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Abstract: Forced aligners have revolutionized sociophonetics, but while there are several forced aligners
available, there are few systematic comparisons of their performance. Here, we consider four major forced
aligners used in sociophonetics today: MAUS, FAVE, LaBB-CAT and MFA. Through comparisons with human
coders, we find that both aligner and phonological context affect the quality of automated alignments of
vowels extracted from English sociolinguistic interview data. MFA and LaBB-CAT produce the highest qual-
ity alignments, in some cases not significantly different from human alignment, followed by FAVE, and then
MAUS. Aligners are less accurate placing boundaries following a vowel than preceding it, and they vary in
accuracy across manner of articulation, particularly for following boundaries. These observations allow us
to make specific recommendations for manual correction of forced alignment.
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1 Introduction
A first step in conducting (socio)phonetic analysis is to create reliable segmentations between the acous-
tic signal and phonemic segments. Typically, this is done by orthographically transcribing speech and
then time-aligning phonemes with the waveform and spectrogram. Manual alignment is incredibly time-
consuming, having been reported to take approximately 800 times longer than the duration of the speech
itself to implement (Schiel et al. 2012: 111). However, the past decade has seen advances in computational
methods that have allowed for automated phonemic transcriptions, time-aligned at the segment level, to be
derived from orthographic transcriptions, time-aligned at the utterance level. This process, known as forced
alignment, tremendously increases the number of tokens that can be analyzed, adding to both the power of
analyses and the generalizability of results. It is nowonder then that forced alignment has become amainstay
in sociophonetic research (cf. Stuart-Smith et al. 2017).

While forced alignment is highly effective (e.g., Brognaux et al. 2012), accuracy is nevertheless impacted
by various factors, including data type and recording quality (Fromont andWatson 2016), phonological con-
text (Cosi et al. 1991: 4; DiCanio et al. 2012: 132), speech rate (MacKenzie and Turton 2020), as well as the
aligner itself (Watson and Evans 2016; McAuliffe et al. 2017). There is, however, little in the way of direct com-
parisons across the multiple aligners that are widely used. This paper, then, presents a comparison of the
four major forced aligners in use in linguistic research today: the Munich Automatic Segmentation System
(MAUS, Schiel 1999), the Forced Alignment & Vowel Extraction suite (FAVE, cf. Rosenfelder et al. 2014), the
Language, Brain and Behaviour Corpus Analysis Tool (LaBB-CAT, Fromont and Hay 2012), and the Montreal
Forced Aligner (MFA, McAuliffe et al. 2017). We first present an overview of each of these aligners (Section 2),
and then examine howwell they perform on spontaneous speech, utilizing Australian English sociolinguistic
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interview data (Section 3). To do this, we compare the segmentation produced by each of the forced aligners
with those produced by two trained phoneticians, paying particular attention to the impact of preceding and
following phonological environment (Section 4). In closing, we offer an interpretation of the differences in
accuracy observed (Section 5), and conclude with some recommendations for working with force-aligned
data (Section 6).

2 Overview of four common forced aligners

2.1 Components of a forced aligner

Forced alignment for linguistic research typically takes an orthographic transcription as the basis fromwhich
to create the corresponding phonemic segmentation. Transcriptions aremademachine-readable through the
use of a grapheme-to-phoneme (G2P) dictionary – standardized orthographic transcriptions mapped to the
phonemic representation (or representations) of each orthographic word. The phonemes are then matched
with corresponding acoustic information in the audio file, based on statistical representations of the dis-
tinctive sounds in the acoustic model. The acoustic models are most commonly created from Mel Frequency
Cepstral Coefficients (MFCC) (Chodroff 2018). For forced aligners used by sociolinguists, these models are
built using either the HiddenMarkovModel Toolkit (HTK) (Young et al. 2006) or the Kaldi toolkit (Povey et al.
2011). Both are based on Hidden Markov Models (HMMs), which have been fundamental in the development
of models for language processing, with Kaldi having been developed more recently (for comparison, see
Gaida 2014).

The acoustic models used by a forced aligner may be either pre-trained (built from existing datasets of
time-aligned speech corpora and incorporated into the aligner prior to the input of data for forced alignment)
or established via a train/align process (built on the basis of the data fed to the aligner). Both pre-trained and
train/align acoustic models can be developed on a variety of speech types (from controlled speech, such
as word list data or isolated sentences read aloud, to spontaneous speech), and on different languages and
language varieties.

The forced aligners we consider here differ in the toolkits they use (HTK vs. Kaldi), the way the acoustic
model is developed (pre-trained vs. train/align), and the data the acousticmodel is based on (more controlled
vs.more spontaneous speech, fromdifferent varieties of English). To date, the impact of these parameters has
been relatively understudied.While we do not directly test each factor here, the comparisons presented allow
us to draw some hypotheses about the impact they may have.

To contextualize the analyses that follow, we first provide a brief overview of each of the four aligners.

2.2 Munich Automatic Segmentation System (MAUS)

MAUS is a software package available from the Bavarian Archive for Speech Signals (Schiel 1999). It can be
installed locally on the user’s machine, and can also be accessed online through WebMAUS (Kisler et al.
2017). MAUS uses HTK and works with pre-trained models. There are pre-trained models available for sev-
eral languages, including English, German and Icelandic, as well as a pan-Australian model for Aboriginal
languages (cf., Stoakes and Schiel 2017). MAUS can also be adapted to work with languages lacking pre-
trained acoustic models, as has been done, for example, for Barunga Kriol (a variety of an English-based
creole spoken in Roper River, North Australia, Jones et al. 2017) and Bora (a Witotoan language spoken
in Peru, Strunk et al. 2014). For the Australian English model, MAUS has been pre-trained on a subset of
the AusTalk database (Wagner et al. 2010), comprised of word lists and read sentences from 95 speakers.
An acoustic model pre-trained on spontaneous speech is also available for New Zealand English, and we
consider the difference in performance of the models built from controlled and spontaneous speech below
(Section 4.1).
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2.3 Forced Alignment & Vowel Extraction (FAVE)

FAVE was developed in the University of Pennsylvania Linguistics Lab, based on the Penn Phonetics Lab
Forced Aligner suite (p2fa, Yuan and Liberman 2008), for the purpose of aligning English sociolinguistic
interview data (Rosenfelder et al. 2014). While FAVE is used as a locally installed program, much of its
functionality can be accessed online via DARLA (Reddy and Stanford 2015). FAVE uses the HTK toolkit and
the Carnegie Mellon University (CMU) Pronouncing Dictionary (Carnegie Mellon University 1993–2016). The
acoustic model is pre-trained on the SCOTUS corpus (Yuan and Liberman 2008), consisting of 25 hours of
hand-aligned oral arguments from the Supreme Court of the United States, recorded over a 50-year period.
As well as forced alignment, FAVE offers a pipeline for measuring and extracting formant values from vowels
in the aligned data. It has been used widely in studies of English, has been adapted for Spanish (Wilbanks
2018), and has also been applied to other languages using the English acoustic model, for example, Bribri
(a Chibchan language spoken in Costa Rica, Coto-Solano and Flores Solórzano 2017) and Bequia Creole (an
English-based creole spokenon the islandofBequia, in St. Vincent and theGrenadines,Walker andMeyerhoff
2020).

2.4 Language, Brain and Behaviour Corpus Analysis Tool (LaBB-CAT)

LaBB-CAT is a corpusbuilding andannotation tool (Fromont andHay 2012). Itwas createdby theNewZealand
Institute of Language, Brain and Behaviour, to facilitate the development of the corpus for the Origins of New
Zealand English project (ONZE, Gordon et al. 2007). As with the other aligners discussed here, LaBB-CAT is
installed locally, and while it has no generally accessible online interface, it is possible to build a server for
remote use. Like MAUS and FAVE, LaBB-CAT employs HTK. It is designed specifically to interface with the
CELEX dictionary, based on British English (Baayan et al. 1995), but any G2P dictionary can be wrangled to
work with the program, as has been done, for example, with the CMU Dictionary for U.S. English, and with a
dictionary ofMāori (Keegan et al. 2012). LaBB-CATuses a default train/align system for speech samples longer
than five minutes, reverting to a pre-trained model for shorter segments. As a powerful corpus building and
management tool, LaBB-CAT has functionality for data tagging (including tagging with formant values that
have been extracted via forced alignment, as well as a range of other linguistic, social, and interactional
features).

2.5 Montreal forced aligner (MFA)

MFAwas developed atMcGill University as an update to Prosodylab-Aligner (McAuliffe et al. 2017). It, too, can
function as a locally installed program, and some features are accessible online via DARLA. MFA is unique
among the aligners evaluated here in that it employs Kaldi. The acoustic model in MFA is based on the
LibriSpeech corpus (Panayotov et al. 2015), which consists of 80 hours of audiobooks, read by volunteers
primarily from the U.S. (McAuliffe et al. 2017: 501). Similar to LaBB-CAT, MFA offers both pre-trained and
train/alignmodels. Pre-trainedmodels are currently available in 22 languages, including U.S. English (which
is what we use for the comparisons here), as well as, for example, Korean, Mandarin, Swahili, Hausa, and
Russian. Using train/align, MFA can be applied to languages lacking an acoustic model, and has been found
to achieve similar accuracy to that achieved for English data (e.g., for Matukar Panau, an Oceanic language
spoken in Papua New Guinea, Gonzalez et al. 2018). For the purpose of comparability, in the analyses here
we utilize the pre-trained model.¹

Table 1 provides a summary of the components of the four aligners examined here, as they were
parameterized for the analyses presented.

1 Preliminary testing suggests that MFA performs similarly using train/align or pre-trained models.
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Table 1: Components for each aligner as implemented in this study.

Program Toolkit Acoustic model Speech type for training data

Controlled Variety

MAUS HTK Pre-trained Yes Australian English
No New Zealand English

FAVE HTK Pre-trained No U.S. English
LaBB-CAT HTK Train/align No Australian English
MFA Kaldi Pre-trained No U.S. English

3 A methodology for comparing the performance of forced aligners
In order to assess the performance of these forced aligners, we utilize transcriptions of sociolinguistic inter-
viewswith four Anglo Australians, twomales and two females, one adult and one teenager of each sex. These
recordings were made on cassette tape in the late 1970s for the Sydney Social Dialect Survey (Horvath 1985).
The findings discussed here are thus applicable to data collected in less-than-ideal recording conditions (as
is often the case for legacy data). A total of approximately 1.5 hours of speech, or 16,000 words, were aligned,
relatively evenly divided across the four speakers.²

The recordings were orthographically transcribed in short utterance lengths (mean = 9.85 syllables/
utterance), generally between pauses, to create intervals that wouldmaximize aligner performance. The four
files were then separately aligned at the segment level by each of the four forced aligners. We extracted 10%
of the transcribed section for manual correction by two trained phoneticians (the first and second authors),
who independently made boundary adjustments based on auditory and acoustic cues. To guard against bias
by the output of any one aligner, the two human coders corrected output generated by a different aligner for
each speaker.

We focus on vowels in stressed syllables, thus avoiding possible confounds of phonological reduction for
unstressed vowels, and consistent with standard practice in sociophonetic studies. This process yielded 1079
vowel tokens on which to test the performance of the aligners (ranging from 229 to 328 tokens per speaker).

As the forced aligners we compare use dictionaries based on distinct varieties of English, labels were
coerced to represent the aligned variety, Australian English, allowing for reliable comparison of the same
segments. For example, in coercing the output from FAVE and MFA, post-vocalic /r/ was merged into the pre-
ceding vowel, andunstressed vowelswere assigned to /ə/ (consistentwithCELEXdictionary representations).
In cases where aligners selected distinct variants of the same words (e.g., two- vs. three-syllable variants of
different), representations were converted to the shortest form.

Alignment outputs were compiled for comparison in Praat textgrids. Figure 1 gives a sample textgrid
with tiers corresponding to each comparison. The first tier represents the input orthographic transcrip-
tion and the second tier corresponds to the human benchmark, produced by the first human coder, which
serves as the comparison point for all other tiers. The third tier represents the alignment produced by
the second human coder for the human-to-human (H2H) comparison, and the remaining tiers represent
each of the four forced aligners. While some boundaries are very close across the aligners (e.g., between
/s/ and /ʌ/, in someone), others show marked differences (e.g., between /e/ and /l/ in else). We will
see below that preceding fricatives are generally not problematic for aligners, while following laterals
are.

2 The four interviews are: AAF_151, AAM_305, ATF_166, and ATM_128, drawn from the Sydney Speaks corpora (Travis et al. In
Progress). There was some difference in the quality of the alignment across these speakers, in particularly for one file (AAF_151),
which we attribute to its poorer recording quality.
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Figure 1: Sample Praat textgrid comparing the human benchmark with the second human coder (H2H) and the four aligners.

4 Results: Measuring accuracy
We employ two measures to evaluate the accuracy of the automated segmentation: Overlap Rate, which
calculates the proportion of overlap between the intervals established by the human benchmark and the
comparison alignments; and Boundary Displacement, which calculates the time difference in milliseconds
between the boundary placed by the human benchmark and the comparison alignments (cf., Coto-Solano
and Flores Solórzano 2017; McAuliffe et al. 2017). We consider the results for each of these in turn.

4.1 Overlap rate

Overlap Rate (OR) was calculated relative to the human benchmark. We applied a formula developed by
Paulo and Oliveira (2004: 39), presented in (1) below, in which durSHARED is the time (in milliseconds) shared
between the interval produced by the human benchmark (durHUM) and the comparison alignment, that of
the second human coder or the forced aligners (durCOMP). This formula gives a score from 0 (representing no
overlap) to 1 (representing complete overlap). A linear mixed-effects model was fit to OR, with forced aligner
identity and scaled vowel duration as fixed effects, and speaker, vowel identity, and phonological context
(preceding and following) as random intercepts (see Appendix, Table 2).³

OR =
durSHARED

durHUM + durCOMP − durSHARED
(1)

Figure 2 depicts the estimates and confidence intervals from the model; the human-to-human (H2H)
comparison serves as the baseline. As can be seen, H2H exhibits the highest estimated OR at nearly 80%,
significantly better than MFA at 65%; LaBB-CAT and FAVE are in turn both significantly lower than MFA, at
around 57%; and MAUS, at 53%, is significantly lower than all other aligners.

In order to test whether the relatively low OR in MAUS is due to it being trained on more controlled
speech samples, we fit another model that included a build of MAUS trained on spontaneous New Zealand

3 Linearmixed-effectsmodels were run in R (R Core Team 2018) using lme4 (Bates et al. 2010), and p-valueswere calculated using
lmerTest (Kuznetsova et al. 2017).
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Figure 2:Model estimates for Overlap Rate across aligners (from Table 2).

English speech (see Appendix, Table 3). MAUS trained on spontaneous speech produced an OR of 54%, a
non-significant improvement over MAUS trained on controlled speech, and still significantly below the other
aligners. We also independently tested the four aligners on a wordlist of 16 words from these same speakers
(using the build of MAUS pre-trained on word lists and read sentences), and the relative performance of each
was comparable to that for the spontaneous speech data. This indicates that the poorer performance ofMAUS
is not attributable to the type of training data used.

We also observe that accuracy varies as a function of phonological context. Random intercepts from the
model indicate that laterals, nasals, and approximants tend to produce lower ORs than stops and fricatives.
To explore the impact of phonological environment, we turn to Boundary Displacement.

4.2 Boundary displacement

Boundary Displacement (BD) provides a measure of the difference between the boundaries set by the human
benchmark from that of the comparison alignment. Lower BD represents lesser distance, and thus corre-
sponds to greater accuracy. The formula applied is given in (2), where boundHUM represents the timepoint
in milliseconds at which the boundary for the human benchmark was placed, and boundCOMP that of the
comparison alignment.⁴

|BD| = boundHUM − boundCOMP (2)

For initial investigation, a linear mixed-effects model was fit to BD with forced aligner identity, scaled
vowel duration, and position (preceding vs. following) as fixed effects, and speaker and vowel identity as
random intercepts (see Appendix, Table 4). BD was marginally lower for preceding compared with following
segment (p = 0.058), indicating that higher accuracy is achieved in boundary placement at the onset of a
vowel compared with the offset (cf. DiCanio et al. 2012: 133).⁵ Again, the human coders produced the most
similar results, with an average BD of 10 ms for preceding and 14 ms for following environment.

BD was further significantly impacted by aligner identity. Specifically, MFA and LaBB-CAT performed
equally well (with mean BDs of 28 ms and 23 ms, respectively for preceding context and 30 ms and 28 ms

4 Note that this formula returns an absolute value; we leave for future work comparisons of whether the force-aligned boundary
sits within the human-marked interval or outside it.
5 Preceding and following segment includes both across and within words. Boundary position (word-initial, word-medial, word-
final) when included in the model does not reach significance, suggesting that the effects observed are generalizable across and
within the word.
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for following), and significantly better than FAVE or MAUS (41 ms and 69 ms for preceding, 45 ms and 73 ms
for following, respectively). This differs from the results for OR, in which MFA outperformed all of the other
aligners. The difference between the performance ofMFA and LaBB-CAT according to these twomeasures can
be partially accounted for in terms of the placement of the force-aligned boundaries relative to the human
benchmark. Since OR calculates the overlap between intervals, a higher rate of overlap is attained in cases
where one interval encompasses the other – either the benchmark interval falls within the automated inter-
val, or the other way around.While close to half (46%) of the annotated intervals follow this pattern for MFA,
just one quarter (26%) of the intervals do so for LaBB-CAT. This contributes to greater OR for MFA, without
necessarily resulting in boundary placements that are closer to the human benchmark.

We found no effect of place of articulation for either preceding or following segment; we therefore focus
the discussion on manner of articulation. Separate models were fit to BD for preceding and following seg-
ment. Each of these models included forced aligner identity, scaled vowel duration, and manner of articula-
tion as fixed effects, with an interaction between forced aligner andmanner; speaker and vowel identity were
random intercepts.⁶

4.2.1 Preceding phonological segment

Figure 3 presents the estimates from the model fit to preceding BD across aligner andmanner of articulation.
H2H comparisons uniformly produce the most similar alignments, with no significant differences across the

Figure 3:Model estimates for Boundary Displacement across aligners: Preceding manner of articulation (from Table 5).

6 We excluded tokens in unclear speech (n = 67 preceding, n = 67 following) and environments with low token numbers,
including preceding (n = 23) or following affricates (n = 21) and preceding (n = 21) or following vowels (n = 31).
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distinct manners (see Appendix, Table 5). Notably, while the boundaries placed by the second human coder
appear to be closer to those of the human benchmark than LaBB-CAT and MFA, these differences are not sig-
nificant, indicating that (at least for vowel onsets) these programs produce alignments that are very similar
to those of human coders. Both FAVE andMAUS, on the other hand, produce significantly higher BD than the
H2H comparison, with MAUS exhibiting by far the highest displacement.⁷

Aligners behave relatively uniformly with respect to manner of articulation; preceding nasals, laterals
and approximants generally yield (non-significantly) higher BD (cf., Cosi et al. 1991; DiCanio et al. 2012: 133)
and have greater variance than fricatives and stops. MAUS, however, performs significantly better with pre-
ceding fricatives than stops; and it returns relatively large confidence intervals for preceding stops andnasals,
indicating less internally consistent alignments in these contexts. By contrast, alignments produced by LaBB-
CAT exhibit relatively small confidence intervals, indicatingmore internally consistent alignments than those
of other forced aligners.

4.2.2 Following phonological segment

Figure 4 presents the estimates from the model fit to following BD across aligner and manner of articulation
(see Appendix, Table 6). As with preceding environment, the second human coder uniformly produces

Figure 4:Model estimates for Boundary Displacement across aligners: Following manner of articulation (from Table 6).

7 In a study applying MFA (run through DARLA) and FAVE to British English sociolinguistic interview data, MacKenzie and Tur-
ton 2020) similarly find that MFA places onset boundaries very close to those placed by humans, but in contrast to the current
study, they find little difference between MFA and FAVE. What might account for these different results is unknown, but two key
differences are the comparison method (they compared boundaries placed by a human coder vs. forced alignment, whereas we
have compared boundaries placed by two human coderswith those placed by a human coder vs. forced alignment), and the object
of study (they tested the alignment of all phones, while we have tested that of stressed vowels).
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alignments closest to the human benchmark, with little difference across manner; and both MAUS and
FAVE are outperformed by MFA and LaBB-CAT, with no significant differences arising between the for-
mer or latter two. Unlike what we observe with preceding environments, MFA (p = 0.07) and LaBB-CAT
(p = 0.066) produce higher BD than the H2H comparison, consistent with the general observation that
following phonological environments are more problematic than preceding environments.

Also unlike preceding phonological environment, aligners differ substantially in how they behave across
manners of articulation. While FAVE and LaBB-CAT exhibit no significant differences across manner of
articulation, this is not the case for MAUS and MFA. MAUS returns higher BD in the context of following
approximants and nasals than it does with following stops or laterals, and a releveled model indicates that
MFA returns significantly higher BD for following laterals as comparedwith othermanners. LaBB-CAT, again,
exhibits smaller confidence intervals, indicating greater internal consistency in its boundary placement.

5 Interpreting accuracy differences
As an overall pattern, we first observe that the two human coders produced extremely uniform alignments,
seen in the high rate of overlap, and in the small boundary displacement across phonological contexts.
Humans significantly outperformed all of the forced aligners in OR, and in BD for following phonological
context. But for preceding phonological context, MFA and LaBB-CAT produced boundaries that were similar
to human boundaries, a testament to the high quality of the alignment these programs produce.

Among the forced aligners, MFA and LaBB-CAT yielded themost accurate alignments, followed by FAVE,
and finally, MAUS. What might account for these differences in performance? First, MFA is the only forced
aligner that uses Kaldi, while the other three use HTK. The high performance of MFA may be an indication
that Kaldi’s use of more advanced ASR techniques results in more accurate segmentations. The high perfor-
mance of LaBB-CATmay be attributable to its use of train/align, rather than pre-trained, models. Indeed, the
fact that LaBB-CAT performs as well as MFA in terms of BD suggests that the train/align protocol may help
close the gap in performance between HTK and Kaldi.

MAUS exhibits the poorest performance, despite being trained on Australian English, the variety being
aligned. This is not due to the controlled nature of the training data used to construct its acoustic model,
as performance did not significantly improve with an acoustic model based on (New Zealand) spontaneous
speech. While it has been proposed that higher accuracy is obtained when the training data and the data
to be processed are of a similar speech type (Cassidy and Schmidt 2017: 216), this finding supports the con-
trasting view that training on spontaneous speech yields the best alignment accuracy for both controlled and
spontaneous speech (Fromont andWatson 2016: 426). AndwhileMFAwas trained on read speech from audio
books, we would expect the nature of this genre to render data closer to spontaneous speech than to reading
passages collected in more constrained settings.

We find no evidence to suggest that dictionary (G2Pmapping) or variety greatly impact performance.MFA
and FAVE are produced with U.S. English models and using U.S. English pronouncing dictionaries, but they
outperform MAUS, again despite the latter being trained on Australian English. Thus, data type, the process
by which acoustic models are generated, and toolkit would all appear to impact alignment accuracy above
and beyond the variety that is being aligned (cf. also MacKenzie and Turton 2020). Future studies directly
testing of the impact of variety may be able to confirm this prediction.

6 Conclusions
This study lends empirical support to the common wisdom that humans are far more consistent in creating
alignments than are forced aligners, indicating that regardless of the aligner used, alignment accuracywill be
enhancedbymanual correction.Nevertheless, the accuracydifferences identifiedhere allow for somegeneral
recommendations for prioritizing the correction of vowels. First, with all programs, following contexts yield
higher error rates than preceding contexts. For MFA and LaBB-CAT, vowel onset boundaries so closely mirror
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those of humans that these should require less manual correction. Beyond that, a human coder appears to
be less impacted by phonological environment than the forced aligners are, and thus correction priorities
are program specific. With MFA, following laterals may require more checking, while for MAUS, preceding
stops and following nasals and approximants warrant more attention. For FAVE and LaBB-CAT, on the other
hand, there is little difference across manners of articulation, such that equal effort can be given to checking
alignment accuracy.

The results of the comparisons presented here indicate that, assessed on the robustness of their forced
alignment, MFA, LaBB-CAT and FAVE are more efficacious choices than MAUS for investigating vowels in
English, with MFA and LaBB-CAT providing the highest quality alignments for English sociophonetic work.
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Appendix
Table 2: Linear mixed-effects model fit to Overlap Rate – Predictors: aligner identity, scaled vowel duration; Random intercepts:
speaker, vowel identity, preceding and following manner of articulation.

Predictors Estimates CI t p

(Intercept) = H2H 0.77 0.71–0.82 27.08 <0.001
Aligner = FAVE −0.23 −0.25 to −0.21 −21.02 <0.001
Aligner = LABBCAT −0.22 −0.25 to −0.20 −20.71 <0.001
Aligner = MAUS −0.26 −0.29 to −0.24 −24.45 <0.001
Aligner = MFA −0.15 −0.17 to −0.13 −13.76 <0.001
Scale(dur) 0.04 0.04–0.05 10.81 <0.001

Bold values denote statistical significance at the p < 0.05 level.

Table 3: Linear mixed-effects model fit to Overlap Rate (with MAUS acoustic model from New Zealand English spontaneous
speech) – Predictors: aligner identity, scaled vowel duration; Random intercepts: speaker, vowel identity, preceding and
following manner of articulation.

Predictors Estimates CI t p

(Intercept) = H2H 0.76 0.70–0.82 24.76 <0.001
Aligner = FAVE −0.23 −0.25 to −0.21 −20.55 <0.001
Aligner = LABBCAT −0.22 −0.25 to −0.20 −20.25 <0.001
Aligner = MAUS −0.26 −0.29 to −0.24 −23.91 <0.001
Aligner = MAUSNZ −0.25 −0.28 to −0.23 −22.89 <0.001
Aligner = MFA −0.15 −0.17 to −0.13 −13.45 <0.001
Scale(dur) 0.04 0.03–0.05 10.88 <0.001

Bold values denote statistical significance at the p < 0.05 level.

Table 4: Linear mixed-effects model fit to Boundary Displacement – Predictors: aligner identity, scaled vowel duration,
position; Random intercepts: speaker, vowel identity.

Predictors Estimates CI t p

(Intercept) = H2H, preceding 8.92 2.46–15.38 2.71 0.007
Aligner = FAVE 31.24 24.53–37.95 9.12 <0.001
Aligner = LABBCAT 13.46 6.75–20.17 3.93 <0.001
Aligner = MAUS 60.44 53.73–67.16 17.65 <0.001
Aligner = MFA 17.36 10.65–24.07 5.07 <0.001
Position = following 4.11 −0.13–8.36 1.90 0.058
Scale(dur) 12.51 10.21–14.81 10.65 <0.001

Bold values denote statistical significance at the p < 0.05 level.

Table 5: Linear mixed-effects model fit to preceding Boundary Displacement – Predictors: aligner identity; scaled vowel
duration, preceding manner of articulation; interaction between preceding manner and aligner; Random intercepts: speaker,
vowel identity.

Predictors Estimates CI t p

(Intercept) = H2H, stops 7.40 −5.37–20.16 1.14 0.256
scale(dur) 9.03 5.72–12.34 5.34 <0.001
Manner = approximant 5.99 −12.41–24.39 0.64 0.523
Manner = fricative −0.48 −19.24–18.28 −0.05 0.960
Manner = lateral 4.03 −28.45–36.51 0.24 0.808
Manner = nasal 1.64 −22.08–25.36 0.14 0.892
Aligner = FAVE 24.78 7.33–42.23 2.78 0.005
Aligner = LABBCAT 10.77 −6.68–28.22 1.21 0.226
Aligner = MAUS 69.02 51.57–86.47 7.75 <0.001
Aligner = MFA 7.44 −10.00–24.89 0.84 0.403
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Table 5 (continued)

Predictors Estimates CI t p

Manner = approximant:Aligner = FAVE 9.18 −16.61–34.98 0.70 0.485
Manner = fricative:Aligner = FAVE 7.58 −18.84–34.00 0.56 0.574
Manner = lateral:Aligner = FAVE 10.17 −35.60–55.95 0.44 0.663
Manner = nasal:Aligner = FAVE 18.68 −14.79–52.14 1.09 0.274
Manner = approximant:Aligner = LABBCAT −2.24 −28.03–23.56 −0.17 0.865
Manner = fricative:Aligner = LABBCAT 1.09 −25.33–27.51 0.08 0.935
Manner = lateral:Aligner = LABBCAT 1.95 −43.82–47.72 0.08 0.933
Manner = nasal:Aligner = LABBCAT 6.50 −26.96–39.97 0.38 0.703
Manner = approximant:Aligner = MAUS −11.12 −36.92–14.67 −0.85 0.398
Manner = fricative:Aligner = MAUS −28.83 −55.25 to −2.41 −2.14 0.032
Manner = lateral:Aligner = MAUS −27.12 −72.90–18.65 −1.16 0.245
Manner = nasal:Aligner = MAUS 2.52 −30.95–35.98 0.15 0.883
Manner = approximant:Aligner = MFA 12.79 −13.00–38.59 0.97 0.331
Manner = fricative:Aligner = MFA 10.06 −16.36–36.48 0.75 0.455
Manner = lateral:Aligner = MFA 14.92 −30.85–60.69 0.64 0.523
Manner = nasal:Aligner = MFA 15.05 −18.41–48.52 0.88 0.378

Bold values denote statistical significance at the p < 0.05 level.

Table 6: Linear mixed-effects model fit to following Boundary Displacement – Predictors: aligner identity, scaled vowel
duration, following manner of articulation; interaction between following manner and aligner; Random intercepts: speaker,
vowel identity.

Predictors Estimates CI t p

(Intercept) = H2H, stops 9.11 −2.77–21.00 1.50 0.133
scale(dur) 11.42 8.22–14.62 7.00 <0.001
Manner = approximant 5.77 −22.80–34.35 0.40 0.692
Manner = fricative −0.87 −19.21–17.47 −0.09 0.926
Manner = lateral 5.56 −21.91–33.03 0.40 0.691
Manner = nasal 5.73 −11.60–23.06 0.65 0.517
Aligner = FAVE 27.03 10.58–43.48 3.22 0.001
Aligner = LABBCAT 15.43 −1.02–31.89 1.84 0.066
Aligner = MAUS 37.28 20.83–53.74 4.44 <0.001
Aligner = MFA 15.22 −1.24–31.67 1.81 0.070
Manner = approximant:Aligner = FAVE 5.93 −34.32–46.18 0.29 0.773
Manner = fricative:Aligner = FAVE 7.11 −18.75–32.97 0.54 0.590
Manner = lateral:Aligner = FAVE 2.39 −36.17–40.96 0.12 0.903
Manner = nasal:Aligner = FAVE 4.28 −20.10–28.65 0.34 0.731
Manner = approximant:Aligner = LABBCAT 0.95 −39.30–41.20 0.05 0.963
Manner = fricative:Aligner = LABBCAT 0.74 −25.12–26.59 0.06 0.956
Manner = lateral:Aligner = LABBCAT 11.32 −27.24–49.88 0.58 0.565
Manner = nasal:Aligner = LABBCAT −1.13 −25.51–23.25 −0.09 0.928
Manner = approximant:Aligner = MAUS 48.88 8.63–89.13 2.38 0.017
Manner = fricative:Aligner = MAUS 21.49 −4.37–47.35 1.63 0.103
Manner = lateral:Aligner = MAUS 5.58 −32.98–44.14 0.28 0.777
Manner = nasal:Aligner = MAUS 49.54 25.16–73.91 3.98 <0.001
Manner = approximant:Aligner = MFA −0.71 −40.96–39.54 −0.03 0.972
Manner = fricative:Aligner = MFA −2.27 −28.13–23.59 −0.17 0.864
Manner = lateral:Aligner = MFA 23.19 −15.37–61.75 1.18 0.239
Manner = nasal:Aligner = MFA 1.94 −22.44–26.31 0.16 0.876

Bold values denote statistical significance at the p < 0.05 level.
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