spend more time on the high-probability
regions and improves the sampling efficiency. A summary of all
model parameters and their prior ranges can be found in Table 2.

In practice, we utilize a modified version of the open source
PYTHON package NESTLE,2 which implements the algorithm, and
couple it with the MERAXES PYTHON interface MHYSA (Mutch in
preparation). We set the number of active points to be 300 for

2https://github.com/kbarbary/nestle. See https://github.com/smutch/nestle
for the modified version.

the sampler. The stop criterion follows the remaining Bayesian
evidence approach suggested by Skilling (2004). The algorithm
terminates when the logarithmic change due to the remaining
Bayesian evidence is below one, and the convergence requires
evaluating the model for 50 000–100 000 times.

5 FITTING R ESULTS

For the three different dust models, we obtain 5000–6000 sample
points from the nested sampling algorithm, which describe the
posterior distributions of both galaxy and dust parameters. The
point that has highest value of the posterior distribution is chosen to
be the best-fitting result. The best-fitting parameter values are listed
in Table 2, and the corresponding LFs and CMRs are shown in Fig. 1
for each dust model. The three models all fit the observational data
extremely well. In Figs A1–A3, we show the posterior distributions
of M-SFR, M-DTG, and M-GCD, respectively. In plotting these
figures, we adopt a similar approach with Henriques et al. (2009) and
Henriques et al. (2013), i.e. using contours to show the marginalized
distributions and colours to indicate the values of the whole posterior
distributions. For the M-SFR model, it can be seen from Fig. 2 that
the marginalized distribution of the mass loading factor η0 extends
to large values, which means that this parameter is less constrained.
On the other hand, all parameters are well constrained for the other
two models.

An interesting finding is that the derived galaxy formation
parameters preferred by these three dust models are quite different.
Fig. 2 illustrates a comparison of the marginalized distributions for
the four galaxy formation parameters. We found that M-DTG and
M-GCD suggest similar mass loading factor and supernova energy
coupling efficiency. However, M-DTG shows evidence of a more
active star formation scenario, with higher star formation efficiency
and lower normalization of the critical mass. For M-SFR, the
marginalized distribution of the star formation efficiency overlaps
with that of M-DTG. However, M-SFR requires much smaller
supernova energy coupling efficiency. Moreover, differences can
also be found in the two parameter correlations between the galaxy
formation parameters for the three different models. For instance,
in the third row and first column of Fig. A3, M-GCD shows a strong
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Predictions of IRX and cosmic SFRD 1363

Figure 1. Best-fitting LFs and CMRs. Solid blue, orange, and green lines are the results of M-SFR (Section 3.1.1), M-DTG (Section 3.1.2), M-GCD
(Section 3.1.3), respectively. Shaded regions illustrate the 1σ (68 per cent) range of the posterior distributions. Dashed lines are the corresponding dust-
unattenuated properties. Black points with errorbars are the observational data used in the calibration, which are from Bouwens et al. (2015) and Bouwens
et al. (2014) for the LFs and CMRs, respectively. Grey data points are also from these observations but are not used in the calibration due to the limit of the
simulation box size.

Figure 2. Comparison of the marginalized distributions of galaxy formation parameters among the three different dust models. These parameters are the star
formation efficiency αSF (equation 3), the normalization of the critical mass �SF (equation 1), the mass loading factor η0 (equation 9), and the supernova
energy coupling efficiency ε0 (equation 10). The three dust models labelled as M-SFR, M-DTG, and M-GCD are described in Sections 3.1.1, 3.1.2, and 3.1.3,
and the corresponding optical depths in the three models are linked to the SFR, DTG ratio, and GCD, respectively. The y-axes show the probability distributions
in a linear scale.

correlation between the star formation efficiency αSF and the mass
loading factor η0. However, this correlation cannot be found in the
other two models. The variation among the posterior distributions
of the three models implies that these free parameters fit the
observational data in a very complex way and the constraints on
them depend on the assumptions used to model the dust attenuation.

By comparing the posterior distributions of the three dust models,
we find similar correlations among the parameters of the supernova
feedback, galaxy property scaling of the dust relation and reddening
slope. We demonstrate this in Fig. 3. It can be seen that the supernova
energy coupling efficiency is positively and inversely correlated
with γSFR, DTG, GCD and the reddening slope n, respectively. Whilst
the trends are the weakest for the M-GCD model, the correlation

between γSFR, DTG, GCD and n is obvious for all the three models.
Similar correlations are also found for the mass loading factor
η0. The reader is referred to Figs A1–A3 for the two-parameter-
marginalized distributions of all model parameters. The dependence
between the galaxy formation and dust parameters is important,
since it suggests that the observations can put constraints on
intrinsic or dust-unattenauted galaxy properties despite the degrees
of freedom in the dust models.

In order to understand the correlations mentioned above, we plot
the intrinsic LFs and CMRs for the three best-fitting models in
Fig. 1. They are shown as dashed lines. It can be seen that the
LFs of the best-fitting M-SFR is roughly a factor of 2 higher than
for the other two models. We note that the intrinsic LFs are more
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1364 Y. Qiu et al.

Figure 3. Correlations among the supernova energy coupling efficiency ε0, galaxy property scaling of the dust relation γSFR, DTG, GCD, and the reddening
slope n. In each panel, solid back lines are the 68 per cent and 95 per cent contours of the two-parameter−marginalized distributions. Colour points indicate
the values of the corresponding posterior distributions, and their maximum is normalized to unity. From top to bottom, rows correspond to the dust attenuation
model of M-SFR (Section 3.1.1), M-DTG (Section 3.1.2), M-GCD (Section 3.1.3), respectively. The posterior distributions of all parameters for the three
models can be seen in Figs A1–A3.

Figure 4. Effects of varying the mass loading factor η0 and the supernova
energy coupling efficiency ε0 on the intrinsic UV LF. The y-axes show the
ratio of the logarithmic LFs between the model variants and the best-fitting
M-DTG models. In the upper panel, we vary the mass loading factor η0 at
fixed ε0, whilst in the lower panel, we fix ε0 and change η0.

sensitive to feedback processes rather than the star formation law
due to self-regulation (e.g. Schaye et al. 2010; Lagos et al. 2011).
The supernova coupling efficiency of the best-fitting M-SFR model
is much smaller than the other two models, which is likely to be the
main reason for the difference in the intrinsic LFs, irrespective of
those star formation parameters. We examine the effect of supernova
feedback in Fig. 4. For the upper panel, we vary the mass loading

factor η0 at fixed supernova energy coupling efficiency ε0 for the
best-fitting M-DTG model, and compare the resulting LFs with
the best-fitting results. The y-axis shows the ratio of the logarithmic
intrinsic LFs. We find that the number density at fixed UV magnitude
decreases with increasing η0. Since the energy coupling efficiency
puts an upper limit on the reheated mass (see equation 4), the change
in the LFs is smaller at larger η0. The results of varying ε0 at fixed η0

are shown in the lower panel of Fig. 4. Whilst higher ε0 decreases
the LFs, the effect is found to be more significant at the bright
end. Since the energy coupling efficiency is assumed to scale as a
power law of the maximum circular velocity (see equation 10), the
efficiency can easily reach the maximum value of unity for small
galaxies. The median MUV–Vmax relation of the best-fitting M-DTG
model indicates that the energy coupling efficiency becomes unity
at an intrinsic magnitude MUV ∼ −18 with ε0 = 1.5. Therefore, the
major effect of increasing ε0 is to allow more gas to be reheated
in galaxies hosted by more massive haloes. This explains why this
parameter has larger impact at the bright end of the intrinsic LFs.
Overall, the above discussion implies that supernova feedback plays
an important role in regulating the intrinsic LFs.

We next investigate the effect of the galaxy property scaling of
the dust relation. Fig. 5 shows the resulting dust-attenuated LFs and
CMRs when γ SFR, DTG, GCD is changed by a factor of 2. It can be
seen that the shape of both the LFs and the CMRs are quite sensitive
to this parameter. Furthermore, since the dust optical depths are
assumed to depend on different galaxy properties, this parameter
changes the shape of the LFs and CMRs in different ways.

Combining the discussions of the supernova feedback param-
eters and γ SFR,DTG,GCD above, we provide an explanation of the
correlations between the model parameters in Fig. 3. In our dust
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Predictions of IRX and cosmic SFRD 1365

Figure 5. Effects of varying the galaxy property scaling of the dust relation
γSFR, DTG, GCD on the dust-attenuated UV LFs and CMRs. In each panel,
solid lines correspond to the results of the best-fitting models as shown in
Fig. 1. Dashed and dot dashed lines show the results of the model variants,
in which γSFR, DTG, GCD is changed by a factor of 2. From top to bottom,
rows correspond to the dust attenuation model of M-SFR (Section 3.1.1),
M-DTG (Section 3.1.2), M-GCD (Section 3.1.3), respectively.

models, the effective UV optical depth is a function of the galaxy
property scaling γ SFR,DTG,GCD and the optical depth normalizations
of both the ISM and the BC. The galaxy property scaling has a
direct impact on the shape of the dust-attenuated LFs and CMRs,
and this single parameter is required to satisfy two shapes. Hence,
the effective UV optical depth is very sensitive to γ SFR,DTG,GCD.
The effective optical depth should be degenerated with the intrinsic
UV LFs, which are primarily controlled by the supernova feedback
parameters. These imply that both η0 and ε0 should be correlated
with γ SFR,DTG,GCD. On the other hand, the observed UV continuum
slope β depends on the reddening curve, which is assumed to be
a power law of wavelength. Since there is a natural degeneracy
between the power-law slope and the normalization, the reddening
slope n should be degenerate with the effective UV optical depth,
and therefore γ SFR,DTG,GCD. The dependence between the supernova
feedback parameters and the reddening slope can be derived from
the above two correlations. Fig. 5 shows that the galaxy property
scaling on the SFR changes the dust-attenuated LFs and CMRs
differently from the other two models, which may explain why
the best-fitting M-SFR model requires much weaker supernova
feedback. This also explains the shallower reddening slope required
by the best-fitting M-SFR model.

In addition, we contrast the best-fitting models for M-DTG and
M-GCD. Whilst their intrinsic LFs and CMRs are almost the same,
a difference is found in the metallicity. Fig. 6 illustrates the cold gas
metallicity at two stellar mass bins as a function of redshift for all
best-fitting models. It is clear that the cold gas is more metal enriched
in the best-fitting M-DTG than in M-GCD. We identify that the
normalization of the critical mass �SF is the primary driver for the
difference, since both best-fitting models have similar parameters of
supernova feedback. To confirm this, we run a model variant, setting
�SF = 0.2, with other parameters being the same with the best-

Figure 6. Redshift evolution of the mass–metallicity relation. The y-axis
represents the cold gas metallicity, with Z� = 0.02. Dark and light lines
correspond to the metallicity at different stellar mass bins, 108 M� < M∗ <

108.5 M� and 109 M� < M∗ < 109.5 M�, respectively. Solid, dashed, and
dot–dashed lines show the best-fitting results of M-SFR (Section 3.1.1),
M-DTG (Section 3.1.2), and M-GCD (Section 3.1.3), respectively. The
metallicity only depends on the galaxy formation parameters of these
models, which are listed in Table 2. The dotted lines correspond to the
results of a model variant for which the normalization of critical mass is set
to be �SF = 0.2, whilst other parameters remain the same with the best-
fitting M-DTG. This variant model illustrates that �SF is a main driver of
the cold gas metallicity.

fitting M-DTG. The resulting metallicity is also shown in Fig. 6,
which is similar to that of the best-fitting M-GCD. This finding is
unsurprising since the star formation law affects gas fraction and
therefore metallicity (e.g. Schaye et al. 2010; Lagos et al. 2011). In
addition, from Fig. 6, it is worth noting that the metallicity evolves
with redshift in our model, with higher metallicity at lower redshifts.
This is expected due to the explicit redshift dependence on the mass
loading factor, which is motivated by previous studies (Muratov
et al. 2015; Hirschmann et al. 2016; Collacchioni et al. 2018).

6 IR X TO U V C O N T I N U U M SL O P E
R E L AT I O N S

As demonstrated in previous sections, by simultaneously fitting
our galaxy formation and dust models to the observed UV LFs and
CMRs, we are able to obtain constraints on both the dust attenuation
in the UV band and the reddening. This allows estimates of the
infrared luminosity FIR and therefore the IRX using energy balance
arguments, i.e.

FIR =
∫ ∞

912 Å

(
Lλ − Lintrinsic

λ

)
dλ, (26)

FUV = λLλ

∣∣
λ=1600 Å

, (27)

IRX = FIR

FUV
. (28)

We compute the IRX for galaxies in the best-fitting models of
M-SFR, M-DTG, and M-GCD. The resulting IRX–β relations for
galaxies with stellar mass greater than 108 M� are shown in Fig. 7
with several observations for comparison. Taking into account in-
trinsic scatter in the relations, our results cover the observations from
Koprowski et al. (2018), who performed a stacking analysis of 4209
Lyman-break galaxies (LBGs) at 3 � z � 5, and individual detection
from Barisic et al. (2017). We also compare our predictions with
the relations calibrated by Meurer et al. (1999) using local starburst
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1366 Y. Qiu et al.

Figure 7. Predicted IRX–UV continuum slope β relations. From top to bottom, rows show the results of the best-fitting M-SFR (Section 3.1.1), M-DTG
(Section 3.1.2), and M-GCD (Section 3.1.3) models. We only show model galaxies with stellar mass greater than 108 M�. The dust optical depths in the three
models are linked to the SFR, DTG ratio, and GCD, respectively. The relations are represented by purple density plots. The best-fitting parameters of these
models can be seen from Table 2. IRX is computed by energy balance arguments. Columns show the results at different redshifts. Blue dashed lines are the
widely used Meurer et al. (1999) relation. Red lines show the results from Cullen et al. (2017), which are based on the post-process of the FiBY hydrodynamic
simulation (Johnson, Dalla Vecchia & Khochfar 2013; Paardekooper, Khochfar & Dalla Vecchia 2015). Black circles with errorbars are stacking measurements
of LBGs from Koprowski et al. (2018). Individual source measurements from Barisic et al. (2017) are shown as empty squares.

galaxies. The Meurer et al. (1999) relation is frequently used to
correct dust extinction in both observational and theoretical studies
at high redshifts (e.g. Duncan et al. 2014; Bouwens et al. 2015;
Mason et al. 2015; Liu et al. 2016; Harikane et al. 2018). It can
be seen from Fig. 7 that the best-fitting M-SFR predicts higher
IRX than the Meurer et al. (1999) relation at fixed β, whilst the
other two best-fitting models suggest lower IRX. Thus, our models
indicate dust extinction that differs from the Meurer et al. (1999)
relation, which implies that a direct application of the relation at
high redshifts may lead to systematic errors on the dust corrections.
We will discuss the resulting uncertainties on estimations of the
cosmic SFRD in Section 7.

6.1 Reddening slope

The best-fitting models for M-SFR, M-DTG, and M-GCD have
quite different reddening slopes n, which can be read from Table 2.
The best-fitting M-SFR model has the shallowest slope of n = −0.3,
whilst much steeper slopes are found for the best-fitting M-DTG
and M-GCD, with n = −1.6 and −1.3, respectively. This difference
is directly reflected on the IRX–β plane. In Fig. 6, the best-fitting
M-DTG and M-GCD show a shallower IRX–β relation at redder
UV slope regime. Similar disagreements can also be found from
other studies. For example, Cullen et al. (2017) post-processed the
outputs of the FiBY hydrodynamic simulation (Johnson et al. 2013;
Paardekooper et al. 2015). They propose a similar dust model to

this work, linking the dust optical depths to the logarithmic stellar
mass. The free parameters in their model are adjusted to fit the
observed LFs and CMRs from Rogers et al. (2014) at z ∼ 5. They
suggest n = −0.55+0.25

−0.15. We plot their results as solid red lines in
Fig. 7, which is more consistent with the best-fitting M-SFR than
our other models. On the other hand, Mancini et al. (2016) also post-
processed a hydrodynamic simulation by Maio et al. (2010), and
coupled it with an dust evolution model. Their results reproduce the
observed LFs of Bouwens et al. (2015) and CMRs of Bouwens et al.
(2014) at z ∼ 5–8 when using a SMC-like extinction curve. The
slope of the SMC-like extinction curve is steeper, and is similar to
those of the best-fitting M-DTG and M-GCD. Since all our models
can well reproduce observed LFs and CMRs, we cannot draw any
firm conclusions on the reddening slope. Instead, we treat this as
systematic uncertainties arising due to different assumptions in the
dust models.

6.2 Intrinsic scatter

At z � 3, observations show considerable scatter in the IRX–β plane
(e.g. Capak et al. 2015; Álvarez-Márquez et al. 2016; Bouwens et al.
2016; Barisic et al. 2017; Fudamoto et al. 2017; Koprowski et al.
2018), which might be explained by the large intrinsic scatter in
our predicted relations. Hence, it is instructive to examine the main
drivers of the scatter. We first notice that from Fig. 7, low IRX
galaxies vanish in the best-fitting M-SFR model. This is due to the

MNRAS 489, 1357–1372 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/1/1357/5548814 by Australian N
ational U

niversity user on 30 January 2020



Predictions of IRX and cosmic SFRD 1367

Figure 8. Predicted IRX–UV continuum slope β relations as functions of stellar mass (left-hand panels) and sSFR (right-hand panels) at z ∼ 5. We only
show model galaxies with stellar mass greater than 108 M�. From top to bottom, rows show the results of the best-fitting M-SFR (Section 3.1.1), M-DTG
(Section 3.1.2), and M-GCD (Section 3.1.3). The dust optical depths in the three models are linked to the SFR, DTG ratio, and GCD, respectively. Black
dashed lines show the relation measured by Meurer et al. (1999). Black circles and empty squares with errorbars are stacking and individual measurements
from Koprowski et al. (2018) and Barisic et al. (2017), respectively.

nature of our star formation prescription (see Section 2.1.1). The
SFR of galaxies whose cold gas mass is below the critical mass
is zero. Accordingly, in the M-SFR model, the dust optical depths
of these galaxies are also zero, which results in the disappearance
of the IRX. This unrealistic feature shows the limitations of this
model.

In the left-hand and right-hand panels of Fig. 8, we illustrate the
IRX–β relations at z ∼ 5 as functions of stellar mass and specific star
formation rate (sSFR), respectively. The relations at other redshifts
show similar trends. For the stellar mass case, we see that massive
galaxies form a tight correlation between IRX and β in the high
IRX and red β regions. The trend that more massive galaxies have
higher IRX is also observed by Álvarez-Márquez et al. (2016) and
Fudamoto et al. (2017). However, we also find several larger stellar
mass galaxies that have lower IRX and redder β. They might explain
some of the outliers individually detected by Barisic et al. (2017),
as shown in Fig. 8. On the other hand, the right panels show that
the scatter of the IRX–β relation is tightly correlated with sSFR. At
fixed IRX, redder galaxies typically have lower sSFR. This trend
is consistent with other theoretical studies (Popping, Puglisi &
Norman 2017b; Safarzadeh et al. 2017; Narayanan et al. 2018;
Cousin et al. 2019a). In addition, it is worth noting that although
the dust optical depths are related to different galaxy properties for
the three dust models, we find similar dependence of the scatter in
the IRX–β plane on both stellar mass and sSFR.

7 C OSMIC SFR DENSITY

Dust corrections are typically required for the conversion between
the UV luminosity and the SFR. As mentioned, in high-redshift ob-
servational studies of SFR, the Meurer et al. (1999) relation is widely
used, though it is calibrated against local galaxies. The previous
section has shown that the dust extinction predicted by our models,
which reproduce both LFs and CMRs at z ∼ 4–7, is rather different
from the Meurer et al. (1999) relation. In principle, we could derive
similar relations based on our results to be used by other studies
to perform the dust corrections. However, by using such relations,
we should be able to recover the SFR functions of our models
given the LFs. Therefore, we directly present the predicted SFRs.
Furthermore, the difference among the three dust models allows us
to estimate the systematic uncertainties in the observed SFRs.

Fig. 9 illustrates the predicted cosmic SFRD for the best-fitting
models of M-SFR, M-DTG, and M-GCD. Their values are listed in
Table 3. We compare the results with Bouwens et al. (2015), whose
estimations are based on the CMRs of Bouwens et al. (2014) and
the Meurer et al. (1999) relation. Since the results of Bouwens et al.
(2015) and our models use the same observational information, the
comparison between them quantifies the systematic errors of using
the Meurer et al. (1999) relation with respect to correcting the dust
extinction. We note that all our models suggest bluer intrinsic UV
continuum slopes than the one used in Meurer et al. (1999) as shown
in Fig. 1. Fig. 7 also illustrates that the best-fitting results of M-DTG

MNRAS 489, 1357–1372 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/1/1357/5548814 by Australian N
ational U

niversity user on 30 January 2020



1368 Y. Qiu et al.

Figure 9. Predicted cosmic SFRD at z ∼ 4–7. Blue, orange, and green
lines are estimated from the best-fitting M-SFR (Section 3.1.1), M-DTG
(Section 3.1.2), and M-GCD (Section 3.1.3), respectively. The dust optical
depths in the three models are linked to the SFR, DTG ratio, and GCD.
Solid lines are the SFRD of all model galaxies, whilst the results with a
magnitude cut MUV < −17 are shown as dashed lines. Black data points
are observations from Bouwens et al. (2015). Their dust corrections are
derived by the CMRs of Bouwens et al. (2014) and the Meurer et al. (1999)
relation. Purple triangles with errorbars show the measurements of Driver
et al. (2018), using the energy balance SED-fitting code MAGPHYS (da Cunha
et al. 2008).

Table 3. Tabular data of predicted cosmic SFRD for the three different
dust models. These values are plotted in Fig. 7 and are in a unit of
log10(ρSFR/( M� yr−1 Mpc−3)).

z All galaxies MUV < −17
M-SFR M-DTG M-GCD M-SFR M-DTG M-GCD

4 −1.04 −1.24 −1.28 −1.07 −1.29 −1.32
5 −1.19 −1.44 −1.44 −1.25 −1.51 −1.52
6 −1.38 −1.62 −1.64 −1.46 −1.72 −1.72
7 −1.56 −1.78 −1.83 −1.73 −1.93 −1.97

and M-GCD have shallower IRX–β relations. Thus, compared with
the Meurer et al. (1999) relation, the dust extinction in these two
models is stronger for bluer galaxies but weaker for redder galaxies.
On the other hand, the dust attenuation is stronger for all galaxies
in the best-fitting M-SFR. It can be seen from Fig. 9 that the cosmic
SFRD of the best-fitting M-DTG and M-GCD are consistent with
those of Bouwens et al. (2015), whilst the results of the best-fitting
M-SFR is roughly a factor of 2 higher. We also compare our results
with Driver et al. (2018). Their dust-corrected SFRs are derived
from the energy balance SED-fitting code MAGPHYS (da Cunha et al.
2008). Better consistency is found between their measurements and
our best-fitting models of M-DTG and M-GCD, given the size of the
errorbars on those points. Overall, Fig. 9 suggests that uncertainty
in the dust relations introduces at least a factor of 2 systematic error
into the inferred cosmic SFRD at z � 6.

8 SU M M A RY

This work investigates the IRX–β relation and cosmic SFRD at
z ∼ 4–7 by combining the MERAXES semi-analytic galaxy formation
model (M16; Qin et al. 2017) and the Charlot & Fall (2000) dust
attenuation model. The supernova feedback model of MERAXES is

updated using results from previous studies (Muratov et al. 2015;
Hirschmann et al. 2016; Cora et al. 2018), which aim to reproduce
the redshift evolution of the mass–metallicity relation. We introduce
three different parametrizations of the dust optical depths, which
are related to the star formation rate (M-SFR), dust-to-gas ratio (M-
DTG), and gas column density (M-GCD), respectively. These lead
to five free parameters in each dust model in additional to those in
MERAXES.

The determinations on not only the dust parameters but also the
MERAXES free parameters constitute the primary part of this work.
For galaxy formation parameters, we focus on the star formation
efficiency, critical mass, mass loading factor, and supernova cou-
pling efficiency. We adopt a Bayesian approach, calibrating these
parameters against the UV LFs of Bouwens et al. (2015) and CMRs
of Bouwens et al. (2014) at z ∼ 4–7. The posterior distribution of
these parameters is estimated using multimodal nested sampling
(Feroz et al. 2009). We find that these observations can be fit
extremely well by all the three dust models. However, the preferred
parameter ranges are quite different among the three dust models.
Our analysis indicates that the combination of the LFs and CMRs
can put strong constraints on a given dust attenuation model, since
the model is required to reproduce the shape of both observations.
The differences in our results are due to the different assumptions
of the dust models, which results in different relations between UV
dust attenuation and intrinsic UV magnitude.

We then demonstrate the predictions of our calibration results.
Using energy balance arguments, we estimate the IRX for each
model galaxy. We find that the predicted IRX–β relations are quite
different from the Meurer et al. (1999) relation, and contain large
intrinsic scatter, which might explain the current discrepancy among
several high-redshift observations (e.g. Capak et al. 2015; Álvarez-
Márquez et al. 2016; Bouwens et al. 2016; Barisic et al. 2017;
Fudamoto et al. 2017; Koprowski et al. 2018). We also confirm
the correlation between the intrinsic scatter and sSFR. This finding
is consistent with other theoretical studies (Popping et al. 2017b;
Safarzadeh et al. 2017; Narayanan et al. 2018; Cousin et al. 2019a).
Secondly, we present model predictions for the cosmic SFRD, and
compare these with the observations of Bouwens et al. (2015) and
Driver et al. (2018). The difference among the three dust models
implies at least a factor of 2 systematic uncertainty in the observed
SFRD when corrected using the Meurer IRX–β relation.

This work has simultaneously constrained the free parameters
of a semi-analytic galaxy formation model and additional dust
parameters using observations of UV properties. Within a Bayesian
framework, our approach establishes a more direct connection
between the model and observations despite the complexity. This
approach is particularly useful for studies at high redshifts where
UV properties are the most robust observables. This work could
be further improved by explicitly modelling the dust evolution
(e.g Mancini et al. 2016; Popping, Somerville & Galametz 2017a;
Dayal & Ferrara 2018), which might reduce the systematic uncer-
tainties due to different assumptions in the dust models. Additional
free parameters (e.g. the time-scale of dust growth) in such dust
evolution models could also be constrained using our methodology.
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APPENDI X: POSTERI OR D I STRI BUTI ONS

This appendix illustrates the posterior distributions of M-SFR, M-
DTG, and M-GCD in Figs A1–A3, respectively. These results are
obtained using the methodology introduced in Section 4.

Figure A1. Posterior distribution of the galaxy and dust parameters for MERAXES with a SFR-dependent dust model. We refer the model to as M-SFR,
which is described in Section 3.1.1. The posterior distribution is a function of star formation efficiency αSF, critical mass normalization �SF, mass loading
factor η0, supernova energy coupling efficiency ε0, optical depth normalizations of interstellar media τ ISM

SFR and birth cloud τBC
SFR, optical depth scaling of

SFR γ SFR, reddening slope n, and optical depth redshift dependence a. See also Table 2 for a summary of these parameters. Diagonal panels show the one
parameter marginalized distributions. In the off-diagonal panels, solid black lines are the 68 per cent and 95 per cent contours of the two parameter marginalized
distributions. Colour points reflect the values of the posterior distribution, and the maximum is normalized to unity. The point that has the highest value is
chosen to be best-fitting results, which is specified by the dashed lines. Their values are listed in Table 2.
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Figure A2. Posterior distribution of the galaxy and dust parameters for MERAXES with a DTG ratio–dependent dust model. The model is referred to as M-DTG
and described in Section 3.1.2. The posterior distribution is a function of star formation efficiency αSF, critical mass normalization �SF, mass loading factor η0,
supernova energy coupling efficiency ε0, optical depth normalizations of interstellar media τ ISM

DTG and birth cloud τBC
DTG, slope of the DTG ratio γ DTG, reddening

slope n, and optical depth redshift dependence a. See also Table 2 for a summary of these parameters. Diagonal panels show the one parameter marginalized
distributions. In the off-diagonal panels, solid black lines are the 68 per cent and 95 per cent contours of the two parameter marginalized distributions. Colour
points reflect the values of the posterior distribution, and the maximum is normalized to unity. The point that has the highest value is chosen to be best-fitting
results, which is specified by the dashed lines. Their values are listed in Table 2.
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Figure A3. Posterior distribution of the galaxy and dust parameters for MERAXES with a GCD ratio–dependent dust model. The model is referred to as
M-GCD and described in Section 3.1.3. The posterior distribution is a function of star formation efficiency αSF, critical mass normalization �SF, mass loading
factor η0, supernova energy coupling efficiency ε0, optical depth normalizations of interstellar media τ ISM

GCD and birth cloud τBC
GCD, optical depth scaling of gas

mass γ GCD, reddening slope n, and optical depth redshift dependence a. See also Table 2 for a summary of these parameters. Diagonal panels show the one
parameter marginalized distributions. In the off-diagonal panels, solid black lines are the 68 per cent and 95 per cent contours of the two parameter marginalized
distributions. Colour points reflect the values of the posterior distribution, and the maximum is normalized to unity. The point that has the highest value is
chosen to be best-fitting results, which is specified by the dashed lines. Their values are listed in Table 2.
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