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Abstract— Accurate online estimation of the environment
structure simultaneously with the robot pose is a key capability
for autonomous robotic vehicles. Classical simultaneous local-
ization and mapping (SLAM) algorithms make no assumptions
about the configuration of the points in the environment,
however, real world scenes have significant structure (ground
planes, buildings, walls, ceilings, etc..) that can be exploited. In
this paper, we introduce meta-structural information associated
with geometric primitives into the estimation problem and
analyze their effect on the global structural consistency of
the resulting map. Although we only consider the effect of
adding planar and orthogonality information for the estimation
of 3D points in a Manhattan-like world, this framework can
be extended to any type of geometric, kinematic, dynamic or
even semantic information. We evaluate our approach on a
city-like simulated environment. We highlight the advantages
of the proposed solution over SLAM formulation considering
no prior knowledge about the configuration of 3D points in the
environment.

I. INTRODUCTION

In order to perform autonomous tasks such as surveying
and inspection, search and rescue within man-made envi-
ronments, autonomous driving in urban environments, and
reconnaissance, a robot must be able to simultaneously build
an accurate representation of the surroundings and localize
itself. Simultaneous localization and mapping (SLAM) and
structure from motion (SFM) algorithms are used for this
purpose. SLAM algorithms have to be run on-board the
robotic platform and provide a globally and structurally
consistent solution at every step. Building such consistent
maps is an essential capability for robots autonomously
navigating the environment and performing tasks. In the
SLAM community, there is no universally accepted notion of
global structural consistency [18]. Algorithms that are highly
accurate (minimizing residual errors) can still admit large
structural inconsistencies that contravene relatively simple
global geometric structure such as vertical walls, flat floors,
etc.. In particular, the returned map may drift very far from
the true global structure of the environment. We refer to such
a situation as the algorithm displaying poor global structural
consistency. Classical SFM and SLAM algorithms usually
make no assumptions on the structure of the scene being
analyzed [24]. In practice, however, these algorithms are
applied to scenes that contain significant structure that could
be exploited.
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The contribution of this paper is to explore the effect of
adding meta-structural information into the estimation prob-
lem, and evaluate the structural consistency of the results.
In particular, we exploit planar information applied to 3D
points that are known a-priori to lie on planar surfaces. We
also exploit plane orthogonality between detected planes.
The plane parameters are incorporated into the estimation
problem as additional random variables that are dependent
on the environment points, and/or other planes but are not
directly observed by the robot. We show that by utilizing
prior knowledge of the environment, more accurate and
globally consistent solutions can be obtained.

The remainder of this paper is structured as follows,
in the following section we discuss the related work. In
section III we describe the proposed approach for adding
prior spatial information. In section IV we introduce the
experimental setup, followed by the actual experimental
results and evaluations in section V. We summarize and offer
concluding remarks in section VI.

II. RELATED WORK

The earliest works on SLAM were based on the extended
Kalman filter (EKF) approach [3] [16] [2]. However, it has
been shown that filtering is inconsistent when applied to the
inherently non-linear SLAM problem [9]. One intuitive way
of formulating SLAM is to use a graph representation with
nodes corresponding to the random variables (robot poses
and/or landmarks in the environment) and edges representing
functions of those variables (typically measurement func-
tions). Lu and Milios [17] first proposed the graph-based
formulation of the SLAM problem in 1997. Once such a
graph is constructed, the goal is to find a configuration of
the nodes that is maximally consistent with the measure-
ments [7]. Approaching SLAM as a nonlinear optimization
on graphs has been shown to offer very efficient solutions to
moderate scale SLAM applications [8] [14]. Factor graphs,
such as the one in Fig.1, are graphical models that have been
used for representing the SLAM problem [5] [12] [11]. This
is due to the fact that in factor graphs the functions are made
explicit and such a bipartite graph is directly connected to
the solutions of the optimization problem [11].

One of the earliest works that consider adding geometrical
constraints to improve the quality of the reconstruction is
presented by Szeliski and Torr [24] where they hallucinate
additional point matches based on image homographies
which are either given directly or computed between a
collection of a-priori known co-planar points. Zucchelli et
al. [30] showed how linear constraints among feature points
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Fig. 1: Factor graph representation for SLAM problem.
Variable nodes include poses xi and point features l j. Factor
nodes corresponding to the odometric measurements oi in
blue, the point measurements zk in red and the prior p0 on
the first pose in black (best seen in color).

(e.g. co-linearity and co-planarity) can be incorporated in the
minimization process to improve the structure from motion
estimates from optical flow using least squares minimiza-
tion of the differential epipolar constraints. Several plane
parameterizations are used in the literature. Lee et al. [15]
use a graph formulation in combination with a spherical
parameterization of the planes to extract planes and use them
to correct odometry between consecutive frames. Another
approach presented by Triebel and Burgard [28], extracts
constraints from 3D range scans and uses them for pose
estimation in a graph-based SLAM framework. Another
common approach to represent a plane by four parameters is
to use its normal and distance to the origin. Trevor et al. [27]
uses this over-parameterized representation for a smoothing
solution. The over-parameterized formulation is also used
by [25] for real-time mapping, combining both mapping of
points and planes.

While some work has been done on using planar con-
straints for mapping, less work has been addressing a least-
squares SLAM estimation with planar constraints in the
literature. Most recently, De la Puente and Rodriguez-Losada
[4] presented an approach to perform landmark SLAM
optimization, along with different level structure detection
(points, segments, lines and circles) in an Expectation-
Maximization algorithm, where only the last robot pose and
the features belong to the graph. Kaess [10] also shows how
to formulate SLAM that directly estimates infinite planes
instead of the 3D landmarks in the environment. It uses
homogeneous plane parameterization with a corresponding
minimal representation for the optimization which is suitable
for use with NLS incremental solvers. Our work on the other
hand, estimates for both, structure points and planes, this
allows for 3D reconstruction of more realistic environments
where planar and nonplanar structures coexist.

III. PROBLEM FORMULATION

A. Graph-based SLAM problem formulation

In visual SLAM (e.g. where localization and mapping are
done using visual sensors) or SFM problems, the goal is
to estimate the 3D structure of the environment and the
camera poses that maximally satisfy a set of measurement
constraints [20].

It has been shown in the SLAM literature [6] [21] that
Gaussian noise models lead to computationally efficient
solutions. Recent advances in the field propose to formulate

the SLAM problem as a nonlinear least squares (NLS)
optimization. This is done over a set of variables; the cam-
era/robot poses x = {x0...xnx}, with xi ∈ se(3) and i ∈ 0...nx;
and the 3D points l = {l1...lnl} where l j ∈ IR3 and j ∈ 1...nl.
Together these variables constitute the state θ = [x, l] of a
size n = nx+nl of a classical landmark SLAM problem.

Two types of measurements, the odometry obtained by
robot’s proprioceptive sensors and the observations of the
landmarks in the environment obtained by processing the
images from an on-board camera are typically integrated into
a visual SLAM. Let fi(xi−1,xi) be the odometry model with
Σvi , odometry noise covariance matrix:

oi = fi(xi−1,xi)+ vi , with vi ∼N (0,Σvi) (1)

where o = {o1...omi},oi ∈ se(3) is the sequence of odometric
measurements. Similarly, let hk(xik , l jk) be the 3D point mea-
surement model with Σwk , the measurement noise covariance
matrix :

zk = hk(xik , l jk)+wk , with wk ∼N (0,Σwk) (2)

where z = {z1...zmk}, zk ∈ IR3 is the set of all 3D point
measurements.

The solution of the problem is obtained by minimizing the
sum of squared nonlinear residuals:

θ
∗ = argmin

θ

1
2

{
mi

∑
i=1
‖ fi(xi−1,xi)−oi‖2

Σvi
+

mk

∑
k=1
‖hk(xik , l jk)− zk‖2

Σwk

}
(3)

Iterative non-linear optimization methods such as Gauss-
Newton or Levenberg-Marquardt can be used to find a
solution that minimize (3). At each ith iteration, the cost
function in (3) is linearized and the solution is found by
solving a linear least-squares (LS) problem in δ [5]:

δ
∗ = argmin

δ

1
2
‖A>Aδ −A>b‖2 , (4)

where A gathers the derivatives of the residuals in (3) with
respect to variables in θ weighted by the block-diagonal
matrix that gathers all the square rooted, inverse covariances
of all the observations; and b is the residual evaluated at
the current liniarization point. The new liniarization point is
obtained by θ

i+1 = θ
i +δ ∗. This formulation is often used

in the SLAM literature [5] [12] [14] [20]. The graph formu-
lation of the SLAM is highly intuitive and has the advantage
of being able to incorporate several types of observations
(odometry, GPS, IMU, sonar, laser scan registration, feature
points, feature lines, etc., even reprojection errors in the case
of SFM). Another advantage of this formulation is that it
allows for efficient implementations of batch [14] [1] [13]
and incremental [12][11] [19] NLS solvers.

B. Adding planar constraints to a graph-based SLAM

In this paper, we explore the effect of integrating additional
information about the landmarks in the environment into
the visual SLAM estimation problem. While this paper is
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Fig. 2: SLAM with planar information representation. Cam-
era poses are represented by xi, landmarks by l j and plane
parameters by η and d.

only concerned with constraining some points to planes and
applying orthogonality or parallelism constraints between
planes, the formulation is general and can be extended to any
type of structural constraints present in the environment as
long as there is an advanced front-end that can provide that
information and a function that can model it. This a common
situation in “built environments” where planar surfaces are
ubiquitous. The front-end can either incrementally process
the estimated map of points and detect planes and angles
between planes or use the raw image input to detect and
track planes.

A plane is characterized by the normal to the plane surface
ηs ∈ S2 with S2 = {(ηx,ηy,ηz)

>| |η |= 1} the unit sphere in
space, and the distance to the planar surface ds ∈ IR , with
s = 1 . . .ns and ns is the total number of planes detected. For
each point l j that lies on a plane defined by ps = [ηs,ds]

>

we have:

0 = g(l j, ps)+qs j with g(l j, ps) = ds− l>j ηs , (5)

where qs j is qs ∼N (0,Σqs j
) normally distributed zero-mean

Gaussian noise. Here qs j models the true distance of the
point from the plane, that is the formulation does not require
the underlying plane model to hold exactly, such as for
example in the case where points in a corridor may lie on
pin-boards on the wall and vary slightly in depth, or points
on the buildings lay on the window frames, etc. We chose
to parameterize a plane using ηs and ds, although it is an
over-parameterization, because in this way, it is easiest to
represent the distance of a point to the plane in the way stated
above, and also implies a mathematically simple jacobian
computation.

Furthermore, given two planes with ηs1 and ηs2, an angle
constraint can be defined as:

cos(at) = η
>
s1

ηs2 + rt , (6)

where rt is the normally distributed zero-mean angle noise
with covariance matrices Σrt . Here rt models the confidence
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Fig. 3: Factor graph representation for SLAM problem with
added planar and angular information. New variables sp are
added to incorporate the planes as well as the new factors,
gs j in cyan and at in green (best seen in color).

that is assigned to plane orthogonality or parallelism con-
straint at .

C. The cost function

The factor graph representing a SLAM problem which
integrates two planar constraints and one angle constraint is
shown in Fig. 3. This factor graph representation helps us to
formulate the nonlinear least square problem that minimizes
all the residuals defined by the integration of the meta-
structural information into the estimation problem:

θ
∗ = argmin

θ

1
2

{
mi

∑
i=1
‖ fi(xi−1,xi)−oi‖2

Σvi
+

mk

∑
k=1
‖hk(xik , l jk)− zk‖2

Σwk
+

ms

∑
s, j
‖ds− lT

j ηs‖2
Σqs

+

mt

∑
t=1
‖cos(at)−η

>
s1

ηs2‖
2
Σrt

}
(7)

where mi, mk, ms and mt are the number of odometric
measurements, point measurement, plane observations and
angle observations.

D. Particularities of the Jacobian matrix

Taking the derivative of g(l j,ηs,ds) = ds − lT
j ηs with

respect to ηs ∈ S2 involves projecting the differential of
g(l j,ηs,ds) onto the tangent space of S2 using the projector
(I−ηηT ):

∇ηsg(l j,ηs,ds) = (I−ηsη
T
s )

∂g(l j,ηs,ds)

∂η
. (8)

Observe that representing a plane by four parameters is an
over-parameterization, which causes the system matrix to be
singular with zero eigenvalues associated with the term (I−
ηsη

>
s ) and any attempt to invert it within the NLS solver

will fail.
There are two ways to overcome this problem. The pa-

rameterization of the plane can be characterized by ηs now
in IR3 and ds ∈ IR, in which case the optimization should
constrain η>s ηs−1 = 0 to ensure the solution converges to a
unit norm of the normal vector ηs. This can be modeled as
a unary factor in the factor graph in Fig. 3. This approach
not only introduces extra unnecessary factors in the graph



for each connected plane but it is also very sensitive to the
confidence associated to this prior.

A second and more elegant approach is to keep the ηs ∈ S2

parameterization and to solve a constrained optimization
problem. This can be done by calculating the perpendicu-
lar kernel [22] to the matrix A>A and solve the equation
(K⊥)T A>AK⊥δ

′
= (K⊥)T A>b and then reconstruct the δ =

K⊥δ
′
. Appendix VI explains how this is applied to solve the

NLS in (3).

IV. EVALUATION SETUP

The framework is evaluated on Manhattan-like worlds,
where objects and structures typically exhibit a high de-
gree of organization in the form of orthogonal and parallel
planes [23]. In order to evaluate the structural consistency
of the proposed methodology, we generated several datasets
with ground truth (GT). This is done by simulating a robot
moving in a Manhattan-like world and observing 3D points
in the environment using a sensor with a limited field of
view. Odometric measurements are also available. We also
emulate an advanced front-end that is able to fit planes to
the observed 3D points, and planes are assumed to be either
orthogonal or parallel.

A. Simulated dataset

To clearly observe the effects of adding structural informa-
tion, we simulate a robot moving forward on a long trajectory
without revisiting previous locations. As a baseline, the sys-
tem is solved with no additional structural information (NoI)
integrated into the estimation. This is shown in subfigure
a) in both Fig. 4 and 5. We then consider two different
configurations of planes to model the buildings on the left
and right sides of the road. In the first case, all buildings on
each side are represented as a single plane. In the second
case, four planes are generated on each side to more accu-
rately and realistically model separate buildings on a street.
These two cases are repeated when planar information (PI)
is added to the system, subfigures b) and d) and when both
planar and angular information (PAI) is added, subfigures c)
and e) in both Fig. 4 and Fig. 5. For each of these cases,
the same odometry and point measurements are used to
provide a valid comparison. This comparison is repeated with
ten sets of randomly generated measurements. Experiments
were conducted with combinations of several noise levels for
odometry, point measurement, plane constraints and angle
between planes. The noise levels are shown in the captions
of the corresponding figures.

B. Synthetic city dataset

The second dataset is an existing synthetic Blender-
generated city by Zhang et al. [29], from which we gen-
erated a dataset which consists of RGB-D images acquired
by a robot traveling in this synthetic city. Ground truth
depth can be associated to every pixel in the image. It is
worth mentioning that this dataset provides a good model
of a realistic environment, with the only difference of
having perfect depth estimates and ground-truth camera

poses. To realistically model a real case scenario, we de-
liberately assign high noise levels to odometry and points
measurements (Σv = diag[0.4m,0.4m,0.4m,6◦,6◦,6◦]2, Σw =
diag[0.4m,0.4m,0.4m]2). A feature matching and tracking al-
gorithm was run to generate a set of 3D point measurements.
On top of that we implemented a plane extraction algorithm
that uses M-estimator SAmple Consensus (MSAC), a variant
of the RANdom SAmple Consensus (RANSAC). Only the
planes that satisfy the Manhattan world assumption are in-
tegrated into the estimation. Two experiments were run with
this dataset, one where the robot stops before closing a loop
(62 poses and 550 3D points) and a second one with a loop
closure (135 camera poses and 1500 3D pints). Experiments
were conducted with combinations of several noise levels for
odometry, point measurement, plane constraints and angle
between planes. The noise levels are shown in the captions
of the corresponding figures.

C. Implementation details

We implement an estimation framework which is able
to integrate not only simple point measurements but also
meta-structural information. The object oriented design is
thought to accommodate future extensions to different types
of objects and even to integrate dynamics of the scene. The
estimation is implemented as a solution to an NLS problem
as presented in section III. The solver communicates with an
advanced front-end which provides the structural constraints.
Batch and incremental processing is possible. The estimation
is solved using Levenberg-Marquardt method.

V. EXPERIMENTAL RESULTS

This section evaluates the proposed technique on the
datasets described in section IV. We are focused on analyzing
the accuracy and structural consistency of the proposed
estimation solution and compare it to the classical SLAM for-
mulation which does not integrate any additional information
about the 3D points in the environment. In this sequence of
experiments, we consider points constrained to planes, and
orthogonality and parallelism information between planes,
that is using at = 90deg or at = 0deg. All the experiments
are run on an Intel Core i7-4790 CPU machine.

A. Accuracy tests

The accuracy is evaluated by comparing the absolute
trajectory translational error (ATE), the absolute trajectory
rotational error (ARE), the absolute structure error (ASE),
the relative trajectory translational error (RTE), the relative
trajectory rotational error (RRE), and the relative structure
error (RSE). The absolute error is used to evaluate the
structural consistency of the estimation.

Numbers in Table. I & II show better accuracy results in
case of added structural information. More analysis follows
in subsections V-B & V-C.



Simulated Street Dataset
Error NoI∗ PI∗ PAI∗ SPI∗ SPAI∗

ATE 1.42 m 0.74 m 0.74 m 0.89 m 0.83 m
ARE 0.33 ◦ 0.12 ◦ 0.12 ◦ 0.20 ◦ 0.18 ◦

ASE 2.28 m 0.93 m 0.92 m 1.21 m 1.11 m
RTE 0.05 m 0.05 m 0.05 m 0.05 m 0.05 m
RRE 0.21 ◦ 0.16 ◦ 0.16 ◦ 0.16 ◦ 0.16 ◦

RSE 0.70 m 0.66 m 0.66 m 0.67 m 0.67 m

TABLE I: Average error values for 106 experiments of the
simulated dataset. * NoI: without added information, PI:
planar information added, PAI: planar & angular information
added, SPI and SPAI are the same are PI and PAI respectively
in the case where each side of the street is modeled as several
planes.

Synthetic City Dataset
Error NoI∗ PAI∗

ATE 1.28 m 0.65 m
ARE 5.79◦ 2.44◦

ASE 1.29 m 0.63 m
RTE 0.31 m 0.30 m
RRE 1.35◦ 1.21◦

RSE 0.68 m 0.50 m

TABLE II: Error values for the synthetic city dataset without
loop closure. * NoI: without added information, PAI: planar
& angular information added.

B. Analysis of the simulated street dataset

Simulations were run for 16 different combinations of
point measurement and plane flatness noise levels, with 10
different randomly generated measurement datasets, giving
a total of 160 trials. Due to space limitations we only
show results for 2 representative trials: full results fig-
ures and the associated code can be found on our Entity
SLAM website https://github.com/MinaHenein/
Entity-SLAM.

For the trials shown in both Fig. 4 and Fig. 5, the point
measurement noise level σw is set to be relatively high in
order to better observe the performance advantages of our
algorithm.

From the tests we observe that planar information helps
to preserve the structural consistency of the estimated map.
This is most obviously seen in the reduction in drift between
a) where no structural information is used, to the b) where
walls are modeled as single planes, in both Fig. 4 and Fig.
5 and also reflected in table I. There are some cases where
this planar information results in increased drift. The inherent
randomness of the measurement noise model can result in the
estimation drifting back towards the ground-truth. A close
examination of Fig. 5 a) shows that the estimated trajectory
initially drifts towards the negative in the x axis, but this
is corrected by a later drift. Fig. 5 b) shows that the planar
information tends to preserve the straightness of the structure,

and thus this reversal of direction is not allowed. This
situation is unlikely to occur in a real environment, where a
city is more realistically modeled by separate planes. When
considering the case where walls/buildings are modeled as
several planes, the system is more susceptible to drift because
of the increased freedom allowed by segmentation of the
planes. In fact, if the number of planes used to represent one
building is sufficiently high, the added planar information
act as the no information case; as if every point had the
freedom to lie on a single plane. The addition of angular
information helps to reduce this effect, as this additional
information reshapes the problem as a single plane. This can
be seen by comparing d) and e) in both Fig. 4 and Fig. 5.
Table I shows 47% error reduction in ATE, 59% reduction in
ASE and 63% reduction in ARE when considering 1 plane
on each side (PI & PAI) and 37% error reduction in ATE,
46% reduction in ASE and 38% reduction in ARE for planar
information when considering segmented planes (SPI) and
41% error reduction in ATE, 51% reduction in ASE and
44% reduction in ARE for planar and angular information
when considering segmented planes (SPAI). When including
angular information, care should be taken when choosing
the strictness of the constraints, as the system can become
sensitive to large measurement noise resulting in failure
of the estimation. The corrections provided by the angle
information must not exceed freedom in plane fitting allowed
by the spatial distribution of the points. This is reinforced by
our observation that experiments where points are generated
loosely on the planes as in Fig. 5 the estimation is less
susceptible to failure, as opposed to very close to planes
as in Fig 4. Improving the robustness of this formulation is
an ongoing direction of research.

It is worth mentioning that on average there is a 16.3%
increase in computational time when incrementally running
PI tests with respect to the NoI tests and another 2.5%
increase when adding angular constraints. Note the current
MATLAB implementation used to perform the tests was not
optimized for performance.

C. Analysis of the synthetic city dataset

Although run for two different setups of experiments, and
four different noise levels each, in this paper we only show
results from one experiment and a single noise level, full
results figures can be found at the web site mentioned above.

It is known that loop closures help to preserve structural
consistency when the same locations are revisited and the
same environment landmarks are re-observed and used to
correct the drift. Therefore in the city dataset, adding planar
and angular information appear to have minimal effect after
the loop is closed.

Improvements are however shown in the case where the
robot traversed the city but no large loops have been closed
yet. It is here where the estimate drifts by a significant
amount without added meta-structural information. Using
prior knowledge of the environment in terms of planar and
angular information improves the overall estimation accuracy
and preserves consistency. Fig. 6 shows the effect of adding

https://github.com/MinaHenein/Entity-SLAM
https://github.com/MinaHenein/Entity-SLAM
https://github.com/MinaHenein/Entity-SLAM
https://github.com/MinaHenein/Entity-SLAM
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Fig. 4: Comparison of SLAM with a) no added structural information, with added planar information when modeling
walls as b) one plane and d) four separate planes, and with both planar and angular information when modeling walls
as c) one plane and e) four separate planes. The Second row shows a different view of the same scene. Ground-truth
is shown in red and the final estimation is shown in blue. The figure is not displayed to scale. Noise levels used are:
Σv = [0.02m,0.02m,0.02m,2◦,2◦,2◦]2, Σw = [0.2m,0.2m,0.2m]2, Σg = [0.01m]2 and Σr = [0.05◦]2. Figure best seen in color.

planar and angular information on the global consistency of
the estimation, and Table II shows a reduction of 50% in
absolute errors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown the effect of additional meta-
structural information on the accuracy and global structural
consistency of SLAM. We used the factor graph formulation
of a SLAM problem to incorporate prior knowledge of the
environment into the estimation. Results show improvements
in the estimation of structure, 3D points pertaining to a
certain surface show better convergence results versus the
same points with no added information.

The proposed algorithm demonstrates better convergence
and global structural consistency results in most cases and
still can be improved in many aspects. A possible improve-
ment can be made by having plane detection integrated into
the estimation process or ran as a prediction step [10]. It
is also worth mentioning that angular information should be
added with care, as solving for angular constraints has shown
to be very sensitive to initial conditions and can sometimes
cause the problem to get stuck in a local minima. This
has happened in 33% of the 160 total experiments run for
the simulated street dataset (Table I does not include those
cases).

While presented in isolation here, the planar and orthog-
onality information can be combined with other geometric
or semantic information as well as dynamics of the objects
in the scene to handle a larger group of problems. Different
information can be added to the system such as distance
information for geometric shapes of known dimensions or
velocity information for moving rigid objects, this can greatly
improve the incremental segmentation SLAM problem [26]
and opens wide doors to SLAM with objects and dynamic
SLAM estimation problems.

APPENDIX

We start with the linear system described by the equation:

AT Aδ = AT b , (9)

with optimal solution δ ∗. We define K, a matrix whose
columns span the null space of AT A, and K⊥ an orthogonal
matrix to K and whose columns span the domain of
AT A by construction. The size of A is M × N, where
N = dim(xi) ·nx+dim(l j) ·nl +dim(ηs) ·ns+dim(ds) ·ns,
M = dim(oi) ·mi+dim(zk) ·mk+dim(ps j) ·ms+dim(at) ·mt,
therefore K ∈ IRN×ns and K⊥ ∈ IRN×(N−ns). Since the solution
δ ∗ lies in the domain space of A>A, we can write δ ∗ =
K⊥δ ∗

′
, where δ ∗

′ ∈ IRN−np. Thus one has:

AT Aδ
∗ = AT AK⊥δ

∗′ = AT b . (10)
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Fig. 5: Comparison of SLAM with a) no added structural information, with added planar information when modeling
walls as b) one plane and d) four separate planes, and with both planar and angular information when modeling walls
as c) one plane and e) four separate planes. The Second row shows a different view of the same scene. Ground-truth
is shown in red and the final estimation is shown in blue. The figure is not displayed to scale. Noise levels used are:
Σv = diag[0.02m,0.02m,0.02m,2◦,2◦,2◦]2, Σw = diag[0.2m,0.2m,0.2m]2, Σg = [0.2m]2 and Σr = [0.05◦]2. Figure best seen
in color.

Fig. 6: Top view of the final city map estimate (no loop closure) with no added information (left) vs with planar & angular
information added (right). Where some buildings appear to lose orthogonality on the left image, the same buildings appear
to show planarity and orthogonality on the right image preserving the global consistency of the map. Noise levels used are
as follows: Σv = diag[0.4m,0.4m,0.4m,6◦,6◦,6◦]2, Σw = diag[0.4m,0.4m,0.4m]2, Σg = [0.01m]2 and Σr = [1◦]2



Pre-multiplying by (K⊥)T gives:

(K⊥)T AT AK⊥δ
∗′ = (K⊥)T AT b (11)

We solve for δ ∗
′

and then reconstruct δ ∗ = K⊥δ ∗
′

for the
solution of the actual system.
Note that due to the sparsity and block structure of the
matrix AT A, the product (K⊥)T AT AK⊥ and (K⊥)T AT b can
be computed efficiently by exploiting the block structure.
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