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SUMMARY

Fossil pollen and spores recovered from core chips of the Biloela Formation between 
41.5 and 219.0 m in GSQ Monto 5:

•	 Confirm that freshwater, lacustrine sediments infilling the inland Biloela Basin 
c. 110 km southwest of Gladstone are a correlative of the oil-shale-rich Rundle 
Formation in the Narrows Graben near Gladstone on the central Queensland 
coast.

•	 Provide, within the resolution achieved by using palynostratigraphic-dating 
criteria, the first known evidence that the upper part of the Biloela Formation 
is Late Eocene–Early Oligocene. At present, the strongest evidence that the 
section is Late Eocene is the close similarity of the microflora to Late Eocene 
assemblages in the offshore Gippsland Basin in southeastern Australia.

•	 An Early (earliest?) Oligocene age is equally probable if age-range data from 
the Murray Basin, southeastern Australia, are used.

Differences in the age range of fossil species shared with southeastern Australia 
emphasise caution is needed when using zonation schemata developed for the 
continental margin Gippsland Basin and/or epicontinental Murray Basin to date 
Cenozoic deposits in central Queensland.

INTRODUCTION

Sedimentary basins, which include thick oil-shale deposits of marine (tasmanite) 
to freshwater lacustrine (lamosite, torbanite) algal origin and range in age from 
Cambrian to Cenozoic, occur throughout eastern Australia, from northern Tasmania to 
northwestern Queensland (Geoscience Australia & ABARE, 2010; Pope, 2013).

A number of these deposits have been exploited since the mid-nineteenth Century and 
up to c. 1947 provided about 3% of Australia’s petroleum consumption. Since reserves 
are estimated to be >13 billion barrels (Pope, 2013), the deposits remain an important 
resource of potentially recoverable unconventional hydrocarbons, as-and-when 
more environmentally acceptable ways of exploitation are developed. For example, 
between 1999 and 2004, 1.54 million barrels of oil were extracted from the Cenozoic 
Stuart oil-shale deposit in the Narrows Graben, near Gladstone on the central coast of 
Queensland (Figure 1).

Other Cenozoic basins whose infills accommodate oil shale and other organic-rich 
facies include:

•	 the Lowmead Graben 70 km to the south, Yaamba Basin 35 km to the 
northwest, Herbert Creek Basin 80 km to the north-northwest, and the 
Duaringa Basin 110 km to the west of Rockhampton respectively
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•	 the Hillsborough Basin 100 km to the northwest of Mackay

•	 the Nagoorin Graben 70 km to the southeast, and the Redbank and Biloela 
Basins 100 km to the southwest of Gladstone (Figure 1).

Lacustrine depositional environments, which allowed the generation of hydrocarbons 
in the Narrows Graben and other Cenozoic basins in central Queensland, also 
promoted the sporadic preservation of microfloras that provide (as in this study) the 
basis for dating Cenozoic sequences in Queensland where other forms of age control 
are unavailable.

BILOELA BASIN

This report presents and discusses fossil pollen and spores (miospores) preserved 
in lignitic facies intersected in GSQ Monto 5, a stratigraphic bore hole [24° 02’ S, 
150° 17’ E; total depth 389.8 m] drilled by the Geological Survey of Queensland 
(GSQ) in the central part of the c. 120 km long/30 km wide Biloela Basin, c. 20 km 
north-northwest of the Jambin township (Noon, 1982). Adjacent basins include the 
Redbank Basin to the west, the Yaamba Basin to the north, and the Narrows Graben to 
the east (Figure 1).

AIMS

The primary aim of the study was to date the Biloela Formation, a presumed 
correlative of the Rundle Formation in the Narrows Graben, for which Foster (1979) 
and Dettmann & Clifford (2000) have inferred a palynostratigraphic Late Eocene to 
Early Oligocene age for the lower part of the formation.

A subsidiary aim was to investigate foliar (leaf and cuticle) remains preserved in the 
Biloela Formation.

GSQ MONTO 5

GSQ Monto 5 intersected 27.2 m of presumed Quaternary muds, sand and gravels, 
which are underlain by the Biloela Formation, embracing 335 m of freshwater 
mudstones, siltstones and sandstones, laminated to thinly-bedded oil shales and 
lignitic units, and minor limestone; at the base of the formation, brown oil shale 
and dark grey to black lignite, from 374 m to 369 m, is overlain by an 11.7 m sill of 
basalt at 357.3 m (Noon, 1982; Figures 1–2). The putative Paleogene lacustrine to 
fluvial section overlies 15.8 m of green olivine basalt, which may be intrusive (i.e., 
it is younger than the Biloela Formation) or, alternatively, a possible correlative of 
an independently dated (48 Ma) dolerite to the south of the basin (see Cohen et al., 
2013). It is thus unknown if any older ‘Paleogene’ sediments underlie the basalt at 
the base of GSQ Monto 5 (Withnall et al., 2009). Basement to the Biloela Basin 
comprises Late Devonian – Permian Yarrol Province elements, Permian rocks of 
the Gogango Thrust Zone, and Late Triassic sediments of the Callide Basin (Jell & 
McKellar, 2013).
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PREVIOUS STUDIES

Most of the en echelon graben and half-graben structures in central Queensland are 
believed to have developed in response to an extensional tectonic regime initiated 
during opening of the Coral Sea in the Early Cretaceous and which continued into the 
Late Paleogene (see references in Cook & Jell, 2013). For the same reason, estimates 
of the geological age of the lacustrine infills vary from Middle – Late Eocene in the 
Lowmead and the Yaamba Basins (Foster, 1982; Dudgeon, 1982, 1983; Wood, 1986) 
to Middle Eocene to Oligocene in the Hillsborough Basin (Hekel, 1972; Foster, 1982), 
Middle – Late Eocene and Oligo–Miocene for the lower and upper parts respectively 
of the succession in the Duaringa Basin (Foster, 1980), and Late Eocene to Early 
Oligocene for the Narrows Graben and lower part of the sequence in the Casuarina 
Basin (Foster, 1980; Noon, 1980; Dettmann & Clifford, 2000).

In most instances, the palynostratigraphic age determinations are based on, or have 
been constrained by, 1970’s vintage, age-range data from the Gippsland Basin, 
southeastern Victoria (cf. Hekel, 1972; Stover & Partridge, 1973; Foster, 1979).

The lacustrine sequence in the Biloela Basin (Biloela Formation) is deeply weathered 
and laterised, and the oxidation of organic matter has been cited as a reason for the 
‘lack of recoveries of palynofloras’ (Cook & Jell, 2013, page 591). As far as we 
are aware, the results presented in this report are the first microfossil evidence that 
tests the assumed Eocene age for the Biloela Formation (cf. Grimes, 1980; Noon & 
Grimes, 1982).

PALYNOSTRATIGRAPHY

Five core chips of lignitic and other organic-rich strata in the Biloela Formation were 
collected (RJC) from GSQ’s Exploration Data Centre at Zillmere, Brisbane. Three 
of these samples, from depths of 41.5 m, 169.05 m and 219.0 m, yielded workable 
numbers of miospores in organic extracts dominated by plant detritus (palynodebris) 
in which the cellular structure was mostly well-preserved (structured terrestrial 
kerogen). Preservation was adequate to good, but many palynomorphs were crumpled 
and/or partially obscured by palynodebris. The remaining two samples, from 98.1 m 
and 217.9 m, yielded little more than silt and very fine sand (micro-quartz).

All samples were processed for plant microfossils by Core Laboratories (Australia) 
Pty Ltd, using a combination of standard chemical and microfiltration techniques 
(see Traverse, 1988). Estimates (MM) of the relative abundance of miospores able to 
be identified to a fossil genus (morphogenus) or species (morphospecies) are given 
as a percentage of the total spore and pollen count in Appendix 1. Morphotaxa with 
relative abundances of less than 1%, or recorded outside the total count, are denoted 
by ‘+’ and ‘x’ respectively. The miospore recovery from the 169.05 m sample was 
below the minimum required for statistically robust estimates, and data for this sample 
are given as raw counts (in parentheses). Nearest living relatives (NLRs) of the fossil 
taxa are given in parentheses in the text and in Appendix 1.
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Age-diagnostic miospores are illustrated in Plate 1. A selection of unidentified 
morphotypes, including several that are not known to have been recorded previously, 
is illustrated in Plate 2.

AGE CONTROL

Estimates of the maximum and minimum age of the productive samples from GSQ 
Monto 5 are based primarily on the first occurrence (First Appearance Datum: FAD) 
and last occurrence (Last Appearance Datum: LAD) of palynostratigraphically useful 
morphospecies in the two sedimentary basins in Australia where deposition is known 
to have been quasi-continuous during the Eocene to Miocene, namely the offshore 
Gippsland Basin and epicontinental Murray Basin (Macphail, 1999; Partridge, 1999, 
2006) in southeastern Australia.

Where possible, the zonation criteria used to subdivide Late Paleogene – Early 
Neogene time in southeastern Australia have been constrained by: (a) age-range data 
from the Capricorn Basin, off the central coast of Queensland (cf. Hekel, 1972; Foster, 
1982); and (b) presence/absence data from central Queensland (cf. Foster, 1980, 1982; 
Wood, 1986; Beeston, 1994; Dettmann & Clifford, 2000, 2003; Macphail & Gibson, 
2014).

We recognize that this approach necessarily assumes that the evolution and/or 
migration of plant taxa and their subsequent extinction were broadly ‘synchronous’ 
along the eastern margin of Australia—an assumption that is improbable for 
geographic, as well as ecological reasons (Macphail, 2007).

Several Cenozoic oil-shale deposits include volcanic interbeds, but, so far, the 
only known test of the reliability of the Gippsland and Murray Basin zonations in 
Queensland is a self-funded (MM) palynostratigraphic analysis of a claystone between 
two lavas dated by 40Ar/39Ar to 23 Ma (Oligocene–Miocene boundary) at Toowoomba 
at 649 m elevation on the eastern highlands in southeastern Queensland (Macphail 
& Gibson, 2014). How relevant the Toowoomba data are to the coastal-lowland 
sequences of the cited basins is unclear.

INFERRED AGE OF THE BILOELA FORMATION

Inferred ages for the three productive samples from the Biloela Formation (with NLRs 
in parentheses) are:

41.5 m

Maximum age: The maximum age limit for the sample at 41.5 m is inferred to be 
Late Eocene, based on FAD data for Polypodiaceoisporites retirugatus (Pteris), 
Anacolosidites sectus (Anacolosa), Perfotricolpites digitatus (Convolvulaceae), 
Reevesiapollis reticulatus (Ungeria) and Tricolpites thomasii (Loranthaceae). 
The same maximum age is supported by: (a) occurrences of Malvacearumpollis 
mannanensis (Malvaceae) and Corsinipollis cf. epilobioides (Onagraceae), assuming 



	 Queensland Geological Record  2014/01	 7

	

the FADs inferred by Foster (1980) and Wood (1986) are correct; and (b) the absence 
of species whose LADs occur in the Middle Eocene, Lower Nothofagidites asperus 
Zone/ Zone Equivalent in the Gippsland and Murray Basins, namely Proteacidites 
asperopolus and other distinctive extinct Proteaceae species, such as Proteacidites 
grandis and P. tuberculiflormis (criteria that assume the parent plants ranged 
northwards into Queensland).

Preferred age: The preferred age (low confidence) is Late Eocene, based on the 
similarity of the microflora at 41.5 m to Middle Nothofagidites asperus Zone/Zone 
Equivalent microfloras in the Gippsland and Murray Basins. However, it is recognized 
that this age is based on the assumptions that (a) Corsinipollis cf. epilobioides and 
Polyorificites oblatus first appeared earlier in central Queensland than in southeastern 
Australia; and (b) morphospecies such as Malvacipollis diversus (this study) and 
Propylipollis biporus (Yaamba Basin), which last occured in the Middle Eocene, 
Lower Nothofagidites asperus Zone in the Gippsland Basin, also have extended 
ranges in central Queensland. An Early Oligocene age is equally probable if age-range 
data from the Murray Basin are used as the primary criteria for the age determination 
(see below).

Minimum age: The minimum age limit is more difficult to infer since times of species 
extinctions are known to be diachronous between, and occasionally within, the larger 
sedimentary basins (see Macphail, 2007). On present indications, the sample at 41.5 m 
is unlikely to be younger than Early (earliest?) Oligocene, based on the occurrence 
of Anacolosidites sectus, Santalumidites cainozoicus (Santalaceae), Tricolpites 
thomasii and (considering Murray Basin data) Corsinipollis cf. epilobioides and 
Malvacearumpollis mannanensis. The sample is highly unlikely to be younger 
than Late Oligocene to late Early Miocene, based on the absence of Dryadopollis 
retequetrus, Triporopollenites cf. bellus and T. bellus, all of which occur in Miocene 
deposits in southeastern-central Queensland.

169.05–219.0 m

Microfloras recovered from the samples at 169.05 m and 219.0 m lack age-diagnostic 
taxa, but otherwise resemble those recorded at 41.5 m in terms of palynological 
dominance by Haloragacidites harrisii (Casuarinaceae) and the presence of 
uncommon to very rare, described and undescribed morphospecies (Appendix 1). 
Examples include the diverse striate-pseudostriate morphotypes variously referred 
to Ailanthipites, Simpsonipollis or Striatricolporites, Proteacidites vargexinus and 
quadra- and triporate specimens of a pollen type referred to Triorites orbiculatus 
by Foster (1982). For this reason, the interval between 169.05 m and 219.0 m also 
is suggested to be Late Eocene (very low confidence). The absolute maximum age 
of the interval is Middle Eocene, based on Nothofagidites falcatus [Nothofagus 
(Brassospora) sp.].
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Polypodiaceoisporites 
retirugatus (41.5 m)

Anacolosidites sectus (41.5 m)

Corsinipollis cf. epilobioides 
(41.5 m)

Malvacearumpollis mannanensis 
(41.5 m) 

Perfotricolpites digitatus 
(41.5 m)

Polyorificites oblatus (41.5 m) Proteacidites pachypolus (41.5 m)

Reevesiapollis reticulatus 
(41.5 m)

Santalumidites cainozoicus 
(41.5 m)

Tricolpites thomasii (41.5 m)

Plate 1: Age-diagnostic morphospecies
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Morphospecies Eocene earliest 
Oligocene

Oligocene – late Early 
Miocene

Early to Late Miocene
Middle Late

Nothofagidites asperus Proteacidites 
tuberculatus

Triporopollenites bellus
Lower Middle Upper

Anacolosidites sectus
Corsinipollis cf. octo-noctis (no record)
Cyatheacidites annulatus
Dryadopollis retequetrus
Malvacearumpollis mannanensis (no record)
Nothofagidites falcatus
Perfotricolpites digitatus (no record)
Polyorificites oblatus
Polypodiaceoisporites retirugatus (no record)
Proteacidites asperopolus
Proteacidites pachypolus (inconsistent)
Reevesiapollis reticulatus (very rare)
Sapotaceoidaepollenites rotundus (inconsistent)
Santalumidites cainozoicus
Tricolpites thomasii
Triorites magnificus
Triporopollenites bellus

Gippsland Basin (after Stover & Partridge, 1973; Partridge, 1999; A.D. Partridge & M.K. Macphail, unpublished records).

Murray Basin (after Macphail, 1999).

Morphospecies Eocene earliest 
Oligocene

Oligocene – late Early 
Miocene

Early to Late 
MioceneMiddle Late

Nothofagidites asperus Proteacidites 
tuberculatus

Triporopollenites 
bellusLower Middle Upper

Anacolosidites sectus
Corsinipollis cf. epilobioides
Cyatheacidites annulatus
Dryadopollis retequetrus
Malvacearumpollis mannanensis
Nothofagidites falcatus
Perfotricolpites digitatus
Polyorificites oblatus
Polypodiaceoisporites retirugatus
Proteacidites asperopolus
Proteacidites pachypolus
Reevesiapollis reticulatus
Sapotaceoidaepollenites rotundus
Santalumidites cainozoicus ?
Tricolpites thomasii
Triorites magnificus
Triporopollenites bellus

Southeast Queensland (Foster, 1980; Wood, 1986; Beeston, 1994; Dettmann & Clifford, 2000, 2003; Macphail & Gibson, 2014).

Morphospecies Eocene earliest 
Oligocene

Oligocene – late Early 
Miocene

Early to Late 
MioceneMiddle Late

Anacolosidites sectus

no data

Corsinipollis cf. octo-noctis
Cyatheacidites annulatus (no record)

Dryadopollis retequetrus

Malvacearumpollis mannanensis
Nothofagidites falcatus
Perfotricolpites digitatus

Polyorificites oblatus

Polypodiaceoisporites retirugatus
Proteacidites asperopolus (no record)
Proteacidites pachypolus
Reevesiapollis reticulatus
Sapotaceoidaepollenites rotundus
Santalumidites cainozoicus
Tricolpites thomasii
Triorites magnificus (no record)
Triporopollenites bellus           cf.

Figure 3: Comparison of range data for eastern Australia.
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FOSSIL FOLIAR REMAINS

Samples from 169.05 m and 219.0 m yielded more than 10 cuticle taxa. These 
included the cycad Bowenia, an unidentified conifer (Podocarpaceae?), one 
Proteaceae, and at least three morphospecies of Lauraceae. Bowenia is currently 
restricted to northeastern Queensland (Hill, 1978, 1998), and this observation, in 
addition to the presence of diverse Lauraceae, is considered to be evidence of a warm 
and wet past climate in the region.

DISCUSSION AND CONCLUSIONS

A comparison of age-range data from the two major sedimentary basins in 
southeastern Australia and correlative sequences in southeastern-central Queensland 
(Figure 3) confirms that:

•	 A number of important zone index morphospecies used to subdivide Eocene 
and Oligocene time in the Gippsland and Murray Basins are unlikely to 
have ranged as far north as Queensland, e.g., Triorites magnificus and 
Cyatheacidites annulatus. Triporopollenites bellus is a known exception.

•	 A number of the morphospecies found in the Biloela Basin and, for example, 
the Narrows Graben have relatively short time distributions in the Gippsland 
Basin compared to the Murray Basin, e.g., Proteacidites pachypolus. One 
variant of this morphospecies, found at 41.5 m in GSQ Monto 5, has a coarse 
reticulate ornamentation that is intermediate between Proteacidites pachypolus 
and P. nasus, a related morphospecies that ranges no higher than the Late 
Eocene in the Gippsland Basin (Middle Nothofagidites asperus Zone) and 
Murray Basin (Middle Nothofagidites asperus Zone Equivalent).

•	 Several long-ranging morphospecies in central Queensland have not 
been recorded in the Gippsland Basin, e.g., Corsinipollis cf. epilobioides 
and Malvacearumpollis mannanensis. Foster (1982) has inferred these 
morphospecies first appeared in southeastern-central Queensland in the Late 
Eocene, i.e., earlier than in the Murray Basin.

Reasons why the age ranges (time distributions) of morphospecies vary along the 
eastern margin of the continent are likely to include:

1.	 Latitude: There is c. 17° difference in latitude between Gippsland Basin (c. 38°S) 
and Cenozoic basins in central Queensland (c. 21°S).

Latitudinal thermal gradients during the Late Eocene, when the two regions were 
at paleolatitudes of respectively 60°S and 45°S, were relatively low compared to 
the present (Figure 4). Against this, the Gippsland Basin would have been more 
exposed than the central Queensland basins to the cooling events in the proto-
Southern Ocean, following rifting between Antarctica and Australia during the 
Middle to Late Eocene and the submergence of the South Tasman Rise to abyssal 
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depths during the Eocene–Oligocene transition. This transitional interval coincides 
with the initial development of the Circum-Antarctic Current and onset of major 
glaciation in Antarctica (Exon et al., 2004, figure 4).

2.	 Catchment size: The relatively high diversity of Late Paleogene microfloras in the 
Murray Basin compared to those in the Gippsland Basin and central Queensland 
basins almost certainly reflects the very large size of this basin (300,000 km2) 
and the diversity of marginal-marine, coastal-plain, fluvio-lacustrine, fluvial and 
upland habitats within the catchment.

Catchment size almost certainly is mirrored by the extended time distribution of 
morphospecies shared with the Gippsland Basin and, on the more limited data 
available, southeastern and central Queensland (Figure 4).

3.	 Depositional environment: As for all ancient swamp (coal, lignite) successions, 
microfloras recovered from the oil-shale deposits are dominated by miospores of 
the relatively few plants that are tolerant of seasonally-to-perennially-high water-
table levels. Examples in this study include ferns, a member of the lily family 
(Liliacidites bainii) and the unknown plants producing Proteacidites vargexinus 
and Rhoipites alveolatus. Shifts in palynological dominance, e.g., in Nothofagus 
(Brassospora) spp. and Casuarinaceae (Gymnostoma?), between 219.0 m and 
41.5 m depth in GSQ Monto 5 are likely to reflect long-term trends in water-table 
level.

For the same reason, age-diagnostic-pollen taxa produced by dryland plants would 
be expected to be much less common in lacustrine deposits, and their sporadic 
occurrence is likely to reflect rare, fortuitous depositional events. Examples in the 
central Queensland basins, based on their present-day ecology, include three of 
the age-diagnostic morphospecies utilised in this study, specifically Anacolosidites 
sectus (whose NLR is the rainforest genus Anacolosa, now restricted to the Old 
World Tropics), Tricolpites thomasii (an extinct member of the mistletoe family 
Loranthaceae), and Reevesiapollis reticulatus [whose NLR (Ungeria) is endemic 
to Norfolk Island].

4.	 Undetected reworking/caving: A recent review of the Pliocene Calivil Formation 
in the Murray Basin (Macphail, 2013) revealed reworking of older microfloras 
into younger sediments, although this was difficult to verify in many boreholes 
where detailed bore-log evidence is lacking.

Since the bulk of the samples on which the Murray Basin zonation (Macphail, 
1999) was based were cuttings (which are equally subject to downhole caving 
of younger miospores), it is possible that the chronologic range of some rare but 
distinctive morphospecies is more restricted than implied by their stratigraphic 
distribution in this basin. Possible examples include Anacolosidites sectus 
and Tricolpites thomasii, occasional specimens of which are found in earliest 
Oligocene (Upper Nothofagidites asperus Zone Equivalent) sediments in the 
basin.
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Despite the chronostratigraphic uncertainties, the age determination for the sample at 
41.5 m in GSQ Monto 5 provides compelling evidence that the Biloela Formation is a 
correlative of the Wattle Creek seam of the Rundle Formation in the Narrows Graben 
(cf. Foster, 1979) and that the accumulation of lacustrine sediments in the Biloela 
Basin and Narrows Graben (and adjacent tectonic structures) occurred under similar 
climatic conditions (Figure 4) and possibly the same tectono-sedimentary regime. 
Further evidence that sediments in the two formations are the same age is that the 
Bowenia and Proteaceae cuticles recorded here from the Biloela Formation appear to 
be identical to taxa reported from the Rundle Formation (Rowett, 1986).

Northern Hemisphere ice sheets

(& Holocene)

?

Antarctic ice sheets

Figure 4: Trends in Paleogene–Neogene paleotemperature (modified from Zachos et al., 2008, figure 2; 
with permission from Macmillan Publishers Ltd., copyright 2008).
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trilete spore cf. Baculatisporites scabridus (219.0 m) hilate trilete spore cf. 
Crassiretitriletes 

vanraadshoovenii (219.0 m)

 Polycolpites sp. aff. Psilastephanocolpites micus (41.5 m)

Proteacidites cf. crassus (41.5 m) Rhoipites sp. B

Triorites cf. orbiculatus 
(41.5 m)

Triorites cf. orbiculatus 
(217.9 m)

Triorites cf. orbiculatus 
(219.0 m)

Plate 2: Unidentified and/or undescribed morphotypes
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APPENDIX 1

Relative abundance and stratigraphic distribution of fossil miospores  
in GSQ Monto 5, 41.5 m–219.0 m
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FOSSIL TAXON NLR 41.5 m 169.05 m 217.9 m 219.0 m

CRYPTOGAMS

Baculatisporites disconformis Hymenophyllaceae + x x

Ceratosporites equalis Lycopodiales x

Crassiretitriletes vanraadshoovenii Lygodium x

Cyathidites australis/minor includes Cyathea + x

Cyathidites splendens Acrostichum x +

Foveotriletes balteus Lycopodiaceae x

Gleicheniidites Gleicheniaceae +

Laevigatosporites major includes Blechnaceae 20% (2) 2%

Latrobosporites cf. crassus Lycopodiales +

Polypodiisporites spp. includes Polypodiaceae + x

cf. Rouseisporites? sp. of Foster, 
1982

Hepaticae 2% +

Verrucosisporites kopukuensis 
(monolete)

Lygodium? +

unidentified trilete spores unknown 1% x 11%

GYMNOSPERMS

Araucariacites australis Araucaria + (1)

Dacrycarpites australiensis Dacrycarpus + x

Dacrydiumites florinii Dacrydium + (1) x

Dilwynites granulatus Agathis/Wollemia

Ephredripites notensis Ephedra x

Microalatidites palaeogenicus Phyllocladus +

Microcachryidites antarcticus Microcachrys x

Phyllocladidites mawsonii Lagarostrobos x

Phyllocladidites reticulosaccatus Lagarostrobos x

Podosporites microsaccatus complex Microcachrys? +

Podocarpidites spp. Podocarpus/Prumnopitys 1% (2) +

ANGIOSPERMS

Ailanthipites-Striatricolporites spp. Anacardiaceae + (1) +

Anacolosidites sectus Anacolosa x

Arecipites Arecaceae? +

Banksieaeidites cf. arcuatus Banksia +

Beaupreaidites elegansiformis Beauprea x

Canthiumidites sp. Randia? x

Compositoipollenites sp. Loranthaceae? +

Corsinipollis cf. epilobioides Onagraceae 2%

Cupanieidites orthoteichus Cupanieae + x +

Cupanieidites sp. A of Foster, 1982 Cupanieae x (1)

Cyperaceaepollis spp. Cyperaceae 6%

Haloragacidites harrisii Casuarinaceae 20% (6) 58%

Liliacidites bainii complex Liliaceae 22% x x
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FOSSIL TAXON NLR 41.5 m 169.05 m 217.9 m 219.0 m

Malvacearumpollis mannanensis Malvaceae x

Malvacipollis diversus Austrobuxus x x

Malvacipollis subtilis Euphorbiaceae 1% x x

Milfordia homeopunctata Anarthriaceae + +

Myrtaceidites parvus-mesonesus Myrtaceae + (5) +

Myrtaceidites verrucosus  
f. verrucosus

Myrtaceae (Myrteae) x +

Nothofagidites brachyspinulosus Noth. (Fuscospora) spp. 1% (4) +

Nothofagidites emarcidus-heterus 
complex

Noth. (Brassospora) spp. 11% x x

Nothofagidites falcatus Nothofagus (Brassospora) sp. 1% x

Nothofagidites vansteenisii complex Myrtaceae (Myrteae) +

Perfotricolpites digitatus Convolvulaceae x

Periporopollenites demarcatus Trimeniaceae? x

Poluspissusites sp. Goodeniaceae? x x

Polyorificites oblatus unknown x

Polycolpites sp. cf. Psilastephanocol-
porites micus

unknown

Propylipollis annularis Xylomelum x

Proteacidites cf. adenanthoides extinct Proteaceae x

Proteacidites differentipolis extinct Proteaceae x

Proteacidites kopiensis extinct Proteaceae x

Proteacidites pachypolus fine 
reticulate var.

extinct Proteaceae + x x

Proteacidites pachypolus coarse 
reticulate var.

extinct Proteaceae x x

Proteacidites vargexinus extinct Proteaceae x (20) 7%

Proteacidites spp. Proteaceae + x 1%

Reevesiapollis reticulatus Ungeria x

Rhoipites alveolatus unknown 4% (21) 8%

Santalumidites cainozoicus Santalaceae x

Sapotaceoidaepollenites latizonatus Apocynaceae (5)

Sapotaceoidaepollenites rotundus Apocynaceae (1) x

Tricolpites thomasii Loranthaceae x

Tricolporites adelaidensis unknown +

Tricolporites valvatus unknown x x x

Rhoipites/Tricolporites spp. unknown x (13) 7%

Triorites sp. cf. T. orbiculatus unknown x (1) (2) x

POLLEN SUM 500 84 2 382
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